

Linux: Powerful Server Administration

Table of Contents

Linux: Powerful Server Administration
Linux: Powerful Server Administration
Credits
Preface

What this learning path covers
What you need for this learning path
Who this learning path is for

Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. Module 1
1. Managing Users and Groups

Introduction
Creating a user account

Getting ready
How to do it…
How it works…
There's more…
See also

Creating user accounts in batch mode
Getting ready
How to do it...
How it works…

Creating a group
Getting ready
How to do it...
How it works…
There's more…
See also

Adding group members
Getting ready
How to do it…

How it works…
There's more…

Deleting a user account
Getting ready
How to do it...
How it works…
There's more…
See also

Managing file permissions
Getting ready
How to do it…
How it works…
There's more…

Getting root privileges with sudo
Getting ready
How to do it...
How it works…
There's more…

Setting password less sudo
Other uses of sudo

See also
Setting resource limits with limits.conf

Getting ready
How to do it...
How it works…
There's more…

Setting up public key authentication
Getting ready
How to do it...
How it works…

Working of SSH authentication
There's more…

Troubleshooting SSH connections
SSH tools for the Windows platform

See also
Securing user accounts

How to do it...
How it works…

2. Networking
Introduction
Connecting to a network with a static IP

Getting ready
How to do it…
How it works…
There's more…

IPv6 configuration
See also

Installing the DHCP server
Getting ready
How to do it…
How it works…
There's more…

Installing the DNS server
Getting ready
How to do it…
How it works…
See also

Hiding behind the proxy with squid
Getting ready
How to do it…
How it works…
There's more…

Access control list
Set cache refresh rules
Sarg – tool to analyze squid logs
Squid guard

See also
Being on time with NTP

How to do it…
How it works…
There's more…
See also

Discussing load balancing with HAProxy
Getting ready
How to do it…
How it works…

There's more …
See also

Tuning the TCP stack
Getting ready…
How to do it…
How it works…
See also

Troubleshooting network connectivity
Getting ready
How to do it…
There's more…

Securing remote access with OpenVPN
Getting ready…
How to do it…
How it works…
There's more…

Securing a network with uncomplicated firewall
Getting ready
How to do it…
There's more…
See also

Securing against brute force attacks
Getting ready
How to do it…
How it works…
There's more…

Discussing Ubuntu security best practices
Getting ready
How to do it…
How it works…
See also

3. Working with Web Servers
Introduction
Installing and configuring the Apache web server

Getting ready
How to do it…
How it works…
There's more…

HTTP version 2 support
See also

Serving dynamic contents with PHP
Getting ready
How to do it…
How it works…

PHP settings
There's more…

Installing the LAMP stack
Upgrading PHP under Ubuntu 14

Hosting multiple websites with a virtual domain
Getting ready
How to do it…
How it works…
See also

Securing web traffic with HTTPS
Getting ready
How to do it…
How it works…
There's more…
See also

Installing Nginx with PHP_FPM
Getting ready
How to do it…
How it works…
There's more…
See also

Setting Nginx as a reverse proxy
Getting ready
How to do it…
How it works…
There's more…

HAProxy and Varnish
See also

Load balancing with Nginx
Getting ready
How to do it…
How it works…

There's more…
See also

Setting HTTPs on Nginx
Getting ready
How to do it…
How it works…
See also

Benchmarking and performance tuning of Apache
Getting ready
How to do it…
There's more…
See also

Securing the web server
Getting ready
How to do it…
How it works…
See also

Troubleshooting the web server
Getting ready
How to do it…

Web server not accessible
Virtual host not accessible
Access denied or forbidden errors
Apache downloads .php files

4. Working with Mail Servers
Introduction
Sending e-mails with Postfix

Getting ready
How to do it…
How it works…
See also

Enabling IMAP and POP3 with Dovecot
Getting ready
How to do it…
How it works…
See also

Adding e-mail accounts
Getting ready

How to do it…
How it works…
There's more…

Web console for virtual mailbox administration
See also

Mail filtering with spam-assassin
Getting ready
How to do it…
How it works…
There's more…
See also

Troubleshooting the mail server
Getting ready
How to do it…
See also

Installing the Zimbra mail server
Getting ready
How to do it…
How it works…
There's more…
See also

5. Handling Databases
Introduction
Installing relational databases with MySQL

Getting ready
How to do it…
How it works…
There’s more…

Securing MySQL installation
See also

Storing and retrieving data with MySQL
Getting ready
How to do it…
How it works…

Importing and exporting bulk data
How to do it…
See also

Adding users and assigning access rights

Getting ready
How to do it…
How it works…
There’s more…

Removing user accounts
Setting resource limits

See also
Installing web access for MySQL

Getting ready
How to do it…
How it works…
There’s more…
See also

Setting backups
Getting ready
How to do it…
How it works…
See also

Optimizing MySQL performance – queries
Getting ready
How to do it…
How it works…
There’s more…

Sharding MySQL
See also

Optimizing MySQL performance – configuration
Getting ready
How to do it…
How it works…
There’s more…

Percona configuration wizard
MySQL table compression

See also
Creating MySQL replicas for scaling and high availability

Getting ready
How to do it…
How it works…
There’s more…

See also
Troubleshooting MySQL

Getting ready
How to do it…
See also

Installing MongoDB
Getting ready
How to do it…
How it works…
See also

Storing and retrieving data with MongoDB
Getting ready
How to do it…
How it works…
There’s more…
See also

6. Network Storage
Introduction
Installing the Samba server

Getting ready
How to do it…
How it works…
There's more…

Tools for personal file sharing
See also

Adding users to the Samba server
Getting ready
How to do it…
How it works…
There's more…
See also

Installing the secure FTP server
Getting ready
How to do it…
How it works…
There's more…
See also

Synchronizing files with Rsync

How to do it…
How it works…
There's more…
See also

Performance tuning the Samba server
Getting ready
How to do it…
How it works…

Troubleshooting the Samba server
How to do it…

Checking network connectivity
Checking the Samba service
Checking Samba logs
Checking Samba configuration

See also
Installing the Network File System

Getting ready
How to do it…
How it works…
There's more…
See also

7. Cloud Computing
Introduction
Creating virtual machine with KVM

Getting ready
How to do it…
How it works…
There's more…
See also

Managing virtual machines with virsh
Getting ready
How to do it…
How it works…
There's more…

Easy cloud images with uvtool
See also

Setting up your own cloud with OpenStack
Getting ready

How to do it…
How it works…
There's more…
See also

Adding a cloud image to OpenStack
Getting ready
How to do it…
How it works…
There's more…
See also

Launching a virtual instance with OpenStack
Getting ready
How to do it…
How it works…
There's more…
See also

Installing Juju a service orchestration framework
Getting ready
How to do it…
How it works…
There's more…
See also

Managing services with Juju
Getting ready
How to do it…
How it works…
There's more…
See also

8. Working with Containers
Introduction
Installing LXD, the Linux container daemon

Getting ready
How to do it…
How it works…
There's more…
See also

Deploying your first container with LXD
Getting ready

How to do it…
How it works…
There's more…
See also

Managing LXD containers
Getting ready…
How to do it…
There's more…
See also

Managing LXD containers – advanced options
How to do it…
How it works…

Setting resource limits on LXD containers
How to do it…
How it works…
There's more…
See also

Networking with LXD
Getting ready
How to do it…
How it works…
There's more…
See also

Installing Docker
Getting ready
How to do it…
How it works…
There's more…
See also

Starting and managing Docker containers
Getting ready
How to do it…
How it works…
There's more…
See also

Creating images with a Dockerfile
Getting ready
How to do it…

How it works…
There's more…
See also

Understanding Docker volumes
Getting ready
How to do it…
How it works…
See also

Deploying WordPress using a Docker network
How to do it…
How it works…
There's more…
See also

Monitoring Docker containers
How to do it…
How it works…
There's more…
See also

Securing Docker containers
How to do it…
See also

9. Streaming with Ampache
Introduction
Installing the Ampache server

Getting ready
How to do it…
How it works…
There's more…
See also

Uploading contents and creating catalogs
Getting ready
How to do it…
How it works…

Setting on-the-fly transcoding
Getting ready
How to do it…

Enabling API access for remote streaming
Getting ready

How to do it…
How it works…

Streaming music with Ampache
Getting ready
How to do it…

10. Communication Server with XMPP
Introduction
Installing Ejabberd

Getting ready
How to do it…
How it works…
See also

Creating users and connecting with the XMPP client
Getting ready
How to do it…
How it works…
There's more…
See also

Configuring the Ejabberd installation
Getting ready
How to do it…
How it works…
There's more…
See also

Creating web client with Strophe.js
Getting ready
How to do it…
How it works…
There's more…
See also

Enabling group chat
Getting ready
How to do it…
How it works…
There's more…
See also

Chat server with Node.js
Getting ready

How to do it…
How it works…
There's more…
See also

11. Git Hosting
Introduction
Installing Git

Getting ready
How to do it…
How it works…
There's more…
See also

Creating a local repository with Git CLI
Getting ready 
How to do it…
How it works…
There's more…
See also

Storing file revisions with Git commit
Getting ready
How to do it…
How it works…
There's more…

Synchronizing the repository with a remote server
Getting ready
How to do it…
How it works…
There's more…

GitHub pages
See also

Receiving updates with Git pull
Getting ready
How to do it…
How it works…
See also

Creating repository clones
Getting ready
How to do it…

How it works…
See also

Installing GitLab, your own Git hosting
Getting ready
How to do it…
How it works…
There's more…
See also

Adding users to the GitLab server
Getting ready
How to do it…

Creating a repository with GitLab
Getting ready
How to do it…

Automating common tasks with Git hooks
Getting ready
How to do it…
How it works…
See also

12. Collaboration Tools
Introduction
Installing the VNC server

Getting ready
How to do it…
How it works…
See also

Installing Hackpad, a collaborative document editor
Getting ready
How to do it…
How it works…
There's more

Using Hackpad with Docker
See also

Installing Mattermost – a self-hosted slack alternative
Getting ready
How to do it…
How it works…
There's more …

See also
Installing OwnCloud, self-hosted cloud storage

Getting ready
How to do it…
How it works…
See also

13. Performance Monitoring
Introduction
Monitoring the CPU

Getting ready
How to do it…
How it works…
There's more…
See also

Monitoring memory and swap
Getting ready
How to do it…
How it works…
There's more…
See also

Monitoring the network
Getting ready
How to do it…
How it works…
There's more…

Monitoring storage
Getting ready
How to do it…

Setting performance benchmarks
Getting ready
How to do it…
There's more…

Graphing tools
More options

See also
14. Centralized Authentication Service

Introduction
Installing OpenLDAP

Getting ready
How to do it…
How it works…
See also

Installing phpLDAPadmin
Getting ready
How to do it…
How it works…
There's more…
See also

Ubuntu server logins with LDAP
Getting ready
How to do it…
How it works…
See also

Authenticating Ejabberd users with LDAP
Getting ready
How to do it…
How it works…
See also

2. Module 2
1. Installing CentOS

Introduction
Downloading CentOS and confirming the checksum on Windows or OS X

Getting ready
How to do it...
How it works…

Creating USB installation media on Windows or OS X
Getting ready
How to do it...
How it works...

Performing an installation of CentOS using the graphical installer
Getting ready
How to do it...
How it works…

Running a netinstall over HTTP
Getting ready
How to do it...

How it works...
Installing CentOS 7 using a kickstart file

Getting ready
How to do it...
How it works...

Getting started and customising the boot loader
Getting ready
How to do it...
How it works...

Troubleshooting the system in rescue mode
Getting ready
How to do it...

Reaching rescue mode
Accessing the filesystem
Accessing the filesystem
Re-install the CentOS boot loader

How it works...
Updating the installation and enhancing the minimal install with additional

administration and development tools
Getting ready
How to do it...
How it works...

2. Configuring the System
Introduction
Navigating text files with less

Getting ready
How to do it...
How it works...

Introduction to Vim
Getting ready
How to do it...
How it works...

Speaking the right language
Getting ready
How to do it...
How it works...
There's more…

Synchronizing the system clock with NTP and the chrony suite

Getting ready
How to do it...
How it works...
There's more...

Setting your hostname and resolving the network
Getting ready
How to do it...
How it works...
There's more...

Building a static network connection
Getting ready
How to do it...
How it works...

Becoming a superuser
Getting ready
How to do it...
How it works...

Customizing your system banners and messages
Getting ready
How to do it...
How it works...
There's more...

Priming the kernel
Getting ready
How to do it...
How it works...
There's more...

3. Managing the System
Introduction
Knowing and managing your background services

Getting ready
How to do it...
How it works...
There's more...

Troubleshooting background services
Getting ready
How to do it...
How it works...

Tracking system resources with journald
Getting ready
How to do it...
How it works...

Configuring journald to make it persistent
Getting ready
How to do it...
How it works...

Managing users and their groups
Getting ready
How to do it...
How it works...

Scheduling tasks with cron
Getting ready
How to do it...
How it works...
There's more...

Synchronizing files and doing more with rsync
Getting ready
How to do it...
How it works...

Maintaining backups and taking snapshots
Getting ready
How to do it...
How it works...

Monitoring important server infrastructure
Getting ready
How to do it...
How it works...

Taking control with GIT and Subversion
Getting ready
How to do it...
How it works
There's more...

4. Managing Packages with YUM
Introduction
Using YUM to update the system

Getting ready

How to do it...
How it works...
There's more...

Using YUM to search for packages
Getting ready
How to do it...
How it works...
There's more...

Using YUM to install packages
Getting ready
How to do it...
How it works...
There's more...

Using YUM to remove packages
Getting ready
How to do it...
How it works...

Keeping YUM clean and tidy
Getting ready
How to do it...
How it works...
There's more...

Knowing your priorities
Getting ready
How to do it...
How it works...

Using a third-party repository
Getting ready
How to do it...
How it works...
There's more...

Creating a YUM repository
Getting ready
How to do it...
How it works...
There's more...

Working with the RPM package manager
Getting ready

How to do it...
How it works...
There's more...

5. Administering the Filesystem
Introduction
Creating a virtual block device

Getting ready
How to do it...
How it works...
There's more...

Formatting and mounting a filesystem
Getting ready
How to do it...
How it works…
There's more...

Using disk quotas
Getting ready
How to do it...

Enabling user and group quotas
Enabling project (directory) quotas

How it works...
There's more...

Maintaining a filesystem
Getting ready
How to do it...
How it works...
There's more...

Extending the capacity of the filesystem
Getting ready
How to do it...
How it works...

6. Providing Security
Introduction
Locking down remote access and hardening SSH

Getting ready
How to do it...
How it works...
There's more...

Changing the SSH port number of your server
Limiting SSH access by user or group

Installing and configuring fail2ban
Getting ready
How to do it...
How it works...

Working with a firewall
Getting ready
How to do it...
How it works...
There's more...

Forging the firewall rules by example
Getting ready
How to do it...

To change an existing firewalld service (ssh)
To create your own new service

How it works...
There's more...

Generating self-signed certificates
Getting ready
How to do it...
How it works...
There's more...

Using secure alternatives to FTP
Getting ready
How to do it...

Securing your vsftpd server with SSL–FTPS
Securing your vsftpd server using SSH – SFTP

How it works...
There's more...

7. Building a Network
Introduction
Printing with CUPS

Getting ready
How to do it...
How it works...
There's more...

How to add a network printer to the CUPS server

How to share a local printer to the CUPS server
Running a DHCP server

Getting ready
How to do it...
How it works...
There's more...

Using WebDAV for file sharing
Getting ready
How to do it…
How it works…

Installing and configuring NFS
Getting ready
How to do it...

Installing and configuring the NFS server
Creating an export share

How it works...
Working with NFS

Getting ready
How to do it...
How it works...

Securely sharing resources with Samba
Getting ready
How to do it...
How it works...
There's more...

8. Working with FTP
Introduction
Installing and configuring the FTP service

Getting ready
How to do it...
How it works...
There's more...

Working with virtual FTP users
Getting ready
How to do it...
How it works...

Customizing the FTP service
Getting ready

How to do it...
How it works...

Troubleshooting users and file transfers
Getting ready
How to do it...
How it works...

9. Working with Domains
Introduction
Installing and configuring a caching-only nameserver

Getting ready
How to do it...

Configuring a caching-only Unbound DNS server
Configuring a forwarding only DNS server

How it works...
There's more...

Setting up an authoritative-only DNS server
Getting ready
How to do it...
How it works...
There's more...

Creating an integrated nameserver solution
Getting ready
How to do it...
How it works
There's more...

Populating the domain
Getting ready
How to do it...
How it works…

Building a secondary (slave) DNS server
Getting ready
How to do it...

Changes to the primary DNS server
Changes to the secondary DNS server(s)

How it works...
10. Working with Databases

Introduction
Installing a MariaDB database server

Getting ready
How to do it...
How it works...

Managing a MariaDB database
Getting ready
How to do it...
How it works...
There's more...

Reviewing and revoking permissions or dropping a user
Allowing remote access to a MariaDB server

Getting ready
How to do it...
How it works...

Installing a PostgreSQL server and managing a database
Getting ready
How to do it...
How it works...
There's more...

Configuring remote access to PostgreSQL
Getting ready
How to do it...
How it works...

Installing phpMyAdmin and phpPgAdmin
Getting ready
How to do it...

Installing and configuring phpMyAdmin
Installing and configuring phpPgAdmin

How it works...
11. Providing Mail Services

Introduction
Configuring a domain-wide mail service with Postfix

Getting ready
How to do it...
How it works...
There's more...

Changing an e-mail's appearing domain name
Using TLS- (SSL) encryption for SMTP communication
Configure BIND to use your new mailserver

Working with Postfix
How to do it...

Connecting mailx to a remote MTA
Reading your local mails from the mailbox

How it works...
Delivering the mail with Dovecot

Getting ready
How to do it...
How it works...
There's more...

Setting up e-mail software
Using Fetchmail

Getting ready
How to do it...
How it works...
There's more...

Configuring Fetchmail with gmail.com and outlook.com e-mail accounts
Automating Fetchmail

12. Providing Web Services
Introduction
Installing Apache and serving web pages

Getting ready
How to do it...
How it works...

Enabling system users and building publishing directories
Getting ready
How to do it...
How it works...

Implementing name-based hosting
Getting ready
How to do it...
How it works...

Implementing CGI with Perl and Ruby
Getting ready
How to do it...

Creating your first Perl CGI script
Creating your first Ruby CGI script

How it works...

https://technet24.ir

There's more...
Installing, configuring, and testing PHP

Getting ready
How to do it...
How to do it...

Securing Apache
Getting ready
How to do it...

Configuring httpd.conf to provide better security
Removing unneeded httpd modules
Protecting your Apache files

How it works...
Setting up HTTPS with Secure Sockets Layer (SSL)

Getting ready
How to do it...
How it works...
There's more...

13. Operating System-Level Virtualization
Introduction
Installing and configuring Docker

Getting ready
How to do it...
How it works...

Downloading an image and running a container
Getting ready
How to do it...
How it works...
There's more...

Stopping and starting a container
Attaching and interacting with your container

Creating your own images from Dockerfiles and uploading to Docker Hub
Getting ready
How to do it...

Uploading your image to the Docker Hub
How it works...

Setting up and working with a private Docker registry
Getting ready
How to do it...

Steps to be done on our Docker registry server (192.168.1.100)
Steps to be done on every client needing access to our registry

How it works...
14. Working with SELinux

Introduction
Installing and configuring important SELinux tools

Getting ready
How to do it...
How it works...
There's more...

Working with SELinux security contexts
Getting ready
How to do it...
How it works...

Working with policies
Getting ready
How to do it...
How it works...
There's more...

Troubleshooting SELinux
Getting ready
How to do it...
How it works...

15. Monitoring IT Infrastructure
Introduction
Installing and configuring Nagios Core

Getting ready
How to do it...
How it works...

Setting up NRPE on remote client hosts
Getting ready
How to do it...
How it works...

Monitoring important remote system metrics
Getting ready
How to do it...
How it works...

3. Module 3

https://technet24.ir

1. Working with KVM Guests
Introduction
Installing and configuring a KVM

Getting ready
How to do it…

Manual installation
Kickstart installation
Graphical setup during the system's setup

See also
Configuring resources

Getting ready
How to do it…

Creating storage pools
Querying storage pools
Removing storage pools
Creating a virtual network
Removing networks

How it works…
There's more…

Local storage pools
Networked or shared storage pools

See also
Building guests

Getting ready
How to do it…

Create a guest
Deleting a guest

How it works…
There's more…
See also

Adding CPUs on the fly
Getting ready
How to do it…

On the KVM host, perform the following steps:
On the KVM guest, perform the following:

Adding RAM on the fly
Getting ready
How to do it…

Adding disks on the fly
Getting ready
How to do it…
How it works…
There's more…

Moving disks to another storage
Getting ready
How to do it…
How it works…
There's more…

Moving VMs
Getting ready
How to do it…

Live native migration over the default network
Live native migration over a dedicated network

How it works…
There's more…
See also

Backing up your VM metadata
How to do it…
How it works…
See also

2. Deploying RHEL "En Masse"
Introduction
Creating a kickstart file

Getting ready
How to do it…
How it works…
There's more…
See also

Publishing your kickstart file using httpd
How to do it…
There's more…
See also

Deploying a system using PXE
Getting ready
How to do it…
How it works…

https://technet24.ir

There's more…
See also

Deploying a system using a custom boot ISO file
How to do it…
How it works…

3. Configuring Your Network
Introduction
Creating a VLAN interface

Getting ready
How to do it…

Creating the VLAN connection with nmcli
Creating the VLAN connection with nmtui
Creating the VLAN connection with kickstart

There's more…
See also

Creating a teamed interface
Getting ready
How to do it…

Creating the teamed interface using nmcli
Creating the teamed interface using nmtui
Creating the teamed interface with kickstart

There's more…
nmcli
nmtui
kickstart

See also
Creating a bridge

Getting ready
How to do it…

Creating a bridge using nmcli
Creating a bridge using nmtui
Creating a bridge with kickstart

There's more…
See also

Configuring IPv4 settings
How to do it…

Setting your IPv4 configuration using nmcli
Setting your IPv4 configuration using nmtui

There's more…
Configuring your DNS resolvers

How to do it…
Setting your DNS resolvers using nmcli
Setting your DNS resolvers using nmtui

There's more…
Configuring static network routes

How to do it…
Configuring static network routes using nmcli
Configuring network routes using nmtui

4. Configuring Your New System
Introduction
The systemd service and setting runlevels

How to do it…
There's more…
See also

Starting and stopping systemd services
How to do it…
There's more…
See also

Configuring the systemd journal for persistence
How to do it…
There's more…
See also

Monitoring services using journalctl
How to do it…
There's more…
See also

Configuring logrotate
How to do it…
How it works…
There's more…
See also

Managing time
How to do it…

Managing time through chrony
Managing time through ntpd

There's more…

https://technet24.ir

See also
Configuring your boot environment

How to do it…
How it works…
There's more…
See also

Configuring smtp
How to do it…
There's more…
See also

5. Using SELinux
Introduction
Changing file contexts

Getting ready
How to do it…

Temporary context changes
Persistent file context changes

There's more…
See also

Configuring SELinux booleans
How to do it…

Listing SELinux booleans
Changing SELinux booleans

There's more…
Configuring SELinux port definitions

How to do it…
There's more…

Troubleshooting SELinux
Getting ready
How to do it…

audit.log
syslog
ausearch

There's more…
See also

Creating SELinux policies
Getting ready
How to do it…

How it works…
There's more…
See also

Applying SELinux policies
Getting ready
How to do it...
How it works…
There's more…
See also

6. Orchestrating with Ansible
Introduction
Install Ansible

Getting ready
How to do it…

Installing the latest tarball
Installing cutting edge from Git
Installing Ansible from the EPEL repository

There's more…
Configuring the Ansible inventory

How to do it…
The static inventory file
The dynamic inventory file
host_vars files
group_vars files

How it works…
There's more…
See also

Creating a template for a kickstart file
Getting ready
How to do it…
How it works…
There's more…
See also

Creating a playbook to deploy a new VM with kickstart
Getting ready
How to do it…
How it works…
There's more…

https://technet24.ir

See also
Creating a playbook to perform system configuration tasks

Getting ready
How to do it…
There's more…
See also

Troubleshooting Ansible
Getting ready
How to do it…
How it works…
There's more…

7. Puppet Configuration Management
Introduction
Installing and configuring Puppet Master

How to do it…
There's more…
See also

Installing and configuring the Puppet agent
How to do it…
There's more…

Defining a simple module to configure time
Getting ready
How to do it…
How it works...
There's more...
See also

Defining nodes and node grouping
How to do it…

Create the configuration node
Create a node group

There's more…
Deploying modules to single nodes and node groups

How to do it…
Configure to deploy a module or manifest to a single client
Configure to deploy a module or manifest to a node group
Configure to deploy to all registered systems
Deploy to a system

There's more…

8. Yum and Repositories
Introduction
Managing yum history

How to do it…
Your yum history
Information about a yum transaction or package
Undoing/redoing certain yum transactions
Roll back to a certain point in your transaction history

There's more…
See also

Creating a copy of an RHN repository
Getting ready
How to do it…

Syncing RHN repositories
There's more…
See also

Configuring additional repositories
Getting ready
How to do it…
There's more…
See also

Setting up yum to automatically update
Getting ready
How to do it…
How it works…
There's more…
See also

Configuring logrotate for yum
How to do it…
How it works…
See also

Recovering from a corrupted RPM database
Getting ready
How to do it…
There's more…

9. Securing RHEL 7
Introduction
Installing and configuring IPA

https://technet24.ir

Getting ready
How to do it…

Installing the IPA server
Installing the IPA client

There's more…
See also

Securing the system login
How to do it…
How it works…
There's more…
See also

Configuring privilege escalation with sudo
Getting ready
How to do it…
There's more…
See also

Secure the network with firewalld
How to do it…

Showing the currently allowed services and ports on your system
Allowing incoming requests for NFS (v4)
Allowing incoming requests on an arbitrary port

There's more…
See also

Using kdump and SysRq
How to do it…

Installing and configuring kdump and SysRq
Using kdump tools to analyze the dump

There's more…
See also…

Using ABRT
How to do it…

Installing and configuring abrtd
Using abrt-cli

There's more…
See also

Auditing the system
How to do it…

Configuring a centralized syslog server to accept audit logs

Some audit rules
Showing audit logs for the preceding rules

See also
10. Monitoring and Performance Tuning

Introduction
Tuning your system's performance

How to do it…
There's more…
See also

Setting up PCP – Performance Co-Pilot
How to do it…

The default installation
The central collector

There's more…
See also

Monitoring basic system performance
How to do it…
There's more…

Monitoring CPU performance
How to do it…

Monitoring RAM performance
How to do it…

Monitoring storage performance
How to do it…

Monitoring network performance
How to do it…

Bibliography
Index

https://technet24.ir

Linux: Powerful Server Administration

Linux: Powerful Server Administration
Recipes for CentOS 7, RHEL 7, and Ubuntu Server Administration

A course in three modules

BIRMINGHAM - MUMBAI

https://technet24.ir

Linux: Powerful Server Administration
Copyright © 2017 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written permission
of the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this course to ensure the accuracy of
the information presented. However, the information contained in this course is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Published on: April 2017

Production reference: 1130417

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78829-377-8

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Uday Sawant

Oliver Pelz

Jonathan Hobson

William Leemans

Reviewers

Dominik Jakub Szynk

Mitja Resman

Kyung Huh

Marcus Young

Content Development Editor

Devika Battike

Graphics

Jason Monterio

Production Coordinator

Aparna Bhagat

https://technet24.ir

Preface
Linux servers are frequently selected over other server operating systems for their
stability, security and flexibility advantages. This Learning Path will teach you how to
get up and running with three of the most popular Linux server distros: Ubuntu Server,
CentOS 7 Server, and RHEL 7 Server.

Ubuntu is an open source operating system and is based on Debian, a well-established
Linux distribution. Since Debian is kind of limited to geeks, Ubuntu added an easy user
interface named Unity that made it popular with various desktop users. Ubuntu carefully
selects the best things from Debian and adds its own flavors to make it easy and more
enjoyable for the end users. In addition to desktop systems, Ubuntu provides separate
editions for various server platforms, cloud systems, mobile devices and tablets. With
its easy-to-use package management tools and availability of well-known packages, we
can quickly set up our own services such as web servers and database servers using
Ubuntu.

CentOS is a community-based enterprise class operating system. It is available free of
charge, and as a fully compatible derivative of Red Hat Enterprise Linux (RHEL), it
represents the first choice operating system for organizations, companies, professionals,
and home users all over the world who intend to run a server. It's widely respected as a
very powerful and flexible Linux distribution.

Dominating the server market, the Red Hat Enterprise Linux operating system gives you
the support you need to modernize your infrastructure and boost your organization's
efficiency. Combining both stability and flexibility, RHEL helps you meet the challenges
of today and adapt to the demands of tomorrow.

