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Preface

Many organizations are running applications in cloud native environments, using
containers and orchestration to facilitate scalability and resilience. If you’re a member
of the Operations, Security, DevOps, or even DevSecOps teams setting up these envi‐
ronments for your company, how do you know whether your deployments are
secure? If you’re a security professional with experience in traditional server-based or
virtual machine–based systems, how can you adapt your existing knowledge for
container-based deployments? And as a developer in the cloud native world, what do
you need to think about to improve the security of your containerized applications?
This book delves into some of the key underlying technologies that containers and
cloud native computing rely on, to leave you better equipped to assess the security
risks and potential solutions applicable to your environment and to help you avoid
falling into bad practices that will leave your technology deployments exposed.

In this book you will learn about many of the building block technologies and mecha‐
nisms that are commonly used in container-based systems and how they are con‐
structed in the Linux operating system. Together we will dive deep into the
underpinnings of how containers work and how they communicate so that you are
well versed not just in the “what” of container security but also, and more impor‐
tantly, in the “why.” My goal in writing this book is to help you better understand
what’s happening when you deploy containers. I want to encourage you to build men‐
tal models that allow you to make your own assessment of potential security risks that
could affect your deployments.

This book primarily considers the kind of “application containers” that many busi‐
nesses are using these days to run their business applications in systems such as
Kubernetes and Docker. This is in contrast to “system containers” such as LXC and
LXD from the Linux Containers Project. In an application container, you are encour‐
aged to run immutable containers with as little code as is necessary to run the appli‐
cation, whereas in a system container environment, the idea is to run an entire Linux
distribution and treat it more like a virtual machine. It’s considered perfectly normal
to use SSH (Secure Shell) to access a system container, but security experts will look
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at you askance if you want to SSH into an application container in production (for
reasons covered later in this book). However, the basic mechanisms used to create
application and system containers alike are control groups, namespaces, and chang‐
ing the root directory, so this book will give you a solid foundation from which you
may wish to explore the differences in approach taken by the different container
projects.

Be warned that there are a few “container” implementations, like the new Apple
Containerization project, that isolate workloads using different technologies. You’ll
understand the differences by the end of this book!

Who This Book Is For
Whether you consider yourself a developer, a security professional, an operator, or a
manager, this book will suit you best if you like to get into the nitty-gritty of how
things work and if you enjoy time spent in a Linux terminal.

If you are looking for an instruction manual that gives a step-by-step guide to secur‐
ing containers, this may not be the book for you. I don’t believe there is a one-size-
fits-all approach that would work for every application in every environment and
every organization. Instead, I want to help you understand what is happening when
you run applications in containers and how different security mechanisms work so
that you can judge the risks for yourself.

As you’ll find out later in this book, containers are made with a combination of fea‐
tures from the Linux kernel. Securing containers involves using a lot of the same
mechanisms as you would use on a Linux host. (I use the term “host” to cover both
virtual machines and bare-metal servers.) I lay out how these mechanisms work and
then show how they apply in containers. If you are an experienced system adminis‐
trator, you’ll be able to skip over some sections to get to the container-specific
information.

You’ll have noticed that I mentioned Linux a few times already—and yes, there are
other operating systems! I’ll mention other OSs once or twice, but this book mostly
focuses on Linux containers running on Linux hosts.

I assume that you have some basic familiarity with containers and you have probably
at least toyed with Docker or Kubernetes. You will understand terms like “pulling a
container image from a registry” or “running a container” even if you don’t know
exactly what is happening under the covers when you take these actions. I don’t
expect you to know the details of how containers work—at least, not until you have
read the book.
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What This Book Covers
We’ll start in Chapter 1 by considering threat models and attack vectors that affect
container deployments, and the aspects that differentiate container security from tra‐
ditional deployment security. The remainder of the book is concerned with helping
you build a thorough understanding of containers and these container-specific
threats, and with how you can defend against them.

Before you can really think about how to secure containers, you’ll need to know how
they work. Chapter 2 sets the scene by describing some core Linux mechanisms such
as system calls and capabilities that will come into play when we use containers. Then
in Chapters 3 and 4, we’ll delve into the Linux constructs that containers are made
from. This will give you an understanding of what containers really are and of the
extent to which they are isolated from each other. We’ll compare this with virtual
machine isolation in Chapter 5.

In Chapter 6 you’ll learn about the contents of container images and consider how to
build them with security in mind. Chapter 7 goes on to discuss supply chain security
best practices, for ensuring that container images and their contents aren’t tampered
with. Chapter 8 addresses the need to identify container images with known software
vulnerabilities. This relies on treating containers as immutable, and Chapter 9 consid‐
ers the security benefits of taking immutability a step further, and applying a GitOps
approach to deploying containers and their configuration.

In Chapter 10 we will look at some optional Linux security measures that can be
applied to harden containers beyond the basic implementation we saw in Chapter 4,
and some variant approaches to isolating containers from each other. We will look
into ways that container isolation can be compromised through dangerous but com‐
monplace misconfigurations in Chapter 11.

Then we will turn to the communications between containers. Chapter 12 looks at
how containers communicate and explores ways to leverage the connections between
them to improve security. Chapter 13 explains the basics of keys and certificates,
which containerized components can use to identify each other and set up secure net‐
work connections between themselves. This is no different for containers than it is
for any other component, but this topic is included since keys and certificates are
often a source of confusion in distributed systems. In Chapter 14 we will see how cer‐
tificates and other credentials can be safely (or not so safely) passed to containers at
runtime.

In Chapter 15 we will consider ways in which security tooling can prevent attacks at
runtime, taking advantage of the features of containers.
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Finally, Chapter 16 reviews the top 10 security risks published by the Open Web
Application Security Project and considers container-specific approaches for address‐
ing them. Spoiler alert: some of the top security risks are addressed in exactly the
same way whether your application is containerized or not.

What Has Changed in the Second Edition?
In the five years since the first edition of this book was published in 2020, there has
been considerable change in the container ecosystem. Later that year, the SolarWinds
cyberattack focused attention on the software supply chain, leading to the develop‐
ment of a whole field of supply chain security. The term “GitOps” was first uttered in
2018 and has been widely adopted in the last few years, perhaps because organiza‐
tions took advantage of “runners” provided by GitHub and other repository plat‐
forms in a modern approach to CI/CD. eBPF emerged as the preeminent technology
for runtime security tools and for container networking with policy enforcement.
Even the fundamentals that underpin containers have evolved: they still use Linux
namespaces, but the user namespace is now used quite commonly, rootless containers
are a reality, and the ecosystem has moved on to control groups version 2.

The communities around cloud native and containers have helped to spread educa‐
tion about security best practices, so some of the most worrying techniques (like
installing packages into a running container) are thankfully much less commonplace
than they used to be. They are still included in this book because it’s important that
we don’t, as an industry, regress to using these antipatterns!

And perhaps the biggest consolidation since I wrote the first edition: Kubernetes has
become firmly established as the dominant orchestrator.

A Note About Kubernetes
These days the majority of folks using containers are doing so under the Kubernetes
orchestrator. An orchestrator automates the process of running different workloads
in a cluster of machines, and there are places in this book where I will assume you
have a basic grasp of this concept. In general, I have tried to stay focused on concepts
that act at the level of the underlying containers—the “data plane” in a Kubernetes
deployment.

Because Kubernetes workloads run in containers, this book is relevant to Kubernetes
security, but it is not a comprehensive treatment of everything related to securing
Kubernetes or cloud native deployments. You’ll find a good, up-to-date list of security
considerations in the Kubernetes documentation, including the configuration and use
of the control plane components that are outside the scope of this book.
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However widespread Kubernetes may be, it’s not the only option. There is widespread
use of managed container platforms like AWS Elastic Container Service, AWS
Fargate, Azure Container Instances, and Google Cloud Run, and Docker and
Podman are often used, particularly for local development, CI pipelines, and small-
scale deployments.

Examples
There are lots of examples in this book, and I encourage you to try them out for
yourself.

In the examples, I assume you are comfortable with basic Linux command-line tools
like ps and grep and with the basic day-to-day activities of running container appli‐
cations through the use of tools like kubectl or docker. This book will use the former
set of tools to explain a lot more about what’s happening when you use the latter!

To follow along with the examples in this book, you will need access to a Linux
machine or virtual machine. I created the examples using an Ubuntu 24.04 virtual
machine. You should be able to achieve similar results on different Linux distribu‐
tions and using virtual machines running on your local machine or on your favorite
cloud provider.

How to Run Containers
For many people, their main (perhaps only) experience of running containers directly
is with Docker. Docker democratized the use of containers by providing a set of tools
that developers generally found easy to use. From a terminal, you manipulate con‐
tainers and container images using the docker command.

This docker tool is really a thin layer making API calls to Docker’s main component:
a daemon that does all the hard work. Within the daemon is a component called con
tainerd that is invoked whenever you want to run a container. The containerd
project was donated by Docker to the Cloud Native Computing Foundation (CNCF)
in 2017.

The containerd component makes sure the container image you want to run is in
place, and it then calls a runc component to do the business of actually instantiating a
container. If you want to, you can run a container yourself by invoking containerd or
even runc directly.

Kubernetes uses an interface called the Container Runtime Interface (CRI) beneath
which users can opt for a container runtime of their choice. The most commonly
used options today are the aforementioned containerd and CRI-O (which originated
from Red Hat before being donated to the CNCF).
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The docker CLI is just one option for managing containers and images. There are
several others you can use to run the kind of application containers covered in this
book. Red Hat’s podman tool, originally conceived to remove reliance on a daemon
component, is one such option.

The examples in this book use a variety of different container tools to illustrate that
there are multiple container implementations that share many common features.

At the time I’m writing this second edition, Apple has just launched
its containerization project. It uses the same container image for‐
mats as Docker (which you’ll learn about in Chapter 6), and the
command-line interface has a lot of similarities, but as you’ll see
when you get to Chapter 10, it uses a different mechanism to iso‐
late containers from each other. For that reason, several examples
from this book won’t behave the same if you run them using Apple
containerization.

Feedback
The website containersecurity.tech accompanies this book. You are invited to raise
issues there with feedback and any corrections that you’d like to see in future editions.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for commands and output listings, as well as within paragraphs to refer to
technical elements such as library, file, image, or function names, environment
variables, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a general note.
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Using Code Examples
Supplemental code examples are available at https://containersecurity.tech. There is a
sandbox environment for running these examples, along with quiz questions to test
your learning, on the O’Reilly online platform.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Container Security,
2nd edition, by Liz Rice (O’Reilly). Copyright 2026 Vertical Shift Ltd.,
979-8-341-62770-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.
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How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
141 Stony Circle, Suite 195
Santa Rosa, CA 95401
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata and any additional informa‐
tion. You can access this page at https://oreil.ly/container-security-2e.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.
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CHAPTER 1

Container Security Threats

In the past decade or so, the use of containers has exploded. The concepts around
containers existed for several years before Docker, but most observers agree that it
was Docker’s easy-to-use command-line tools that started to popularize containers
among the developer community from its launch in 2013.

Containers bring many advantages: as described in Docker’s original tagline, they
allow you to “build once, run anywhere.” They do this by bundling together an appli‐
cation and all its dependencies and isolating the application from the rest of the
machine it’s running on. The containerized application has everything it needs, and it
is easy to package up as a container image that will run the same on my laptop and
yours, in the cloud, or on a server in a data center.

A knock-on effect of this isolation is that you can run multiple different containers
side by side without them interfering with each other. Before containers, you could
easily end up with a dependency nightmare where two applications required different
versions of the same packages. The easiest solution to this problem was simply to run
the applications on separate machines. With containers, the dependencies are isolated
from each other so it becomes straightforward to run multiple apps on the same
server. People quickly realized that they could take advantage of containerization to
run multiple applications on the same host (whether it’s a virtual machine or a bare-
metal server) without having to worry about dependencies.

The next logical step was to spread containerized applications across a cluster of
servers. Orchestrators such as Kubernetes automate this process so that you no longer
have to manually install an app on a particular machine; you tell the orchestrator
what containers you want to run, and it finds a suitable location for each one.
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From a security perspective, many things are the same in a containerized environ‐
ment as they are in a traditional deployment. There are attackers out in the world
who want to steal data, modify the way a system behaves, or use other people’s com‐
pute resources to mine their own cryptocurrencies. This doesn’t change when you
move to containers. However, containers do change a lot about the way that applica‐
tions run, and there are a different set of risks as a result (see Figure 1-1).

Figure 1-1. A containerized application

As shown in Figure 1-1, an application and its dependencies run inside a container,
which might be under the control of an orchestrator like Kubernetes or AWS Elastic
Container Service. The container might run directly on a physical host computer or
within a virtual machine host, which in turn runs on a physical machine. Chapter 3
and Chapter 4 of this book will help you understand how a container isolates the
application from the underlying host and from other containers, and Chapter 5
explains the very different isolation mechanisms used for virtual machines. Under‐
standing the differences is crucial for thinking effectively about the possible risks and
threats to your containerized deployment and the mitigations you can use to keep
your containers safe.

Risks, Threats, and Mitigations
A risk is a potential problem and the effects of that problem if it were to occur.

A threat is a path to that risk occurring.

A mitigation is a countermeasure against a threat—something you can do to prevent
the threat or at least reduce the likelihood of its success.

For example, there is a risk that someone could steal your car keys from your house
and thus drive off in your car. The threats would be the different ways they might
steal the keys: breaking a window to reach in and pick them up; putting a fishing rod
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through your letter box; knocking on your door and distracting you while an accom‐
plice slips in quickly to grab the keys. A mitigation for all these threats might be to
keep your car keys out of sight.

Risks vary greatly from one organization to another. For a bank holding money on
behalf of customers, the biggest risk is almost certainly of money being stolen. An
ecommerce organization will worry about the risks of fraudulent transactions. An
individual running a personal blog site might fear someone breaking in to imperso‐
nate them and post inappropriate comments. Because privacy regulations differ
between nations, the risk of leaking customers’ personal data varies with geography—
in some countries, the risk is “only” reputational, while in Europe, the General Data
Protection Regulation (GDPR) allows for fines of up to 4% of a company’s total
revenue.

Because the risks vary greatly, the relative importance of different threats will also
vary, as will the appropriate set of mitigations. A risk management framework is a
process for thinking about risks in a systematic way, enumerating the possible threats,
prioritizing their importance, and defining an approach to mitigation.

Threat modeling is a process of identifying and enumerating the potential threats to a
system. By systematically looking at the system’s components and the possible modes
of attack, a threat model can help you identify where your system is most vulnerable
to attack.

There is no single comprehensive threat model, as it depends on your risks, your par‐
ticular environment, your organization, and the applications you’re running, but it is
possible to list some potential threats that are common to most, if not all, container
deployments.

Container Threat Model
One way to start thinking about the threat model is to consider the actors involved.
These might include:

• External attackers attempting to access a deployment from outside
• Internal attackers who have managed to access some part of the deployment
• Malicious internal actors such as developers and administrators who have some

level of privilege to access the deployment
• Inadvertent internal actors who may accidentally cause problems
• Application processes that, while not sentient beings intending to compromise

your system, might have programmatic access to the system
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Each of these threat actors has a certain set of permissions that you need to consider:

• What access do they have through credentials? For example, do they have access
to user accounts on the host machines your deployment is running on?

• What permissions do they have on the system? In Kubernetes, this could refer to
the role-based access control settings for each user, as well as anonymous users.
Permissions could be additionally controlled by policy engines or runtime secu‐
rity tools. In public cloud environments, permissions also depend on identity and
access management (IAM) policies.

• What network access do they have? For example, which parts of the system are
included within a virtual private cloud (VPC)? Are network security policies in
place to limit access?

There are several possible ways to attack a containerized deployment, and one way to
map them is to think of the potential attack vectors at each stage of a container’s life
cycle. These are summarized in Figure 1-2.

Figure 1-2. Containerized deployment attack vectors

Vulnerable application code and dependencies
The life cycle of a container starts with the application source code that a devel‐
oper writes. This code, and the third-party dependencies that it relies on, can
include flaws known as vulnerabilities, and there are thousands of published vul‐
nerabilities that an attacker can exploit if they are present in an application. The
best way to avoid running containers with known vulnerabilities is to scan
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images, as you will see in Chapter 8. This isn’t a one-off activity, because new vul‐
nerabilities are discovered in existing code all the time. The scanning process also
needs to identify when containers are running with out-of-date packages that
need to be updated for security patches. Some scanners can also identify malware
that has been built into an image.

Badly configured container images
Once the code has been written, it gets built into a container image. When you
are configuring how a container image is going to be built, there are plenty of
opportunities to introduce weaknesses that can later be used to attack the run‐
ning container. These include configuring the container to run as the root user,
giving it more privilege on the host than it really needs. You’ll read more about
this in Chapter 6.

Supply chain and build machine attacks
Source code and build configuration are inputs to a build process that creates a
container image. The container image gets stored in a registry and later retrieved
or “pulled” from the registry at the point where it’s going to be run. If an attacker
can modify the source, influence the way a container image is built, replace the
container image in the registry, or cause the wrong image to be pulled, they could
insert malicious code that will subsequently get run in the production
environment.

How do you know that the right source code and dependencies are being used to
build the image? How do you know that the image you pull is exactly the same as
what you pushed earlier? Could it have been tampered with? An actor who can
affect source code or configuration files, replace an image, or modify an image
between build and deployment has the ability to run arbitrary code on your
deployment. You’ll read about these attacks on the “supply chain” in Chapter 7.

Badly configured containers
As we’ll discuss in Chapter 11, it’s possible to run containers with settings that
give them unnecessary, and perhaps unplanned, privileges. If you download
YAML configuration files from the internet, please don’t run them without care‐
fully checking that they do not include insecure settings!

Vulnerable hosts
Containers run on host machines, and you need to ensure that those hosts are
not running vulnerable code (for example, old versions of orchestration compo‐
nents with known vulnerabilities). It’s a good idea to minimize the amount of
software installed on each host to reduce the attack surface, and hosts also need
to be configured correctly according to security best practices. This is discussed
in Chapter 4.
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It’s also a good idea to limit the users who have access to the host machines. One
way to achieve this is through GitOps, discussed in Chapter 9, so that all code
and configuration is stored under code control and updated using an automated
process rather than allowing manual configuration.

Insecure networking
Containers generally need to communicate with other containers or with the out‐
side world. Chapter 12 discusses how networking works in containers, and how
microsegmentation and network policy can restrict network access. Chapter 13
goes on to consider secure, encrypted connections between components.

Exposed secrets
Application code often needs credentials, tokens, or passwords in order to com‐
municate with other components in a system. In a containerized deployment,
you need to be able to pass these secret values into the containerized code. As
you’ll see in Chapter 14, there are different approaches to this, with varying levels
of security.

Runtime exploits
The widely used container runtimes including containerd and CRI-O are by now
pretty battle-hardened, but it’s still within the realm of possibility that there are
bugs yet to be found that would let malicious code running inside a container
escape out onto the host. Similarly, kernel vulnerabilities are found from time to
time that can allow for container escape or privilege escalation. You’ll read about
the isolation that is supposed to keep application code constrained within a con‐
tainer in Chapter 4. For some applications, the consequences of an escape could
be damaging enough that it’s worth considering stronger isolation mechanisms,
such as those covered in Chapter 10. There are also security tools, considered in
Chapter 15, that can detect and even prevent container escapes and application
runtime exploits.

Some of the attack vectors shown in Figure 1-2 are outside the scope of this book:

• Source code is generally held in repositories, which could conceivably be attacked
to poison the application. Similarly, container images are held in registries. You
will need to ensure that user access to the source repositories and image registries
is controlled appropriately.

• The host machines on which your containers run are networked together, often
using a VPC for security, and typically connected to the internet. Exactly as in a
traditional deployment, you need to protect the host machines (or virtual
machines) from access by threat actors. Secure network configuration, firewall‐
ing, and IAM all still apply in a cloud native deployment as they do in a tradi‐
tional deployment. These protections also apply to the build machines on which
the code is compiled and the container images are created.
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• Containers typically run under an orchestrator. If the orchestrator is configured
insecurely or if administrative access is not controlled effectively, this gives
attackers additional vectors to interfere with the deployment.

In addition to this book, the following resources can help you
assess the potential threats to your deployments:

• Microsoft published a good summary of the threats, tactics,
and procedures that attackers might use against Kubernetes in
the Threat Matrix for Kubernetes.

• Researchers from the Singapore University of Technology and
Design and ETH Zurich published a paper titled “Threat
Modeling and Security Analysis of Containers: A Survey”.

Security Boundaries
A security boundary (sometimes called a trust boundary) appears between parts of
the system, such that you would need some different set of permissions to move
between those parts. Sometimes these boundaries are set up administratively. For
example, in a Linux system, the system administrator can modify the security bound‐
ary defining what files a user can access by changing the groups that the user is a
member of. If you are rusty on Linux file permissions, a refresher is coming up in
Chapter 2.

You’ll sometimes hear people saying that “Containers are not a security boundary.”
That’s not really true—a container is a security boundary, just not a strong one!
Application code is supposed to run within that container, and it should not be able
to access code or data outside of the container except where it has explicitly been
given permission to do so (for example, through a volume mounted into the con‐
tainer). As you’ll learn in this book, because the boundary provided by a container is
relatively weak, you’ll need additional boundaries to have confidence in the security
of your applications.

The more security boundaries there are between an attacker and their target (your
customer data, for example), the harder it is for them to reach that target.

The attack vectors described in “Container Threat Model” on page 3 can be chained
together to breach several security boundaries. For example:
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• An attacker may find that because of a vulnerability in an application depend‐
ency, they are able to execute code remotely within a container.

• Suppose that the breached container doesn’t have direct access to any data of
value. The attacker needs to find a way to move out of the container, either to
another container or to the host. A container escape vulnerability would be one
route out of the container; insecure configuration of that container could provide
another. If the attacker finds either of these routes available, they can now access
the host.

• The next step would be to look for ways to gain root privileges on the host. This
step might be trivial if your application code is running as root inside the con‐
tainer, as you’ll see in Chapter 4.

• With root privileges on the host machine, the attacker can get to anything that
the host, or any of the containers running on that host, can reach.

Adding and strengthening the security boundaries in your deployment will make life
more difficult for the attacker.

An important aspect of the threat model is to consider the possibility of attacks from
within the environment in which your applications are running. In cloud deploy‐
ments, you may be sharing some resources with other users and their applications.
Sharing machine resources is called multitenancy, and it has a significant bearing on
the threat model.

Multitenancy
In a multitenant environment, different users, or tenants, run their workloads on
shared hardware. (You may also come across the term multitenancy in a software
application context, where it refers to multiple users sharing the same instance of
software, but for the purposes of this discussion, only the hardware is shared.)
Depending on who owns those different workloads and how much the different ten‐
ants trust each other, you might need stronger boundaries between them to prevent
them from interfering with each other.

Multitenancy is a concept that has been around since the mainframe days in the
1960s, when customers rented CPU time, memory, and storage on a shared machine. 
This is not so very different from today’s public clouds, like Amazon AWS, Microsoft
Azure, and Google Cloud Platform, where customers rent CPU time, memory, and
storage, along with other features and managed services. Since Amazon AWS
launched EC2 in 2006, we have been able to rent virtual machine instances running
on racks of servers in data centers around the world. There may be many virtual
machines (VMs) running on a physical machine, and as a cloud customer operating a
set of VMs, you have no idea who is operating the VMs that neighbor yours.
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Shared Machines
There are situations in which a single Linux machine (or virtual machine) may be
shared by many users. This is common in university settings, for instance, and this is
a good example of true multitenancy, where users don’t trust each other and, quite
frankly, the system administrators don’t trust the users. In this environment, Linux
access controls are used to strictly limit user access. Each user has their own login ID,
and the access controls of Linux are used to limit access to ensure, for example, that
users can modify the files only in their own directories. Can you imagine the chaos if
university students could read or—even worse—modify their classmates’ files?

As you’ll see in Chapter 4, all the containers running on the same host share the same
kernel. If the machine is running the Docker daemon, any user who can issue docker
commands effectively has root access, so a system administrator won’t want to grant
that to untrusted users.

In enterprise situations, and more specifically in cloud native environments, you are
less likely to see this kind of shared machine. Instead, users (or teams of users who
trust each other) will typically use their own resources allocated to them in the form
of virtual machines.

Virtualization
Generally speaking, virtual machines are considered to be pretty strongly isolated
from each other, by which we mean that it’s unlikely that your neighbors can observe
or interfere with the activities in your VMs. You can read more about how this isola‐
tion is achieved in Chapter 5. In fact, according to the accepted definition, virtualiza‐
tion doesn’t count as multitenancy at all: multitenancy is when different groups of
people share a single instance of the same software, and in virtualization, the users
don’t have access to the hypervisor that manages their virtual machines, so they don’t
share any software.

That’s not to say that the isolation between virtual machines is perfect, and histori‐
cally users have complained about “noisy neighbor” issues, where the fact that you are
sharing a physical machine with other users can result in unexpected variances in
performance. Netflix was an early adopter of the public cloud, and as discussed in a
2010 blog post, it was acknowledged that Netflix built systems that might deliberately
abandon a subtask if it proved to be operating too slowly. Others have claimed that
the noisy neighbor problem isn’t a real issue.

There have also been cases of software vulnerabilities that could compromise the
boundary between virtual machines. Cloud providers do additional hardening to
mitigate against these hypervisor-level vulnerabilities.

For some applications and some organizations (especially government, financial, or
healthcare), the consequences of a security breach are sufficiently serious to warrant
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full physical separation. You can operate a private cloud, running in your own data
center or managed by a service provider on your behalf, to ensure total isolation of
your workloads. Private clouds sometimes come with additional security features
such as additional background checks on the personnel who have access to the data
center.

Google provides nice documentation of its data center security
practices.

Many cloud providers have VM options where you are guaranteed to be the only cus‐
tomer on a physical machine. It’s also possible to rent bare-metal machines operated
by cloud providers. In both these scenarios, you will completely avoid the noisy
neighbor issue, and you also have the advantage of the stronger security isolation
between physical machines.

Whether you are renting physical or virtual machines in the cloud or using your own
servers, if you’re running containers, you may need to consider the security bound‐
aries between multiple groups of users.

Container Multitenancy
As you’ll see in Chapter 4, the isolation between containers is not as strong as that
between VMs. While it does depend on your risk profile, it’s unlikely that you want to
use containers on the same machine as a party that you don’t trust.

Even if all the containers running on your machines are run by you or by people you
absolutely trust, you might still want to mitigate against the fallibility of humans by
making sure your containers can’t interfere with each other.

In Kubernetes, you can use namespaces to subdivide a cluster of machines for use by
different individuals, teams, or applications.

The word namespace is an overloaded term. In Kubernetes, a
namespace is a high-level abstraction that subdivides cluster
resources that can have different Kubernetes access controls
applied to them. In Linux, a namespace is a low-level mechanism
for isolating the machine resources that a process is aware of. You’ll
learn about this kind of namespace in detail in Chapter 4.

Use role-based access control (RBAC) to limit the people and components that can
access these different Kubernetes namespaces. The details of how to do this are out‐
side the scope of this book, but I would like to mention that Kubernetes RBAC
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controls only the actions you can perform through the Kubernetes API. Application
containers in Kubernetes pods that happen to be running on the same host are pro‐
tected from each other only by container isolation, as described in this book, even if
they are in different namespaces. If an attacker can escape a container to the host, the
Kubernetes namespace boundary makes not one jot of difference to their ability to
affect other containers.

Container Instances
Cloud services such as Amazon AWS, Microsoft Azure, or Google Cloud Platform
offer many managed services, through which the user can rent software, storage, and
other components without having to install or manage them. A classic example is
Amazon’s Relational Database Service (RDS); with RDS, you can easily provision
databases that use well-known software like PostgreSQL, and getting your data
backed up is as simple as ticking a box (and paying a bill, of course).

Managed services have extended to the world of containers too. Azure Container
Instances and AWS Fargate are services that allow you to run containers without hav‐
ing to worry about the underlying machine (or virtual machine) on which they run.

This can save you from a significant management burden and allows you to easily
scale the deployment at will. However, at least in theory, your container instances
could be colocated on the same virtual machine as those of other customers. Check
with your cloud provider if in doubt.

You are now aware of a good number of potential threats to your deployment. Before
we dive into the rest of the book, I’d like to introduce some basic security principles
that should guide your thinking when assessing what security tools and processes you
need to introduce into your deployment.

Security Principles
These are general guidelines that are commonly considered to be a wise approach
regardless of the details of what you’re trying to secure.

Least Privilege
The principle of least privilege states that you should limit access to the bare mini‐
mum that a person or component needs in order to do their job. For example, if you
have a microservice that performs product search in an ecommerce application, the
principle of least privilege suggests that the microservice should only have credentials
that give it read-only access to the product database. It has no need to access, say, user
or payment information, and it has no need to write product information.
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Defense in Depth
As you’ll see in this book, there are many different ways you can improve the security
of your deployment and the applications running within it. The principle of defense
in depth tells us that you should apply layers of protection. If an attacker is able to
breach one defense, another layer should prevent them from harming your deploy‐
ment or exfiltrating your data.

Reducing the Attack Surface
As a general rule, the more complex a system is, the more likely it is that there is a
way to attack it. Eliminating complexity can make the system harder to attack. This
includes:

• Reducing access points by keeping interfaces small and simple where possible
• Limiting the users and components who can access a service
• Minimizing the amount of code

Limiting the Blast Radius
The concept of segmenting security controls into smaller subcomponents, or cells,
means that should the worst happen, the impact is limited. Containers are well suited
to this principle, because by dividing an architecture into many instances of a micro‐
service, the container itself can act as a security boundary.

Segregation of Duties
Related to both least privilege and limiting blast radius is the idea of segregating
duties so that, as much as possible, different components or people are given author‐
ity over only the smallest subset of the overall system that they need. This approach
limits the damage a single privileged user might inflict by ensuring that certain opera‐
tions require more than one user’s authority.

Applying Security Principles with Containers
As you’ll see in later sections of this book, the granularity of containers can help us in
the application of all these security principles:

Least privilege
You can give different containers different sets of privileges, each minimized to
the smallest set of permissions it needs to fulfill its function.

Defense in depth
Containers give another boundary where security protections can be enforced.
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Reducing the attack surface
Splitting a monolith into simple microservices can create clean interfaces
between them that may, if carefully designed, reduce complexity and hence limit
the attack surface. There is a counterargument that adding a complex orchestra‐
tion layer to coordinate containers introduces another attack surface.

Limiting the blast radius
If a containerized application is compromised, security controls can help con‐
strain the attack within the container and prevent it from affecting the rest of the
system.

Segregation of duties
Permissions and credentials can be passed only into the containers that need
them, so that the compromise of one set of secrets does not necessarily mean that
all secrets are lost.

These benefits sound good, but they are somewhat theoretical. In practice, they can
easily be outweighed by poor system configuration, bad container image hygiene, or
insecure practices. By the end of this book, you should be well armed to avoid the
security pitfalls that can appear in a containerized deployment and take advantage of
the benefits.

Summary
You’ve now got a high-level view of the kinds of attacks that can affect a container-
based deployment and an introduction to the security principles that you can apply to
defend against those attacks. In the rest of the book, you’ll delve into the mechanisms
that underpin containers so that you can understand how security tools and best-
practice processes combine to implement those security principles.
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CHAPTER 2

Linux System Calls, Permissions,
and Capabilities

In most cases, containers run within a computer running a Linux operating system,
and it’s going to be helpful to understand some of the fundamental features of Linux
so that you can see how they affect security and, in particular, how they apply to con‐
tainers. I’ll cover system calls, file-based permissions, and capabilities and conclude
with a discussion of privilege escalation. If you’re familiar with these concepts, feel
free to skip to Chapter 3.

This is all important because containers run Linux processes that are visible from the
host. A containerized process uses system calls and needs permissions and privileges
in just the same way that a regular process does. But containers give us some new
ways to control how these permissions are assigned at runtime or during the con‐
tainer image build process, which will have a significant impact on security.

System Calls
Applications run in what’s called user space, which has a lower level of privilege than
the operating system kernel. If an application wants to do something like access a file,
communicate using a network, or even find the time of day, it has to ask the kernel to
do it on the application’s behalf. The programmatic interface that the user space code
uses to make these requests of the kernel is known as the system call or syscall
interface.
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There are some 400+ different system calls, with the number varying according to the
version of Linux kernel. Here are a few examples:

read
Read data from a file.

write
Write data to a file.

open
Open a file for subsequent reading or writing.

execve
Run an executable program.

chown
Change the owner of a file.

clone
Create a new process.

Application developers rarely if ever need to worry about system calls directly, as they
are usually wrapped in higher-level programming abstractions. The lowest-level
abstraction you’re likely to come across as an app developer is the glibc or musl
library, or the Golang syscall package. In practice, these are usually wrapped by
higher layers of abstractions as well.

If you would like to learn more about system calls, check out my
talk “A Beginner’s Guide to Syscalls”, available on O’Reilly’s learn‐
ing platform.

Application code uses system calls in exactly the same way whether it’s running in a
container or not, but as you will see later in this book, there are security implications
to the fact that all the containers on a single host share—that is, they are making sys‐
tem calls to—the same kernel.

Not all applications need all system calls, so—following the principle of least
privilege—there are Linux security features that allow users to limit the set of system
calls that different programs can access. You’ll see how these can be applied to con‐
tainers in Chapter 10.

I’ll return to the subject of user space and kernel-level privileges in Chapter 5. For
now, let’s turn to the question of how Linux controls permissions on files.
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File Permissions
On any Linux system, whether you are running containers or not, file permissions are
the cornerstone of security. There is a saying that in Linux, everything is a file. Appli‐
cation code, data, configuration information, logs, and so on—it’s all held in files.
Even physical devices like screens and printers are represented as files. Permissions
on files determine which users are allowed to access those files and what actions they
can perform on the files. These permissions are sometimes referred to as discretionary
access control, or DAC.

Let’s examine this a little more closely.

If you have spent much time in a Linux terminal, you will likely have run the ls -l
command to retrieve information about files and their attributes (see Figure 2-1).

Figure 2-1. Linux file permissions example

In the example in Figure 2-1, you can see a file called myapp that is owned by a user
called liz and is associated with the group staff. The permission attributes tell you
what actions users can perform on this file, depending on their identity. There are
nine characters in this output that represent the permissions attributes, and you
should think of these in groups of three:

• The first group of three characters describes permissions for the user who owns
the file (liz in this example).

• The second group gives permissions for members of the file’s group (here,
staff).

• The final set shows what any other user (who isn’t liz or a member of staff) is
permitted to do.

There are three actions that users might be able to perform on this file: read, write, or
execute, depending on whether the r, w, and x bits are set. The three characters in
each group represent bits that are either on or off, showing which of these three
actions are permitted. A dash means that the bit isn’t set.

In this example, only the owner of the file can write to it, because the w bit is set only
in the first group, representing the owner permissions. The owner can execute the
file, as can any member of the group staff. Any user is allowed to read the file,
because the r bit is set in all three groups.
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If you’d like more detail on Linux permissions and information on
how to modify them using the chmod command, there is a good
article in Linux Journal.

There’s a good chance that you were already familiar with these r, w, and x bits, but
that’s not the end of the story. Permissions can be affected by the use of setuid,
setgid, and sticky bits. The first two are important from a security perspective
because they can allow a process to obtain additional permissions, which an attacker
might use for malevolent purposes.

setuid and setgid
Normally, when you execute a file, the process that gets started inherits your user ID.
If the file has the setuid bit set, the process will have the user ID of the file’s owner.
Let’s see this in action using a copy of the sleep executable:

$ ls -l $(which sleep)
-rwxr-xr-x 1 root root 35336 Apr  5  2024 /usr/bin/sleep
$ cp /usr/bin/sleep ./mysleep
$ ls -l mysleep
-rwxr-xr-x 1 liz liz 35336 May  7 10:50 mysleep

The ls outputs show that the original version of the command is owned by root, but
the copy is owned by my user called liz, who ran the cp command. Run this copy by
executing ./mysleep 10, and in a second terminal you can take a look at the running
process: the 10 means you’ll have 10 seconds to do this before the process terminates
(I have removed some lines from this output for clarity):

$ ps -fC mysleep
UID          PID    PPID  C STIME TTY          TIME CMD
liz        37920   37876  0 06:07 pts/0    00:00:00 ./mysleep 10

This is running under my user name liz. Now let’s modify the executable so that it is
owned by root and has the setuid bit turned on:

$ sudo chown root ./mysleep
$ sudo chmod +s ./mysleep
$ ls -l mysleep
-rwsr-sr-x 1 root liz 35336 May  7 10:50 mysleep

As a regular, unprivileged user, run ./mysleep 10 again and look at the running pro‐
cesses again from the second terminal:

$ ps -fC mysleep
UID          PID    PPID  C STIME TTY          TIME CMD
root       37940   37876  0 06:09 pts/0    00:00:00 ./mysleep 10
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The mysleep process has taken the user identity of root, from the owner of the
mysleep executable file. This process now has all the privileges associated with that
root user.

In this way, the setuid bit can be used to give a program privileges that it needs but
that are not usually extended to regular users.

ping and setuid
Perhaps the canonical example of the setuid bit being used to add privileges was the
executable ping, which needed permission to open raw network sockets in order to
send and receive the Internet Control Message Protocol (ICMP) messages that it uses
to check network connectivity.

An administrator might be happy for their users to run ping, but that doesn’t mean
they are comfortable letting users open raw network sockets for any other purpose
they might think of. Instead, the ping executable was typically installed with the
setuid bit set and owned by the root user so that ping can use privileges normally
associated with root.

This is no longer needed since the addition of ICMP sockets in kernel version 5.6.
Processes are allowed to open this type of socket, usable purely for ICMP protocol
messages, so that they can run ping without needing any special privileges.

At the time of writing, most distributions don’t yet use this ICMP sockets mechanism
for ping. Instead, they give the ping executable permission to access raw sockets
using a capability called CAP_NET_RAW. We’ll look into this in more detail in “Linux
Capabilities” on page 21.

Even before the mysleep example, you’ve already seen setuid in action. It’s used by
sudo, which is an executable owned by root:

$ ls -l $(which sudo)
-rwsr-xr-x 1 root root 277936 Apr  8  2024 /usr/bin/sudo

The setuid bit on sudo means that the executable runs as the root user, which
matches what we saw in the output from ps earlier.

Once it’s running, sudo goes on to check that the real user that
invoked it actually has permissions to run sudo, by checking the
sudoers file or some other configured security policy mechanism.
If you want to explore this in more detail, man sudo has a good
explanation.
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As you saw with the mysleep example, a setuid executable can allow a user to esca‐
late privileges. However, for a few executables, the results might not always be exactly
what you expect! Let’s explore what happens if we use the setuid bit on a copy of
bash:

$ cp $(which bash) ./mybash
$ sudo chown root ./mybash
$ sudo chmod +s ./mybash
$ ls -l mybash
-rwsr-sr-x  1 root liz  1446024 May  7 15:33 mybash

Since this executable is owned by root and has setuid, it seems reasonable to imagine
that when you run it, the process will be running as root. And yet, look what happens
when you try it:

$ ./mybash
mybash-5.2$ whoami
liz

As you can see, the process is not running as root, even though the setuid bit is on
and the file is owned by root. What’s happening here? The answer is that in modern
versions of bash (and several other interpreters like python, node, and ruby) the exe‐
cutable might start off running as root, but it explicitly resets its user ID to be that of
the original user to avoid potential privilege escalations.

To explore this for yourself in more detail, you can use strace to
see the system calls that the bash (or mybash) executable makes.
Find the process ID of your shell (you can do this by running echo
$$), and then in a second terminal run the following command:

$ sudo strace -f -p <shell process ID> \
-e trace=execve,getuid,setresuid,setuid

This will trace out system calls from within your first shell, includ‐
ing any executables running within it. Look for the setresuid() or
setuid() system calls being used to reset the user ID.

Only a very few executables are written to reset the user ID in this way. As you saw
with the copy of sleep from earlier in this chapter, the normal setuid behavior is
simply to adopt the file owner’s ID.

Now that you have experimented with the setuid bit, you are in a good position to
consider its security implications.
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Security Implications of setuid
The setuid bit allows someone to act as if they were a different user, which could give
them access to different files, executables, and privileges that they are not supposed to
have. Because setuid provides a dangerous pathway to privilege escalation, some
container image scanners (covered in Chapter 8) will report on the presence of files
with the setuid bit set.

As you’ve seen, modern versions of bash and most shells and interpreters reset their
user ID to avoid being used for trivial privilege escalations. You can also prevent
setuid from being used within a container using the --security-opt no-new-

privileges option on a docker run command—I’ll come back to this in Chapter 4.
However, that won’t stop an attacker from writing a setuid executable owned by root
onto mounted directory on the host. You’ll find an example of this in the chapter2/
setuid directory of the GitHub repo that accompanies this book. Host volume
mounts can lead to all sorts of attacks, and we’ll discuss this more in Chapter 11.

The setuid bit dates from a time when privileges were much simpler—either your
process had root privileges or it didn’t. The setuid bit provided a mechanism for
granting extra privileges to non-root users. Version 2.2 of the Linux kernel intro‐
duced more granular control over these extra privileges through capabilities.

Linux Capabilities
There are more than 40 different capabilities in today’s Linux kernel. Capabilities can
be assigned to a thread to determine whether that thread can perform certain actions.
For example, a thread needs the CAP_NET_BIND_SERVICE capability to bind to a low-
numbered (below 1024) port. CAP_SYS_BOOT exists so that arbitrary executables don’t
have permission to reboot the system. CAP_SYS_MODULE is needed to load or unload
kernel modules, and CAP_BPF is needed to load eBPF programs.

Consult man capabilities on a Linux machine for detailed infor‐
mation on each individual capability.

I mentioned earlier that the ping tool uses the CAP_NET_RAW capability so that it can
open a raw network socket.
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Capabilities can be assigned to both files and processes. You can see the capabilities
for a file using getcap, like this:

$ getcap $(which ping)
/usr/bin/ping cap_net_raw=ep

You can see the capabilities assigned to a process by using the getpcaps command.
On an Ubuntu system, journald is an example that has several capabilities:

$ getpcaps $(pgrep journal)
307: cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_setgid,
cap_setuid,cap_sys_ptrace,cap_sys_admin,cap_audit_control,cap_mac_override,
cap_syslog,cap_audit_read=ep

Many processes typically won’t have any capabilities. My current shell is an example:

$ getpcaps $$
22355: =

In the past, getpcaps assumed that if a process was running as root, it had all capabil‐
ities, so it would report the whole list. These days, getpcaps and other tools have
been updated not to make this assumption, so processes running as root will typically
appear with no capabilities.

You’ve seen that the executable file for ping has CAP_NET_RAW associated with it, so
let’s see the capabilities assigned to the process when we run it. Leave ping running in
one terminal:

$ ping 127.0.0.1
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.162 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.188 ms
...

In a second terminal, get the process ID of this ping and check its capabilities:

$ getpcaps $(pgrep ping)
50394: =

How is ping successfully opening a (raw) socket if it doesn’t have the CAP_NET_RAW
capability required? And why doesn’t it have that capability, when you saw earlier in
this section that the executable file has it?

The answer can be found by tracing system calls with strace, much like earlier when
examining how bash behaves. Terminate the ping command and find the process ID
of the shell using echo $$. In a second terminal, run:

$ sudo strace -f -p <shell process ID> \
-e trace=capget,capset,socket
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You’ll see that ping is now capabilities-aware and deliberately discards CAP_NET_RAW
once the socket is open and it has no further use for the capability (a few irrelevant
calls and details have been omitted for clarity):

capget({version=_LINUX_CAPABILITY_VERSION_3, pid=0},    
{effective=0, permitted=1<<CAP_NET_RAW, inheritable=0}) = 0   
capset({version=_LINUX_CAPABILITY_VERSION_3, pid=0},     
{effective=1<<CAP_NET_RAW, permitted=1<<CAP_NET_RAW, inheritable=0}) = 0                           
socket(AF_INET, SOCK_RAW, IPPROTO_ICMP) = 3             
socket(AF_INET6, SOCK_RAW, IPPROTO_ICMPV6) = 4
capget({version=_LINUX_CAPABILITY_VERSION_3, pid=0}, {effective=1<<CAP_NET_RAW, 
permitted=1<<CAP_NET_RAW, inheritable=0}) = 0
capset({version=_LINUX_CAPABILITY_VERSION_3, pid=0},    
{effective=0, permitted=1<<CAP_NET_RAW, inheritable=0})

The process checks that CAP_NET_RAW is in the set of permissions that it is permit‐
ted to use. The return code 0 tells it that it is.

The process uses the capset system call to make that capability effective.

It opens sockets for IPv4 and IPv6.

Now that the sockets are open, it uses capset to remove the capability from its
effective set.

By the time getpcaps inspected the process’s capabilities, CAP_NET_RAW was no longer
in effect for the process.

For a more in-depth discussion of the ways that file and process
permissions interact, see Adrian Mouat’s post on Linux capabilities
in practice.

Following the principle of least privilege, it’s a good idea to grant only the capabilities
that are needed for a process to do its job. When you run a container, you get the
option to control the capabilities that are permitted, as you’ll see in Chapter 11. Now
that you are familiar with the basic concepts of permissions and privileges in Linux,
I’d like to turn to the idea of escalating privileges.

Privilege Escalation
The term privilege escalation means extending beyond the privileges you were sup‐
posed to have so that you can take actions that you shouldn’t be permitted to take. To
escalate their privileges, an attacker takes advantage of a system vulnerability or poor
configuration to grant themselves extra permissions.
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1 In the first edition of this book, I was referring to a 2018 critical remote code execution vulnerability that had
received a lot of press coverage. It turns out there have been other serious Struts vulnerabilities since then,
which is a good case study in how vulnerabilities continue to be found in widely used software packages and
why it’s important to keep updating your dependencies!

Oftentimes, the attacker starts as a nonprivileged user and wants to gain root privi‐
leges on the machine. A common method of escalating privileges is to look for soft‐
ware that’s already running as root and then take advantage of known vulnerabilities
in the software. For example, web server software might include a vulnerability that
allows an attacker to remotely execute code, such as the Struts vulnerabilities.1 If the
web server is running as root, anything that is remotely executed by an attacker will
run with root privileges. For this reason, it is a good idea to run software as a nonpri‐
vileged user whenever possible.

As you’ll learn later in this book, by default, containers run as root. This means that
compared with a traditional Linux machine, applications running in containers are
far more likely to be running as root. An attacker who can take control of a process
inside a container still has to somehow escape the container, but once they achieve
that, they will be root on the host, and there is no need for any further privilege esca‐
lation. Chapter 11 discusses this in more detail.

Even if a container is running as a non-root user, there is potential for privilege esca‐
lation simply based on the Linux permissions mechanisms you have seen earlier in
this chapter:

• Container images including executable files with the setuid bit
• Additional capabilities granted to a container running as a non-root user

You’ll learn about approaches for mitigating these issues later in the book.

Summary
In this chapter, you have learned (or been reminded about) some fundamental Linux
mechanisms that will be essential to understanding later chapters of this book. They
also come into play in security in numerous ways; the container security controls that
you will encounter are all built on top of these fundamentals.

Now that you understand some basic Linux security controls, it’s time to start looking
at the mechanisms that make up containers so that you can understand for yourself
how root on the host and in the container are one and the same thing.
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CHAPTER 3

Control Groups

In this chapter, you will learn about one of the fundamental building blocks that are
used to make containers: control groups, more commonly known as cgroups.

Cgroups limit the resources, such as memory, CPU, and network input/output, that a
group of processes can use. In containers, they are used to distribute resources across
different workloads in a controlled fashion. From a security perspective, well-tuned
cgroups can ensure that one process can’t affect the behavior of other processes by
hogging all the resources—for example, using all the CPU or memory to starve other
applications. You can also limit the total number of processes allowed within a con‐
trol group—a handy technique to protect against fork bombs, which I’ll cover at the
end of the chapter.

As you will see in detail in Chapter 4, containers run as regular Linux processes, so
cgroups can be used to limit the resources available to each container.

Most Linux distributions today use cgroups version 2, which has
some improvements over the original implementation that was
widely deployed when containers first became popular. Cgroups v2
is now what’s used by Kubernetes and all the popular container
runtimes, and it’s what is discussed here. However, you might find
some references to v1 in older literature.
The main difference is that version 2 uses a single, unified hierar‐
chy for managing all the supported resource types rather than hav‐
ing separate hierarchies for the different types of resource being
managed.
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If you’re a system administrator looking after Linux servers directly, you might have
reasons to create and manage control groups directly, but when we use containers,
the container runtime takes care of this for us. As you’ll see later in this chapter, all we
have to do is specify any resources we want to allocate to different workloads. But let’s
dive in so that you can build an understanding of how cgroups are used to constrain
resources for containers.