This Learning Path begins with the Ubuntu Server and shows you how to make the most
of Ubuntu's advanced functionalities. Moving on, we will provide you with all the
knowledge that will give you access to the inner workings of the latest CentOS version
7. Finally, touching RHEL 7, we will provide you with solutions to common RHEL 7
Server challenges.

What this learning path covers
Module 1, Ubuntu Server Cookbook, will help you develop the skills required to set up
high performance and secure services with open source tools. Starting from user
management and an in-depth look at networking, we then move on to cover the
installation and management of web servers and database servers, as well as load
balancing various services. You will quickly learn to set up your own cloud and
minimize costs and efforts with application containers. Next, you will get to grips with
setting up a secure real-time communication system. Finally, we'll explore source code
hosting and various collaboration tools. By the end of this module, you will be able to
make the most of Ubuntu's advanced functionalities.

Module 2, CentOS 7 Linux Server Cookbook- Second Edition, will provide you with a
comprehensive series of starting points that will give you direct access to the inner
workings of the latest CentOS version 7 and help you trim the learning curve to master
your server. You will begin with the installation and basic configuration of CentOS 7,
followed by learning how to manage your system, services and software packages. You
will then gain an understanding of how to administer the file system, secure access to
your server and configure various resource sharing services such as file, printer and
DHCP servers across your network. Further on, we cover advanced topics such as FTP
services, building your own DNS server, running database servers, and providing mail
and web services. Finally, you will get a deep understanding of SELinux and you will
learn how to work with Docker operating-system virtualization and how to monitor your
IT infrastructure with Nagios. By the end of this module, you will have a fair
understanding of all the aspects of configuring, implementing and administering CentOS
7 Linux server and how to put it in control.

Module 3, Red Hat Enterprise Linux Server Cookbook , will help you get to grips with
RHEL 7 Server and automating its installation. Designed to provide targeted assistance
through hands-on recipe guidance, it will introduce you to everything you need to know
about KVM guests and deploying multiple standardized RHEL systems effortlessly. Get
practical reference advice that will make complex network setups look like child's play,
and dive into in-depth coverage of configuring a RHEL system. Including full recipe
coverage of how to set up, configure and troubleshoot SELinux, you'll also discover
how to secure your operating system, as well as how to monitor it.

https://technet24.ir

What you need for this learning path
The primary requirements are as follows:

Ubuntu server 16.04
A minimum hardware configuration of 512 MB memory with single CPU
CentOS operating system
Red Hat Enterprise Linux 7 Installation DVD

Who this learning path is for
This Learning Path is intended for system administrators with a basic understanding of
Linux operating systems and written with the novice-to-intermediate Linux user in mind.
To get the most of this Learning Path, you should have a working knowledge of basic
system administration and management tools.

https://technet24.ir

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
course—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail <feedback@packtpub.com>, and mention
the course's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt course, we have a number of things to help
you to get the most from your purchase.

https://technet24.ir

Downloading the example code
You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to
you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the course in the Search box.
5. Select the course for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this course from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
course's webpage at the Packt Publishing website. This page can be accessed by
entering the course's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using
the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at
https://github.com/PacktPublishing/Linux-Powerful-Server-Administration. We also
have other code bundles from our rich catalog of books, videos, and courses available
at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Linux-Powerful-Server-Administration
https://github.com/PacktPublishing/

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our courses—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this course. If
you find any errata, please report them by visiting http://www.packtpub.com/submit-
errata, selecting your course, clicking on the Errata Submission Form link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be uploaded to our website or added to any list of existing
errata under the Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the course in
the search field. The required information will appear under the Errata section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://technet24.ir

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works in any form on the Internet, please provide
us with the location address or website name immediately so that we can pursue a
remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

mailto:copyright@packtpub.com

Questions
If you have a problem with any aspect of this course, you can contact us at
<questions@packtpub.com>, and we will do our best to address the problem.

mailto:questions@packtpub.com
https://technet24.ir

Part 1. Module 1
Ubuntu Server Cookbook

Arm yourself to make the most of the versatile, powerful Ubuntu Server with over
100 hands-on recipes

Chapter 1. Managing Users and Groups
In this chapter, we will cover the following recipes:

Creating a user account
Creating user accounts in batch mode
Creating a group
Adding group members
Deleting a user account
Managing file permissions
Getting root privileges with sudo
Setting resource limits with limits.conf
Setting up public key authentication
Securing user accounts

https://technet24.ir

Introduction
In this chapter, you will see how to add new users to the Ubuntu server, update existing
users, and set permissions for users. You will get to know the default setting for new
users and how to change them. Also, you will take a look at secure shell (SSH) access
and securing user profiles.

Creating a user account
While installing Ubuntu, we add a primary user account on the server; if you are using
the cloud image, it comes preinstalled with the default user. This single user is enough
to get all tasks done in Ubuntu. There are times when you need to create more restrictive
user accounts. This recipe shows how to add a new user to the Ubuntu server.

https://technet24.ir

Getting ready
You will need super user or root privileges to add a new user to the Ubuntu server.

How to do it…
Follow these steps to create the new user account:

1. To add a new user in Ubuntu, enter following command in your shell:

$ sudo adduser bob

2. Enter your password to complete the command with sudo privileges:

3. Now enter a password for the new user:

4. Confirm the password for the new user:

https://technet24.ir

5. Enter the full name and other information about the new user; you can skip this part
by pressing the Enter key.

6. Enter Y to confirm that information is correct:

7. This should have added new user to the system. You can confirm this by viewing
the file /etc/passwd:

How it works…
In Linux systems, the adduser command is higher level command to quickly add a new
user to the system. Since adduser requires root privileges, we need to use sudo along
with the command, adduser completes following operations:

1. Adds a new user.
2. Adds a new default group with the same name as the user.
3. Chooses UID (user ID) and GID (group ID) conforming to the Debian policy.
4. Creates a home directory with skeletal configuration (template) from /etc/skel.
5. Creates a password for the new user.
6. Runs the user script, if any.

If you want to skip the password prompt and finger information while adding the new
user, use the following command:

$ sudo adduser --disabled-password --gecos "" username

Alternatively, you can use the useradd command as follows:

$ sudo useradd -s <SHELL> -m -d <HomeDir> -g <Group> UserName

Where:

-s specifies default login shell for the user
-d sets the home directory for the user
-m creates a home directory if one does not already exist
-g specifies the default group name for the user

Creating a user with the command useradd does not set password for the user account.
You can set or change the user password with the following command:

$sudo passwd bob

This will change the password for the user account bob.

Note

Note that if you skip the username part from the above command you will end up
changing the password of the root account.

https://technet24.ir

There's more…
With adduser, you can do five different tasks:

Add a normal user
Add a system user with system option
Add user group with the--group option and without the--system option
Add a system group when called with the --system option
Add an existing user to existing group when called with two non-option arguments

Check out the manual page man adduser to get more details.

You can also configure various default settings for the adduser command. A
configuration file /etc/adduser.conf can be used to set the default values to be used
by the adduser, addgroup, and deluser commands. A key value pair of configuration
can set various default values, including the home directory location, directory structure
skel to be used, default groups for new users, and so on. Check the manual page for
more details on adduser.conf with following command:

$ man adduser.conf

See also
Check out the command useradd, a low level command to add new user to system
Check out the command usermod, a command to modify a user account
See why every user has his own group at
http://unix.stackexchange.com/questions/153390/why-does-every-user-have-his-
own-group

http://unix.stackexchange.com/questions/153390/why-does-every-user-have-his-own-group
https://technet24.ir

Creating user accounts in batch mode
In this recipe, you will see how to create multiple user accounts in batch mode without
using any external tool.

Getting ready
You will need a user account with root or root privileges.

https://technet24.ir

How to do it...
Follow these steps to create a user account in batch mode:

1. Create a new text file users.txt with the following command:

$ touch users.txt

2. Change file permissions with the following command:

$ chmod 600 users.txt

3. Open users.txt with GNU nano and add user account details:

$ nano users.txt

4. Press Ctrl + O to save the changes.
5. Press Ctrl + X to exit GNU nano.
6. Enter $ sudo newusers users.txt to import all users listed in users.txt file.
7. Check /etc/passwd to confirm that users are created:

How it works…
We created a database of user details listed in same format as the passwd file. The
default format for each row is as follows:

username:passwd:uid:gid:full name:home_dir:shell

Where:

username: This is the login name of the user. If a user exists, information for user
will be changed; otherwise, a new user will be created.
password: This is the password of the user.
uid: This is the uid of the user. If empty, a new uid will be assigned to this user.
gid: This is the gid for the default group of user. If empty, a new group will be
created with the same name as the username.
full name: This information will be copied to the gecos field.
home_dir: This defines the home directory of the user. If empty, a new home
directory will be created with ownership set to new or existing user.
shell: This is the default login shell for the user.

The new user command reads each row and updates the user information if the user
already exists, or it creates a new user.

We made the users.txt file accessible to owner only. This is to protect this file, as it
contains the user's login name and password in unencrypted format.

https://technet24.ir

Creating a group
Group is a way to organize and administer user accounts in Linux. Groups are used to
collectively assign rights and permissions to multiple user accounts.

Getting ready
You will need super user or root privileges to add a group to the Ubuntu server.

https://technet24.ir

How to do it...
Follow these steps to create a group:

1. Enter the following command to add a new group:

$ sudo addgroup guest

2. Enter your password to complete addgroup with root privileges.

How it works…
Here, we are simply adding a new group guest to the server. As addgroup needs root
privileges, we need to use sudo along with the command. After creating a new group,
addgroup displays the GID of the new group.

https://technet24.ir

There's more…
Similar to adduser, you can use addgroup in different modes:

Add a normal group when used without any options
Add a system group with the--system option
Add an existing user to an existing group when called with two non-option
arguments

Check out the manual page for the addgroup(man addgroup) to get more details.

See also
Check out groupadd, a low level utility to add new group to the server

https://technet24.ir

Adding group members
Once you have groups in place, you can add existing users as well as new users to that
group. All access rights and permissions assigned to the group will be automatically
available to all the members of the group.

Getting ready
You will need super user or root privileges to add a group member to the Ubuntu server.

https://technet24.ir

How to do it…
Follow these steps to add group members:

1. Here, you can use adduser command with two non-option arguments:

$ sudo adduser john guest

2. Enter your password to complete addgroup with root privileges.

How it works…
As mentioned previously, you can use the adduser command to add an existing user to
an existing group. Here, we have passed two non-option arguments:

john: This is the name of the user to be added to the group
guest: This is the name of the group

https://technet24.ir

There's more…
Alternatively, you can use the command usermod to modify the group assigned to the
user:

$ sudo usermod -g <group> <username>

To add a user to multiple groups, use the following command:

$ sudo usermod -a -G <group1>,<group2>,<group3> <username>

This will add <username> to <group1>, <group2>, and <group3>. Without flag –a,
any previously assigned groups will be replaced with new groups.

Deleting a user account
If you no longer need a user account, it is good idea to delete that account.

https://technet24.ir

Getting ready
You will need super user or root privileges to delete a group from the Ubuntu server.

How to do it...
Follow these steps to delete the user account:

1. Enter the following command to delete a user account:

$ sudo deluser --remove-home john

2. Enter your password to complete addgroup with root privileges:

https://technet24.ir

How it works…
Here, we used the deluser command with the option --remove-home. This will delete
the user account named john and also remove the home and mail spool directories
associated with john. By default, the deluser command will delete the user without
deleting the home directory.

It is a good idea to keep a backup of user files before removing the home directory and
any other files. This can be done with an additional flag along with the deluser
command:

$ deluser --backup --remove-home john

This will create a backup file with the name john.tar.gz in the current working
directory, and then the user account and the home directory will removed.

There's more…
When called with the --group option, the deluser command will remove the group.
Similarly, when called with two non-option arguments, the deluser command will try
to remove a user from a specific group:

$ deluser john guest # this will remove user john from group guest
$ deluser --group guest # this will remove a group

If you want to disable the user account rather than delete it, you can do it with the
following commands:

$ sudo usermod --expiredate 1 john # disable the user account john
$ sudo usermod --expiredate "" john # re-enable user account john
$ sudo usermod -e YYYY-MM-DD john # specify expiry date

https://technet24.ir

See also
Refer to the manual page for deluser with man deluser

Managing file permissions
We have created users and groups. In this recipe, you will work with default file
permissions for users and groups, as well as see how to modify those permissions.

https://technet24.ir

Getting ready
Create two users, user1 and user2. Create new group editor and add user1 and
user2 as members.

How to do it…
Follow these steps to manage file permissions, follow these steps:

1. To change groups for files and directories:
1. Log in with user1.
2. Create a new directory documents under home:

 user1@ubuntu:~$ mkdir documents

3. Create a text file under documents:

 user1@ubuntu:~$ echo "hello world">
documents/file.txt

4. Now log in with user2:

 user1@ubuntu:~$ su user2

5. Try to edit the same text file. It should say Permission denied:

user2@ubuntu:/home/user1$ echo "hello
again">documents/file.txt

6. log in as user1 and change the group of documents to editor:

 user1@ubuntu:~$ chgrp -R editor documents

7. Switch to user2 and try editing the same file. Now it should work:

https://technet24.ir

2. To set permissions with chmod, follow these steps:
1. Create simple shell script with the following command:

 $ echo 'echo "Hello World!!"'> hello.sh

2. Execute a shell script with the following command:

 $./hello.sh

3. Set executable permission to hello.sh with the following command:

 $ chmod u+x hello.sh

4. Check new permission with the following command:

 $ ls -l

5. Execute hello.sh again:

3. To protect shared files with sticky bit, follow these steps:
1. Log in as user1 and set sticky bit for directory documents:

 user1@ubuntu:~$ chmod +t documents

2. Log in as user2 and create a new file.
3. Try to delete any file under documents. It should fail:

https://technet24.ir

How it works…
When you create a new file or directory in Ubuntu, the default permissions for files are
read and write access to owner and owner's private group, along with read, write, and
execute access for directories. You can check the default setting with umask -S.

In our example, we have user1 and user2. Both of them are members of the editor
group. When user1 creates a file, the default permissions are limited to user1 and its
private group (user1) named after the user account. This is the reason user2 sees
Permission denied on editing file. By changing the group of documents to editor
we allow all members of editor to read and write to files in documents.

With the chmod command, we can set permissions at a more granular level. In our
example of hello.sh, we have set the executable permission for hello.sh. Similarly,
we can set read permission as follows:

$chmod +r filename

To set write permission, use the following command:

$chmod +w filename

You can set more selective permissions with additional parameters before mode
expression as follows:

$chmod ugo+x filename

Here, u sets the permission for user, g for group, and o for all others.

To remove permissions, replace + with -. For example, $chmod o-w filename.
Alternatively, you can use the Octal format to specify permissions:

$chmod 777 filename

This gives read, write, and execute permission to user group and others, whereas the
command $chmod 600 filename gives set, read, and write permissions for owner and
no permission to groups and others. In Octal format [777], the first bit is used for the
user or owner of the file, the second bit is for group, and the third bit is for everyone
else. Check out the following table for more information:

Notation Octal value Permissions

-|---|---|--- 0|000|000|000 Regular files, no permissions

d|r--|r--|r-- d|400|400|400 Directory, read permission to owner, group, and others

-|rw-|r--|r-- -|644|644|644 Regular file, read and write permission to owner and read permission to group or others

-|rwx|rwx|rwx -|777|777|777 Regular file, all permissions to everyone

Finally, when you share files within a group of users, there are chances that someone
deletes the file that is required by other users. Sticky bit can protect these file from
deletion. When sticky bit is set, only the owner or a user with root privileges can delete
a file.

You can set sticky bit with the command chmod as $chmod +t directoryName. Sticky
bit is shown in long listing (ls -l) with symbol t or T. Additionally, sticky bit works
only with directories and is ignored on ordinary files.

https://technet24.ir

There's more…
Many times when working as a root user, all files and directories created are owned by
root. A non-root user can't write to these directories or files. You can use the command
chown to change the ownership of such files and assign them to respective users.

To change ownership of a file, use the following command:

$chown newuser filename

To change the owner as well as the group of file, use the following command:

$chown newuser:newgroup filename

You can skip changing owner and change only the group with the following command:

$chown :newgroup filename

Note that the chown command can only be used by users with root privileges.

Getting root privileges with sudo
When you create a new Ubuntu server in the cloud, by default you get the root account.
This account has full system access with no restrictions at all and should only be used
for administrative tasks. You can always create a new user account with fewer
privileges. But there are times when you need extra root privileges to add a new user or
change some system setting. You can use the sudo command to temporarily get extra
privileges for a single command. In this recipe, you will see how to grant sudo
privileges to a newly created user.

https://technet24.ir

Getting ready
You will need a root account or an account with root privileges.

How to do it...
Follow these steps to get the root privileges with sudo:

1. Add new user if required:

$sudo adduser john

2. Make john a member of sudo group with the following command:

$sudo adduser username sudo

https://technet24.ir

How it works…
All sudo access rules are configured in a file located at /etc/sudoers. This file
contains a list of users and groups that are allowed to use the sudo command:

alan ALL=(ALL:ALL)ALL // allow sudo access to user alan
%sudo ALL=(ALL) ALL // allow sudo access to members of sudo

The line alan ALL=(ALL:ALL) ALL specifies that the user alan can run any command
as any user and optionally set any group (taken from man pages for sudoers: man
sudoers).

The entry %sudo ALL=(ALL) ALL specifies that any member of system group sudo can
run any command as any user.

All we have to do is add a new user to the group sudo and that user will automatically
get sudo privileges. After getting the membership of the sudo group, user needs to log
out and log back in for the changes to take effect. Basically, the user shell needs to be
restarted with new privileges. Optionally, you can always go and change the sudoers
file for a specific condition.

Note

Make sure that you use the visudo tool to make any changes to sudoers file.

There's more…
Here, we will discuss how to set a password-less sudo and some additional benefits of
sudo.

Setting password less sudo

sudo is a useful and handy tool for temporary root privileges, but you need to enter your
password every time. This creates problems especially for users with no password set.
This problem can be solved by setting the NOPASSWD flag in the sudoers file. Make sure
you use the visudo tool to edit the sudoers file:

1. Open the sudoers file with the visudo command:

$sudo visudo

2. Select the line for user or group you want to allow password-less sudo access.
3. Add NOPASSWD after closing the bracket:

%sudo ALL=(ALL:ALL) NOPASSWD: ALL

4. Press Ctrl + O and then confirm with the Enter key to save the changes.
5. Press Ctrl + X to exit visudo.

Now, the users of the group sudo should be able to use the sudo command without
providing a password. Alternatively, you can add a separate entry to limit password-
less access to a specific user.

Note that the sudoers program performs cache authentication for a small time (default
is 15 minutes). When repeated within timeout, you may notice password-less sudo
without setting the NOPASSWD flag.

Other uses of sudo

In addition to running a single command with sudo, you might want to execute a list of
commands with the sudo privileges. Then, you can open a shell with root access (#
prompt) with the command $sudo -s. The shell environment remains same as original
user, but now you can execute commands as a root user.

Alternatively, you can switch user to root with the command $sudo su -. This
command will open a new shell as a root user.

https://technet24.ir

See also
Check manual pages for sudo with $man sudo
For more details on adduser, check the Creating user account recipe

Setting resource limits with limits.conf
Ubuntu is a multiuser and multi-process operating system. If a single user or process is
consuming too many resources, other processes might not be able to use the system. In
this recipe, you will see how to set resource limits to avoid such problems.

https://technet24.ir

Getting ready
User account with root privileges is required.

How to do it...
Following are the steps to set the resource limits:

1. Check the CPU use limit with $ulimit –t.
2. To set new limit, open limits.conf with the following command:

$sudo nano /etc/security/limits.conf

3. Scroll to the end of the file and add following lines:

username soft cpu 0 # max cpu time in minutes
username hard cpu 1000 # max cpu time in minutes

4. Enter Ctrl + O to save the changes.
5. Enter Ctrl + X to exit GNU nano editor.

https://technet24.ir

How it works…
PAM stands for pluggable authentication module. The PAM module pam_limits.so
provides functionality to set a cap on resource utilization. The command ulimit can be
used to view current limits as well as set new limits for a session. The default values
used by pam_limits.so can be set in /etc/security/limits.conf.

In this recipe, we are updating limits.conf to set a limit on CPU uses by user
username. Limits set by the ulimit command are limited to that session. To set the
limits permanently, we need to set them in the limits.conf file.

The syntax of the limits.conf file is as follows:

<domain> <type> <item> <value>

Here, <domain> can be a username, a group name, or a wildcard entry.

<type> denotes the type of the limit and it can have the following values:

soft: This is a soft limit which can be changed by user
hard: This is a cap on soft limit set by super user and enforced by kernel

<item> is the resource to set the limit for. You can get a list of all items with $ulimit
–a:

In our example, we have set soft limit on CPU uses to 0 minutes and hard limit to
1000 minutes. You can changes soft limit values with the ulimit command. To view
existing limits on open files, use the command $ulimit -n. To change limits on open
files, pass the new limit as follows:

$ulimit -n 4096

An unprivileged process can only set its soft limit value between 0 and hard limit, and
it can irreversibly lower hard limit. A privileged process can change either limit
values.

https://technet24.ir

There's more…
The command ulimit can be used to set limits on per process basis. You can't use the
ulimit command to limit resources at the user level. You can use cgroups to set a cap
on resource use.

Setting up public key authentication
In this recipe, you will see how to set up secure public key authentication.

https://technet24.ir

Getting ready
You might need root privileges for certain tasks.

How to do it...
Follow these steps to set up public key authentication:

1. Add a new user. You can skip this step if you have already created a user:

$sudo adduser john

2. Log in as john and change to the home directory with cd ~/:
3. Create a .ssh directory if it doesn't already exist:

$ mkdir .ssh

4. Create a file named authorized_keys under the .ssh directory:

$ touch .ssh/authorized_keys

5. Set permissions on the .ssh directory to 700:

$chmod 700 .ssh

6. Set permissions for authorized_keys to 600:

$ chmod 600 .ssh/authorized_keys

7. Generate public key pair on your local system with the following command:

$ ssh-keygen

8. Copy the generated public key from the .ssh/id_rsa.pub file to the
authorized_keys file on the server.

9. Now, open an ssh connection from local to server with the following command:

$ ssh john@server

10. If asked for confirmation, type yes and press the Enter key to continue:

https://technet24.ir

How it works…
Logging in with SSH supports different authentication methods. Public key
authentication and password-based authentication are two common methods. To log in
with public key authentication, we need a public private key pair. We generate this key
pair with the ssh-keygen command. This command creates two files under the .ssh
directory in the user's home:

id_rsa: This is the private key file
id_rsa.pub: This is the public key file

You can view the contents of the files with $cat id_rsa.pub. It should start with
something like ssh-rsa AAAA...(except for the trailing dots).

We then copy the contents of public key to the server's authorized_keys file. Ensure
that all contents are listed on single line in the authorized_keys file.

Also, ensure the permissions are properly set for the .ssh directory, and ensure that the
authorized_keys file and directory are owned by the user. The permissions for the
.ssh directory limits read, write, and execute permissions to the owner of the file.
Similarly, for authorized_keys file, permissions are limited to read and write for
owner only. This ensures that no other user can modify the data in the .ssh directory. If
these permissions are not properly set, the SSH daemon will raise the warning
Permission denied?.

Working of SSH authentication

When the SSH client initiates a connection with the server, the server sends public key
identification of server to client. If a client is connecting to the server for the first time,
it shows a warning and asks for user confirmation to store the server key in the
known_hosts file under the .shh directory. After receiving the identity, the client
authenticates server to ensure that it is really the intended server.

After server authentication, the server sends a list of possible authentication methods.
The client selects the authentication method and selection to the server. After receiving
the authentication method, the server sends a challenge string encrypted with client's
private key. The client has to decrypt this string and send it back to server along with
previously shared session key. If the response from the client matches the response
generated by the server, then client authentication succeeds.

https://technet24.ir

There's more…
You might be searching for a secure option to install key on server. Here's one way!

If your local system has the ssh-copy-id tool installed, you can directly add your
public key to the server's authorized_keys file with a single command:

$ ssh-copy-id john@serverdomain

After providing the password, your local public key will be added to the
authorized_keys file under the .ssh directory of the user john.
Troubleshooting SSH connections

Most of the connection issues are related with configuration problems. If you happen to
face any such issue, read the error message in detail. It is descriptive enough to
understand the mistake. You can also go through following checklist:

Check if the SSH daemon is running. Check the port in use and port conflicts, if any
Check whether the firewall configuration allows SSH ports
Check the list of configuration methods that are enabled
Check permissions for your private keys on your local system
Check authorized_keys file for your public key on the server
Check for any entry with the old address of the server in known_hosts on the local
system

Additionally, you can use the verbose flag (-v or -vvv) with the ssh command to get
details of every step taken by the SSH client. Also, check SSH daemon logs on server.
SSH tools for the Windows platform

If your local system runs Windows, then you can use tools provided by puTTYto
generate new keys and connect to the server:

putty.exe: This is the SSH client on Windows
puttygen.exe: This tool generates public or private keys
pscp.exe: This is the SCP client for secure file transfer

When using public key generated by the puttygen.exe tool, make sure that you convert
the key to OpenSSH key format. Remove all comments and prepend ssh-rsa.
Additionally, the entire key should be listed on a single line.

Another easy option is to use puttygen.exe. Load your private key in PuTTYgen and
then copy the public key from the Key section of the PuTTYgen window.

https://technet24.ir

See also
For more information on the full working of SSH authentication, visit
http://www.slashroot.in/secure-shell-how-does-ssh-work

http://www.slashroot.in/secure-shell-how-does-ssh-work

Securing user accounts
In this recipe, we will look at ways to make user profiles more secure.

https://technet24.ir

How to do it...
Follow these steps to secure the user account:

1. Set a strong password policy with the following steps:
Open the /etc/pam.d/common-password file with GNU nano:

 $ sudo nano /etc/pam.d/common-password

Find the line similar to this:

password [success=1 default=ignore] pam_unix.so obscure
sha512

Add minlen to the end of this line:

password [success=1 default=ignore] pam_unix.so obscure
sha512 minlen=8

Add this line to enforce alphanumeric passwords:

password requisite pam_cracklib.so ucredit=-1 lcredit=-1
dcredit=-1 ocredit=-1

Save changes and exit GNU nano editor.
Press Ctrl + O to save changes.
Press Ctrl + X to exit GNU nano editor.

2. Secure the home directory with the following steps:
Check home directory permissions with the following command:

$ ls -ld /home/username

Restrict permissions to user and group with the following command:

$ chmod 750 /home/username

Change adduser default permissions by editing /etc/adduser.conf. Find
DIR_MODE=0755 and change it to DIR_MODE=0750.

3. Disable SSH access to root user with the following step:
Open /etc/ssh/sshd_config and add or edit PermitRootLogin to
PermitRootLogin no

4. Disable password authentication with the following step:
Open /etc/ssh/sshd_config and add or edit PasswordAuthentication
no

5. Install fail2ban with sudo apt-get install fail2ban.

How it works…
This recipe discussed a few important steps to make user accounts more secure.

A password is the most important aspect in securing user accounts. A weak password
can be easily broken with brute force attacks and dictionary attacks. It is always a good
idea to avoid password-based authentication, but if you are still using it, then make sure
you enforce a strong password policy.

Password authentication is controlled by the PAM module pam_unix, and all settings
associated with login are listed at /etc/pam.d/login. An additional configuration file
/etc/pam.d/common-password includes values that control password checks.

The following line in the primary block of common-password file defines the rules for
password complexity:

password [success=1 default=ignore] pam_unix.so obscure sha512

The default setting already defines some basic rules on passwords. The parameter
obscure defines some extra checks on password strength. It includes the following:

Palindrome check
Case change only
Similar check
Rotated check

The other parameter, sha512, states that the new password will be encrypted with the
sha512 algorithm. We have set another option, minlen=8, on the same line, adding
minimum length complexity to passwords.

Tip

For all settings of the pam_unix module, refer to the manual pages with the command
man pam_unix.

Additionally, we have set alphanumeric checks for new passwords with the PAM
module pam_cracklib:

password requisite pam_cracklib.so ucredit=-1 lcredit=-1 dcredit=-1
ocredit=-1

https://technet24.ir

The preceding line adds requirement of one uppercase letter, one lowercase letter, one
digit (dcredit), and one special character (ocredit)

There are other PAM modules available, and you can search them with the following
command:

$ apt-cache search limpam-

You might also want to secure the home directory of users. The default permissions on
Ubuntu allow read and execute access to everyone. You can limit the access on the home
directory by changing permission on the home directory as required. In the preceding
example, we changed permissions to 750. This allows full access to the user, and
allows read and execute access to the user's primary group.

You can also change the default permissions on the user's home directory by changing
settings for the adduser command. These values are located at /etc/adduser.conf.
We have changed default permissions to 750, which limits access to the user and the
group only.