Control Group Controllers
Control groups are represented in the Linux filesystem under a mount point residing
at /sys/fs/cgroup. Managing cgroups involves reading and writing to the files and
directories under this mount point. Let’s take a look at the contents of that directory:

root@vm:/sys/fs/cgroup# ls
cgroup.controllers      io.pressure
cgroup.max.depth        io.prio.class
cgroup.max.descendants  io.stat
cgroup.pressure         memory.numa_stat
cgroup.procs            memory.pressure
cgroup.stat             memory.reclaim
cgroup.subtree_control  memory.stat
cgroup.threads          memory.zswap.writeback
cpu.pressure            misc.capacity
cpu.stat                misc.current
cpu.stat.local          misc.peak
cpuset.cpus.effective   proc-sys-fs-binfmt_misc.mount
cpuset.cpus.isolated    sys-fs-fuse-connections.mount
cpuset.mems.effective   sys-kernel-config.mount
dev-hugepages.mount     sys-kernel-debug.mount
dev-mqueue.mount        sys-kernel-tracing.mount
init.scope              system.slice
io.cost.model           user.slice
io.cost.qos

As I’ll show you shortly, a new control group can be created by making a new direc‐
tory, which in turn can have child control groups created within it, building up a
hierarchy of control groups.

The cgroup.controllers file shows what cgroup controllers are available on this
machine:

root@vm:/sys/fs/cgroup# cat cgroup.controllers
cpuset cpu io memory hugetlb pids rdma misc
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Each controller manages a type of resource that processes might want to consume.
For example, the cpu controller manages the CPU usage of the processes in a cgroup,
and the memory controller manages the memory they can access.

To take effect, controllers have to be enabled by writing the controller name into the
cgroup.subtree_control file, and a controller can be enabled for a cgroup only if it
is enabled in its parent. Every running Linux process is a member of exactly one con‐
trol group, and you’ll find the process IDs of all a cgroup’s members listed in its
cgroup.procs file.

Creating and Configuring Cgroups
Creating a subdirectory inside the /sys/fs/cgroup directory creates a cgroup, and
the kernel automatically populates the directory with the various files that represent
parameters and statistics about that group and its resources:

root@vm:/sys/fs/cgroup# mkdir liz
root@vm:/sys/fs/cgroup# ls liz
cgroup.controllers              
cgroup.events
cgroup.freeze
...
pids.max
pids.peak
rdma.current
rdma.max

The details of what each of these different files means are beyond the scope of this
book, but some of the files hold parameters that you can manipulate to define limits
for the control group, and others communicate statistics about the current use of
resources in the control group. You could probably make an educated guess that, for
example, memory.current is the file that describes how much memory is currently
being used by the control group. The maximum that the cgroup is allowed to use is
defined by memory.max:

root@vm:/sys/fs/cgroup/liz# cat memory.max
max

The output max tells us that memory for this cgroup isn’t limited—this is the default if
a limit is not specified. If a process is allowed to consume unlimited memory, it can
starve other processes on the same host. This might happen inadvertently through a
memory leak in an application, or it could be the result of a resource exhaustion
attack that takes advantage of a memory leak to deliberately use as much memory as
possible.
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By setting limits on the memory and other resources that one process can access, you
can reduce the effects of this kind of attack and ensure that other processes can carry
on as normal.

To set a limit for a cgroup, you simply have to write the value into the file that corre‐
sponds to the parameter you want to limit. Let’s set the maximum available memory
in bytes for the cgroup I just created:

root@vm:/sys/fs/cgroup/memory/liz# echo 100000 > memory.max

Now you’ll find that the memory.max parameter is approximately what you configured
as the limit—presumably, rounded down to the nearest page size:

root@vm:/sys/fs/cgroup/memory/liz# cat memory.max
98304

This illustrates how the limits are set for a group, but the final piece of the cgroups
puzzle is to see how processes get assigned into cgroups.

Assigning a Process to a Cgroup
As mentioned earlier, the set of processes in a cgroup is listed in its cgroup.procs file.
A new cgroup will start off with no processes, so that file will be empty.

When you start a process, it joins the cgroup of its parent, but you can move it into a
new cgroup by simply writing its process ID into the cgroup.procs file of the group
you want it to join. In the following example, 29903 is the process ID of a shell:

root@vm:/sys/fs/cgroup/memory/liz# echo 29903 > cgroup.procs
root@vm:/sys/fs/cgroup/memory/liz# cat cgroup.procs
29903
root@vm:/sys/fs/cgroup/memory/liz# cat /proc/29903/cgroup
0::/liz

The shell is now a member of the liz cgroup, with its memory limited to a little
under 100kB. This isn’t a lot to play with, so even trying to run ls from inside the
shell breaches the cgroup limit:

$ ls
Killed

The process gets killed when it attempts to exceed the memory limit.

Cgroups for Containers
You’ve seen how cgroups are manipulated by modifying the files in the cgroup filesys‐
tem for a particular type of resource. It’s straightforward to see this in action in
Docker.
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To follow along with these examples, you will need Docker running
directly on a Linux (virtual) machine. If you’re running Docker for
Mac/Windows, it’s running within a virtual machine, which means
(as you’ll see in Chapter 5) that these examples won’t work for you,
because the Docker daemon and containers are running using a
separate kernel within that virtual machine.
Since most Linux distributions use systemd and because the
systemd driver is the recommended default driver for cgroups in
Kubernetes, my examples assume the systemd driver. Some readers
might encounter the alternative cgroupfs driver, but for the pur‐
poses of this book, the only relevant difference is that the cgroups
are created in a different place in the cgroup file system hierarchy.

Docker automatically creates a cgroup for each container, with a hierarchy that looks
like this:

/sys/fs/cgroup/system.slice/
└── docker-<container_id>.scope/
    ├── cpu.max
    ├── memory.max
    ├── pids.max
    ├── cgroup.procs
    └── ...

The system.slice part of the hierarchy indicates that the cgroups are being managed
using the systemd driver.

This example runs a container in the background with a limit of 100MiB (which is
104,857,600 bytes) of memory. As you’ll see, Docker uses the cgroup mechanism to
enforce this limit. The container will sleep for long enough for you to see its cgroup:

root@vm:~# docker run --rm --memory 100M -d alpine sleep 10000
68fb008c5fd3f9067e1aa245b4522a9f3675720d8953371ecfcf2e9faf91b8a0
root@vm:/sys/fs/cgroup# ls system.slice/docker-68fb...2e9faf91b8a0.scope
cgroup.controllers
cgroup.events
cgroup.freeze
...

Check the memory limit for and current usage by this container:

root@vm:/sys/fs/cgroup# cat system.slice/docker-68fb...scope/memory.max
104857600
root@vm:/sys/fs/cgroup# cat system.slice/docker-68fb...scope/memory.current
462848

You can also confirm that the sleeping process is a member of the cgroup:

root@vm:/sys/fs/cgroup# cat system.slice/docker-68fb...scope/cgroup.procs  19824
root@vm:/sys/fs/cgroup# pgrep sleep
19824
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In Kubernetes you can set memory and CPU limits for pods and individual containers
through the Pod specification. Once the pod is running, if you inspected the host’s cgroup
configuration, you would see those limits translated into cgroup settings.

Preventing a Fork Bomb
A fork bomb rapidly creates processes that in turn create more processes, leading to
an exponential growth in the use of resources that ultimately cripples the machine.
I’ll show you how to reproduce this, but for caution’s sake, please don’t attempt run‐
ning the fork bomb on a system that you can’t risk bringing to its knees!

If you don’t want to risk this yourself, you can watch a video of a
talk I gave a few years back that includes a demonstration.

Earlier in this chapter, I created a cgroup called liz and set a memory limit. Let’s
remove the memory limit and instead define the maximum number of processes
allowed in the cgroup:

root@vm:/sys/fs/cgroup/liz# echo max > memory.max
root@vm:/sys/fs/cgroup/liz# echo 20 > pids.max

Add the current shell to the cgroup:

root@vm:/sys/fs/cgroup/liz# echo $$ > cgroup.procs

Inspect the number of processes:

root@vm:/sys/fs/cgroup/liz# cat pids.current
2

Why are there two processes in this cgroup? The first is the shell, added explicitly by
writing its process ID to the cgroup.procs file. Since a newly created process inherits
the cgroup of its parent, the second process observed is the cat program running
within the shell.

Now you can run a fork bomb—this syntax will work if your shell is bash:

root@vm:/sys/fs/cgroup/liz# :(){ :|:& };:

You should very soon see your terminal filling up with bash: fork: retry: Resource
temporarily unavailable messages, as processes fail to be started due to the limit
imposed by the cgroup. While this might be annoying in your terminal window, other
processes on the machine will still be able to operate fine. If the fork bomb were allowed
to keep creating new processes, you would see other operations grinding to a halt.
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You can use the kill feature of cgroups to terminate the fork bomb. Unfortunately, the
shell you started the fork bomb in will also be a casualty of this operation, which kills
all the processes in this group:

root@vm:/sys/fs/cgroup/liz# echo 1 > cgroup.kill

Curious about how the fork bomb :(){ :|:& };: works? While this has nothing
really to do with container security, it’s a fun bit of syntax:

• :() {...} defines a function called : (yes, a colon is a valid name for a function
in Bash).

• The content of the function is :|:&. Each : is a call to the function, so the func‐
tion calls itself and pipes the output into another invocation of itself, with the &
causing this second invocation to run in the background. Piping the output of a
function causes it to be run in a new process, as does running a process in the
background. As a result, each invocation of the : function spawns two processes,
each executing the : function.

• The ; terminates the function definition.
• The final : calls the function that has just been defined, kicking off an exponen‐

tial cascade of process creation—until the cgroup process limit is hit.

Rather than manipulating cgroups directly, you can configure the process limit with
the --pids-limit parameter on a docker run command. At the time of writing, in
Kubernetes you can configure the maximum processes per pod through a Kubelet
setting (which means the limit applies to all pods on a node rather than having indi‐
vidual limits set for each pod).

Summary
Cgroups limit the resources available to different Linux processes. You don’t have to be
using containers to take advantage of cgroups, but Docker, Kubernetes, and other con‐
tainer runtimes provide a convenient interface for using them: it’s easy to set resource
limits at the point where you run a container, and those limits are policed by cgroups.

Constraining resources provides protection against a class of attacks that attempt to
disrupt your deployment by consuming excessive resources, thereby starving legiti‐
mate applications. It’s recommended that you set memory and CPU limits when you
run your container applications.

Now that you know how resources are constrained in containers, you are ready to
learn about the other pieces of the puzzle that make up containers: namespaces and
changing the root directory. Move on to Chapter 4 to find out how these work.
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CHAPTER 4

Container Isolation

This is the chapter in which you’ll find out how containers really work! This will be
essential to understanding the extent to which containers are isolated from each other
and from the host. You will be able to assess for yourself the strength of the security
boundary that surrounds a container.

As you’ll know if you have ever run docker exec <image> bash, a container looks a
lot like a virtual machine from the inside. If you have shell access to a container and
run ps, you can see only the processes that are running inside it. The container has its
own network stack, and it seems to have its own filesystem with a root directory that
bears no relation to root on the host. You can run containers with limited resources,
such as a restricted amount of memory or a fraction of the available CPUs. This all
happens using the Linux features that we’re going to delve into in this chapter.

However much they might superficially resemble each other, it’s important to realize
that containers aren’t virtual machines, and in Chapter 5 we’ll take a look at the differ‐
ences between these two types of isolation. In my experience, really understanding
and being able to contrast the two is absolutely key to grasping the extent to which
traditional security measures can be effective in containers and to identifying where
container-specific tooling is necessary.

You’ll see how containers are built out of Linux constructs such as namespaces and
chroot, along with cgroups, which were covered in Chapter 3. With an understanding
of these constructs, you’ll have a feeling for how well protected your applications are
when they run inside containers.
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Although the general concepts of these constructs are fairly straightforward, the way
they work together with other features of the Linux kernel can be complex. Container
escape vulnerabilities (for example, CVE-2019-5736, a serious vulnerability discov‐
ered in both runc and LXC) have been based on subtleties in the way that namespaces,
capabilities, and filesystems interact.

Linux Namespaces
If cgroups control the resources that a process can use, namespaces control what it
can see. By putting a process in a namespace, you can restrict the resources that are
visible to that process.

The origins of namespaces date back to the Plan 9 operating system. At the time,
most operating systems had a single “name space” of files. Unix systems allowed the
mounting of filesystems, but they would all be mounted into the same system-wide
view of all filenames. In Plan 9, each process was part of a process group that had its
own “name space” abstraction, the hierarchy of files (and file-like objects) that this
group of processes could see. Each process group could mount its own set of filesys‐
tems without seeing each other.

The first namespace was introduced to the Linux kernel in version 2.4.19 back in
2002. This was the mount namespace, and it followed similar functionality to that in
Plan 9. Nowadays there are several different kinds of namespaces supported by Linux:

• Unix Timesharing System (UTS)—this sounds complicated, but to all intents and
purposes this namespace is really just about the hostname and domain names for
the system that a process is aware of

• Process IDs
• Mount points
• Network
• User and group IDs
• Inter-process communications (IPC)
• Control groups (cgroups)
• Time

A process is always in exactly one namespace of each type. When you start a Linux
system, it has a single namespace of each type, but as you’ll see, you can create addi‐
tional namespaces and assign processes into them. You can easily see the namespaces
on your machine using the lsns command:
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$ lsns
        NS TYPE   NPROCS    PID USER COMMAND
4026531834 time        3 848409 liz  -bash
4026531835 cgroup      3 848409 liz  -bash
4026531836 pid         3 848409 liz  -bash
4026531837 user        3 848409 liz  -bash
4026531838 uts         3 848409 liz  -bash
4026531839 ipc         3 848409 liz  -bash
4026531840 net         3 848409 liz  -bash
4026531841 mnt         3 848409 liz  -bash

This looks nice and neat, and there is one namespace for each of the types I mentioned
previously. Sadly, this is an incomplete picture! The man page for lsns tells us that it
“reads information directly from the /proc filesystem and for non-root users it may return
incomplete information.” The additional namespaces you might see as root are not terri‐
bly interesting until you start creating some of your own, but I mentioned it to point out
that when we are using lsns, we should run as root (or use sudo) to get the complete
picture.

Let’s explore how you can use namespaces to create something that behaves like what
we call a container.

The examples in this chapter use Linux shell commands to create a
container. If you would like to try creating a container using the Go
programming language, you will find instructions at https://
github.com/lizrice/containers-from-scratch.

Isolating the Hostname
Let’s start with the namespace for the Unix Timesharing System (UTS). As mentioned
previously, this covers the hostname and domain names. By putting a process in its
own UTS namespace, you can change the hostname for this process independently of
the hostname of the machine or virtual machine on which it’s running.

If you open a terminal on Linux, you can see the hostname:

$ hostname
myhost

Most (perhaps all?) container systems give each container a random ID. By default,
this ID is used as the hostname. You can see this by running a container and getting
shell access. For example, in Docker, you could do the following:

$ docker run --rm -it --name hello ubuntu bash
root@cdf75e7a6c50:/$ hostname
cdf75e7a6c50
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Incidentally, you can see in this example that even if you give the container a name in
Docker (here I specified --name hello), that name isn’t used for the hostname of the
container.

The container can have its own hostname because Docker created it with its own UTS
namespace. You can explore the same thing by using the unshare command to create
a process that has a UTS namespace of its own.

As it’s described on the man page (seen by running man unshare), unshare lets you
“run a program with some namespaces unshared from the parent.” Let’s dig a little
deeper into that description. When you “run a program,” the kernel creates a new
process and executes the program in it. This is done from the context of a running
process—the parent—and the new process will be referred to as the child. The parent
process is cloned (or forked) to create the child. The command is called “unshare” to
indicate that, rather than sharing namespaces of its parent, the child is going to be
given its own.

Let’s give it a try. You need to have root privileges to do this, which is the reason for
the sudo at the start of the line:

liz@myhost:~$ sudo unshare --uts sh
$ hostname
myhost
$ hostname experiment
$ hostname
experiment
$ exit
liz@myhost:~$ hostname
myhost

This runs a sh shell in a new process that has a new UTS namespace. Any programs
you run inside the shell will inherit its namespaces. When you run the hostname
command, it executes in the new UTS namespace that has been isolated from that of
the host machine.

If you were to open another terminal window to the same host before the exit, you
could confirm that the hostname hasn’t changed for the whole (virtual) machine. You
can change the hostname on the host without affecting the hostname that the name‐
spaced process is aware of, and vice versa.

This is a key component of the way containers work. Namespaces give them a set of
resources (in this case the hostname) that are independent of the host machine and of
other containers. But we are still talking about a process that is being run by the same
Linux kernel. This has security implications that I’ll discuss later in the chapter. For
now, let’s look at another example of a namespace by seeing how you can give a con‐
tainer its own view of running processes.
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Isolating Process IDs
If you run the ps command inside a Docker container, you can see only the processes
running inside that container and none of the processes running on the host:

$ docker run --rm -it --name hello ubuntu bash
root@cdf75e7a6c50:/$ ps -eaf
UID        PID  PPID  C STIME TTY          TIME CMD
root         1     0  0 18:41 pts/0    00:00:00 bash
root        10     1  0 18:42 pts/0    00:00:00 ps -eaf

This is achieved with the process ID namespace, which restricts the set of process IDs
that are visible. Try running unshare again, but this time specifying that you want a
new PID namespace with the --pid flag:

liz@myhost:~$ sudo unshare --pid sh
$ whoami
root
$ whoami
sh: 2: Cannot fork
$ whoami
sh: 3: Cannot fork
$ ls
sh: 4: Cannot fork

This doesn’t seem very successful—it’s not possible to run any commands after the
first whoami! But there are some interesting artifacts in this output.

The first process under sh seems to have worked OK, but every command after that
fails due to an inability to fork (the act of creating a child clone of a parent process).
The error is output in the form <command>: <process ID>: <message>, and you can
see that the process IDs are incrementing each time. Given the sequence, it would be
reasonable to assume that the first whoami ran as process ID 1. That is a clue that the
PID namespace is working in some fashion, in that the process ID numbering has
restarted. But it’s pretty much useless if you can’t run more than one process!

There are clues to what the problem is in the description of the --fork flag in the
man page for unshare: “Fork the specified program as a child process of unshare
rather than running it directly. This is useful when creating a new PID namespace.”

You can explore this by running ps to view the process hierarchy from a second terminal
window:

liz@myhost:~$ ps fa
    PID TTY      STAT   TIME COMMAND
...
 924537 pts/0    Ss     0:00 -bash
 924718 pts/0    S+     0:00  \_ sudo unshare --pid sh
 924719 pts/1    Ss     0:00      \_ sudo unshare --pid sh
 924720 pts/1    S+     0:00          \_ sh
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The sudo process forks itself to provide a monitor process and then goes on to exe‐
cute unshare. The sh process is not a child of unshare; it’s a child of the (second)
sudo process.

If your version of sudo is 1.9.14 or above, you’ll see two sudo pro‐
cesses, as in this example, but for older versions, there will be only
one. The man page for sudo tells us that in newer versions, it forks
one process in a new pseudo-terminal (pts/1 in my example out‐
put) to act as a monitor process, before forking a second time to
run the command. You can check what version is installed on your
machine by running sudo -V.

Now try unshare with the --fork parameter:

liz@myhost:~$ sudo unshare --pid --fork sh
$ whoami
root
$ whoami
root

This is progress, in that you can now run more than one command before running
into the “Cannot fork” error. If you look at the process hierarchy again from a second
terminal, you’ll see an important difference:

liz@myhost:~$ ps fa
    PID TTY      STAT   TIME COMMAND
...
 924537 pts/0    Ss     0:00 -bash
 925113 pts/0    S+     0:00  \_ sudo unshare --pid --fork sh
 925114 pts/1    Ss     0:00      \_ sudo unshare --pid --fork sh
 925115 pts/1    S      0:00          \_ unshare --pid --fork sh
 925116 pts/1    S+     0:00              \_ sh
...

With the --fork parameter, the sh shell is running as a child of the unshare process,
and you can successfully run as many different child commands as you choose within
this shell. Given that the shell is within its own process ID namespace, the results of
running ps inside it might be surprising:

liz@myhost:~$ sudo unshare --pid --fork sh
$ ps -eaf
UID          PID    PPID  C STIME TTY          TIME CMD
root           1       0  0 Jul22 ?        00:00:09 /sbin/init
root           2       0  0 Jul22 ?        00:00:00 [kthreadd]
root           3       2  0 Jul22 ?        00:00:00 [pool_workqueue_release]
...many more lines of output about processes...
root       13172   12943  0 13:03 pts/2    00:00:00 unshare --pid --fork sh
root       13173   13172  0 13:03 pts/2    00:00:00 sh
root       13174   13173  0 13:03 pts/2    00:00:00 ps -eaf
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As you can see, ps can show all the processes on the whole host, despite running
inside a new process ID namespace. If you want the ps behavior that you would see in
a Docker container, it’s not sufficient just to use a new process ID namespace, and the
reason for this is included in the man page for ps: “This ps works by reading the vir‐
tual files in /proc.”

Let’s take a look at the /proc directory to see what virtual files this is referring to.
Your system will look similar but not exactly the same, as it will be running a different
set of processes:

liz@myhost:~$ ls /proc
1      29      492628  64      acpi           loadavg
10     29375   492642  65      bootconfig     locks
10927  29451   492656  7       buddyinfo      mdstat
1181   3       492664  72      bus            meminfo
...many more lines...

Every numbered directory in /proc corresponds to a process ID, and there is a lot of
interesting information about a process inside its directory. For example, /proc/
<pid>/exe is a symbolic link to the executable that’s being run inside this particular
process, as you can see in the following example:

liz@myhost:~$ ps
  PID TTY          TIME CMD
28441 pts/0    00:00:00 bash
28558 pts/0    00:00:00 ps

liz@myhost:~$ ls /proc/28441
arch_status         fdinfo             ns             smaps_rollup
attr                gid_map            numa_maps      stack
autogroup           io                 oom_adj        stat
auxv                ksm_merging_pages  oom_score      statm
cgroup              ksm_stat           oom_score_adj  status
clear_refs          latency            pagemap        syscall
cmdline             limits             patch_state    task
comm                loginuid           personality    timens_offsets
coredump_filter     map_files          projid_map     timers
cpu_resctrl_groups  maps               root           timerslack_ns
cpuset              mem                sched          uid_map
cwd                 mountinfo          schedstat      wchan
environ             mounts             sessionid
exe                 mountstats         setgroups
fd                  net                smaps

liz@myhost:~$ ls -l /proc/28441/exe
lrwxrwxrwx 1 liz liz 0 Oct 10 13:32 /proc/28441/exe -> /usr/bin/bash

Irrespective of the process ID namespace it’s running in, ps is going to look in /proc
for information about running processes. To have ps return only the information
about the processes inside the new namespace, there needs to be a separate copy of
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the /proc directory, where the kernel can write information about the namespaced
processes. Given that /proc is a directory directly under root, this means changing
the root directory.

Changing the Root Directory
From within a container, you don’t see the host’s entire filesystem; instead, you see a
subset, because the root directory gets changed as the container is created.

You can change the root directory in Linux with the chroot command. This effec‐
tively moves the root directory for the current process to point to some other location
within the filesystem. Once you have done a chroot command, you lose access to
anything that was higher in the file hierarchy than your current root directory, since
there is no way to go any higher than root within the filesystem, as illustrated in
Figure 4-1.

The description in chroot’s man page reads as follows: “Run COMMAND with root
directory set to NEWROOT. […] If no command is given, run ${SHELL} -i
(default: /bin/sh -i).”

Figure 4-1. Changing root so a process sees only a subset of the filesystem

From this you can see that chroot doesn’t just change the directory but also runs a
command, falling back to running a shell if you don’t specify a different command.

Create a new directory and try to chroot into it:

liz@myhost:~$ mkdir new_root
liz@myhost:~$ sudo chroot new_root
chroot: failed to run command '/bin/bash': No such file or directory
liz@myhost:~$ sudo chroot new_root ls
chroot: failed to run command 'ls': No such file or directory

This doesn’t work! The problem is that once you are inside the new root directory,
there is no bin directory inside this root, so it’s impossible to run the /bin/bash shell.
Similarly, if you try to run the ls command, it’s not there. You’ll need the files for any
commands you want to run to be available within the new root. This is exactly what
happens in a “real” container: the container is instantiated from a container image,
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1 The $(uname -m) here identifies the architecture. For example, this will give aarch64 if you’re running on an
ARM machine or x86_64 on Intel. You’ll also need to look up the latest release of Alpine. At the time of writ‐
ing, it was v3.22.1, but that has likely moved on by the time you read this.

which encapsulates the filesystem that the container sees. If an executable isn’t present
within that filesystem, the container won’t be able to find and run it.

Why not try running Alpine Linux within your container? Alpine is a fairly minimal
Linux distribution designed for containers. You’ll need to start by downloading the
filesystem:1

liz@myhost:~$ mkdir alpine
liz@myhost:~$ cd alpine
liz@myhost:~/alpine$ curl -o alpine.tar.gz https://dl-cdn.alpinelinux.org/alpine/
latest-stable/releases/$(uname -m)/alpine-minirootfs-3.22.1-$(uname -m).tar.gz
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100 3425k  100 3425k    0     0  22.1M      0 --:--:-- --:--:-- --:--:-- 22.3M
liz@myhost:~/alpine$ tar xvf alpine.tar.gz

At this point, you have a copy of the Alpine filesystem inside the alpine directory
you created. Remove the compressed version and move back to the parent directory:

liz@myhost:~/alpine$ rm alpine.tar.gz
liz@myhost:~/alpine$ cd ..

You can explore the contents of the filesystem with ls alpine to see that it looks like
the root of a Linux filesystem with directories such as bin, lib, var, tmp, and so on.

Now that you have the Alpine distribution unpacked, you can use chroot to move
into the alpine directory, provided you supply a command that exists within that
directory’s hierarchy.

It’s slightly more subtle than that, because the executable has to be in the new proc‐
ess’s path. This process inherits the parent’s environment, including the PATH environ‐
ment variable. The bin directory within alpine has become /bin for the new process,
and assuming that your regular path includes /bin, you can pick up the ls executable
from that directory without specifying its path explicitly:

liz@myhost:~$ sudo chroot alpine ls
bin    etc    lib    mnt    proc   run    srv    tmp    var
dev    home   media  opt    root   sbin   sys    usr
liz@myhost:~$

Notice that it is only the child process (in this example, the process that ran ls) that
gets the new root directory. When that process finishes, control returns to the parent
process. If you run a shell as the child process, it won’t complete immediately, so that
makes it easier to see the effects of changing the root directory:
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liz@myhost:~$ sudo chroot alpine sh
/ $ ls
bin    etc    lib    mnt    proc   run    srv    tmp    var
dev    home   media  opt    root   sbin   sys    usr
/ $ whoami
root
/ $ exit
liz@myhost:~$

If you try to run the bash shell, it won’t work. This is because the Alpine distribution
doesn’t include it, so it’s not present inside the new root directory. If you tried the
same thing with the filesystem of a distribution like Ubuntu, which does include
bash, it would work.

To summarize, chroot literally “changes the root” for a process. After changing the
root, the process (and its children) will be able to access only the files and directories
that are lower in the hierarchy than the new root directory.

In addition to chroot, there is a more sophisticated version called
pivot_root. For the purposes of this chapter, whether chroot or
pivot_root is used is an implementation detail; the key point is
that a container needs to have its own root directory. I have used
chroot in these examples because it is simpler and more familiar to
many people.
There are security advantages to using pivot_root over chroot, so
in practice you should find the former if you look at the source
code of a container runtime implementation. The main difference
is that pivot_root takes advantage of the mount namespace; the
old root is no longer mounted and is therefore no longer accessible
within that mount namespace. The chroot system call doesn’t take
this approach, leaving the old root accessible via mount points.

You have now seen how a container can be given its own root filesystem. I’ll discuss
this further in Chapter 6, but right now let’s see how having its own root filesystem
allows the kernel to show a container just a restricted view of namespaced resources.

Combine Namespacing and Changing the Root
So far you have seen namespacing and changing the root as two separate things, but
you can combine the two by running chroot in a new namespace:

liz@myhost:~$ sudo unshare --pid --fork chroot alpine sh
/ $ ls
bin    etc    lib    mnt    proc   run    srv    tmp    var
dev    home   media  opt    root   sbin   sys    usr
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If you recall from earlier in this chapter (see “Isolating Process IDs” on page 37), giv‐
ing the container its own root directory allows it to create a /proc directory for the
container that’s independent of /proc on the host. For this to be populated with pro‐
cess information, you will need to mount it as a pseudo-filesystem of type proc. With
the combination of a process ID namespace and an independent /proc directory, ps
will now show just the processes that are inside the process ID namespace:

/ $ mount -t proc proc proc
/ $ ps
PID   USER     TIME  COMMAND
  1   root     0:00  sh
  5   root     0:00  ps

Success! It has been more complex than isolating the container’s hostname, but
through the combination of creating a process ID namespace, changing the root
directory, and mounting a pseudo-filesystem to handle process information, you can
limit a container so that it has a view only of its own processes.

If this seems complex, you might like to know that the unshare command has a
--mount-proc option to simplify it:

liz@myhost:~$ sudo unshare --pid --fork --mount-proc bash
root@myhost:/home/liz# ps
    PID TTY          TIME CMD
      1 pts/4    00:00:00 bash
      8 pts/4    00:00:00 ps

There are more namespaces left to explore. Let’s consider the mount namespace next.

Mount Namespace
Typically you don’t want a container to have all the same filesystem mounts as its
host. Giving the container its own mount namespace achieves this separation. Here’s
an example that creates a simple bind mount for a process with its own mount
namespace:

liz@myhost:~$ sudo unshare --mount sh
$ mkdir source
$ touch source/HELLO
$ ls source
HELLO
$ mkdir target
$ ls target
$ mount --bind source target
$ ls target
HELLO
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Once the bind mount is in place, the contents of the source directory are also avail‐
able in target. If you look at all the mounts from within this process, there will prob‐
ably be a lot of them, but the following command finds the target you created if you
followed the preceding example:

$ findmnt target
TARGET       SOURCE                      FSTYPE OPTIONS
/home/liz/target
             /dev/sda1[/home/liz/source] ext4   rw,relatime,discard,                   
                                                errors=remount-ro, commit=30

From the host’s perspective, this isn’t visible, which you can prove by running the
same command from another terminal window and confirming that it doesn’t return
anything.

Try running findmnt from within the mount namespace again but this time without
any parameters, and you will get a long list. You might be thinking that it seems
wrong for a container to be able to see all the mounts on the host. This is a similar
situation to what you saw with the process ID namespace: the kernel uses the /proc/
<PID>/mounts directory to communicate information about mount points for each
process. If you create a process with its own mount namespace but using the
host’s /proc directory, you’ll find that its /proc/<PID>/mounts file includes all the
preexisting host mounts. (You can simply cat this file to get a list of mounts.)

To get a fully isolated set of mounts for the containerized process, you will need to
combine creating a new mount namespace with a new root filesystem and a new proc
mount, like this:

liz@myhost:~$ sudo unshare --mount chroot alpine sh
/ $ mount -t proc proc proc
/ $ mount
proc on /proc type proc (rw,relatime)
/ $ mkdir source
/ $ touch source/HELLO
/ $ mkdir target
/ $ mount --bind source target
/ $ mount
proc on /proc type proc (rw,relatime)
/dev/root on /target type ext4 (rw,relatime,discard,errors=remount-ro,commit=30)

Alpine Linux doesn’t come with the findmnt command, so this example uses mount
with no parameters to generate the list of mounts. (If you are cynical about this
change, try the earlier example with mount instead of findmnt to check that you get
the same results.)

You may be familiar with the concept of mounting host directories into a container
using docker run -v <host directory>:<container directory> .... To achieve
this, after the root filesystem has been put in place for the container, the target
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container directory is created and then the source host directory gets bind mounted
into that target. Because each container has its own mount namespace, host directo‐
ries mounted like this are not visible from other containers.

If you create a mount that is visible to the host, it won’t automati‐
cally get cleaned up when your “container” process terminates. You
will need to destroy it using umount. This also applies to the /proc
pseudo-filesystems. They won’t do any particular harm, but if you
like to keep things tidy, you can remove them with umount proc.
The system won’t let you unmount the final /proc used by the host.

Network Namespace
The network namespace allows a container to have its own view of network interfaces
and routing tables. When you create a process with its own network namespace, you
can see it with lsns:

liz@myhost:~$ sudo lsns -t net
        NS TYPE NPROCS    PID USER    NETNSID NSFS COMMAND
4026531840 net     126      1 root unassigned      /sbin/init

liz@myhost:~$ sudo unshare --net bash
# lsns -t net
        NS TYPE NPROCS    PID USER    NETNSID NSFS COMMAND
4026531840 net     125      1 root unassigned      /sbin/init
4026532277 net       2  28586 root unassigned      bash

The output shows information about all the network namespaces on this host and the
process IDs associated with them. I’ll use the bash process ID, 28586, shortly.

You might come across the ip netns command, but that is not
much use to us here. Using unshare --net creates an anonymous
network namespace, and anonymous namespaces don’t appear in
the output from ip netns list.

When you put a process into its own network namespace, it starts with just the loop‐
back interface:

# ip a
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

With nothing but a loopback interface, your container won’t be able to communicate. 
To give it a path to the outside world, you create a virtual Ethernet interface—or more
strictly, a pair of virtual Ethernet interfaces. These act as if they were the two ends of a
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metaphorical cable connecting your container namespace to the default network
namespace on the host.

In a second terminal window on the host, you can create a virtual Ethernet pair by
specifying the anonymous namespaces associated with their process IDs, like this:

liz@myhost:~$ sudo ip link add ve1 netns 28586 type veth \
peer name ve2 netns 1

• ip link add indicates that you want to add a link.
• ve1 is the name of one “end” of the virtual Ethernet “cable.”
• netns 28586 says that this end is “plugged in” to the network namespace associ‐

ated with process ID 28586 (which is shown in the output from lsns -t net you
saw earlier).

• type veth shows that this is a virtual Ethernet pair.
• peer name ve2 gives the name of the other end of the “cable.”
• netns 1 specifies that this second end is “plugged in” to the network namespace

associated with process ID 1.

The ve1 virtual Ethernet interface is now visible from inside the “container” process:

# ip a
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: ve1@if3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group ...
    link/ether 7a:8a:3f:ba:61:2c brd ff:ff:ff:ff:ff:ff link-netnsid 0

The link is in “DOWN” state and needs to be brought up before it’s of any use. Both
ends of the connection need to be brought up.

Bring up the ve2 end on the host:

liz@myhost:~$ sudo ip link set ve2 up

And once you bring up the ve1 end in the container, the link should move to “UP”
state:

# ip link set ve1 up
# ip a
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: ve1@if3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP ...
    link/ether 7a:8a:3f:ba:61:2c brd ff:ff:ff:ff:ff:ff link-netnsid 0
    inet6 fe80::788a:3fff:feba:612c/64 scope link
       valid_lft forever preferred_lft forever
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You can see that an IPv6 address has automatically been assigned to this interface in
the container. Let’s perform IPv6 ping from the host to that address within the
container:

liz@myhost:~$ ping6 fe80::788a:3fff:feba:612c%ve2
PING fe80::788a:3fff:feba:612c%ve2 (fe80::788a:3fff:feba:612c) 56 data bytes
64 bytes from fe80::788a:3fff:feba:612c%ve2: icmp_seq=1 ttl=64 time=0.160 ms
64 bytes from fe80::788a:3fff:feba:612c%ve2: icmp_seq=2 ttl=64 time=0.052 ms
64 bytes from fe80::788a:3fff:feba:612c%ve2: icmp_seq=3 ttl=64 time=0.072 ms

Unlike IPv6, addresses are not automatically added to IPv4-capable interfaces, so if
you want to send IPv4 traffic over the virtual Ethernet connection, you’ll need to
define the IPv4 address at either end. In the container:

# ip addr add 192.168.1.100/24 dev ve1

The kernel now knows that traffic from this network namespace to any 192.168.1.*
address should go out via the ve1 interface, using the source IP address 192.168.1.100.
You can see this has been added into the routing table in the container:

# ip route
192.168.1.0/24 dev ve1 proto kernel scope link src 192.168.1.100

As mentioned at the start of this section, the network namespace isolates both the
interfaces and the routing table, so this routing information in the container is inde‐
pendent of the IP routing table on the host. At this point the container can send traf‐
fic only to 192.168.1.0/24 addresses.

You also need to add an address on the host:

liz@myhost:~$ sudo ip addr add 192.168.1.200/24 dev ve2

Now you should be able to ping from within the container to the host:

# ping 192.168.1.200
PING 192.168.1.200 (192.168.1.200) 56(84) bytes of data.
64 bytes from 192.168.1.200: icmp_seq=1 ttl=64 time=0.355 ms
64 bytes from 192.168.1.200: icmp_seq=2 ttl=64 time=0.035 ms
^C

We will dig further into networking and container network security in Chapter 12.

User Namespace
The user namespace allows processes to use different IDs for users and groups inside
the namespace, compared to the IDs used outside. Much like process IDs, the users
and groups still exist on the host, but they can be mapped to different IDs within the
namespace. The main benefit of this is that you can map the root ID of 0 within a
container to some other non-root identity on the host. This is a huge advantage from
a security perspective, since it allows software to run as root inside a container, but an
attacker who escapes from the container to the host will have a non-root,
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unprivileged identity. As you’ll see in Chapter 11, it’s not hard to misconfigure a con‐
tainer to make it easy to escape to the host. With user namespaces, you’re not just one
false move away from host takeover.

User namespace support is enabled by default from Kubernetes 1.33
onward, although you need a Linux kernel version 6.3 or newer. It’s
also supported in recent versions of container runtimes like contain
erd and runc and can be enabled in Docker using the --userns-remap
flag on the daemon.

Generally speaking, you need to be root to create new namespaces (which is why the
Docker daemon runs as root), but the user namespace is an exception:

liz@myhost:~$ unshare --user bash
nobody@myhost:/home/liz$ id
uid=65534(nobody) gid=65534(nogroup) groups=65534(nogroup)
nobody@myhost:/home/liz$ echo $$
31196

I’ll use the process ID of the current process, as returned by echo $$, in a moment.
First, let’s notice that inside the new user namespace, the user has the nobody ID. You
need to put in place a mapping between user IDs inside and outside the namespace,
as shown in Figure 4-2.

Figure 4-2. Mapping a non-root user on the host to root in a container

This mapping exists in /proc/<pid>/uid_map, which you can edit as root (on the
host). There are three fields in this file:

• The lowest ID to map from the child process’s perspective
• The lowest corresponding ID that this should map to on the host
• The number of IDs to be mapped

As an example, on my machine, the liz user has ID 1001. To have liz get assigned
the root ID of 0 inside the child process, the first two fields are 0 and 1001. The last
field can be 1 if you want to map only one ID (which may well be the case if you want
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only one user inside the container). Here’s the command I used in a second terminal
window to set up that mapping:

liz@myhost:~$ sudo echo '0 1001 1' > /proc/31196/uid_map

Inside its user namespace, the process has taken on the root identity. Don’t be put off
by the fact that the bash prompt still says “nobody”; this doesn’t get updated unless
you rerun the scripts that get run when you start a new shell (e.g., ~/.bash_profile):

nobody@myhost:/home/liz$ id
uid=0(root) gid=65534(nogroup) groups=65534(nogroup)

A similar mapping process using /proc/<pid>/gid_map can be used to map the
group(s) used inside the child process.

So now the process is running under root’s user ID, and in older versions of Linux,
this used to be sufficient to get the full set of root’s capabilities. In kernel 5.8, this was
changed in important ways so that root in the child process no longer automatically
gets the privileges of root across the whole host machine—it’s merely a “namespace
root.” Let’s explore what that ID looks like from the host’s perspective. Start by run‐
ning a sleep command:

nobody@myhost:/home/liz$ sleep 100

Notice that the prompt has not updated to show root.

In a second terminal, let’s see what this process looks like:

liz@myhost:~$ ps -fC sleep
UID          PID    PPID  C STIME TTY          TIME CMD
liz        84714   84272  0 17:33 pts/0    00:00:00 sleep 100

The sleep command is being run under the unprivileged liz identity from the host’s
perspective, even though this looks like root inside the user namespace. This unprivi‐
leged user doesn’t have the CAP_SYS_ADMIN capability required to create, say, a new
UTS namespace:

nobody@myhost:~$ unshare --uts
unshare: unshare failed: Operation not permitted

Earlier in this chapter, in “Isolating the Hostname” on page 35, I mentioned you need
to be root to run unshare --uts successfully. It would fail with “Operation not per‐
mitted” for exactly the same reason as in this case—no CAP_SYS_ADMIN capability.
However, the kernel does permit a one-shot approach to creating other namespaces
along with the user namespace. A regular, unprivileged user on the host can run a
command like this:

liz@myhost:~$ unshare --user --uts sleep 100

Find the process ID for this sleep command in another terminal, and inspect its
namespaces:

User Namespace | 49



liz@myhost:~$ lsns -p 87982
        NS TYPE   NPROCS   PID USER COMMAND
4026531834 time        4 15244 liz  -bash
4026531835 cgroup      4 15244 liz  -bash
4026531836 pid         4 15244 liz  -bash
4026531839 ipc         4 15244 liz  -bash
4026531840 net         4 15244 liz  -bash
4026531841 mnt         4 15244 liz  -bash
4026532267 user        1 87982 liz  ├─sleep 100
4026532306 uts         1 87982 liz  └─sleep 100

You can see that the sleep process has inherited most of the namespaces, but it has its
own user and UTS namespaces.

So an unprivileged user can create other namespaces after all! That seems great—
except done like this, it’s not terribly useful. No extra capabilities are given to the user,
so trying to change the hostname won’t be permitted:

liz@myhost:~$ unshare --user --uts hostname hello
hostname: you must be root to change the host name

Let’s see what happens if you try this as a privileged user:

liz@myhost:~$ sudo unshare --user --uts bash
nobody@myhost:/home/liz$ hostname new
hostname: you must be root to change the host name
nobody@myhost:/home/liz$ id
uid=65534(nobody) gid=65534(nogroup) groups=65534(nogroup)

The user inside the new namespace is nobody. There needs to be an explicit mapping
to set the UID 0 on the host to UID 0 inside the user namespace. In a second termi‐
nal, you could achieve this by writing a uid_map file for the process similar to how we
did earlier, or you can use a convenient --map-root-user option on the unshare
command:

liz@myhost:~$ sudo unshare --user --uts --map-root-user bash
root@myhost:/home/liz# id
uid=0(root) gid=65534(nogroup) groups=65534(nogroup)
root@myhost:/home/liz# cat /proc/$$/uid_map
         0          0          1
root@myhost:/home/liz# hostname new
root@myhost:/home/liz# hostname
new

If you’re running containers as a root user, you’ve seen that it’s easy to get root privi‐
leges inside the container, and it’s also easy to set up the container with a user name‐
space so that it doesn’t automatically get root privileges. This is a security benefit
because fewer containers need to run as “real” root (that is, root from the perspective
of the host).
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If you want to run containers as an unprivileged user and get root privileges inside
the container, that’s a bit more tricky. This concept is called rootless containers, and
we’ll cover this topic in Chapter 11.

Inter-Process Communications Namespace
In Linux it’s possible to communicate between different processes by giving them
access to a shared range of memory, or by using a shared message queue. The two
processes need to be members of the same inter-process communications (IPC)
namespace for them to have access to the same set of identifiers for these
mechanisms.

Generally speaking, you don’t want your containers to be able to access one another’s
shared memory, so they are given their own IPC namespaces.

You can see this in action by creating a shared memory block and then viewing the
current IPC status with ipcs:

$ ipcmk -M 1000
Shared memory id: 0
$ ipcs

------ Message Queues --------
key        msqid      owner      perms      used-bytes   messages

------ Shared Memory Segments --------
key        shmid      owner      perms      bytes      nattch     status
0x74e9655a 0          root       644        1000       0 

------ Semaphore Arrays --------
key        semid      owner      perms      nsems

In this example, the newly created shared memory block (with its ID in the shmid
column) appears in the “Shared Memory Segments” block. A process with its own
IPC namespace does not see any of these IPC objects:

$ sudo unshare --ipc sh
$ ipcs

------ Message Queues --------
key        msqid      owner      perms      used-bytes   messages

------ Shared Memory Segments --------
key        shmid      owner      perms      bytes      nattch     status

------ Semaphore Arrays --------
key        semid      owner      perms      nsems
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Cgroup Namespace
The cgroup namespace is a little bit like a chroot for the cgroup filesystem; it stops a
process from seeing the cgroup configuration higher up in the hierarchy of cgroup
directories than its own cgroup.

This section assumes you’re using cgroups v2. If you need to revisit
how they work, you’ll find them discussed in Chapter 2.

You can see the cgroup namespace in action by comparing the contents of /proc/
self/cgroup outside and then inside a cgroup namespace:

liz@myhost:~$ cat /proc/self/cgroup
0::/user.slice/user-1001.slice/session-357.scope

liz@myhost:~$ sudo unshare --cgroup bash
root@myhost:/home/liz# cat /proc/self/cgroup
0::/

The process sees a root-level cgroup. However, this process has full access to the root
filesystem, so looking at /sys/fs/cgroup shows the host’s cgroup hierarchy. For
example, looking at the contents of /sys/fs/cgroup/cgroup.procs would show a lot
of processes that have nothing to do with this process and its own control group. This
is similar to how a container needs its own view of /proc to get a correct view of the
processes inside its process ID namespace; it also needs its own version of /sys/fs/
cgroup. As before, you’ll need to create a mount namespace and change the root
directory. In this example, I am using the alpine root filesystem that we used earlier:

liz@myhost:~$ sudo unshare --cgroup --mount chroot alpine sh
# mkdir -p /sys/fs/cgroup
# mount -t cgroup2 none /sys/fs/cgroup
# ls /sys/fs/cgroup 
cgroup.controllers      cpu.stat.local          memory.reclaim
cgroup.events           cpu.uclamp.max          memory.stat
cgroup.freeze           cpu.uclamp.min          memory.swap.current
cgroup.kill             cpu.weight              memory.swap.events
cgroup.max.depth        cpu.weight.nice         memory.swap.high
cgroup.max.descendants  io.pressure             memory.swap.max
cgroup.pressure         memory.current          memory.swap.peak
cgroup.procs            memory.events           memory.zswap.current
cgroup.stat             memory.events.local     memory.zswap.max
cgroup.subtree_control  memory.high             memory.zswap.writeback
cgroup.threads          memory.low              pids.current
cgroup.type             memory.max              pids.events
cpu.idle                memory.min              pids.events.local
cpu.max                 memory.numa_stat        pids.max
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cpu.max.burst           memory.oom.group        pids.peak
cpu.pressure            memory.peak
cpu.stat                memory.pressure

The cgroup pseudo-filesystem has been populated with all the information you might
expect, but there is still one problem: the process IDs shown here reflect the host’s
view of processes. You’ll need a process ID namespace, too, for this to work com‐
pletely as expected:

liz@myhost:~$ sudo unshare --mount --pid --fork --cgroup bash
root@myhost:/home/liz# mount -t proc proc alpine/proc
root@myhost:/home/liz# mount -t cgroup2 none alpine/sys/fs/cgroup
root@myhost:/home/liz# chroot alpine sh
# ps
PID   USER     TIME  COMMAND
    1 root      0:00 bash
   22 root      0:00 sh
   23 root      0:00 ps
# cat /sys/fs/cgroup/cgroup.procs
0
0
0
0
0
0
1
22
26

This looks pretty consistent with what you might expect, but what are those 0 entries
in the cgroup.procs file? The answer is that these are processes in this cgroup that
are outside the process ID namespace. The child process has its own view of cgroups,
but it is still a member of the cgroup of its parent. The parent process can create a
cgroup for the child by creating a new directory in /sys/fs/cgroup and writing the
child’s process ID into cgroup.procs.

Time Namespace
Using the time namespace, a process can adjust its own CLOCK_MONOTONIC and
CLOCK_BOOTTIME, making it seem as if the system booted at a different time. It’s
intended for seamless process migration between systems, allowing timers and sleeps
to pick up where they left off, and it can be used to reproduce issues that are time
dependent, if a variable’s value is generated based on time.

But can you imagine the confusion caused if different containers in a distributed sys‐
tem all have a different view of time? For starters, trying to coordinate logs and met‐
rics across different containers would get really complex! It could also open up
opportunities for an attacker to obfuscate malicious activity by making it appear to
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happen in the past or the future. For this reason I’m not aware of any container sys‐
tems that make use of the time namespace.

You have now explored all the different types of namespace and have seen how they
are used along with chroot to isolate a process’s view of its surroundings. Combine
this with what you learned about cgroups in the Chapter 3, and you should have a
good understanding of everything that’s needed to make what we call a container.