Additionally, you can disable remote login for the root account as well as disable
password-based authentication. Public key authentication is always more secure than
passwords, unless you can secure your private keys. Before disabling password
authentication, ensure that you have properly enabled public key authentication and you
are able to log in with your keys. Otherwise, you will lock yourself out of the server.

You might want to install a tool like fail2ban to watch and block repeated failed
actions. It scans through access logs and automatically blocks repeated failed login
attempts. This can be a handy tool to provide a security against brute force attacks.

Chapter 2. Networking
In this chapter, we will cover the following recipes:

Connecting to a network with a static IP
Installing the DHCP server
Installing the DNS server
Hiding behind the proxy with squid
Being on time with NTP
Discussing load balancing with HAProxy
Tuning the TCP stack
Troubleshooting network connectivity
Securing remote access with OpenVPN
Securing a network with uncomplicated firewall
Securing against brute force attacks
Discussing Ubuntu security best practices

https://technet24.ir

Introduction
When we are talking about server systems, networking is the first and most important
factor. If you are using an Ubuntu server in a cloud or virtual machine, you generally
don't notice the network settings, as they are already configured with various network
protocols. However, as your infrastructure grows, managing and securing the network
becomes the priority.

Networking can be thought of as an umbrella term for various activities that include
network configurations, file sharing and network time management, firewall settings and
network proxies, and many others. In this chapter, we will take a closer look at the
various networking services that help us set up and effectively manage our networks, be
it in the cloud or a local network in your office.

Connecting to a network with a static IP
When you install Ubuntu server, its network setting defaults to dynamic IP addressing,
that is, the network management daemon in Ubuntu searches for a DHCP server on the
connected network and configures the network with the IP address assigned by DHCP.
Even when you start an instance in the cloud, the network is configured with dynamic
addressing using the DHCP server setup by the cloud service provider. In this chapter,
you will learn how to configure the network interface with static IP assignment.

https://technet24.ir

Getting ready
You will need an Ubuntu server with access to the root account or an account with sudo
privileges. If network configuration is a new thing for you, then it is recommended to try
this on a local or virtual machine.

How to do it…
Follow these steps to connect to the network with a static IP:

1. Get a list of available Ethernet interfaces using the following command:

$ ifconfig -a | grep eth

2. Open /etc/network/interfaces and find the following lines:

auto eth0
iface eth0 inet dhcp

3. Change the preceding lines to add an IP address, net mask, and default gateway
(replace samples with the respective values):

auto eth0
iface eth0 inet static
 address 192.168.1.100
 netmask 255.255.255.0
 gateway 192.168.1.1
 dns-nameservers 192.168.1.45 192.168.1.46

4. Restart the network service for the changes to take effect:

$ sudo /etc/init.d/networking restart

5. Try to ping a remote host to test the network connection:

$ ping www.google.com

https://technet24.ir

How it works…
In this recipe, we have modified the network configuration from dynamic IP assignment
to static assignment.

First, we got a list of all the available network interfaces with ifconfig -a. The -a
option of ifconfig returns all the available network interfaces, even if they are
disabled. With the help of the pipe (|) symbol, we have directed the output of ifconfig
to the grep command. For now, we are interested with Ethernet ports only. The grep
command will filter the received data and return only the lines that contain the eth
character sequence:

 ubuntu@ubuntu:~$ ifconfig -a | grep eth
 eth0 Link encap:Ethernet HWaddr 08:00:27:bb:a6:03

Here, eth0 means first Ethernet interface available on the server. After getting the name
of the interface to configure, we will change the network settings for eth0 in interfaces
file at /etc/network/interfaces. By default, eth0 is configured to query the DHCP
server for an IP assignment. The eth0 line auto is used to automatically configure the
eth0 interface at server startup. Without this line, you will need to enable the network
interface after each reboot. You can enable the eth0 interface with the following
command:

 $ sudo ifup eth0

Similarly, to disable a network interface, use the following command:

 $ sudo ifdown eth0

The second iface eth0 inet static line sets the network configuration to static
assignment. After this line, we will add network settings, such as IP address, netmask,
default gateway, and DNS servers.

After saving the changes, we need to restart the networking service for the changes to
take effect. Alternatively, you can simply disable the network interface and enable it
with ifdown and ifup commands.

https://technet24.ir

There's more…
The steps in this recipe are used to configure the network changes permanently. If you
need to change your network parameters temporarily, you can use the ifconfig and
route commands as follows:

1. Change the IP address and netmask, as follows:

$ sudo ifconfig eth0 192.168.1.100 netmask 255.255.255.0

2. Set the default gateway:

$ sudo route add default gw 192.168.1.1 eth0

3. Edit /etc/resolv.conf to add temporary name servers (DNS):

nameserver 192.168.1.45
nameserver 192.168.1.46

4. To verify the changes, use the following command:

$ ifconfig eth0
$ route -n

5. When you no longer need this configuration, you can easily reset it with the
following command:

$ ip addr flush eth0

6. Alternatively, you can reboot your server to reset the temporary configuration.

IPv6 configuration

You may need to configure your Ubuntu server for IPv6 IP address. Version six IP
addresses use a 128-bit address space and include hexadecimal characters. They are
different from simple version four IP addresses that use a 32-bit addressing space.
Ubuntu supports IPv6 addressing and can be easily configured with either DHCP or a
static address. The following is an example of static configuration for IPv6:

iface eth0 inet6 static
address 2001:db8::xxxx:yyyy
gateway your_ipv6_gateway

See also
You can find more details about network configuration in the Ubuntu server guide:

https://help.ubuntu.com/lts/serverguide/network-configuration.html
Checkout the Ubuntu wiki page on IP version 6 - https://wiki.ubuntu.com/IPv6

https://help.ubuntu.com/lts/serverguide/network-configuration.html
https://wiki.ubuntu.com/IPv6
https://technet24.ir

Installing the DHCP server
DHCP is a service used to automatically assign network configuration to client systems.
DHCP can be used as a handy tool when you have a large pool of systems that needs to
be configured for network settings. Plus, when you need to change the network
configuration, say to update a DNS server, all you need to do is update the DHCP server
and all the connected hosts will be reconfigured with new settings. Also, you get
reliable IP address configuration that minimizes configuration errors and address
conflicts. You can easily add a new host to the network without spending time on
network planning.

DHCP is most commonly used to provide IP configuration settings, such as IP address,
net mask, default gateway, and DNS servers. However, it can also be set to configure
the time server and hostname on the client.

DHCP can be configured to use the following configuration methods:

Manual allocation: Here, the configuration settings are tied with the MAC address
of the client's network card. The same settings are supplied each time the client
makes a request with the same network card.
Dynamic allocation: This method specifies a range of IP addresses to be assigned
to the clients. The server can dynamically assign IP configuration to the client on
first come, first served basis. These settings are allocated for a specified time
period called lease; after this period, the client needs to renegotiate with the
server to keep using the same address. If the client leaves the network for a
specified time, the configuration gets expired and returns to pool where it can be
assigned to other clients. Lease time is a configurable option and it can be set to
infinite.

Ubuntu comes pre-installed with the DHCP client, dhclient. The DHCP dhcpd server
daemon can be installed while setting up an Ubuntu server or separately with the apt-
get command.

Getting ready
Make sure that your DHCP host is configured with static IP address.

You will need an access to the root account or an account with sudo privileges.

https://technet24.ir

How to do it…
Follow these steps to install a DHCP server:

1. Install a DHCP server:

$ sudo apt-get install isc-dhcp-server

2. Open the DHCP configuration file:

$ sudo nano -w /etc/dhcp/dhcpd.conf

3. Change the default and max lease time if necessary:

default-lease-time 600;
max-lease-time 7200;

4. Add the following lines at the end of the file (replace the IP address to match your
network):

subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.150 192.168.1.200;
 option routers 192.168.1.1;
 option domain-name-servers 192.168.1.2, 192.168.1.3;
 option domain-name "example.com";
}

5. Save the configuration file and exit with Ctrl + O and Ctrl + X.
6. After changing the configuration file, restart dhcpd:

$ sudo service isc-dhcp-server restart

How it works…
Here, we have installed the DHCP server with the isc-dhcp-server package. It is
open source software that implements the DHCP protocol. ISC-DHCP supports both
IPv4 and IPv6.

After the installation, we need to set the basic configuration to match our network
settings. All dhcpd settings are listed in the /etc/dhcp/dhcpd.conf configuration file.
In the sample settings listed earlier, we have configured a new network, 192.168.1.0.
This will result in IP addresses ranging from 192.168.1.150 to 192.168.1.200 to be
assigned to clients. The default lease time is set to 600 seconds with maximum bound of
7200 seconds. A client can ask for a specific time to a maximum lease period of 7200
seconds. Additionally, the DHCP server will provide a default gateway (routers) as
well as default DNS servers.

If you have multiple network interfaces, you may need to change the interface that dhcpd
should listen to. These settings are listed in /etc/default/isc-dhcp-server. You
can set multiple interfaces to listen to; just specify the interface names, separated by a
space, for example, INTERFACES="wlan0 eth0".

https://technet24.ir

There's more…
You can reserve an IP address to be assigned to a specific device on network.
Reservation ensures that a specified device is always assigned to the same IP address.
To create a reservation, add the following lines to dhcpd.conf. It will assign IP
192.168.1.201 to the client with the 08:D2:1F:50:F0:6F MAC ID:

host Server1 {
 hardware ethernet 08:D2:1F:50:F0:6F;
 fixed-address 192.168.1.201;
}

Installing the DNS server
DNS, also known as name server, is a service on the Internet that provides mapping
between IP addresses and domain names and vice versa. DNS maintains a database of
names and related IP addresses. When an application queries with a domain name, DNS
responds with a mapped IP address. Applications can also ask for a domain name by
providing an IP address.

DNS is quite a big topic, and an entire chapter can be written just on the DNS setup.
This recipe assumes some basic understanding of the working of the DNS protocol. We
will cover the installation of BIND, installation of DNS server application,
configuration of BIND as a caching DNS, and setup of Primary Master and Secondary
Master. We will also cover some best practices to secure your DNS server.

https://technet24.ir

Getting ready
In this recipe, I will be using four servers. You can create virtual machines if you want
to simply test the setup:

1. ns1: Name server one/Primary Master
2. ns2: Name server two/Secondary Master
3. host1: Host system one
4. host2: Host system two, optional

All servers should be configured in a private network. I have used the
10.0.2.0/24 network
We need root privileges on all servers

How to do it…
Install BIND and set up a caching name server through the following steps:

1. On ns1, install BIND and dnsutils with the following command:

$ sudo apt-get update
$ sudo apt-get install bind9 dnsutils

2. Open /etc/bind/named.conf.optoins, enable the forwarders section, and add
your preferred DNS servers:

forwarders {
 8.8.8.8;
 8.8.4.4;
};

3. Now restart BIND to apply a new configuration:

$ sudo service bind9 restart

4. Check whether the BIND server is up and running:

$ dig -x 127.0.0.1

5. You should get an output similar to the following code:

;; Query time: 1 msec
;; SERVER: 10.0.2.53#53(10.0.2.53)

6. Use dig to external domain and check the query time:

7. Dig the same domain again and cross check the query time. It should be less than
the first query:

https://technet24.ir

Set up Primary Master through the following steps:

1. On the ns1 server, edit /etc/bind/named.conf.options and add the acl block
above the options block:

acl "local" {

10.0.2.0/24; # local network
};

2. Add the following lines under the options block:

recursion yes;
allow-recursion { local; };
listen-on { 10.0.2.53; }; # ns1 IP address
allow-transfer { none; };

3. Open the /etc/bind/named.conf.local file to add forward and reverse zones:

$ sudo nano /etc/bind/named.conf.local

4. Add the forward zone:

zone "example.com" {
 type master;
 file "/etc/bind/zones/db.example.com";
};

5. Add the reverse zone:

zone "2.0.10.in-addr.arpa" {
 type master;
 file "/etc/bind/zones/db.10";
};

6. Create the zones directory under /etc/bind/:

$ sudo mkdir /etc/bind/zones

7. Create the forward zone file using the existing zone file, db.local, as a template:

$ cd /etc/bind/
$ sudo cp db.local zones/db.example.com

8. The default file should look similar to the following image:

9. Edit the SOA entry and replace localhost with FQDN of your server.
10. Increment the serial number (you can use the current date time as the serial number,

201507071100)
11. Remove entries for localhost, 127.0.0.1 and ::1.
12. Add new records:

; name server - NS records
@ IN NS ns.exmple.com
; name server A records
ns IN A 10.0.2.53
; local - A records
host1 IN A 10.0.2.58

13. Save the changes and exit the nano editor. The final file should look similar to the
following image:

https://technet24.ir

14. Now create the reverse zone file using /etc/bind/db.127 as a template:

$ sudo cp db.127 zones/db.10

15. The default file should look similar to the following screenshot:

16. Change the SOA record and increment the serial number.
17. Remove NS and PTR records for localhost.
18. Add NS, PTR, and host records:

; NS records
@ IN NS ns.example.com
; PTR records
53 IN PTR ns.example.com
; host records

58 IN PTR host1.example.com

19. Save the changes. The final file should look similar to the following image:

20. Check the configuration files for syntax errors. It should end with no output:

$ sudo named-checkconf

21. Check zone files for syntax errors:

$ sudo named-checkzone example.com /etc/bind/zones/db.example.com

22. If there are no errors, you should see an output similar to the following:

zone example.com/IN: loaded serial 3
OK

23. Check the reverse zone file, zones/db.10:

$ sudo named-checkzone example.com /etc/bind/zones/db.10

24. If there are no errors, you should see output similar to the following:

zone example.com/IN: loaded serial 3
OK

25. Now restart the DNS server bind:

$ sudo service bind9 restart

26. Log in to host2 and configure it to use ns.example.com as a DNS server. Add
ns.example.com to /etc/resolve.conf on host2.

27. Test forward lookup with the nslookup command:

https://technet24.ir

$ nslookup host1.example.com

28. You should see an output similar to following:

$ nslookup host1.example.com
Server: 10.0.2.53
Address: 10.0.2.53#53
Name: host1.example.com
Address: 10.0.2.58

29. Now test the reverse lookup:

$ nslookup 10.0.2.58

30. It should output something similar to the following:

$ nslookup 10.0.2.58
Server: 10.0.2.53
Address: 10.0.2.53#53
58.2.0.10.in-addr.arpa name = host1.example.com

Set up Secondary Master through the following steps:

1. First, allow zone transfer on Primary Master by setting the allow-transfer
option in /etc/bind/named.conf.local:

zone "example.com" {
 type master;
 file "/etc/bind/zones/db.example.com";
 allow-transfer { 10.0.2.54; };
};
zone "2.0.10.in-addr.arpa" {
 type master;
 file "/etc/bind/zones/db.10";
 allow-transfer { 10.0.2.54; };
};

Note

A syntax check will throw errors if you miss semicolons.

2. Restart BIND9 on Primary Master:

$ sudo service bind9 restart

3. On Secondary Master (ns2), install the BIND package.
4. Edit /etc/bind/named.conf.local to add zone declarations as follows:

zone "example.com" {
 type slave;
 file "db.example.com";
 masters { 10.0.2.53; };
};
zone "2.0.10.in-addr.arpa" {
 type slave;
 file "db.10";
 masters { 10.0.2.53; };
};

5. Save the changes made to named.conf.local.
6. Restart the BIND server on Secondary Master:

$ sudo service bind9 restart

7. This will initiate the transfer of all zones configured on Primary Master. You can
check the logs on Secondary Master at /var/log/syslog to verify the zone
transfer.

Tip

A zone is transferred only if the serial number under the SOA section on Primary Master
is greater than that of Secondary Master. Make sure that you increment the serial number
after every change to the zone file.

https://technet24.ir

How it works…
In the first section, we have installed the BIND server and enabled a simple caching
DNS server. A caching server helps to reduce bandwidth and latency in name
resolution. The server will try to resolve queries locally from the cache. If the entry is
not available in the cache, the query will be forwarded to external DNS servers and the
result will be cached.

In the second and third sections, we have set Primary Master and Secondary Master
respectively. Primary Master is the first DNS server. Secondary Master will be used as
an alternate server in case the Primary server becomes unavailable.

Under Primary Master, we have declared a forward zone and reverse zone for the
example.com domain. The forward zone is declared with domain name as the identifier
and contains the type and filename for the database file. On Primary Master, we have set
type to master. The reverse zone is declared with similar attributes and uses part of an
IP address as an identifier. As we are using a 24-bit network address (10.0.2.0/24),
we have included the first three octets of the IP address in reverse order (2.0.10) for
the reverse zone name.

Lastly, we have created zone files by using existing files as templates. Zone files are the
actual database that contains records of the IP address mapped to FQDN and vice versa.
It contains SOA record, A records, and NS records. An SOA record defines the domain
for this zone; A records and AAAA records are used to map the hostname to the IP
address.

When the DNS server receives a query for the example.com domain, it checks for zone
files for that domain. After finding the zone file, the host part from the query will be
used to find the actual IP address to be returned as a result for query. Similarly, when a
query with an IP address is received, the DNS server will look for a reverse zone file
matching with the queried IP address.

See also
Checkout the DNS configuration guide in the Ubuntu server guide at
https://help.ubuntu.com/lts/serverguide/dns-configuration.html
For an introduction to DNS concepts, check out this tutorial by the DigitalOcean
community at https://www.digitalocean.com/community/tutorials/an-introduction-
to-dns-terminology-components-and-concepts
Get manual pages for BIND9 at http://www.bind9.net/manuals
Find manual pages for named with the following command:

$ man named

https://help.ubuntu.com/lts/serverguide/dns-configuration.html
https://www.digitalocean.com/community/tutorials/an-introduction-to-dns-terminology-components-and-concepts
http://www.bind9.net/manuals
https://technet24.ir

Hiding behind the proxy with squid
In this recipe, we will install and configure the squid proxy and caching server. The
term proxy is generally combined with two different terms: one is forward proxy and
the other is reverse proxy.

When we say proxy, it generally refers to forward proxy. A forward proxy acts as a
gateway between a client's browser and the Internet, requesting the content on behalf of
the client. This protects intranet clients by exposing the proxy as the only requester. A
proxy can also be used as a filtering agent, imposing organizational policies. As all
Internet requests go through the proxy server, the proxy can cache the response and
return cached content when a similar request is found, thus saving bandwidth and time.

A reverse proxy is the exact opposite of a forward proxy. It protects internal servers
from the outside world. A reverse proxy accepts requests from external clients and
routes them to servers behind the proxy. External clients can see a single entity serving
requests, but internally, it can be multiple servers working behind the proxy and sharing
the load. More details about reverse proxies are covered in Chapter 3, Working with
Web Servers.

In this recipe, we will discuss how to install a squid server. Squid is a well-known
application in the forward proxy world and works well as a caching proxy. It supports
HTTP, HTTPS, FTP, and other popular network protocols.

Getting ready
As always, you will need access to a root account or an account with sudo privileges.

https://technet24.ir

How to do it…
Following are the steps to setup and configure Squid proxy:

1. Squid is quite an old, mature, and commonly used piece of software. It is generally
shipped as a default package with various Linux distributions. The Ubuntu package
repository contains the necessary pre-compiled binaries, so the installation is as
easy as two commands.

2. First, update the apt cache and then install squid as follows:

$ sudo apt-get update
$ sudo apt-get install squid3

3. Edit the /etc/squid3/squid.conf file:

$ sudo nano /etc/squid3/squid.conf

4. Ensure that the cache_dir directive is not commented out:

cache_dir ufs /var/spool/squid3 100 16 256

5. Optionally, change the http_port directive to your desired TCP port:

http_port 8080

6. Optionally, change the squid hostname:

visible_hostname proxy1

7. Save changes with Ctrl + O and exit with Ctrl + X.
8. Restart the squid server:

$ sudo service squid3 restart

9. Make sure that you have allowed the selected http_port on firewall.
10. Next, configure your browser using the squid server as the http/https proxy.

How it works…
Squid is available as a package in the Ubuntu repository, so you can directly install it
with the apt-get install squid command. After installing squid, we need to edit the
squid.conf file for some basic settings. The squid.conf file is quite a big file and
you can find a large number of directives listed with their explanation. It is
recommended to create a copy of the original configuration file as a reference before
you do any modifications.

In our example, we are changing the port squid listens on. The default port is 3128. This
is just a security precaution and it's fine if you want to run squid on the default port.
Secondly, we have changed the hostname for squid.

Other important directive to look at is cache_dir. Make sure that this directive is
enabled, and also set the cache size. The following example sets cache_dir to
/var/spool/suid3 with the size set to 100MB:

cache_dir ufs /var/spool/squid3 100 16 256

To check the cache utilization, use the following command:

$ sudo du /var/spool/squid3

https://technet24.ir

There's more…
Squid provides lot more features than a simple proxy server. Following is a quick list of
some important features:

Access control list

With squid ACLs, you can set the list of IP addresses allowed to use squid. Add the
following line at the bottom of the acl section of /etc/squid3/squid.conf:

acl developers src 192.168.2.0/24

Then, add the following line at the top of the http_access section in the same file:

http_access allow developers

Set cache refresh rules

You can change squid's caching behavior depending on the file types. Add the following
line to cache all image files to be cached—the minimum time is an hour and the
maximum is a day:

refresh_pattern -i \.(gif|png|jpg|jpeg|ico)$ 3600 90% 86400

This line uses a regular expression to find the file names that end with any of the listed
file extensions (gif, png, and etc)

Sarg – tool to analyze squid logs

Squid Analysis Report Generator is an open source tool to monitor the squid server
usages. It parses the logs generated by Squid and converts them to easy-to-digest
HTML-based reports. You can track various metrics such as bandwidth used per user,
top sites, downloads, and so on. Sarg can be quickly installed with the following
command:

$ sudo apt-get install sarg

The configuration file for Sarg is located at /etc/squid/sarg.conf. Once installed,
set the output_dir path and run sarg. You can also set cron jobs to execute sarg
periodically. The generated reports are stored in output_dir and can be accessed with
the help of a web server.

Squid guard

Squid guard is another useful plugin for squid server. It is generally used to block a list
of websites so that these sites are inaccessible from the internal network. As always, it
can also be installed with a single command, as follows:

$ sudo apt-get install squidguard

The configuration file is located at /etc/squid/squidGuard.conf.

https://technet24.ir

See also
Check out the squid manual pages with the man squid command
Check out the Ubuntu community page for squid guard at
https://help.ubuntu.com/community/SquidGuard

https://help.ubuntu.com/community/SquidGuard

Being on time with NTP
Network Time Protocol (NTP) is a TCP/IP protocol for synchronizing time over a
network. Although Ubuntu has a built-in clock that is helpful for keeping track of local
events, it may create issues when the server is connected over a network and provides
time-critical services to the clients. This problem can be solved with the help of NTP
time synchronization. NTP works by synchronizing time across all servers on the
Internet.

NTP uses hierarchies of servers with top-level servers synchronizing time with atomic
clocks. This hierarchy levels are known as stratum, and the level can range between 1
and 15, both inclusive. The highest stratum level is 1 and is determined by the accuracy
of the clock the server synchronizes with. If a server synchronizes with other NTP
server with stratum level 3, then the stratum level for this server is automatically set to
4.

Another time synchronization tool provided by Ubuntu is ntpdate, which comes
preinstalled with Ubuntu. It executes once at boot time and synchronizes the local time
with Ubuntu's NTP servers. The problem with ntpdate is that it matches server time
with central time without considering the big drifts in local time, whereas the NTP
daemon ntpd continuously adjusts the server time to match it with the reference clock.
As mentioned in the ntpdate manual pages (man ntpdate), you can use ntpdate
multiple times throughout a day to keep time drifts low and get more accurate results,
but it does not match the accuracy and reliability provided by ntpd.

In this recipe, we will set up a standalone time server for an internal network. Our time
server will synchronize its time with public time servers and provide a time service to
internal NTP clients.

https://technet24.ir

How to do it…
Following are the steps to install and configure NTP daemon:

1. First, synchronize the server's time with any Internet time server using the ntpdate
command:

$ ntpdate -s ntp.ubuntu.com

2. To install ntpd, enter the following command in the terminal:

$ sudo apt-get install ntp

3. Edit the /etc/ntp.conf NTP configuration file to add/remove external NTP
servers:

$ sudo nano /etc/ntp.conf

4. Set a fallback NTP server:

server ntp.ubuntu.com

5. Block any external access to the server, comment the first restrict line, and add
the following command:

restrict default noquery notrust nomodify

6. Allow the clients on local network to use the NTP service:

restrict 192.168.1.0 mask 255.255.255.0

7. Save changes with Ctrl + O and exit nano with Ctrl + X.
8. Reload the NTP daemon with the following command:

$ sudo service ntp restart

How it works…
Sometimes, the NTP daemon refuses to work if the time difference between local time
and central time is too big. To avoid this problem, we have synchronized the local time
and central time before installing ntpd. As ntpd and ntpdate both use the same UDP port,
123, the ntpdate command will not work when the ntpd service is in use.

Tip

Make sure that you have opened UDP port 123 on the firewall.

After installing the NTP server, you may want to set time servers to be used. The default
configuration file contains time servers provided by Ubuntu. You can use the same
default servers or simply comment the lines by adding # at the start of each line and add
the servers of your choice. You can dig into http://www.pool.ntp.org to find time
servers for your specific region. It is a good idea to provide multiple reference servers,
as NTP can provide more accurate results after querying each of them.

Note

You can control polling intervals for each server with the minpoll and maxpoll
parameters. The value is set in seconds to the power of two. minpoll defaults to 6 (2^6
= 64 sec) and maxpoll defaults to 10 (2^10 = 1024 sec).

Additionally, we have set a fallback server that can be used in case of network outage
or any other problems when our server cannot communicate with external reference
servers. You can also use a system clock as a fallback, which can be accessed at
127.127.1.0. Simply replace the fallback server with the following line to use a
system clock as a fallback:

server 127.127.0.1

Lastly, we have set access control parameters to protect our server from external
access. The default configuration is to allow anyone to use the time service from this
server. By changing the first restrict line, we blocked all external access to the
server. The configuration already contains the exception to local NTP service indicated
by the following:

restrict 127.0.0.1

We created another exception by adding a separate line to allow access to the clients on

http://www.pool.ntp.org
https://technet24.ir

local network (remember to replace the IP range with your network details):

restrict 192.168.1.0 mask 255.255.255.0

There's more…
A central DHCP server can be configured to provide NTP settings to all DHCP clients.
For this to work, your clients should also be configured to query NTP details from
DHCP. A DHCP client configuration on Ubuntu already contains the query for network
time servers.

Add the following line to your DHCP configuration to provide NTP details to the
clients:

subnet 192.168.1.0 netmask 255.255.255.0 {
 ...
 option ntp-servers your_ntp_host;
}

On the clientside, make sure that your dhclient.conf contains ntp-servers in its
default request:

request subnet-mask, broadcast-address, time-offset, routers,
 ...
 rfc3442-classless-static-routes, ntp-servers,

https://technet24.ir

See also
Check the default /etc/ntp.conf configuration file. It contains a short
explanation for each setting.
Check the manual pages for ntpd with man ntpd.

Discussing load balancing with HAProxy
When an application becomes popular, it sends an increased number of requests to the
application server. A single application server may not be able to handle the entire load
alone. We can always scale up the underlying hardware, that is, add more memory and
more powerful CUPs to increase the server capacity; but these improvements do not
always scale linearly. To solve this problem, multiple replicas of the application server
are created and the load is distributed among these replicas. Load balancing can be
implemented at OSI Layer 4, that is, at TCP or UDP protocol levels, or at Layer 7, that
is, application level with HTTP, SMTP, and DNS protocols.

In this recipe, we will install a popular load balancing or load distributing service,
HAProxy. HAProxy receives all the requests from clients and directs them to the actual
application server for processing. Application server directly returns the final results to
the client. We will be setting HAProxy to load balance TCP connections.

https://technet24.ir

Getting ready
You will need two or more application servers and one server for HAProxy:

You will need the root access on the server where you want to install HAProxy
It is assumed that your application servers are properly installed and working

How to do it…
Follow these steps to discus load balancing with HAProxy:

1. Install HAProxy:

$ sudo apt-get update
$ sudo apt-get install haproxy

2. Enable the HAProxy init script to automatically start HAProxy on system boot.
Open /etc/default/haproxy and set ENABLE to 1:

3. Now, edit the HAProxy /etc/haproxy/haproxy.cfg configuration file. You may
want to create a copy of this file before editing:

$ cd /etc/haproxy
$ sudo cp haproxy.cfg haproxy.cfg.copy
$ sudo nano haproxy.cfg

4. Find the defaults section and change the mode and option parameters to match
the following:

mode tcp
option tcplog

5. Next, define frontend, which will receive all requests:

frontend www
 bind 57.105.2.204:80 # haproxy public IP
 default_backend as-backend # backend used

https://technet24.ir

6. Define backend application servers:

backend as-backend
 balance leastconn
 mode tcp

server as1 10.0.2.71:80 check # application srv 1
 server as2 10.0.2.72:80 check # application srv 2

7. Save and quit the HAProxy configuration file.
8. We need to set rsyslog to accept HAProxy logs. Open the rsyslog.conf file,

/etc/rsyslog.conf, and uncomment following parameters:

$ModLoad imudp
$UDPServerRun 514

9. Next, create a new file under /etc/rsyslog.d to specify the HAProxy log
location:

$ sudo nano /etc/rsyslog.d/haproxy.conf

10. Add the following line to the newly created file:

local2.* /var/log/haproxy.log

11. Save the changes and exit the new file.
12. Restart the rsyslog service:

$ sudo service rsyslog restart

13. Restart HAProxy:

$ sudo service haproxy restart

14. Now, you should be able to access your backend with the HAProxy IP address.

How it works…
Here, we have configured HAProxy as a frontend for a cluster of application servers.
Under the frontend section, we have configured HAProxy to listen on the public IP of
the HAProxy server. We also specified a backend for this frontend. Under the backend
section, we have set a private IP address of the application servers. HAProxy will
communicate with the application servers through a private network interface. This will
help to keep the internal network latency to a minimum.