Kubernetes Pods and Container Namespaces
A pod in Kubernetes is a group of one or more containers. Each of these containers
has its own root filesystem, so they can have separate sets of dependencies, but they
are not entirely isolated from each other using namespaces:

• The containers in a pod share a network namespace, giving them the same IP
address and allowing them to communicate over localhost.

• A pod’s containers have a common IPC namespace and can communicate with
each other over UNIX domain sockets and shared memory.

• Optionally, a pod can be configured to share the Process ID namespace so that
containers can see and send signals to each other’s processes.

Before moving on to Chapter 5, it’s worth taking a look at a container from the per‐
spective of the host it’s running on.

Container Processes from the Host Perspective
Although they are called containers, it might be more accurate to use the term con‐
tainerized processes. A container is still a Linux process running on the host machine,
but it has a limited view of that host machine, and it has access to only a subtree of
the filesystem and perhaps to a limited set of resources restricted by cgroups. Because
it’s really just a process, it exists within the context of the host operating system, and it
shares the host’s kernel, as shown in Figure 4-3.

Figure 4-3. Containers share the host’s kernel
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You’ll see how this compares to virtual machines in the Chapter 5, but before that,
let’s examine in more detail the extent to which a containerized process is isolated
from the host, and from other containerized processes on that host, by trying some
experiments on a Docker container.

This example runs a shell process in a container based on Ubuntu (or your favorite
Linux distribution) and runs the sleep command for 1,000 seconds within the shell.
Note that the sleep command is running as a process inside the container. When you
press Enter at the end of the sleep command, this triggers Linux to clone a new pro‐
cess with a new process ID and to run the sleep executable within that process.

You can put the sleep process into the background (Ctrl-Z to pause the process, and
bg %1 to background it). Now run ps inside the container to see that sleep process
from the container’s perspective:

$ docker run --rm -it ubuntu bash
root@ab6ea36fce8e:/$ sleep 1000
^Z
[1]+  Stopped                 sleep 1000
root@ab6ea36fce8e:/$ bg %1
[1]+ sleep 1000 &
root@ab6ea36fce8e:/$ ps
  PID TTY          TIME CMD
    1 pts/0    00:00:00 bash
   10 pts/0    00:00:00 sleep
   11 pts/0    00:00:00 ps
root@ab6ea36fce8e:/$

While that sleep command is still running, open a second terminal into the same
host and look at the same sleep process from the host’s perspective:

$ ps -C sleep
  PID TTY          TIME CMD
30591 pts/0    00:00:00 sleep

The -C sleep parameter specifies that we are interested only in processes running
the sleep executable.

The container has its own process ID namespace, so it makes sense that its processes
would have low numbers, and that is indeed what you see when running ps in the
container. From the host’s perspective, however, the sleep process has a different,
high-numbered process ID. There is just one process running sleep, and it has ID
30591 on the host and 10 in the container. (The actual number on the host will vary
according to what else is and has been running on the machine, but it’s likely to be a
much higher number than the ID in the container.)

To get a good understanding of containers and the level of isolation they provide, it’s
really key to get to grips with the fact that although there are two different process
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IDs, they both refer to the same process. It’s just that from the host’s perspective, it has
a higher process ID number.

The fact that container processes are visible from the host is one of the fundamental
differences between containers and virtual machines. An attacker who gets access to
the host can observe and affect all the containers running on that host, especially if
they have root access. And as you’ll see in Chapter 11, there are some remarkably easy
ways you can inadvertently make it possible for an attacker to move from a compro‐
mised container onto the host.

Container Host Machines
As you have seen, containers and their host share a kernel, and this has some conse‐
quences for what are considered best practices relating to the host machines for con‐
tainers. If a host gets compromised, all the containers on that host are potential
victims, especially if the attacker gains root or otherwise elevated privileges (such as
being a member of the docker group that can administer containers where Docker is
used as the runtime).

It’s highly recommended to run container applications on dedicated host machines
(whether they be VMs or bare metal), and the reasons mostly relate to security:

• Using an orchestrator to run containers means that humans need little or no
access to the hosts. If you don’t run any other applications, you will need a very
small set of user identities on the host machines. These will be easier to manage,
and attempts to log in as an unauthorized user will be easier to spot.

• You can use any Linux distribution as the host OS for running Linux containers,
but there are several “Thin OS” distros specifically designed for running contain‐
ers. These reduce the host attack surface by including only the components
required to run containers. Examples include Flatcar, Talos, and Bottlerocket.
With fewer components included in the host machine, there is a smaller chance
of vulnerabilities (see Chapter 8) in those components.

• All the host machines in a cluster can share the same configuration, with no
application-specific requirements. This makes it easy to automate the provision‐
ing of host machines, and it means you can treat host machines as immutable. If
a host machine needs an upgrade, you don’t patch it; instead, you remove it from
the cluster and replace it with a freshly installed machine. Treating hosts as
immutable makes intrusions easier to detect.

I’ll come back to the advantages of immutability in Chapter 8.

Using a Thin OS reduces the set of configuration options but doesn’t eliminate them
completely. For example, you will have a container runtime (perhaps containerd)
plus orchestrator code (perhaps the Kubernetes kubelet) running on every host.
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These components have numerous settings, some of which affect security. The Center
for Internet Security (CIS) publishes benchmarks for best practices for configuring
and running various software components, including Docker, Kubernetes, and Linux.

In an enterprise environment, look for a container security solution that also protects
the hosts by reporting on vulnerabilities and worrisome configuration settings. You
will also want logs and alerts for logins and login attempts at the host level.

Summary
Congratulations! Since you’ve reached the end of this chapter, you should now know
what a container really is. You’ve seen the three essential Linux kernel mechanisms
that are used to limit a process’s access to host resources:

• Namespaces limit what the container process can see—for example, by giving the
container an isolated set of process IDs.

• Changing the root limits the set of files and directories that the container can see.
• Cgroups control the resources the container can access.

As you saw in Chapter 1, isolating one workload from another is an important aspect
of container security. You now should be fully aware that all the containers on a given
host (whether it is a virtual machine or a bare-metal server) share the same kernel. Of
course, the same is true in a multiuser system where different users can log in to the
same machine and run applications directly. However, in a multiuser system, the
administrators are likely to limit the permissions given to each user; they certainly
won’t give them all root privileges. With containers—at least at the time of writing—
they all run as root by default and are relying on the boundary provided by namespa‐
ces, changed root directories, and cgroups to prevent one container from interfering
with another.

In Chapter 10 we’ll explore options for strengthening the security boundary around
each container, but next let’s delve into how virtual machines work. This will allow
you to consider the relative strengths of the isolation between containers and between
VMs, especially through the lens of security.
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CHAPTER 5

Virtual Machines

Containers are often compared with VMs, especially in terms of the isolation that
they offer. Let’s make sure you have a solid understanding of how VMs operate so
that you can reason about the differences between them and containers. This will be
particularly useful when you want to assess the security boundaries around your
applications when they run in containers or in different VMs. When you are discus‐
sing the relative merits of containers from a security perspective, understanding how
they differ from VMs can be a useful tool.

This isn’t a clear-cut distinction, really. As you’ll see in Chapter 10, there are several
sandboxing tools that strengthen the isolation boundaries around containers, making
them more like VMs. If you want to understand the security pros and cons of these
approaches, it’s best to start with a firm understanding of the difference between a
VM and a “normal” container.

The fundamental difference is that a VM runs an entire copy of an operating system,
including its kernel, whereas a container shares the host machine’s kernel. To under‐
stand what that means, you’ll need to know something about how virtual machines
are provided by a virtual machine monitor (VMM). Let’s start to set the scene for that
by thinking about what happens when a computer boots up.

Booting Up a Machine
Picture a physical server. It has some CPUs, memory, and networking interfaces.
When you first boot up the machine, an initial program runs what’s called the Basic
Input Output System (BIOS). It scans how much memory is available, identifies the
network interfaces, and detects any other devices such as displays, keyboards,
attached storage devices, and so on.
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In practice, a lot of this functionality has been superseded nowadays by Unified
Extensible Firmware Interface (UEFI), but for the sake of argument, let’s just think of
this as a modern BIOS.

Once the hardware has been enumerated, the system runs a bootloader that loads and
then runs the operating system’s kernel code. The operating system could be Linux,
Windows, or some other OS. As you saw in Chapter 2, kernel code operates at a
higher level of privilege than your application code. This privilege level allows it to
interact with memory, network interfaces, and so on, whereas applications running in
user space can’t do this directly.

On an x86 processor, privilege levels are organized into rings, with Ring 0 being the
most privileged and Ring 3 being the least privileged. For most operating systems in a
regular setup (without VMs), the kernel runs at Ring 0, and user space code runs at
Ring 3, as shown in Figure 5-1.

Figure 5-1. Privilege rings

Kernel code (like any code) runs on the CPU in the form of machine code instruc‐
tions, and these instructions can include privileged instructions for accessing mem‐
ory, starting CPU threads, and so on. The details of everything that can and will
happen while the kernel initializes are beyond the scope of this book, but essentially
the goal is to mount the root filesystem, set up networking, and bring up any system
daemons. If you want to dive deeper, there is a lot of great information written by
Alex Kuleshov on Linux kernel internals, including the bootstrap process, on GitHub.

Once the kernel has finished its own initialization, it can start running programs in
user space. The kernel is responsible for managing everything that the user space pro‐
grams need. It starts, manages, and schedules the CPU threads that these programs
run in, and it keeps track of these threads through its own data structures that repre‐
sent processes. One important aspect of kernel functionality is memory management.
The kernel assigns blocks of memory to each process and makes sure that processes
can’t access one another’s memory blocks.
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Enter the VMM
As you have just seen, in a regular setup, the kernel manages the machine’s resources
directly. In the world of virtual machines, a virtual machine monitor (VMM) does the
first layer of resource management, splitting up the resources and assigning them to
virtual machines. Each virtual machine gets a kernel of its own.

You might also see the term virtual machine manager. This usually
refers to a user-facing GUI or CLI tool used to manage virtual
machines rather than the component that provides the virtualiza‐
tion. One well-known example is virt-manager, the vSphere client.
For developers running Linux VMs on macOS, lima is a handy CLI
tool offering VM management, while QEMU provides the
virtualization.

For each virtual machine that it manages, the VMM assigns some memory and CPU
resources, sets up virtual network interfaces and other virtual devices, and starts a
guest kernel with access to these resources.

In a regular server, the BIOS gives the kernel the details of the resources available on
the machine; in a virtual machine situation, the VMM divides up those resources and
gives each guest kernel only the details of the subset that it is being given access to.
From the perspective of the guest OS, it thinks it has direct access to physical mem‐
ory and devices, but in fact it’s getting access to an abstraction provided by the VMM.

The VMM is responsible for making sure that the guest OS and its applications can’t
breach the boundaries of the resources it has been allocated. For example, the guest
operating system is assigned a range of memory on the host machine. If the guest
somehow tries to access memory outside that range, this is forbidden.

There are two main forms of VMM, often called, not very imaginatively, Type 1 and
Type 2. And there is a bit of gray area between the two, naturally!

Type 1 VMMs, or Hypervisors
In a regular system, the bootloader runs an operating system kernel like Linux or
Windows. In a pure Type 1 virtual machine environment, a dedicated kernel-level
VMM program runs instead.

Type 1 VMMs are also known as hypervisors, and examples include Hyper-V, Xen,
and ESX/ESXi. As you can see in Figure 5-2, the hypervisor runs directly on the hard‐
ware (or bare metal), with no operating system underneath it.
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Figure 5-2. Type 1 VMM, also known as a hypervisor

In saying “kernel level,” I mean that the hypervisor runs at Ring 0. (Well, that’s true
until we consider hardware virtualization later in this chapter, but for now let’s just
assume Ring 0.) The guest OS kernel runs at Ring 1, as depicted in Figure 5-3, which
means it has less privilege than the hypervisor.

Figure 5-3. Privilege rings used under a hypervisor

Type 2 VMM
When you run virtual machines on your laptop or desktop machine, perhaps through
something like QEMU, Parallels, or VirtualBox, they are “hosted,” or Type 2, VMs.
Your laptop might be running, say, macOS, which is to say that it’s running a macOS
kernel. You could install QEMU and use it to run guest VMs that coexist with your
host operating system. Those guest VMs could be running a completely different
operating system like Linux or Windows. Figure 5-4 shows how the guest OS and
host OS coexist.

Consider that for a moment and think about what it means to run, say, Linux within
macOS. By definition this means there has to be a Linux kernel, and that has to be a
different kernel from the host’s macOS kernel.

The VMM application has user space components that you can interact with as a user,
but it also installs privileged components allowing it to provide virtualization. You’ll
see more about how this works later in this chapter.
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Figure 5-4. Type 2 VMM

Kernel-Based Virtual Machines
I promised that there would be some blurred boundaries between Type 1 and Type 2.
In Type 1, the hypervisor runs directly on bare metal; in Type 2, the VMM runs in
user space on the host OS. What if you run a virtual machine monitor within the ker‐
nel of the host OS?

This is exactly what happens with a Linux kernel module called KVM, or kernel-
based virtual machines, as shown in Figure 5-5.

Figure 5-5. KVM

Generally, KVM is considered to be a Type 1 hypervisor because the guest OS doesn’t
have to traverse the host OS, but I’d say that this categorization is overly simplistic.

KVM is often used with QEMU (Quick Emulator), which I listed earlier as a Type 2
hypervisor. QEMU dynamically translates system calls from the guest OS into host
OS system calls. It’s worth a mention that QEMU can take advantage of hardware
acceleration offered by KVM.

Whether Type 1, Type 2, or something in between, VMMs employ similar techniques
to achieve virtualization. The basic idea is called trap-and-emulate, though as we’ll
see, x86 processors provide some challenges in implementing this idea.
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Trap-and-Emulate
Some CPU instructions are privileged, meaning they can be executed only in Ring 0;
if they are attempted in a higher ring, this will cause a trap. You can think of the trap
as being like an exception in application software that triggers an error handler; a trap
will result in the CPU calling a handler in the Ring 0 code.

If the VMM runs at Ring 0 and the guest OS kernel code runs at a lower privilege, a
privileged instruction run by the guest can invoke a handler in the VMM to emulate
the instruction. In this way the VMM can ensure that the guest OSs can’t interfere
with each other through privileged instructions.

Unfortunately, privileged instructions are only part of the story. The set of CPU
instructions that can affect the machine’s resources is known as sensitive. The VMM
needs to handle these instructions on behalf of the guest OS, because only the VMM
has a true view of the machine’s resources. There is also another class of sensitive
instructions that behaves differently when executed in Ring 0 or in lower-privileged
rings. Again, a VMM needs to do something about these instructions because the
guest OS code was written assuming the Ring 0 behavior.

If all sensitive instructions were privileged, this would make life relatively easy for
VMM programmers, as they would just need to write trap handlers for all these sensi‐
tive instructions. Unfortunately, not all x86 sensitive instructions are also privileged,
so VMMs need to use different techniques to handle them. Instructions that are sen‐
sitive but not privileged are considered to be “non-virtualizable.”

Handling Non-Virtualizable Instructions
There are a few different techniques for handling these non-virtualizable instructions:

• One option is binary translation. All the nonprivileged, sensitive instructions in
the guest OS are spotted and rewritten by the VMM in real time. This is complex,
and newer x86 processors support hardware-assisted virtualization to simplify
binary translation.

• Another option is paravirtualization. Instead of modifying the guest OS on the
fly, the guest OS is rewritten to avoid the non-virtualizable set of instructions,
effectively making system calls to the hypervisor. This is the technique used by
the Xen hypervisor.

• Hardware virtualization (such as Intel’s VT-x) allows hypervisors to run in a new,
extraprivileged level known as VMX root mode, which is essentially Ring –1. This
allows the VM guest OS kernels to run at Ring 0 (or VMX non-root mode), as
they would if they were the host OS.
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Nested Virtualization
Running a virtual machine within another virtual machine is called nested virtualiza‐
tion. It’s not uncommon to see a Type 2 hypervisor running in a machine hosted by a
Type 1 hypervisor on bare metal. Performance can be significantly affected, especially
when nesting Type 2 hypervisors, and features like device passthrough or GPU accel‐
eration might not be available.

KubeVirt
The KubeVirt project allows running a virtual machine within a container in a
Kubernetes pod. When I wrote the first edition of this book, this idea seemed like a
science experiment rather than a practical use case, but it has become more common,
largely as a step that enterprises are taking to move VM-based workloads into cloud
native environments.

KubeVirt uses KVM virtualization, so the guest virtual machine in the container is
really running directly on the host kernel. If that host is actually a virtual machine—
say, a managed Kubernetes node running in the public cloud—then this is nested vir‐
tualization, which may need to be explicitly configured for the instance (and may not
be available on all instance types).

If you would like to dig deeper into how virtualization works, Keith
Adams and Ole Agesen provide a useful comparison and describe
how hardware enhancements enable better performance.

Now that you have a picture of how virtual machines are created and managed, let’s
consider what this means in terms of isolating one process, or application, from
another.

Process Isolation and Security
Making sure that applications are safely isolated from each other is a primary security
concern. If my application can read the memory that belongs to your application, I
will have access to your data.

Physical isolation is the strongest form of isolation possible. If our applications are
running on entirely separate physical machines, there is no way for my code to get
access to the memory of your application.

As we have just discussed, the kernel is responsible for managing its user space pro‐
cesses, including assigning memory to each process. It’s up to the kernel to make sure
that one application can’t access the memory assigned to another. If there is a bug in
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the way that the kernel manages memory, an attacker might be able to exploit that
bug to access memory that they shouldn’t be able to reach. And while the kernel is
extremely battle-tested, it’s also extremely large and complex, and it is still evolving.
Even though we don’t know of significant flaws in kernel isolation as of this writing, I
wouldn’t advise you to bet against someone finding problems at some point in the
future.

These flaws can come about due to increased sophistication in the underlying hard‐
ware. In recent years, CPU manufacturers developed speculative processing, in which a
processor runs ahead of the currently executing instruction and works out what the
results are going to be ahead of actually needing to run that branch of code. This
enabled significant performance gains, but it also opened the door to the famous
Spectre and Meltdown exploits.

You might be wondering why people consider hypervisors to give greater isolation to
virtual machines than a kernel gives to its processes; after all, hypervisors are also
managing memory and device access and have a responsibility to keep virtual
machines separate. It’s absolutely true that a hypervisor flaw could result in a serious
problem with isolation between virtual machines. The difference is that hypervisors
have a much, much simpler job. In a kernel, user space processes are allowed some
visibility of each other; as a very simple example, you can run ps and see the running
processes on the same machine. You can (given the right permissions) access infor‐
mation about those processes by looking in the /proc directory. You are allowed to
deliberately share memory between processes through IPC and, well, shared memory.
All these mechanisms, where one process is legitimately allowed to discover informa‐
tion about another, make the isolation weaker, because of the possibility of a flaw that
allows this access in unexpected or unintended circumstances.

There is no similar equivalent when running virtual machines; you can’t see one
machine’s processes from another. There is less code required to manage memory
simply because the hypervisor doesn’t need to handle circumstances in which
machines might share memory—it’s just not something that virtual machines do. As a
result, hypervisors are far smaller and simpler than full kernels. There are well over
20 million lines of code in the Linux kernel; by contrast, the Xen hypervisor is around
50,000 lines.

Where there is less code and less complexity, there is a smaller attack surface, and the
likelihood of an exploitable flaw is less. For this reason, virtual machines are consid‐
ered to have strong isolation boundaries.

That said, virtual machine exploits are not unheard of. Darshan Tank, Akshai
Aggarwal, and Nirbhay Chaubey describe a taxonomy of the different types of attack,
and the National Institute of Standards and Technology (NIST) has published secu‐
rity guidelines for hardening virtualized environments.
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Disadvantages of Virtual Machines
At this point you might be so convinced of the isolation advantages of virtual
machines that you might be wondering why people use containers at all! There are
some disadvantages of VMs compared to containers:

• Virtual machines have startup times that are several orders of magnitude greater
than a container. After all, a container simply means starting a new Linux pro‐
cess, not having to go through the whole startup and initialization of a VM. The
relatively slow startup times of general-purpose VMs means that they are slug‐
gish for autoscaling, not to mention that fast startup times are important when an
organization wants to ship new code frequently, perhaps several times per day.
However, there are now several lightweight “micro-VMs” with very fast startup
times, which I’ll discuss in Chapter 10.

• Containers give developers a convenient ability to “build once, run anywhere”
quickly and efficiently. It’s possible, but very slow, to build an entire machine
image for a VM and run it on one’s laptop, but this technique hasn’t taken off in
the developer community in the way containers have.

• In today’s cloud environments, when you rent a virtual machine, you have to
specify its CPU and memory, and you pay for those resources regardless of how
much is actually used by the application code running inside it.

When choosing whether to use VMs or containers, there are many trade-offs to be
made among factors such as performance, price, convenience, risk, and the strength
of security boundary required between different application workloads.

Container Isolation Compared to VM Isolation
As you saw in Chapter 4, containers are simply Linux processes with a restricted view.
They are isolated from each other by the kernel through the mechanisms of namespa‐
ces, cgroups, and changing the root. These mechanisms were created specifically to
create isolation between processes. However, the simple fact that containers share a
kernel means that the basic isolation is weaker compared to that of VMs.

However, all is not lost! You can apply additional security features and sandboxing to
strengthen this isolation, which I will explain in Chapter 10. There are also very effec‐
tive security tools that take advantage of the fact that containers tend to encapsulate
microservices, and I will cover these in Chapter 15.
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Summary
You should now have a good grasp of what virtual machines are. You have learned
why the isolation between virtual machines is considered strong compared to con‐
tainer isolation and why containers are generally not considered suitably secure for
hard multitenancy environments. Understanding this difference is an important tool
to have in your toolbox when discussing container security.

Securing virtual machines themselves is outside the scope of this book, although I
touched on hardening container host configuration in “Container Host Machines” on
page 56.

Later in this book, you will see some examples in which the weaker isolation of con‐
tainers (in comparison to VMs) can easily be broken through misconfiguration.
Before we get to that, let’s make sure you are up to speed on what’s inside a container
image and how images can have a significant bearing on security.
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CHAPTER 6

Container Images

If you have been using Docker or Kubernetes, you are likely to be familiar with the
idea of container images that you store in a registry. In this chapter we’re going to
explore container images, looking at what they contain and how container runtimes
like Docker, containerd, podman, or CRI-O use them.

With an understanding of what images are, you’re ready to think about the security
implications of building, storing, and retrieving images—and there are a lot of attack
vectors related to these steps. You’ll learn about best practices for ensuring that builds
and images don’t compromise your overall system.

Root Filesystem and Image Configuration
There are two parts to a container image: the root filesystem and some configuration.

If you followed along with the examples in Chapter 4, you downloaded a copy of the
Alpine root filesystem and used this as the contents of root inside your container. In
general, when you start a container, you instantiate it from a container image, and the
image includes the root filesystem. If you run docker run -it alpine sh and com‐
pare it to what’s inside your hand-built container, you will see the same layout of
directories and files, and they will match completely if the version of Alpine is the
same.

If, like many people, you have come to containers through the use of Docker, you’ll be
used to the idea of building images based on the instructions in a Dockerfile. Some
Dockerfile commands (like FROM, ADD, COPY, or RUN) modify the contents of the root
filesystem that’s included in the image. Other commands, like USER, PORT, or ENV,
affect the configuration information that’s stored in the image alongside the root file‐
system. You can see this config information by running docker inspect on an
image. This config information gives Docker instructions on runtime parameters that
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should be set up by default when running the image. For example, if an environment
variable is specified using an ENV command in the Dockerfile, this environment vari‐
able will be defined for the container process when it runs.

Overriding Config at Runtime
In Docker, the config information can be overridden at runtime using command-line
parameters. For example, if you want to change an environment variable or set a new
one, you can do this with docker run -e <VARNAME>=<NEWVALUE> .... Similarly, to
override the user ID configured in the image, you can set the --user parameter:

$ docker run --rm -it alpine whoami
root
$ docker run --rm -it --user 405 alpine whoami
guest

In Kubernetes, you can set container configuration in a pod’s YAML definition:

apiVersion: v1
kind: Pod
metadata:
  name: demo
spec:
  containers:
  - name: demo-container
    image: demo-reg.io/some-org/demo-image:1.0
    env:
    - name: DEMO_ENV
      value: "This overrides the value"
  securityContext:
    runAsUser: 1000

The (imaginary) image demo-image:1.0 was built from a Dockerfile, which might
have included the line ENV DEMO_ENV="The original value". This YAML overrides
the value for DEMO_ENV, and if the container were to log the value of this variable, you
would see This overrides the value.

This example YAML also overrides the user ID through the securityContext.run
AsUser setting for the pod. If there were multiple containers in this pod, this setting
would apply to all of them. The Kubernetes documentation describes many other set‐
tings that you can configure for the container(s) running within a pod.

If the container runtime in your Kubernetes deployment is an OCI-compliant tool
like containerd/runc, the values from the YAML definition end up in an OCI-
compliant config.json file. Let’s find out more about these OCI standard container
files and tools.
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OCI Standards
The Open Container Initiative (OCI) was formed to define standards around con‐
tainer images and runtime, taking its lead from a lot of the work that had originally
been done in Docker—in particular, a goal of the OCI was for the standards to sup‐
port the same user experience that Docker users had come to expect, like the ability
to run an image with a default set of configuration settings. The OCI Image Format
Spec 1.0 was finalized in 2017, followed by the Distribution Spec 1.0 in 2021, which
defined how images are pushed and pulled. This spec is now widely implemented
across registries and registry projects, including Harbor, Docker Hub, AWS ECR, and
GitHub Container Registry.

The OCI Distribution Spec allows for arbitrary content, not just con‐
tainer images, to be stored in a registry. As a result, registries are being
used to hold other types of container-adjacent artifacts, including
Helm charts, Open Policy Agent policies, Software Bill of Materials
and attestations (which we’ll discuss in Chapter 7), and more.

Skopeo is useful for manipulating and inspecting OCI images. It can generate an
OCI-format image from a Docker image:

$ skopeo copy docker://alpine:latest oci:alpine:latest
$ ls alpine
blobs  index.json  oci-layout

You’ll see similar output generated with Docker tooling later in this
chapter.

The index.json file contains the manifest for the image, including the unique digest
that identifies it:

cat alpine/index.json | jq
{
  "schemaVersion": 2,
  "manifests": [
    {
      "mediaType": "application/vnd.oci.image.manifest.v1+json",
      "digest": "sha256:08001109a7d679fe33b04fa51d681bd40b975d8f5cea8c3e...",
      "size": 1022,
      "annotations": {
        "org.opencontainers.image.ref.name": "latest"
      }
    }
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  ]
}

This digest matches one of the blobs in the OCI-format image:

$ ls alpine/blobs/sha256/
08001109a7d679fe33b04fa51d681bd40b975d8f5cea8c3ef6c0eccb6a7338ce
cea2ff433c610f5363017404ce989632e12b953114fefc6f597a58e813c15d61
fe07684b16b82247c3539ed86a65ff37a76138ec25d380bd80c869a1a4c73236

These blobs represent the layers of the image that we’ll come to shortly in this chap‐
ter. But an OCI-compliant runtime like runc doesn’t work directly with the image in
this format. Instead, it first has to be unpacked into a runtime filesystem bundle. Let’s
look at an example, using umoci to unpack the image:

$ sudo umoci unpack --image alpine:latest alpine-bundle
$ ls alpine-bundle
config.json
rootfs
sha256_08001109a7d679fe33b04fa51d681bd40b975d8f5cea8c3ef6c0eccb6a7338ce.mtree
umoci.json
$ ls alpine-bundle/rootfs
bin  etc   lib    mnt  proc  run   srv  tmp  var
dev  home  media  opt  root  sbin  sys  usr

As you can see, this bundle includes a rootfs directory with the contents of an
Alpine Linux distribution. There is also a config.json file that defines the runtime set‐
tings. The runtime instantiates a container using this root filesystem and settings.

I ran the umoci command under sudo, but since it has rootless sup‐
port, you could choose to run umoci as an unprivileged user by
specifying the --rootless option.

When you’re using Docker, you don’t get direct access to the config information in
the form of a file you can inspect with cat or your favorite text editor, but you can see
that it’s there by using the docker image inspect command.

Image Configuration
Now that you know from Chapters 3 and 4 how containers are created, it’s worth tak‐
ing a look at one of these config.json files, because a lot of it should look familiar.
Here’s are some extracts from the configuration file for the Alpine image I just
unpacked, as an example:

"root": {
                "path": "rootfs"
        },
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        "hostname": "umoci-default",
        "mounts": [
                {
                        "destination": "/proc",
                        "type": "proc",
                        "source": "proc"
                },
...
                {
                        "destination": "/sys/fs/cgroup",
                        "type": "cgroup",
                        "source": "cgroup",
                        "options": [
                                "nosuid",
                                "noexec",
                                "nodev",
                                "relatime",
                                "ro"
                        ]
                }
        ],
...

        "namespaces": [
            {
                "type": "pid"
            },
            {
                "type": "network"
            },
            {
                "type": "ipc"
            },
            {
                "type": "uts"
            },
            {
                "type": "mount"
            }
        ]
    }

The configuration information includes a definition of everything runc should do to
create the container. As you can see from these extracts, this includes a list of file
mounts such as those needed for /proc and for cgroups, and the namespaces the run‐
time should create for this container.

You have seen how an image consists of two parts: the root filesystem and some con‐
figuration information. Now let’s consider how an image gets built.
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Building Images
Most people’s experience of building container images is to use the docker build
command. This command follows the instructions from a file called a Dockerfile to
create an image.

Historically, running docker build was a relatively simple and monolithic operation
that created a container image suitable for the architecture of the machine where the
build is run. More recently, Docker introduced BuildKit from the Moby project. (As
you may know, Docker renamed its open source Docker engine code to “Moby” in an
attempt to avoid the inevitable confusion when the project and company names were
the same.) BuildKit offers more advanced capabilities, including a rootless mode, the
ability to produce an image for multiple platforms, the ability to push the image to
multiple registries, and more, and is the default builder from Docker v23 onward.

The Dangers of Docker Build
When you run a docker command, in the classic Docker architecture, the command-
line tool you invoked (docker) does very little by itself. Instead, it converts your com‐
mand into an API request that it sends to the Docker daemon via a socket referred to
as the Docker socket. Any process that has access to the Docker socket can send API
requests to the daemon.

The Docker daemon is a long-running process that actually does the work of running
and managing both containers and container images. As you saw in Chapter 4, to cre‐
ate a container, the daemon needs to be able to create namespaces, so it needs to be
running as root. You can easily check this using ps:

$ ps -fC dockerd
UID          PID    PPID  C STIME TTY          TIME CMD
root       22240       1  0 Jun04 ?        00:01:58 /usr/bin/dockerd ...

A user can get the daemon to run arbitrary commands by specifying them in a RUN
command in a Dockerfile. Since the daemon is running as root, any user who can run
a build may as well have root privileges on that machine.

Imagine that you want to dedicate a machine (or virtual machine) to build container
images and store them in a registry. Using the standard Docker approach, your
machine has to run the daemon, which has a lot more capabilities beyond building
and interacting with registries. Without additional precautions, any user who can
trigger a docker build on this machine can also perform a docker run to execute
any command they like on the machine.
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Not only can they run any command they like, but also, if they use this privilege to
perform a malicious action, it will be hard to track down who was responsible. You
may keep an audit log of actions that users take, but—as illustrated nicely in a post by
Dan Walsh—the audit will record the daemon process’s ID rather than that of the
user.

To avoid these security risks, there are several alternative approaches for building
container images without relying on the Docker daemon:

• The BuildKit docker-container driver allows running builds within a container,
isolated from the host it’s running on.

• Docker now supports a rootless mode, where the daemon buildkitd runs as a
non-root user. This mode is generally available, but at the time of writing, it
requires you to opt in.

• Other nonprivileged builds include Red Hat’s podman and buildah. A blog post from
Puja Abbassi describes these tools and compares them to (pre-BuildKit) docker
build.

• Google’s Bazel can build many other types of artifact, not just container images. It
prides itself on generating images deterministically so that you can reproduce the
same image from the same source.

• Another tool with a focus on reproducible builds is Nix, albeit one that is
renowned for having a steep learning curve.

• If you’re building simple Go applications into containers, you might want to try ko,
and for Java applications, there is jib.

GitLab has some guidance and examples for running rootless
builds.

Whichever tool you use, you might run it manually from the command line, but for
production builds, you will likely automate them as part of a continuous integration/
continuous deployment (CI/CD) pipeline.
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Image Layers
Regardless of which tool you use, the vast majority of container image builds are
defined through a Dockerfile. The Dockerfile gives a series of instructions, each of
which results in either a filesystem layer or a change to the image configuration. This
is described well in the Docker documentation, but if you want to dig into the details,
you might enjoy the blog post I wrote about re-creating the Dockerfile from an
image.

Sensitive data in layers
Anyone who has access to a container image can access any file included in that
image. From a security perspective, you want to avoid including sensitive informa‐
tion such as passwords or tokens in an image. (I’ll cover how you should handle this
information in Chapter 14.)

The fact that every layer is stored separately means that you have to be careful not to
store sensitive data, even if a subsequent layer removes it. Here’s a Dockerfile that
illustrates what not to do:

FROM alpine
RUN echo "top-secret" > /password.txt
RUN rm /password.txt

One layer creates a file, and then the next layer removes it. If you build this image and
then run it, you won’t find any sign of the password.txt file:

$ docker run --rm -it sensitive ls /password.txt
ls: /password.txt: No such file or directory

But don’t let this fool you—the sensitive data is still included in the image. You can
prove this by exporting the image to a tar file using the docker save command and
then unpacking the tar:

$ docker save sensitive > sensitive.tar
$ mkdir sensitive
$ cd sensitive
$ tar -xf ../sensitive.tar
$ ls
blobs  index.json  manifest.json  oci-layout  repositories

I’m using Docker version v28.3.2, which outputs both standard
OCI format metadata and (for compatibility with older tooling)
metadata in legacy Docker format. In the future, or with other
tools, you will likely only see the OCI format information. We can
use the OCI-format information and simply ignore the legacy data
from the index.json and repositories files.
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This should look familiar from earlier in the chapter:

oci_layout

Specifies the OCI specification version for this image.

manifest.json

The top-level file describing the image; it tells you which file represents the con‐
figuration for the image, describes any tags for this image, and lists each of the
layers.

blobs

A directory holding the data files that make up the image.

Inside the manifest.json file, you’ll find the location of the configuration informa‐
tion, a list of tags for the image, and a list of layer files that make up the root file sys‐
tem for the image:

...
      "Config": "blobs/sha256/258d7...7f1a8",
        "RepoTags": [
            "sensitive:latest"
        ],
       "Layers": [
           "blobs/sha256/1231a...a69f1",
           "blobs/sha256/9e745...67031",
           "blobs/sha256/82316...4bd6e"
       ],
...

The config file includes the history of the commands that were run to construct this
container. As you can see, in this case, the sensitive data "top-secret" is revealed in
the step that runs the echo command:

$ cat blobs/sha256/258d* | jq '.history'
[
  {
    "created": "2025-05-30T16:20:41Z",
    "created_by": "ADD alpine-minirootfs-3.22.0-aarch64.tar.gz / # buildkit",
    "comment": "buildkit.dockerfile.v0"
  },
  {
    "created": "2025-05-30T16:20:41Z",
    "created_by": "CMD [\"/bin/sh\"]",
    "comment": "buildkit.dockerfile.v0",
    "empty_layer": true
  },
  {
    "created": "2025-07-26T05:02:59.245427668-05:00",
    "created_by": "RUN /bin/sh -c echo \"top-secret\" > /password.txt # buildkit",
    "comment": "buildkit.dockerfile.v0"
  },
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  {
    "created": "2025-07-26T05:02:59.348379231-05:00",
    "created_by": "RUN /bin/sh -c rm /password.txt # buildkit",
    "comment": "buildkit.dockerfile.v0"
  }
]

Inside each layer’s directory, there is another tar file holding the contents of the file‐
system at that layer. It’s easy to reveal the password.txt file from the appropriate
layer:

$ cd blobs/sha256
$ tar -xvf 9e7*
etc/
password.txt
$ cat password.txt
top-secret

As this shows, even if a subsequent layer deletes a file, any file that ever existed in any
layer can easily be obtained by unpacking the image. Don’t include anything in any
layer that you’re not prepared to show anyone who has access to the image.

In Chapter 8 we will discuss scanning container images for vulnerabilities, and some
of these scanning tools can also check for secrets inadvertently included in image lay‐
ers. If you do detect one of your secrets in an image, you should not only correct the
build so that future image versions don’t include it but also rotate the secret so that it’s
of no use to anyone who has access to older image versions.

Sometimes it is necessary to use a secret during the build process, so let’s see how this
can be done safely, without leaving the secret in the image.

BuildKit secret mounts
BuildKit provides an alternative approach that allows passing sensitive data at build
time that never gets written into the image layers. You can specify an identifier for the
secret along with a file containing the sensitive information, like this:

$ docker build --secret id=<id>,src=secret.txt .

The secret can be made available to the build, as a file mounted at the location /run/
secret/<id>. The Dockerfile refers to this secret where it’s needed, like this:

RUN --mount=type=secret,id=<id> <command that needs the secret>

The secret is temporarily mounted for the individual build step where it’s needed and
only ever lives in memory.

As an example, suppose you need a bearer token to access an API that you need to
call during the build. Your Dockerfile would contain a command, like this:
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RUN --mount=type=secret,id=API_TOKEN \
    sh -c 'curl -H “Authorization: Bearer $(cat /run/secrets/API_TOKEN)”  
    https://api.your-domain.com/data’

You could then store the token temporarily in a file and access it during the build like
this:

$ echo <secret token> > token.txt
$ docker build --secret id=API,TOKEN,src=token.txt -t myimage:v1.0.0 .

You wouldn’t want to leave that token.txt file lying around on the build machine
containing the secret token, of course, so you would delete it, safe in the knowledge
that it hasn’t been stored in any of the layers of myimage:v1.0.0.

This sounds great, but unfortunately, it’s all too easy to lose the benefit of BuildKit’s
secret mount by running a command that persists the secret value into the image! Avoid
patterns like this, which write the secret to a file:

RUN --mount=type=secret,id=my-secret cat /run/secret/my-secret > out.txt

This command creates a file out.txt containing the sensitive information. And that
file is going to exist in the image that gets built.

There is more information about mounting secrets, including the
option to pass secret values into the build from environment vari‐
ables, or passing SSH mounts, in the Docker documentation.

Secret mounts are just one of the capabilities that BuildKit adds over the original
Docker build approach. Another very useful feature is the ability to create images for
multiple chip architectures.

Multiplatform Images
Container images can be built to support multiple CPU architectures, including the
common options amd64 typically used for Intel-based chips, and arm64 for ARM-
based machines. A multiplatform image contains a manifest list that references
architecture-specific machines. You can use Docker to inspect a multiplatform image,
like this:

$ docker manifest inspect alpine
{
   "schemaVersion": 2,
   "mediaType": "application/vnd.oci.image.index.v1+json",
   "manifests": [
      {
         "mediaType": "application/vnd.oci.image.manifest.v1+json",
         "size": 1022,
         "digest": "sha256:08001109a7d679fe33b04fa51d681bd40b975d8f5ce...",
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         "platform": {
            "architecture": "amd64",
            "os": "linux"
         }
      },
...
      {
        "mediaType": "application/vnd.oci.image.manifest.v1+json",
         "size": 1025,
         "digest": "sha256:008448246686fe28544e36ba89e7bc7fbe6dad8a2cc...",
         "platform": {
            "architecture": "arm64",
            "os": "linux",
            "variant": "v8"
         }
      },
...

The manifest includes a digest identifying the image for each supported platform.
When pulling an image, the container runtime retrieves the image that matches the
platform it’s running on.

The contents of these per-platform images are independent of each other. If your
organization is running images on a mix of different platforms, you’ll need to make
sure that the images are scanned for vulnerabilities and insecure configurations for all
the different platforms, because there’s no guarantee that the content will be the same.
We’ll discuss image scanning in Chapter 8.

Earlier in this chapter you saw what’s inside an OCI-compliant container image, and
you now know what is happening when these images are built from a Dockerfile.
Now let’s consider how images are stored.

Storing Images
Container images are stored in container registries. If you use Docker, you’ve proba‐
bly used the Docker Hub registry, and if you’re working with containers using the
services of a cloud provider, it’s likely you’re familiar with one of the cloud provider’s
registries—AWS Elastic Container Registry, for example, or Google Container Regis‐
try. There are also commercially available registries and open source solutions such as
Harbor.

Running Your Own Registry
Many organizations maintain their own registries or use managed registries from
their cloud provider and require that only images from those permitted registries can
be used. Running your own registry (or your own instance of a managed registry)
gives you more control and visibility over who can push and pull images. It also
reduces the possibility of a DNS attack that allows an attacker to spoof the registry
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address. If the registry lives within a VPC, it is highly unlikely that an attacker can do
this. Most managed registries (such as AWS ECR, Microsoft ACR, and Google GCR)
support private VPC endpoints.

Care should be taken to restrict direct access to the registry’s storage media. For
example, a registry running in AWS might use S3 to store images, and the S3
bucket(s) should have restrictive permissions so that a bad actor can’t directly access
stored image data.

Pushing and Pulling
Storing an image in a registry is generally referred to as a push, and retrieving it is a
pull.

Each layer is stored separately as a blob of data in the registry, identified by a hash of
its contents. To save storage space, a given blob needs to be stored only once,
although it may be referenced by many images. The registry also stores an image
manifest that identifies the set of image layer blobs that make up the image. Taking a
hash of the image manifest gives a unique identifier for the entire image, which is
referred to as the image digest. If you rebuild the image and anything about it
changes, this hash will also change.

If you’re using Docker, you can easily see the digests for images held locally on your
machine by using the following command:

$ docker image ls --digests
REPOSITORY   TAG      DIGEST              IMAGE ID       CREATED      SIZE
nginx        latest   sha256:50cf...8566  231d40e811cd   2 weeks ago  126MB

When you push or pull an image, you can use this digest to precisely reference this
particular build, but this isn’t the only way you can refer to an image. Let’s review the
different ways of identifying container images.

Identifying Images
The first part of an image reference is the URL of the registry where it is stored. (If
the registry address is omitted, this implies either a locally stored image or an image
stored on Docker Hub, depending on the command context.)

The next part of an image reference is the name of the user or organization account
that owns this image. This is followed by an image name and then either the digest
that identifies its contents or a human-readable tag.

Putting this together gives us an address that looks like one of these options:

<Registry URL>/<Organization or user name>/<repository>@sha256:<digest>
<Registry URL>/<Organization or user name>/<repository>:<tag>
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If the registry URL is omitted, it defaults to Docker Hub’s address, docker.io.
Figure 6-1 shows an example version of an image as it appears on Docker Hub.

You could pull this image with either of the following commands (edited for brevity):

$ docker pull aquasec/trivy:0.66.0
$ docker pull aquasec/trivy@sha256:08697...dfb1e

Referring to an image by digest is unwieldy for humans to deal with, resulting in the
commonplace use of tags, which are just arbitrary labels applied to the image. A sin‐
gle image can be given any number of tags, and the same tag can be moved from one
image to another. Tags are often used to indicate the version of software contained in
the image—as in the example just shown, which is version 0.66.0.

Figure 6-1. Example image on Docker Hub

Because tags can be moved from image to image, there is no guarantee that specifying
an image by tag today will give you the same result as it does tomorrow. In contrast,
using the digest will give you the identical image, because it is a hash derived from the
contents of the image. Any change to the image results in a different hash.

This effect may be exactly what you intend. For example, you might refer to an image
using a tag that refers to the major and minor version numbers in a semantic version‐
ing schema. If a new patched version is released, you rely on the image maintainers to
retag the patched image with the same major and minor version numbers so that you
get the up-to-date patched version when you next pull the image.

However, there are occasions when the unique reference to an image is important.
For example, consider the scanning of images for vulnerabilities (which is covered in
Chapter 8). You might have an admission controller that checks that images can be
deployed only if they have been through the vulnerability scanning step, and this will
need to check records of the images that have been scanned. If these records refer to
the images by tag, the information is unreliable, as there’s no way of knowing whether
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the image has changed and needs to be rescanned. Referencing images by digest is
common practice in automated deployments and is generally considered a good idea
in production.

Some registries allow you to set tags to be immutable, which prevents pushing a new
hash to an existing tag in the registry. This prevents “tag confusion” but also means
that you can’t reuse the tag for a major version number when using semantic
versioning.

Summary
In this chapter, you have seen how images are built and stored. You have learned
enough about the format of images to understand how they might inadvertently con‐
tain sensitive data, and you have seen how to avoid including sensitive data in images
by using secure methods to pass in secrets required during the build process. You
have also seen options for referring to images by tag and by digest.

When you pull an image from a registry, you want confidence that it contains the
code you expect and doesn’t hold anything malicious. Coming up in Chapter 7, we
will discuss concerns related to the security and provenance of an image and its con‐
tents, commonly known as supply chain security.
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CHAPTER 7

Supply Chain Security

Anyone deploying container images needs to have confidence that the software
within each image is safe to run and has not been tampered with at any point. In this
chapter, let’s look at how you can securely build and distribute container images along
with information that reassures the user about its integrity and provenance.

Supply chain security is concerned with making sure that the software you deploy
and run is what you expect it to be, having been built from source code that you trust,
by a build system that you trust. There are various potential weak points in the chain,
from building and storing an image to running the image, as shown in Figure 7-1.

Figure 7-1. Image attack vectors
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Container Image Software Components
Container images can contain lots of different software components:

• As you saw in Chapter 4, a container image includes a filesystem, often based on
a Linux distribution, containing all the files and directories included in that
distribution.

• Distributions typically support a package manager like apt or yum, and the con‐
tainer image might have some of these packages installed into it—ideally (but not
necessarily) only the dependencies that are needed by the application.

• Depending on the language used, the application itself might be a compiled
binary, or it might be a series of interpreted scripts.

• There might well be some language-specific libraries needed—for example, Rust
crates, Ruby gems, or Node or Python packages.

• There might be other files—for example, for configuration or data—compiled
into the image.

Any of these software components might contain vulnerable code that an attacker can
exploit.

Distributions, packages, libraries, and application source code evolve over time.
Newer versions of any software might contain fixes for vulnerabilities; they could also
introduce new, unknown vulnerabilities.

These different components are, generally speaking, written by different developers
and are obtained from different sources. For example, the Linux distribution might
come from an organization like Alpine or a company like Red Hat. If you pull a base
image representing, say, a distribution of Red Hat Enterprise Linux, you want to be
sure that it really came from Red Hat and not from a malicious imposter. Similarly,
you want confidence that the packages and libraries included in an image come from
legitimate providers.

You also need appropriate access controls on your source code repositories to ensure
that unauthorized users can’t tamper with it or modify what gets built into container
images.

Your company or organization might run container images that it builds itself, per‐
haps for your own business-specific applications. It probably also uses container
images built by a vendor or other third party, for common infrastructure components
or tools. You might be responsible for building container images that are distributed
and used by other organizations and want to give those consumers confidence that
your images are safe to use.
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Knowing (or working out) what components are included, and what versions of each
component, is essential for flagging any known vulnerabilities in a container image.
We’ll consider how this works in more detail in Chapter 8, but for this chapter, we’re
concerned with ensuring that every component in the container’s creation and deliv‐
ery path can be verified and traced.

SLSA
Supply Chain Levels for Software Artifacts (SLSA) is a framework from the Open
Source Security Foundation (OpenSSF) that defines desirable characteristics for
securing a software supply chain. SLSA defines levels from 1 to 3, which represent
increasing confidence in the integrity, traceability, and provenance of software arti‐
facts—including container images. The SLSA recommendations include:

• Reproducible builds
• Isolated build environments
• An auditable trail defining how software was built and from what dependencies

The information about what components went into a software artifact is known as a
Software Bill of Materials, commonly referred to as an SBOM. This tells us what com‐
ponents went into a build; SLSA additionally defines provenance information, which
describes how the artifact was built and by whom.

To quote from the SLSA website, “a build configuration file (i.e., GitHub workflow)
qualifies for SLSA 1. It would be considered unsigned, unformatted provenance.” In
contrast, the website states that “To achieve SLSA 3, you must:

• Run your build on a hosted platform that generates and signs provenance
• Ensure that build runs cannot influence each other
• Produce signed provenance that can be verified as authentic”

The SBOM and provenance information are created as part of the process that builds
the container image. Consumers of the image will want to verify that information
when they deploy it. This verification step is also specified in the SLSA framework.
Let’s consider what risks are avoided by having and verifying an SBOM.

Software Bill of Materials
An SBOM provides a machine-readable inventory of all these different components
that go into a container image, including information about the versions used. As
you’ll see in Chapter 8, the SBOM allows automating the process of identifying which
images need updating when a new vulnerability is discovered. The SBOM also holds
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1 Joseph Spracklen et al., “We Have a Package for You! A Comprehensive Analysis of Package Hallucinations by
Code Generating LLMs,” arXiv, March 2, 2025, https://arxiv.org/abs/2406.10279.