HAProxy supports various load balancing algorithms. Some of them are as follows:

Round-robin distributes the load in a round robin fashion. This is the default
algorithm used.
leastconn selects the backend server with fewest connections.
source uses the hash of the client's IP address and maps it to the backend. This
ensures that requests from a single user are served by the same backend server.

We have selected the leastconn algorithm, which is mentioned under the backend
section with the balance leastconn line. The selection of a load balancing algorithm
will depend on the type of application and length of connections.

Lastly, we configured rsyslog to accept logs over UDP. HAProxy does not provide
separate logging system and passes logs to the system log daemon, rsyslog, over the
UDP stream.

https://technet24.ir

There's more …
Depending on your Ubuntu version, you may not get the latest version of HAProxy from
the default apt repository. Use the following repository to install the latest release:

$ sudo apt-get install software-properties-common
$ sudo add-apt-repository ppa:vbernat/haproxy-1.6 # replace 1.6 with
required version
$ sudo apt-get update && apt-get install haproxy

See also
An introduction to load balancing the HAProxy concepts at
https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-
and-load-balancing-concepts

https://www.digitalocean.com/community/tutorials/an-introduction-to-haproxy-and-load-balancing-concepts
https://technet24.ir

Tuning the TCP stack
Transmission Control Protocol and Internet Protocol (TCP/IP) is a standard set of
protocols used by every network-enabled device. TCP/IP defines the standards to
communicate over a network. TCP/IP is a set of protocols and is divided in two parts:
TCP and IP. IP defines the rules for IP addressing and routing packets over network and
provides an identity IP address to each host on the network. TCP deals with the
interconnection between two hosts and enables them to exchange data over network.
TCP is a connection-oriented protocol and controls the ordering of packets,
retransmission, error detection, and other reliability tasks.

TCP stack is designed to be very general in nature so that it can be used by anyone for
any network conditions. Servers use the same TCP/IP stack as used by their clients. For
this reason, the default values are configured for general uses and not optimized for
high-load server environments. New Linux kernel provides a tool called sysctl that
can be used to modify kernel parameters at runtime without recompiling the entire
kernel. We can use sysctl to modify and TCP/IP parameters to match our needs.

In this recipe, we will look at various kernel parameters that control the network. It is
not required to modify all parameters listed here. You can choose ones that are required
and suitable for your system and network environment.

It is advisable to test these modifications on local systems before doing any changes on
live environment. A lot of these parameters directly deal with network connections and
related CPU and memory uses. This can result in connection drops and/or sudden
increases in resource use. Make sure that you have read the documentation for the
parameter before you change anything.

Also, it is a good idea to set benchmarks before and after making any changes to sysctl
parameters. This will give you a base to compare improvements, if any. Again,
benchmarks may not reveal all the effects of parameter changes. Make sure that you
have read the respective documentation.

Getting ready…
You will need root access.

Note down basic performance metrics with the tool of your choice.

https://technet24.ir

How to do it…
Follow these steps to tune the TCP stack:

1. Set the maximum open files limit:

$ ulimit -n # check existing limits for logged in user
ulimit -n 65535 # root change values above hard limits

2. To permanently set limits for a user, open /etc/security/limits.conf and add
the following lines at end of the file. Make sure to replace values in brackets, <>:

<username> soft nofile <value> # soft limits
<username> hard nofile <value> # hard limits

3. Save limits.conf and exit. Then restart the user session.
4. View all available parameters:

sysctl -a

5. Set the TCP default read-write buffer:

echo 'net.core.rmem_default=65536' >> /etc/sysctl.conf
echo 'net.core.wmem_default=65536' >> /etc/sysctl.conf

6. Set the TCP read and write buffers to 8 MB:

echo 'net.core.rmem_max=8388608' >> /etc/sysctl.conf
echo 'net.core.wmem_max=8388608' >> /etc/sysctl.conf

7. Increase the maximum TCP orphans:

echo 'net.ipv4.tcp_max_orphans=4096' >> /etc/sysctl.conf

8. Disable slow start after being idle:

echo 'net.ipv4.tcp_slow_start_after_idle=0' >> /etc/sysctl.conf

9. Minimize TCP connection retries:

echo 'net.ipv4.tcp_synack_retries=3' >> /etc/sysctl.conf
echo 'net.ipv4.tcp_syn_retries =3' >> /etc/sysctl.conf

10. Set the TCP window scaling:

echo 'net.ipv4.tcp_window_scaling=1' >> /etc/sysctl.conf

11. Enable timestamps:

echo 'net.ipv4.tcp_timestamp=1' >> /etc/sysctl.conf

12. Enable selective acknowledgements:

echo 'net.ipv4.tcp_sack=0' >> /etc/sysctl.conf

13. Set the maximum number of times the IPV4 packet can be reordered in the TCP
packet stream:

echo 'net.ipv4.tcp_reordering=3' >> /etc/sysctl.conf

14. Send data in the opening SYN packet:

echo 'net.ipv4.tcp_fastopen=1' >> /etc/sysctl.conf

15. Set the number of opened connections to be remembered before receiving
acknowledgement:

echo 'tcp_max_syn_backlog=1500' >> /etc/sysctl.conf

16. Set the number of TCP keep-alive probes to send before deciding the connection is
broken:

echo 'tcp_keepalive_probes=5' >> /etc/sysctl.conf

17. Set the keep-alive time, which is a timeout value after the broken connection is
killed:

echo 'tcp_keepalive_time=1800' >> /etc/sysctl.conf

18. Set intervals to send keep-alive packets:

echo 'tcp_keepalive_intvl=60' >> /etc/sysctl.conf

19. Set to reuse or recycle connections in the wait state:

echo 'net.ipv4.tcp_tw_reuse=1' >> /etc/sysctl.conf
echo 'net.ipv4.tcp_tw_recycle=1' >> /etc/sysctl.conf

20. Increase the maximum number of connections:

echo 'net.ipv4.ip_local_port_range=32768 65535' >>
/etc/sysctl.conf

21. Set TCP FIN timeout:

echo 'tcp_fin_timeout=60' >> /etc/sysctl.conf

https://technet24.ir

How it works…
The behavior of Linux kernel can be fine tuned with the help of various Linux kernel
parameters. These are the options passed to the kernel in order to control various
aspects of the system. These parameters can be passed while compiling the kernel, at
boot time, or at runtime using the /proc filesystem and tools such as sysctl.

In this recipe, we have used sysctl to configure network-related kernel parameters to
fine tune network settings. Again, you need to cross check each configuration to see if
it's working as expected.

Along with network parameters, tons of other kernel parameters can be configured with
the sysctl command. The -a flag to sysctl will list all the available parameters:

$ sysctl -a

All these configurations are stored in a filesystem at the /proc directory, grouped in
their respective categories. You can directly read/write these files or use the sysctl
command:

ubuntu@ubuntu:~$ sysctl fs.file-max
fs.file-max = 98869
ubuntu@ubuntu:~$ cat /proc/sys/fs/file-max
98869

See also
Find the explanation of various kernel parameters at the following websites:

http://www.cyberciti.biz/files/linux-kernel/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

http://www.cyberciti.biz/files/linux-kernel/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://technet24.ir

Troubleshooting network connectivity
Networking consists of various components and services working together to enable
systems to communicate with each other. A lot of times it happens that everything seems
good, but we are not able to access other servers or the Internet. In this recipe, we will
look at some tools provided by Ubuntu to troubleshoot the network connectivity issues.

Getting ready
As you are reading this recipe, I am assuming that you are facing a networking issue.
Also, I am assuming that the problems are with a primary network adapter, eth0.

You may need access to root account or account with similar privileges.

https://technet24.ir

How to do it…
Follow these steps to troubleshoot network connectivity:

1. Let's start with checking the network card. If it is working properly and is detected
by Ubuntu. Check boot time logs and search for lines related to Ethernet, eth:

$ dmesg | grep eth

2. If you don't find anything in the boot logs, then most probably, your network
hardware is faulty or unsupported by Ubuntu.

3. Next, check whether the network cable is plugged in and is working properly. You
can simply check the LED indicators on the network card or use the following
command:

$ sudo mii-tool

4. If you can see a line with link ok, then you have a working Ethernet connection.
5. Next, check whether a proper IP address is assigned to the eth0 Ethernet port:

$ ifconfig eth0

6. Check whether you can find a line that starts with inet addr. If you cannot find

this line or it is listed as inet addr 169.254, then you don't have an IP address
assigned.

7. Even if you see a line stating the IP address, make sure that it is valid for network
that you are connected to.

8. Now assuming that you have not assigned an IP address, let's try to get dynamic IP
address from the DHCP server. Make sure that eth0 is set for dynamic
configuration. You should see line similar to iface eth0 inet dhcp:

$ cat /etc/network/interfaces

9. Execute the dhclient command to query the local DHCP server:

$ sudo dhclient -v

10. If you can see a line similar to bound to 10.0.2.15, then you are assigned with a
new IP address. If you keep getting DHCPDISCOVER messages, this means that your
DHCP server is not accessible or not assigning an IP address to this client.

11. Now, if you check the IP address again, you should see a newly IP address listed:

$ ifconfig eth0

https://technet24.ir

12. Assuming that you have received a proper IP address, let's move on to the default
gateway:

$ ip route

13. The preceding command lists our default route. In my case, it is 10.0.2.2. Let's
try to ping the default gateway:

$ ping –c 5 10.0.2.2

14. If you get a response from the gateway, this means that your local network is
working properly. If you do not get a response from gateway, you may want to
check your local firewall.

15. Check the firewall status:

$ sudo ufw status

16. Check the rules or temporarily disable the firewall and retry reaching your
gateway:

$ sudo ufw disable

17. Next, check whether we can go beyond our gateway. Try to ping an external server.
I am trying to ping a public DNS server by Google:

$ ping -c 5 8.8.8.8

18. If you successfully receive a response, then you have a working network
connection. If this does not work, then you can check the problem with the mtr
command. This command will display each router between your server and the
destination server:

$ mtr -r -c 1 8.8.8.8

19. Next, we need to check DNS servers:

$ nslookup www.ubuntu.com

20. If you received an IP address for Ubuntu servers, then the DNS connection is
working properly. If it's not, you can try changing the DNS servers temporarily.
Add the nameserver entry to /etc/resolve.conf above other nameserver, if
any:

nameserver 8.8.8.8

21. At this point, you should be able to access the Internet. Try to ping an external
server by its name:

$ ping -c 3 www.ubuntu.com

https://technet24.ir

There's more…
The following are some additional commands that may come handy while working with
a network:

lspci lists all pci devices. Combine it with grep to search for specific device.
Lsmod shows the status of modules in Linux kernels.
ip link lists all the available network devices with status and configuration
parameters.
ip addr shows the IP addresses assigned for each device.
ip route displays routing table entries.
tracepath/traceroute lists all the routers (path) between local and remote
hosts.
iptables is an administration tool for packet filtering and NAT.
dig is a DNS lookup utility.
ethtool queries and controls network drivers and hardware settings.
route views or edits the IP routing table.
telnet was the interface for telnet protocol. Now it is a simple tool to quickly
check remote working ports.
Nmap is a powerful network mapping tool.
netstat displays network connections, routing tables, interface stats, and more.
ifdown and ifup start or stop the network interface. They are similar to ifconfig
down or ifconfig up.

https://technet24.ir

Securing remote access with OpenVPN
VPN enables two or more systems to communicate privately and securely over the
public network or Internet. The network traffic is routed through the Internet, but is
encrypted. You can use VPN to set up a secure connection between two datacenters or
to access office resources from the leisure of your home. The VPN service is also used
to protect your online activities, access location restricted contents, and bypass
restrictions imposed by your ISP.

VPN services are implemented with a number of different protocols, such as Point-to-
Point Tunneling Protocol (PPTP), Layer two tunneling protocol (L2TP), IPSec, and
SSL. In this recipe, we will set up a free VPN server, OpenVPN. OpenVPN is an open
source SSL VPN solution and provides a wide range of configurations. OpenVPN can
be configured to use either TCP or UDP protocols. In this recipe, we will set up
OpenVPN with its default UDP port 1194.

Getting ready…
You will need one server and one client system and root or equivalent access to both
systems.

https://technet24.ir

How to do it…
1. Install OpenVPN with the following command:

$ sudo apt-get update
$ sudo apt-get install openvpn easy-rsa

2. Now, set up your own certification authority and generate certificate and keys for
the OpenVPN server.

3. Next, we need to edit the OpenVPN files that are owned by the root user, and the
build-ca script needs root access while writing new keys. Temporarily, change to
root account using sudo su:

$ sudo su

Copy the Easy-RSA directory to /etc/openvpn:

cp -r /usr/share/easy-rsa /etc/openvpn/

4. Now edit /etc/openvpn/easy-rsa/vars and change the variables to match your
environment:

 export KEY_COUNTRY="US"
 export KEY_PROVINCE="ca"
 export KEY_CITY="your city"
 export KEY_ORG="your Company"
 export KEY_EMAIL="you@company.com"
 export KEY_CN="MyVPN"
 export KEY_NAME="MyVPN"
 export KEY_OU="MyVPN"

5. Generate a Master certificate with the following commands:

cd /etc/openvpn/easy-vars
source vars
./clean-all
./build-ca

6. Next, generate a certificate and private key for the server. Replace the server name
with the name of your server:

./build-key-server servername

7. Press the Enter key when prompted for the password and company name.
8. When asked for signing the certificate, enter y and then press the Enter key.
9. Build Diffie Hellman parameters for the OpenVPN server:

./build-dh

10. Copy all the generated keys and certificates to /etc/openvpn:

cp /etc/openvpn/easy-rsa/keys/{servername.crt, servername.key,
ca.crt, dh2048.pem} /etc/openvpn

11. Next, generate a certificate for the client with the following commands:

cd /etc/openvpn/easy-rsa
source vars
./build-key clientname

12. Copy the generated key, certificate, and server certificate to the client system. Use
a secure transfer mechanism such as SCP:

/etc/openvpn/ca.crt
/etc/openvpn/easy-rsa/keys/clientname.crt
/etc/openvpn/easy-rsa/keys/clientname.key

13. Now, configure the OpenVPN server. Use the sample configuration files provided
by OpenVPN:

$ gunzip -c /usr/share/doc/openvpn/examples/sample-config-
files/server.conf.gz > /etc/openvpn/server.conf

14. Open server.conf in your favorite editor:

nano /etc/openvpn/server.conf

15. Make sure that the certificate and key path are properly set:

ca ca.crt
cert servername.crt
key servername.key
dh dh2048.pen

16. Enable clients to redirect their web traffic through a VPN server. Uncomment the
following line:

push "redirect-gateway def1 bypass-dhcp"

17. To protect against DNS leaks, push DNS settings to VPN clients and uncomment
the following lines:

push "dhcp-option DNS 208.67.222.222"
push "dhcp-option DNS 208.67.220.220"

18. The preceding lines point to OpenDNS servers. You can set them to any DNS

https://technet24.ir

server of your choice.
19. Lastly, set OpenVPN to run with unprivileged user and group and uncomment the

following lines:

user nobody
group nogroup

20. Optionally, you can enable compression on the VPN link. Search and uncomment
the following line:

comp-lzo

21. Save the changes and exit the editor.
22. Next, edit /etc/sysctl to enable IP forwarding. Find and uncomment the

following line by removing the hash, #, in front of it:

#net.ipv4.ip_forward=1

23. Update sysctl settings with the following command:

sysctl -p

24. Now start the server. You should see an output similar to the following:

service openvpn start
 * Starting virtual private network daemon(s)
 * Autostarting VPN 'server'

25. When it starts successfully, OpenVPN creates a new network interface named
tun0. This can be checked with the ifconfig command:

ifconfig tun0
tun0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-
00-00-00-00-00-00-00
 inet addr:10.8.0.1 P-t-P:10.8.0.2
Mask:255.255.255.255

26. If the server does not start normally, you can check the logs at /var/log/syslog.
It should list all the steps completed by the OpenVPN service.

How it works…
OpenVPN is the open source VPN solution. It is a traffic-tunneling protocol that works
in client-server mode. You might already know that VPN is widely used to create a
private and secure network connection between two endpoints. It is generally used to
access your servers or access office systems from your home. The other popular use of
VPN servers is to protect your privacy by routing your traffic through a VPN server.
OpenVPN needs two primary components, namely a server and a client. The preceding
recipe installs the server component. When the OpenVPN service is started on the
OpenVPN host, it creates a new virtual network interface, a tun device named tun0. On
the client side, OpenVPN provides the client with tools that configure the client with a
similar setup by creating a tap device on the client's system.

Once the client is configured with a server hostname or IP address, a server certificate,
and client keys, the client initiates a virtual network connection using a tap device on
client to a tun device on the server. The provided keys and certificate are used to cross-
check server authenticity and then authenticate itself. As the session is established, all
network traffic on the client system is routed or tunneled via a tap network interface. All
the external services that are accessed by the OpenVPN client, and you get to see the
requests as if they are originated from the OpenVPN server and not from the client.
Additionally, the traffic between the server and client is encrypted to provide additional
security.

https://technet24.ir

There's more…
In this recipe we have installed and configured OpenVPN server. To use the VPN
service from your local system you will need a VPN client tool.

Following are the steps to install and configure VPN client on Ubuntu systems:

1. Install the OpenVPN client with a similar command the one we used to install the
server:

$ sudo apt-get update
$ sudo apt-get install openvpn

2. Copy the sample client.conf configuration file:

$ sudo cp /usr/share/doc/openvpn/examples/sample-config-
files/client.conf /etc/openvpn/

3. Copy the certificates and keys generated for this client:

$ scp user@yourvpnserver:/etc/openvpn/easy-rsa/keys/client1.key
/etc/openvpn

4. You can use other tools such as SFTP or WinSCP on the Windows systems.
5. Now edit client.conf, enable client mode, and specify the server name or

address:

client
remote your.vpnserver.com 1194

6. Make sure that you have set the correct path for keys copied from the server.
7. Now save the configuration file and start the OpenVPN server:

$ service openvpn start

8. This should create the tun0 network interface:

$ ifconfig tun0

9. Check the new routes created by VPN:

$ netstat -rn

10. You can test your VPN connection with any What's My IP service. You can also
take a DNS leak test with online DNS leak tests.

For Windows and Mac OS systems, OpenVPN provides respective client tools.

You need an OpenVPN profile with the .ovpn extension. A template can be found
with the OpenVPN client you are using or on the server under OpenVPN examples.
The following is the complete path:

/usr/share/doc/openvpn/examples/sample-config-files/client.conf

Note

Note that OpenVPN provides a web-based admin interface to manage VPN clients. This
is a commercial offering that provides an easy-to-use admin interface to manage
OpenVPN settings and client certificates.

https://technet24.ir

Securing a network with uncomplicated
firewall
It is said that the best way to improve server security is to reduce the attack surface.
Network communication in any system happens with the help of logical network ports,
be it TCP ports or UDP ports. One part of the attack surface is the number of open ports
that are waiting for connection to be established. It is always a good idea to block all
unrequired ports. Any traffic coming to these ports can be filtered, that is, allowed or
blocked with the help of a filtering system.

The Linux kernel provides a built-in packet filtering mechanism called netfilter, which
is used to filter the traffic coming in or going out of the system. All modern Linux
firewall systems use netfilter under the hood. Iptables is a well-known and popular user
interface to set up and manage filtering rules for netfilter. It is a complete firewall
solution that is highly configurable and highly flexible. However, iptables need effort on
the user's part to master the firewall setup. Various frontend tools have been developed
to simplify the configuration of iptables. UFW is among the most popular frontend
solutions to manage iptables.

Uncomplicated firewall (UFW) provides easy-to-use interface for people unfamiliar
with firewall concepts. It provides a framework for managing netfilter as well as the
command-line interface to manipulate the firewall. With its small command set and
plain English parameters, UFW makes it quick and easy to understand and set up
firewall rules. At the same time, you can use UFW to configure most of the rules
possible with iptables. UFW comes preinstalled with all Ubuntu installations after
version 8.04 LTS.

In this recipe, we will secure our Ubuntu server with the help of UFW and also look at
some advance configurations possible with UFW.

Getting ready
You will need an access to a root account or an account with root privileges.

https://technet24.ir

How to do it…
Follow these steps to secure network with uncomplicated firewall:

1. UFW comes preinstalled on Ubuntu systems. If it's not, you can install it with the
following commands:

$ sudo apt-get udpate
$ sudo apt-get install UFW

2. Check the status of UFW:

$ sudo ufw status

3. Add a new rule to allow SSH:

$ sudo ufw allow ssh

4. Alternatively, you can use a port number to open a particular port:

$ sudo ufw allow 22

5. Allow only TCP traffic over HTTP (port 80):

$ sudo ufw allow http/tcp

6. Deny incoming FTP traffic:

$ sudo ufw deny ftp

7. Check all added rules before starting the firewall:

$ sudo ufw show added

8. Now enable the firewall:

$ sudo ufw enable

9. Check the ufw status, the verbose parameter is optional:

$ sudo ufw status verbose

10. Get a numbered list of added rules:

$ sudo ufw status numbered

https://technet24.ir

11. You can also allow all ports in a range by specifying a port range:

$ sudo ufw allow 1050:5000/tcp

12. If you want to open all ports for a particular IP address, use the following
command:

$ sudo ufw allow from 10.0.2.100

13. Alternatively, you can allow an entire subnet, as follows:

$ sudo ufw allow from 10.0.2.0/24

14. You can also allow or deny a specific port for a given IP address:

$ sudo ufw allow from 10.0.2.100 to any port 2222
$ sudo ufw deny from 10.0.2.100 to any port 5223

15. To specify a protocol in the preceding rule, use the following command:

$ sudo ufw deny from 10.0.2.100 proto tcp to any port 5223

16. Deleting rules:

$ sudo ufw delete allow ftp

17. Delete rules by specifying their numbers:

$ sudo ufw status numbered
$ sudo ufw delete 2

18. Add a new rule at a specific number:

$ sudo ufw insert 1 allow 5222/tcp # Inserts a rule at
number 1

19. If you want to reject outgoing FTP connections, you can use the following

command:

$ sudo ufw reject out ftp

20. UFW also supports application profiles. To view all application profiles, use the
following command:

$ sudo ufw app list

21. Get more information about the app profile using the following command:

$ sudo ufw app info OpenSSH

22. Allow the application profile as follows:

$ sudo ufw allow OpenSSH

23. Set ufw logging levels [off|low|medium|high|full] with the help of the following
command:

$ sudo ufw logging medium

24. View firewall reports with the show parameter:

$ sudo ufw show added # list of rules added
$ sudo ufw show raw # show complete firewall

25. Reset ufw to its default state (all rules will be backed up by UFW):

$ sudo ufw reset

https://technet24.ir

There's more…
UFW also provides various configuration files that can be used:

/etc/default/ufw: This is the main configuration file.
/etc/ufw/sysctl.conf: These are the kernel network variables. Variables in this
file override variables in /etc/sysctl.conf.
/var/lib/ufw/user[6].rules or /lib/ufw/user[6].rules are the rules
added via the ufw command.
/etc/ufw/before.init are the scripts to be run before the UFW initialization.
/etc/ufw/after.init are the scripts to be run after the UFW initialization.

See also
Check logging section of the UFW community page for an explanation of UFW logs
at https://help.ubuntu.com/community/UFW
Check out the UFW manual pages with the following command:

$ man ufw

https://help.ubuntu.com/community/UFW
https://technet24.ir

Securing against brute force attacks
So you have installed minimal setup of Ubuntu, you have setup SSH with public key
authentication and disabled password authentication, and you have also allowed only
single non-root user to access the server. You also configured a firewall, spending an
entire night understanding the rules, and blocked everything except a few required ports.
Now does this mean that your server is secured and you are free to take a nice sound
sleep? Nope.

Servers are exposed to the public network, and the SSH daemon itself, which is
probably the only service open, and can be vulnerable to attacks. If you monitor the
application logs and access logs, you can find repeated systematic login attempts that
represent brute force attacks.

Fail2ban is a service that can help you monitor logs in real time and modify iptables
rules to block suspected IP addresses. It is an intrusion-prevention framework written in
Python. It can be set to monitor logs for SSH daemon and web servers. In this recipe,
we will discuss how to install and configure fail2ban.

Getting ready
You will need access to a root account or an account with similar privileges.

https://technet24.ir

How to do it…
Follow these steps to secure against brute force attacks:

1. Fail2ban is available in the Ubuntu package repository, so we can install it with a
single command, as follows:

$ sudo apt-get update
$ sudo apt-get install fail2ban

2. Create a copy of the fail2ban configuration file for local modifications:

$ sudo cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local

3. Open a new configuration file in your favorite editor:

$ sudo nano /etc/fail2ban/jail.local

4. You may want to modify the settings listed under the [DEFAULT] section:

5. Add your IP address to the ignore IP list.
6. Next, set your e-mail address if you wish to receive e-mail notifications of the ban

action:

destemail = you@provider.com
sendername = Fail2Ban
mta = sendmail

7. Set the required value for the action parameter:

action = $(action_mwl)s

8. Enable services you want to be monitored by setting enable=true for each
service. SSH service is enabled by default:

[ssh]
enable = true

9. Set other parameters if you want to override the default settings.
10. Fail2ban provides default configuration options for various applications. These

configurations are disabled by default. You can enable them depending on your
requirement.

11. Restart the fail2ban service:

$ sudo service fail2ban restart

12. Check iptables for the rules created by fail2ban:

$ sudo iptables -S

13. Try some failed SSH login attempts, preferably from some other system.
14. Check iptables again. You should find new rules that reject the IP address with

failed login attempts:

https://technet24.ir

How it works…
Fail2ban works by monitoring the specified log files as they are modified with new log
entries. It uses regular expressions called filters to detect log entries that match specific
criteria, such as failed login attempts. Default installation of fail2ban provides various
filters that can be found in the /etc/fail2ban/filter.d directory. You can always
create your own filters and use them to detect log entries that match your criteria.

Once it detects multiple logs matching with the configured filters within the specified
timeout, fail2ban adjusts the firewall settings to reject the matching IP address for
configured time period.

There's more…
Check out the article about defending against brute force attacks at http://www.la-
samhna.de/library/brutessh.html.

The preceding articles shows multiple options to defend against SSH brute force
attacks. As mentioned in the article, you can use iptables to slow down brute force
attacks by blocking IP addresses:

$ iptables -A INPUT -p tcp --dport 22 -m state --state NEW -m recent
--set --name SSH -j ACCEPT
$ iptables -A INPUT -p tcp --dport 22 -m recent --update --seconds 60
--hitcount 4 --rttl --name SSH -j LOG --log-prefix "SSH_brute_force "
$ iptables -A INPUT -p tcp --dport 22 -m recent --update --seconds 60
--hitcount 4 --rttl --name SSH -j DROP

These commands will create an iptables rule to permit only three SSH login attempts
per minute. After three attempts, whether they are successful or not, the attempting IP
address will be blocked for another 60 seconds.

http://www.la-samhna.de/library/brutessh.html
https://technet24.ir

Discussing Ubuntu security best
practices
In this recipe, we will look at some best practices to secure Ubuntu systems. Linux is
considered to be a well secured operating system. It is quite easy to maintain the
security and protect our systems from unauthorized access by following a few simple
norms or rules.