2 See “Python,” XKCD, accessed August 8, 2025, https://xkcd.com/353.

license information about the software components, which can be helpful to meet
compliance requirements.

The SBOM can play a critical role in combating vulnerabilities related to dependency
confusion and package hallucination.

Dependency Confusion
Dependency confusion can arise by using an unexpected version of a dependency,
because it wasn’t specified correctly, or by pulling it from the wrong location (the
wrong registry, package manager, or cache location). This can be avoided by explicitly
specifying the version and location of the dependency.

Package Hallucination
Dependency confusion has become a much bigger problem with the advent of AI-
generated code. A 2025 study1 showed that code created by large language models
(LLMs) has a tendency to hallucinate the names of imported packages, often follow‐
ing predictable naming patterns. It’s clearly a problem if generated code doesn’t work
because it tries to import a package that doesn’t exist. It’s arguably a bigger problem if
a malicious actor populates those missing packages that are commonly hallucinated
so that the generated code seems to be working but has incorporated exploit-ridden
dependencies.

In container builds, we have to cope with language-specific dependencies referred to
by source code that developers write, and container image dependencies specified in
Dockerfiles.

Language-Specific SBOMs
Source code is often quite nonspecific about the exact versions of dependencies that it
incorporates (for example, import antigravity in Python2 doesn’t mention a ver‐
sion number). Approaches like lock files, Go’s go.sum files, and Python’s require‐
ments.txt are all language-specific approaches to using the right versions, but they are
optional. As you saw in Chapter 6, container image tags only very loosely indicate a
version. During the build process, all these loose specifications are resolved to some
specific versions that get used in the construction of the image.
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The ideal SBOM records precisely what versions are resolved during the build pro‐
cess. This can be done using reproducible build tools like Bazel or the OWASP
CycloneDX ecosystem, which has language-specific “plug-ins.” For example, in a Java
project build, you might run the following command during the build:

mvn org.cyclonedx:cyclonedx-maven-plugin:makeAggregateBom

Or in Go:

cyclonedx-gomod mod -licenses -json -output sbom.json

These generate SBOMs including all the resolved dependencies, based on the project’s
pom.xml file or go.mod file, respectively. CycloneDX plug-ins exist for many other
languages too.

If the SBOM isn’t generated at build time, it’s possible to generate one using tools that
inspect the image and reverse-engineer its contents, but this will likely be less com‐
plete and accurate, particularly when it comes to language-specific packages. Creating
an SBOM is essentially the same problem that vulnerability scanners such as trivy
and syft tackle—in fact, both these scanning tools can generate SBOMs as well as
vulnerability reports. The best practice is to pair language-specific SBOMs with
container-level SBOMs for a complete picture. We’ll discuss vulnerabilities and image
scanning in more detail in Chapter 8, and you’ll read about creating a container-level
SBOM later in this chapter.

The OpenSSF has a Working Group on securing software reposito‐
ries, focusing on recommendations and best practices that can be
shared among different package manager communities, aiming to
better enable signing and provenance information for open source
software.

Minimal Base Images
The first line of a Dockerfile has a FROM command that specifies the base image on
which the rest of the image will be built. As you saw in Chapter 6, the image includes
a filesystem, and the base image includes that starting point for that filesystem, which
will appear in the first layer of the image.

The smaller the base image, the less likely that it includes unnecessary code, and the
smaller the attack surface. Smaller images also have the benefit of being quicker to
send over the network. There are a few different approaches for minimizing the base
image:
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• If you can, consider building from scratch—a completely empty image suitable
for standalone binaries. You can use multistage builds to help you achieve this, by
using a “full” base image for the initial stage(s) that perform the compilation, and
then copying the resulting binary or binaries into a scratch base image in the
final stage. (Multistage builds are further discussed later in this chapter.)

• Use a minimal base image such as Google’s distroless or hardened images from sup‐
pliers such as Chainguard or Docker. Amazon provides a minimal container image
for its Amazon Linux distribution, Microsoft supplies minimal Azure Linux images,
and there is a project from Canonical called chisel for minimizing the set of packages
installed into an Ubuntu image.

• The Slim Toolkit can analyze an image to identify redundant components that
can be eliminated.

Dependencies and base images aren’t the only route for introducing vulnerabilities.
Application developers can affect security through the code they write themselves.
Static and dynamic security analysis tools, peer review, security assessments, and pen‐
etration testing can all help to identify insecurities added during development. This
all applies for containerized applications just as it does without containers, and SLSA
recommendations can apply to any software, not just containerized code. But since
this book is concerned with containers, let’s focus on that, starting with the
Dockerfile.

Dockerfile Security
The build step takes a Dockerfile and converts it into a container image. Within that
step, there are a number of potential security risks.

Provenance of the Dockerfile
The instructions for building an image come from a Dockerfile. Each stage of the
build involves running one of these instructions, and if a bad actor is able to modify
the Dockerfile, it’s possible for them to take malicious actions, including:

• Adding malware or cryptomining software into the image
• Accessing build secrets
• Enumerating the network topology accessible from the build infrastructure
• Attacking the build host
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It may seem obvious, but the Dockerfile (like any source code) needs appropriate
access controls to protect against attackers adding malicious steps into the build.

The contents of the Dockerfile also have a huge bearing on the security of the image
that the build produces. Let’s turn to some practical steps you can take in the
Dockerfile to improve image security.

Dockerfile Best Practices for Security
These recommendations all improve the security of the image and reduce the chances
that an attacker can compromise containers running from this image:

Base image
The first line of the Dockerfile is a FROM instruction indicating a base image that
the new image is built from. Here are some considerations to take into account
when choosing the base image:

• Refer to an image from a trusted registry (see “Storing Images” on page 80).
• Minimize the contents of the base image, as discussed in “Minimal Base

Images” on page 89.
• Arbitrary third-party base images might include malicious code, so some

organizations mandate the use of preapproved or “golden” base images.
As you saw in Chapter 6, you can reference image versions using tags or digests,
and you should be thoughtful about using a tag or a digest to reference the base
image. The build will be more reproducible if you use a digest, but it might mean
you are less likely to pick up new versions of a base image that might include
security updates. (That said, you should pick up missing updates through a vul‐
nerability scan of your complete image.) Avoid dependency confusion by explic‐
itly identifying the registry from which the base image should be obtained.

Use multistage builds
The multistage build is a way of eliminating unnecessary contents in the final
image. An initial stage can include all the packages and toolchain required to
build an image, but a lot of these tools are not needed at runtime. As an example,
if you write an executable in Go, it needs the Go compiler to create an executable
program. The container that runs the program doesn’t need to have access to the
Go compiler. In this example, it would be a good idea to break the build into a
multistage build: one stage does the compilation and creates a binary executable
—this stage needs to run in an image that includes the compiler. The next stage
copies the standalone executable into a smaller base image—perhaps even the
Scratch image, which is an empty file system. The image that gets deployed has a
much smaller attack surface, with a lower likelihood of vulnerabilities; a nonse‐
curity benefit is that the image itself will also be smaller, so the time to pull the
image is reduced.
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Capital One has several multistage build examples for node appli‐
cations on its blog, showing how you can even run tests as different
steps within a multistage build without impacting the contents of
the final image.

Non-root USER
The USER instruction in a Dockerfile specifies that the default user identity for
running containers based on this image isn’t root. In Chapter 11 I’ll cover some
very good reasons why you should avoid running as root and should specify a
non-root user in all your Dockerfiles wherever possible.

RUN commands
Let’s be absolutely clear: a Dockerfile RUN command lets you run any arbitrary
command. If an attacker can compromise the Dockerfile with the default security
settings, that attacker can run any code of their choosing. If you have any reason
not to trust people who can run arbitrary container builds on your system, I can’t
think of a better way of saying this: you have given them privileges for remote
code execution. Make sure that privileges to edit Dockerfiles are limited to trus‐
ted members of your team, and pay close attention to code reviewing these
changes. You might even want to institute a check or an audit log when any new
or modified RUN commands are introduced in your Dockerfiles.

Volume mounts
We often mount host directories into a container through volume mounts. As
you will see in Chapter 11, it’s important to check that Dockerfiles don’t mount
sensitive directories like /etc or /bin into a container.

Don’t include sensitive data in the Dockerfile
In Chapter 6, you saw some mechanisms for safely passing secrets during the
build process, and we’ll discuss sensitive data and secrets for runtime in more
detail in Chapter 14. Please understand that including credentials, passwords, or
other secret data in an image makes it easier for those secrets to be exposed.

Avoid setuid binaries
As discussed in Chapter 2, it’s a good idea to avoid including executable files with
the setuid bit, as these could potentially lead to privilege escalation.

Avoid unnecessary code
The smaller the amount of code in a container, the smaller the attack surface.
Avoid adding packages, libraries, and executables into an image unless they are
absolutely necessary. For the same reason, if you can base your image on the
scratch image or one of the distroless options, you’re likely to have dramatically
less code—and hence less vulnerable code—in your image.
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Include everything that your container needs
If the previous point exhorted you to exclude superfluous code from a build, this
point is a corollary: do include everything that your application needs to operate.
If you allow for the possibility of a container installing additional packages at
runtime, how will you check that those packages are legitimate? It’s far better to
do all the installation and validation when the container image is built and create
an immutable image. See “Immutable Containers” on page 111 for more on why
this is a good idea.

Avoid dependency confusion
Here are some routes to consider for avoiding dependency confusion in your
Dockerfiles:

• As mentioned already, the base image is specified in the Dockerfile’s FROM
command. Identify the version you want to use, preferably by hash, but at
least by version tag rather than relying on latest. Specify the registry explic‐
itly, too, to make sure that the system doesn’t fall back to an unexpected
default location.

• Only use base images from sources that you trust. Many organizations insist
that they should be pulled from a private registry to ensure everyone is using
an approved version. The images might originate from a public registry and
are scanned and stored in the private registry if the organization’s security
team considers it safe to use. Another option is to build base images from
source.

• Make sure package managers are pulling from the correct registries—for
example, using --index-url on RUN pip install commands—or using
set @my-org:registry on RUN npm config.

• Consider pinning package dependency versions precisely, specifying versions
in commands like RUN apt-get install.

• Avoid letting the build automatically or implicitly upgrade dependencies. For
example, use --require-hashes on RUN pip install.

• Ideally, all the packages you need should be installed explicitly—for example,
using the --no-install-recommends flag on RUN apt-get install.

Specifying all dependency versions explicitly ensures you’re using a precisely defined
set of dependencies, avoiding dependency confusion, but there are some trade-offs.
Unless you keep the versions updated, you might be missing important security
updates that would be picked up automatically if you were to specify the versions
more loosely. On the other hand, if you specify versions too loosely, you could easily
find “breaking changes” in new versions of packages that are no longer compatible
with your code. Vulnerability scanning can be used to spot when your image needs an
important security update, and testing should spot when you encounter a breaking
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change, but neither of these is 100% perfect. Finding the right balance between auto‐
matic updates and explicitly defined dependencies is a careful balance.

Following these recommendations will help you build images that are harder to
exploit. Now let’s turn to the risk that an attacker will attempt to find weaknesses in
your container build system.

Attacks on the Build Machine
The machine that builds the image is a concern for two main reasons:

• If an attacker can breach the build machine and run code on it, can they reach
other parts of your system? As you saw in “The Dangers of Docker Build” on
page 74, there are reasons to explore using a build tool that doesn’t require a priv‐
ileged daemon process. Use rootless/unprivileged builders if possible.

• Can an attacker influence the outcome of a build so that you end up building,
and ultimately running, malicious images? Any unauthorized access that inter‐
feres with a Dockerfile’s instructions or that triggers unexpected builds can have
disastrous consequences. For example, if an attacker can influence the code that’s
built, they could insert a backdoor into containers that run on your production
deployment.

Given that your build machines create the code that you will ultimately run in your
production cluster, it’s critical to harden them against attack as if they were as impor‐
tant as the production cluster itself. It is a good idea to run builds on a separate
machine or cluster of machines from the production environment to limit the blast
radius of a build attack. It would be even better, if possible, to use ephemeral infra‐
structure, spinning up fresh virtual machines for each build: it’s harder for an attacker
to establish a foothold in the build process if there is no opportunity for (potentially
malicious) files to “hang around” from one build to the next.

Many build services and CI/CD platforms like GitHub Actions,
GitLab CI/CD, and Bitbucket Pipelines support the concept of run‐
ners—temporary virtual machines that are brought up specifically
to run a build job. GitHub offers runners hosted on Microsoft
Azure, or you can provide your own infrastructure in a public or
private cloud. The job might run directly on the runner or within a
container on that runner.
Philipp Garbe wrote a post about different options for configuring
GitHub Actions with self-hosted runners on AWS CodeBuild.
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Unprivileged builders protect against the likelihood of being able to run code on the
host, and for defense in depth, you should limit network and cloud service access
from build machines to prevent an attacker from accessing other elements of your
deployment.

Reduce the attack surface by eliminating unnecessary tools from build machines.
Restrict direct user access to these machines, and protect them from unauthorized
network access using VPCs and firewalls.

Generating an SBOM
As discussed previously, it’s good practice to create an SBOM to enumerate the con‐
tents of an image. Ideally you’ll have a language-specific SBOM for your application
code, but you’ll also want to record information about the base image and installed
OS packages.

Ideally, the SBOM should be generated at build time, for example, with docker build
--sbom=true. You can also generate an SBOM for an existing image, and there are several
tools commonly used for this, including syft and trivy. SBOM information is often
generated in common formats SPDX or CycloneDX. To generate an SBOM in SPDX for‐
mat for the latest nginx image, I can run this command:

$ trivy image --format spdx-json nginx

The output contains information about the packages in the image, licensing informa‐
tion, relationships between packages, and data about the tool that generated the
report. When I ran this tool, the output was more than 8,000 lines long, so I won’t
include it all here, but just to give you a flavor, here’s an extract (with some lines
removed or shortened for brevity) describing the bash package that Trivy identified
within the nginx container:

"name": "bash",
"SPDXID": "SPDXRef-Package-a592647b46e04269",
"versionInfo": "5.2.15-2+b8",
"supplier": "Organization: Matthias Klose \u003cdoko@debian.org\u003e",
"downloadLocation": "NONE",
"filesAnalyzed": false,
"sourceInfo": "built package from: bash 5.2.15-2",
"licenseConcluded": "GPL-3.0-or-later AND GPL-3.0-only AND LicenseRef-4f0e9e1...",
"licenseDeclared": "GPL-3.0-or-later AND GPL-3.0-only AND LicenseRef-4f0e9e1...",
"externalRefs": [
  {
    "referenceCategory": "PACKAGE-MANAGER",
    "referenceType": "purl",
    "referenceLocator": "pkg:deb/debian/bash@5.2.15-2%2Bb8?arch=amd64\u0026distro=
    debian-12.11"
  }
],
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"primaryPackagePurpose": "LIBRARY",
"annotations": [
  {
    "annotator": "Tool: trivy-0.63.0",
    "annotationDate": "2025-06-23T10:06:37Z",
    "annotationType": "OTHER",
    "comment": "LayerDiffID: sha256:7fb72a7d1a8e984..."
  },

The SBOM can be used as input into a vulnerability scanner for cross-referencing
with known vulnerabilities (which we’ll come to in Chapter 8), and your SBOMs can
be indexed so that you can easily identify components affected by newly disclosed
vulnerabilities. SBOMs can also be used to check for license compliance. For exam‐
ple, if you are building commercial, proprietary software, you may well be concerned
about including GPL licenses. Similarly, an organization can use the SBOM to
enforce policies about which components are permitted in their images.

You almost certainly want to store the SBOM along with the image that it refers to.
You can either upload it to the registry using OCI artifact support with a reference to
the image, or you can sign and attach it to the image. Let’s consider how you can sign
images and other artifacts.

Signing Images and Software Artifacts
Image signing associates a cryptographic identity with an image (in much the same
way as certificates are signed, which is covered in Chapter 11). This makes it possible
to verify that an image was created by a trusted party and has not been modified since
it was built. Other artifacts—including SBOMs, as mentioned earlier—can also be
signed to prove who supplied them.

Docker Content Trust, built on the notary open source project, was the original
approach to image signing. The notary approach was widely considered to be too
complex and was superseded by a version 2 project whose CLI tool is called
notation. This project is backed by major players in the cloud ecosystem, including
AWS, Microsoft, and Docker.

An alternative approach originated at Google is sigstore, now owned by the
OpenSSF (a sister foundation to the CNCF). This has become the de facto open
source standard tooling for signing container images and other artifacts in the
Kubernetes ecosystem. It consists of three main components:

cosign

Used to sign and verify files and artifacts such as container images, Helm charts,
and SBOM files

fulcio

A certificate authority that issues short-lived certificates
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rekor

Records signing operations in an immutable log

Perhaps the biggest advance in Sigstore over prior approaches to content trust is that
it supports keyless signing. Instead of using private keys, which would typically
require an organization to have a whole private key infrastructure in place, Sigstore
uses ephemeral certificates that are issued automatically, based on common OIDC
identity providers such as Google, Microsoft, or GitHub accounts. Users don’t need to
worry about rotating and distributing keys.

You might well want to attach the SBOM for the image before signing it. Attaching
the SBOM can be done like this:

$ cosign attach sbom --sbom sbom.json my-image:v0.0.1

Before you sign and store that image in a registry, you might also want to attach a
build attestation.

Build Attestations
Verifying the signature of an image confirms that it comes from a trusted party, but
how do you know whether anyone tampered with the build process during the cre‐
ation of the image and its component parts? A build attestation describes how an
image was built, including information such as:

• Source repository and commit
• Build environment
• Toolchain versions
• Build parameters and outputs
• Details about who or what triggered the build and when

Attestations can be stored in a container registry as OCI metadata that accompanies a
container image and then verified when the image is being deployed.

There are tools within the SLSA project for generating provenance records on
GitHub actions (slsa-github-generator) or on the command line (slsa-
provenance). Best practice would be to sign the attestation using a tool such as
cosign.

As well as tooling provided by the OpenSSF through the SLSA project, another
project that addresses concerns about the supply chain for container images is in-
toto. This framework ensures that each of an expected set of build steps ran com‐
pletely, produced the correct output given the correct input, and was performed in
the right order by the right people. Multiple steps are chained together, with in-toto
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carrying security-related metadata from each step through the process. The result is
to ensure that software in production is verifiably running the same code as the
developer shipped from their laptop.

You can use cosign to attach the attestation to an image like this:

$ cosign attach attestation my-image:v0.0.1 --attestation ./my-image-sbom.att.json

Attaching SBOM and attestations is optional but is a good security practice and will
help you achieve a higher SLSA rating for your processes. Once you have the attach‐
ments in place, you are ready to sign the image, like this:

$ cosign sign my-image:latest

Signed images can be stored in an OCI registry.

What if you want to use a container image from a third party, either directly as an
application or as a base image in your builds? You can check that the image came
from the supplier you expect using cosign verify. I’ll discuss this again later in this
chapter.

An interesting public registry to be aware of is ttl.sh, where you can
push images anonymously for temporary use. This could be useful
as part of a CI/CD pipeline, where testing might be parallelized
across multiple machines, all of which need access to a newly built
image. You specify the length of time, up to 24 hours, that the
image will be available. Images can be obfuscated behind a Univer‐
sally Unique Identifier (UUID) name (which is long enough to be
highly likely to be unique). A UUID name makes it a bit harder for
an attacker to find an image, but it is publicly available, so I would
not recommend this for anything you really need to keep
confidential.
Now that you know about signing images, you probably agree that
it’s a good idea to sign an image before pushing to this registry and
verifying the signature is intact when you pull the image again.

Image Manifests
When signatures and attestations are included in an image, they are part of the image
manifest, which you read about in Chapter 6, where you saw docker inspect being
used to reveal the manifest. Another tool to help if you’re curious to look at the mani‐
fest for an image is the ORAS project from the CNCF. The project website has a lot of
information on manifest formats if you want to dive into this topic further.
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For this example, I’m using Sigstore’s rekor image from GitHub’s container registry as
it has a lot of the recommended information attached. Unfortunately, at the time of
writing at least, a lot of standard, freely available library images do not come with sig‐
natures and attestations.

Here’s an example of fetching the manifest, this time for the alpine image stored on
Docker Hub:

$ oras manifest fetch docker.io/library/alpine:latest | jq
{
  "manifests": [
    {
      "annotations": {
        "com.docker.official-images.bashbrew.arch": "amd64",
        "org.opencontainers.image.base.name": "scratch",
        "org.opencontainers.image.created": "2025-05-30T18:04:04Z",
...
        "org.opencontainers.image.version": "3.22.0"
      },
      "digest": "sha256:08001109a7d6...6a7338ce",             
      "mediaType": "application/vnd.oci.image.manifest.v1+json",
      "platform": {
        "architecture": "amd64",
        "os": "linux"
      },
      "size": 1022
    },
    {
      "annotations": {
        "com.docker.official-images.bashbrew.arch": "amd64",  
        "vnd.docker.reference.digest": "sha256:08001109a7d6...6a7338ce", 
        "vnd.docker.reference.type": "attestation-manifest"   
      },
      "digest": "sha256:bd4199eb785a...859f0827f",
      "mediaType": "application/vnd.oci.image.manifest.v1+json",
      "platform": {
        "architecture": "unknown",
        "os": "unknown"
      },
      "size": 838
    },
...
}

This is similar to the docker manifest inspect output you’ve seen before. For
clarity I only included (abbreviated) output related to the amd64 platform; if you try
this for yourself, you’ll see similar content for each of several other chip architectures.
This time I want to point out an attestation included in this manifest:
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The first item in this list refers to the image for the amd64 platform, with a digest
beginning with 080011.

The next item is the “attestation-manifest” for that image, referring to it by
digest.

Let’s take a look at that attestation manifest (I have abbreviated the digests for clarity):

$ oras copy docker.io/library/alpine@sha256:bd419...f0827f --to-oci-layout 
alpine-attestation

✓ Copied  application/vnd.in-toto+json
79.1/79.1 KB 100.00%    4ms
  └─ sha256:5ff8d...7ea6a
✓ Copied  application/vnd.in-toto+json
5.55/5.55 KB 100.00%    2ms
  └─ sha256:0775b...09944
✓ Copied  application/vnd.oci.image.config.v1+json
241/241  B 100.00%    2ms
  └─ sha256:7a444...41d36
✓ Copied  application/vnd.oci.image.manifest.v1+json
838/838  B 100.00%    3ms
  └─ sha256:bd419...0827f
Copied [registry] docker.io/library/alpine@sha256:bd419...f0827f => [oci-layout] 
alpine-attestation
Digest: sha256:bd419...f0827f

You can see that the first two items in the output refer to in-toto attestations. The
files have been extracted as an OCI layout to a directory called alpine-attestation.
You’ve seen OCI layouts earlier in Chapter 4. Inside this layout are some blobs that
correspond to the digests for each of the items:

$ file blobs/sha256/*
blobs/sha256/0775b...09944: ASCII text, with very long lines (5682), with no line 
terminators
blobs/sha256/5ff8d...7ea6a: JSON data
blobs/sha256/7a444...41d36: JSON data
blobs/sha256/bd419...0827f: JSON data

The JSON data file with the SHA starting 5ff8d is one of the in-toto attestations.
The content is long, so I’ll just show a few parts to give you an idea of the contents:

  "_type": "https://in-toto.io/Statement/v0.1",
  "predicateType": "https://spdx.dev/Document",
  "subject": [
    {
      "name": "pkg:docker/alpine@3.22.0?platform=linux%2Famd64",
      "digest": {
        "sha256": "08001...338ce"
...
  "predicate": {
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    "spdxVersion": "SPDX-2.3",
    "dataLicense": "CC0-1.0",
    "SPDXID": "SPDXRef-DOCUMENT",
    "name": "sbom",
    "documentNamespace": "https://docker.com/docker-scout/fs/sbom-15dbb…9910858",
    "creationInfo": {
      "creators": [
        "Organization: Docker, Inc",
        "Tool: docker-scout-1.18.0",
        "Tool: buildkit-0.16.0-tianon"
      ],
      "created": "2025-05-30T18:04:21Z"
    },
    "packages": [
...
     {
        "name": "busybox-binsh",
        "SPDXID": "SPDXRef-Package-1cf4a...06f01",
        "versionInfo": "1.37.0-r18",
...
        "licenseDeclared": "GPL-2.0-only",
        "description": "busybox ash /bin/sh",
        "externalRefs": [
          {
            "referenceCategory": "PACKAGE-MANAGER",
            "referenceType": "purl",
            "referenceLocator": "pkg:apk/alpine/busybox-binsh@1.37.0-r18?os_name
            =alpine&os_version=3.22"
...

For the purposes of this book, we don’t need to dig into all the details of this attesta‐
tion, but there is enough here to see that it refers to an alpine package, and it
includes an SBOM created by docker-scout and buildkit tools, and one of the
packages listed in that SBOM is a busybox shell, licensed under GPL-2.0.

In day-to-day operations, you won’t need to look at manifests, attestations, or signa‐
tures like this, but one day it could be helpful to know that you have this information
in hand, particularly if you are trying to get to the root cause of a supply chain secu‐
rity problem.

Image Deployment Security
The main security concern at deployment time is ensuring that the correct image gets
pulled and run, although there are additional checks you might want to make
through what is called admission control.
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3 In 2021, following the SolarWinds incident, where software was found to have been tampered with through
exploits in the build process, a US Presidential Executive Order set requirements related to software supply
chain security and integrity.

Deploying the Right Image
As you saw in “Identifying Images” on page 81, container image tags are generally not
immutable—they can be moved to different versions of the same image (though some
registries, including AWS Elastic Container Registry, support immutable tags). Refer‐
ring to an image by its digest, rather than by tag, can help ensure that the image is the
version that you think it is. However, if your build system tags images with semantic
versioning and this is strictly adhered to, this may be sufficient and easier to manage
since you don’t necessarily have to update the image reference for every minor
update.

If you refer to images by tag, you should always pull the latest version before running
in case there has been an update. Fortunately, this is relatively efficient since the
image manifest is retrieved first, and image layers have to be retrieved only if they
have changed.

In Kubernetes, this is defined by the imagePullPolicy. An image policy to pull every
time is unnecessary if you refer to images by digest, since any update would result in
a change to the digest.

Malicious Deployment Definition
When you are using a container orchestrator, there typically are configuration files—
YAML for Kubernetes, for instance—that define the containers that make up each
application. It’s just as important to verify the provenance of these configuration files
as it is to check the images themselves.

If you download YAML from the internet, please check it very carefully before run‐
ning it in your production cluster. Be aware that any small variations—such as the
replacement of a single character in a registry URL—could result in a malicious
image running on your deployment.

Verifying the Image Signature and Provenance
There’s no point having signed images if you don’t check the signature! Verifying the
signature on the image ensures that it comes from the trusted source you are expect‐
ing, whether that is your own build pipeline or a vendor. Verifying the provenance
assures that all the steps in the image build process were carried out as expected. If
you are following SLSA standards, and/or a regulatory frameworks like the US Exec‐
utive Order 14028,3 you’ll need to perform these verifications for compliance reasons.
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I’ve just suggested (in “Deploying the Right Image” on page 102) that you might want
to pull images by tag so that you get the latest updates for that version. Checking the
signature allows you to confirm that this is an intended change and that you have not
pulled an image that has been tampered with.

You can verify an image signature using cosign, like this:

cosign verify --key supplier.pub myimage:tag

In this instance, supplier.pub is the public key for the supplier of the image. You can
similarly use cosign verify-attestation to verify build attestations. The SLSA
project also supplies the slsa-verifier tool for verifying provenance information.

These verification steps can be part of an automated predeploy step, built into a
CI/CD pipeline or using a Kubernetes admission controller.

Admission Control
An admission controller such as Kyverno or OPA Gatekeeper can perform checks at
the point where you are about to deploy a resource into a cluster. In Kubernetes,
admission control can evaluate any kind of resource against policies, but for the pur‐
poses of this chapter, I will just consider an admission controller that is checking
whether to permit a container based on a particular container image, as defined by
some admission control policy. If the admission control checks fail, the container
does not run.

Admission control policies can include several vital security checks on the container
image before it is instantiated into a running container:

• Has the image been scanned for vulnerabilities/malware/other policy checks?
• Does the image come from a trusted registry?
• Is the image signed by a trusted party?
• Is the image approved?
• Does the image run as root?

These checks ensure that no one can bypass checks earlier in the system. For example,
there is little advantage in introducing vulnerability scanning into your CI pipeline if
it turns out that people can specify deployment instructions that refer to images that
haven’t been scanned.
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Summary
You have seen how the container runtime needs a root filesystem and some configu‐
ration information. You can override the config using parameters that can be passed
in at runtime or configured in Kubernetes YAML. Some of these configuration set‐
tings have a bearing on application security. There also will be plenty of opportunities
to introduce malicious code into container images if you don’t follow the best practi‐
ces listed in “Dockerfile Best Practices for Security” on page 91.

Supply chain security tools allow for images to be signed, along with information
about their contents and how they were built. At the point where images are
deployed, orchestrators and security tools allow for admission controllers, which
present an opportunity to perform security checks on those images, including verify‐
ing signatures and provenance information.

Container images encapsulate your application code and any dependencies on third-
party packages and libraries. Chapter 8 looks at how these dependencies could
include exploitable vulnerabilities and examines tooling to identify and eliminate
those vulnerabilities.
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CHAPTER 8

Software Vulnerabilities in Images

Patching software for vulnerabilities has long been an important aspect of maintain‐
ing the security of deployed code. It has become a more urgent problem as the time
for a threat actor to exploit a vulnerability has been getting shorter. A 2024 report
from Mandiant put it at just five days, and with AI being used maliciously to invent
and automate attacks, it’s probably significantly shorter already.

This is just as relevant in the world of containers as in traditional software deploy‐
ment, but as you will see in this chapter, the patching process has been completely
reinvented. But first, let’s cover what software vulnerabilities are and how they are
published and tracked.

Vulnerability Research
A vulnerability is a known flaw in a piece of software that an attacker can take advan‐
tage of to perform some kind of malicious activity. As a general rule, you can assume
that the more complex a piece of software is, the more likely it is to have flaws, some
of which will be exploitable.

When there is a vulnerability in a common piece of software, attackers may be able to
take advantage of it wherever it is deployed, so there is an entire research industry
devoted to finding and reporting new vulnerabilities in publicly available software,
especially operating system packages and language libraries. You have probably heard
of some of the most devastating vulnerabilities, like Shellshock, Meltdown, and
Heartbleed, which get not just a name but sometimes even a logo. These are the rock
stars of the vulnerability world, but they are a tiny fraction of the thousands of issues
that get reported every year.

These days, it’s not just human researchers who are finding and reporting new vul‐
nerabilities in existing software: AI is actively discovering them too. Early in January
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1 The NVD is a US organization, widely used globally, but other vulnerability databases and security advisories
exist—for example, from the EU—and there are nation-specific databases such as those run by France,
Germany, Japan, and Brazil. They largely use, or at least refer to, the CVE numbering scheme.

2025, Microsoft credited unpatched.ai, an automated vulnerability discovery plat‐
form, with reporting multiple high-severity issues. DARPA’s (the Defense Advanced
Research Projects Agency’s) Artificial Intelligence Cyber Challenge is a competition
for AI-driven tooling to find and patch vulnerabilities in infrastructure code, includ‐
ing the Linux kernel, Jenkins, and SQLite. AI-enhanced fuzzing techniques used by
Google’s Open Source Security Team are identifying increasing numbers of issues.

Unfortunately, although AI has been used to find real issues, it has also been used to
create a lot of “AI-slop” security reports about “vulnerabilities” that aren’t real. This
wastes inordinate amounts of time from project maintainers and is likely to drive
some of them to burnout. If you’re thinking of using AI as a shortcut to amassing bug
bounties, please think again.

Once a vulnerability is identified, the race is on to get a fix published so that users can
deploy that fix before attackers take advantage of the issue. If new issues were
announced to the public straightaway, this would create a free-for-all for attackers to
take advantage of the problem. To avoid this, the concept of responsible security dis‐
closures has been established. The security researcher who finds a vulnerability con‐
tacts the developer or vendor of the software in question. Both parties agree on a time
frame, after which the researcher can publish their findings. There is some positive
pressure here for the vendor to make efforts to provide a fix in a timely fashion, as it’s
better for both the vendor and its users that a fix is available before publication.

A new issue will get a unique identifier that begins with “CVE,” which stands for
Common Vulnerabilities and Exposures, followed by the year. For example, the
Shellshock vulnerability was discovered in 2014 and is officially referred to as
CVE-2014-6271. The organization that administers these IDs is called MITRE, and it
oversees more than 400 CVE Numbering Authorities (CNAs) that can issue CVE IDs
within certain scopes. Some large software vendors—for example, Microsoft, Red
Hat, and Oracle—are CNAs entitled to assign IDs for vulnerabilities within their own
products. GitHub became a CNA toward the end of 2019.

As CVEs are identified, they are recorded at the CVE website, and then these identifi‐
ers are used in the National Vulnerability Database (NVD) to keep track of the soft‐
ware packages and versions that are affected by each vulnerability.1 At first glance,
you might be tempted to think that’s the end of the story. There’s a list of all the pack‐
age versions that are affected, so if you have one of those versions, you are exposed.
Unfortunately, it’s not as simple as that, because depending on the Linux distribution
you’re using, it might have a patched version of the package.
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As you saw in Chapter 7, best practice is to have an SBOM for each container image
that records all the software components and their versions. When new vulnerabili‐
ties are disclosed, they can be matched against SBOMs to identify which images are
affected.

Vulnerabilities, Patches, and Distributions
Let’s take a look at Shellshock as an example. This was a critical vulnerability that
affected the GNU bash package, and the NVD’s page for CVE-2014-6271 has a long
list of vulnerable versions ranging from 1.14.0 to 4.3. If you’re running a very old
installation of Ubuntu 12.04 and you found that your server has bash version
4.2-2ubuntu2.2, you might think that it is vulnerable because it’s based on bash 4.2,
which is included in the NVD’s list for Shellshock.

In fact, according to the Ubuntu security advisory for the same vulnerability, that
exact version has the fix for the vulnerability applied, so it’s safe. The Ubuntu main‐
tainers decided that rather than require everyone on 12.04 to upgrade to a whole new
minor version of bash, they would apply the patch for the vulnerability and make that
patched version available.

To get a real picture of whether the packages installed on a server are vulnerable or
not, you would need to reference not just the NVD but also the security advisories
that apply to your distribution.

So far this chapter has considered packages (like bash in the preceding example) that
are distributed in binary form through package managers such as apt, yum, rpm, or
apk. These packages are shared across all the applications in a filesystem, and on a
server or virtual machine, the fact that they are shared can cause no end of problems:
one application may depend on a certain version of a package that turns out to be
incompatible with another application that you want to run on the same machine.
This issue of dependency management is one of the problems that containers can
address by having a separate root filesystem for each container.

Application-Level Vulnerabilities
There are also vulnerabilities to be found at the application level. Most applications
use third-party libraries that are typically installed using a language-specific package
manager. Node.js uses npm, Python uses pip, Java uses Maven, and so on. In compiled
languages like Go, C, and Rust, your third-party dependencies could be installed as
shared libraries, or they could be linked into your binary at build time.
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The third-party packages installed by these tools are another source of potential vul‐
nerabilities. In Chapter 7, we covered how language-specific tools can generate
detailed SBOMs, which can help catch vulnerabilities in the dependencies pulled in
by pip, npm, Maven, etc.

A standalone binary executable by definition (through the word standalone) has no
external dependencies. It may have dependencies on third-party libraries or packages,
but these are built into the executable. In this case you have the option of creating a
container image based on the scratch (empty) base image, which holds nothing but
your binary executable.

If an application doesn’t have any dependencies, it can’t be scanned for published
package vulnerabilities. It could still have flaws that render it exploitable by attackers,
which we will consider in “Zero-Day Vulnerabilities” on page 120.

Vulnerability Risk Management
Dealing with software vulnerabilities is an important aspect of risk management. It’s
very likely that a deployment of any nontrivial software will include some vulnerabili‐
ties, and there is a risk that systems will be attacked through them. To manage this
risk, you (or the security team in your organization) need to be able to identify which
vulnerabilities are present and assess their severity, prioritize them, and have pro‐
cesses in place to fix or mitigate these issues.

Just because a vulnerability is present, it might not be relevant or exploitable in your
application. For example, suppose a library contains two functions called
decent_code() and poorly_written(). An application might import this library
because it uses the decent_code() function. The poorly_written() code might still
be present, but if it’s never called, it’s not reachable through that application.

If vulnerabilities are present but not actually exploitable, they are false positives that
create more work for the security team to review. This is where VEX comes in to help.

Vulnerability Exploitability eXchange (VEX) is a machine-readable format for
describing the impact of known CVEs. A VEX document covers some number of
CVEs and states whether a particular software artifact is one of the following:

affected

The vulnerability is present and could be exploited.

not_affected

The vulnerability is not applicable in this artifact.

fixed

The vulnerability has been addressed in this version.
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under_investigation

Work is afoot to determine whether or not this artifact is affected.

The author of a piece of software can create a VEX document to inform consumers of
that product about the status of CVEs. VEX documents can be signed to prove their
authenticity and stored in OCI registries along with the images they describe.

Vulnerability scanners automate the process of identifying whether known vulnera‐
bilities are present in an image. They provide information about how serious each
issue is and about the software package version in which a fix was applied (if a fix has
been made available). The results will likely be more accurate if VEX information is
provided as an input to the scanner, which can use it to filter out the vulnerabilities
that don’t affect the product.

Vulnerability Scanning
If you search the internet, you will find a huge range of vulnerability scanning tools
encompassing various techniques, including port scanning tools like nmap and
nessus, which attempt to find vulnerabilities on a live running system by probing it
from outside. This is a valuable approach, but it’s not what we are considering in this
chapter. Here, we are more interested in tools that help you find vulnerabilities by
examining the software that is installed in a root filesystem. The same approach is
taken by tooling that generates SBOMs for a container image. In fact, understanding
the components that are included in an image is a required step in vulnerability scan‐
ning anyway, so it’s not a surprise that many vulnerability scanning tools like trivy
have been enhanced so that they can also generate SBOMs.

Let’s suppose you have a container image that doesn’t (yet) have an SBOM. To iden‐
tify which vulnerabilities are present, the first task is to establish what software is
present. Software gets installed through several different mechanisms:

• The root filesystem starts from a distribution of a Linux root filesystem, which
could have vulnerabilities within it.

• There could be system packages installed by a Linux package manager like rpm or
apk and language-specific packages installed by tools like pip or RubyGems.

• You might have installed some software directly using wget, curl, or even FTP.

Some vulnerability scanners will query package managers to get a list of the installed
software. If you’re using one of those tools, you should avoid installing software
directly as it won’t be scanned for vulnerabilities.
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Installed Packages
As you have seen in Chapter 6, each container image could include a Linux distribu‐
tion, possibly with some packages installed, along with its application code. There
could be many running instances of each container, each of which has its own copy of
the container image filesystem, including any vulnerable packages that might be
included therein. This is illustrated in Figure 8-1, where there are two instances of
container X and one instance of container Y. In addition, the illustration shows some
packages installed directly onto the host machine.

Figure 8-1. Packages on host and in containers

Installing packages directly onto hosts is nothing new. In fact, it is exactly these pack‐
ages that system administrators have traditionally had to patch for security reasons.
This was often achieved by simply SSH-ing into each host and installing the patched
package. In the cloud native era, this is frowned upon, because manually modifying
the state of a machine in this way means that it can’t be automatically re-created in
the same state. Instead, it’s better either to build a new machine image with the upda‐
ted packages or to update the automation scripts used to provision images so that
new installations include the updated packages.

Container Image Scanning
To know whether your deployment is running containers with vulnerable software,
you need to scan all the dependencies within those containers. There are some differ‐
ent approaches you could take to achieve this.

Imagine a tool that can scan each running container on a host (or across a deploy‐
ment of multiple hosts). In today’s cloud native deployments, it’s common to see hun‐
dreds of instances of containers initiated from the same container image, so a scanner
that takes this approach would be very inefficient, looking at the same dependencies
hundreds of times. It’s far more efficient to scan the container image from which
these containers were derived.
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However, this approach relies on the containers running only the software that was
present in the container image and nothing else. The code running in each container
must be immutable. Let’s see why it’s a good idea to treat containers as immutable in
this way.

Immutable Containers
There is (usually) nothing to stop a container from downloading additional software
into its filesystem after it starts running. Indeed, in the early days of containers, it was
not uncommon to see this pattern, as it was considered a way to update the container
to the latest version of software without having to rebuild the container image. If this
idea hadn’t occurred to you before now, please try to wipe it from your memory
straightaway, as it’s generally considered a very bad idea for several reasons, including
these:

• If your container downloads code at runtime, different instances of the container
could be running different versions of that code, but it would be difficult to know
which instance is running what version. Without a stored version of that contain‐
er’s code, it can be hard (or even impossible) to re-create an identical copy. This is
a problem when trying to reproduce field issues.

• An SBOM for the image no longer represents the contents of the container if you
change them. Any results based on the SBOM to inform you about licensing or
vulnerability issues in your running containers would be inaccurate.

• It’s harder to control and ensure the provenance of the software running in each
container if it could be downloaded at any time and from anywhere. Any prove‐
nance attestations in the container image become practically meaningless as they
no longer reflect the actual code being run.

• Building a container image and storing it in a registry is simple to automate in a
CI/CD pipeline. It’s also easy to add additional security checks—like vulnerability
scanning or verification of the software supply chain—into the same pipeline.

A lot of production deployments treat containers as immutable simply as a best prac‐
tice but without enforcement. There are tools that can automatically enforce con‐
tainer immutability by preventing an executable from running in a container if that
executable wasn’t present in the image when it was scanned. This is known as drift
prevention and is discussed further in Chapter 15.

Another way to achieve immutability is to run the container with a read-only filesys‐
tem. You can mount a writable temporary filesystem if the application code needs
access to writable local storage. This may require changes to the application so that it
writes only to this temporary filesystem.
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By treating your containers as immutable, you only need to scan each image to find
all the vulnerabilities that might be present in all the containers. But unfortunately,
scanning just once at a single point in time may not be sufficient. Let’s consider why
scans have to happen on a regular basis.

Regular Scanning
As discussed at the beginning of this chapter, there is a body of security researchers
around the world who are finding previously undiscovered vulnerabilities in existing
code. Sometimes they find issues that have been present for years. One of the best-
known examples of this is Heartbleed, a critical vulnerability in the widely used
OpenSSL package that exploited a problem in the heartbeat request and response
flow that keeps a TLS connection alive. The vulnerability was uncovered in April
2014, and it allowed an attacker to send a crafted heartbeat request that asked for a
small amount of data in a large buffer. The absence of a length check in the OpenSSL
code meant that the response would supply the small amount of data, followed by
whatever happened to be in active memory to fill up the rest of the response buffer.
That memory might be holding sensitive data, which would be returned to the
attacker. Serious data breaches that involved the loss of passwords, Social Security
numbers, and medical records were subsequently traced back to the Heartbleed
vulnerability.

Cases as serious as Heartbleed are rare, but it makes sense to assume that if you’re
using a third-party dependency, at some point in the future a new vulnerability will
be uncovered in it. And unfortunately there is no way of knowing when that will hap‐
pen. Even if your code doesn’t change, there is a possibility that new vulnerabilities
have been uncovered within its dependencies.

Regularly rescanning container images allows the scanning tool to check the contents
against its most up-to-date knowledge about vulnerabilities (from the NVD and
other security advisory sources). A common approach is to rescan all deployed
images every 24 hours, in addition to scanning new images as they are built, as part of
an automated CI/CD pipeline.

Scanning Tools
There are numerous container image scanning tools, from open source implementa‐
tions like Trivy and Grype to commercial solutions from companies like JFrog, Palo
Alto, and Aqua. Many container image registry solutions, such as Docker Hub with
Docker Scout and the CNCF project Harbor, as well as the registries provided by all
the major public clouds, include scanning as a built-in feature.
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Most, if not all, of these tools can use common SBOM and VEX formats as input to
speed scanning and give more relevant results based on whether CVEs are not merely
present but also exploitable.

In a Kubernetes environment, the Trivy operator can automatically scan your deploy‐
ments for a variety of issues including dependency vulnerabilities, generating
Prometheus metrics so that you can spot issues in a dashboard.

Liquid Reply published a walkthrough of installing Trivy and its
operator and visualizing the Prometheus output in Grafana
dashboards.

Unfortunately, the results you get from different scanners vary considerably, and it’s
worth considering why.

Sources of Information
As discussed earlier in this chapter, there are various sources for vulnerability informa‐
tion, including per-distribution security advisories. Red Hat even has more than one: its
OVAL feed includes only vulnerabilities for which there is a fix, while the Red Hat
Security Data API includes the status of unfixed CVEs.

If a scanner doesn’t include data from a distribution’s security feed and is relying just
on the underlying NVD data, it is likely to show a lot of false positives for images
based on that distribution. If you prefer a particular Linux distribution for your base
images, or a solution like distroless, make sure that your image scanner supports it.

Out-of-Date Sources
Occasionally the distribution maintainers change the way they are reporting vulnera‐
bilities. This happened with Alpine, which stopped updating its advisories at alpine-
secdb in favor of tracking vulnerability fixes via metadata in the aports package
build system. All the actively maintained scanning projects that I’m aware of have
updated to use the aports metadata (or their own scraping approach), but it’s an
example of how a structural change like this in the future would require significant
updates to scanning tools.
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Won’t Fix Vulnerabilities
Sometimes the maintainers of a distribution will decide that they are not going to fix
a particular vulnerability (perhaps because it’s a negligible risk and the fix is nontrivial
or because the maintainers have concluded that interactions with other packages on
their platform mean the vulnerability is impossible to exploit).

Given that the maintainers are not going to provide a fix, it becomes something of a
philosophical question for scanner tool developers: considering it’s not actionable, do
you show the vulnerability in the results or not? While I was at Aqua, we heard from
some of our customers that they don’t want to see this category of result, so we pro‐
vided an option to give the user the choice. It just goes to show that there is no such
thing as a “correct” set of results when it comes to vulnerability scanning.

VEX Input
As discussed earlier in this chapter, VEX information can supply additional informa‐
tion about whether vulnerabilities are actually exploitable in a given product. If a
scanner can take VEX information into account, it can produce fewer false positives.

Subpackage Vulnerabilities
Sometimes a package is installed and reported by the package manager, but in fact it
consists of one or more subpackages. A good example of this is the bind package on
Ubuntu. Sometimes this is installed with only the docs subpackage, which, as you
might imagine, consists only of documentation. Some scanners assume that if the
package is reported, then the whole package (including all its possible subpackages) is
installed. This can result in false positives where the scanner reports vulnerabilities
that can’t be present because the guilty subpackage is not installed.

Package Name Differences
The source name for a package may include binaries that have completely different
names. For example, in Debian, the shadow package includes binaries called login,
passwd, and uidmap. If the scanner doesn’t take this into account, it can result in false
negative results.

Statically Linked Executables
When developers use a compiled language like Go, C, or Rust, they often make use of
libraries. These libraries can be either loaded dynamically at runtime or compiled
statically into a single executable file. A statically linked, standalone executable can be
built into a container image using the scratch base image, meaning that the image has
nothing in its filesystem except the executable file. In Chapter 7, I recommended this
as a good approach for minimizing the attack surface.
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However, this choice has an impact on what a scanner has to do to correctly detect
which libraries and versions are in use. Dynamic libraries are generally installed
using a package manager, so the scanner typically has access to version information
from the package metadata, which is added into the container image during the
image build process. None of this version information will be included in the image if
the build simply copies a single standalone executable file into it.

All is not lost! The executable file typically has lots of clues about the modules or
libraries that it includes, for example, in its ELF symbols and section headers. There
are scanners—for example syft—that can perform analysis on this information and
output an SBOM enumerating the modules or libraries that are built into the
executable.

It’s likely to be even more accurate if the compiler generates the SBOM as it is pulling
in components. Recent versions of Go, for example, embed module information into
a special .note.go.buildinfo section of the compiled executable. Scanning tools can
simply compare this against their list of currently known vulnerabilities.

Scanning Multiplatform Images
As you know from Chapter 6, container images can be built to include versions for
different CPU architectures, with the image manifest listing the platforms that are
included. Because the software is different on each platform, the vulnerabilities that
exist in, say, the ARM variant might be different from those in the Intel version.

By default, a scanner will typically retrieve the image variant only for the local archi‐
tecture it’s running on, though some allow you to specify a parameter to get the
results for another platform. For example, you can run trivy image --platform
linux/arm64 <image> to scan the ARM version.