Getting ready
You will need access to a root or account with sudo privileges. These steps are
intended for a new server setup. You can apply them selectively for the servers already
in productions.

https://technet24.ir

How to do it…
Follow these steps to discuss Ubuntu security best practices:

1. Install updates from the Ubuntu repository. You can install all the available updates
or just select security updates, depending on your choice and requirement:

$ sudo apt-get update
$ sudo apt-get upgrade

2. Change the root password; set a strong and complex root password and note it
down somewhere. You are not going to use it every day:

$ sudo passwd

3. Add a new user account and set a strong password for it. You can skip this step if
the server has already set up a non-root account, like Ubuntu:

$ sudo adduser john
$ sudo passwd john

4. Add a new user to the Sudoers group:

$ sudo adduser john sudo

5. Enable the public key authentication over SSH and import your public key to new
user's authorized_keys file.

6. Restrict SSH logins:
1. Change the default SSH port:

 port 2222

2. Disable root login over SSH:

 PermitRootLogin no

3. Disable password authentication:

 PasswordAuthentication no

4. Restrict users and allow IP address:

 AllowUsers john@(your-ip) john@(other-ip)

7. Install fail2ban to protect against brute force attacks and set a new SSH port in the
fail2ban configuration:

$ sudo apt-get install fail2ban

8. Optionally, install UFW and allow your desired ports:

$ sudo ufw allow from <your-IP> to any port 22 proto tcp
$ sudo ufw allow 80/tcp
$ sudo ufw enable

9. Maintain periodic snapshots (full-disk backups) of your server. Many cloud
service providers offer basic snapshot tools.

10. Keep an eye on application and system logs. You may like to set up log-monitoring
scripts that will e-mail any unidentified log entry.

https://technet24.ir

How it works…
The preceding steps are basic and general security measures. They may change
according to your server setup, package selection, and the services running on your
server. I will try to cover some more details about specific scenarios. Also, I have not
mentioned application-specific security practices for web servers and database servers.
A separate recipe will be included in the respective chapters. Again, these
configurations may change with your setup.

The steps listed earlier can be included in a single shell script and executed at first
server boot up. Some cloud providers offer an option to add scripts to be executed on
the first run of the server. You can also use centralized configuration tools such as
Ansible, Chef/Puppet, and some others. Again, these tools come with their own security
risks and increase total attack surface. This is a tradeoff between ease of setup and
server security. Make sure that you select a well-known tool if you choose this route.

I have also mentioned creating single user account, except root. I am assuming that you
are setting up your production server. With production servers, it is always a good idea
to restrict access to one or two system administrators. For production servers, I don't
believe in setting up multiple user accounts just for accountability or even setting
LDAP-like centralized authentication methods to manage user accounts. This is a
production environment and not your backyard. Moreover, if you follow the latest trends
in immutable infrastructure concepts, then you should not allow even a single user to
interfere with your live servers. Again, your mileage may vary.

Another thing that is commonly recommended is to set up automated and unattended
security updates. This depends on how trusted your update source is. You live in a
world powered by open source tools where things can break. You don't want things to
go haywire without even touching the servers. I would recommend setting up unattended
updates on your staging or test environment and then periodically installing updates on
live servers, manually. Always have a snapshot of the working setup as your plan B.

You may want to skip host-based firewalls such as UFW when you have specialized
firewalls protecting your network. As long as the servers are not directly exposed to the
Internet, you can skip the local firewalls.

Minimize installed packages and service on single server. Remember the Unix
philosophy, do one thing and do it well, and follow it. By minimizing the installed
packages, you will effectively reduce the attack surface, and maybe save little on

resources too. Think of it as a house with a single door verses a house with multiple
doors. Also, running single service from one server provides layered security. This
way, if a single server is compromised, the rest of your infrastructure remains in a safe
state.

Remember that with all other tradeoffs in place, you cannot design a perfectly secured
system, there is always a possibility that someone will break in. Direct your efforts to
increase the time required for an attacker to break into your servers.

https://technet24.ir

See also
First 5 Minutes Troubleshooting A Server at http://devo.ps/blog/troubleshooting-
5minutes-on-a-yet-unknown-box/
Try to break in your own servers at http://www.backtrack-linux.org/
What Can Be Done To Secure Ubuntu Server? at
http://askubuntu.com/questions/146775/what-can-be-done-to-secure-ubuntu-server

http://devo.ps/blog/troubleshooting-5minutes-on-a-yet-unknown-box/
http://www.backtrack-linux.org/
http://askubuntu.com/questions/146775/what-can-be-done-to-secure-ubuntu-server

Chapter 3. Working with Web Servers
In this chapter, we will cover the following recipes:

Installing and configuring the Apache web server
Serving dynamic contents with PHP
Hosting multiple websites with a virtual domain
Securing web traffic with HTTPS
Installing Nginx with PHP_FPM
Setting Nginx as a reverse proxy
Load balancing with Nginx
Setting HTTPs on Nginx
Benchmarking and performance tuning of Apache
Securing the web server
Troubleshooting the web server

https://technet24.ir

Introduction
A web server is a tool that publishes documents on a network, generally the Internet.
HTTP is called a language of the Internet and web servers, apart from browsers, are
native speakers of HTTP. Web servers generally listen on one or multiple ports for
requests from clients and accept requests in the form of URLs and HTTP headers. On
receiving a request, web servers look for the availability of the requested resource and
return the contents to the client. The term web server can refer to one or multiple
physical servers or a software package, or both of them working together.

Some well known web servers include the Apache web server, Microsoft IIS, and
Nginx. Apache web server is the most popular web server package available across
platforms such as Windows and Linux. It is an open source project and freely available
for commercial use. Nginx, which is again an open source web server project, started to
overcome the problems in a high-load environment. Because of its lightweight resource
utilization and ability to scale even on minimal hardware, Nginx quickly became a well
known name. Nginx offers a free community edition as well as a paid commercial
version with added support and extra features. Lastly, Microsoft IIS is a web server
specifically designed for Windows servers. Apache still has the major share in the web
server market, with Nginx rapidly taking over with some other notable alternatives such
as lighttpd and H2O.

Apache is a modularized web server that can be extended by dynamically loading extra
modules as and when required. This provides the flexibility to run a bare minimum web
server or a fully featured box with modules to support compression, SSL, redirects,
language modules, and more. Apache provides multiple connection processing
algorithms called multi-processing modules (MPM). It provides an option to create a
separate single threaded process for each new request (mpm_prefork), a multi-threaded
process that can handle multiple concurrent requests (mpm_worker), or the latest
development of mpm_event, which separates the active and idle connections.

Nginx can be considered the next generation of web servers. Its development started to
solve the C10k problem, that is, handling ten thousand connections at a time. Apache,
being a process-driven model, has some limitations when handling multiple concurrent
connections. Nginx took advantage of the event-driven approach with asynchronous,
non-blocking connection handling algorithms. A new connection request is handled by a
worker process and placed in an event loop where they are continuously checked for
events. The events are processed asynchronously. This approach enables Nginx to run

with a much lower memory footprint and lower CPU use. It also eliminates the overload
of starting a new process for a new connection. A single worker process started by
Nginx can handle thousands of concurrent connections.

Tip

It is possible that some terms used throughout this chapter are unknown to you. It is not
possible to explain everything in a Cookbook format. A quick Google search for a term
will give you more details on them.

Both Apache and Nginx can be configured to process dynamic contents. Apache
provides respective language processors such as mod_php and mod_python to process
dynamic contents within the worker process itself. Nginx depends on external
processors and uses CGI protocols to communicate with external processors. Apache
can also be configured to use an external language processor over CGI, but the choice
depends on performance and security considerations.

While both Apache and Nginx provide various similar features, they are not entirely
interchangeable. Each one has its own pros and cons. Where Nginx excels at serving
static contents, Apache performs much better processing dynamic contents. Many web
administrators prefer to use Apache and Nginx together.

Note

Nginx is commonly used as a frontend caching/reverse proxy handling client requests
and serving static contents, while Apache is used as a backend server processing
dynamic contents.

Nginx handles a large number of connections and passes limited requests of dynamic
contents to backend Apache servers. This configuration also allows users to scale
horizontally by adding multiple backend servers and setting Nginx as a load balancer.

In this chapter, we will be working with both Apache and Nginx servers. We will learn
how to set up Apache with PHP as a language for dynamic contents. We will look at
some important configurations of Apache. Later, we will set up Nginx with an optional
PHP processor, PHP_FPM, and configure Nginx to work as a reverse proxy and load
balancer. We will also look at performance and security configurations for both the
servers.

https://technet24.ir

Installing and configuring the Apache
web server
In this recipe, we will simply install the Apache web server from the Ubuntu package
repository. We will also look at the basic configuration options and set up our first web
page.

https://technet24.ir

Getting ready
You will need access to a root account or an account with sudo privileges.

I will be using Apache to refer to the Apache web server. The Apache web server is the
most popular project by the Apache Foundation and is generally known as just Apache.

How to do it…
Follow these steps to install and configure the Apache web server:

1. Install Apache2 from the Ubuntu package repository:

$ sudo apt-get update
$ sudo apt-get install apache2

2. Check if Apache2 has installed successfully. The command wget should download
the index.html file:

$ wget 127.0.0.1

3. You can also open a browser on a local machine and point it to the server IP
address. You should see a default It works! page customized for Ubuntu:

4. Now, let's proceed with creating our first virtual host. First create a directory
structure. Change the directory to /var/www/ and create a new directory for the
contents of our site:

https://technet24.ir

$ cd /var/www
$ sudo mkdir example.com

5. Change the ownership and group of the directory example.com:

$ sudo chown ubuntu:www-data example.com

6. Set the file permissions to secure web contents:

$ sudo chmod 750 example.com

7. Create the required directories under the example.com directory:

$ cd example.com
$ mkdir public_html

8. Create a index.html file under the public_html directory:

$ echo 'Hello World ...' > public_html/index.html

9. Next, we need to set up a new virtual host under the Apache configuration.
10. Copy the default Virtual Host file under /etc/apache2/sites-available and

use it as a starting point for our configuration:

$ cd /etc/apache2/sites-available
$ sudo cp 000-default.conf example.com.conf

11. Edit example.com.conf to match it with the following example. Change the
parameters as per your requirements:

12. Save the changes and exit example.com.conf.
13. If you are using the same port as the default VirtualHost, do not forget to disable

the default one:

$ sudo a2dissite 000-default.conf

14. Finally, enable our new VirtualHost with a2ensite and reload Apache:

$ sudo a2ensite example.com.conf
$ sudo service apache2 reload

15. Start your browser and point it to the domain or IP address of your server:

https://technet24.ir

How it works…
The Apache package for Ubuntu is included in the default package repository. We need a
single command to install the Apache web server. Installation creates a structure of
configuration files under /etc/apache2 and a sample web page under
/var/www/html.

As mentioned in the default It works! page, Apache2 does not use a single configuration
file such as httpd.conf in older versions, but rather separates its configuration across
multiple configuration files. These files are named after their respective uses.
apache2.conf is now a main configuration file and creates a central configuration by
including all other files.

conf-available, mods-available, and sites-available contain configuration
snippets and other files for global configurations, modules, and virtual hosts
respectively. These configurations are selectively activated under their enabled
counterparts with symbolic links for each configuration to be enabled.

envvars contains all environment variables and default values for Apache to work.

ports.conf defines the ports Apache should listen on.

The default web page is created under the /var/www/html directory.

In this recipe, we have created our virtual host for the domain name example.com and
hosted it under the directory /var/www/example.com. Next, we have to change the
owner and default group of this directory to the user, ubuntu and group, www-data. This
grants full access to the user ubuntu and allows read and execute access to the group
www-data. If you have observed the contents of the envvars file, you may have noticed
that the variable APACHE_RUN_GROUP is set to www-data. This means Apache process
will be started as the group www-data. By setting a default group, we have allowed
Apache process to read the contents of the example.com directory. We have also
enabled write access to the logs directory so that Apache processes can log to this
directory.

After creating the virtual host configuration and setting the respective options, all we
need to do is enable a new virtual host or site. Apache2 provides the respective
commands to enable or disable configurations, modules, and sites. a2ensite will be
used to enable the site from options available under sites-available. Basically, this

will create a symbolic link under the sites-enabled directory to a specified site
configuration. Similarly, a2dissite will disable the site by removing the symbolic link
from the sites-enabled directory. Similar commands are available to work with
configurations and modules.

https://technet24.ir

There's more…
You may want to get rid of the warning that says Could not reliably determine
the server's fully qualified domain name. This warning appears because the
Apache process could not find the default FQDN for this server. You can set the default
FQDN simply by creating a new configuration file and then enabling this new
configuration:

1. Create a new file under the conf-available directory:

$ sudo vi /etc/apache2/conf-available/fqdn.conf

2. Add a server name variable to this file:

ServerName localhost

3. Save the changes and enable this configuration:

$ sudo a2enconf fqdn

4. Reload the Apache server:

$ sudo service apache2 reload

HTTP version 2 support

If you are looking for HTTP2 support, Apache does provide a separate module for that.
Apache version 2.4.17 ships with a module, mod_http2, that implements the latest
HTTP version, HTTP2. It is still an experimental implementation and needs to be
enabled manually. This version of Apache (2.4.17) is available with Ubuntu Xenial
(16.04) in the default package repository. If you are using Ubuntu 14.04, you can use the
external repository as follows:

$ sudo add-apt-repository -y ppa:ondrej/apache2

Once the required version of Apache is installed, you can enable mod_http2 as
follows:

$ sudo a2enmod http2

Next, edit the specific virtual host file to enable the HTTP2 protocol for a specific site.
Note that you need to configure your site to use an SSL/TLS connection:

<VirtualHost *:443>

 Protocols h2 http/1.1
 ...
</VirtualHost>

Finally, restart your Apache server:

$ sudo service apache2 restart

H2O, the new name in web servers, is developed around the HTTP2 protocol. It does
support both HTTP 1.1 and a stable implementation of the HTTP2 protocol. You may
want to check this out as your local or development server.

https://technet24.ir

See also
You can read more by following the links:

There is a good Q and A about permissions for web directory at
http://serverfault.com/questions/357108/what-permissions-should-my-website-
files-folders-have-on-a-linux-webserver
You can find more details about installing the Apache web server at
https://help.ubuntu.com/lts/serverguide/httpd.html
Apache official documentation - http://httpd.apache.org/docs/2.4/

http://serverfault.com/questions/357108/what-permissions-should-my-website-files-folders-have-on-a-linux-webserver
https://help.ubuntu.com/lts/serverguide/httpd.html
http://httpd.apache.org/docs/2.4/

Serving dynamic contents with PHP
In this recipe, we will learn how to install PHP and set it to work alongside the Apache
web server. We will install PHP binaries and then the Apache module mod_php to
support PHP-based dynamic contents.

https://technet24.ir

Getting ready
You will need access to a root account or an account with sudo privileges.

The Apache web server should be installed and working properly.

How to do it…
Follow these steps to serve dynamic contents with PHP:

1. Install PHP7 and the Apache module for PHP support:

$ sudo apt-get update
$ sudo apt-get install -y php7.0 libapache2-mod-php7.0

2. Check if PHP is properly installed and which version has been installed:

$ php -v

3. Create index.php under the public_html directory of our site:

$ cd /var/www/example.com/public_html
$ vi index.php

4. Add the following contents to index.php:

<?php echo phpinfo(); ?>

5. Save and exit the index.php file.
6. Open example.com.conf from sites-available:

$ sudo vi /etc/apache2/sites-available/example.com.conf

7. Add the following line under the VirtualHost directive:

DirectoryIndex index.php index.html

8. Save the changes and reload Apache:

https://technet24.ir

$ sudo service apache2 reload

9. Now, access your site with your browser, and you should see a page with
information regarding the installed PHP:

How it works…
Here, we have installed PHP binaries on our server along with the Apache module
libapache2-mod-php7.0 to support dynamic content coded in PHP. A module,
mod_php, runs inside Apache process and processes PHP scripts from within Apache
itself. For mod_php to work, Apache needs to run with the mpm_prefork module. PHP
setup completes all these settings and restarts the Apache server:

After we have installed PHP and mod_php, we simply need to create a PHP script. We
have created index.php with little code to display phpinfo. At this stage, if you have
both index.html and index.php under the same directory; by default, index.html
will take over and be rendered first. You will need to explicitly specify index.php to
access the page as http://127.0.0.1/index.php. We have set a directive,
DirectoryIndex, under Apache Virtual Host to set index.php as a default index file.

PHP settings

All PHP settings are listed under its own configuration file, php.ini. PHP comes with
two sets of configurations, as follows:

/usr/lib/php/7.0/php.ini-development

The /usr/lib/php/7.0/php.ini-productionDevelopment file is customized for a
development environment and enables options like display_errors. For production
systems, you can use the configuration file, php.ini-production.

The preceding files can be treated as a reference configuration that ships with the PHP
installation. A copy of php.ini-production can be found under /etc/php/7.0.
Apache and CLI configurations are separated in respective directories. You can directly
edit settings under these files or simply use default files by creating a symbolic link to
the development or production file as follows:

https://technet24.ir

$ cd /etc/php/7.0/apache2
$ sudo mv php.ini php.ini.orig
$ sudo ln -s /usr/lib/php/7.0/php.ini-development php.ini

There's more…
Along with PHP, Apache supports various other scripting languages for dynamic
content. You can install modules for Perl, Python, Ruby, and other scripting languages.

Add Python support:

$ sudo apt-get install libapache2-mod-python

Add Perl support:

$ sudo apt-get install libapache2-mod-perl2

Add Ruby support:

$ sudo apt-get install libapache2-mod-passenger

Installing the LAMP stack

If you are interested in installing the entire LAMP stack, then Ubuntu provides a single
command to do so. Use the following command to install Apache, PHP, and MySQL
collectively:

$ sudo apt-get install lamp-server^

Notice the caret symbol at the end of the command. If you miss this symbol, apt will
return an error saying package not found.

Note

lamp-server is set in the Ubuntu repository as a task to install and configure Apache,
PHP, and MySQL collectively. The caret symbol in apt-get command is used to
specify the task rather than the package. Alternatively, you can use the tasksel
command as $ sudo tasksel install lamp-server. Tasksel is a program used to
ease the installation of packages that are commonly used together.

Upgrading PHP under Ubuntu 14

As of Ubuntu 14.10, Ubuntu does not provide a package for PHP7 in its repository, but
you can use a Debian package repository to upgrade your PHP version. This repository
is maintained by Ondřej Surý.

Use the following commands to upgrade to PHP 7:

https://technet24.ir

$ sudo apt-get install software-properties-common
$ sudo add-apt-repository ppa:ondrej/php
$ sudo apt-get update
$ sudo apt-get install php7.0

Check the PHP version after installation completes:

$ php -v

Hosting multiple websites with a virtual
domain
Setting multiple domains on a single server is a very commonly asked question. In fact,
it is very easy to do this with virtual host. In this recipe, we will set up two domains on
a single server and set up a sub-domain as well. We will also look at IP-based virtual
hosts.

https://technet24.ir

Getting ready
You will need access to a root account or an account with sudo privileges.

You will need the Apache server installed and working. This recipe describes
configuration for Apache version 2.4

You may need a DNS set up if you want to access configured domains over the Internet.

We will set up two domains, namely example1.dom and example2.com, and a sub-
domain, dev.example1.com.

How to do it…
Follow these steps to host multiple websites with a virtual domain:

1. Change the directory to /var/www and create a directory structure for the required
domains and sub-domain. Also create a blank index.html for each domain:

$ cd /var/www
$ sudo mkdir -p example1.com/public_html
$ sudo touch example1.com/public_html
$ sudo cp -R example1.com example2.com
$ sudo cp -R example1.com dev.example1.com

2. Change the directory ownership and file permissions on the newly created
directories:

$ sudo chown -R ubuntu:www-data example*
$ sudo chown -R ubuntu:www-data dev.example1.com
$ chmod 750 -R example*
$ chmod 750 -R dev.example1.com

Tip

Note the use of the wildcard syntax (chmod 750 -R example*). You can use a
similar syntax with various other commands in Linux and save some repeated
typing or copy and paste work.

3. Edit the index.html file for each domain with the respective text:

4. Next, we need to create virtual host configuration for each domain. Change the
directory to /etc/apache2/sites-available and copy the default virtual host
file 000-default.conf:

$ cd /etc/apache2/sites-available
$ sudo cp 000-default.conf example1.com.conf

5. Edit the new virtual host file and set ServerName, DocumentRoot, and other
variables to match your environment. The final file should look something like this:

https://technet24.ir

<VirtualHost *:80>
 ServerName example1.com
 ServerAlias www.example1.com
 DocumentRoot /var/www/example1.com/public_html

...
</VirtualHost>

6. Now copy this virtual host file to create example2.com.conf and
dev.example1.com.conf and modify the respective settings in each of them. You
need to update the serverName, serverAlias, and DocumentRoot parameters.

7. Here, we are done with the setup and configuration part. Now enable the virtual
hosts and reload the Apache server for the settings to take effect:

$ sudo a2ensite example*
$ sudo a2ensite dev.example1.com.conf
$ sudo service apache2 reload

8. You can check all enabled virtual hosts with the following command:

$ sudo a2query -s

9. Next, to test our setup, we need to configure the hosts' setup on the local system.
Open and edit the /etc/hosts file and add host entries. If you have Windows as
your local system, you can find the hosts file under
%systemroot%\System32\drivers\etc:

10. Finally, try to access domains by their names. You should see text entered in the
respective index.html files for each domain:

https://technet24.ir

How it works…
Multiple domain hosting works with the concept of NamedVirtualHost. We have
configured virtual hosts with ServerName and ServerAlias. When a client sends a
request with a domain name, it sends a host name in the request headers. This host name
is used by Apache to determine the actual virtual host to serve this request. If none of
the available virtual hosts match the requested host header, then the default virtual host
or the first virtual host will be used to serve the request.

In this example, we have used hosts file to map test domain names with local IP. With
the actual domain name, you need to point DNS servers to the IP address of your web
server. Generally, all popular hosting providers host their own DNS servers. You need
to add these DNS servers to your domain setting with domain registrar. Then, on your
hosting side, you need to set respective A records and CNAME records. An A record
points to an IP address and the CNAME record is an alias for the A record used for
pointing a subdomain to an A record. Your hosting provider should give you details on
how to configure domains and subdomains.

In previous versions of Apache server, you might need to enable NameVirtualHost
under the configuration file. Find a line similar to #NameVirtualHost 172.20.30.40
and uncomment it by removing the # symbol at the start.

You can also set up IP-based virtual hosts. If you have multiple IP addresses available
on your server, you can set the virtual host to listen on a particular IP address. Use the
following steps to set up an IP-based virtual host:

1. Get a list of the available IP addresses:

$ ifconfig | grep "inet addr"
ubuntu@ubuntu:~$ ifconfig | grep "inet addr"
inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0
inet addr:192.168.56.102 Bcast:192.168.56.255
Mask:255.255.255.0
inet addr:127.0.0.1 Mask:255.0.0.0

2. Edit the virtual host configuration and set it to match the following:

Listen 80
<VirtualHost 192.168.56.102>
 DocumentRoot /var/www/example1.com/public_html
 ServerName example1.com
</VirtualHost>

https://technet24.ir

See also
Apache documentation at https://httpd.apache.org/docs/2.2/vhosts/examples.html
Refer to the Installing and configuring the Apache web server recipe for the
installation and configuration of the Apache web server.

https://httpd.apache.org/docs/2.2/vhosts/examples.html

Securing web traffic with HTTPS
HTTP is a non-secure protocol commonly used to communicate over the Web. The
traffic is transferred in plain text form and can be captured and interpreted by a third-
party attacker. Transport Layer Security and Secure Socket Layer protocols
(TLS/SSL) can be used to secure the traffic between client and server. These protocols
encapsulate normal traffic in an encrypted and secure wrapper. It also validates the
identity of the client and server with SSL keys, certificates, and certification authorities.

When HTTP is combined with TLS or SSL, it is abbreviated as HTTPS or HTTP
secure. Port 443 is used as a standard port for secured HTTP communication. Nearly all
leading web servers provide inbuilt support for enabling HTTPS. Apache has a module
called mod_ssl that enables the use of HTTPS.

To set up your servers with SSL/TLS encrypted traffic, you will need an SSL certificate
and a key pair that can be used to encrypt traffic. Generally, the certificate and keys are
obtained from a trusted signing authority. They charge you some fees to verify your
ownership of the web property and allocate the required signed certificates. You can
also generate self-signed certificates for internal use. Few certification authorities
provide a free SSL certificate. Recently, Mozilla has started a free and automated
certificate authority named Let's Encrypt. At the time of writing, the service is in public
beta and has started allocating certificates. Let's Encrypt offers a client that can be used
to obtain certificates and set up automated renewal. You can also find various unofficial
clients for Apache and Nginx servers.

In this recipe, we will learn how to create our own self-signed certificate and set up the
Apache server to serve contents over a secure channel.

https://technet24.ir

Getting ready
You will need access to a root account or an account with sudo privileges. I assume that
you have the Apache server preinstalled. You will also need OpenSSL installed.

Make sure your firewall, if any, allows traffic on port 443. Check Chapter 2,
Networking, Securing network with uncomplicated firewall recipe for more details on
Uncomplicated Firewall.

How to do it…
Follow these steps to secure web traffic with HTTPS:

1. First, we will start by creating a self-signed SSL certificate. Create a directory
under /etc/apache2 to hold the certificate and key:

$ sudo mkdir /etc/apache2/ssl

2. Change to the new directory and enter the following command to create a
certificate and SSL key:

$ cd /etc/apache2/ssl
$ sudo openssl req -x509 -nodes -days 365 \
-newkey rsa:2048 -keyout ssl.key -out ssl.crt

3. This will prompt you to enter some information about your company and website.
Enter the respective details and press Enter for each prompt:

4. After you are done with it, you can check the generated certificate and key:

$ ls -l

5. Next, we need to configure Apache to use SSL. We will enable SSL for the
previously created virtual host.

6. Open the Virtual Host configuration file, example.com.conf. After removing
comments, it should look similar to the following:

https://technet24.ir

7. Now, copy the entire <VirtualHost *:80> ... </VirtualHost> tag and paste
it at the end of the file.

8. Under the newly copied contents, change the port from 80 to 443.
9. Add the following lines below the DocumentRoot line. This will enable SSL and

specify the path to the certificate and key:

SSLEngine on
SSLCertificateFile /etc/apache2/ssl/ssl.crt
SSLCertificateKeyFile /etc/apache2/ssl/ssl.key

10. The final file should look something like this:

11. Save the changes, exit example.com.conf, and enable the mod_ssl module on the
Apache server:

$ sudo a2enmod ssl

12. Next, enable the Virtual Host example.com. If it's already enabled, it will return a
message saying site example.com already enabled:

$ sudo a2ensite example.com.conf

13. Reload the Apache server for the changes to take effect:

$ sudo service apache2 reload

14. Now, open your browser on the client system and point it to your domain name or
IP address with HTTPS at the start:

https://example.com

15. Your browser may return an error saying Invalid Certification Authority. This is
fine as we are using a self-signed certificate. Click Advanced and then click
Proceed to example.com to open a specified page:

16. Once the page is loaded completely, find the padlock icon in the upper right corner
of the browser and click on it. The second section with the green lock icon will
display the encryption status. Now your communication with the server is
encrypted and secure:

https://technet24.ir

How it works…
We have created a self-signed certificate to secure an HTTP communication. The key
will be used to encrypt all communication with clients. Another thing to note is that we
have defined a separate Virtual Host entry on port 443. This Virtual Host will be used
for all requests that are received over port 443. At the same time, we have allowed non-
secured HTTP communication for the same Virtual Host. To disable non-secure
communication on port 80, you can simply comment out the original Virtual Host
configuration. Alternatively, you can separate both configurations into two files and
enable or disable with the a2ensite and a2dissite commands.

Some of the parameters used for generating a key and certificate are as follows:

- nodes specifies that we do not want to use a passphrase for a key.
- days this specifies the number of days the certificate is valid for. Our certificate
is valid for 365 days, that is, a year.
- newkey rsa:2048 this option is used to generate a certificate along with a
private key. rsa:2048 specifies the 2048 bit long RSA private key.

I have modified the existing Virtual Host entry to demonstrate the minimal configuration
required to enable secure HTTP communication. You can always use the default secure
Virtual Host configuration available under sites-available/default-ssl.conf.
This file provides some additional parameters with respective comments.

The certificate created in this recipe will not be trusted over the Internet but can be used
for securing local or internal communication. For production use, it is advisable to get a
certificate signed from an external, well known certification authority. This will avoid
the initial errors in browsers.

https://technet24.ir

There's more…
To get a signed certificate from an external certification authority, you will need a CSR
document.