Additional Scanning Features
Many scanning tools do more than just detecting image vulnerabilities, scanning for
other issues such as:

• Known malware within the image, by looking for malware signatures or using
heuristic approaches to detection, such as Yet Another Research Assistant
(YARA)

• Executables with the setuid bit (which, as you saw in Chapter 2, can allow privi‐
lege escalation)

• Images configured to run as root
• Secret credentials such as tokens or passwords
• Sensitive data in the form of credit card or Social Security numbers or such
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• Policy violations (e.g., outdated dependencies, noncompliant licenses)
• Poor image configuration—for example, not including a HEALTHCHECK
• Comparing the components included in the image with an SBOM that describes

what is expected (this could help spot if a malicious component was added)

Scanner Errors
As I hope this section of the book has made clear, reporting on vulnerabilities is not
as straightforward as you might at first imagine. So, it’s likely that in any scanner you
will find cases in which there is a false positive or false negative due to a bug in the
scanner or a flaw in the security advisory data feeds that the scanner reads.

That said, it’s better to have a scanner in place than not. If you don’t have a scanner in
place to use regularly, you really have no way of knowing whether your software is
prey to an easy exploit. Time is no healer in this regard—the critical Shellshock vul‐
nerability was discovered in code that was decades old. If you rely on complex depen‐
dencies, you should expect that at some point some vulnerabilities will be found
within them.

False positives can be irritating, but some tools will let you suppress or mark individ‐
ual vulnerability reports as acceptable so that you can decide for yourself whether you
want to ignore them going forward.

Assuming you are convinced that a scanner would be a good thing to include in your
processes, let’s turn to the possible options for incorporating it into your team’s
workflow.

Scanning in the CI/CD Pipeline
Consider a CI/CD pipeline from left to right, with “writing code” at the far left and
“deploying to production” at the far right, as in Figure 8-2. It’s better to remove issues
as early as possible in this pipeline because doing so is quicker and cheaper, in exactly
the same way that finding and fixing bugs is much more time-consuming and expen‐
sive after deployment than during development.

In a traditional host-based deployment, all the software running on a host shares the
same packages. The security team in an organization would typically be responsible
for updating those packages with security fixes on a regular basis. This activity is
largely decoupled from the development and testing stages of each application’s life
cycle, and it’s way over to the right in the deployment pipeline. There often can be
issues where different applications share the same package but need different ver‐
sions, requiring careful dependency management and, in some cases, code changes.

In contrast, as you saw in Chapter 6, in a container-based deployment, each image
includes its own dependencies, so different application containers can have their own
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versions of each package as needed. There is no need to worry about compatibility
between app code and the set of dependencies they use. This, plus the existence of
container image scanning tools, allows vulnerability management to “shift left” in the
pipeline.

Teams can include vulnerability scanning as an automated step. When a vulnerability
needs to be addressed, developers can do this by updating and rebuilding their appli‐
cation container image to include the patched version. Security teams no longer need
to do this manually.

There are a few places where scanning can be introduced, as illustrated in Figure 8-2.

Figure 8-2. Scanning for vulnerabilities in the CI/CD pipeline

Developer scanning
If you use a scanner that is easy to deploy on the desktop, individual developers
can scan their local image builds for issues, giving them the chance to fix them
before they push to a source code repository.

Scan on build
Consider incorporating a scanning step immediately after the container image is
built in your pipeline. If the scan reveals vulnerabilities above a certain severity
level, you can fail the build to ensure that it never gets deployed. Figure 8-3
shows the output from an AWS CodeBuild project that builds an image from a
Dockerfile and then scans it. In this example, a high-severity vulnerability was
detected, and this has caused the build to fail.

Registry scans
After the image has been built, the pipeline typically pushes it to an image regis‐
try (ideally with SBOM, build attestations, and signature attached). It’s a good
idea to regularly scan images in case a new vulnerability has been found in a
package that’s used by an image that hasn’t been rebuilt in a while. If there is a
comprehensive SBOM, this can speed up the scan as there is no need to reex‐
amine the (unchanged) image itself, and the scan only involves checking the
itemized image contents from the SBOM against vulnerability databases.
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Figure 8-3. Example of failing a build when a high-severity vulnerability is detected

The following articles have useful details on how to incorporate
various scanners within different CI/CD pipeline solutions:

• “Scanning Images with Trivy in an AWS CodePipeline”
• “Container Scanning” (from GitLab)

If you have multiple CPU architectures in your deployment, you
might also like Andrew Blooman’s example of a multiarchitecture
build and scan pipeline on GitLab.

You probably don’t want to leave the scan step until the point of deployment, for the
simple reason that you would scan every instance of the container as it gets instanti‐
ated, even though these instances all come from the same container image. Assuming
that you can treat the container as immutable, it’s the image and not the container
that you should scan.

Prevent Vulnerable Images from Running
It’s one thing to use a scanner to establish whether an image has any significant vul‐
nerabilities, but you also need to make sure that vulnerable images don’t get
deployed. This can be done as part of the admission control step that we considered
in Chapter 7, as indicated in Figure 8-2. If there isn’t a check to ensure that only
scanned images can be deployed, it would be relatively easy to bypass the vulnerabil‐
ity scanner.
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2 Google’s Mandiant team publishes a very good, if somewhat terrifying, annual report on the state of the threat
landscape.

Generally speaking, commercial vulnerability scanners are sold as part of a broader
platform that also correlates admission control with scan results. In a Kubernetes
deployment, you can use Kyverno or the Open Policy Agent Gatekeeper to enforce
custom admission control checks—which could include checking that images have
passed their vulnerability scan—and to enforce thresholds on vulnerability scores (for
example, block images with known High or Critical CVEs). As you saw in Chapter 7,
you can also add policy checks to ensure that images are signed by trusted suppliers.

With scanning in place, you will find out that you have vulnerable container images.
What next?

Updating Images
Once you have identified that your images are vulnerable and that fixed versions of
dependencies are available, you need to rebuild those images to use the updated pack‐
ages and redeploy them. How fast do you need to do this?

Guidelines vary but generally advise a timeline of several weeks for deploying upda‐
ted or patched software. For example, the FedRAMP Continuous Monitoring Strat‐
egy Guide (download) says that “All vendor dependencies at a high risk level must be
mitigated to a moderate level through compensating controls within 30 days,” and the
CISA Binding Directive from 2019 says that “Critical vulnerabilities must be remedi‐
ated within 15 calendar days of initial detection.”

However, do you really want to leave your systems exposed to a critical vulnerability
for two weeks or more, when the Mandiant team2 found that the average time to
exploit in 2023 was only five days? The mind boggles at how many attacks could be
attempted in the traditional 30- or 45-day “patch cycle.”

From the point when a new fixed vulnerability is disclosed, there are several steps:

1. Image or SBOM scanning needs to spot that an update is needed.
2. Code, lockfiles, or scripts have to be updated with the patched version.
3. Container images need to be rebuilt and tested.
4. Updated versions can now be deployed to production. This might be a “rolling

upgrade” such that old container instances are gradually retired while new
instances are deployed, without causing disruption to the user.
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Automation is helping here. For example, GitHub’s Dependabot can suggest pull-request
changes to your code to update vulnerable packages in your repositories. This is another
fast-moving area where AI is likely to provide some assistance (though I suspect that AI
will likely be just as helpful to attackers as to security teams).

While these steps are being carried out, the deployment is still vulnerable, and I hope
it’s clear to you that the faster you can deploy the updated code, the less likely you are
to suffer a serious breach. Unfortunately it’s not possible to reduce this time to zero—
even if you’re cavalier about how much testing you do! While you’re waiting for the
updated images to be ready to deploy, there are new approaches that use eBPF to mit‐
igate vulnerabilities in existing containers. We’ll discuss this in Chapter 15.

So far in this chapter we have discussed known vulnerabilities in dependencies that
your application code relies on. But this misses out on an important category of vul‐
nerabilities called zero days.

Zero-Day Vulnerabilities
Early in this chapter, “Vulnerability Research” on page 105 discussed how there are
security researchers around the world looking for new ways to exploit existing soft‐
ware. It stands to reason that when a new vulnerability is found, some amount of time
passes before a fix is published that addresses the problem. Until a fix is made avail‐
able, the vulnerability is known as a zero-day or 0-day vulnerability because no days
have passed since the fix was published. Mandiant’s report tells us that 70% of exploi‐
ted vulnerabilities in 2023 were zero days.

If it’s possible for a third-party library to have a bug that an attacker can exploit, the
same is true for any code—including the applications that your team is writing. Peer
review, static analysis, and testing can all help to identify security issues in your code,
but there’s a chance that some issues will slip through. Depending on your organiza‐
tion and the value of its data, there may be bad actors in the world for whom it’s
worthwhile trying to find these flaws.

The good news is that if a vulnerability isn’t published, the vast majority of potential
attackers in the world don’t know about it anymore than you do.

The bad news is that you can bet on the fact that sophisticated attackers and nation-
state organizations have libraries of as-yet-unpublished vulnerabilities. We know this
to be true from Edward Snowden’s revelations. As discussed at the start of this chap‐
ter, AI-based tooling is helping to identify new vulnerabilities more easily, and I’d bet
that some of them are not being reported, instead being held back for use by mali‐
cious actors.
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No amount of matching against a vulnerability database is going to be able to identify
a vulnerability that hasn’t been published yet. Depending on the type and severity of
the exploit, sandboxing as described in Chapter 10 may well protect your application
and your data. Your best hope for defending against zero-day exploits is to detect and
prevent anomalous behavior at runtime, which I will discuss in Chapter 15.

Summary
In this chapter, you read about vulnerability research and the CVE identifiers that are
assigned to different vulnerability issues. You saw why it’s important to have
distributions-specific security advisory information and to not just rely on the NVD.
You know why different scanners can produce different results, so you are better
armed to make a decision about which tools to use. Whichever scanner you pick, I
hope you’re now convinced that you need container image scanning built into your
CI/CD pipeline.

Some of the scanning tools discussed in this chapter are also capable of scanning for
security concerns in the files that describe and configure the infrastructure where
your applications run. In Chapter 9, on infrastructure as code and GitOps, let’s con‐
sider the security implications of automating infrastructure provisioning and
configuration.
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CHAPTER 9

Infrastructure as Code and GitOps

Software runs on computers, and when there are several computers involved, we start
using the term infrastructure to describe not just the machines themselves but also
the networking that connects them and devices such as storage that are available to
those computers. The way that this infrastructure is set up has a bearing on security.

This book focuses on container security, so I won’t go into details about the broad
topics of network and computer security. But in the cloud deployments where con‐
tainers typically run in production, the tools and processes used to set up the infra‐
structure can have a strong influence on the security outcomes for those containers.
In this chapter, I’ll start by talking briefly about infrastructure as code, and then go on
to describe how this approach set the foundations for GitOps, which in turn has some
very significant security characteristics.

IaC
When you are going to run software in “the cloud,” you will need to provision some
infrastructure to run it on, whether that involves spinning up virtual machines or
configuring bare metal machines. You’ll want to choose the operating system(s) to
deploy on those machines and connect them together, perhaps with a virtual private
cloud (VPC) to isolate them from other machines and users. You might also want to
set up access to cloud services like databases or messaging frameworks that your soft‐
ware is going to access. In a public cloud environment, the infrastructure can include
managed Kubernetes services or container orchestration systems like AWS Elastic
Container Service.
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The idea of infrastructure as code (IaC) is that instead of running commands man‐
ually to perform this provisioning, you have a set of files that describe your cloud
infrastructure—the virtual machines, networking, and managed cloud services that
your applications will run on. These files are used as input to tools like Terraform/
OpenTofu, CloudFormation, or Pulumi, which provision infrastructure according to
the definitions in those files. Automating this provisioning, rather than relying on a
human to manually enter commands, makes the process more reliable and
reproducible.

You have probably realized that the files that describe an infrastructure configuration
can—and should—be stored in source control such as Git, bringing all the usual ben‐
efits such as version history (so that faulty changes can easily be backed out), ability
for multiple people to collaborate on the infrastructure and review each other’s
changes, and a historical record of what has been deployed that can be used for audit‐
ing or troubleshooting.

Aside from autoscaling the number of VMs in use, infrastructure doesn’t typically
change terribly often. To create a new deployment of a set of infrastructure (perhaps
in a new geographic region or as a test environment), a user will typically run a com‐
mand, or push a button in a cloud console, to trigger the automated provisioning to
run. But one of the benefits of a cloud native approach to application software is the
ability to frequently push updates. GitOps builds on the concept of IaC, applying the
same ideas to workload configuration and enabling automated, dynamic updates.

GitOps
Alexis Richardson coined the term GitOps in 2017, describing a methodology in
which all the configuration information about the state of a system is held under
source control, just as the application source code is. When a user wants to make an
operational change to the system, they don’t apply commands directly but instead
check in the desired state in code form (for example, in YAML files for Kubernetes).
An automated system called the GitOps controller makes sure that the system is
updated to reflect the latest state as defined under code control. Tools such as
ArgoCD and Flux are open source examples of this and are both mature enough to
have reached graduated status in the CNCF.

GitOps impacts security in significantly beneficial ways. Users no longer need direct
access to the running system because everything is done at arm’s length via the source
code control system (typically Git, as the name implies). As shown in Figure 9-1, user
credentials allow access to the source control system, but only the automated GitOps
operator has permissions to modify the running system. Because Git records every
change, there is an audit trail for every operation.
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Figure 9-1. GitOps

GitOps encompasses the following principles:

Declarative
The files used to manage a system using GitOps are declarative; that is, they
describe the desired state of the system. This is in contrast to imperative code that
lists a set of commands that might achieve that desired state. The great thing
about a declarative approach is that it doesn’t matter what state you start from: it
is up to the tooling to figure out how to get from the starting state to the desired
state.

Versioned and immutable
If the files are stored in Git, there is a version history that can be used as an audit
trail to see what changes have been made, by whom, and when (and the commit
messages might even convey why). They are immutable—that is, a file stored in
the Git repo is used unmodified by the running system, and system changes are
permitted only if they are driven by files in the Git repo. Even trusted users aren’t
allowed to directly change configuration on the fly: they will have to run their
changes through the Git repo.

Automatic pulls
GitOps tools automatically pull the desired state information from a Git reposi‐
tory, with no need for manual input or control.

Continuous reconciliation
The files stored in Git describe the desired state of the infrastructure and the set
of workloads that should be running. GitOps tools repeatedly check whether the
actual state of the system matches this desired state and makes changes to recon‐
cile the running system to that desired state. If the state stored in Git changes (by
someone making a change to a file and committing it into the repository), then
this continuous reconciliation approach will eventually bring the running system
into line with this change.
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Check out OpenGitOps for further information about GitOps and
its principles.

Typically GitOps goes hand in hand with Kubernetes, because Kubernetes has declar‐
ative APIs and controllers, which perform continuous reconciliation. Tools like
Crossplane and the Cluster API extend the concept to use Kubernetes controllers for
managing infrastructure too.

Implications for Deployment Security
Both IaC and GitOps have advantages for repeatability and automation, but let’s dive
into their implications for security:

Version history
As mentioned previously, source control provides an audit trail showing who has
modified files and when.

Change management
Only users with the right Git permissions can push changes to the configuration.
Git systems can enforce additional rules, for example, requiring sign-off by more
than one person before a change is merged. It’s good practice to make use of this
so that all changes, whether to application source or to infrastructure configura‐
tion, are reviewed.

Drift prevention
Because continuous reconciliation constantly brings the running system into line
with the desired configuration, it’s hard for the system to “drift” away from that
configuration. Even if someone can manually apply a change (perhaps through a
compromise to the system), the GitOps controller will soon bring the system
back to the desired state.

Configuration scanning
There are several tools that can automatically scan or test IaC and/or GitOps files
for security concerns, including checkov, conftest, kubescape, and trivy. In just
the same way that you can configure your CI/CD pipeline to not deploy images
that fail your scans, configuration changes can be rejected if they don’t meet scan‐
ning requirements.
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Reduced permission requirements
In a GitOps model, humans don’t need direct write access to Kubernetes clusters.
Only the tooling needs the ability to write resource files into the cluster, exactly as
they have been pulled from Git. Human use of kubectl can be limited to read-
only operations using RBAC controls. This reduces the attack surface and pro‐
vides fewer opportunities for accidental misconfiguration. It also reinforces the
immutable desired state model, reducing opportunities for drift.

Secrets management
As discussed in Chapter 14, secrets should not be stored under source control!
GitOps tools integrate with external secret management tools like Vault, Sealed‐
Secrets, or the External Secrets Operator to retrieve secret values when they are
needed.

Rollback
If something goes wrong for any reason, it’s easy enough to use GitOps tooling to
roll back to a version that was previously working correctly.

Configuration as documentation
The configuration files stored in Git are the source of truth about how the system
is supposed to operate. There is no need for separate documentation that can
easily get out of sync with reality. All changes are associated with a commit, with
associated message and/or pull request that explains the change.

In a GitOps model, people no longer need to directly configure what’s running on a
Kubernetes cluster. This dramatically improves the security posture of the cluster itself,
but it pushes the focus to the GitOps tooling and the Git repos themselves. In particular,
since the configuration is held in code files, those files are subject to the same kind of
supply chain attacks as application source code, as described in Chapter 6:

• The most direct risk is called malicious manifest injection, where an attacker who
gets access to the Git repo can control what gets deployed. If a bad actor can
modify the configuration files, they can include workloads of their choice, mod‐
ify RBAC permissions, or introduce sidecar containers for data exfiltration.
Unless other layers of defense prevent it, the GitOps controller faithfully deploys
whatever state is described in the repository, including these malicious changes.

• The dependency confusion attack discussed in Chapter 7 can apply in a GitOps
context to additional types of dependency. For example, a GitOps pipeline might
resolve references to Terraform modules or Helm charts during deployment, so
the pipeline might be tricked into pulling malicious versions of dependencies
from public registries.

To defend against these attacks and to harden the Git repo, let’s consider some secu‐
rity best practices when you’re using GitOps.
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GitOps Security Best Practices
Some best practices to consider include the following, all of which can be enforced
easily within tooling like GitHub or GitLab:

• Ensure that all commits are signed, to prove who made any change to a file: this
is a wise move for source code of any kind, not just those repos being used to
drive IaC or GitOps.

• It’s a good idea to also require release tags to be signed, since if something goes
wrong, you might need to roll back to a known good release, and you want that
to be identified by someone trusted and authoritative.

• Use Git branch protection rules to require pull requests with approval by at least
one reviewer in addition to the person making a change, especially in sensitive
areas like security policies or RBAC configuration. Pull requests also provide a
record of who made a change and why, along with approval information.

• Disallow force pushes, since these can rewrite history and make audit trails less
reliable. Also, a force push that removes commits could conceivably confuse a
GitOps controller like Flux or ArgoCD.

• Require multifactor authentication when users are signing in to Git tooling. Even
better—since phone SMS codes and other factors can be phished—is to require
passwordless Fast IDentity Online (FIDO) authentication that uses cryptographic
credentials tied to the user’s device.

• Avoid using long-lived Personal Access Tokens for CI/CD workflows, because
they are vulnerable to being leaked through reuse or misuse and don’t rotate
automatically. Instead, have the CI/CD job authenticate itself using OIDC
(OpenID Connect), and use temporary, short-lived credentials for actions such as
retrieving secrets, pushing images, or deploying code.

• Require status checks from scanning tools to complete successfully before merge.
• Apply least-privilege principles to repository access so that only trusted users can

push, merge, or review changes. GitHub and GitLab provide team management
capabilities to help with this. Note that GitOps controllers (such as Flux or
ArgoCD) need permissions to write to the Kubernetes cluster(s), but they only
need permission to read from Git repos.

• Consider separating the repo used for IaC/GitOps manifests from the repo(s)
used for application source code. This limits the blast radius if a repo is compro‐
mised, and makes it easier to ensure least privilege access.

128 | Chapter 9: Infrastructure as Code and GitOps

https://docs.github.com/en/actions/concepts/security/openid-connect
https://docs.github.com/en/actions/concepts/security/openid-connect


• As well as audit logging, GitHub and GitLab offer additional paid security fea‐
tures that you might want to consider.

• Consider using admission controllers and/or runtime security tooling to detect
and protect against unexpected software being deployed.

Summary
This chapter discussed why infrastructure and configuration information should be
stored under code control, and described the advantages and security implications of
using IaC and GitOps tools to apply that configuration to a deployment. I hope you’ll
find the advice on best practices useful when setting up Git repos for use with GitOps
tooling.

Both Chapter 7 and this chapter considered ways to avoid deploying insecure con‐
tainer images and configuration, but based on the principle of defense in depth, we
should assume that it’s possible for some vulnerabilities to make it past these meas‐
ures. In Chapter 10, we’ll consider strengthening the isolation of a running container
so that it’s harder for a malicious actor to exploit vulnerabilities.
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CHAPTER 10

Strengthening Container Isolation

In Chapters 3 and 4, you saw how containers create some separation between work‐
loads even though they are running on the same host. In this chapter, you’ll learn
about some more advanced tools and techniques that can be used to strengthen the
isolation between workloads.

Suppose you have two workloads and you don’t want them to be able to interfere with
each other. One approach is to isolate them so that they are unaware of each other,
which at a high level is really what containers and virtual machines are doing.
Another approach is to limit the actions those workloads can take so that even if one
workload is somehow aware of the other, it is unable to take actions to affect that
workload. Isolating an application so that it has limited access to resources is known
as sandboxing.

When you run an application as a container, the container acts as a convenient object
for sandboxing. Every time you start a container, you know what application code is
supposed to be running inside that container. If the application were to be compro‐
mised, the attacker might try to run code that is outside that application’s normal
behavior. By using sandboxing mechanisms, we can limit what that code can do,
restricting the attacker’s ability to affect the system.

Several of these sandboxing approaches involve applying a profile when you start a
container, where that profile defines operations that the container can or can’t per‐
form. There are also eBPF-based runtime security tools that effectively sandbox what
a container can do, with a profile that can be updated or applied while a container is
running. We’ll cover these in Chapter 15.

The first sandboxing mechanism we’ll consider is seccomp.
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Seccomp
In “System Calls” on page 15, you saw that system calls provide the interface for an
application to ask the kernel to perform certain operations on the application’s behalf.
Seccomp is a mechanism for restricting the set of system calls that an application is
allowed to make.

When it was first introduced to the Linux kernel in 2005, seccomp (for “secure com‐
puting mode”) meant that a process, once it had transitioned to this mode, could
make only a few system calls:

• sigreturn (return from a signal handler)
• exit (terminate the process)
• read and write, but only using file descriptors that were already open before the

transition to secure mode

Untrusted code could be run in this mode without being able to achieve anything
malicious. Unfortunately, the side effect is that lots of code couldn’t really achieve
anything at all useful in this mode. The sandbox was simply too limited.

In 2012, a new approach called seccomp-bpf was added to the kernel. This uses
Berkeley Packet Filters to determine whether a given system call is permitted, based
on a seccomp profile applied to the process. Each process can have its own profile.

Berkeley Packet Filters are a precursor to eBPF, which we’ll discuss
in later chapters.

The BPF seccomp filter can look at the system call opcode and the parameters to the
call to make a decision about whether the call is permitted by the profile. In fact, it’s
slightly more complicated than that: the profile indicates what to do when a syscall
matches a given filter, with possible actions including returning an error, terminating
the process, or calling a tracer. But for most uses in the world of containers, the pro‐
file either permits a system call or returns an error, so you can think of it as listing
which systems will be allowed or denied.

This can be useful in the container world because there are several system calls that a
containerized application really has no business trying to make, except under
extremely unusual circumstances. For example, you really don’t want any of your
containerized apps to be able to change the clock time on the host machine, so it
makes sense to block access to the syscalls clock_adjtime and clock_settime.
Unless you want containers to be making changes to kernel modules, there is no need
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for them to call create_module, delete_module, or init_module. There is a keyring
in the Linux kernel, and it isn’t namespaced, so it’s a good idea to block containers
from making calls to request_key or keyctl.

The Docker default seccomp profile is part of the Moby open source project and
blocks more than 40 of the 400+ syscalls (including all the examples just listed)
without ill effects on the vast majority of containerized applications. Unless you have
a reason not to do so, it’s a good default profile to use.

Kubernetes has supported the ability to configure a seccompProfile setting in the
podSecurityContext for a workload since version 1.22, and the RuntimeDefault
option for this setting uses the default profile for the container runtime (for example
containerd uses the Moby/Docker profile). You might want to go even further and
limit a container to an even smaller group of syscalls: in an ideal world, there would
be a tailored profile for each application that permits precisely the set of syscalls that
it needs. There are a few different possible approaches to creating this kind of profile:

• You can use strace to trace out all the system calls being called by your applica‐
tion. Jess Frazelle described how she did this to generate and test the default
Docker seccomp profile in a blog post.

• For Kubernetes deployments, there is a Security Profiles Operator, which can
record the syscalls used by an application and then apply them as a profile. This
tool can generate AppArmor and SELinux profiles as well as seccomp—we’ll dis‐
cuss those shortly.

• If creating seccomp profiles yourself seems like a lot of effort, you may want to
look at commercial container security tools, some of which have the ability to
observe individual workloads to automatically generate custom seccomp profiles.

One thing to be aware of with seccomp profiles is that system calls continue to evolve
as Linux develops over time. Since writing the first edition of this book, around 100
syscalls have been added to the kernel. Generally, application developers don’t pro‐
gram directly to syscalls, as they are abstracted by programming language libraries,
and upgrading those libraries can potentially mean a change to the underlying system
calls that are used, without this change being obvious to the application developers. A
strict seccomp profile might deny access to a new system call being legitimately used,
so whenever the host operating system is upgraded to a new kernel version that
includes new system calls, profiles might need to be updated accordingly.

If you are interested in the underlying technology behind strace,
you might like to watch my talk at GopherCon 2017, where I cre‐
ated a very basic strace implementation in a few lines of Go.
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AppArmor
AppArmor (short for “Application Armor”) is one of a handful of Linux Security
Modules (LSMs) that can be enabled in the Linux kernel. You can check the LSMs
available on a machine by looking at the contents of the /sys/kernel/security/lsm file.

In AppArmor, a profile can be associated with an executable file, determining what
that file is allowed to do in terms of capabilities and file access permissions. You’ll
recall that these were both covered in Chapter 2.

Various container runtimes include support for AppArmor, including Docker,
containerd, and CRI-O.

AppArmor and other LSMs implement mandatory access controls (MACs). A MAC is
set by a central administrator, and once set, other users do not have any ability to
modify the control or pass it on to another user. This is in contrast to Linux file per‐
missions, which are discretionary access controls (DACs), in the sense that if my user
account owns a file, I could grant your user access to it (unless this is overridden by a
MAC), or I could set it as unwritable even by my own user account to prevent myself
from inadvertently changing it. Using MACs gives the administrator much more
granular control of what can happen on their system, in a way that individual users
can’t override.

AppArmor includes a “complain” mode in which you can run your executable against
a profile and any violations get logged. The idea is that you can use these logs to
update the profile, with the goal of eventually seeing no new violations, at which
point you start to enforce the profile. Once you have a profile, you install it under
the /etc/apparmor.d directory and run a tool called apparmor_parser to load it. See
which profiles are loaded by looking at /sys/kernel/security/apparmor/profiles
or by running sudo apparmor_status. This will show you the available profile
names.

Running a container using docker run --security-opt="apparmor:<profile

name>" ... will constrain the container to the behaviors permitted by the profile. By
default, Docker will apply a default AppArmor profile, which blocks various opera‐
tions such as using ptrace within a container. You probably won’t see the profile
in /etc/apparmor.d, though, since Docker constructs it in memory and passes it to
apparmor_parser when the Docker daemon starts.

You can see which AppArmor profile is applied to a running container in the output
from docker inspect <container ID>, which shows output like this:

"AppArmorProfile": "docker-default"
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You can add annotations to apply an AppArmor profile on a container in a
Kubernetes pod. The Security Profile Operator mentioned earlier can build and apply
AppArmor profiles specific to a workload.

SELinux
SELinux, or Security-Enhanced Linux, is another LSM option in Linux. History (or at
least Wikipedia) relates that it has its roots in projects by the US National Security
Agency, and it’s now an open source project primarily maintained by Red Hat. If
you’re running a Red Hat distribution (RHEL, Fedora, or Centos Stream) on your
hosts, there is a good chance that SELinux is enabled already.

SElinux lets you constrain what a process is allowed to do in terms of its interactions
with files and other processes. Each process runs under an SELinux domain—you can
think of this as the context that the process is running in—and every file has a type.
You can inspect the SELinux information associated with each file by running ls -lZ,
and similarly you can add -Z to the ps command to get the SELinux detail for
processes.

A key distinction between SELinux permissions and regular DAC Linux permissions
(as seen in Chapter 2) is that in SELinux, permissions have nothing to do with the
user identity—they are described entirely by labels. That said, they work together, so
an action has to be permitted by both DAC and SELinux.

Every file on the machine has to be labeled with its SELinux information before you
can enforce policies. These policies can dictate what access a process of a particular
domain has to files of a particular type. In practical terms, this means you can limit
an application to have access only to its own files and prevent any other processes
from being able to access those files. In the event that an application becomes com‐
promised, this limits the set of files that it can affect, even if the normal DACs would
have permitted it. When SELinux is enabled, it has a mode in which policy violations
are logged rather than enforced (similar to what we saw in AppArmor).

Manually creating an effective SELinux profile for an application takes in-depth
knowledge of the set of files that it might need access to, in both happy and error
paths, so that task may be best left to the app developer. Some vendors provide pro‐
files for their applications.

SELinux is tightly integrated with Red Hat–maintained container runtimes podman
and CRI-O. Under these runtimes, each container runs in its own SELinux domain,
and file volumes can be marked with the :z or :Z flag to automatically relabel content
for container access.
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If you are interested in learning more about SELinux, there is a
good tutorial on the subject by DigitalOcean, or you might prefer
Dan Walsh’s visual guide.

The security mechanisms we have seen so far—seccomp, AppArmor, and SELinux—
all police a process’s behavior at a low level. Generating a complete profile in terms of
the precise set of system calls or capabilities needed can be a difficult job, and a small
change to an application can require a significant change to the profile in order to
run. The administrative overhead of keeping profiles in line with applications as they
change can be a burden, and human nature means there is a tendency either to use
loose profiles or to turn them off altogether. The default Docker seccomp and
AppArmor profiles provide some useful guardrails if you don’t have the resources to
generate per-application profiles.

It’s worth noting, however, that although these protection mechanisms limit what the
user space application can do, there is still a shared kernel. A vulnerability within the
kernel itself, like Dirty COW, would likely not be prevented by any of these tools
(unless they happen to block all possible execution paths that might access the kernel
vulnerability).

So far in this chapter, you have seen security mechanisms that can be applied to a
container to limit what that container is permitted to do. Now let’s turn to a set of
sandboxing techniques that fall somewhere between container and virtual machine
isolation, starting with gVisor.

gVisor
Google’s gVisor sandboxes containers by intercepting system calls, in much the same
way that a hypervisor intercepts the system calls of a guest virtual machine. It imple‐
ments a substantial set of Linux system calls in user space through paravirtualization.
As you saw in Chapter 5, paravirtualization means reimplementing instructions that
would otherwise be run by the host kernel.

To do this, a component of gVisor called the Sentry intercepts syscalls from the appli‐
cation. Sentry is heavily sandboxed using seccomp, such that it is unable to access
filesystem resources itself. When it needs to make system calls related to file access, it
off-loads them to an entirely separate process called the Gofer.

Even those system calls that are unrelated to filesystem access are not passed through
to the host kernel directly but instead are reimplemented within the Sentry. Essen‐
tially it’s a guest kernel, operating in user space.

The gVisor project provides an executable called runsc that is compatible with OCI-
format bundles and acts very much like the regular runc OCI runtime that we met in
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Chapter 6. Running a container with runsc allows you to easily see the gVisor pro‐
cesses. In the following example, I am running the same bundle for Alpine Linux that
I used in “OCI Standards” on page 71:

$ cd alpine-bundle
$ sudo runsc run sh

In a second terminal, you can use runsc list to see containers created by runsc:

$ sudo runsc list
ID  PID    STATUS   BUNDLE                    CREATED              OWNER
sh  32258  running  /home/liz/alpine-bundle   2019-08-26T13:51:21  root

Inside the container, run a sleep command for long enough that you can observe it
from the second terminal. The runsc ps <container ID> shows the processes run‐
ning inside the container:

$ runsc ps sh
UID       PID       PPID      C         TTY       STIME     TIME      CMD
5000      1         0         0         pts/0     11:49     0s        sh
5000      2         1         0         pts/0     11:49     10ms      sleep

So far, so much as expected, but things get interesting if you start to look at the pro‐
cesses from the host’s perspective (the output here was edited to show the interesting
parts):

$ ps fax
PID   TTY   STAT TIME COMMAND
...
26162 pts/1 Ss   0:00 \_ sudo runsc run sh
26163 pts/1 Sl+  0:00     \_ runsc run sh
26170 ?     Ssl  0:00         \_ runsc-gofer --root=/var/run/runsc gofer 
                                             --bundle=/home/liz/alpine-bundle ...
26175 ?     Ssl  0:14         \_ runsc-sandbox --root=/var/run/runsc boot 
                                                           --apply-caps=false ...
26205 ?     Ss   0:00             \_ [exe]
26211 ?     S    0:00             \_ [exe]
26213 ?     SN   0:00             |   \_ [exe]
26228 ?     S    0:00             \_ [exe]
26229 ?     SN   0:00             |   \_ [exe]
26230 ?     S    0:00             \_ [exe]
26231 ?     SN   0:00                 \_ [exe]

...

You can see the runsc run process, which has spawned two processes: one is for the
Gofer; the other is runsc-sandbox but is referred to as the Sentry in the gVisor docu‐
mentation. Sandbox has several child and grandchild processes, and looking at the
process information for these child and grandchild processes from the host’s
perspective reveals something interesting: they are all running the runsc executable.
For brevity, the following example shows one child and one grandchild:
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$ sudo ls -l /proc/26230/exe
lrwxrwxrwx 1 root root 0 Jul 29 11:57 /proc/26230/exe -> /usr/bin/runsc
$ sudo ls -l /proc/26231/exe
lrwxrwxrwx 1 root root 0 Jul 29 11:57 /proc/26231/exe -> /usr/bin/runsc

Notably, none of these processes refers to the sleep executable that we know is run‐
ning inside the container because we can see it with runsc ps. Trying to find that
sleep executable more directly from the host is also unsuccessful:

$ sudo ps -eaf | grep sleep
liz  3554 3171  0 14:26 pts/2    00:00:00 grep --color=auto sleep

This inability to see the processes running inside the gVisor sandbox is much more
akin to the behavior you see in a regular VM than it is like a normal container. And it
affords extra protection for the processes running inside the sandbox: even if an
attacker gets root access on a host, there is still a relatively strong boundary between
the host and the running processes. Or at least there would be, were it not for the
runsc command itself! It offers an exec subcommand that we can use, as root on the
host, to operate inside a running container:

$ sudo runsc exec sh ps
PID   USER     TIME  COMMAND
  1   root     0:00  /bin/sh
 21   root     0:00  sleep 100
 22   root     0:00  ps

While this isolation looks very powerful, you might run into limitations:

• The first is that not all Linux syscalls have been implemented in gVisor. The
project has a compatibility guide, which notes that many languages examine the
available system calls and can call back to alternatives at runtime, so the majority
of applications will function within gVisor. These days, gVisor even runs success‐
fully on graphics processing units (GPUs) and tensor processing units (TPUs),
commonly used for accelerating machine-learning workloads.

• The second is that performance will likely be impacted. The gVisor project pub‐
lished a performance guide to help you explore this in more detail. Essentially,
gVisor deliberately chooses an improved security model, sacrificing some perfor‐
mance to achieve those security goals. There is a KVM-based platform mode for
gVisor that may give you better performance on bare-metal deployments.
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If you’re running on Google’s Cloud Platform, gVisor is readily available, and you can
also use it on self-managed, vanilla Kubernetes.

As you have seen in this section, gVisor provides an isolation mechanism that more
closely resembles a virtual machine than a regular container. However, gVisor affects
only the way that an application accesses system calls. Namespaces, cgroups, and
changing the root are still used to isolate the container.

Now let’s turn to considering approaches that use virtual machine isolation for run‐
ning containerized applications.

Kata Containers
As you’ve seen in Chapter 4, when you run a regular container, the container runtime
starts a new process within the host. The idea with Kata Containers is to run contain‐
ers within a separate virtual machine. This approach gives the ability to run applica‐
tions from regular OCI format container images, with all the isolation of a virtual
machine. The Kata Containers project is hosted by the Open Infra Foundation.

For each container, Kata creates a separate virtual machine using a “micro-VMM”—a
lightweight virtual machine monitor (VMM) such as Firecracker, QEMU, or Cloud
Hypervisor—we’ll consider these technologies shortly.

Like gVisor, Kata Containers make a trade-off between security and performance. For
many deployments, especially where workloads are essentially trusted (for example,
they are all created and operated by the same business), the additional isolation is an
unnecessary cost, requiring additional memory, CPU, and impacting performance,
and features like shared volumes or GPU support may not be available.

Lightweight/Micro Virtual Machines
As you saw in “Disadvantages of Virtual Machines” on page 67, conventional virtual
machines are slow to start, making them unsuitable for the ephemeral workloads that
typically run in containers. But what if you had a virtual machine that boots
extremely quickly? There are now several options of minimal virtual machines, often
called “lightweight VMs” or “micro VMs,” offering the benefits of secure isolation
through a hypervisor and no shared kernel but designed specifically for containers
and with fast startup times.

Firecracker and Cloud Hypervisor are both minimal VMMs written in Rust, which as
a language provides memory-safety guarantees that help to avoid vulnerabilities and
achieve startup times around 100ms. Edera has applied a similar approach, creating a
hypervisor based on Xen but largely rewritten in Rust. Apple recently launched the
Apple Containerization open source project, which allows containers to run in light‐
weight Linux VMs within a hypervisor written in Swift.
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These “micro-VMMs” are able to start VMs so fast because they strip out functional‐
ity that is generally included in a kernel but that isn’t required in a container. Enu‐
merating devices is one of the slowest parts of booting a system, but containerized
applications rarely have a reason to use many devices. The main saving comes from a
minimal device model that strips out all but the essential devices.

There are some differences in philosophy and background between these projects:

• Firecracker originated in AWS and is used at scale for running Lambda work‐
loads. It is designed to provide the minimal necessary functionality for running
and isolating container workloads with the fastest startup times.

• Cloud Hypervisor supports more complex workloads such as nested virtualiza‐
tion, Windows as a guest OS, and GPU support.

• Edera takes the approach of running containers in lightweight VM-like “zones,”
with an emphasis on security based on stronger isolation than conventional
containers.

• Apple Containerization allows containers to run in their own lightweight VMs
on a Mac, without requiring a Linux virtual machine to act as the host for those
containers.

As with most things in technology, there are trade-offs. The greater isolation pro‐
vided by these VM-based approaches certainly gives a much stronger security bound‐
ary. Each container has its own kernel, so a “container escape” is possible only
through a “virtualization escape.” The downside is that without a shared kernel,
eBPF-based infrastructure tools lose visibility and control over all the containers on a
host and would be closer to the sidecar model with an instance per container/VM.
The performance impact is likely to be minimal for many workloads, but it might
make a difference.

Edera has compared different virtualization approaches in its per‐
formance benchmarking.

There is one last approach to isolation that I’d like to mention in this chapter. It’s
rarely used in practice, but I think it’s an interesting approach that takes an even more
extreme approach to reducing the size of the guest operating system: unikernels.
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Unikernels
The operating system that runs in a virtual machine image is a general-purpose offer‐
ing that you can reuse for any application. It stands to reason that apps are unlikely to
use every feature of the operating system. If you were able to drop the unused parts,
there would be a smaller attack surface.

The idea of unikernels is to create a dedicated machine image consisting of the appli‐
cation and the parts of the operating system that the app needs. This machine image
can run directly on the hypervisor, giving the same levels of isolation as regular
virtual machines but with a lightweight startup time similar to what we see in
Firecracker.

Every application has to be compiled into a unikernel image complete with every‐
thing it needs to operate. The hypervisor can boot up this machine in just the same
way that it would boot a standard Linux virtual machine image.

IBM’s Nabla project is mostly inactive now, but it made use of unikernel techniques
for containers. Nabla containers use a highly restricted set of just seven system calls,
with this policed by a seccomp profile. All other system calls from the application get
handled within a unikernel library OS component. By accessing only a small propor‐
tion of the kernel, Nabla containers reduce the attack surface.

Unikraft is a unikernels project under the Linux Foundation, aimed at cloud
applications.

I should point out that unikernels aren’t containers, but they provide a different way
of isolating applications from each other on a shared host machine.

Summary
In this chapter, you have seen that there are a variety of ways to isolate instances of
application code from one another, which look to some degree like what we under‐
stand as a “container”:

• Some options use regular containers, with additional security mechanisms
applied to bolster basic container isolation: seccomp, AppArmor, SELinux. These
are proven and battle-tested but also renowned for how hard they are to manage
effectively.

• Where stronger boundaries are needed between containers, micro-VMMs can
provide the isolation of a virtual machine but can come with performance
penalties.

• There is a third category of sandboxing techniques such as gVisor that fall some‐
where between container and virtual machine isolation.

Summary | 141

https://nabla-containers.github.io


What’s right for your applications depends on your risk profile, and your decision
may be influenced by the options offered by your public cloud and/or managed solu‐
tion. You should also consider runtime security tools (which we’ll come to in Chap‐
ter 15) as they offer a more flexible and dynamic approach to sandboxing that might
be more appropriate for your deployments. These might be an alternative to static
sandboxing profiles, or they could be combined to provide defense in depth.

Regardless of the container runtime you use and the isolation it enforces, there are
ways that a user can easily compromise this isolation. Move on to Chapter 11 to see
how.
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CHAPTER 11

Breaking Container Isolation

In Chapter 4, you saw how a container is constructed and how it gets a limited view
of the machine it is running on. In this chapter, you’ll see how easy it is to configure
containers to run in such a way that this isolation is effectively broken.

Sometimes you will want to do this deliberately, to achieve something specific such as
off-loading networking functionality to a sidecar container. In other circumstances,
the ideas discussed in this chapter could be seriously compromising the security of
your applications!

To start with, let’s talk about what is arguably the most insecure-by-default behavior
in the container world: running as root.

Containers Run as Root by Default
Unless your container image specifies a non-root user or you specify a nondefault
user when you run a container, by default the container will run as root. And unless
you are set up with user namespaces, this is not just root inside the container but also
root on the host machine.

This example assumes that you are using the docker command
provided by Docker. If you have installed podman, you may have
followed the advice to alias docker so that it actually runs podman
instead. The behavior of podman is quite different with regard to
root users. I’ll come to the differences later in this chapter, but for
now be aware that the following example won’t work with podman.
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As a non-root user, run a shell inside an Alpine container using docker and check the
user identity:

$ whoami
liz
$ docker run -it alpine sh
/ $ whoami
root

Even though it was a non-root user that ran the docker command to create a con‐
tainer, the user identity inside the identity is root. Now let’s confirm that this is the
same as root on the host by opening a second terminal on the same machine. Inside
the container, run a sleep command:

/ $ sleep 100

In the second window, check the identity of this user:

$ ps -fC sleep
UID        PID  PPID  C STIME TTY          TIME CMD
root     30619 30557  0 16:44 pts/0    00:00:00 sleep 100

This process is owned by the root user from the host’s perspective. Root inside the
container is root on the host.

If you’re using runc rather than docker to run containers, a similar demo would be less
convincing because (aside from rootless containers, which we will discuss shortly) you
need to be root on the host to run a container in the first place. This is because only root
has sufficient capabilities to create namespaces, generally speaking. In Docker, it’s the
Docker daemon, running as root, that creates containers on your behalf.

Under Docker, the fact that containers run as root, even when initiated by a non-root
user, is a form of privilege escalation. In and of itself, it’s not necessarily a problem
that the container is running as root, but it does ring alarm bells when thinking about
security. If an attacker can escape a container that is running as root, they have full
root access to the host, which means free access to everything on the machine,
including all the other containers. Do you want to be just one line of defense away
from an attacker taking over a host?

Fortunately, it’s possible to run containers as non-root users. You can either specify a
non-root user ID or use the aforementioned rootless containers. Let’s look at both of
these options.

Override the User ID
You can override this at runtime by specifying a user ID for the container.

In runc, you can do this by modifying the config.json file inside the bundle. Change
the process.user.uid, for example, like this:
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    ...
    "process": {
            "terminal": true,
            "user": {
                    "uid": 5000,
                    ...
            }
            ...
    }

Now the runtime will pick up this user ID and use it for the container process:

$ sudo runc run sh
$ whoami
whoami: unknown uid 5000
$ sleep 100

Despite using sudo to run as root, the user ID for the container is 5000, and you can
confirm this from the host:

$ ps -fC sleep
UID        PID  PPID  C STIME TTY          TIME CMD
5000     26909 26893  0 16:16 pts/0    00:00:00 sleep 50

As you saw in Chapter 6, an OCI-compliant image bundle holds both the root filesys‐
tem for an image and the runtime configuration information. This same information
is packed into a Docker image. You can override the user config with the --user
option, like this:

$ docker run -it --user 5000 ubuntu bash
I have no name!@b7ca6ec82aa4:/$

You can change the user ID that is built into a Docker image with the USER command
in its Dockerfile. But the vast majority of container images on public repositories are
configured to use root because they don’t have a USER setting. If there is no user ID
specified, by default your container will run as root.

No New Privileges
In Chapter 2 you met the setuid flag, which allows someone else to assume the iden‐
tity of that file’s owner when they execute it.

Let’s take a look at an example of this being used to override the user specified in the
following Dockerfile:

FROM ubuntu:24.04
RUN cp /usr/bin/bash /tmp/mybash          
RUN chmod 4755 /tmp/mybash                
RUN useradd -ms /tmp/mybash myuser        
USER myuser                               
ENTRYPOINT ["/tmp/mybash"]                
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Copy the bash executable into the /tmp directory in the container image.

The 4 in this chmod command sets the setuid bit on that file, and the 755 allows
anyone to read and execute the file and only the owner to write it.

Create a new user called myuser.

Make the container run under myuser’s identity.

Set the entry point to run the copy of bash that has the setuid bit.

Running this container image starts a bash shell under the myuser identity:

$ docker run -it nopriv
mybash-5.2$ whoami
myuser
mybash-5.2$ id
uid=1001(myuser) gid=1001(myuser) groups=1001(myuser)

If you look at the executable, it’s owned by root and has the setuid flag:

mybash-5.2$ ls -l /tmp/mybash
-rwsr-xr-x 1 root root 1446024 May  8 13:16 /tmp/mybash

With that in mind, you might expect the shell to be running as root, until you recall
what we learned in Chapter 2 about bash checking the user ID and resetting to the
original user to avoid this easy route to privilege escalations.

However, bash has a -p option that allows overriding this check and running as the
file owner after all. You can specify this option when running the same container and
get a very different result:

$ docker run -it nopriv -p
mybash-5.2# whoami
root
mybash-5.2# id
uid=1001(myuser) gid=1001(myuser) euid=0(root) groups=1001(myuser)

In the output from id, you can see that although the executable was run by myuser, it
picked up the effective user ID (euid) of root. Because this example uses bash, you
need to specify the -p flag to stop it from reverting to the original user, but it required
additional work on the part of the developers of bash to add that functionality. If the
image specified a different executable with the setuid flag as the entry point, simply
running the container would override the specified USER and the container would be
running as root.
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1 Some image scanners can detect setuid executables, as mentioned in Chapter 8.

It would be easy to overlook the setuid flag1 and assume that the USER directive
would be effective, so to add another layer of defense, you can use the no-new-
privileges security option at runtime to prevent this kind of privilege escalation:

$ docker run -it --security-opt no-new-privileges nopriv -p
myuser@e731e9ac6d6c:/$ whoami
myuser
myuser@e731e9ac6d6c:/$ id
uid=1001(myuser) gid=1001(myuser) groups=1001(myuser)

In this example, the user that the container is supposed to run with is specified at
build time using the USER directive, but the effect is the same if you run the container
with the --user option.

In Kubernetes you can achieve the same effect by specifying securityContext.allow
PrivilegeEscalation: false in the container spec for your pods. This is a good
default to apply to all applications, unless you have an extremely good reason to allow
privilege escalations inside a pod.

Root Requirement Inside Containers
There are many commonly used container images that encapsulate popular software
that was originally designed to run directly on servers. Take the Nginx reverse proxy
and load balancer, for example; it existed long before Docker became popular, but
there are official Nginx container images available on Docker Hub.

At least at the time of writing this book, the standard Nginx container image is con‐
figured to run as root by default. If you start an nginx container and look at the pro‐
cesses running within it, you will see the master process running as root:

$ docker run -d --name nginx nginx
4562ab6630747983e6d9c59d839aef95728b22a48f7aff3ad6b466dd70ebd0fe
$ docker top nginx 
UID       PID     PPID    C  STIME   TTY   TIME       CMD
root      24945   24920   0  22:35   ?     00:00:00   nginx: master process nginx
message+  24992   24945   0  22:35   ?     00:00:00   nginx: worker process
message+  24993   24945   0  22:35   ?     00:00:00   nginx: worker process
message+  24994   24945   0  22:35   ?     00:00:00   nginx: worker process
message+  24995   24945   0  22:35   ?     00:00:00   nginx: worker process
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The main point of this example was to show the process that’s run‐
ning as root, but are you curious about that message+ username for
the worker processes? The first thing to note is that the + character
means it’s a name longer than eight characters, starting with the
message. The output from docker top is showing usernames as
they are defined on the host machine, not how they are defined
within the container. If I look at the list of users defined in /etc/
passwd on my host machine, I see output like this:

$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
...
messagebus:x:101:101::/nonexistent:/usr/sbin/nologin
...
lizr:x:501:1000:lizr:/home/lizr.linux:/bin/bash
...

The description of the official Nginx image mentions that since
version 1.17.0, it has used unprivileged user ID 101 for the worker
processes. The user with ID 101 is messagebus on this machine, so
that corresponds to the output from the docker top command.

It makes total sense for the nginx code to run as root when it’s running on a server.
By default it accepts requests on the traditional web port 80. Opening low-numbered
ports (under 1024) typically requires the CAP_NET_BIND_SERVICE (see Chapter 2), and
the simplest way to ensure this is true is to have nginx run as the root user. But this
requirement makes a lot less sense in a container, where port mapping means that the
nginx code could listen on any port, with this mapped to port 80 (if required) on the
host.

Instead of running as root, another option would be to use setcap to add the
CAP_NET_BIND_SERVICE capability to the nginx executable file during the container
image build process. The Dockerfile could specify a non-root user, and the executable
would still be able to bind to a low-numbered port. Perhaps the Nginx maintainers
chose not to do this because nginx wouldn’t work if capabilities were dropped by the
container runtime (for example, docker --cap-drop=ALL). It would also require
installing the libcap2-bin package that provides setcap, at least during the build
process.

There is another way: you can allow unprivileged users to bind to any port by using
sysctl to change the kernel setting net.ipv4.ip_unprivileged_port_start to 0.
Docker now sets this by default, and in Kubernetes you can configure this and other
sysctl settings for individual workloads using podSecurityContext.
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Recognizing that running as root is a problem, many vendors provide container
images that run as normal, unprivileged users. Nginx has an official unprivileged
image that has a few differences from the root-based image, such as using port 8080
by default. This allows it to work even in a container runtime that doesn’t support the
use of sysctl to permit any user to open low-numbered ports.

If Nginx didn’t already provide one, it would be relatively straightforward to build an
Nginx image that can run as a non-root user (there is a simple example here). For
other applications, it can be trickier and may require changes to the code that are
more extensive than a few tweaks to the Dockerfile and some configurations. Thank‐
fully, there are organizations, including Bitnami, Chainguard, and the distroless
images from Google, that have gone to the trouble of creating and maintaining a ser‐
ies of non-root container images for many popular applications. Many software pro‐
viders offer unprivileged versions of their distributions (like the one that Nginx
provides, as mentioned in the previous paragraph).

Opening low-numbered ports isn’t the only reason a piece of software might need to
run as root. Another common operation that requires privileges is to install software.

Root for Installing Software
Container images are sometimes configured to run as root is so that they can install
software using package managers like yum or apt. It’s completely reasonable for this
to happen during the build of a container image, but once the packages are installed,
a later step in the Dockerfile could easily be a USER command so that the image is
configured to run under a non-root user ID. Really, you should be doing this as part
of a multistage build (see Chapter 7 for more on this).

I strongly recommend you don’t allow containers to install software packages at run‐
time, for several reasons:

• It’s inefficient: if you install all the software you need at build time, you do it once
only rather than repeating it every time you create a new instance of the
container.

• Packages that get installed at runtime haven’t been scanned for vulnerabilities
(see Chapter 8).

• Related to the fact that the packages haven’t been scanned, but arguably worse: it’s
harder to identify exactly what versions of packages are installed into each differ‐
ent running instance of your containers, so if you do become aware of a vulnera‐
bility, you won’t know which containers to kill and redeploy.

• Depending on the application, you might be able to run the container as read-
only (by using the --read-only option in docker run or by setting the mount as
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readOnly in a Kubernetes pod specification), which would make it harder for an
attacker to install code.

• Arguably the most important reason is that adding packages at runtime means
you are not treating them as immutable. See “Immutable Containers” on page
111 for more about the security advantages of immutable containers.

Privileges for eBPF and Kernel Modules
Another thing that requires significant privileges is modifying the kernel, which you
can do at runtime using Kernel modules or with eBPF. Both these approaches allow
for code to be dynamically loaded into the Linux kernel at runtime to extend its func‐
tionality. As you know, all containers on a host share the same kernel, so adding, say,
observability or security tools into the kernel means they can immediately see and
affect all the containerized applications on that host.

The problem with kernel modules is that they don’t have the same extensive commu‐
nity testing and field hardening as the rest of the Linux kernel. Users are, quite rea‐
sonably, wary of installing kernel modules because of the risk of a bug that causes a
crash and brings down the whole machine.

In contrast, eBPF programs are guaranteed to be safe to run in the kernel thanks to
the eBPF verification process, which analyzes every possible execution path through a
program and refuses to load it into the kernel if there is any possibility that it might
crash. This makes eBPF a very powerful platform for building infrastructure tooling,
especially in containerized environments.

The term eBPF used to stand for extended Berkeley Packet Filter,
but this was confusing since eBPF can do so much more than filter‐
ing packets, so the eBPF community decided that it’s best to con‐
sider it a standalone term rather than an acronym.
To delve into eBPF, you might like to start with the slides from my
talk on unleashing the kernel with eBPF. The eBPF documentary is
an engaging watch that tells the story of how eBPF came to be.
You’ll find a lot more information and resources on eBPF and on
Brendan Gregg’s website, and if you are inspired to try writing
eBPF programs yourself, you could check out my book Learning
eBPF, published by O’Reilly.

As you would expect, it takes significant privileges to load kernel modules or eBPF
programs into the kernel. Kernel modules need the CAP_SYS_MODULE capability, and
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2 From Linux 5.8 onward. Before that, loading eBPF programs was covered by CAP_SYS_ADMIN.

eBPF needs at least CAP_BPF2 plus some other capabilities that might be necessary
depending on exactly what the eBPF program(s) do, such as:

• CAP_NET_ADMIN to attach into the networking stack
• CAP_PERFMON for attaching to kernel hooks related to performance monitoring
• CAP_SYS_RESOURCE to raise limits required for eBPF map memory
• CAP_SYS_ADMIN for mounting filesystems
• CAP_SYS_PTRACE for tracing user processes

Kernel-based tools may very likely also need certain filesystems from the host mounted
into the container (for example, /lib/modules for kernel modules or /sys/fs/bpf for
eBPF).

The bottom line is that if you want to run eBPF-based (or kernel module) tools, you
will have to allow them additional privileges. The benefits may well outweigh the
risks as it opens up the option of eBPF-based runtime security tooling, which we’ll
discuss in Chapter 15.

For your own application code, use a non-root user whenever you can, or run with
user namespaces (as seen in “User Namespace” on page 47), so that root inside the
container is not the same as root on the host. One practical way to run with user
namespaces, if your system supports it, is to use rootless containers.

Rootless Containers
If you worked through the examples in Chapter 4, you’ll know that you need root
privileges to perform some of the actions that go into creating a container. This is typ‐
ically seen as a no-go in traditional shared machine environments, where multiple
users can log in to the same machine. An example is a university system, where stu‐
dents and staff often have accounts on a shared machine or cluster of machines. Sys‐
tem administrators quite rightly object to giving root privileges to a user so that they
can create containers, as that would also allow them to do anything (deliberately or
accidentally) to any other user’s code or data.

The Rootless Containers initiative drove work including the kernel changes required
to allow non-root users to run containers. There is now full support for rootless
mode in Docker and containerd. The podman container implementation has sup‐
ported rootless containers for a long time, and it doesn’t use a privileged daemon pro‐
cess in the way that Docker does. This is why the examples at the start of this chapter
behave differently if you have docker aliased to podman.

Containers Run as Root by Default | 151

https://rootlesscontaine.rs


In Kubernetes there is a differentiation between container workloads running as non-
root and a non-root user being permitted to run Kubernetes node components. Run‐
ning workloads as non-root is achieved using pod SecurityContext; at the time of
writing, support for rootless Kubernetes components is still marked as Alpha, though
it has been available in this state since Kubernetes 1.22 (with the latest version being
1.33!).

In a Docker system, even if you’re not using rootless containers,
you don’t actually need to be root to run a container, but you need
to be a member of the docker group that has permissions to send
commands over the Docker socket to the Docker daemon. It’s
worth being aware that being able to do this is equivalent to having
root on the host. Any member of that group can start a container,
and as you are now aware, by default they will be running as root.
If they were to mount the host’s root directory with a command
like docker run -v /:/host <image>, they would have full access
to the host’s root filesystem too.

Rootless containers make use of the user namespace feature that you saw in “User
Namespace” on page 47. A normal non-root user ID on the host can be mapped to
root inside the container. If a container escape occurs somehow, the attacker doesn’t
automatically have root privileges, so this is a significant security enhancement.

Read more about root inside and outside a podman container in Scott McCarty’s blog
post.

However, rootless containers aren’t a panacea. Not every image that runs successfully
as root in a normal container will behave the same in a rootless container, even
though it appears to be running as root from the container’s perspective.

As the documentation for user namespaces states, they isolate not just user and group
IDs but also other attributes, including capabilities. In other words, you can add or
drop capabilities for a process in a user namespace, and they apply only inside that
namespace. So if you add a capability for a rootless container, it applies only in that
container but not if the container is supposed to have access to other host resources.

Dan Walsh wrote a blog post with some good examples of this. One of them is about
binding to low-numbered ports, which, as you saw in the discussion of Nginx earlier,
requires CAP_NET_BIND_SERVICE. If you run a normal container with
CAP_NET_BIND_SERVICE (which it would likely have by default if running as root) and
sharing the host’s network namespace, it could bind to any host port. A rootless con‐
tainer, also with CAP_NET_BIND_SERVICE and sharing the host’s network, would not be
able to bind to low-numbered ports because the capability doesn’t apply outside the
container’s user namespace.
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By and large, the namespacing of capabilities is a good thing, as it allows container‐
ized processes to seemingly run as root but without the ability to do things that would
require capabilities at the system level, like changing the time or rebooting the
machine. The vast majority of applications that can run in a normal container will
also run successfully in a rootless container.

When using rootless containers, although the process appears from the container’s
perspective to be running as root, from the host’s perspective, it’s a regular user. One
interesting consequence of this is that the rootless container doesn’t necessarily have
the same file access permissions as it would have without the user remapping. To get
around this, the filesystem needs to have support to remap file ownership and group
ownership within the user namespace. (Not all filesystems have this support at the
time of writing.)

Running as root inside a container isn’t exactly a problem in and of itself, as the
attacker still needs to find a way to escape the container. From time to time, container
escape vulnerabilities have been found in container runtimes and in the kernel, and
they probably will continue to be found. But a vulnerability isn’t the only way that
container escape can be made possible. Later in this chapter, you’ll see ways in which
risky container configurations can make it easy to escape the container, with no vul‐
nerability required. Combine these bad configurations with containers running as
root, and you have a recipe for disaster.

With user ID overrides and rootless containers, there are options for avoiding run‐
ning containers as the root user. However you achieve it, you should try to avoid con‐
tainers running as root.

The --privileged Flag and Capabilities
Docker and other container runtimes let you specify a --privileged option when
you run a container. Andrew Martin has called it “the most dangerous flag in the his‐
tory of computing,” with good reason: it’s incredibly powerful, and it’s widely
misunderstood.

It’s often thought that --privileged equates to running a container as root, but you
already know that containers run as root by default. So what other privileges could
this flag be bestowing on the container?

The answer is that, although in Docker the process runs under the root user ID by
default, a large group of root’s normal Linux capabilities are not granted as a matter of
course. (If you need a refresher on what capabilities are, skip back to “Linux Capabili‐
ties” on page 21.)
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It’s easy enough to see the capabilities that a container is granted by using the capsh
utility. For simplicity, in these examples I am only showing the current set of capabili‐
ties and the bounding set and omitting some other output for clarity.

To set the scene, let’s look at the output when all capabilities are dropped and then
one is added:

$ docker run --rm -it --cap-drop=all --cap-add=CAP_NET_BIND_SERVICE 
alpine sh -c 'apk add -U libcap; capsh --print'

Current: cap_net_bind_service=ep
Bounding set =cap_net_bind_service

These examples do something I advised against earlier: they install
the libcap package at runtime. Don’t do this in production
containers!

This container has, and can only ever have, one capability. Now let’s see the default set
of capabilities granted by Docker:

$ docker run --rm -it alpine sh -c 'apk add -U libcap; capsh --print'

Current: cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,cap_setgid,
cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,cap_sys_chroot,
cap_mknod,cap_audit_write,cap_setfcap=ep
Bounding set =cap_chown,cap_dac_override,cap_fowner,cap_fsetid,cap_kill,
cap_setgid,cap_setuid,cap_setpcap,cap_net_bind_service,cap_net_raw,
cap_sys_chroot,cap_mknod,cap_audit_write,cap_setfcap

That’s a substantial set of capabilities granted by default. The precise set of capabilities
granted without the privileged flag is implementation dependent. The OCI defines a
default set, granted by runc.

Finally, let’s see what happens when we add the --privileged flag:

$ docker run --rm -it --privileged alpine sh -c 'apk add -U libcap; capsh --print'

Current: =ep
Bounding set =cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,
cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap_setpcap,cap_linux_immutable,
cap_net_bind_service,cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lock,
cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_chroot,cap_sys_ptrace,
cap_sys_pacct,cap_sys_admin,cap_sys_boot,cap_sys_nice,cap_sys_resource,
cap_sys_time,cap_sys_tty_config,cap_mknod,cap_lease,cap_audit_write,
cap_audit_control,cap_setfcap,cap_mac_override,cap_mac_admin,cap_syslog,
cap_wake_alarm,cap_block_suspend,cap_audit_read,cap_perfmon,cap_bpf,
cap_checkpoint_restore
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As you might remember from Chapter 2, several Linux tools have changed to show‐
ing an empty set of capabilities if running as root with a full set of (implicitly granted)
capabilities. That’s why the Current set reported here is empty. The bounding set
explicitly mentions CAP_SYS_ADMIN, and this single capability flag grants access to a
huge range of privileged activities, including things like manipulating namespaces
and mounting filesystems. Similarly, CAP_NET_ADMIN for manipulating the network
stack and CAP_BPF for loading eBPF programs are included with this --privileged
flag.

Eric Chiang wrote a blog post about the dangers of --privileged
in which he shows an example of breaking out of a container onto
the host filesystem by mounting a device from /dev into the con‐
tainer filesystem.

Docker introduced the --privileged flag to enable “Docker in Docker.” This is used
widely for build tools and CI/CD systems running as containers, which need access to
the Docker daemon in order to use Docker to build container images. But as this blog
post describes, you should use Docker in Docker, and the --privileged flag in gen‐
eral, with caution.

A more subtle reason why the --privileged flag is so dangerous is that because peo‐
ple often think that it’s needed to give the container root privileges, they also believe
the converse: that a container running without this flag is not a root process. Please
refer to “Containers Run as Root by Default” on page 143 if you’re not yet convinced
about this.

Even if you have reasons to run containers with the --privileged flag, I would
advise controls or at least an audit to ensure that only those containers that really
need it are granted the flag. Consider specifying individual capabilities instead.

Let’s use capable, an eBPF-based command-line tool installed as part of the libbpf-
tools package, to trace out cap_capable events and show the capabilities that a given
container requests from the kernel. Run capable in one terminal and start an nginx
container in a second:

$ docker run -it --rm nginx

The output from capable will include output like this (some omitted for clarity):

TIME     UID  PID    COMM    CAP   NAME                 AUDIT   VERDICT
18:06:24 0    23745  nginx   21    CAP_SYS_ADMIN        1       allow 
18:06:24 0    23745  nginx   21    CAP_SYS_ADMIN        1       allow 
18:06:24 0    23745  nginx   2     CAP_DAC_READ_SEARCH  1       allow 
18:06:24 0    23745  nginx   2     CAP_DAC_READ_SEARCH  1       allow 
18:06:24 0    23745  nginx   1     CAP_DAC_OVERRIDE     1       allow 
18:06:24 0    23745  nginx   21    CAP_SYS_ADMIN        1       allow 
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18:06:24 0    23792  nginx   6     CAP_SETGID           1       allow 
18:06:24 0    23792  nginx   7     CAP_SETUID           1       allow

Once you know which capabilities your container needs, you can follow the principle
of least privilege and specify at runtime the precise set that should be granted. The
recommended approach is to drop all capabilities and then add back the necessary
ones as follows:

$ docker run --cap-drop=all --cap-add=<cap1> --cap-add=<cap2> <image> ...

Now you are warned of the dangers of the --privileged flag and the opportunity to
shrink-wrap capabilities for a container. Let’s look at another way that container isola‐
tion can be sidestepped: mounting sensitive directories from the host.

Mounting Sensitive Directories
Using the -v option, you can mount a host directory into a container so that it is
available from the container. And there is nothing to stop you from mounting the
host’s root directory into a container, like this:

$ touch /ROOT_FOR_HOST
$ docker run -it -v /:/hostroot ubuntu bash
root@91083a4eca7d:/$ ls /
bin   dev  home      lib    media  opt   root  sbin  sys  usr
boot  etc  hostroot  lib64  mnt    proc  run   srv   tmp  var
root@91083a4eca7d:/$ ls /hostroot/
ROOT_FOR_HOST  etc             lib         media  root  srv  vagrant
bin            home            lib64       mnt    run   sys  var
...

Because this example uses the default ubuntu container image, it runs as root. An
attacker who compromises this container is also root on the host, with full access to
the entire host filesystem.

Mounting the entire filesystem is a pathological example, but there are plenty of other
examples that range in their subtlety, such as the following:

• Mounting /etc would permit modifying the host’s /etc/shadow file from within
the container, or messing with cron jobs, init, or systemd.

• Mounting /bin or similar directories such as /usr/bin or /usr/sbin would
allow the container to write executables into the host directory—including over‐
writing existing executables.

• Mounting host log directories into a container could enable an attacker to modify
the logs to erase traces of their dastardly deeds on that host.

• In a Kubernetes environment, mounting /var/log can give access to the entire
host filesystem to any user who has access to kubectl logs. This is because con‐
tainer log files are symlinks from /var/log to elsewhere in the filesystem, but
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there is nothing to stop the container from pointing the symlink at any other file.
See this blog post for more on this interesting escape. This escape requires run‐
ning as root, so you can mitigate it by using runAsNonRoot. You should also never
allow writable hostPath mounts to /var/log.

• In Kubernetes you can mark a volume mount as readOnly, but beware! If there
are submounts within that directory on the host, they might in fact be writable.
To ensure that any submounts are also read-only within the container, set the
recursiveReadOnly setting to enabled. This is explained further by Akihiro Suda
in a Kubernetes blog post. Docker attempts to do this by default, according to the
documentation.

These file locations are vulnerable only if the container runs as root (or another privi‐
leged user). If you apply good practices such as running as non-root or using name‐
spaces, then standard Linux file permissions will help to protect most, if not all,
sensitive locations.

Mounting the Docker Socket
In a Docker environment, there is a Docker daemon process that essentially does all
the work. When you run the docker command-line utility, this sends instructions to
the daemon over the Docker socket that lives at /var/run/docker.sock. Any entity
that can write to that socket can also send instructions to the Docker daemon. The
daemon runs as root and will happily build and run any software of your choosing on
your behalf, including—as you have seen—running a container as root on the host.
Thus, access to the Docker socket is effectively the equivalent of root access on the
host.

One common use of mounting the Docker socket is in CI tools like Jenkins, where
the socket is needed specifically for sending instructions to Docker to run image
builds as part of your pipeline. This is a legitimate thing to do, but it does create a
potential soft underbelly that an attacker can pierce. A user who can modify a
Jenkinsfile can get Docker to run commands, including those that could give the user
root access to the underlying cluster. For this reason, it’s exceptionally bad practice to
run a CI/CD pipeline that mounts a Docker socket in a production cluster.

Sharing Namespaces Between a Container and Its Host
On occasion, there might be reasons to have a container use some of the same name‐
spaces as its host. For example, suppose you want to run a process in a Docker con‐
tainer but give it access to the process information from the host. In Docker, you can
request this with the --pid=host parameter.
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3 Libraries written in one language might also be reused from another, using language-specific bindings or
Foreign Function Interfaces.

Recall that containerized processes are all visible from the host; thus, sharing the pro‐
cess namespace to a container lets that container see the other containerized pro‐
cesses too. The following example starts by running a long-running sleep inside one
container; that process can be observed from another container started with
--pid=host:

$ docker run --name sleep --rm -d alpine sleep 1000
fa19f51fe07fca8d60454cf8ee32b7e8b7b60b73128e13f6a01751c601280110
$ docker run --pid=host --name alpine --rm -it alpine sh
$ ps | grep sleep
30575 root      0:00 sleep 1000
30738 root      0:00 grep sleep

What’s even more exciting is that running kill -9 <pid> from the second container
can kill the sleep process in the first!

You have seen several ways in which sharing namespaces or volumes between con‐
tainers, or between a container and its host, can weaken the container’s isolation and
compromise security, but it’s by no means always a bad idea to share information
with containers. To conclude this chapter, let’s look at sidecar containers and then
debug containers, which are common patterns for sharing namespaces between con‐
tainers for good reasons.

Sidecar Containers
A sidecar container is deliberately given access to one or more of an application con‐
tainer’s namespaces so that it can off-load functionality from that application. In a
microservice architecture, you might have functionality that you want to reuse in all
your microservices, and a common pattern is to package that functionality into side‐
car container images so that it can easily be reused.

Before sidecars, you could implement reusable code in a library. This is easy to
import into applications written in the same language, but it is more complex if your
teams write apps in more than one language.3 With a sidecar, because it’s container‐
ized, the functionality can be written in any language, as illustrated in Figure 11-1,
and it can also be used to instrument containers provided by a third party.
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Figure 11-1. Sidecar containers allow applications to use infrastructure tooling written
in a different language.

Here are a few common example use cases for sidecars:

• Service mesh sidecars take over the networking functionality on behalf of the
application container. The service mesh can, for example, ensure that all network
connections use mutual TLS. Off-loading this functionality to a sidecar means
that so long as a container is deployed with the sidecar, it will set up secure TLS
connections; there is no need for each application team to spend time reimple‐
menting and testing this feature in every application. (Further discussion of ser‐
vice meshes is coming up in Chapter 12—see “Service Mesh” on page 179.)

• Observability sidecars can set up destinations and configurations for logging,
tracing, and gathering metrics. For example, Prometheus and OpenTelemetry
support sidecars for exporting observability data.

• Security sidecars can police the executables and network connections that are
permitted within an application container. (For example, see my blog post from
some years ago about securing AWS Fargate containers using Aqua’s
MicroEnforcer in sidecar containers.)

This is just a selection of applications for sidecar containers, which legitimately share
namespaces with application containers.
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Deploying Sidecars
In Kubernetes, the sidecar container pattern is really a first-class citizen: a pod speci‐
fication can include multiple containers, which share a common network namespace,
can share volumes, and are scheduled and restarted together. Many sidecar-based
tools, like Istio, Linkerd, and Vault, modify the application pod specification as it’s
deployed, using a MutatingAdmissionWebhook. This intercepts pod creation
requests and adds the sidecar container definition into the pod specification.

AWS ECS and Fargate also support sidecars natively, as they are configured using
Task Definitions that can include multiple containers. They will be created with a net‐
work namespace shared between them, and they can also share storage volumes.

Docker doesn’t really have native support for sidecars, though you can achieve some‐
thing similar using Docker Compose to define multiple containers that share a net‐
work namespace.

Sidecar Limitations
Sidecars have been a useful pattern for injecting functionality, but they come with
their fair share of drawbacks. It’s pretty clear that in this model, the number of con‐
tainers being deployed is increased—one sidecar container per application
container—and this consumes additional resources. This resource consumption is
compounded by the fact that we’re deliberately isolating containers or pods from each
other, so it’s intentionally harder to share information between them; sidecars will
need their own copies of common configuration information, routing tables, and the
like.

The life cycle of the sidecar is tightly coupled to the workload container, and if the
sidecar needs an upgrade, then the workload container has to be restarted. There can
be issues related to the order in which workload and sidecar containers start and ini‐
tialize relative to each other, making sidecar tooling harder to operate in production. 
These limitations have pushed the industry toward sidecarless models for infrastruc‐
ture tools, often using eBPF to instrument a whole (virtual) machine at the kernel
level. I’ll come back to eBPF-based tooling, particularly with regard to container secu‐
rity, in Chapter 15.
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Debug Containers
In Kubernetes, debug containers are ephemeral containers that can be attached to a
running pod using the kubectl debug command, and they are used for troubleshoot‐
ing or diagnostic purposes.

This can be very useful, but as you’ve probably already guessed, they provide a route
for executing arbitrary code, so they can easily be misused for malicious purposes.
They should be treated as high-risk, privileged tools. If you permit them at all in
production clusters, make sure that their use is restricted to trusted users using
appropriate access controls, and ensure thorough audit logging. It’s a good idea to
enforce their ephemeral nature by cleaning them up automatically after a period of
time.

Summary
This chapter covered several ways in which the isolation that’s normally provided by
containers can be compromised through bad configuration.

All the configuration options are provided for good reasons. For example, mounting
host directories into a container can be extremely useful, and sometimes you do need
the option to run a container as root or even with the additional capabilities provided
by the --privileged flag. However, if you’re concerned about security, you’ll want to
minimize the extent to which these potentially dangerous configurations are used and
employ tools to spot when they are happening.

If you’re running in any kind of multitenant environment, you should be even more
attentive to containers with these potentially dangerous configurations. Any
--privileged container will have full access to any other container on the same host,
regardless of relatively superficial controls such as whether they are running in the
same Kubernetes namespace.

In “Sidecar Containers” on page 158, I mentioned service meshes, which can off-load
some networking functionality. Now seems like a good time to talk about container
networking.
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CHAPTER 12

Container Network Security

Every external attack reaches your deployment across a network, so it’s important to
understand something about networking in order to consider how to secure your
applications and data. This isn’t going to be a comprehensive treatment of everything
to do with networking (that would make this book a lot longer!), but it should give
you the essentials of a sensible mental model you can use to think about network
security in your container deployment.

I’ll start with an overview of container firewalling and microsegmentation, which can
provide a much more granular approach to network security than traditional fire‐
walling approaches.

Then there is a review of the seven-layer networking model, which is worth knowing
about so that you can understand the level a network security feature acts at. With
this in place, we will discuss how container network security is implemented using a
couple of different approaches. We will discuss Kubernetes network policies at differ‐
ent layers of the network model and look at some best practices for network policy
rules.

Container Firewalls and Microsegmentation
Containers often go hand in hand with microservice architectures, where an applica‐
tion is broken into small components that can be deployed independently of each
other. This can offer real benefits from a security perspective, because it’s much easier
to define what normal behavior looks like in a small component. A given container
probably has to communicate with only a limited set of other containers, and only a
subset of containers need contact with the outside world.

For example, consider an ecommerce application broken into microservices. One of
these microservices could handle product search requests; it receives search requests
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from end users and looks up their search queries in a product database. The contain‐
ers that make up this service don’t have any reason to communicate with, say, the pay‐
ment gateway. Figure 12-1 illustrates this example.

Figure 12-1. Microsegmentation

A container firewall can restrict the traffic that flows to and from a set of containers.
In an orchestrator like Kubernetes, the term container firewall is rarely used; instead,
you’ll hear about microsegmentation, where network policies are defined in terms of
workloads and services rather than between individual containers. In both cases, the
principle is to restrict network traffic so that it can flow to and from approved desti‐
nations only.

The open source distribution of Kubernetes doesn’t come with networking capabili‐
ties built in; instead, it has an interface called the Container Network Interface (CNI).
There are several projects and products that can fulfill the networking functionality
required on the other side of that interface. These are known as CNI plug-ins, or col‐
loquially, they are referred to as simply CNIs. Kubernetes has a native concept of
Network Policies for restricting traffic between workloads, though as you’ll see later
in this chapter, CNIs are not actually required to enforce these policies. If you want
them to work, you need to pick an appropriate CNI!

Docker doesn’t really have the concept of network policies built in, beyond defining
separate (virtual) networks to isolate containers from each other, though there are
commercial solutions that target container firewalling capabilities outside
Kubernetes.

Container network security tools, like their traditional firewall counterparts, will typi‐
cally report on attempted connections outside the rules, providing useful forensics for
investigation into possible attacks.
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They can be used in conjunction with other network security tools that you may have
come across in traditional deployments as well. For example:

• It’s common to deploy your container environment in a virtual private cloud
(VPC), which isolates your hosts from the rest of the world.

• You can use a firewall around the entire cluster to control traffic in and out.
• You can use API firewalls (also known as web application firewalls [WAFs]) to

restrict traffic at Layer 7.
• You can encrypt network traffic so that it can’t be intercepted. This is discussed in

Chapter 13.

None of these approaches is unique to containerized deployments—they all work in
traditional deployments too. Combining them with container-aware security gives
additional defense in depth.

Before we look at how container firewalling and network security policies are imple‐
mented, let’s review the seven-layer networking model and follow the path of an IP
packet through a network.

OSI Networking Model
The Open Systems Interconnection (OSI) networking model was published in 1984
and defines a layered model of networking that is still commonly referenced today,
although as you can see from Figure 12-2, the seven layers don’t all have an equivalent
in IP-based networks.

Figure 12-2. OSI model

These are the layers that matter in an IP-based network:

• Layer 7 is the application layer. If you think about an application making a web
request or sending a RESTful API request, you are picturing something that hap‐
pens at Layer 7. The request is typically addressed by a URL, and to get the
request to its destination, the domain name gets mapped to an Internet Protocol
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1 In the networking context, MAC stands for Media Access Control, though if you’re like me you just think of
this term as referring to a hardware address. Don’t confuse this with the security acronym Mandatory Access
Control.

(IP) address using a protocol called Domain Name Resolution that is offered by a 
Domain Name Service (DNS).

• Layer 4 is the transport layer, typically TCP or UDP packets. This is the layer at
which port numbers apply.

• Layer 3 is the layer at which IP packets travel and at which IP routers operate. An
IP network has a set of IP addresses assigned to it, and when a container joins the
network, it gets assigned one of those IP addresses. For the purposes of this chap‐
ter, it doesn’t matter whether the IP network uses IP v4 or IP v6—you can con‐
sider that to be an implementation detail.

• At Layer 2, data packets are addressed to endpoints connected to a physical or
virtual interface (which I’ll discuss in a moment). There are several Layer 2 pro‐
tocols, including Ethernet, Wi-Fi, and, if you cast your mind back into history,
Token Ring. (Wi-Fi is slightly confusing here since it covers both Layer 2 and
Layer 1.) I’ll only cover Ethernet in this chapter since that is predominantly
what’s used for Layer 2 container networking. At Layer 2, interfaces are addressed
using MAC1 addresses.

• Layer 1 is called the physical layer, although to keep us all on our toes, interfaces
at Layer 1 can be virtual. A physical machine will have a physical network device
attached to some kind of cable or wireless transmitter. Cast your mind back to
“Enter the VMM” on page 61, and you will recall that a VMM gives a guest ker‐
nel access to virtual devices that map to these physical devices. When you get a
network interface on, say, an EC2 instance in AWS, you’re getting access to one of
these virtual interfaces. Container network interfaces are commonly virtual at
Layer 1 as well. Whenever a container joins a network, it has a Layer 1 interface
to that network.

For more depth or an alternative explanation, you might like to
refer to Cloudflare’s description of the OSI networking model.

Let’s see what happens at these different layers when an application wants to send a
message.
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Sending an IP Packet
Imagine an application that wants to send a request to a destination URL. Since this is
the application, it stands to reason from the preceding definition that this is happen‐
ing at Layer 7.

The first step is a DNS lookup to find the IP address that corresponds to the host
name in that URL. DNS could be defined locally (as in the /etc/hosts file on your lap‐
top), or it could be resolved by making a DNS request to a remote service at a config‐
ured IP address. (If the application already knows the IP address it wants to send a
message to, rather than using a URL, the DNS step is skipped.)

Once the networking stack knows which destination IP address it needs to send the
packet to, the next step is a Layer 3 routing decision, which consists of two parts:

1. To reach a given destination, there might be multiple hops in the IP network.
Given the destination IP address, what is the IP address of the next hop?

2. What interface corresponds to this next-hop IP address?

Next, the packet has to be converted to Ethernet frames, and the next-hop IP address
has to be mapped to the corresponding MAC address. This relies on the Address
Resolution Protocol (ARP), which maps IP addresses to MAC addresses. If the net‐
work stack doesn’t already know the MAC address for the next-hop IP address
(which could already be held in an ARP cache), then it uses ARP to find out.

Once the network stack has the next-hop MAC address, the message can be sent out
over the interface. Depending on the network implementation, this could be a point-
to-point connection, or the interface may be connected to a bridge.

The easiest way to understand a bridge is to imagine a physical device with a number
of Ethernet cables plugged in. The other end of each cable connects to the network
card on a device—a computer, say. Every physical network card has a unique MAC
address hardcoded into it by the manufacturer. The bridge learns the MAC address at
the far end of each of the cables plugged into its interface. All the devices connected
to the bridge can send packets to each other through the bridge. In container net‐
working, the bridge is implemented in software rather than being a separate physical
device, and the Ethernet cables are replaced by virtual Ethernet interfaces. So the
message arrives at the bridge, which uses the next-hop MAC address to decide which
interface to forward it on.

When the message arrives at the other end of the Ethernet connection, the IP packet
is extracted and passed back up to Layer 3. Data is encapsulated with headers at dif‐
ferent layers in the networking stack, as shown in Figure 12-3.
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Figure 12-3. Networking headers

If this is the packet’s final destination, then it gets passed up to the receiving applica‐
tion. However, this might just be the next hop for the packet, and in that case, the
networking stack needs to make another routing decision about where to send the
packet next.

This explanation glosses over a few details (such as how ARP works or how routing
decides which is the next-hop IP address), but it should be sufficient for our purposes
of thinking about container networking.

IP Addresses for Containers
“Sending an IP Packet” on page 167 talks about getting traffic to reach a destination
based on its IP address. Containers can share the IP address of their host, or they can
each have their own network stack running in their own network namespace. You
saw how network namespaces are set up in Chapter 4. Since there’s a good chance you
are running containers under Kubernetes, let’s explore how IP addresses are used in
Kubernetes.

In Kubernetes, each pod has its own IP address. If the pod includes more than one
container, you can infer that each container shares the same IP address. This is
achieved by having all containers in a pod share the same network namespace. Every
node is configured to use a range of addresses (a CIDR block), and when a pod is
scheduled to a node, it gets assigned one of the addresses from that range.
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It’s not strictly true that nodes are always assigned a range of
addresses up front. For example, on AWS, a pluggable IP address
management module dynamically assigns pod IP addresses from
the range associated with the underlying VPC.

Kubernetes requires that pods in a cluster can connect directly to each other without
any network address translation (NAT) between them. In other circumstances, NAT
allows IP addresses to be mapped so that one entity sees a destination as being at a
certain IP address, even though that isn’t the actual address of the destination device.
(This is one reason why IPv4 has been in use for much longer than originally predic‐
ted. Although the number of IP-addressable devices has far outstripped available
addresses in the IPv4 address space, NAT means we can reuse the vast majority of IP
addresses within private networks.) In Kubernetes, network security policies and seg‐
mentation might prevent a pod from being able to communicate with another pod,
but if the two pods can communicate, they see each other’s IP addresses transparently
without any NAT mapping. There can, however, still be NAT between pods and the
outside world.

Kubernetes services are a form of NAT. A Kubernetes service is a resource in its own
right, and it gets assigned an IP address of its own. It’s just an IP address, though—a
service doesn’t have any interfaces, and it doesn’t actually listen for or send traffic.
The address is just used for routing purposes. The service is associated with some
number of pods that actually do the work of the service, so packets sent to the service
IP address need to be forwarded to one of these pods. We’ll shortly see how this is
done.

In traditional networking you might come across the term PAT
(port address translation) as well as NAT. In the cloud native and
container world, you’re more likely to hear about port mapping,
where a host port number is translated to a different port number
inside a container.

Network Isolation
It’s worth explicitly pointing out that two components can communicate with each
other only if they are connected to the same network. In traditional host-based envi‐
ronments, you might have isolated different applications from each other by having
separate VLANs for each one.

In the container world, Docker made it easy to set up multiple networks using the
docker network command, but it’s not something that fits naturally in the
Kubernetes model where every pod can (modulo network policies and security tools)
access every other pod by IP address.
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It’s also worth noting that in Kubernetes, the control components run in pods and are
all connected to the same network as the application pods. If you come from a tele‐
communications background, this may surprise you, since a lot of effort was put into
separating the control plane from the data plane in phone networks, primarily for
security reasons.

Instead, Kubernetes container networking can be enforced using network policies
that act at Layer 3/4 and, depending on your network plug-in, Layer 7. I’ll describe
the traditional approach to these first, and then describe why eBPF, which you have
come across in Chapter 9, makes for a better implementation.

Layer 3/4 Routing and Rules
As you already know, routing at Layer 3 is concerned about deciding the next hop for
an IP packet. This decision is based on a set of rules about which addresses are
reached over which interface. But this is just a subset of things you can do with Layer
3 rules: there are also some fun things that can go on at this level to drop packets or
manipulate IP addresses, for example, to implement load balancing, NAT, firewalls,
and network security policies. Rules can also act at Layer 4 to take into account the
port number.

Traditionally, these rules rely on a kernel feature called netfilter, though nowadays
most deployments are using or moving toward eBPF-based implementations, for rea‐
sons you’ll learn about later in this chapter.

netfilter is a packet-filtering framework that was first introduced into the Linux
kernel in version 2.4. It uses a set of rules that define what to do with a packet based
on its source and destination addresses. There are a few different ways that
netfilter rules can be configured in user space, the most common of which is
iptables.

iptables
The iptables tool is the traditional way of configuring IP packet–handling rules that
are dealt with in the kernel using netfilter. There are several different table types.
The two most interesting types in the context of container networking are filter and
nat: filter is for deciding whether to drop or forward packets, and nat is for trans‐
lating addresses.

As a root user, you can see the current set of rules of a particular type by running
iptables -t <table type> -L.

The netfilter rules that you can set up with iptables can be useful for security pur‐
poses. Traditionally, container firewall solutions, as well as older Kubernetes network
plug-ins, make use of iptables to set up network policy rules that are implemented
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using netfilter rules. I’ll come back to this in “Network Policies” on page 174. First,
let’s delve into the rules that get set up with iptables.

As mentioned earlier, in Kubernetes, a service is an abstraction that maps a service
name to a set of pods. There is a component called kube-proxy on each node that
manages the load-balancing of traffic across all the pods that provide a service, by
default using iptables rules. A client might send a request to a service domain name,
which gets resolved to an IP address using DNS. When a packet destined for that ser‐
vice IP address arrives, there is an iptables rule that matches the destination address
and swaps the destination address for that of one of the corresponding pods.

If the set of pods behind a service changes, the iptables rules get rewritten on each
host accordingly. Unfortunately for iptables fans, pods come and go dynamically in
a Kubernetes environment, and this rewriting of rules turned out to be a bottleneck at
scale, ultimately leading to the adoption of newer technologies like eBPF. That said,
seeing some iptables rules can help you to understand the logic behind both kube-
proxy load-balancing and network policies, so let’s take a look.

It’s easy enough to see the iptables rules for a service. Let’s take a Kubernetes cluster
with a two-replica deployment of nginx, behind a service (I have removed some of
the output fields for clarity):

$ kubectl get svc,pods -o wide
NAME                 TYPE        CLUSTER-IP      PORT(S)
service/kubernetes   ClusterIP   10.96.0.1       443/TCP
service/my-nginx     NodePort    10.100.132.10   8080:32144/TCP

NAME                            READY   STATUS    IP
pod/my-nginx-75897978cd-n5rdv   1/1     Running   10.32.0.4
pod/my-nginx-75897978cd-ncnfk   1/1     Running   10.32.0.3

You can list the current address translation rules with iptables -t nat -L. There
will likely be a lot of output, but it’s not too hard to find the interesting parts that
correspond to this nginx service. First, here is the rule that corresponds to the my-
nginx service running on IP address 10.100.132.10. You can see that it’s part of a
chain called “KUBE-SERVICES,” which makes sense since it relates to a service:

Chain KUBE-SERVICES (2 references)
target                     prot opt source     destination
...
KUBE-SVC-SV7AMNAGZFKZEMQ4  tcp  --  anywhere   10.100.132.10   /* default/my-
nginx:http cluster IP */ tcp dpt:http-alt
...

The rule specifies a target chain, which appears later in the iptables rules:

Chain KUBE-SVC-SV7AMNAGZFKZEMQ4 (2 references)
target                     prot opt source     destination
KUBE-SEP-XZGVVMRRSKK6PWWN  all  --  anywhere   anywhere      statistic mode
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random probability 0.50000000000
KUBE-SEP-PUXUHBP3DTPPX72C  all  --  anywhere   anywhere

It seems reasonable to infer from the “random probability 0.5” part of this that traffic
is being split between these two targets with equal probability. This makes a lot of
sense when you see that these targets have rules that correspond to the IP addresses of
the pods (10.32.0.3 and 10.32.0.4):

Chain KUBE-SEP-XZGVVMRRSKK6PWWN (1 references)
target          prot opt source               destination
KUBE-MARK-MASQ  all  --  10.32.0.3            anywhere
DNAT            tcp  --  anywhere             anywhere        tcp to:10.32.0.3:80
...
Chain KUBE-SEP-PUXUHBP3DTPPX72C (1 references)
target          prot opt source               destination
KUBE-MARK-MASQ  all  --  10.32.0.4            anywhere
DNAT            tcp  --  anywhere             anywhere        tcp to:10.32.0.4:80

The problem with iptables is that, as mentioned previously, performance drops off
as the system writes and rewrites complex sets of rules. In fact, kube-proxy’s use of
iptables was identified as a performance bottleneck when running Kubernetes at
scale. This blog post points out that 2,000 services with 10 pods each results in an
additional 20,000 iptables rules on every node.

One technology that might have helped address this was IPVS, which was more per‐
formant for kube-proxy’s case (see Project Calico’s performance comparison of
iptables and IPVS). But IPVS never really took off for a number of reasons: it
requires ip_vs kernel modules (which can be brittle), it wasn’t adopted by public
cloud providers, and the ecosystem of tooling that many operators grew familiar with
around iptables didn’t work with it.

nftables is another more modern approach, and there is a project to use it for a
more performant version of kube-proxy. But the Kubernetes community has already
moved on to eBPF-based solutions that offer far more than just filtering and load-
balancing rules, with better performance, observability, and policy control.

Performance is out of scope for this book, but to see how eBPF
enables host-level performance for container networking, I highly
recommend Daniel Borkmann’s talk called “Turning Up Perfor‐
mance to 11”.

One thing that all these approaches have in common—IPVS, iptables, nftables,
and eBPF—is that they all act within the kernel. Recalling that the kernel is shared
across all the containers on a host, this tells you that when they are used to enforce
security policies, this is happening at the host level and not within each container.
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As you saw in Chapter 9, eBPF is being adopted by many infrastructure tools in not
only networking but also observability, security, and more. I showed you the
iptables rules for load-balancing an nginx service across two pods. Let’s consider
the same in an eBPF-based alternative.

eBPF
The Cilium networking plug-in (a graduated project in the CNCF) was designed
using eBPF from the start, and Calico also has an eBPF option. I’ll use Cilium for this
example, but the general approach for Layer 3/4 policies is similar in Calico.

Using Cilium with kube-proxy replacement enabled, there are no iptables rules for
service load-balancing. Instead, Cilium installs eBPF programs directly into the ker‐
nel that intercept network packets. It also maintains data structures in the kernel
called eBPF maps to hold information, such as the mapping of service IP addresses
and ports to backend pods.

When a pod sends a network packet to a service, a Cilium eBPF program does the
following:

1. Intercepts the packet within the network stack and identifies the destination IP
address and port

2. Looks up the service in the eBPF map to find the pods that back that service
3. Selects a backend pod using a load-balancing algorithm (e.g., random, round-

robin, Maglev)
4. Rewrites the packet with the destination IP and port for the selected pod
5. Forwards the packet

All this happens entirely within the kernel, avoiding any costly transitions to user
space.

Instead of inspecting iptables rules to see how service load-balancing behaves, you
can inspect Cilium’s eBPF map data using the cilium-dbg CLI. For example:

$ cilium-dbg bpf lb list

SERVICE ADDRESS      BACKEND ID  BACKEND ADDRESS
10.100.132.10:8080   1           10.32.0.3:80
                     2           10.32.0.4:80

Now that you have an idea how network packets are manipulated using iptables or
eBPF programs, let’s see how these technologies are used to implement networking
policies for security purposes.
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Network Policies
Network policies in Kubernetes define the traffic that can flow to and from different
pods. When a message is being sent or received, if it’s not approved by the policy, the
network needs to either refuse to set up a connection or drop the message packets. In
the ecommerce example from the start of this chapter, one policy might prevent traf‐
fic from the product search container that has the destination address of the payment
service.

Policies enforced at Layers 3 and 4 can be defined in terms of ports, IP addresses, or—
more commonly—the labels applied to pods. (We’ll come to application layer policies
soon.)

In a traditional environment, an application would typically be installed on a
machine, and then the IP address for that machine could be used to identify the
application. If multiple applications run on the same machine, they will use different
ports at Layer 4. It made sense, in these environments, for firewall rules to be based
on IP address and ports, but in a Kubernetes world, pods are ephemeral, and IP
addresses assigned to them can be reused as pods are destroyed and created. It no
longer makes sense to use IP addresses and ports to identify a containerized
workload.

Labels in Kubernetes can be used for all sorts of purposes, one of which is to indicate
which service a pod is part of and perhaps also some other abstraction such as an
application name. We can more generally think of labels identifying the workload that
is running within a given pod. Network policies define the rules that allow or deny
traffic between workloads and perhaps to other entities such as destinations outside
the cluster.

Here’s a simple NetworkPolicy object that allows pods to access the my-nginx service
only if they are labeled with access=true:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: access-nginx
spec:
  podSelector:
    matchLabels:
      app: my-nginx
  ingress:
  - from:
    - podSelector:
        matchLabels:
          access: "true"
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It’s the networking plug-in, rather than a core Kubernetes component, that enforces
network policy, and the mechanism used could be iptables, eBPF, or maybe in the
future something else!

Layer 3/4 Policy with iptables
Creating this network policy in a cluster using the Weave networking plug-in results
in the following additional iptables rule in the filter table:

Chain WEAVE-NPC-INGRESS (1 references)
target     prot opt source       destination
ACCEPT     all  --  anywhere     anywhere             match-set weave-{U;]TI.l|Md
RzDhN7$NRn[t)d src match-set weave-vC070kAfB$if8}PFMX{V9Mv2m dst 
/* pods: namespace: default, selector: access=true -> 
pods: namespace: default, selector: app=my-nginx (ingress) */

The match-set rule isn’t really human-readable, but the comment (between /* and
*/) matches our expectation that the rule allows traffic from pods in the default
namespace, with the label access=true going to pods in the default namespace with
the label app=my-nginx.

Now that you have seen Kubernetes using iptables rules for network policy enforce‐
ment, let’s try configuring an iptables rule of our own. I’m doing this on a fresh
Ubuntu installation so that the rules are empty to start with:

$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target     prot opt source               destination

Chain FORWARD (policy ACCEPT)
target     prot opt source               destination

Chain OUTPUT (policy ACCEPT)
target     prot opt source               destination

I’ll set up netcat to respond to requests on port 8000:

$ while true; do  echo "hello world" | nc -l 8000 -N; done

In another terminal, I can now send requests to this port:

$ curl localhost:8000
hello world

Now I’ll create a rule that rejects traffic on port 8000:

$ sudo iptables -I INPUT -j REJECT -p tcp --dport=8000
$ sudo iptables -L
Chain INPUT (policy ACCEPT)
target     prot opt source       destination
REJECT     tcp  --  anywhere     anywhere         tcp dpt:8000 reject-with icmp-
port-unreachable
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Chain FORWARD (policy ACCEPT)
target     prot opt source       destination

Chain OUTPUT (policy ACCEPT)
target     prot opt source       destination

As you probably would have predicted, the curl command no longer succeeds in get‐
ting a response:

$ curl localhost:8000
curl: (7) Failed to connect to localhost port 8000: Connection refused

This demonstrates that iptables can be used to restrict traffic. You could imagine
building up lots of rules like this to limit the traffic between containers, creating your
own container network security policy, but I don’t recommend doing it by hand
unless your deployment is small-scale and relatively static. Even a small Kubernetes
deployment involves more rules than I would want to write manually. To give you an
idea, I have a single Kubernetes node running the Calico network plug-in, and with
just a handful of application pods running and no network policies, iptables -L on
this machine gives me more than 300 lines of filter table rules.