The following are the steps to generate a CSR:

1. Generate a key for the CSR:

$ openssl genrsa -des3 -out server.key 2048

2. You will be asked to enter a passphrase for the key and then verify it. They will be
generated with name server.key.

3. Now, remove the passphrase from the key. We don't want to enter a passphrase
each time a key is used:

$ openssl rsa -in server.key -out server.key.insecure
$ mv server.key server.key.secure
$ mv server.key.insecure server.key

4. Next, create the CSR with the following command:

$ openssl req -new -key server.key -out server.csr

5. A CSR file is created with the name server.csr, and now you can submit this
CSR for signing purposes.

See also
Refer to the Installing and configuring the Apache web server recipe for the
installation and configuration of the Apache web server.
Check out the certificates and security in the Ubuntu server guide at
https://help.ubuntu.com/lts/serverguide/certificates-and-security.html
How to set up client verification at http://askubuntu.com/questions/511149/how-to-
setup-ssl-https-for-your-site-on-ubuntu-linux-two-way-ssl
Apache documentation on SSL configuration at
http://httpd.apache.org/docs/2.4/ssl/ssl_howto.html
Free SSL certificate with Mozilla Let's Encrypt at https://letsencrypt.org/getting-
started/
Easily generate SSL configuration for your web server at Mozilla SSL
Configuration Generator at https://mozilla.github.io/server-side-tls/ssl-config-
generator/

https://help.ubuntu.com/lts/serverguide/certificates-and-security.html
http://askubuntu.com/questions/511149/how-to-setup-ssl-https-for-your-site-on-ubuntu-linux-two-way-ssl
http://httpd.apache.org/docs/2.4/ssl/ssl_howto.html
https://letsencrypt.org/getting-started/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://technet24.ir

Installing Nginx with PHP_FPM
In this recipe, we will learn how to install and set up Nginx as a web server. We will
also install PHP to be able to serve dynamic content. We need to install PHP_FPM
(FastCGI Process Manager), as Nginx doesn't support the native execution of PHP
scripts. We will install the latest stable version available from the Nginx package
repository.

Getting ready
You will need access to a root account or an account with sudo privileges.

https://technet24.ir

How to do it…
Follow these steps to install Nginx with PHP_FPM:

1. Update the apt package repository and install Nginx. As of writing this Ubuntu
16.04 repository contains latest stable release of Nginx with version 1.10.0:

$ sudo apt-get update
$ sudo apt-get install nginx

2. Check if Nginx is properly installed and running:

$ sudo service nginx status

3. Check the installed version of Nginx:

$ nginx -v

4. You may want to point your browser to the server IP or domain. You should see a
default Nginx welcome page:

5. Next, proceed with installing PHP_FPM:

$ sudo apt-get install php7.0-fpm

6. Configure Nginx to use the PHP processor. Nginx sites are listed at
/etc/nginx/sites-available. We will modify the default site:

$ sudo nano /etc/nginx/sites-available/default

7. Find a line stating the priority of the index file and add index.php as a first
option:

index index.php index.html index.htm;

8. Next, add the following two location directives:

location / {
 try_files $uri $uri/ /index.php;
}
location ~ \.php$ {
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME
$document_root$fastcgi_script_name;
 fastcgi_param QUERY_STRING $query_string;
 fastcgi_pass unix:/var/run/php/php7.0-fpm.sock
;
}

9. Save the changes and exit the file. It should look similar to this:

10. Change the PHP settings to disable PATH_TRANSLATED support. Find an option,
cgi.fix_pathinfo, and uncomment it with the value set to 0:

$ sudo nano /etc/php/7.0/fpm/php.ini
cgi.fix_pathinfo=0

11. Now, restart PHP_FPM and Nginx for the changes to take effect:

$ sudo service php7.0-fpm restart
$ sudo service nginx restart

12. Create an index.php file with some PHP code in it at the path mentioned in the
default site configuration:

https://technet24.ir

$ sudo nano /var/www/html/index.php
<?php phpinfo(); ?>

13. Open your browser and point it to your server. You should see the result of your
PHP script:

How it works…
Here, we have installed the latest stable version of the Nginx server with PHP_FPM to
support dynamic content scripted with PHP. The Ubuntu repository for version 16.04
contains the latest stable release of Nginx, So installing Nginx is as easy as a single
command. If you are interested in more recent versions Nginx maintains their own
package repository for mainline packages. You just need to add repository, the rest of
the installation process is similar to a single apt-get install nginx command.

Note

If you are running the Apache server on the same machine, you may want to change the
default port Nginx runs on. You can find these settings under site configurations, located
at /etc/nginx/sites-available. Nginx creates default site configuration with the
filename set to default. Find the lines that start with listen and change the port from
its default, 80, to any port number of your choice.

After installing Nginx, we need to configure it to support dynamic content. Here, we
have selected PHP as a dynamic content processor. PHP is a popular scripting language
and very commonly used with web servers for dynamic content processing. You can
also add support for other modules by installing their respective processors. After
installing PHP_FPM, we have configured Nginx to use PHP_FPM and pass all PHP
requests to the FPM module on a socket connection.

We have used two location blocks in configuration. The first block search is for static
content, such as files and directories, and then if nothing matches, the request is
forwarded to index.php, which is in turn forwarded to the FastCGI module for
processing. This ensures that Nginx serves all static content without executing PHP, and
only requests that are not static files and directories are passed to the FPM module.

The following is a brief description of the parameters used under FastCGI
configuration:

The parameter try_files configures Nginx to return 404 pages, that is, the page
not found error, for any requests that do not match website content. This is limited
to static files.
With the parameter fastcgi_param, you can forward the script name and query
string to the PHP FPM process.
One more optional parameter is cgi.fix_pathinfo=0, under the PHP
configuration file php.ini. By default, PHP is set to search for the exact script

https://technet24.ir

filename and then search for the closest match if the exact name is not found. This
may become a security risk by allowing an attacker to execute random scripts with
simple guesswork for script names. We have disabled this by setting its value to 0.

Finally, after we restart PHP_FPM and Nginx, our server is ready to process static as
well as dynamic content. All static content will be handled by Nginx itself, and requests
for URLs that end with .php will be forwarded to PHP_FPM for processing. Nginx may
cache the processed result for future use.

There's more…
If you are running Ubuntu 12.10, you may need to install the following dependencies
before adding the Nginx repository to the installation sources:

1. Install python-software-properties and software-properties-common:

$ sudo apt-get install python-software-properties
$ sudo apt-get install software-properties-common

2. You may want to remove your Apache installation completely. Use the following
commands to remove Apache:

$ sudo service apache2 stop
$ sudo apt-get remove --purge apache2 apache2-utils apache2.2-bin
apache2-common

Nginx maintains their own package repositories for stable and mainline releases. These
repositories can be used to get the latest updates of Nginx as and when available. Use
the stable repository, - $ sudo add-apt-repository ppa:nginx/stable.

Use the mainline repository - $ sudo add-apt-repository
ppa:nginx/development.

https://technet24.ir

See also
Common Nginx pitfalls at http://wiki.nginx.org/Pitfalls
Nginx Quick start guide at http://wiki.nginx.org/QuickStart

http://wiki.nginx.org/Pitfalls
http://wiki.nginx.org/QuickStart

Setting Nginx as a reverse proxy
Apache and Nginx are two popular open source web servers. Both are very powerful,
but at the same time have their own disadvantages as well. Apache is not good at
handling high load environments with multiple concurrent requests and Nginx does not
have inbuilt support for dynamic content processing. Many administrators overcome
these problems by using both Apache and Nginx together. Nginx handles all incoming
requests and only passes requests for dynamic content to Apache. Additionally, Nginx
can provide a catching option which enables the server to respond to a request with
results from a similar previous request. This helps to reduce the overall response time
and minimize the load sent to Apache.

In this recipe, we will learn how to set up a web server configured with a reverse
proxy. We will use Nginx as a reverse proxy, which will serve all static content and
pass the requests for dynamic content to Apache.

https://technet24.ir

Getting ready
You will need access to a root account or an account with sudo privileges.

I assume that Apache is installed and running with a virtual host, example.com.

How to do it…
Follow these steps to set Nginx as a reverse proxy:

1. Install Nginx with the following command:

$ sudo apt-get update
$ sudo apt-get install nginx

2. Create a new site configuration under /etc/nginx/sites-available and add the
following content to it:

$ sudo nano /etc/nginx/sites-available/reverse_proxy
server {
 listen 80;

 root /var/www/example.com;

index index.php index.html index.htm;

 server_name example.com;

 location / {
 try_files $uri $uri/ /index.php;
 }

 location ~ \.php$ {
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $remote_addr;
 proxy_set_header Host $host;
 proxy_pass http://127.0.0.1:8080;

}
 location ~* \.(js|css|jpg|jpeg|png|svg|html|htm)$ {
 expires 30d;
 }

 location ~ /\.ht {
 deny all;
 }
}

3. Enable this new configuration by creating a symbolic link under sites-enabled:

$ sudo ln -s /etc/nginx/sites-available/reverse_proxy \
/etc/nginx/sites-enabled/reverse_proxy

https://technet24.ir

4. Optionally, disable the default site by removing the symbolic link from sites-
enabled:

$ sudo rm /etc/nginx/sites-enabled/default

5. Next, we need to change the Apache settings to listen on port 8080. This will leave
port 80 to be used by Nginx:

$ sudo nano /etc/apache2/ports.conf
listen 127.0.0.1:8080

6. Also change NameVirtualHost, if you are using it:

NameVirtualHost 127.0.0.1:8080

7. Change the virtual hosts settings to listen on port 8080:

$ sudo nano /etc/apache2/sites-available/example.com
<VirtualHost 127.0.0.1:8080>
 ServerName example.com
 ServerAdmin webmaster@example.com
 DocumentRoot /var/www/example.com/public_html
</VirtualHost>

8. Save the changes and restart Apache for the changes to take effect:

$ sudo service apache2 restart

9. Now, restart Nginx:

$ sudo service nginx restart

10. Check for open ports with the following command:

$ sudo netstat -pltn

11. Open your browser and point it to the IP address of your server. It should load the
page configured under the Apache virtual host, example.com.

How it works…
With the proxy_pass parameter, we have simply asked Nginx to pass all requests for
PHP scripts to Apache on 127.0.0.1 on port 8080. Then, we set Apache to listen on
the loopback IP and port 8080, which will receive requests forwarded by Nginx and
process them with an internal PHP processor. All non-PHP content will still be served
by Nginx from the /var/www directory. The try_files $uri $uri/ /index.php;
option sets Nginx to search for the file with a specified name and then look for the
folder; lastly, if both file and folder are not found, send the request to index.php, which
will then be processed by Apache.

Other options used with proxy pass ensures that Apache and PHP scripts receive the
actual hostname and IP of the client and not of the Nginx server. You can use an
additional module named libapache2-mod-rpaf on Apache. This module provides an
option to set a proxy IP address and rename the parameters sent by the proxy server. You
can install the module with the following command:

$ sudo apt-get install libapache2-mod-rpaf

The configuration file for this module is available at /etc/apache2/mods-
available/rpaf.conf.

You can find various other proxy options and their respective explanations in the Nginx
documentation at http://nginx.org/en/docs/http/ngx_http_proxy_module.html

Finally, with Nginx set as a frontend, Apache will not have to interact directly with
HTTP clients. You may want to disable some of the Apache modules that will not be
used in this setup:

$ sudo a2dismod deflate cgi negotiation autoindex

As always, do not forget to reload Apache after any changes.

http://nginx.org/en/docs/http/ngx_http_proxy_module.html
https://technet24.ir

There's more…
Nginx can be set to cache the response received from the backend server and thereby
minimize repeated requests on backend servers, as well as the response time. Nginx can
cache the content in local files and serve new requests from the cache. The cache can be
invalidated or even disabled based on the request received. To enable caching, add the
following settings to the Nginx site configuration:

 proxy_cache_path /data/nginx/cache levels=1:2 keys_zone=backend-
cache:8m max_size=50m;
 proxy_cache_key "$scheme$request_method$host$request_uri$args";
 server {
 ## add other settings heres
 location / {
 proxy_pass 127.0.0.1:8080;
 proxy_cache backend-cache;
 proxy_cache_bypass $http_cache_control;
 add_header X-Proxy-Cache $upstream_cache_status;
 proxy_cache_valid 200 302 10m;
 proxy_cache_valid 404 1m;
 }
 }

You may need to create the proxy path directory /data/nginx/cache and set the
appropriate file permissions. Set the directory ownership to www-data and restrict
permissions to 700. You can use any location for cache data and not necessarily
/data/nginx/cache.

This configuration sets the cache validity of 10 minutes, which is quite a lengthy period.
This will work if you have static content that rarely changes. Instead, if you are serving
dynamic content that is frequently updated, then you can take advantage of microcaching
by setting the cache validity to a very small period of a few seconds. Add the following
parameters to further improve your caching configuration for microcaching:

proxy_cache_lock on: Queues additional requests while the cache is being
updated
proxy_cache_use_stale updating: Uses stale data while the cache is being
updated

HAProxy and Varnish

HAProxy and Varnish are other popular options for the reverse proxy and the caching

proxy, respectively. Both of them can offer improved performance when compared with
Nginx. HAProxy can also be used as a Layer 4 and Layer 7 load balancer. We covered
HAProxy in Chapter 2, Networking, in the Load Balancing with HAProxy recipe.

https://technet24.ir

See also
Nginx admin guide on reverse proxies at https://www.nginx.com/resources/admin-
guide/reverse-proxy/
Understanding Nginx proxying, load balancing, and caching at
https://www.digitalocean.com/community/tutorials/understanding-nginx-http-
proxying-load-balancing-buffering-and-caching
Nginx proxy module documentation at
http://nginx.org/en/docs/http/ngx_http_proxy_module.html

https://www.nginx.com/resources/admin-guide/reverse-proxy/
https://www.digitalocean.com/community/tutorials/understanding-nginx-http-proxying-load-balancing-buffering-and-caching
http://nginx.org/en/docs/http/ngx_http_proxy_module.html

Load balancing with Nginx
When an application becomes popular and the number of requests increases beyond the
capacity of a single server, we need to scale horizontally. We can always increase the
capacity (vertical scaling) of a server by adding more memory and processing power,
but a single server cannot scale beyond a certain limit. While adding separate servers or
replicas of the application server, we need a mechanism which directs the traffic
between these replicas. The hardware or software tool used for this purpose is known
as a load balancer. Load balancers work as transparent mechanisms between the
application server and client by distributing the requests between available instances.
This is a commonly used technique for optimizing resource utilization and ensuring fault
tolerant applications.

Nginx can be configured to work as an efficient Layer 7 as well as Layer 4 load
balancer. Layer 7 is application layer of HTTP traffic. With Layer 4 support, Nginx can
be used to load balance database servers or even XMPP traffic. With version 1.9.0,
Nginx has enabled support for Layer 4 load balancing in their open source offerings.

In this recipe, we will learn how to set up Nginx as a load balancer.

https://technet24.ir

Getting ready
You will need access to a root account or an account with sudo privileges.

You will need a minimum of three servers, as follows:

An Nginx server, which will be set as a load balancer
Two or more application servers with a similar code base set up on all

How to do it…
Follow these steps to set load balancing with Nginx:

1. I assume that you already have Nginx installed. If not, you can refer to the Installing
Nginx with PHP_FPM recipe of this chapter.

2. Now, create a new configuration file under /etc/nginx/sites-available. Let's
call it load_balancer:

$ sudo nano /etc/nginx/sites-available/load_balancer

3. Add the following lines to this load_balancer file. This is the minimum
configuration required to get started with load balancing:

upstream backend {

server srv1.example.com;
 server srv2.example.com;
 server 192.168.1.12:8080;
 # other servers if any
}
server {
 listen 80;
 location / {
 proxy_pass http://backend;
 }
}

4. Enable this configuration by creating a symlink to load_balancer under sites-
enabled:

$ sudo ln -s /etc/nginx/sites-available/load_balancer
/etc/nginx/sites-enabled/load_balancer

5. You may want to disable all other sites. Simply remove the respective links under
sites-enabled.

6. Check the configuration for syntax errors:

$ sudo nginx -t

https://technet24.ir

7. Now, reload Nginx for the changes to take effect:

$ sudo service nginx reload

8. Yes, you are ready to use a load balancer. Open your favorite browser and point it
to the IP of your Nginx server. You should see the contents of example.com or
whatever domain you have used.

How it works…
We have created a very basic configuration for a load balancer. With this configuration,
Nginx takes the traffic on port 80 and distributes it between srv1.example.com and
srv2.example.com. With an upstream directive, we have defined a pool of servers that
will actually process the requests. The upstream directive must be defined in a HTTP
context. Once the upstream directive is defined, it will be available for all site
configurations.

Note

All configuration files defined under sites-available are combined in the main
configuration file, /etc/nginx/nginx.conf, under the HTTP directive. This enables us
to set other directives in site-specific configurations without specifying the HTTP
block.

When defining servers under an upstream directive, you can also use the IP address
and port of the application server. This is an ideal configuration, especially when both
the load balancer and the application servers are on the same private network, and this
will help minimize the communication overhead between Nginx and backend servers.

Next, under the server block, we have configured Nginx to proxy_pass all requests to
our backend pool.

While setting backend servers, we have not explicitly specified any load balancing
algorithm. Nginx provides various load balancing algorithms that define the server that
will receive a particular request. By default, Nginx uses a round-robin algorithm and
passes requests to each available server in sequential order. Other available options are
as follows:

least_connection: This passes the request to the host with the fewest active
connections.
least_time: Nginx chooses the host with the lowest latency. This option is
available with Nginx plus.
ip_hash: A hash of clients' IP addresses, and is used to determined the host to
send the request to. This method guarantees that requests with the same IP address
are served by the same host, unless the selected host is down.

Hash uses a user defined key to generate a hash value and then uses the hash to
determine the processing host.

https://technet24.ir

There's more…
Nginx provides various other load balancing features, such as weighted load balancing,
active and passive health checks, backup servers, and session persistence. With the
latest commits to the open source version, it now supports TCP load balancing as well.
These settings can be updated at runtime with the help of HTTP APIs. The following are
a few examples of different load balancing configurations:

Set server weights:

upstream app-servers {
 server srv1.example.com weight 3;
 server srv2.example.com;
}

Health checkups and backup servers:

upstream app-servers {
 server srv1.example.com max_fails 3 fail_timeout 10;
 server srv2.example.com fail_timeout 50;
 192.168.1.12:8080 backup;
}

Session persistence with cookies:

upstream app-servers {
 server srv1.example.com;
 server srv2.example.com;
 sticky cookie srv_id expires=1h domain=.example.com path=/;
}

Check the Nginx load balancing guide for various other load balancing options and their
respective details.

See also
Nginx admin guide for load balancers at https://www.nginx.com/resources/admin-
guide/load-balancer

https://www.nginx.com/resources/admin-guide/load-balancer
https://technet24.ir

Setting HTTPs on Nginx
In this recipe, we will learn how to enable HTTPs communication on the Nginx server.

Getting ready
You will need access to a root account or an account with sudo privileges.

https://technet24.ir

How to do it…
Follow these steps to set HTTPs on Nginx:

1. Obtain a certificate and the related keys from a certification authority or create a
self-signed certificate. To create a self-signed certificate, refer to the Securing web
traffic with HTTPS recipe in this chapter.

2. Create a directory to hold all certificate and keys:

$ sudo mkdir -p /etc/nginx/ssl/example.com

3. Move the certificate and keys to the preceding directory. Choose any secure
method, such as SCP, SFTP, or any other.

4. Create a virtual host entry or edit it if you already have one:

$ sudo nano /etc/nginx/sites-available/example.com

5. Match your virtual host configuration with the following:

server {
 listen 80;
 server_name example.com www.example.com;
 return 301 https://$host$request_uri;
}
server {
 listen 443 ssl;
 server_name example.com www.example.com;

root /var/www/example.com/public_html;
 index index.php index.html index.htm;

 ssl on;
 ssl_certificate /etc/nginx/ssl/example.com/server.crt;
 ssl_certificate_key /etc/nginx/ssl/example.com/server.key;
 # if you have received ca-certs.pem from Certification
Authority
 #ssl_trusted_certificate /etc/nginx/ssl/example.com/ca-
certs.pem;

 ssl_session_cache shared:SSL:10m;
 ssl_session_timeout 5m;
 keepalive_timeout 70;

ssl_ciphers "HIGH:!aNULL:!MD5 or HIGH:!aNULL:!MD5:!3DES";

 ssl_prefer_server_ciphers on;
 ssl_protocols TLSv1.2 TLSv1.1 TLSv1;
 add_header Strict-Transport-Security "max-age=31536000";

 location / {
 try_files $uri $uri/ /index.php;
 }

 location ~ \.php$ {
 include fastcgi_params;
 fastcgi_pass unix:/var/run/php/php7.0-fpm.sock;

}
}

6. Enable this configuration by creating a symbolic link to it under sites-enabled:

$ sudo ln -s /etc/nginx/sites-available/example.com
/etc/nginx/sites-enabled/example.com

7. Check the configuration for syntax errors:

$ sudo nginx -t

8. Reload Nginx for the changes to take effect:

$ sudo service nginx reload

9. Open your browser and access the site with domain or IP with HTTPS.

https://technet24.ir

How it works…
When you know some basic configuration parameters, Nginx is quite simple to set up.
Here, we have taken a few SSL settings from the default configuration file and added a
simple redirection rule to redirect non-HTTPs traffic on port 80 to port 443. The first
server block takes care of the redirection.

In addition to specifying the server certificate and keys, we have enabled session
resumption by setting the cache to be shared across the Nginx process. We also have a
timeout value of 5 minutes.

All other settings are common to the Nginx setup. We have allowed the virtual host to
match with example.com, as well as www.example.com. We have set the index to
search index.php, followed by index.html and others. With location directives, we
have set Nginx to search for files and directories before forwarding the request to a
PHP processor. Note that if you create a self-signed certificate, you will notice your
browser complaining about invalid certification authority.

See also
Nginx HTTPs guide at http://nginx.org/en/docs/http/configuring_https_servers.html

http://nginx.org/en/docs/http/configuring_https_servers.html
https://technet24.ir

Benchmarking and performance tuning
of Apache
In this recipe, we will learn some performance tuning configurations that may help to
squeeze out the last bit of performance from the available hardware. Before diving into
performance tuning, we need to evaluate our servers and set a benchmark which can be
used to measure improvements after any changes. We will be using a well known HTTP
benchmarking tool, Apache Bench (ab). Various other benchmarking tools are available
and each one has its own feature set. You can choose the one that best suits your needs.

Getting ready
You will need two systems: one with the web server software installed and another to
run Apache Bench. You will need root access or access to an account with similar
privileges.

You will also need to modify a few network parameters to handle a large network load.
You will also need to set a higher open files limit, in limits.conf, on both systems.
Check the Tuning TCP Stack recipe in Chapter 2, Networking.

https://technet24.ir

How to do it…
1. Install the Apache Bench tool. This is available with the package apache2-utils:

$ sudo apt-get install apache2-utils

2. If you need to, you can check all the available options of the ab tool as follows:

$ ab -h

3. Now we are ready to generate network load. Execute the following command to
start ab:

$ ab -n 10000 -c 200 -t 2 -k "http://192.168.56.103/index.php"

It will take some time to complete the command depending on the parameters. You
should see similar results to the following (partial) output:

Additionally, you may want to benchmark your server for CPU, memory, and IO
performance. Check the Setting performance benchmarks recipe in Chapter 13,
Performance Monitoring.

Now that we have a benchmark for server performance with stock installation, we can
proceed with performance optimization. The following are some settings that are
generally recommended for performance tuning:

Apache related settings:
Remove/disable any unused modules
Enable mod_gzip/mod_deflate
Turn HostnameLookups off
Use IP address in configuration files

Use persistence connection by enabling keepalive, then set keepalive
timeout

Limit the uses of AllowOverride or completely disable it with
AllowOverride none

Disable ExtendedStatus; this is useful while testing but not in production
Nginx related settings:

Set worker_processes to the count of your CPU cores or simply set it to
auto

Set the number of worker_connections to test multiple values to find the
best match for your servers
Set the keepalive_requests and keepalive_timeout values; these reduce
the overhead of creating new connections
Enable idle connections with upstream servers by setting the keepalive
value
Enable log buffering with buffer and flush parameters to access_log; this
will reduce IO requests while logging
Reduce the log-level - you can set it to warn the user or display an error
while in production
Set the sendfile directive to use an efficient sendfile() call from the
operating system
Enable caching and compression
Make sure that you track the performance changes after each set of
modifications; this way you will have exact knowledge regarding what
worked and what not
You should also tune the TCP stack. The details of the TCP stack settings are
covered in Chapter 2, Networking.

https://technet24.ir

There's more…
Various other tools are available for benchmarking different features of the web server.
The following are some well known tools, as well as a few latest additions:

Httperf: A web server benchmarking tool with some advanced options
Perfkit: a cloud benchmark tool by Google
Wrk: https://github.com/wg/wrk
H2load: HTTP2 load testing tool at https://nghttp2.org/documentation/h2load-
howto.html

https://github.com/wg/wrk
https://nghttp2.org/documentation/h2load-howto.html

See also
Apache performance tuning guide at https://httpd.apache.org/docs/2.4/misc/perf-
tuning.html
Nginx performance tuning guide at https://www.nginx.com/blog/tuning-nginx/

https://httpd.apache.org/docs/2.4/misc/perf-tuning.html
https://www.nginx.com/blog/tuning-nginx/
https://technet24.ir

Securing the web server
In this recipe, we will learn some steps for securing web server installation.

Getting ready
You will need access to a root account or an account with sudo privileges.

You may need to have a web server stack installed and running.

https://technet24.ir

How to do it…
Follow these steps to secure the web server:

1. Disable any unwanted modules. You can check all enabled modules with the
following command:

$ a2query -m

2. Disable modules with the following command:

$ sudo a2dismod status

3. Hide the web server's identity. For Apache, edit /etc/apache2/conf-
available/security.conf and set the following values:

ServerSignature Off
ServerTokens Prod

4. You may want to check other options under security.conf.
5. Next, disable the Apache server status page:

$ sudo a2dismod status

6. For Nginx, edit /etc/nginx/nginx.conf and uncomment the following line:

server_tokens off;

7. In production environments, minimize the detail shown on error pages. You can
enable the PHP Suhosin module and strict mode.

8. Disable directory listing. On Apache, add the following line to the virtual host
configuration:

<Directory /var/www/example.com>
 Options -Indexes
</Directory>

9. You can also disable directory listing globally by setting Options -Indexes in
/etc/apache2/apache2.conf.

10. Restrict access to the following directories:

<Directory /var/www/ >
 Order deny,allow # order of Deny and Allow
 Deny from all # Deny web root for all
</Directory>

11. Disable directory level settings and the use of .htaccess. This also helps

improve performance:

<Directory />
 AllowOverride None # disable use of .htaccess
</Directory>

12. Disable the following symbolic links:

<Directory />
 Options -FollowSymLinks
</Directory>

13. You can also install mod_security and mod_evasive for added security.
mod_security acts as a firewall by monitoring traffic in real time, whereas
mod_evasive provides protection against Denial of Service attacks by monitoring
request data and requester IP.

14. For Apache, you can install mod_security as a plugin module as follows:

$ sudo apt-get install libapache2-modsecurity
$ sudo a2enmod mod-security

15. On Nginx, you need to first compile mod_security and then compile Nginx with
mod_security enabled.

16. Turn of server side includes and CGI scripts:

<Directory />
 Options -ExecCGI -Includes
</Directory>

17. Limit request body, headers, request fields, and max concurrent connections; this
will help against DOS attacks.

18. Set the following variables on Apache:

TimeOut
KeepAliveTimeout
RequestReadTimeout
LimitRequestBody
LimitRequestFields
LimitRequestFieldSize
LimitRequestLine
MaxRequestWorkers

19. For Nginx, configure the following variables to control buffer overflow attacks:

client_body_buffer_size
client_header_buffer_size
client_max_body_size

https://technet24.ir

large_client_header_buffers

20. Enable logging and periodically monitor logs for any new or unrecognized events:

<VirtualHost *:80>

ErrorLog /var/log/httpd/example.com/error_log
 CustomLog /var/log/httpd/example.com/access_log combined
</VirtualHost>

21. Set up HTTPs and set it to use modern ciphers. You can also disable the use of SSL
and enforce TLS.

How it works…
In this recipe, I have listed the various options available to make your web server more
secure. It is not necessary to set all these settings. Disabling some of these settings,
especially FollowSymlinks and AllowOverride, may not suit your requirements or
your environment. You can always choose the settings that apply to your setup.

Various settings listed here are available in their respective configuration files, mostly
under /etc/apache2 for the Apache web server and /etc/nginx for the Nginx server.

Also, do not forget to reload or restart your server after setting these options.

You should also set your Ubuntu environment to be more secure. You can find more
details on securing Ubuntu in Chapter 2, Networking.

https://technet24.ir

See also
Installing mod_evasive at https://www.linode.com/docs/websites/apache-tips-
and-tricks/modevasive-on-apache
Apache security tips at http://httpd.apache.org/docs/2.4/misc/security_tips.html
Setting up mod_security at
https://www.digitalocean.com/community/tutorials/how-to-set-up-mod_security-
with-apache-on-debian-ubuntu

https://www.linode.com/docs/websites/apache-tips-and-tricks/modevasive-on-apache
http://httpd.apache.org/docs/2.4/misc/security_tips.html
https://www.digitalocean.com/community/tutorials/how-to-set-up-mod_security-with-apache-on-debian-ubuntu

Troubleshooting the web server
In this recipe, we will cover some common issues with Apache and Nginx and list the
basic steps for overcoming those issues. The steps mentioned here are general
troubleshooting methods; you may need to change them based on your setup and
environment.

https://technet24.ir

Getting ready
You may need root level access to your web server system.

How to do it…
Web server problems can be grouped in a few broad categories, such as a server not
working, a particular domain or virtual host is not accessible, problems with a specific
module configuration, and access denied errors. The following section lists each of
these problems and their possible solutions.

Web server not accessible
1. The first step is to check your local Internet connection. Try to access the server

from another system from another network.
2. Check if the DNS settings point to your web server.
3. If your network is working properly, then try to ping to the server IP address.
4. On the web server, check the firewall or any other tool that may block

communication.
5. Open a telnet connection to web server on port 80, or whatever port you have

used for web server. If you see output similar to following screenshot, then your
web server is working:

6. Make sure that the web server port is not being used by some other process:

$ sudo netstat -plutn

7. If required, reload or restart the web server process:

$ sudo service apache2 reload/restart

8. Check the Apache/Nginx logs listed under the /var/log/ directory and view the
entire file in a scrollable format:

https://technet24.ir

$ less /var/log/apache2/error.log

9. See the continuous stream of logs as they are added to the log file:

$ tail -f /var/log/nginx/error.log

10. You may want to run Apache with extended log levels. Find the variable LogLevel
in /etc/apache2/apache2.conf and set its value to debug:

$ sudo nano /etc/apache2/apache2.conf
LogLevel debug

11. Run Apache in debug single process mode:

$ sudo apache2ctl -X # debug mode single worker

Virtual host not accessible
1. Make sure you have enabled virtual host configuration:

ubuntu@ubuntu:~$ a2query -s
example.com (enabled by site administrator)

2. Check the virtual host configuration for any syntax errors:

ubuntu@ubuntu:~$ sudo apache2ctl -t
Syntax OK

3. On Nginx, use the following command:

ubuntu@ubuntu:~$ sudo nginx -t
nginx: the configuration file /etc/nginx/nginx.conf syntax is ok
nginx: configuration file /etc/nginx/nginx.conf test is
successful

4. Check the virtual host's details and other Apache configurations:

$ sudo apache2ctl -S

5. Make sure your virtual host IP and port configuration matches the one defined with
NamedVirtualHost.

6. Check DocumentRoot - does it point to proper files?
On Apache:

<VirtualHost *:80>
 DocumentRoot /var/www/html
<VirtualHost>

On Nginx:

server {
 root /usr/share/nginx/html;
}

7. Crosscheck your ServerName and ServerAlias variables - do they match your
domain name?

On Apache, these settings should look similar to this:

<VirtualHost *:80>
 ServerName example.com
 ServerAlias www.example.com
</virtualHost>

On Nginx, the ServerName is defined as this:

server {
 server_name example.com www.example.com;
}

https://technet24.ir

Access denied or forbidden errors

Check directory permissions for the virtual host root directory. Are they accessible to
the web server? Check the web server user and group (commonly www-data) have
ready permissions. If required, you can set permissions with chown and chmod
commands.

ubuntu@ubuntu:~$ ls -l /var/www/
drwxr-x--- 3 ubuntu www-data 4096 Aug 4 23:00 example.com
drwxr-xr-x 2 ubuntu www-data 4096 Aug 2 23:04 public_html

Secondly, make sure that you have properly set directory permissions in the virtual host
configuration. Are they restricting file access?

Use the following commands to set directory permissions in the virtual host
configuration:

<Directory /var/www/>
 AllowOverride None
 Order Deny,Allow
 Deny from all
</Directory>

Apache downloads .php files

Make sure that the mod_php module is installed and enabled:

ubuntu@ubuntu:~$ ls -l /etc/apache2/mods-available | grep php
-rw-r--r-- 1 root root 897 Jul 2 21:26 php7.0.conf
-rw-r--r-- 1 root root 59 Jul 2 21:26 php7.0.load

ubuntu@ubuntu:~$ a2query -m | grep php
php7.0 (enabled by maintainer script)

Chapter 4. Working with Mail Servers
In this chapter, we will cover the following recipes:

Sending e-mails with Postfix
Enabling IMAP and POP3 with Dovecot
Adding e-mail accounts
Mail filtering with spam-assassin
Troubleshooting the mail server
Installing the Zimbra mail server

https://technet24.ir

Introduction
In this chapter, we will learn how to set up an e-mail server. We will be using Postfix
MTA to send e-mails and Dovecot to enable receiving e-mails. We will also install the
Zimbra e-mail server, which is all-in-one one package to set up sending and receiving
e-mails and web access. By the end of this chapter, you will be able to send e-mails
with your own e-mail server.

Sending e-mails with Postfix
In this recipe, we will set up Postfix Mail Transfer Agent (MTA). This will be a very
basic setup which will enable us to send and receive e-mails from our server. Postfix is
an open source MTA which routes e-mails to their destination. It is a default MTA for
Ubuntu and is available in Ubuntu's main package repository.

https://technet24.ir

Getting ready
You will need access to a root account or an account with sudo privileges.

A domain name (FQDN) is required while configuring Postfix. You can configure your
local server for testing, but make sure that you set the proper host entries and hostname.

How to do it…
Follow these steps to send e-mails with Postfix:

1. Install Postfix and mailutils with the following commands:

$ sudo apt-get update
$ sudo apt-get install postfix mailutils -y

2. The installation process will prompt you to enter some basic configuration details.
When asked for General type of mail configuration:, select Internet Site and
then click on <Ok>:

3. On the next screen, enter your domain name, for example, mail.example.com, and
answer the other questions. You can leave them with default values:

4. After installation completes, we need to modify the Postfix configuration under
/etc/postfix/main.cf:

$ sudo nano /etc/postfix/main.cf

5. Set myhostname to point to your domain name:

https://technet24.ir

myhostname = mail.example.com

6. Ensure mynetworks is set to the local network. This will secure your server from
spammers:

mynetworks = 127.0.0.0/8 [::ffff:127.0.0.0]/104 [::1]/128

7. Also check mydestination. It should contain your domain name:

mydestination = example.com, ubuntu, localhost.localdoma
in, localhost

8. Change the mail storage format to Maildir from the default mbox. Search and
uncomment the following line:

home_mailbox = Maildir/

9. Optionally, you can change the TLS keys used by Postfix. Find the TLS
parameters section and point the variables to your key path:

10. Save the configuration file and exit.
11. Now, reload Postfix for the changes to take effect:

$ sudo service postfix reload

Test if everything is working as expected. Open a telnet connection to the mail
server:

$ telnet localhost 25

You should see an output similar to the following screenshot:

12. Now, send your first e-mail from this server. Type sendmail user@domain and
press Enter. Then, type your message, and when done with that press Ctrl + D to
send an e-mail.

13. To read your e-mails, log in with the user you send e-mails to. Start the mail
program with the command mail. This should show you a list of e-mails received
by this user account. The output should look similar to following screenshot:

14. To read any e-mail, type in the mail number and press Enter. Type q followed by
Enter to quit the mail reader.

https://technet24.ir

How it works…
Postfix installation is quite a simple task; you need to be sure that you have configured
the proper settings and then you are up and running in minutes. The Postfix installation
process itself prompts for basic settings.

Tip

If you miss providing configuration during installation, you can always recall the same
dialogue box with the reconfigure command as follows:

$ sudo dpkg-reconfigure postfix

Other parameters include mynetworks and mydestination. With mynetwork, we have
restricted the uses of the mail server to the local network. Only users on the local
network can use this server to send and receive e-mails. The parameter mydestination
specifies the domain names that Postfix is going to serve. For all other domains that are
not listed under mydestination, Postfix will simply act as a forwarder.

We have configured Postfix to use the Maildir format for storing e-mails. This is a new
storage format and provides various improvements over the default format, mbox. Also,
Maildir is used by various IMAP and POP servers. With Maildir, each new message
is stored in a separate file. This avoids file locking when working with messages and
provides protection against mailbox corruption.

Now if you send an e-mail to a local domain, it will be delivered to the inbox of the
respective user, which can be read with mail command. If you send e-mails to an
external mail server, such as Gmail, chances are your mail gets delivered to spam. You
need to include a number of different parameters in your e-mail headers and then make
sure that your server IP is not blacklisted. It would be a good idea to use an external
mail server such as Mail Chimp or Gmail for sending e-mails.

See also
An article by Jeff Atwood on sending e-mails through code. This may help you get
your e-mails out of spam: http://blog.codinghorror.com/so-youd-like-to-send-
some-email-through-code/
Mailbox formats: http://wiki.dovecot.org/MailboxFormat
The difference between port 465 and 587:
http://stackoverflow.com/questions/15796530/what-is-the-difference-between-
ports-465-and-587

http://blog.codinghorror.com/so-youd-like-to-send-some-email-through-code/
http://wiki.dovecot.org/MailboxFormat
http://stackoverflow.com/questions/15796530/what-is-the-difference-between-ports-465-and-587
https://technet24.ir

Enabling IMAP and POP3 with Dovecot
In this recipe, we will learn how to install and set up Dovecot to enable accessing e-
mails over IMAP and POP3 protocols. This will enable mail clients such as thunderbird
to download e-mails on a user's local system.

Getting ready
You will need access to a root account or an account with sudo privileges

Make sure that you have set up Postfix and are able to send and receive e-mails on your
server.

You may need an e-mail client to connect to and test the Dovecot setup.

https://technet24.ir

How to do it…
Follow these steps to enable IMAP and POP3 with Dovecot:

1. First, install the Dovecot binaries from the Ubuntu main repository:

$ sudo apt-get update
$ sudo apt-get install dovecot-imapd dovecot-pop3d

2. You will be prompted for a hostname to be used for certificate generation. Type in
a full hostname, for example mail.example.com. You can skip this step if you
already have certificates.

3. Next, proceed with configuring Dovecot. Open the file
/etc/dovecot/dovecot.conf:

$ sudo nano /etc/dovecot/dovecot.conf

4. Find the Enable installed protocols section and add a new line to set the
protocols that you want Dovecot to support:

protocols = pop3 pop3s imap imaps

5. Open /etc/dovecot/conf.d/10-mail.conf and set the mailbox to be used.
Dovecot supports mbox as well as Maildir. Make sure you set the correct path of
your mail directory:

mail_location = mbox:~/mail:INBOX=/var/spool/mail/%u

6. Open /etc/dovecot/conf.d/10-ssl.conf and uncomment or change the
following lines to enable SSL authentication. Here, I have used certificates created
by Postfix. You can use your own certificates or use the one generated by Dovecot:

ssl = yes
ssl_cert = < /etc/ssl/certs/ssl-cert-snakeoil.pem
ssl_key =</etc/ssl/private/ssl-cert-snakeoil.key

7. Restart the Dovecot daemon:

$ sudo service dovecot restart

8. Test Dovecot by creating a telnet connection. You should see an output similar to
the following:

$ telnet localhost pop3

https://technet24.ir

How it works…
Dovecot is one of the most popular Mail Delivery Agents (MDA) with support for
IMAP and POP3 protocols. It works with both major mailbox formats, namely mbox and
Maildir. The installation process is simple, and a minimal configuration can get you
started with your own IMAP or POP3 service.

Dovecot developers have tried to simplify the configuration by separating it across
various small files for each section. All these configuration files are located under
/etc/dovecot/conf.d. If you prefer to use a single configuration file, you can replace
the default file with the entire working configuration. To get all enabled configurations,
use the doveconf -n command:

mv /etc/dovecot/dovecot.conf /etc/dovecot/dovecot.conf.old
doveconf -n > /etc/dovecot/dovecot.conf

In this recipe, we have configured Dovecot to support POP3, POP3 secure, IMAP, and
IMAP secure. You can choose a single protocol or any combination of them. After
setting protocol support, we have set the mailbox type to mbox. If you are using Maildir
as your mailbox format, instead replace the mailbox setting with following line:

mail_location = maildir:~/Maildir

Now, when a user wants to check his e-mails, they need to authenticate with the
Dovecot server. At this stage, only users with a user account on the server will be able
to access their e-mails with Dovecot. To support users without creating a user account,
we will need to set up Virtual Users, which is covered in the next recipes.

If you plan to skip SSL setup, you may need to enable plain text authentication under the
configuration file, /etc/dovecot/conf.d/10-auth.conf. Find and uncomment the
following line and set it to no:

disable_plaintext_auth = yes

The default setting is to allow plain text authentication over SSL connections only. That
means the clients that do not support SSL will not be allowed to log in.

See also
Dovecot wiki Quick-configuration at http://wiki2.dovecot.org/QuickConfiguration

http://wiki2.dovecot.org/QuickConfiguration
https://technet24.ir

Adding e-mail accounts
In this recipe, we will learn how to add e-mail accounts to Postfix. The easiest way to
add a new e-mail account to Postfix is to add a new user account on your server. Postfix
will check for user accounts and deliver e-mails to respective users. We will create a
virtual user setup so that we do not need to create user accounts for each e-mail user.

Getting ready
You will need access to a root account or an account with sudo privileges.

I assume that you have completed your basic Postfix setup and that it is working
properly.

https://technet24.ir

How to do it…
Follow these steps to add e-mail account:

1. Create a new user account:

$ useradd -s /usr/bin/nologin -m vmail

2. Get the UID and GID for this account:

$ grep vmail /etc/passwd
vmail:x:1001:1001::/home/vmail:/usr/bin/nologin

3. Create a base directory layout for domains and users:

$ sudo mkdir -p /home/vmail/example.org/bob
$ sudo mkdir -p /home/vmail/example.net/alice

4. Allow only the user vmail to access these files:

$ sudo chown -R vmail:vmail /home/vmail
$ chmod -R 700 /home/vmail

5. Next, configure Postfix. Edit /etc/postfix/main.cf and add the following lines:

virtual_mailbox_base = /home/vmail
virtual_mailbox_domains = /etc/postfix/virtual_domains
virtual_mailbox_maps = hash:/etc/postfix/virtual_maps
virtual_alias_maps = hash:/etc/postfix/virtual_alias
virtual_uid_maps = static:1001 # user ID for user vmail
virtual_gid_maps = static:1001 # group ID for user vmail

6. Create the file virtual_domains under /etc/postfix:

$ sudo nano /etc/postfix/virtual_domains

example.org
example.net

7. Create the virtual_maps file:

$ sudo nano /etc/postfix/virtual_maps
bob@example.org example.org/bob/

alice@example.org example.org/alice/
@example.org example.org/catchall/ # catch all address

8. Create the virtual_alias file and optionally set a redirect:

$ sudo nano /etc/postfix/virtual_alias
redirect emails for tim to bob
tim@example.org bob@example.org

9. Now generate database of virtual maps and aliases by hashing respective files:

$ sudo postmap /etc/postfix/virtual_maps
$ sudo postmap /etc/postfix/virtual_alias

10. Reload Postfix and send an e-mail to the newly created address:

$ sudo postfix reload
$ sendmail bob@example.org

https://technet24.ir

How it works…
Here, we have created a virtual mailbox setup to enable our Postfix server to serve
multiple domains as well as add e-mail users without creating user accounts on the
server. All e-mails received by virtual users will be stored under the home directory of
the vmail user (virtual_mailbox_base in Postfix configuration). When you need to
add a new e-mail account, simply add the e-mail address with its respective domain to
the virtual_maps file. In case you need to support a new domain, you can easily add it
to the virtual_domains file.

The third file we used is virtual_alias. You can set e-mail forwarding in this file. It
is handy when you need to create a new alias for an e-mail address or forward e-mails
to one or multiple accounts. We have set a catchall entry in the virtual_alias file;
this setting will redirect all e-mails received on nonexistent accounts to
catchall@example.org, which can be checked by the domain administrator.

There's more…
Using files for virtual users and domains is good for getting started with setup. But once
you need to add more and more user accounts and domains it is a good idea to move the
users and domains to a database server. This can be easily done by changing the lookup
table type. Postfix supports a variety of lookup table types, which include LDAP,
MySQL, PGSQL, memcache, SQLite, and many others.

To use MySQL as a backend database, complete the following steps:

1. Create respective tables for virtual_domain, virtual_maps, and
virtual_alias.

2. Change the Postfix configuration to use MySQL as a lookup table:

virtual_mailbox_domains = mysql:/etc/postfix/mysql-virtual-
domains
virtual_mailbox_maps = mysql:/etc/postfix/mysql-virtual-maps
virtual_alias_maps = mysql:/etc/postfix/mysql-virtual-alias

3. Add the respective details to each file using the following commands:

$ sudo nano /etc/postfix/mysql-virtual-domains

user = mysql_user
password = mysql_password
hosts = 127.0.0.1
dbname = mysql_db_name
query = SELECT 1 FROM virtual_domains WHERE name='%s'
$ sudo nano /etc/postfix/mysql-virtual-maps

...
query = SELECT 1 FROM virtual_users WHERE email='%s'
$ sudo nano /etc/postfix/mysql-virtual-alias

...
query = SELECT destination FROM virtual_aliases WHERE source='%s'

4. You can test your mapping with the following command. This should output 1 as a
result:

$ postmap -q bob@example.org mysql:/etc/postfix/mysql-virtual-
maps

5. Finally, restart the Postfix daemon.

Web console for virtual mailbox administration

https://technet24.ir

The Vimbadmin package provides a web console for virtual mailbox administration. It
is a PHP-based open source package. You can get source code and installation
instructions at https://github.com/opensolutions/ViMbAdmin.

https://github.com/opensolutions/ViMbAdmin

See also
Postfix guide at http://www.postfix.org/VIRTUAL_README.html
Postfix lookup table types at
http://www.postfix.org/DATABASE_README.html#types

http://www.postfix.org/VIRTUAL_README.html
http://www.postfix.org/DATABASE_README.html#types
https://technet24.ir

Mail filtering with spam-assassin
In this recipe, we will learn how to install and set up a well-known e-mail filtering
program, spam-assassin.

Getting ready
You will need access to a root account or an account with sudo privileges.

You need to have Postfix installed and working.

https://technet24.ir

How to do it…
Follow these steps to filter mail with spam-assassin:

1. Install spam-assassin with the following command:

$ sudo apt-get update
$ sudo apt-get install spamassassin spamc

2. Create a user account and group for spam-assassin:

$ sudo groupadd spamd
$ sudo useradd -g spamd -s /usr/bin/nologin \
-d /var/log/spamassassin -m spamd

3. Change the default settings for the spam daemon. Open
/etc/default/spamassassin and update the following lines:

ENABLED=1
SAHOME="/var/log/spamassassin/"
OPTIONS="--create-prefs --max-children 5 --username spamd --
helper-home-dir ${SAHOME} -s ${SAHOME}spamd.log"
PIDFILE="${SAHOME}spamd.pid"
CRON=1

4. Optionally, configure spam rules by changing values in
/etc/spamassassin/local.cf:

trusted_networks 10.0.2. # set your trusted network
required_score 3.0 # 3 + will be marked as spam

5. Next, we need to change the Postfix settings to pass e-mails through spam-assassin.
Open /etc/postfix/master.cf and find the following line:

smtp inet n - - - - smtpd

6. Add the content filtering option:

-o content_filter=spamassassin

7. Define the content filter block by adding the following lines to the end of the file:

spamassassin unix - n n - - pipe
 user=spamd argv=/usr/bin/spamc -f -e
 /usr/sbin/sendmail -oi -f ${sender} ${recipient}

8. Finally, restart spam-assassin and Postfix:

$ sudo service spamassassin start
$ sudo service postfix reload

9. You can check spam-assassin and mail logs to verify that spam-assassin is working
properly:

$ less /var/log/spamassassin/spamd.log
$ less /var/log/mail.log

https://technet24.ir

How it works…
Spam filtering works with the help of a piping mechanism provided by Postfix. We have
created a new Unix pipe which will be used to filter e-mails. Postfix will pass all e-
mails through this pipe, which will be then scanned through spam-assassin to determine
the spam score. If given e-mail scores below the configured threshold, then it passes the
filter without any modification; otherwise, spam-assassin adds a spam header to the e-
mail.

Spam-assassin works with a Bayesian classifier to classify e-mails as spam or not
spam. Basically, it checks the content of the e-mail and determines the score based on
content.

There's more…
You can train spam-assassin's Bayesian classifier to get more accurate spam detections.

The following command will train spam-assassin with spam contents (--spam):

$ sudo sa-learn --spam -u spamd --dir ~/Maildir/.Junk/* -D

To train with non-spam content, use the following command (--ham):

$ sudo sa-learn --ham -u spamd --dir ~/Maildir/.INBOX/* -D

If you are using the mbox format, replace --dir ~/Maildir/.Junk/* with the option -
-mbox.

https://technet24.ir

See also
Sa-learn - train SpamAssassin's Bayesian classifier at
https://spamassassin.apache.org/full/3.2.x/doc/sa-learn.html and
https://wiki.apache.org/spamassassin/BayesInSpamAssassin
Learn about Bayesian classification at
https://en.wikipedia.org/wiki/Naive_Bayes_classifier

https://spamassassin.apache.org/full/3.2.x/doc/sa-learn.html
https://wiki.apache.org/spamassassin/BayesInSpamAssassin
https://en.wikipedia.org/wiki/Naive_Bayes_classifier

Troubleshooting the mail server
Sometimes you may face problems such as e-mails not being sent, delayed delivery or
mail bouncing, issues while fetching e-mails, and login failures. In this recipe, we will
learn how to identify the exact problem behind these issues. We will learn how to use
debugging tools and read the logs of Postfix and Dovecot.

https://technet24.ir

Getting ready
You will need access to a root account or an account with sudo privileges.

It is assumed that you have already installed Postfix and Dovecot servers.

How to do it…
Follow these steps to troubleshoot the mail server:

1. Start with checking the status of Postfix and Dovecot. If you get output that says
stop/waiting or not running then the respective service is not running:

$ sudo service postfix status
$ sudo service dovecot status

2. Try to restart the respective services. Restarting may give you error messages.
Also check for startup logs under /var/log/mail.log:

$ sudo service postfix restart
$ less /var/log/mail.log

3. You can use a tail command to monitor the stream of logs while the service is
running. You can easily filter the output of tail by piping it to a grep command:

$ tail -f /var/log/mail.log

Use grep to only view selected logs:

$ tail -f /var/log/mail.log | grep "dovecot"

4. Use grep -v to filter/remove selected logs:

$ tail -f /var/log/mail.log | grep -v "dovecot"

https://technet24.ir

5. You can check other log files such as /var/log/mail.err and
/var/log/upstart/dovecot.log.

You may want to enable verbose logging to get detailed debugging information. To
enable debug mode on Dovecot, edit 10-logging.conf and enable
auth_verbose and mail_debug variables:

$ sudo nano /etc/dovecot/conf.d/10-logging.conf

auth_verbose = yes
mail_debug = yes

Restart Dovecot:

$ sudo service dovecot restart

6. To enable verbose logging on Postfix, edit master.cf file and add the -v
argument:

$ sudo nano /etc/postfix/master.cf
smtp inet n - - - - smtpd -v

Restart Postfix.
7. Turn off chroot operations:

$ sudo nano /etc/postfix/master.cf
smtp inet n - n - - smtpd

8. Check user account with Dovecot:

$ doveadm username useremail@example.com

9. If you have set virtual users, check if they are working properly:

$ postmap -q bob@example.org mysql:/etc/postfix/mysql-virtual-
maps

10. Check respective ports used by Postfix and Dovecot. Postfix uses ports 25, 465,
587 and Dovecot uses port 993 and 995:

$ telnet localhost 993

11. Check netstat to make sure services are listening:

$ sudo netstat -plutn

12. Check for DNS resolution and MX records:

$ host -t mx example.com

13. Check if spam filters and antivirus scanners are working properly.

https://technet24.ir

See also
Postfix debugging - http://www.postfix.org/DEBUG_README.html
Postfix book (troubleshooting) at http://www.postfix-book.com/debugging.html
Dovecot troubleshooting at http://wiki2.dovecot.org/WhyDoesItNotWork

http://www.postfix.org/DEBUG_README.html
http://www.postfix-book.com/debugging.html
http://wiki2.dovecot.org/WhyDoesItNotWork

Installing the Zimbra mail server
Until now, we have installed Postfix, Dovecot, spam-assassin, and other tools
separately. In this recipe, we will learn how to install the Zimbra collaboration server,
which covers all tools in a single package. The Zimbra server contains Postfix, MySQL,
OpenLDAP, ClamAV, and Spam-Assassin, Calendar, and various other features. Zimbra
provides a paid option as well as an open source version. We will be installing an open
source version of the Zimbra server in single server mode.

https://technet24.ir

Getting ready
As always, you will need access to a root account or an account with sudo privileges.

For Zimbra to work properly, you will need the following minimum configuration for
your server:

At least 1.5 GHz of CPU 2 GHz recommended
Minimum 8 GB of memory
Minimum 10 GB of storage 20 GB recommended

You will need to set proper DNS and MX records for your domain.

You will also need various ports, as follows:

Postfix/LMTP 25, 7025
HTTP 80, 443
POP3 110, 995
IMAP 143, 993
LDAP 389

How to do it…
Follow these steps to install Zimbra collaboration server:

1. Install the dependency packages before starting with the Zimbra installation:

$ sudo apt-get update
$ sudo apt-get install libperl5.18 libaio1 unzip pax sysstat
sqlite3 libgmp10

2. Download and extract the Zimbra open source package using the following
command:

$ wget https://files.zimbra.com/downloads/8.6.0_GA/zcs-
8.6.0_GA_1153.UBUNTU14_64.20141215151116.tgz
$ tar -zxvf zcs-8.6.0_GA_1153.UBUNTU14_64.20141215151116.tgz
$ cd zcs-8.6.0_GA_1153.UBUNTU14_64.20141215151116

3. Make sure you have set the proper hostname and hosts entries in respective files:

$ cat /etc/hosts
127.0.0.1 localhost
119.9.107.28 mail.server.local mail
$ cat /etc/hostname
mail.server.local

4. Start the Zimbra installation by executing the installer:

$ sudo ./install.sh

5. The installation process will ask you to agree with License Agreement. Type y and
press Enter to continue:

6. On acceptance of agreement, Zimbra will check for dependencies and then ask for
the component selection. I have chosen to skip a few components. Type y when
asked for confirmation:

https://technet24.ir

7. Type y when asked for package selection confirmation.
8. The installation process will take some time. As installation completes, the Zimbra

configuration menu will be displayed. Here, you need to set an admin account
password:

9. On the main menu, select 6 to choose zimbra-store and then type 4 for the admin
password. The new prompt will ask for the admin account password:

10. Then, type r to come back to the main menu and then type a to apply settings, and
again press Enter to save settings:

11. Finally, apply all configurations when asked. Zimbra will ask you to send
installation notification to Zimbra. Choose Yes by typing y to notify Zimbra:

12. Now you can access your Zimbra server with the domain name of your server or IP
address. Your browser may prompt for a non-trusted server certificate, as shown in
the following screenshot:

13. You can access the Inbox panel on port 7071, https://yourserver.tld:7071.

https://technet24.ir

How it works…
Zimbra combines various commonly used packages in a single package and provides a
web interface to work with them. It reduces the efforts required in installing and
configuring all tools separately. For any additional features, you can always switch to
the Zimbra collaboration server, Network Edition.

https://technet24.ir

There's more…
If you are planning to use Zimbra on your local network, you will need a DNS server set
up. Alternatively, you can use the tool dnsmasq. It is a small package that sets up a
quick DNS environment on your local network.

See also
Zimbra open source features at https://www.zimbra.com/open-source/features

https://www.zimbra.com/open-source/features
https://technet24.ir

Chapter 5. Handling Databases
In this chapter, we will cover the following recipes:

Installing relational databases with MySQL
Storing and retrieving data with MySQL
Importing and exporting bulk data
Adding users and assigning access rights
Installing web access for MySQL
Setting backups
Optimizing MySQL performance – queries
Optimizing MySQL performance – configuration
Creating MySQL replicas for scaling and high availability
Troubleshooting MySQL
Installing MongoDB
Storing and retrieving data with MongoDB

Introduction
In this chapter, we will learn how to set up database servers. A database is the
backbone of any application, enabling an application to efficiently store and retrieve
crucial data to and from persistent storage. We will learn how to install and set up
relational databases with MySQL and NoSQL databases with MongoDB.

MySQL is a popular open source database server used by various large scale
applications. It is a mature database system that can be scaled to support large volumes
of data. MySQL is a relational database and stores data in the form of rows and columns
organized in tables. It provides various storage engines, such as MyISAM, InnoDB, and
in-memory storage. MariaDB is a fork of a MySQL project and can be used as a drop-in
replacement for MySQL. It was started by the developers of MySQL after Oracle took
over Sun Microsystems, the owner of the MySQL project. MariaDB is guaranteed to be
open source and offers faster security releases and advanced features. It provides
additional storage engines, including XtraDB by Percona and Cassandra for the NoSQL
backend. PostgreSQL is another well-known name in relational database systems.