Layer 3/4 Policies with eBPF
You’ve just seen how a network plug-in could use iptables rules to enforce an exam‐
ple network policy that restricts access to the my-nginx service to pods labeled with
access=true. If we create the same policy using Cilium as the network plug-in, no
iptables rules are created. Instead, the policy is enforced using eBPF programs and
maps.

To do this, Cilium creates an identity for a pod based on a hash of its labels. Here’s an
example of looking at the set of identities that Cilium is tracking:

$ cilium-dbg identity list

ID      LABELS
123     k8s:app=my-nginx
45      k8s:access=true
...

Policies are translated into allow/deny rules for ingress and egress to and from an
endpoint. The example rule we have been considering translates into the following:

$ cilium-dbg bpf policy get 123
Ingress:
  From Identity 45: ALLOW
  All other: DROP
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The policy is an ingress rule that applies to the identity 123, which matches app=my-
nginx and only allows traffic that comes from identity 45, corresponding to
access=true.

The policy rules are held in eBPF Maps in a hash table, making for really fast lookups
within the kernel when the Cilium eBPF program in the network stack intercepts a
packet destined for (in this case) an endpoint with identity 123.

So far, the policies we have considered have rules in terms of network Layers 3 and 4.
Some solutions can also enforce solutions at the application Layer 7.

Layer 7 Policies
Policies at Layer 3/4 might allow or deny traffic between a given pair of endpoints,
but that policy will drop all matching traffic. Layer 7 policies can specify the traffic to
be permitted or blocked based on application layer protocol characteristics. For
HTTP traffic, this could be to allow only certain URLs, methods, or specific headers. 
DNS traffic can be filtered on, say, domain name or query type (A, AAAA, MX, etc.).
GRPC traffic can be blocked based on the method, service name, or headers.

Cilium, Calico, and Antrea have support for Layer 7 network policies, implemented
by integrating the Envoy proxy. Rule enforcement happens in user space within the
proxy.

I first saw Cilium in action at a talk by Thomas Graf at DockerCon
2017, when he showed the “Star Wars demo”. This includes Layer
3/4 policies to ensure that only Empire spacecraft can access the
Death Star, and Layer 7 policies to prevent Empire spacecraft from
doing something dangerous, like an HTTP PUT request sent to the
Death Star’s API at /v1/exhaust-port. You can try this for yourself
in a Kubernetes cluster by following the documentation.

One of the benefits of Cilium’s approach to network policy is that Layer 3/4, Layer 7,
and even authentication policies can all be defined as a single resource:

apiVersion: cilium.io/v2
kind: CiliumNetworkPolicy
metadata:
  name: mutual-auth-echo
spec:
  endpointSelector:
    matchLabels:
      app: echo                                    
  ingress:
  - fromEndpoints:
    - matchLabels:
        app: pod-worker                            
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    authentication:                               
      mode: "required"                             
    toPorts:
    - ports:
      - port: "3000"
        protocol: TCP                              
      rules:
        http:
        - method: "GET"
          path: "/headers"                         

This policy applies to any pod with the label app=echo.

This is an ingress policy that applies to traffic from pods with the label app=pod-
worker.

The policy specifies that traffic between these endpoints must be mutually
authenticated, which also requires that both pods are cryptographically identified
before the traffic is permitted. Authentication is covered in Chapter 13.

Traffic is permitted only if it is TCP traffic to port 3000.

And it must also be a GET method HTTP request to the path /headers.

The simplicity of combining all policy requirements makes for easier operations and
troubleshooting.

Network Policy Solutions
Kubernetes has NetworkPolicy objects, although as mentioned earlier, Kubernetes
does not itself enforce them—they have to be enforced by a CNI plug-in, and that will
happen only if you choose a CNI that supports this. Perhaps unfortunately, if the CNI
plug-in doesn’t enforce Kubernetes Network Policies, they are silently ignored. Check
carefully to make sure that the CNI you’re using actually does something useful with
them. I have heard sad stories about operators spending ages configuring policies,
without realizing that they had absolutely no effect.

Depending on the CNI plug-in, you may have options for upgrading to a commercial
version that gives you more flexibility, additional visibility, or easier management.
There are commercial container security platforms that include container firewalls to
achieve essentially the same thing but are not installed directly as a Kubernetes net‐
work plug-in. Some commercial offerings include the ability to learn what normal
traffic looks like for a particular container image or workload type so that policies can
be created automatically.
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If the CNI plugin you’re using doesn’t support Layer 7 policies, that might be a reason
to consider using a service mesh.

Service Mesh
A service mesh can be applied in addition to the CNI plug-in in a Kubernetes deploy‐
ment, to provide an additional set of controls and capabilities at the application layer.
“Service mesh” can mean different things to different people, potentially encompass‐
ing service discovery, Layer 7 load balancing, canary roll-outs, and observability fea‐
tures, but for the purposes of this book, let’s consider what is probably the most
fundamental capability: providing secure network connectivity between container‐
ized workloads. This consists of two parts: encrypted, authenticated connections,
which are covered in Chapter 13, and restricting network traffic at the application
layer by enforcing Layer 7 policies. In most service mesh implementations, these poli‐
cies are separated from the Layer 3/4 policies enforced by a CNI.

This article from DigitalOcean gives a good overview of the other
features that service meshes offer, such as canary deployments, that
are unrelated to networking or security.

Examples of service mesh projects include Istio and Linkerd as well as managed
options from the cloud providers such as AWS ECS Service Connect. The Cilium
CNI provides a lot of features normally associated with service mesh but without an
additional service mesh control plane to manage.

Here’s an example of an Istio Authorization Policy for restricting HTTP traffic:

apiVersion: security.istio.io/v1
kind: AuthorizationPolicy
metadata:
  name: echo
spec:
  selector:
    matchLabels:
      app: echo                                   
  action: ALLOW                                   
  rules:
  - from:
    - source:                                     
        principals: ["cluster.local/ns/default/sa/pod-worker"]
    to:
    - operation:
        methods: ["GET"]                          

Service Mesh | 179

https://oreil.ly/0Fq5A
https://istio.io
https://linkerd.io


Like the previous example for “Layer 7 Policies,” the policy applies to pods with
the label app=echo.

It’s a policy that allows traffic.

Requests are permitted only if they originate from a workload with an X.509 cer‐
tificate identifying it as using the pod-worker service account. We’ll discuss
certificates and identities further in Chapter 13.

Only (HTTP) GET requests are permitted.

Until recently, most service meshes were implemented using sidecar containers,
which have some limitations, as discussed in Chapter 9. There are now sidecarless
options for service mesh, including Istio Ambient Mesh, and the service mesh capa‐
bilities of Cilium, that provide the same functionality but without requiring a sidecar
in every pod.

If you are using or considering a sidecar-based implementation, they present a couple
of additional security-related constraints to be aware of:

• A sidecar can only provide security support to pods into which it has actually
been injected. If it’s not present, it can’t do anything. Carefully test and/or audit
configurations to ensure that the mesh is applied to all the workloads where it is
expected.

• A service mesh sidecar container lives alongside application containers within a
pod. If an application container were to be compromised, it might attempt to
bypass or modify the rules enforced by the sidecar. The sidecar and application
containers share the same network namespace; thus, it is a good idea to make
sure that the CAP_NET_ADMIN capability is withheld from application containers so
that if one is compromised, it can’t modify the shared networking stack.

• The sidecar life cycle is tightly coupled to the life cycle of the pod. This means
restarting your pods if the service mesh needs an upgrade.

Service mesh policies are defined at the service level, so it would be a good idea to use
the principle of defense in depth, with a complementary container network or run‐
time security solution to restrict traffic that flows directly to containers rather than
via a service IP address.

Network Policy Best Practices
Whichever tooling you use to create, manage, and enforce network policies, there are
some recommended best practices:
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Default deny
Following the principle of least privilege, set up a policy for each namespace that
denies ingress traffic by default and then add policies to permit traffic only where
you expect it.

Default deny egress
Egress policies relate to traffic exiting your pod. If a container were to be com‐
promised, an attacker could probe the surrounding environment across the net‐
work. Set up policies for each namespace to deny egress traffic by default and
then add policies for expected egress traffic.

Restrict pod-to-pod traffic
Pods are typically labeled to indicate their application. Use policies to limit traffic
so that it can flow only between permitted applications, along with policies that
allow traffic only from pods with the appropriate labels.

Restrict ports
Restrict traffic so that it is accepted only to specific ports for each application.

Ahmet Alp Balkan provides a set of useful network policy recipes.

Summary
In this chapter, you have seen how containers enable very granular firewalling solutions
within a deployment. This granularity helps maintain several security principles:

• Segregation of duties/least privilege by allowing containers only a limited ability
to communicate

• Limiting the blast radius by preventing a compromised container from attacking
all its neighbors

• Defense in depth by combining network policies at Layer 3/4, Layer 7, and
cluster-wide traditional firewalling

I mentioned that you might want to consider encrypting network traffic between
containers. In Chapter 13, I will explain some approaches to securing and encrypting
traffic and attempt to demystify the role of keys and certificates in setting up these
secure connections.
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CHAPTER 13

Securely Connecting Components

In any distributed system, there are different components that need to communicate
with each other, and in a cloud native world, those components may well be contain‐
ers exchanging messages with each other or with other internal or external compo‐
nents. In this chapter, you’ll see how secured network connections allow components
to safely send encrypted messages to each other. You’ll explore how components
identify themselves to each other and set up secure connections between themselves
so that malicious components can’t get involved in these communications.

If you’re familiar with how keys and certificates work, you can safely skip this chapter,
as there is nothing particularly container-specific about it. I have included it in this
book because in my experience, it’s an area of confusion for many folks who may be
coming across these concepts for the first time when they start exploring containers
and cloud native tools.

If you are responsible for administering a cloud native system, you will likely need to
configure certificates, keys, and certificate authorities (CAs) for Kubernetes, etcd, or
other infrastructure components. These can be notoriously confusing, and installa‐
tion instructions tend to explain what to do without covering the “why” or the “how.”
You may find this chapter useful for understanding the roles that these different
pieces play.

Let’s start by considering what we mean by “secure connections.”

Secure Connections
In everyday life, we see secure connections being used in web browsers. If you visit,
say, your online banking facility, most browsers will alert you if the connection isn’t
secure, so you shouldn’t enter your login credentials. There are two parts to setting up
a secure connection to a website:
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• First, you need to know that the website you are browsing really is owned by
your bank. Your browser checks the identity of the website by verifying its certifi‐
cate. This part is known as authentication.

• The second part is encryption. When you are accessing your bank information,
you don’t want any third parties to be able to intercept (or worse, interfere with)
that communication channel.

You may well be familiar with the fact that secure website connections use a protocol
called HTTPS, which stands for HTTP-Secure. As its name suggests, this is a regular
HTTP connection that has been made secure, and this security is added at the trans‐
port layer using a protocol imaginatively called transport layer security (TLS).

If you’re thinking, “But I thought the S stood for SSL (Secure Sockets Layer)?” don’t
worry—you’re really not wrong. The transport layer is the layer that communicates
between a pair of network sockets, and TLS is the modern name for the protocol that
used to be called SSL. The first SSL spec was published by Netscape in 1995 (as ver‐
sion 2, the initial version 1 having been recognized as so seriously flawed that it was
never released). By 1999, the Internet Engineering Task Force (IETF) created the TLS
v1.0 standard, largely based on Netscape’s SSL v3.0, and the industry is now primarily
using TLS v1.3.

Whether you call it SSL or TLS, the protocol relies on certificates to set up secure
connections. Confusingly, we still tend to call these “SSL certificates” 20 years after
the move to TLS. If you really want to be correct, you should call them “X.509
certificates.”

TLS isn’t the only option for secure connections, and as you’ll see later in this chapter,
protocols like IPSec and WireGuard are also commonly used to encrypt container‐
ized traffic. These protocols all involve an exchange of identity information and the
encryption of traffic using a cryptographic cipher.

Both identity and encryption key information are commonly exchanged using X.509
certificates. Let’s delve into what these certificates are and how they work.

There are several tools for generating keys, certificates, and CAs
including ssh-keygen, openssl keygen, and minica. I demon‐
strated using minica in a talk called “A Go Programmer’s Guide to
Secure Connections” in which I also show what’s happening step-
by-step as a client sets up a TLS connection with a server.
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X.509 Certificates
The term “X.509” is the name of the International Telecommunications Union (ITU)
standard that defines these certificates. The certificate is a piece of structured data
that includes information about the identity of its owner and also includes the public
encryption key for communicating with the owner. This public key is half of a public/
private key pair (see Figure 13-1).

Figure 13-1. Certificate

As illustrated in Figure 13-1, the vital pieces of information in a certificate are:

• The name of the entity that this certificate identifies. This entity is called the
subject, and the subject name is typically in the form of a domain name. In prac‐
tice, certificates should use a field called “Subject Alternative Names,” which
allows the certificate to identify the subject by more than one name.

• The subject’s public key.
• The name of the CA that issued the certificate. I’ll come back to this later in “Cer‐

tificate Authorities” on page 187.
• The validity of the certificate—that is, the date and time at which the certificate

expires.

Public/Private Key Pairs
Public/private keys are an example of asymmetric encryption, where data is encrypted
using the public key, but the encrypted data can only be decrypted using the private
key. As its name suggests, a public key can be shared with anyone. The public key has
a corresponding private key that the owner should never disclose.
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The math behind the encryption and decryption is beyond the
scope of this book, but I collected some recommended resources
about it in a post on Medium.

The private key is generated first, and from that, a corresponding public key can be
calculated. The public/private key pair can be used for two useful purposes:

• As illustrated in Figure 13-2, a public key can be used to encrypt a message that
can be decrypted only by the holder of the corresponding private key.

Figure 13-2. Encryption

• A private key can be used to sign a message that any holder of the corresponding
public key can check to verify that it came from the private key owner. This is
shown in Figure 13-3.

Figure 13-3. Signing

Both the encryption and the signing capabilities of public/private key pairs are used
to set up secure connections.

Let’s suppose that you and I want to exchange encrypted messages. Once I have gen‐
erated a key pair, I can give you the public key so that you can send me encrypted
messages. But if I send you that public key, how do you know that it really came from
me and not from an imposter? To establish that I am who I say I am, we will need to
involve a third party that you trust and that will vouch for my identity. This is the
function of a certificate authority (CA).

186 | Chapter 13: Securely Connecting Components

https://oreil.ly/Tbhvd


Certificate Authorities
A CA is a trusted entity that signs a certificate, thus verifying that the identity con‐
tained in that certificate is correct. You should only trust a certificate that has been
signed by an authority you trust.

A client that initiates a TLS connection receives a certificate from the destination,
which it can check to make sure that it is talking to the entity that it intended to
reach. For example, when you open a web connection to your bank, your browser
checks that the certificate matches the URL of your bank, and it also checks what CA
signed the certificate.

Other components need to be able to safely identify the CA, so it is represented by a
certificate. But that certificate needs to be signed by a CA, and to verify the signer’s
identity, there needs to be another certificate, and so on and so forth. It seems that we
could build a never-ending chain of certificates! Eventually, there has to be a certifi‐
cate that we can trust.

In practice, the chain ends with what’s called a self-signed certificate: an X.509 certifi‐
cate that the CA signed for itself. In other words, the identity represented by the cer‐
tificate is the same as the identity whose private key is used to sign the certificate. If
you can trust that identity, you can trust the certificate. Figure 13-4 shows a certificate
chain, where Ann’s certificate is signed by Bob, and Bob’s is signed by Carol. The
chain ends with Carol’s self-signed certificate.

Figure 13-4. Certificate chain
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Web browsers use a set of certificates from well-known, trusted CAs known as root
CAs. These might be installed along with the browser or owned by the operating sys‐
tem. Your web browser will trust any certificate (or certificate chain) signed by one of
these root CAs. If the certificate isn’t signed by one of the trusted CAs, it will show the
site as insecure (and in browsers today, you will almost certainly see a warning or
error message).

If you’re setting up a website that people will connect to over the internet, you will
need a certificate for that website signed by a trusted, public CA. There are several
vendors who act as these CAs and will generate a certificate for a fee, or you can get
one for free from Let’s Encrypt.

When you’re setting up distributed system components such as, say, Kubernetes or
etcd, you get to specify a set of CAs that are used to validate certificates. Assuming
that your system is under your private control, it doesn’t matter to you whether mem‐
bers of the public at large (or their browsers) trust these components—the important
thing is that the components can trust each other. Because this is a private system,
you don’t need to use publicly trusted CAs, and you can simply set up your own CAs
with self-signed certificates.

In an enterprise environment, a Public Key Infrastructure (PKI) often includes CA
capabilities and typically also manages certificate policies, renewal, and revocation.

Whether you’re using your own CA or a public one, you’ll need to tell the CA about
the certificate(s) you want generated. This is done with a Certificate Signing Request.

Certificate Signing Requests
A Certificate Signing Request (CSR) is a file that includes the following information:

• The public key that the certificate will incorporate
• The domain name(s) that this certificate should work with
• Information about the identity that this certificate should represent (for example,

the name of your company or organization)

You already know that an X.509 certificate includes this information, plus the signa‐
ture from the CA, so it makes complete sense that this is what you send in a CSR to
request an X.509 certificate from a CA.

Tools like openssl can create a new key pair and CSR in one step. Perhaps confus‐
ingly, openssl can take a private key as input for generating a CSR. This makes sense
when you recall that the public key is derived from the private key. The component
running as this identity (represented by the certificate) will use the private key for
decrypting and signing messages (as you’ll see shortly), but it never uses the public
key itself. It’s the other components that it communicates with who will need the
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public key, and they get that from the certificate. This component needs the private
key, and it needs the certificate that it will send to other components.

Now that you have a good understanding of what a certificate is, let’s discuss how cer‐
tificates are used for TLS connections.

TLS Connections
Transport layer connections have to be initiated by a component, and that component
is called the client. The entity it is communicating with is called the server. It may well
be the case that this client-server relationship is true only at the transport layer, and at
higher layers the components could be peers.

A client opens a socket and requests a network connection to the server. For a secure
connection, it requests that the server should send back a certificate. As you know
from earlier in this chapter, the certificate conveys two important pieces of informa‐
tion: the identity of the server and its public key.

The point of this is that the client can check that the server can be trusted. The client
checks that the server’s certificate was signed by a trusted CA, and if so, that is confir‐
mation that the server can be trusted. The client can go on to use the server’s public
key to encrypt messages that it sends to the server. The client and server agree on a
symmetric key used to both encrypt and decrypt the remainder of the messages
transferred on this connection—this is more performant than using the asymmetric
public/private key pair. This message flow is shown in Figure 13-5.

Figure 13-5. TLS handshake
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You may have come across the term skip verify. This refers to an option at the trans‐
port layer that allows a client to skip the step where it verifies that the certificate was
signed by a known CA. The client simply assumes that the identity claimed by the
certificate is correct. This can be handy in nonproduction environments because it
means you don’t have to bother configuring the client with information about CAs,
and you can simply use self-signed certificates. You still have encrypted communica‐
tions between components, but you can’t have full confidence that components aren’t
imposters, so please don’t use skip-verify options in production!

Once the client has verified the server, it can trust it. But how can the server trust the
client?

If we were discussing a website where you have an account, like a bank, it’s important
that the server verifies your identity before it gives out details of your bank balance,
or worse. For a true client/server relationship such as logging into your bank, this is
typically dealt with through Layer 7 authentication. You supply a username and pass‐
word, perhaps supplementing this with multifactor authentication through a code
sent in a text message, through a one-time password generated by a Yubikey, or by a
mobile app like Authy, 1Password, or Google Auth.

Another way to validate the client’s identity is through another X.509 certificate. The
message flow in Figure 13-5 shows both the server and client certificates being
exchanged—this is an option that can be configured at the server side. The server
used one to confirm its identity to the client, so why not do the same thing in reverse?
When this happens, it’s called mutual TLS or mTLS.

TLS and mTLS connections are widely used between clients and servers, and contain‐
ers (or Kubernetes pods) can be either (or both). But these containers run on hosts,
and an alternative method for encrypting the traffic between containers is to encrypt
all the network traffic between their hosts using a technology such as WireGuard or
IPSec.

WireGuard and IPSec
While they differ in implementation, these technologies encrypt IP (Layer 3) traffic
by setting up a secure tunnel between endpoints, encapsulating the traffic that flows
through the tunnel. They are both commonly used for virtual private networks
(VPNs), that you have likely encountered for securely connecting computers to your
employer’s network, or to make a device appear to be located in a different country.

In WireGuard, a network interface is created on a device, typically called wg0 (and
wg1, wg2, etc., if there are multiple). You’ll be familiar with the idea of creating a net‐
work interface from Chapter 4, where you saw containers being connected to their
host across a virtual Ethernet connection. WireGuard uses a UDP tunnel to
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1 WolfSSL looks to replace the cryptography suite in WireGuard with FIPS-compliant algorithms.

encapsulate and encrypt IP packets. Traffic can be routed to this interface (just like
any other).

The WireGuard interface is configured with its private key and a list of peers, public
keys for each peer, and the IP addresses that are allowed to send traffic from that peer.
Here’s an example of this configuration, taken from the WireGuard website:

[Interface]
PrivateKey = yAnz5TF+lXXJte14tji3zlMNq+hd2rYUIgJBgB3fBmk=
ListenPort = 51820

[Peer]
PublicKey = xTIBA5rboUvnH4htodjb6e697QjLERt1NAB4mZqp8Dg=
AllowedIPs = 10.192.122.3/32, 10.192.124.1/24

[Peer]
PublicKey = TrMvSoP4jYQlY6RIzBgbssQqY3vxI2Pi+y71lOWWXX0=
AllowedIPs = 10.192.122.4/32, 192.168.0.0/16

[Peer]
PublicKey = gN65BkIKy1eCE9pP1wdc8ROUtkHLF2PfAqYdyYBz6EA=
AllowedIPs = 10.10.10.230/32

Packets are encrypted using the public key for the destination peer and encapsulated
in a UDP packet. The recipient decrypts the packet using its private key and checks
that the source IP is permitted, dropping the packet if not.

WireGuard is generally considered to be highly secure (at least until we reach the era
of post-quantum cryptography) and simple to configure, so it’s a great choice for
transparently encrypting traffic between nodes. But there is a downside to
WireGuard, which is that it’s not FIPS (Federal Information Processing Standards)
compliant—not because it’s technically not secure enough but because the developers
quite reasonably don’t want to go through the bureaucratic process of getting their
algorithms verified by FIPS. In regulated environments, it’s important to be able to
tick the compliance box, so you might want to consider IPSec.1

In IPSec, there is no dedicated network interface; instead, IPSec security policies are
configured on existing interfaces. This configuration includes the host’s own security
settings, its private key and the public keys of its peers, as well as the IP addresses and
networks that are allowed to send traffic through the IPSec tunnel. IPSec also allows
the configuration of a selection of encryption and authentication algorithms, so the
first step between peers is to establish a “security association” that establishes the
security parameters to be used between these peers, including the encryption and
authentication algorithms.
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When IPSec is enabled on a network interface, it intercepts IP packets being sent or
received on that interface and applies the IPSec security policies to them, encrypting
and authenticating the packets, as well as checking the source IP address and other
security parameters.

IPSec can operate in different modes: transport mode or tunnel mode, which affect
how packets are processed and encrypted. Tunnel mode is considered more secure
because it encrypts the IP header for the original packet, which includes the source
and destination IP addresses, and it can be used where the packets will traverse NAT
devices. Transport mode generally has better performance, and it’s perfectly suitable
in a private network where the IP addresses are not considered sensitive.

WireGuard and IPSec are widely used in container deployments to achieve zero-trust
networking.

Zero-Trust Networking
Zero-trust networking is a security approach that assumes that all network traffic,
whether it’s coming from within or outside the network, is potentially malicious and
that malicious actors may have access to the network. To mitigate the risks that this
assumption suggests, all traffic should be encrypted and authenticated.

Algorithms like WireGuard and IPSec can play a crucial role in zero-trust networking
by providing secure and encrypted communication between devices. Where contain‐
ers are running on hosts connected to a zero-trust network, the traffic is automati‐
cally encrypted as it travels from one host to another, using the hosts’ identities for
authentication. For many deployments, including regulated environments, this is suf‐
ficient to meet compliance requirements, and it is operationally very straightforward.

In a Kubernetes network, as you saw in Chapter 12, connectivity
between pods is provided by a Container Network Interface (CNI)
plug-in. Some CNIs, including Cilium and Calico, can be config‐
ured to use IPSec or WireGuard, ensuring that all traffic between
hosts is encrypted.

If you don’t own the whole network that containers are connected to (for example,
the VPCs they are attached to and any VPN connections between clusters) or you
don’t trust all the containers deployed in it, encrypting the network traffic may not be
sufficient. In this case, you can authenticate and encrypt the traffic between individ‐
ual containers (or pods, in Kubernetes).
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Secure Connections Between Containers
Nothing in this chapter so far is specific to containers, but now let’s review some of
the circumstances in which you might need to understand keys, certificates, and CAs:

• If you are installing or administering Kubernetes or other distributed system
components, it’s likely that you’ll come across options for using secure connec‐
tions. Installation tools like kubeadm make it easy to use TLS between control
plane components, automatically configuring certificates as appropriate. This
doesn’t do anything to secure the traffic between containers and the outside
world.

• As a developer, you might write application code that sets up mTLS connections
with other components (whether it’s running in a container or not). In that case,
your app code needs access to certificates that you’ll need to create.

• Rather than writing your own code to set up authenticated and encrypted con‐
nections, you can use a service mesh to do it for you. Service meshes were dis‐
cussed in Chapter 12, and I’ll cover how they can provide encrypted connections
between containers very soon in this chapter, but first let’s talk about revoking
certificates.

Certificate Revocation
Imagine that an attacker somehow obtains a private key. They can now impersonate
the identity associated with that key, because they can successfully decrypt messages
that were encrypted using the public key embedded in any corresponding certificates.
To prevent this, you need a way of invalidating the certificate immediately rather than
waiting for its expiry date.

This invalidation is called certificate revocation and can be achieved by maintaining a
Certificate Revocation List (CRL) of certificates that should no longer be accepted.

Try not to share identities (and their certificates) across multiple components or
users. It may seem like a management burden to set up individual identities and cer‐
tificates for each component, but it means you can revoke the certificate for one iden‐
tity without having to reissue a new one to all the (legitimate) users. It also allows for
a separation of concerns whereby each identity can be granted a separate set of
permissions.
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In Kubernetes, certificates are used by the kubelet component on
each node to authenticate to the API server and confirm that it
really is an authorized kubelet. These certificates are issued by the
cluster’s CA and can be rotated automatically.
Certificates are also one of the mechanisms that clients (whether
human or software) can use to authenticate themselves with the
Kubernetes API Server.
At the time of writing, Kubernetes does not support certificate rev‐
ocation. Once a certificate is issued, there is no way to invalidate it
until it expires. Instead, best practice is to use short-lived certifi‐
cates and automatic rotation. You can also use RBAC configuration
to prevent API access for the client associated with a certificate (but
this won’t stop a certificate being used to establish a TLS
connection).

Service Meshes for Encrypted Traffic
You already met service meshes and saw how they can be used to enforce application-
level network policies, but I glossed over how they provide authenticated and encryp‐
ted traffic between workloads. Let’s dig into that now.

As mentioned previously, for a long time, service meshes typically used the sidecar
model, injecting a proxy component into every pod (or at least every pod that’s being
connected to the service mesh). This proxy intercepts network connections going to
and from a container. When pod A initiates a connection to pod B, proxy A acts as
the endpoint for that connection, sets up an mTLS connection to proxy B, and for‐
wards the payload data over that connection.

However, this sidecar model has several shortcomings, especially at scale. If you run
1,000 pods, you have 1,000 additional containers for the sidecar proxies, each con‐
suming resources such as the memory for its routing table and increasing CPU load.
Traffic has to travel extra hops between proxies and application containers, affecting
network latency. Perhaps even more importantly, many users found that operating
sidecar-based service meshes introduced significant complexity. The sidecars need to
be injected correctly, and as mentioned before, they are tightly bound to the life cycle
of the pod—so upgrading the service mesh involves restarting application pods.

As a result, many teams have turned to sidecarless approaches such as Cilium or Istio
Ambient Mode, which offer improved efficiency, faster deployment times, and sim‐
pler operations while still preserving core mesh features like workload authentication,
encrypted connections, Layer 7 policies, and observability.
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Thomas Graf laid out the evolution from sidecar-based to sidecar‐
less service mesh, while the Istio documentation gives a good com‐
parison of its sidecar and ambient modes.

For a service mesh to authenticate on behalf of a container or pod, it needs to access
an X.509 certificate representing that individual workload. As you’ve seen, there are
several steps to creating X.509 certificates, so issuing certificates and managing iden‐
tities for thousands of workloads is challenging. One initiative to ease this challenge is
SPIFFE.

SPIFFE
SPIFFE stands for Secure Production Identity Framework For Everyone. It defines a
standard way for issuing and managing identities, known as SVIDs (SPIFFE Verifia‐
ble Identity Documents), which in practice are usually x.509 certificates, though Json
Web Token (JWT) is also supported. The key idea is to decouple workload identity
from machine identity or from traditional approaches like IP addresses, even in
dynamic environments like Kubernetes, where workloads are short-lived and fre‐
quently rescheduled to different host machines.

The SPIFFE Runtime Environment (SPIRE) is an open source implementation of the
SPIFFE specification. It acts as a CA and workload attestor, automatically issuing
SVIDs to workloads based on characteristics such as container image digests or
Kubernetes pod labels. SPIRE ensures that only authorized workloads receive valid
identities and that those identities are rotated automatically and securely.

As you know from earlier in this chapter, setting up an mTLS connection requires a
private key and an X.509 certificate. Let’s consider in a little more detail how keys and
certificates are managed with SPIFFE/SPIRE:

• Each node runs a SPIRE agent, exposing the SPIRE Workload API through a
socket, so that only local processes can connect to it.

• A workload (a pod in Kubernetes, but it could be any process in other environ‐
ments) starts up and makes a request to the SPIRE agent through the Workload
API socket.

• The SPIRE agent uses workload attestation plug-ins to determine what the work‐
load is and its SPIFFE ID.

• Let’s assume that it’s a valid workload. The SPIRE agent generates a public/private
key pair and sends a Certificate Signing Request to the SPIRE server.
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• The server acts as a CA and responds with an SVID containing an X.509 certifi‐
cate for the workload.

• The agent passes the certificate and the private key to the workload, which can
now use this for setting up TLS or mTLS connections.

This allows the workload to be authenticated without keys and certificates having to
be manually provisioned.

There are different options for the plug-in that provides workload attestation for
SPIRE. Typically, the plug-in identifies the workload process using its process ID and
collects information about that process to identify what workload it is. Armed with
knowledge from earlier in this book, you can imagine a simple implementation
using /proc/<pid>/exe to see what binary the process is running. There is a
Kubernetes workload attestor that inspects the cgroups associated with the process to
determine which pod it belongs to and then queries the Kubernetes API to retrieve
metadata about the pod such as namespace, service account, and labels. Configura‐
tion on the SPIRE server tells it how to map this metadata to a SPIFFE ID.

Individual applications can use the Workload API directly, or you can use a service
mesh to retrieve SVIDs safely on behalf of workloads, so that the whole operation is
completely transparent to application code.

External Traffic
So far this chapter has discussed encrypting traffic between containerized workloads,
but many deployments also have to consider traffic that flows between a container
and some external endpoint:

• There could be ingress requests coming from, say, browsers on the public inter‐
net or from clients within your private network but outside the container cluster.

• There could be egress requests made by containers to services outside the con‐
tainer deployment. Examples might include third-party payment gateway serv‐
ices, external storage such as AWS S3, or internal database services.

You need to consider how this external traffic is secured.

Ingress Traffic
Externally, traffic typically goes through some kind of entry point before it reaches a
containerized application. This could be a load balancer that sits between the outside
world and your deployment, or it could be an Ingress or Gateway API within a
Kubernetes cluster or a reverse proxy in a Docker compose setup. These all perform
similar functions: they decide which container to send the external request to, and
they might optionally terminate TLS connections.
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There are a few options for TLS termination:

• Terminate all incoming TLS connections at the ingress layer, and forward
requests as plain HTTP traffic to the container. If you’re using transparent
encryption techniques like WireGuard or IPSec, the traffic within the container
network is still secure.

• Use TLS Passthrough, where the TLS connection reaches all the way to the con‐
tainer endpoint (or its service mesh proxy). This may be necessary if there are
untrusted workloads in the deployment—for example, in a multitenancy
environment.

• Use termination and re-encryption, where the original connection terminates at
the ingress layer, but mTLS is used between the ingress and containers.

You might also have restrictions on which sources are permitted for external traffic.
This could be a conventional firewall, configuration on the ingress component, or
even ingress rules in a container network policy.

Egress Traffic
By default, containers can typically make an outbound connection to any reachable
address. You can limit this with egress network policy rules and/or, in the public
cloud, Security Group rules. To make it harder for an attacker to exfiltrate data, it’s
good practice to disable outbound traffic from workloads unless they explicitly
need it.

You may also have security such as firewalling in place to protect the external services
that your containers need to connect to. An egress gateway can make traffic from a
containerized workload appear to come from a predictable IP address, making it eas‐
ier to write the firewall rules. Cilium and Istio both implement egress gateways that
run in a Kubernetes cluster. In the public cloud, you can do this at the infrastructure
level with NAT gateways and routing table rules.

Network Observability and Logging
Just as you would in a traditional deployment, you should monitor and log inbound
and outbound connections, in case of unexpected destinations, or a spike in traffic,
that could indicate malicious activity. We’ll consider some tools to help with this in
Chapter 15.
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Many CNIs and service meshes provide network observability tools, like Cilium’s
Hubble or Istio’s Kiali, which can help to debug connectivity issues and provide infor‐
mation about potential compromises.

Summary
To avoid man-in-the-middle attacks, you’ll need to make sure you can trust the net‐
work connections between your various software components. A good approach to
this is to adopt zero-trust networking across your deployment, such that traffic is
always encrypted. Transparent encryption between nodes using WireGuard or IPSec
is generally easy to configure and requires no changes to your containers or
applications.

In some cases, you may need to go further and authenticate individual workloads.
Application code running in containers can initiate and/or terminate TLS connec‐
tions themselves, or a service mesh can authenticate identities on behalf of workloads.
Consider also how you will secure ingress and egress traffic to and from your con‐
tainerized deployment.

Any component that can act as an endpoint for a TLS connection will need three
things:

• A private key that should never be shared and should be treated as a secret
• A certificate that it can freely distribute and that other components can use to

validate its identity
• Certificates from one or more trusted CAs that it can use to validate the certifi‐

cates received from other components

Containerized workloads can act as TLS endpoints themselves, or they can offload
this functionality to other components such as a service mesh.

You should now have a good understanding of the role that keys, certificates, and
CAs each play. This knowledge will be helpful when you’re configuring components
to use them or debugging connection problems.

If you can trust the connections between containers and identify the component at
the far end of a connection, you are in a good place to start passing secrets between
containers. But you’ll need to be able to pass secret values into containers safely—and
that’s what’s coming up in Chapter 14.
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CHAPTER 14

Passing Secrets to Containers

Application code often needs certain credentials to do its job. For example, it may
need a password to access a database or a token giving it permission to access a par‐
ticular API. Credentials, or secrets, exist specifically to restrict access to resources—
the database or the API, in these examples. It’s important to make sure that the secrets
themselves stay “secret” and, in compliance with the principle of least privilege, are
accessible only to people or components who really need them.

This chapter starts by considering the desirable properties of secrets and then
explores the options for getting secret information into containers. It ends with a dis‐
cussion of native support for secrets in Kubernetes.

Secret Properties
The most obvious property of a secret is that it needs to be secret—that is, it must be
accessible only to the people (or things) that are supposed to have access. Typically
you ensure this secrecy by encrypting the secret data and sharing the decryption key
only with those entities that should have permission to see the secret.

The secret should be stored in encrypted form so that it’s not accessible to every user
or entity that can access the data store. When the secret moves from storage to wher‐
ever it’s used, it should also be encrypted so that it can’t be sniffed from the network.
Ideally, the secret should never be written to disk unencrypted. When the application
needs the unencrypted version, it’s best if this is held only in memory.

It is perhaps tempting to imagine that once you have encrypted a secret, that is the
end of the matter, because you can pass it safely to another component. However, the
receiver would need to know how to decrypt the information it received, and that
entails a decryption key. This key is in itself a secret, and the receiver would need to
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get hold of that somehow, leading us back to the original question of how we can pass
this next-level secret safely.

You need to be able to revoke secrets—that is, make them invalid in the event that the
secret should no longer be trusted. This could happen if you know or suspect that an
unauthorized person has been able to access the secret. You might also want to revoke
secrets for straightforward operational reasons, such as someone leaving the team.

You also want the ability to rotate or change secrets. You won’t necessarily know if
one of your secrets has been compromised, so by changing them every so often, you
ensure that any attacker who has been able to access some credentials will find that
they stop working. It’s now well-recognized that forcing humans to change passwords
regularly is a bad idea, but software components can cope fine with frequently chang‐
ing credentials.

The life cycle of a secret should ideally be independent of the life cycle of the compo‐
nent that uses it. This is desirable because it means you don’t have to rebuild and
redistribute the component when the secret changes.

The set of people who should have access to a secret is often much smaller than the
set of people who need access to the application source code that will use that secret
or who can perform deployments or administration on (parts of) the deployment.
For example, in a bank, it’s unlikely that developers should have access to production
secrets that would grant access to account information. It’s quite common for secret
access to be write-only for humans: once a secret is generated (often automatically
and at random), there may never be a reason for a person to legitimately read the
secret out again.

It’s not just people who should be restricted from having access to secrets. Ideally, the
only software components that can read the secret should be those that need access to
it. Since we are concerned with containers, this means exposing a secret only to those
containers that actually need it to function correctly.

Now that we have considered the preferred qualities of a secret, let’s turn to the possi‐
ble mechanisms that could be used to get a secret into the application code running in
a container.

Getting Information into a Container
Bearing in mind that a container is deliberately intended to be an isolated entity, it
should be no surprise that there is a limited set of possibilities for getting
information—including secret data—into a running container:
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• Data can be included in the container image, as a file in the image root
filesystem.

• Environment variables can be defined as part of the configuration that goes along
with the image (see Chapter 6 for a reminder of how the root filesystem and con‐
fig information make up an image).

• The container can receive information over a network interface.
• Environment variables can be defined or overridden at the point where the con‐

tainer is run (for example, including -e parameters on a docker run command).
• The container can mount a volume from the host and read information out of

volumes on that host.

Let’s take each of these options in turn.

Storing the Secret in the Container Image
The first two of these options are unsuitable for secret data because they require you
to hardcode the secret into the image at build time. While this is certainly possible, it
is generally considered a bad idea:

• The secret is viewable by anyone who has access to the source code for the image.
You might be thinking that the secret could be encrypted rather than in plain text
in the source code—but then you’ll need to pass in another secret somehow so
that the container can decrypt it. What mechanism will you use to pass in this
second secret?

• The secret can’t change unless you rebuild the container image, but it would be
better to decouple these two activities. Furthermore, a centralized, automated
system for managing secrets (like CyberArk or HashiCorp Vault) can’t control
the life cycle of a secret that is hardcoded in the source.

Unfortunately, it is surprisingly common to find secrets baked into source code. One
reason is simply that developers don’t all know that it’s a bad idea; another is that it’s
all too easy to put the secrets directly into the code as a shortcut during development
or testing, with the intention of removing them later—and then simply forget to come
back and take them out.

Several image-scanning tools (discussed in Chapter 8) can help you spot when secrets
have been hard-coded into a container image, so you can remove them and use a bet‐
ter mechanism instead!

If passing the secret at build time is off the table, the other options all pass the secret
when the container starts or is running.
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Passing the Secret Over the Network
The third option is to pass the secret over a network interface. It is commonplace to
use managed services like AWS Secrets Manager or HashiCorp Vault to manage
secrets, with the application code making API requests over the network to obtain
secrets from the service.

But to keep the secret safe, the network communication between the container and
the secret service has to be encrypted, which can present something of a bootstrap‐
ping problem: as you saw in Chapter 13, the container needs secret credentials to set
up the secure network connection.

Transparent encryption might take care of this for you, or you can offload this part of
the problem to a service mesh, but the service mesh itself will still need to access cre‐
dentials passed in through some other mechanism.

Passing Secrets in Environment Variables
The fourth option, passing secrets via environment variables, is generally frowned
upon for a couple of reasons:

• In many languages and frameworks, a crash will result in the system dumping
debug information that may well include all the environment settings. If this
information gets passed to a logging system, anyone who has access to the logs
can see secrets passed in as environment variables.

• If you can run docker inspect (or an equivalent) on a container, you get to see
any environment variables defined for the container, whether at build or at run‐
time. Administrators who have good reasons for inspecting properties of a con‐
tainer don’t necessarily need access to the secrets.

• Anyone with access to the host can simply run cat /proc/<process id>/environ
to see all the environment variables for that process. You’ll see this in more detail
later in “Secrets Are Accessible by Root” on page 207.

Here’s an example of extracting the environment variables from a container image:

$ docker image inspect --format '{{.Config.Env}}' nginx
[PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin 
NGINX_VERSION=1.27.5 NJS_VERSION=0.8.10 NJS_RELEASE=1~bookworm 
PKG_RELEASE=1~bookworm DYNPKG_RELEASE=1~bookworm]
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You can also easily inspect environment variables at runtime. This example shows
how the results include any definitions passed in on the run command (EXTRA_ENV
here):

$ docker run -e EXTRA_ENV=HELLO --rm -d nginx
13bcf3c571268f697f1e562a49e8d545d78aae65b0a102d2da78596b655e2f9a
$ docker container inspect --format '{{.Config.Env}}' 13bcf
[EXTRA_ENV=HELLO PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:
/bin NGINX_VERSION=1.27.5 NJS_VERSION=0.8.10 NJS_RELEASE=1~bookworm 
PKG_RELEASE=1~bookworm DYNPKG_RELEASE=1~bookworm]

“The Twelve-Factor App” manifesto encouraged developers to pass configuration
through environment variables, so in practice you may find yourself running third-
party containers that expect to be configured this way, including some secret values.
You can mitigate the risk of environment variable secrets in a few ways (which may or
may not be worthwhile, depending on your risk profile):

• You could process output logs to remove or obscure the secret values.
• You can modify the app container (or use a sidecar container) to retrieve the

secrets from a secure store (like HashiCorp Vault, CyberArk Conjur, or cloud
provider secret/key management systems). Some commercial security solutions
will provide this integration for you.

AWS Fargate is an example of a managed container service that supports passing
secrets using environment variables. Instead of including the secret value directly in
the configuration for the Fargate task, the task definition can reference secrets held
safely and in encrypted form in AWS Secrets Manager. This means the task definition
itself doesn’t include sensitive data (which would be similar to holding sensitive data
in the source code for a container image). Still, by the time the containerized applica‐
tion running in Fargate sees the value retrieved from the Secrets Manager service, it
will be an unencrypted environment variable.

One last thing to note about secrets configured through environment variables is that
the environment for a process is configured only once, and that’s at the point where
the process is created. If you want to rotate a secret, you can’t reconfigure the envi‐
ronment for the container from the outside.

Passing Secrets Through Files
A better option for passing secrets is to write them into files that the container can
access through a mounted volume. Ideally, this mounted volume should be a tempo‐
rary directory that is held in memory rather than written to disk. As an example, both
Docker Swarm secrets and Kubernetes secrets can be mounted into containers using
an in-memory filesystem. Combining this with a secure secrets store ensures that
secrets are never stored “at rest” unencrypted.
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Because the file is mounted from the host into the container, it can be updated from
the host side at any time without having to restart the container. Provided the appli‐
cation knows to retrieve a new secret from the file if the old secret stops working, this
means you can rotate secrets without having to restart containers. The requirement
for applications to be aware of updated secrets has been made easier through Linux’s
inotify mechanism, where the filesystem can send an event to let a process know
when a file has changed. (This inotify system is also very useful for runtime security
tools that can now subscribe to events related to sensitive file access.)

Kubernetes Secrets
If you’re using Kubernetes, the good news is that it has native secrets support that
meets many of the criteria I described at the start of this chapter:

• Kubernetes Secrets are created as independent resources, so they are not tied to
the life cycle of the application code that needs them.

• Kubernetes secrets are stored (along with other resource data) as base64-encoded
values in etcd. Data at rest in etcd is not encrypted by default, but Kubernetes has
built-in support that you can enable for encrypting Secrets (and any other
resources of your choosing that you might consider sensitive). If you’re using a
managed Kubernetes service, you’ll very likely find that this encryption is either
on by default or easily configurable. (It’s also possible to encrypt the entire etcd
data store, but this is rarely done since Kubernetes started offering resource
encryption at the API server level, which is usually easier to manage.)

• Secrets are encrypted in transit between components. This requires that you have
secure connections between Kubernetes components (for example, a TLS con‐
nection between the API Server and etcd data store), though this is generally the
case by default in most distributions.

• Kubernetes Secrets support the file mechanism as well as the environment vari‐
able method, mounting secrets as files in a temporary filesystem that is held in-
memory and never written to disk.

• You can set up Kubernetes role-based access control (RBAC) so that users can
configure Secrets resources but can’t access them again, giving them write-only
permissions.

In addition to the native Secrets support, Kubernetes now has an optional Secrets
Store Container Storage Interface (CSI) Driver that eliminates the need to use native
Kubernetes Secrets.
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Secrets Store CSI Driver
This extension allows secrets to be pulled directly from a secure secret management
service (like Vault or a cloud provider Key Management Service) at runtime and
mounted into pods as files. These secrets are never stored in etcd and never exposed
as environment variables.

To start using this approach you might need to update your applications to read
secrets from the right files, and they need to be restarted on key rotation (unless they
can watch for updates using inotify).

There is the option to sync these resources to native Kubernetes Secrets, though this
would seem to defeat the whole point of using the Secrets Store driver! However, the
ability to sync can help during a migration in which certain apps need the legacy
Secrets approach—for example, because they read from environment variables. Addi‐
tionally, some resources might refer to Secrets (for example, the Ingress resource can
look for TLS certificates by reference to a Secret resource).

External Secrets Operator
Another approach is to use the External Secrets Operator, an open source Kubernetes
controller that pulls secret data from external managers, like AWS Secrets Manager,
HashiCorp Vault, or Google Secret Manager, and syncs it into native Kubernetes
Secrets resources. This has the advantage that applications don’t need to be modified,
since they can consume secrets in the usual Kubernetes-native ways as environment
variables or mounted files. The trade-off is that as native Kubernetes Secrets, they are
stored in etcd, unlike with the Secrets Store CSI Driver, where they never touch the
cluster’s backing store.

Rotating Secrets in Kubernetes
When it comes to rotating secrets, there are two aspects to consider:

• Rotating the value of a Kubernetes Secret being passed to an application
• Rotating the keys in the EncryptionConfig resource used to encrypt Secret

resources in etcd

If you’re using plain Secret objects, you can update their values with kubectl, and
then you will generally need to restart pods that use those secrets to get the applica‐
tion to use the new values. Secret managers (like Vault or AWS Secrets Manager) can
make this process easier. If you’re using the External Secrets Operator, secret values
are updated automatically from the external manager, but applications still usually
have to be restarted to pick up these new values (unless they are written to watch for
changes).
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Rotating the keys used for encrypting Secret resources is a multistep process that
involves modifying the EncryptionConfig resource and restarting the API Server(s)
at least twice:

1. Add the new key as a second entry in the EncryptionConfig resource.
2. Restart the API Servers to read the new EncryptionConfig. They have access to

the new key and can use it for decryption if they encounter a resource that they
can’t decrypt with the old key.

3. Swap the keys so that the new key is the first entry in the EncryptionConfig
resource.

4. Restart the API Servers to reread the EncryptionConfig, so they start using the
new key for encryption.

5. Replace all the existing Secret resources so they are encrypted with the new key.
6. It’s a good idea to update the EncryptionConfig to remove the old key.

In my experience, most enterprises choose a third-party commercial solution for
secret storage, either from their cloud provider (such as the AWS Key Management
System or its Azure or GCP equivalents) or from a vendor such as HashiCorp or
CyberArk. These offer several benefits:

• A dedicated secrets management system can be shared with multiple clusters. Secret
values can be rotated, irrespective of the life cycle of the application cluster(s).

• These solutions can make it easier for organizations to standardize on one way of
handling secrets, with common best practices for management and consistent
logs and auditing of secrets.

The public cloud providers all document their recommendations
for encrypting Kubernetes secrets:

• AWS documentation for using Key Management Service with
EKS

• Microsoft documentation for using Key Management Service
with AKS

• Google documentation for using Cloud Key Management with
GKE
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Secrets Are Accessible by Root
Whether a secret is passed into a container as a mounted file or as an environment
variable, it is going to be possible for the root user on the host to access it.

If the secret is held in a file, that file lives on the host’s filesystem somewhere. Even if
it’s in a temporary directory, the root user will be able to access it. As a demonstration
of this, you can list the temporary filesystems mounted on a Kubernetes node, and
you’ll find something like this:

$ sudo mount -t tmpfs
...
tmpfs on /var/lib/kubelet/pods/691c...5f8a/volumes/kubernetes.io~projected/
kube-api-access-lbgtt type tmpfs (rw,relatime,size=8024812k,noswap)
...

Using the directory names included in this output (which I’ll refer to here as $DIR),
the root user has no difficulty accessing the secret files held within them:

$ sudo ls -l $DIR
total 0
lrwxrwxrwx 1 root root 13 Jul 30 12:05 ca.crt -> ..data/ca.crt
lrwxrwxrwx 1 root root 16 Jul 30 12:05 namespace -> ..data/namespace
lrwxrwxrwx 1 root root 12 Jul 30 12:05 token -> ..data/token

$ sudo cat $DIR/ca.crt
-----BEGIN CERTIFICATE-----
MIIDBTCCAe2gAwIBAgIIeRWAgMJOFy4wDQYJKoZIhvcNAQELBQAwFTETMBEGA1UE
...
aRW9Jb5JqekJ
-----END CERTIFICATE-----

Extracting the secrets held in environment variables is almost as simple for the root
user. Let’s demonstrate this by starting a container with Docker on the command line,
passing in an environment variable:

$ docker run --rm -it -e SECRET=mysecret ubuntu sh
$ env
...
SECRET=mysecret
...

This container is running sh, and from another terminal you can find the process ID
for that executable:

$ ps -C sh
  PID TTY          TIME CMD
17322 pts/0    00:00:00 sh
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In Chapter 4 you saw that lots of interesting information about a process is held in
the /proc directory. That includes all its environment variables, held in /proc/
<process ID>/environ:

$ sudo cat /proc/17322/environ
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=2cc99c98ba5aTERM=xtermSECRET=mysecretHOME=/root

As you can see, any secret passed into a container through the environment can be
read in this way. Are you wondering whether it wouldn’t be better to encrypt the
secret first? Think about how you would get the decryption key—which also needs to
be kept secret—into the container.

I can’t overemphasize that anyone who has root access to a host machine has carte
blanche over everything on that machine, including all its containers and their
secrets. This is why it’s so important to prevent unauthorized root access within your
deployment and why running as root inside a container is so dangerous: since root
inside the container is root on the host, it is just one step away from compromising
everything on that host.

Summary
If you have worked through the book to this point, you should have a good under‐
standing of how containers work, and you know how to send secret information
safely between them. You have seen numerous ways in which containers can be
exploited and many ways in which they can be protected.

The last group of protection mechanisms we shall consider relates to runtime protec‐
tion, coming up in Chapter 15.
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CHAPTER 15

Container Runtime Protection

In Chapter 10 you saw some approaches to strengthening container isolation using
security profiles like seccomp, AppArmor, and SELinux. These all act at runtime, so
they contribute to container runtime protection and limit the set of actions that con‐
tainers can perform. In this chapter you will learn about more sophisticated security
tools that provide more dynamic capabilities for detecting suspicious runtime activ‐
ity, and use policies that can be tuned for individual workloads.

The term security observability refers to generating logs and metrics, along with tool‐
ing that helps teams understand security-relevant events that are happening in a
deployment. Modern runtime security tools generate security observability data that
includes container or Kubernetes identity information, making it much easier to cor‐
relate suspicious events to a specific containerized workload. Some tools can go fur‐
ther and selectively allow for policy enforcement that prevents suspicious activities
from taking place.

This chapter starts by considering how we can take advantage of containerization to
build workload-specific policies, and it lays out some of the types of behavior that
tools could observe and restrict. Then we’ll look at technology options for enforcing
runtime behavior, and we’ll consider some of the tools available.

One of the characteristics of containers is that they lend themselves to microservice
architectures. Application developers can break down a complex software application
into small, self-contained pieces of code that can be scaled independently, each deliv‐
ered as a container image.

Breaking a large system into smaller components with well-defined interfaces makes
it easier to design, code, and test the individual components. It also turns out to make
them easier to secure.
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Container Image Runtime Policies
If a given container image holds the code for an application microservice and that
microservice does one small function, it’s relatively easy to reason about what that
microservice should do. The code for the microservice is built into a container image,
and it’s possible to construct a runtime profile or policy corresponding to that con‐
tainer image, defining what it should be able to do.

Every container instantiated from a given image should behave the same way, so it
makes sense that a profile of expected behavior can be defined for an image and then
used to police the behavior of all the containers based on that image.

In a Kubernetes deployment, runtime security might be policed on
a pod-by-pod basis. A pod is essentially a collection of containers
that share a network namespace, so the underlying mechanisms for
runtime security are the same.

I’ll use the same ecommerce platform example from “Container Firewalls and Micro‐
segmentation” on page 163, with a product search microservice that accepts web
requests specifying a search term (or the first few characters of a search term) as
entered by a customer browsing the ecommerce site. The job of the product search
microservice is to look in a product database for items that match the search term
and return a response. Let’s start by thinking about the expected network traffic for
this microservice.

Network Traffic
From the description of the product search microservice, we can infer that its con‐
tainers need to accept and respond to web requests coming from a particular ingress
or load balancer, and they should initiate a database connection to the product data‐
base. Aside from common platform functions like logging or health checks, there is
really no reason for this service to handle or initiate any other network traffic.

It would not be terribly onerous to draw up a network security policy defining the
traffic that is permitted for this service and then use it to define rules that are
enforced at the networking level, as you saw in Chapter 12. These rules could define
that requests are only permitted inbound from the ingress/load balancer, and that the
only egress traffic permitted is to the product database service. A Layer 7 policy might
additionally define that these requests have to be HTTP GET requests.
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Some security tools can act in a recording mode in which they monitor messages to
and from a service over a period of time to automatically build up a profile of what
normal traffic flow looks like. This profile can be converted into network policies.

Network traffic isn’t the only behavior that you can observe and profile. Let’s consider
the executables.

Executables
How many executable programs should run in this product search microservice? For
the sake of illustration, let’s imagine that the code is written as a single Go executable
called productsearch. If you were to monitor the executables running inside these
product search containers, you should only ever see productsearch. Anything else
would be an anomaly and possibly a sign of attack.

Even if the service is written in a scripted language like Python or Ruby, you can
make inferences about what is or isn’t acceptable. Does the service need to “shell out”
to run other commands? If not, then were you ever to observe bash, sh, or zsh exe‐
cutables running in a product search container, you should be alarmed.

This relies on you treating the containers as immutable and assumes that you are not
opening shells directly into containers on your production system. From a security
perspective, there is very little difference between an attacker opening a reverse shell
through an application vulnerability and an administrator opening a shell to perform
some kind of “maintenance.” As discussed in “Immutable Containers” on page 111,
this is considered bad practice!

Any executables or dependencies that the application code needs should be included
in that image. We discussed this earlier through the lens of vulnerability detection:
you can’t scan for vulnerabilities in code that isn’t included in the image, so you
should make sure that everything you want to scan is included. Treating containers as
immutable gives us another powerful option for detecting code injection at runtime:
drift prevention. Whenever a container starts to run a new executable process, this
should only be permitted if the file being executed existed in the image when it was
scanned. By using file fingerprints from the scanning step, rather than a list of file‐
names, this approach can prevent an attacker from trying to disguise an injected exe‐
cutable as a legitimate one.

Most of the time, we run programs by executing a program written in a file, but there
is also something called fileless execution. Program instructions are held in memory
and never written to disk. This technique is often used in malware attacks to evade
detection by anti-malware tools that scan files looking for malware signatures.
Modern runtime security tools can spot this execution from memory as well as from
files.

Container Image Runtime Policies | 211



File Access
Our hypothetical product search microservice probably does very little or no file
access, other than writing logs and perhaps reading secrets so that it can authenticate
itself to the product database service.

But this only takes into account the files that the microservice developer wrote code
to access explicitly. Depending on the language that the service is written in, there
could be several shared libraries and files accessed at runtime. For example, take a
simple executable like cat and use the opensnoop tool to see how many files it tries to
access:

PID    COMM              FD ERR PATH
45883  cat                3   0 /etc/ld.so.cache
45883  cat                3   0 /lib/aarch64-linux-gnu/libc.so.6
45883  cat                3   0 /usr/lib/locale/locale-archive
... over 20 more file access attempts ...
45883  cat               -1   2 /usr/lib/locale/C.UTF-8/LC_CTYPE
45883  cat                3   0 /usr/lib/locale/C.utf8/LC_CTYPE
45883  cat                3   0 myfile

A policy that limits the set of files that a container can access will need to take into
account all these ancillary files. This list is sufficiently long that even an experienced
programmer might omit a few of these files if they tried to draw up a policy by hand,
but some security tools offer the ability to profile running containers automatically
and then alert on or prevent opening files outside the expected profile.

Another more generic approach is to define a set of files that are considered “sensi‐
tive” and shouldn’t be accessed (or at least written to) by any workload. It makes sense
to log all access to certain files, such as the /etc/shadow file, which holds password
information—you might even prefer to block attempts to write to this file. As another
example, in a Kubernetes environment, you should protect the /etc/kubernetes/
manifests directory from unexpected write access to prevent unwanted static pods
being created.

User and Group IDs
As discussed in Chapter 6, you can define the user ID under which processes run
within a container, so this is another aspect that can be policed by security tools at
runtime. (I hope you’re using non-root users in your application profiles—see “Con‐
tainers Run as Root by Default” on page 143.)

As a general rule, if the container is doing one job, it probably needs to operate under
only one user identity. If you were to observe the container using a different identity,
this would be another red flag. If a process were to be unexpectedly running as root,
this privilege escalation would be an even greater cause for concern.
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You can use scanning and admission control to control the user ID that a container is
supposed to use. For defense in depth, use a runtime security tool that can also spot
when a process attempts to change the user or group that it is running under.

AI for Generating Runtime Policies
When I wrote the first edition of this book, the idea of asking an AI to analyze a piece
of software and write a runtime security profile for it would have been science fiction.
As I am writing the second edition of this book, the use of LLM-based coding tools is
exploding. At this moment in time, the results of using AI are still very mixed but
promising and improving fast. It seems highly likely to me that AI-driven tools will
soon be able to work out what executables, file access, privileges, and network con‐
nections are required for a container image to run successfully—I would not be sur‐
prised if those tools already exist by the time you’re reading this page!

There are already companies promising autonomous segmentation and distributed
exploit protection, with policies generated automatically based on observed behaviors
and on security research into vulnerabilities.

Whether profiles and policies are generated by hand or automatically, you’ll need a
tool that can spot when a containerized process does something that is outside of its
expected behaviors. Let’s now think about the technology options that might be able
to detect, and even prevent, out-of-policy activity.

Technology Options for Runtime Security
There are several different technology options that have been used over the years for
building runtime security tooling.

LD_PRELOAD
In “File Access” on page 212, you saw that running cat causes several files to be
opened. If you turn back to examine the output I showed, the first file is /etc/
ld.so.cache. This file is a cache of dynamic libraries—dependencies that get pulled
in for use by an executable when it starts running. LD_PRELOAD is a long-standing
technique where a tool injects custom code that gets used in place of the normal
shared dynamic libraries.

A runtime security tool might use LD_PRELOAD to add in instrumentation that gets
called first, before the standard library code is called by an application. A typical
approach is to override functions in the standard C library, including system calls.

Unfortunately there are several drawbacks to this approach:
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• It only works on dynamically linked applications, not static ones. A malicious
actor can compile their payload as a standalone executable and walk straight past
any preload-based applications. Your own executables might be standalone
binaries, too, especially if they are written in Rust or Go, so preload-based
observability tooling will be completely blind to their activities.

• A malicious application can modify LD_PRELOAD settings to bypass tooling that
uses it.

• Especially in a containerized environment, different applications might be using
different standard C library implementations (glibc or musl, for example) and
different or custom versions of those libraries. It’s not easy to write LD_PRELOAD
wrappers that are robust to all these variants.

The LD_PRELOAD technique can perform well, and it formed the basis for early com‐
mercial container security tools. But as better options like eBPF emerged, and with
the proliferation of Go and Rust applications, LD_PRELOAD no longer seriously stands
up as a robust technique for modern security tooling.

Ptrace
ptrace is a Linux syscall that allows one process to observe and even control another.
It’s commonly used as the basis for debugging and tracing tools, and it could easily
observe, say, all syscalls that each user application makes. That sounds like a great
foundation for security tooling, right? Unfortunately, there are problems with this
approach too:

• Every breakpoint that ptrace catches and acts on triggers a context switch from
the traced to the tracing process. This adds a painful amount of overhead if you
want to trace any significant amount of activity.

• A traced process can easily detect whether it is being traced, and malicious actors
can take advantage of that knowledge.

• It’s not difficult to use ptrace to extract application data from memory or to
inject malicious code, so there is a dedicated CAP_SYS_PTRACE capability used to
restrict its use, which is not usually granted by default to containers because of
the security risk. If you allow this capability, you would be wise to have other
defenses in place to prevent malicious processes from abusing its power. (By
default, ptrace won’t work in rootless containers because CAP_SYS_PTRACE isn’t
granted.)

• Many Linux distributions limit ptrace so that it can attach only to direct child
processes. You can tell if this limitation is in place by looking for a value of 1 in
the file /proc/sys/kernel/yama/ptrace_scope.
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Though ptrace has many legitimate uses for debugging today, it’s not a serious con‐
tender for container security tooling.

Several years ago I did a talk called “Debuggers from Scratch” that
demonstrates how ptrace can be used to place break points for
debugging purposes.

Seccomp, AppArmor, and SELinux
You met these technologies in Chapter 10, as approaches for strengthening container
isolation, and they have their place in a defense-in-depth approach to runtime secu‐
rity. But they fall short in comparison to modern runtime security tooling:

• These approaches all rely on predefined, static policies with limited filtering
capabilities: seccomp can filter syscalls by number and with very basic argument
matching, while AppArmor and SELinux apply access control based on filesys‐
tem paths or type labels. Because they weren’t designed with containers in mind,
it’s hard to express policies like “allow this action in container A, but not
container B.”

• They don’t offer security observability—at best, a log will tell you that an action
was blocked. There’s no correlation to container or Kubernetes identities, and the
logs generated provide no context, so they are of limited use for incident
response.

• A process running in a container can stay within its static profile and still be
malicious. Privilege escalation, fileless execution, or lateral movement are practi‐
cally impossible to spot with these tools.

One strength that these techniques all share is that they all run in the kernel, from
whence they have access to all containers running on a machine. Let’s consider the
advantage of using the kernel as a vantage point to observe containers.

Kernel-Based Runtime Security
In “Container Processes from the Host Perspective” on page 54, you saw that all the
containers on a host machine share a single kernel. Applications run in unprivileged
user space, and make syscalls requesting assistance from the kernel whenever they
need to access a file, send a network message, or allocate memory. The kernel is also
responsible for coordinating processes, creating new ones, and both checking and
giving them privileges.

All of these actions are interesting from a security perspective. Runtime security tool‐
ing might have policies about whether individual containers can access certain files,
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open network connections to certain locations, or request additional Linux capabili‐
ties. Since all these actions involve the kernel, the kernel is an ideal place for runtime
security tooling to live (see Figure 15-1).

Figure 15-1. Containerized applications share a single kernel

As illustrated in Figure 15-1, containers share a single kernel that coordinates pro‐
cesses, checks permissions, and handles operations including file, network, and mem‐
ory access. The kernel offers an ideal vantage point for security tools, with visibility
over all the containerized applications that are running on that host. What’s even bet‐
ter is that kernel-based tooling can have a life cycle that is entirely independent of the
containers it controls. This is a massive advantage over the sidecar model that you
met in Chapter 12 in relation to service mesh.

Historically, the only way to extend the kernel was to use kernel modules. The main
concern about kernel modules is that they can be brittle, and a kernel module crash
will bring down the whole machine it’s running on. That’s true of the kernel itself, but
typically the kernel will have been through a lot of hardening and testing before it
reaches a Linux distribution that’s being deployed in many production environments.
To give you an idea, Red Hat Enterprise Linux version 9 is widely in use as I write this
text in 2025, and it’s based on a 5.14 kernel released in 2021. Any given kernel module
would be used by a tiny fraction of all Linux users, so there’s a significantly greater
chance that it still has bugs that could cause it to crash. Many organizations are
understandably reluctant to use kernel modules or ban their use altogether.

However, in recent years, eBPF has enabled the development of tools that run in the
kernel but that can’t cause the kernel to crash because, as you learned in Chapter 11,
eBPF programs are verified as they are loaded. Let’s consider its use in runtime secu‐
rity tools.

eBPF for Runtime Security
eBPF allows a developer to create programs that can be loaded into the kernel
dynamically and attached to kernel events. Those eBPF programs can be used to
report events back to user space, and in recent years, eBPF has evolved to allow secu‐
rity tools that can block events or terminate malicious processes.
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Perhaps the most basic example of runtime security observability would be to observe
programs as they are executed. Let’s consider an nginx container. Under normal cir‐
cumstances, the only processes you expect to see inside such a container are nginx
processes. There are several tools that can show processes as they are launched using
eBPF technology, which allows custom programs to run within the kernel.

For this example, we’ll use execsnoop from the libbpf-tools package. (You met
capable from the same package back in Chapter 11.) You’ll need to run this as root to
have the required Linux capabilities that allow inserting eBPF code into the kernel:

$ sudo execsnoop

After starting execsnoop in one terminal, I run an nginx container from another:

$ docker run --rm -d --name nginx nginx

In the first terminal, you’ll see the output from execsnoop showing lots of new pro‐
cesses that start as a result of running the nginx container. It might be a fun diversion
to consider what some of these processes are, especially knowing what you know
from Chapter 4 about how containers are created. Here’s the output (edited a little for
clarity):

PCOMM            PID    PPID   ARGS
docker           43495  38722  /usr/bin/docker run --rm -d --name nginx nginx 
containerd-shim  43505  744    /usr/local/bin/containerd-shim-runc-v2         
    -namespace moby -address /run/containerd/containerd.sock -publish-binary 
    /usr/local/bin/containerd -id 27bfa...e2357 start             
containerd-shim  43513  43505  /usr/local/bin/containerd-shim-runc-v2
    -namespace moby -id 27bfa...e2357 -address /run/containerd/containerd.sock
runc             43524  43513  /usr/local/bin/runc ... create                 
    --bundle /run/containerd/io.containerd.runtime.v2.task/moby/27bfa...e2357 
    --pid-file /run/containerd/io…task/moby/27bfa...e2357/init.pid 27bfa...e2357                                                                   
...
iptables         43543  3127   /usr/sbin/iptables --wait -t raw -C PREROUTING 
    -d 172.17.0.3 ! -i docker0 -j DROP                                            
iptables         43545  3127   /usr/sbin/iptables --wait -t raw -A PREROUTING 
    -d 172.17.0.3 ! -i docker0 -j DROP
...
runc             43555  43513  /usr/local/bin/runc ... start 27bfa...e2357                      
docker-entrypoi  43537  43513  /docker-entrypoint.sh nginx -g daemon off;     
find             43561  43537  /usr/bin/find /docker-entrypoint.d/ ...                 
...
nginx            43537  43513  /usr/sbin/nginx -g daemon off;                  

Here’s the docker command I just ran in the second terminal:

This containerd-shim command is a child of whatever process has the ID 744
(on my system when I ran this example—if you try this for yourself, your process
IDs will vary!). By running ps 744 I learn that this parent process is containerd. 
The containerd-shim process acts as an intermediary between the containerd
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daemon and runc, allowing the container process to keep running even if
containerd crashes or is restarted.

Here is the runc create command that creates the container from the specified
bundle. Looking inside that /run/containerd/io.containerd.runtime.v2

.task/moby/27bfa...e2357 directory, I can see an OCI container bundle, with a
root filesystem and a config.json file. Running cat to see the contents of the
init.pid file parameter showed me the process ID 43537, which we’ll see again in a
moment.

Process 3127 is the Docker daemon on this system, and we can see that it is set‐
ting up iptables rules for the new container. It won’t surprise you to learn that
docker inspect nginx showed me that the IP address for this container is
172.17.0.3.

Now runc start makes the container start running…

…launching the docker-entrypoint.sh nginx command. I can see that this
command corresponds exactly to what is specified in process.args inside the
container’s config.json file, and you can also see that this has the process ID 43537
that I found in the init.pid file.

The docker-entrypoint.sh script starts with a find command that locates all
the nginx configuration scripts it should run. For me this caused 16 more pro‐
cesses to execute…

…before finally running the nginx daemon.

There are two key takeaways from this example. The first is to note that execsnoop
running on the host machine is capable of seeing processes running inside contain‐
ers. Even though the container is isolated using namespaces and cgroups, it is still
using the host’s kernel, so eBPF-based tooling that instruments the kernel has access
to the container too. This is one of the reasons eBPF is such a compelling technology
for building infrastructure tools for containerized environments.

The second takeaway is that there is an initial period where initialization processes
run inside the container, but after a while, we would only expect to see nginx run‐
ning. This is a common pattern and worth bearing in mind when thinking about
what events a runtime security policy should report. In this case, find is needed dur‐
ing initialization, but the same find executable running at a later point might be an
indication that a bad actor is looking for something within the container’s filesystem.
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Now if I execute another command inside the container—for example, docker exec -it
nginx ls—the executable shows up in execsnoop’s output:

ls               43889  43877    0 /usr/bin/ls

Imagine that, as an attacker, I insert a cryptocurrency miner inside one of your con‐
tainers. When the miner executable starts, you’ll want that to be observed and
reported (and possibly even prevented), but you don’t want to be notified when nginx
is going through its initialization or running its usual nginx executable. Runtime
security tools can carry out this kind of observation, spotting when executables are
launched and comparing the executable against a policy for the workload that is sup‐
posed to be running.

So far this chapter has talked about the kind of policies that might define whether a
container is behaving normally or suspiciously. Now let’s consider some of the run‐
time security tools that can report on or prevent suspicious behavior in a container.

Container Runtime Security Tools
For the reasons described earlier in this chapter, today’s container-aware runtime
security tools are based on eBPF. In the open source world, Falco is probably still the
most widely adopted at the time of writing, but the Tetragon security tool from the
Cilium project is rapidly gaining ground. Tracee also warrants a mention, and
Inspektor Gadget can also be used for Kubernetes-aware security observability. There
are also several commercial runtime security options available.

Falco
Falco is a graduated project from the CNCF, and as you can see from Figure 15-2, it
has options to collect events using eBPF or with a kernel module.

Falco has a large set of community-driven policies, known as rules—for example, to
detect events that breach NIST or PCI/DSS guidelines. In a Kubernetes deployment,
events are enriched with information like pod and container names, labels, annota‐
tions, and Kubernetes namespaces, allowing the events to be correlated to the work‐
load responsible.

One notable point to draw from the Falco diagram is that although events are collec‐
ted in the kernel, they are parsed and compared against rules in user space.

There is no enforcement capability in Falco other than to have a user space tool react
to a rule violation—for example, to kill the offending process.
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1 Source: adapted from an image by Falco.

The company that originally created the Falco project, Sysdig, provides an enterprise-
ready version in its Sysdig Secure product, including a UI and policy management
capabilities.

Figure 15-2. Falco components1

Cilium Tetragon
Tetragon is a runtime security tool that emerged from the Cilium CNCF project,
which shares a long history of codevelopment with eBPF itself. Similar to Falco,
Tetragon generates event information enriched with Kubernetes identity information
but also includes timing details and information about process ancestry, which is
invaluable for forensic investigations to determine how a security event came to take
place.

In addition to providing runtime security observability, Tetragon takes advantage of
some advanced eBPF capabilities.

In-kernel filtering
Tetragon has a userspace agent for management and to collect event data and forward
it to an event database or security information and event management (SIEM). But in
contrast to Falco, comparison with policies all takes place within the kernel. For
example, you might want a policy that lets you know when certain files are accessed.
With Tetragon, the comparison against the file names that you’re interested in hap‐
pens within the kernel so that only notable events make it as far as user space. This
makes for significantly better performance.
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LSM API
Tetragon rules can take advantage of the Linux Security Module (LSM) API. This is
the same API that tools like AppArmor use to enforce static security policies, but
when it’s used with eBPF, it can be used to apply more complex, dynamic policies (for
example, so that they apply to new containers as they are created).

Enforcement
Tetragon policies can define whether to report on an event, override a return value to
provide enforcement, or even kill the process responsible.

Tetragon policies are written as Kubernetes custom resources in YAML files. This
makes them easy to manage in a Kubernetes environment, but Tetragon also works
on bare-metal or virtual machines or with non-Kubernetes containers. Here’s an
example policy that uses SIGKILL for enforcement:

apiVersion: cilium.io/v1alpha1
kind: TracingPolicy
metadata:
  name: "example"
spec:
  kprobes:
  - call: "security_file_permission"                   
    syscall: false
    args:                                              
    - index: 0
      type: "file"
    - index: 1
      type: "int" # 0x04 is MAY_READ, 0x02 is MAY_WRITE
    selectors:
    - matchArgs:                                       
      - index: 0
        operator: "Equal"
        values:
        - "/tmp/liz"
      matchActions:                                    
      - action: Sigkill

This policy attaches to a kernel function called security_file_permission(),
which is part of the LSM API and is called by the kernel every time a process
wants to access a file for reading or writing. It’s used to control whether the oper‐
ation should be permitted or not.

There are two arguments to this function. The first is a pointer to a kernel file
data structure, and the second is a value indicating whether the file is looking for
read or write access.
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The policy defines some selectors that are used to filter events. In this case,
Tetragon will only act on the event if the file indicated by the first parameter has
the name /tmp/liz.

If the selectors match, Tetragon sends a SIGKILL to terminate the responsible
process (and also reports the event to user space).

When an application, possibly compromised, attempts to access this file, a Tetragon
eBPF program in the kernel is triggered. Without any transition to userspace, eBPF
code compares the event to the policy, and if all the conditions are met, it sends the
SIGKILL signal. This ensures that the out-of-policy action is never able to complete.
Figure 15-3 illustrates this sequence of events.

Figure 15-3. Tetragon can enforce runtime security policies by synchronously sending a
SIGKILL signal from the kernel

Tetragon also generates Prometheus-format metrics that can be visualized with a tool
like Grafana or Splunk to easily spot whether and when issues have taken place or to
identify which workloads are affected.

My employer, Isovalent (now part of Cisco), provides an enterprise distribution of
Tetragon.
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Tracee
Tracee is another eBPF-based open source project from my former employer, Aqua
Security. Like Falco, it provides detection but not enforcement, and like Tetragon, it
provides some in-kernel filtering, though with less sophisticated filtering capabilities.

Inspektor Gadget
Inspektor Gadget is another CNCF project, providing a collection of eBPF-based
“gadgets” for observing and debugging Kubernetes workloads. It doesn’t provide
detection or enforcement capabilities like Tetragon or Falco, but it does have some
useful gadgets that can be useful for security purposes, including:

• Execution monitoring
• Network tracing
• Syscall tracing

• Capabilities monitoring
• File access auditing

You can attach gadgets to a running pod to observe what files are being accessed or
which binaries are being executed, and this could be useful for investigating a live
incident. You could also use gadgets to build a baseline of expected behavior from a
workload and use this to help build a Tetragon policy, Falco rule, or seccomp policy.

Prevention or Alerting
Whichever tool you use for runtime protection, there is one last aspect to consider:
what action do you want the tool to take when it finds potentially anomalous behav‐
ior? Do you want to prevent that action, terminate the process, or just alert on the
event and let a human (or an AI) decide what to do? This can be a complicated ques‐
tion, and the answer may well depend on the workloads involved:

• If you automatically stop a process or delete the container when it triggers an
alert, will this affect the service for users? Are there multiple instances that can
take over? What if it’s a false positive?

• If you’re relying on an orchestrator to bring up a new instance, what if the new
instance is subject to the same attack? You can end up in a vicious cycle in which
a container comes up, bad behavior is detected, and the security tool kills the
container, only for it to be re-created by the orchestrator (for example, think
about how Kubernetes will create or destroy pods to ensure that the number
matches the desired replica count).

• If this is a new version of a container, can you roll back to the previous version?
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2 “Can’t” is a strong term, and theoretically there could be poorly written code that falls over if it doesn’t receive
a message within a certain time frame, but I hope that a bug like that would be fixed before it gets anywhere
near production.

There is no single correct answer when it comes to figuring out how to handle a secu‐
rity alert automatically. However long it takes might be long enough for an attacker to
cause harm. Suppose you have an eBPF-generated event detecting that a sensitive file
is being accessed. Tetragon’s synchronous enforcement can stop that access before it
happens, but with other tools, you have to wait for a user space component to kill the
responsible process, and that might be long enough for some sensitive data to be
exfiltrated. That risk is even greater if a human is consulted before action is taken.
Prevention is much better than a cure in this regard.

If your security tools can actually prevent bad behavior within a container before it
happens, there is a possibility that the container can carry on operating as before. For
example, suppose an attacker has compromised a product search container and is
attempting to run a cryptocurrency miner. The executable is not part of the profile, so
the runtime security tool prevents it from being run at all. The “good” processes carry
on as normal, but the cryptomining attack is prevented.

It’s quite likely that you want different responses for different types of potentially
malicious activity, because the consequences of preventing the activity might vary.
For example, dropping a network packet as part of enforcing a network policy simply
means that the receiving piece of software never sees it, so it can’t2 trigger a bug in
that code. On the other hand, let’s consider a runtime security tool that can prevent
file access, returning an error code when access is attempted. Ideally all applications
would be able to gracefully handle the error, but it’s possible that the developers didn’t
anticipate it, and so the application crashes. You might quickly spot this during test‐
ing, but it might be missed if the file access is in some rarely exercised code path.
With this in mind, you might rely on logging/alerting for most file access, and only
block access to the most sensitive of files where a possible application crash would
have lesser consequences than malicious access to the file.

When suspicious or malicious events occur, you might get peace of mind by knowing
they have been prevented, but it’s even better if you can determine whether there was
a deliberate attack, and if so, how it took place. You’ll need forensic evidence leading
up to the suspicious activity. The eBPF tools you have met in this chapter can be
invaluable for recording relevant data (for example, Tetragon’s execution and file
event audit trail, or Tracee in logging mode) and sending it to persistent storage. You
might also want to consider quarantining, rather than terminating, the offending
container.
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Quarantining a Container
Rather than killing a suspicious container altogether, you can pause it to preserve
state information that could be useful for forensics. Using Docker, you might do this
as follows:

• docker pause freezes the container, stopping all its processes without killing
them.

• Optionally, you might use docker commit to capture a copy of the container’s
filesystem for later analysis.

• If there are volumes mounted into the container, you probably want to take a
snapshot of those too.

Kubernetes doesn’t provide a native mechanism for pausing pods, but some tech‐
niques you can consider include:

• Using network policy to isolate the pod
• Using kubectl debug to attach to the pod for investigations
• Forensic container checkpointing using the Kubelet Checkpoint API (currently

in beta at time of writing)
• Tainting the node where the suspicious pod is running, preventing new pods

from being scheduled to it

It’s generally a good idea to at least pause and/or isolate the container if you think it is
compromised so that the attacker has less opportunity to exfiltrate data or move later‐
ally to other workloads.

Vulnerability Mitigation
New software vulnerabilities get published all the time, and even if a fix is available
straightaway, it might take some time to get container images rebuilt, tested, and
deployed. In the meantime, it is really helpful if your runtime security tool can moni‐
tor whether the vulnerability has been exploited in your deployment or even prevent
the exploit. eBPF-based runtime security tools like Tetragon make this possible.

The key to this is eBPF’s ability to load programs and configuration into the kernel
dynamically. This means you can roll out a new policy across your deployment, and it
starts protecting all workloads (containerized or otherwise) immediately and
transparently.
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What should be in the policy depends on the vulnerability. As an example, let’s con‐
sider the 2024 xzutils backdoor, a vulnerability in a library called liblzma that can be
triggered to allow remote execution via SSH. For the SSH daemon to run the (vulner‐
able) library code, it needs to map that library code into memory. The following
Tetragon policy will generate output if it detects a vulnerable version of the library
being accessed by the SSH daemon:

apiVersion: cilium.io/v1alpha1
kind: TracingPolicy
metadata:
  name: "cve-2024-3094-xz-ssh"
spec:
  kprobes:
  - call: "security_mmap_file"                         
...
    args:
    - index: 0                                         
      type: "file"
...
    selectors:
    - matchBinaries:                                   
      - operator: "In"
        values:
        - "/usr/sbin/sshd"
      matchArgs:                                    
      - index: 0                                       
        values:
        - "liblzma.so.5.6.0"                          
        - "liblzma.so.5.6.1"
      matchActions:                        
        - action: Post                                 
          rateLimit: "1m"

The eBPF program that manages this policy is attached to the function
security_mmap_file(), which is part of the Linux Security Module (LSM) API.
You met some LSMs in Chapter 10, and using eBPF programs attached to this
API allows for dynamic policies. This function gives an LSM—or an eBPF
program—the chance to approve or deny the memory mapping of a file.

The first argument to this function is the file being memory mapped.

This matchBinaries selector in the policy tells Tetragon that the event is only of
interest if the process that is doing the memory mapping is /usr/sbin/sshd, the
SSH daemon.

The event is also only of interest if the first argument—the file—matches one of
the vulnerable versions of the library.
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If the event matches all the selector conditions, Tetragon will generate a report
about it, rate-limited to one event per minute so as not to overwhelm the security
team with data. (Tetragon could also block access rather than just reporting it, if
preferred.)

Because the filtering (matching on the binary and filenames) is all performed by
eBPF programs in the kernel, this policy has negligible impact on performance.

You can see this demonstrated during a talk I gave at ContainerDays.

Summary
Runtime security observability and enforcement has evolved tremendously since the
first edition of this book, thanks largely to the evolution and adoption of eBPF. The
ability to detect runtime events at a very granular level, as described in this chapter,
makes specialist container security tooling a compelling prospect, especially since it
can be done so transparently to the applications and with very little performance
overhead.

You’re closing in on the end of the book now. The final chapter reviews the top 10
security risks collated by OWASP and relates these risks to mitigations that are spe‐
cific to containerized deployments.
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1 At the time of writing, the OWASP Top 10 was most recently published in 2021. An update is expected in late
2025, so look out for an updated version of this chapter in the online edition of this book.

CHAPTER 16

Containers and the OWASP Top 10

If you’re in the security field, there’s a good chance you have come across OWASP, the
Open Web Application Security Project; perhaps you’re even a member of a local
chapter. This organization periodically publishes a list of the top 10 web application
security risks.

While not all applications, containerized or otherwise, are web applications, this is a
great resource for considering which attacks to be most concerned about. You’ll also
find great explanations of these attacks and advice on how to prevent them on the
OWASP website. In this chapter, I’ll relate the current top 10 risks1 to container-
specific security approaches.

Broken Access Control
This category relates to the abuse of privileges that may be granted unnecessarily to
users or components. There are some container-specific approaches to applying least
privilege to containers, as discussed in Chapter 11:

• Don’t run containers as root.
• Limit the capabilities granted to each container.
• In Kubernetes, use RBAC to limit permissions.
• Use rootless containers, if possible.

You can also use runtime security tools, as discussed in Chapter 15, to limit the
actions that can be taken by a container.

229

https://owasp.org
https://owasp.org/www-project-top-ten


These approaches can limit the blast radius of an attack, but none of these controls
relates to user privileges at the application level, so you should still apply all the same
advice as you would in a traditional deployment.

Cryptographic Failures
It is particularly important to protect any personal, financial, or other sensitive data
that your application has access to. Whether containerized or not, sensitive informa‐
tion should always be encrypted at rest and in transit, using a strong cryptographic
algorithm. Over time, as processing power increases, it becomes feasible to brute-
force encryption, which means that older algorithms can start to be considered no
longer safe to use. Additionally, as quantum computing becomes more effective, there
is a concern that some widely used algorithms like RSA and elliptic curve cryptogra‐
phy will be rendered useless. Make sure you’re keeping abreast of developments and
using up-to-date algorithms as advised by authoritative organizations like NIST or
the UK’s National Cyber Security Centre (NCSC).

Because the sensitive data is encrypted, your applications will need credentials to
access it. Following the principles of least privilege and segregation of duties, limit
credentials to only those containers that really need access. See Chapter 14 for cover‐
age of safely passing secrets to containers.

Depending on your use case, you may want to ensure that network traffic between
containers is encrypted, as discussed in Chapter 13.

Consider scanning container images for embedded keys, passwords, and other sensi‐
tive data.

Injection
If your code has an injection flaw, an attacker can get it to execute commands mas‐
querading as data. This is perhaps best illustrated through the immortal xkcd charac‐
ter Little Bobby Tables.

There is nothing container-specific about this, though container image scanning can
reveal known injection vulnerabilities in dependencies. You should review and test
your own application code, following the OWASP advice.

Insecure Design
If a system design is flawed from a security perspective, even a perfect implementa‐
tion of that design will have insecurities. Containerized systems built from microser‐
vices arguably have an advantage over monoliths because they break the system into
constituent components, and it is likely going to be easier to reason about the threat
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models for each of these individual building blocks one at a time. If you’re using com‐
monly adopted tools like Kubernetes, you can also take advantage of the latest advice
on best security practices (for example, implementing zero-trust networking between
containers and ensuring least privilege access).

Security Misconfiguration
Many attacks take advantage of systems that are poorly configured. Examples high‐
lighted in the OWASP Top 10 include insecure or incomplete configurations, open
cloud storage, and verbose error messages containing sensitive information, all of
which have mitigations specific to containers and cloud native deployments:

• Use guidelines like the Center for Internet Security (CIS) Benchmarks to assess
whether your system is configured according to best practices. There are bench‐
marks for Docker and Kubernetes, as well as for the underlying Linux host. It
may not be appropriate in your environment to follow every recommendation,
but they are good starting points for assessing your installation. Best security
practices are often baked into managed Kubernetes services by default.

• If you are using a public cloud service, you should check your configuration set‐
tings for things like publicly accessible storage buckets or poor password policies.
Gartner refers to these checks as Cloud Security Posture Management (CSPM),
and an internet search for this term will reveal numerous vendors for these tools
to automate these checks. There are open source tools such as Cloud Custodian,
Prowler, and CloudSploit.

• As discussed in Chapter 14, using environment variables to convey secrets can
easily result in them being exposed via logs, so I encourage you to use environ‐
ment variables only for information that isn’t sensitive.

• If you’re using a public container registry like Docker or Quay, ensure that access
to individual images is controlled properly. A private container registry may be a
more secure alternative, though access should of course be secured.

• Use network policies to restrict network traffic appropriately, as discussed in
Chapter 12.

You might also want to consider the configuration information that forms part of
each container image under this OWASP category. This was covered in Chapter 6,
along with best practices for building images securely.
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Vulnerable and Outdated Components
I hope that by this stage in the book you can anticipate my advice on vulnerable and
outdated components: use an image scanner to identify known vulnerabilities in your
container images. Where you are building images yourself, use minimal base images
to reduce the attack surface.

You also need a process or tooling in place to:

• Rebuild container images to use up-to-date, fixed packages.
• Identify and replace running containers based on vulnerable images.

Consider runtime security tooling that can mitigate vulnerabilities before you can
apply a fix, as discussed in Chapter 15.

Identification and Authentication Failure
This category covers broken authentication and compromised credentials. At the
application level, all the same advice applies for containerized apps as for monoliths
in traditional deployments, but there are some additional container-specific
considerations:

• The credentials required by each container should be treated as secrets. These
secrets need to be stored with care and passed into containers at runtime, as dis‐
cussed in Chapter 14.

• Breaking an application into multiple containerized components means that they
need to identify each other and communicate using secure connections. This can
be handled directly by containerized application code, or you can use a service
mesh or transparent encryption to offload this responsibility. See Chapter 13.

Software and Data Integrity Failures
This category covers supply chain security failures. As discussed in Chapter 7, best
practices include using signed container images, verifying SBOMs, and securing your
CI/CD build pipelines.

This category also covers failing to validate data integrity. One example is insecure
deserialization, where a malicious user provides a crafted object that the application
interprets to grant the user additional privileges or to change the application behavior
in some way. (I witnessed an example of this myself back in 2011 as a Citibank cus‐
tomer, when Citi had a vulnerability allowing a logged-in user to access other people’s
accounts simply by modifying the URL.)
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An application’s handling of data is generally not something that is affected by
whether it is running in containers or not.

Security Logging and Monitoring Failures
IBM’s Cost of a Data Breach Report 2025 shares the terrifying statistic that, on aver‐
age, breaches take 181 days to be identified and another 60 to be contained. It should
be possible to dramatically reduce that with sufficient observation combined with
alerting on unexpected behavior.

Use a centralized logging system such as Fluentd or ELK Stack, a SIEM, or your cloud
provider’s logging capabilities to ensure that logs from containerized applications are
stored and not lost when a container is removed.

In any production deployment, you should be logging container events, including:

• Container start/stop events, including the identity of the image and the invoking
user

• Access to secrets
• Any modification of privileges
• Modification of container payload, which could indicate code injection (see

“Immutable Containers” on page 111)
• Inbound and outbound network connections
• Volume mounts (for analysis of mounts that might subsequently turn out to be

sensitive, as described in “Mounting Sensitive Directories” on page 156)
• Failed actions such as attempts to open network connections, write to files, or

change user permissions, as these could indicate an attacker performing recon‐
naissance on the system (see Chapter 15 on runtime security tooling)

Most serious commercial container security tools integrate with enterprise SIEM to
provide container security insights and alerts through one centralized system. Even
better than observing attacks and reporting on them after the event, these tools can
provide the protection of not just reporting on unexpected behaviors but preventing
them from happening based on runtime profiles, as discussed in Chapter 15.

Server-Side Request Forgery
In a container-specific OWASP Top 10, I think this category might get a higher rank‐
ing, because of the risks of obtaining control of the system by persuading an applica‐
tion to make requests to an internal metadata or control plane API. For example, an
attacker might leverage an application SSRF vulnerability to make requests to the
Kubernetes API, the cloud provider’s metadata services, or a database service

Server-Side Request Forgery | 233

https://www.ibm.com/reports/data-breach


accessible within the deployment. These services should be available only to trusted
resources. Reduce the likelihood of this with network policies (see Chapter 12) and
runtime monitoring (see Chapter 15).

Summary
The OWASP Top 10 is a useful resource for making any internet-connected applica‐
tion more secure against the most common types of attack.

Security needs to be baked into application code and into the infrastructure in which
those applications run. I can’t promise you perfect security, but by applying the advice
in this book, you will be in a more secure position.
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Conclusions

Congratulations on reaching the end of this book!

My first hope for you at this point is that you now have a solid mental model of what
containers are. This will serve you well in discussions about how to secure your con‐
tainer deployments. You should also be armed with knowledge about different isola‐
tion options, should regular containers not give you enough isolation between
workloads for your environment.

I also hope that you now have a good understanding of how containers communicate
with each other and the outside world. Networking is a vast topic in its own right, but
the most important takeaway here is that containers give you a unit not just of
deployment but also of security. There are lots of options for restricting traffic so that
only what is expected can flow between containers and to/from the outside world.

You’ve read about best practices for building container images and detecting known
vulnerabilities or image tampering. You know why it’s a good idea to treat containers
as immutable, and you’ve seen how runtime security tools can spot, and even prevent,
suspicious or malicious activities.

I’d imagine that you see how layered defenses will serve you well in the event of a
breach. If an attacker takes advantage of a vulnerability in your deployment, there are
still other walls they may not be able to breach. The more layers of defense, the less
likely an attack is to succeed.

As you saw in Chapter 16, there are some preventative measures unique to containers
that you can apply against OWASP’s list of the most commonly exploited attacks
against web applications. That top 10 list doesn’t cover all the possible weaknesses in
your deployment. Now that you have almost reached the end of the book, you might
want to review the list of attack vectors specific to containers in “Container Threat
Model” on page 3. You will also find a list of questions in the Appendix to help you
assess where your deployment might be most vulnerable and where you should beef
up your defenses.
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I hope that the information in this book helps you to defend your deployment, come
what may. If you are subject to an attack—whether you are breached or you succeed
in keeping your application and data safe—I would love to hear about it. Feedback,
comments, and stories about attacks are always welcome, and you can raise issues at
containersecurity.tech. You can find me on LinkedIn, on GitHub, and on social media.
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APPENDIX

Security Checklist

This appendix covers some important items you should at least think about when
considering how best to secure your container deployments. In your environment, it
might well not make sense to apply every item, but if you have thought about them,
you will be off to a good start. No doubt this list is not absolutely comprehensive!

• Are you running all containers as a non-root user? See “Containers Run as Root
by Default” on page 143.

• Are you running any containers with the --privileged flag? Are you dropping
capabilities that aren’t needed for each image? See “The --privileged Flag and
Capabilities” on page 153.

• Are you running containers as read-only where possible? See “Immutable Con‐
tainers” on page 111.

• Are you checking for sensitive directories mounted from the host? Are they read-
only where possible? How about the Docker socket? See “Mounting Sensitive
Directories” on page 156 and “Mounting the Docker Socket” on page 157.

• Are you running your CI/CD pipeline in your production cluster? Does it have
privileged access or use the Docker socket? See “The Dangers of Docker Build”
on page 74.

• Are you generating signed images, with SBOMs and build attestations? Are you
verifying signatures before you deploy containers? See Chapter 7 on supply chain
security.

• Are you scanning your container images for vulnerabilities? Do you have a pro‐
cess or tooling in place for rebuilding and redeploying containers where the
image is found to include vulnerabilities? See Chapter 8 on software vulnerabili‐
ties in images.
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• Are you using a seccomp, AppArmor, or SELinux profile? The default Docker
profiles are a good starting point; even better would be to shrink-wrap a profile
for each application. See Chapter 10 on strengthening container isolation, and
“Container Image Runtime Policies” on page 210.

• Do you have network policies restricting traffic between components? See Chap‐
ter 12 on container network security.

• Are you encrypting traffic between components? This could be implemented
transparently by the network or by using a service mesh. See “Zero-Trust Net‐
working” on page 192 and “Secure Connections Between Containers” on page
193.

• Are you using a modern runtime security tool to protect against malicious file
access, executables, network traffic, or privilege escalation and to mitigate known
vulnerabilities? See Chapter 15 on runtime security tools.

• What base image are you using? Can you use an option such as a scratch or dis‐
troless image? Can you minimize the contents of your images to reduce the
attack surface? See “Dockerfile Best Practices for Security” on page 91.

• Are you enforcing the use of immutable containers? That is to say, are you mak‐
ing sure that all executable code is added to a container image at build time and
not installed at runtime? See “Immutable Containers” on page 111.

• Are you setting resource limits on your containers? See “Cgroups for Containers”
on page 28.

• Do you have admission control to make sure that only approved images can be
instantiated in production? See “Admission Control” on page 103.

• Are you passing secrets into containers using a temporary filesystem? Are your
secrets encrypted at rest and in transit? Are you using a secure secrets manage‐
ment system for storage and rotation? See Chapter 14 on passing secrets to
containers.

• Are you using hosts exclusively for running containers, separate from other
applications? Are you keeping your hosts systems up to date with the latest secu‐
rity releases? Consider running an OS specifically designed for container hosts.
See “Container Host Machines” on page 56.

• Are your hosts and container configured according to security best practices
such as the CIS Benchmarks for Linux, Docker, and Kubernetes? See “Security
Misconfiguration” on page 231.

• Are you using GitOps? If so, are you following best practices to secure the Git
repositories that hold your configuration files? See Chapter 9.
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• Are you collecting logs remotely for later audit or forensic analysis in the event of
a breach? Do those logs give details about how and when processes were exe‐
cuted? See Chapter 15.

All these questions are relevant in a Kubernetes deployment, but there are additional
attack surfaces that are outside the scope of this book. Cloud provider–managed
Kubernetes services also involve the use of an identity and access management infra‐
structure, which should be configured carefully. The Kubernetes documentation dis‐
cusses security at length, Microsoft Kubernetes Threat Matrix provides a good
overview, and AWS provides a security best-practice guide for EKS, a lot of which
applies wherever your Kubernetes is hosted. You can also use a CSPM tool to run reg‐
ular checks on the security settings on the underlying cloud infrastructure.
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