NoSQL, on the other hand, is a non-relational database system. It is designed for
distributed large-scale data storage requirements. For some types of data, it is not
efficient to store it in the tabular form offered by relational database systems, for
example, data in the form of a document. NoSQL databases are used for these types of
data. Some emerging NoSQL categories are document storage, key value store,
BigTable, and the graph database.

In this chapter, we will start by installing MySQL, followed by storing and manipulating
data in MySQL. We will also cover user management and access control. After an
introduction to relational databases, we will cover some advanced topics on scaling
and high availability. We will learn how to set up the web administration tool,
PHPMyAdmin, but the focus will be on working with MySQL through command line
access. In later recipes, we will also cover the document storage server, MongoDB.

https://technet24.ir

Installing relational databases with
MySQL
In this recipe, we will learn how to install and configure the MySQL database on an
Ubuntu server.

Getting ready
You will need access to a root account or an account with sudo privileges.

Make sure that the MySQL default port 3306 is available and not blocked by any
firewall.

https://technet24.ir

How to do it…
Follow these steps to install the relational database MySQL:

1. To install the MySQL server, use the following command:

$ sudo apt-get update
$ sudo apt-get install mysql-server-5.7

The installation process will download the necessary packages and then prompt
you to enter a password for the MySQL root account. Choose a strong password:

2. Once the installation process is complete, you can check the server status with the
following command. It should return an output similar to the following:

$ sudo service mysql status
mysql.service - MySQL Community Server
 Loaded: loaded (/lib/systemd/system/mysql.service
 Active: active (running) since Tue 2016-05-10 05:

3. Next, create a copy of the original configuration file:

$ cd /etc/mysql/mysql.conf.d
$ sudo cp mysqld.cnf mysqld.cnf.bkp

4. Set MySQL to listen for a connection from network hosts. Open the configuration
file /etc/mysql/mysql.conf.d/mysqld.cnf and change bind-address under
the [mysqld] section to your server’s IP address:

$ sudo nano /etc/mysql/mysql.conf.d/mysqld.cnf
bind-address = 10.0.2.6

Note

For MySQL 5.5 and 5.6, the configuration file can be found at
/etc/mysql/my.cnf

5. Optionally, you can change the default port used by the MySQL server. Find the
[mysqld] section in the configuration file and change the value of the port
variable as follows:

port = 30356

Make sure that the selected port is available and open under firewall.
6. Save the changes to the configuration file and restart the MySQL server:

$ sudo service mysql restart

7. Now open a connection to the server using the MySQL client. Enter the password
when prompted:

$ mysql -u root -p

8. To get a list of available commands, type \h:

mysql> \h

https://technet24.ir

How it works…
MySQL is a default database server available in Ubuntu. If you are installing the Ubuntu
server, you can choose MySQL to be installed by default as part of the LAMP stack. In
this recipe, we have installed the latest production release of MySQL (5.7) from the
Ubuntu package repository. Ubuntu 16.04 contains MySQL 5.7, whereas Ubuntu 14.04
defaults to MySQL version 5.5.

If you prefer to use an older version on Ubuntu 16, then use following command:

$ sudo add-apt-repository ‘deb http://archive.ubuntu.com/ubuntu
trusty universe’
$ sudo apt-get update
$ sudo apt-get install mysql-server-5.6

After installation, configure the MySQL server to listen for connections from external
hosts. Make sure that you open your database installation to trusted networks such as
your private network. Making it available on the Internet will open your database to
attackers.

There’s more…
Securing MySQL installation

MySQL provides a simple script to configure basic settings related to security. Execute
this script before using your server in production:

$ mysql_secure_installation

This command will start a basic security check, starting with changing the root
password. If you have not set a strong password for the root account, you can do it now.
Other settings include disabling remote access to the root account and removing
anonymous users and unused databases.

MySQL is popularly used with PHP. You can easily install PHP drivers for MySQL with
the following command:

$ sudo apt-get install php7.0-mysql

https://technet24.ir

See also
The Ubuntu server guide mysql page at
https://help.ubuntu.com/14.04/serverguide/mysql.html

https://help.ubuntu.com/14.04/serverguide/mysql.html

Storing and retrieving data with MySQL
In this recipe, we will learn how to create databases and tables and store data in those
tables. We will learn the basic Structured Query Language (SQL) required for
working with MySQL. We will focus on using the command-line MySQL client for this
tutorial, but you can use the same queries with any client software or code.

https://technet24.ir

Getting ready
Ensure that the MySQL server is installed and running. You will need administrative
access to the MySQL server. Alternatively, you can use the root account of MySQL.

How to do it…
Follow these steps to store and retrieve data with MySQL:

1. First, we will need to connect to the MySQL server. Replace admin with a user
account on the MySQL server. You can use root as well but it’s not recommended:

$ mysql -u admin -h localhost -p

2. When prompted, enter the password for the admin account. If the password is
correct, you will see the following MySQL prompt:

3. Create a database with the following query. Note the semi-colon at the end of
query:

mysql > create database myblog;

4. Check all databases with a show databases query. It should list myblog:

mysql > show databases;

5. Select a database to work with, in this case myblog:

mysql > use myblog;
Database changed

6. Now, after the database has changed, we need to create a table to store our data.
Use the following query to create a table:

https://technet24.ir

CREATE TABLE `articles` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `title` varchar(255) NOT NULL,
 `content` text NOT NULL,
 `created_at` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB AUTO_INCREMENT=1;

7. Again, you can check tables with the show tables query:

mysql > show tables;

8. Now, let’s insert some data in our table. Use the following query to create a new
record:

mysql > INSERT INTO `articles` (`id`, `title`, `content`,
`created_at`)
VALUES (NULL, ‘My first blog post’, ‘contents of article’,
CURRENT_TIMESTAMP);

9. Retrieve data from the table. The following query will select all records from the
articles table:

mysql > Select * from articles;

10. Retrieve the selected records from the table:

mysql > Select * from articles where id = 1;

11. Update the selected record:

mysql > update articles set title=”New title” where id=1;

12. Delete the record from the articles table using the following command:

mysql > delete from articles where id = 2;

https://technet24.ir

How it works…
We have created a relational database to store blog data with one table. Actual blog
databases will need additional tables for comments, authors, and various entities. The
queries used to create databases and tables are known as Data Definition Language
(DDL), and queries that are used to select, insert, and update the actual data are known
as Data Manipulation Language (DML).

MySQL offers various data types to be used for columns such as tinyint, int, long,
double, varchar, text, blob, and so on. Each data type has its specific use and a
proper selection may help to improve the performance of your database.

Importing and exporting bulk data
In this recipe, we will learn how to import and export bulk data with MySQL. Many
times it happens that we receive data in CSV or XML format and we need to add this
data to the database server for further processing. You can always use tools such as
MySQL workbench and phpMyAdmin, but MySQL provides command-line tools for the
bulk processing of data that are more efficient and flexible.

https://technet24.ir

How to do it…
Follow these steps to import and export bulk data:

1. To export a database from the MySQL server, use the following command:

$ mysqldump -u admin -p mytestdb > db_backup.sql

2. To export specific tables from a database, use the following command:

$ mysqldump -u admin -p mytestdb table1 table2 > table_backup.sql

3. To compress exported data, use gzip:

$ mysqldump -u admin -p mytestdb | gzip > db_backup.sql.gz

4. To export selective data to the CSV format, use the following query. Note that this
will create articles.csv on the same server as MySQL and not your local
server:

SELECT id, title, contents FROM articles
INTO OUTFILE ‘/tmp/articles.csv’
FIELDS TERMINATED BY ‘,’ ENCLOSED BY ‘”’
LINES TERMINATED BY ‘\n’;

5. To fetch data on your local system, you can use the MySQL client as follows:
Write your query in a file:

$ nano query.sql
select * from articles;

Now pass this query to the mysql client and collect the output in CSV:

$ mysql -h 192.168.2.100 -u admin -p myblog < query.sql >
output.csv

The resulting file will contain tab separated values.
6. To import an SQL file to a MySQL database, we need to first create a database:

$ mysqladmin -u admin -p create mytestdb2

7. Once the database is created, import data with the following command:

$ mysql -u admin -p mytestdb2 < db_backup.sql

8. To import a CSV file in a MySQL table, you can use the Load Data query. The
following is the sample CSV file:

Now use the following query from the MySQL console to import data from CSV:

LOAD DATA INFILE ‘c:/tmp/articles.csv’
INTO TABLE articles
FIELDS TERMINATED BY ‘,’ ENCLOSED BY ‘”’
LINES TERMINATED BY \n IGNORE 1 ROWS;

https://technet24.ir

See also
MySQL select-into syntax at https://dev.mysql.com/doc/refman/5.6/en/select-
into.html
MySQL load data infile syntax at https://dev.mysql.com/doc/refman/5.6/en/load-
data.html
Importing from and exporting to XML files at
https://dev.mysql.com/doc/refman/5.6/en/load-xml.html

https://dev.mysql.com/doc/refman/5.6/en/select-into.html
https://dev.mysql.com/doc/refman/5.6/en/load-data.html
https://dev.mysql.com/doc/refman/5.6/en/load-xml.html

Adding users and assigning access rights
In this recipe, we will learn how to add new users to the MySQL database server.
MySQL provides very flexible and granular user management options. We can create
users with full access to an entire database or limit a user to simply read the data from a
single database. Again, we will be using queries to create users and grant them access
rights. You are free to use any tool of your choice.

https://technet24.ir

Getting ready
You will need a MySQL user account with administrative privileges. You can use the
MySQL root account.

How to do it…
Follow these steps to add users to MySQL database server and assign access rights:

1. Open the MySQL shell with the following command. Enter the password for the
admin account when prompted:

$ mysql -u root -p

2. From the MySQL shell, use the following command to add a new user to MySQL:

mysql> create user ‘dbuser’@’localhost’ identified by ‘password’;

3. You can check the user account with the following command:

mysql> select user, host, password from mysql.user where user =
‘dbuser’;

4. Next, add some privileges to this user account:

mysql> grant all privileges on *.* to ‘dbuser’@’localhost’ with
grant option;

5. Verify the privileges for the account as follows:

mysql> show grants for ‘dbuser’@’localhost’

https://technet24.ir

6. Finally, exit the MySQL shell and try to log in with the new user account. You
should log in successfully:

mysql> exit
$ mysql -u dbuser -p

How it works…
MySQL uses the same database structure to store user account information. It contains a
hidden database named MySQL that contains all MySQL settings along with user
accounts. The statements create user and grant work as a wrapper around common
insert statements and make it easy to add new users to the system.

In the preceding example, we created a new user with the name dbuser. This user is
allowed to log in only from localhost and requires a password to log in to the MySQL
server. You can skip the identified by ‘password’ part to create a user without a
password, but of course, it’s not recommended.

To allow a user to log in from any system, you need to set the host part to a %, as
follows:

mysql> create user ‘dbuser’@’%’ identified by ‘password’;

You can also limit access from a specific host by specifying its FQDN or IP address:

mysql> create user ‘dbuser’@’host1.example.com’ identified by
‘password’;

Or

mysql> create user ‘dbuser’@’10.0.2.51’ identified by ‘password’;

Note that if you have an anonymous user account on MySQL, then a user created with
username’@’% will not be able to log in through localhost. You will need to add a
separate entry with username’@’localhost.

Next, we give some privileges to this user account using a grant statement. The
preceding example gives all privileges on all databases to the user account dbuser. To
limit the database, change the database part to dbname.*:

mysql> grant all privileges on dbname.* to ‘dbuser’@’localhost’ with
grant option;

To limit privileges to certain tasks, mention specific privileges in a grant statement:

mysql> grant select, insert, update, delete, create
 -> on dbname.* to ‘dbuser’@’localhost’;

https://technet24.ir

The preceding statement will grant select, insert, update, delete, and create
privileges on any table under the dbname database.

There’s more…
Similar to preceding add user example, other user management tasks can be performed
with SQL queries as follows:

Removing user accounts

You can easily remove a user account with the drop statement, as follows:

mysql> drop user ‘dbuser’@’localhost’;

Setting resource limits

MySQL allows setting limits on individual accounts:

mysql> grant all on dbname.* to ‘dbuser’@’localhost’
 -> with max_queries_per_hour 20
 -> max_updates_per_hour 10
 -> max_connections_per_hour 5
 -> max_user_connections 2;

https://technet24.ir

See also
MySQL user account management at
https://dev.mysql.com/doc/refman/5.6/en/user-account-management.html

https://dev.mysql.com/doc/refman/5.6/en/user-account-management.html

Installing web access for MySQL
In this recipe, we will set up a well-known web-based MySQL administrative tool—
phpMyAdmin.

https://technet24.ir

Getting ready
You will need access to a root account or an account with sudo privileges.

You will need a web server set up to serve PHP contents.

How to do it…
Follow these steps to install web access for MySQL:

1. Enable the mcrypt extension for PHP:

$ sudo php5enmod mcrypt

2. Install phpmyadmin with the following commands:

$ sudo apt-get update
$ sudo apt-get install phpmyadmin

3. The installation process will download the necessary packages and then prompt
you to configure phpmyadmin:

4. Choose <yes> to proceed with the configuration process.
5. Enter the MySQL admin account password on the next screen:

https://technet24.ir

6. Another screen will pop up; this time, you will be asked for the new password for
the phpmyadmin user. Enter the new password and then confirm it on the next
screen:

7. Next, phpmyadmin will ask for web server selection:

8. Once the installation completes, you can access phpMyAdmin at http://server-
ip/phpmyadmin. Use your admin login credentials on the login screen. The
phpmyadmin screen will look something like this:

https://technet24.ir

How it works…
PHPMyAdmin is a web-based administrative console for MySQL. It is developed in
PHP and works with a web server such as Apache to serve web access. With
PHPMyAdmin, you can do database tasks such as create databases and tables; select,
insert, update data; modify table definitions; and a lot more. It provides a query console
which can be used to type in custom queries and execute them from same screen.

With the addition of the Ubuntu software repository, it has become easy to install
PHPMyAdmin with a single command. Once it is installed, a new user is created on the
MySQL server. It also supports connecting to multiple servers. You can find all
configuration files located in the /etc/phpmyadmin directory.

There’s more…
If you want to install the latest version of phpMyAdmin, you can download it from their
official website, https://www.phpmyadmin.net/downloads/. You can extract
downloaded contents to your web directory and set MySQL credentials in the
config.inc.php file.

https://www.phpmyadmin.net/downloads/
https://technet24.ir

See also
Read more about phpMyAdmin in the Ubuntu server guide at
https://help.ubuntu.com/lts/serverguide/phpmyadmin.html
Install and secure phpMyAdmin at
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-
phpmyadmin-on-ubuntu-14-04

https://help.ubuntu.com/lts/serverguide/phpmyadmin.html
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-phpmyadmin-on-ubuntu-14-04

Setting backups
In this recipe, we will learn how to back up the MySQL database.

https://technet24.ir

Getting ready
You will need administrative access to the MySQL database.

How to do it…
Follow these steps to set up the backups:

1. Backing up the MySQL database is the same as exporting data from the server. Use
the mysqldump tool to back up the MySQL database as follows:

$ mysqldump -h localhost -u admin -p mydb > mydb_backup.sql

2. You will be prompted for the admin account password. After providing the
password, the backup process will take time depending on the size of the database.

3. To back up all databases, add the --all-databases flag to the preceding
command:

$ mysqldump --all-databases -u admin -p alldb_backup.sql

4. Next, we can restore the backup created with the mysqldump tool with the
following command:

$ mysqladmin -u admin -p create mydb
$ mysql -h localhost -u admin -p mydb < mydb_backup.sql

5. To restore all databases, skip the database creation part:

$ mysql -h localhost -u admin -p < alldb_backup.sql

https://technet24.ir

How it works…
MySQL provides a very general tool, mysqldump, to export all data from the database
server. This tool can be used with any type of database engine, be it MyISAM or
InnoDB or any other. To perform an online backup of InnoDB tables, mysqldump
provides the --single-transaction option. With this option set, InnoDB tables will
not be locked and will be available to other applications while backup is in progress.

Oracle provides the MySQL Enterprise backup tool for MySQL Enterprise edition
users. This tool includes features such as incremental and compressed backups.
Alternatively, Percona provides an open source utility known as Xtrabackup. It
provides incremental and compressed backups and many more features.

Some other backup methods include copying MySQL table files and the mysqlhotcopy
script for InnoDB tables. For these methods to work, you may need to pause or stop the
MySQL server before backup.

You can also enable replication to mirror all data to the other server. It is a mechanism
to maintain multiple copies of data by automatically copying data from one system to
another. In this case, the primary server is called Master and the secondary server is
called Slave. This type of configuration is known as Master-Slave replication.
Generally, applications communicate with the Master server for all read and write
requests. The Slave is used as a backup if the Master goes down. Many times, the
Master-Slave configuration is used to load balance database queries by routing all read
requests to the Slave server and write requests to the Master server. Replication can
also be configured in Master-Master mode, where both servers receive read-write
requests from clients.

See also
MySQL backup methods at http://dev.mysql.com/doc/refman/5.6/en/backup-
methods.html
Percona XtraBackup at https://www.percona.com/doc/percona-
xtrabackup/2.2/index.html
MySQL binary log at http://dev.mysql.com/doc/refman/5.6/en/binary-log.html

http://dev.mysql.com/doc/refman/5.6/en/backup-methods.html
https://www.percona.com/doc/percona-xtrabackup/2.2/index.html
http://dev.mysql.com/doc/refman/5.6/en/binary-log.html
https://technet24.ir

Optimizing MySQL performance –
queries
MySQL performance optimizations can be divided into two parts. One is query
optimization and the other is MySQL server configuration. To get optimum results, you
have to work on both of these parts. Without proper configuration, queries will not
provide consistent performance; on the other hand, without proper queries and a
database structure, queries may take much longer to produce results.

In this recipe, we will learn how to evaluate query performance, set indexes, and
identify the optimum database structure for our data.

Getting ready
You will need access to an admin account on the MySQL server.

You will need a large dataset to test queries. Various tools are available to generate test
data. I will be using test data available at https://github.com/datacharmer/test_db.

https://github.com/datacharmer/test_db
https://technet24.ir

How to do it…
Follow these steps to optimize MySQL performance:

1. The first and most basic thing is to identify key columns and add indexes to them:

mysql> alter table salaries add index (salary);

2. Enable the slow query log to identify long-running queries. Enter the following
commands from the MySQL console:

mysql> set global log_slow_queries = 1;
mysql> set global slow_query_log_file =
‘/var/log/mysql/slow.log’;

3. Once you identify the slow and repeated query, execute that query on the database
and record query timings. The following is a sample query:

mysql> select count(*) from salaries where salary between 30000
and 65000 and from_date > ‘1986-01-01’;

4. Next, use explain to view the query execution plan:

mysql> explain select count(*) from salaries where salary between
30000 and 65000 and from_date > ‘1986-01-01’;

5. Add required indexes, if any, and recheck the query execution plan. Your new
index should be listed under possible_keys and key columns of explain output:

mysql> alter table `salaries` add index (`from_date`) ;

6. If you found that MySQL is not using a proper index or using another index than
expected then you can explicitly specify the index to be used or ignored:

mysql> select * from salaries use index (salaries) where salary
between 30000 and 65000 and from_date > ‘1986-01-01’;
mysql> select * from salaries where salary between 30000 and
65000 and from_date > ‘1986-01-01’ ignore index (from_date);

Now execute the query again and check query timings for any improvements.
7. Analyze your data and modify the table structure. The following query will show

the minimum and maximum length of data in each column. Add a small amount of
buffer space to the reported maximum length and reduce additional space
allocation if any:

mysql> select * from `employees` procedure analyse();

The following is the partial output for the analyse() procedure:

8. Check the database engines you are using. The two major engines available in
MySQL are MyISAM and InnoDB:

mysql> show create table employees;

https://technet24.ir

How it works…
MySQL uses SQL to accept commands for data processing. The query contains the
operation, such as select, insert, and update; the target that is a table name; and
conditions to match the data. The following is an example query:

select * from employee where id = 1001;

In the preceding query, select * is the operation asking MySQL to select all data for a
row. The target is the employee table, and id = 1001 is a condition part.

Once a query is received, MySQL generates query execution plan for it. This step
contains various steps such as parsing, preprocessing, and optimization. In parsing and
pre-processing, the query is checked for any syntactical errors and the proper order of
SQL grammar. The given query can be executed in multiple ways. Query optimizer
selects the best possible path for query execution. Finally, the query is executed and the
execution plan is stored in the query cache for later use.

The query execution plan can be retrieved from MySQL with the help of the explain
query and explain extended. Explain executes the query until the generation of the query
execution plan and then returns the execution plan as a result. The execution plan
contains table names used in this query, key fields used to search data, the number of
rows needed to be scanned, and temporary tables and file sorting used, if any. The query
execution plan shows possible keys that can be used for query execution and then shows
the actual key column used. Key is a column with an index on it, which can be a primary
index, unique index, or non-unique index. You can check the MySQL documentation for
more details on query execution plans and explain output.

If a specific column in a table is being used repeatedly, you should consider adding a
proper index to that column. Indexes group similar data together, which reduces the
look up time and total number of rows to be scanned. Also keep in mind that indexes use
large amounts of memory, so be selective while adding indexes.

Secondly, if you have a proper index set on a required column and the query
optimization plan does not recognize or use the index, you can force MySQL to use a
specific index with the USE INDEX index_name statement. To ignore a specific index,
use the statement IGNORE INDEX index_name.

You may get a small improvement with table maintenance commands. Optimize table is

useful when a large part of the table is modified or deleted. It reorganizes table index
data on physical storage and improves I/O performance. Flush table is used to reload
the internal cache. Check table and Analyze table check for table errors and data
distribution respectively. The improvements with these commands may not be
significant for smaller tables. Reducing the extra space allocated to each column is also
a good idea for reducing total physical storage used. Reduced storage will optimize I/O
performance as well as cache utilization.

You should also check the storage engines used by specific tables. The two major
storage engines used in MySQL are MyISAM and InnoDB. InnnoDB provides full
transactional support and uses row-level locking, whereas MyISAM does not have
transaction support and uses table-level locking. MyISAM is a good choice for faster
reads where you have a large amount of data with limited writes on the table. MySQL
does support the addition of external storage engines in the form of plugins. One popular
open source storage engine is XtraDB by Percona systems.

https://technet24.ir

There’s more…
If your tables are really large, you should consider partitioning them. Partitioning tables
distributes related data across multiple files on disk. Partitioning on frequently used
keys can give you a quick boost. MySQL supports various different types of partitioning
such as hash partitions, range partitions, list partitions, key partitions, and also sub-
partitions.

You can specify hash partitioning with table creation as follows:

create table employees (
 id int not null,
 fname varchar(30),
 lname varchar(30),
 store_id int
) partition by hash(store_id) partitions 4;

Alternatively, you can also partition an existing table with the following query:

mysql> alter table employees partition by hash(store_id) partitions
4;

Sharding MySQL

You can also shard your database. Sharding is a form of horizontal partitioning where
you store part of the table data across multiple instances of a table. The table instance
can exist on the same server under separate databases or across different servers. Each
table instance contains parts of the total data, thus improving queries that need to access
limited data. Sharding enables you to scale a database horizontally across multiple
servers.

The best implementation strategy for sharding is to try to avoid it for as long as
possible. Sharding requires additional maintenance efforts on the operations side and
the use of proxy software to hide sharding from an application, or to make your
application itself sharding aware. Sharding also adds limitations on queries that require
access to the entire table. You will need to create cross-server joins or process data in
the application layer.

See also
The MySQL optimization guide at
https://dev.mysql.com/doc/refman/5.6/en/optimization.html
MySQL query execution plan information at
https://dev.mysql.com/doc/refman/5.6/en/execution-plan-information.html
InnoDB storage engine at https://dev.mysql.com/doc/refman/5.6/en/innodb-
storage-engine.html
Other storage engines available in MySQL at
https://dev.mysql.com/doc/refman/5.6/en/storage-engines.html
Table maintenance statements at http://dev.mysql.com/doc/refman/5.6/en/table-
maintenance-sql.html
MySQL test database at https://github.com/datacharmer/test_db

https://dev.mysql.com/doc/refman/5.6/en/optimization.html
https://dev.mysql.com/doc/refman/5.6/en/execution-plan-information.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/storage-engines.html
http://dev.mysql.com/doc/refman/5.6/en/table-maintenance-sql.html
https://github.com/datacharmer/test_db
https://technet24.ir

Optimizing MySQL performance –
configuration
MySQL has hundreds of settings that can be configured. Version 5.7 ships with many
improvements in default configuration values and requires far fewer changes. In this
recipe, we will look at some of the most important parameters for tuning MySQL
performance.

Getting ready
You will need access to a root account or an account with sudo privileges.

You will need access to a root account on the MySQL server.

https://technet24.ir

How to do it…
Follow these steps to improve MySQL configuration:

1. First, create a backup of the original configuration file:

$ cd /etc/mysql/mysql.conf.d
$ sudo cp mysqld.cnf mysqld.cnf.bkp

2. Now open my.cnf for changes:

$ sudo nano /etc/mysql/mysql.conf.d/mysqld.cnf

3. Adjust the following settings for your InnoDB tables:

innodb_buffer_pool_size = 512M # around 70% of total ram
innodb_log_file_size = 64M
innodb_file_per_table = 1
innodb_log_buffer_size = 4M

4. If you are using MyISAM tables, set the key buffer size:

key_buffer_size = 64M

5. Enable the slow query log:

slow_query_log = 1
slow_query_log_file = /var/lib/mysql/mysql-slow.log
long_query_time = 2

6. Disable the query cache:

query_cache_size = 0

7. Set the maximum connections as per your requirements:

max_connections = 300

8. Increase the temporary table size:

tmp_table_size = 32M

9. Increase max_allowed_packet to increase the maximum packet size:

max_allowed_packet = 32M

10. Enable binary logging for easy recovery and replication:

log_bin = /var/log/mysql/mysql-bin.log

11. Additionally, you can use mysqltuner.pl, which gives general recommendations
about the MySQL best practices:

$ wget http://mysqltuner.pl/ -O mysqltuner.pl
$ perl mysqltuner.pl

https://technet24.ir

How it works…
The preceding example shows some important settings for MySQL performance tuning.
Ensure that you change one setting at a time and assess its results. There is no silver
bullet that works for all, and similarly, some of these settings may or may not work for
you. Secondly, most settings can be changed at runtime with a SET statement. You can
test settings in runtime and easily reverse them if they do not work as expected. Once
you are sure that settings work as expected, you can move them to the configuration file.

The following are details on the preceding settings:

innodb_buffer_pool_size: the size of the cache where InnoDB data and indexes
are cached. The larger the buffer pool, the more data can be cached in it. You can
set this to around 70% of available physical memory as MySQL uses extra memory
beyond this buffer. It is assumed that MySQL is the only service running on server.
log_file_size: the size of the redo logs. These logs are helpful in faster writes
and crash recovery.
innodb_file_per_table: This determines whether to use shared table space or
separate files for each table. MySQL 5.7 defaults this setting to ON.
key_buffer_size: determines the key buffer for MyISAM tables.
slow_query_log and long_query_time enable slow query logging and set slow
query time respectively. Slow query logging can be useful for identifying repeated
slow queries.
Query_cache_size caches the result of a query. It is identified as a bottleneck for
concurrent queries and MySQL 5.6 disables it by default.
max_connections sets the number of maximum concurrent connections allowed.
Set this value as per your application's requirements. Higher values may result in
higher memory consumption and an unresponsive server. Use connection pooling in
the application if possible.
max_allowed_packet sets the size of the packet size that MySQL can send at a
time. Increase this value if your server runs queries with large result sets. mysqld
set it to 16M and mysqldump set it to 24M. You can also set this as a command-line
parameter.
log_bin enables binary logging, which can be used for replication and also for
crash recovery. Make sure that you set proper rotation values to avoid large dump
files.

There’s more…
MySQL performance tuning primer script: This script takes information from show
status and show variables statements. It gives recommendations for various settings such
as slow query log, max connections, query cache, key buffers, and many others. This
shell script is available at http://day32.com/MySQL.

You can download and use this script as follows:

$ wget http://day32.com/MySQL/tuning-primer.sh
$ sh tuning-primer.sh

Percona configuration wizard

Percona systems provide a developer-friendly, web-based configuration wizard to
create a configuration file for your MySQL server. The wizard is available at
http://tools.percona.com

MySQL table compression

Depending on the type of data, you can opt for compressed tables. Compression is
useful for tables with long textual contents and read-intensive workloads. Data and
indexes are stored in a compressed format, resulting in reduced I/O and a smaller
database size, though it needs more CPU cycles to compress and uncompress data. To
enable compression, you need an InnoDB storage engine with
innodb_file_per_table enabled and the file format set to Barracuda. Check MySQL
documents for more details on InnoDB compression at
https://dev.mysql.com/doc/innodb/1.1/en/innodb-compression.html.

http://day32.com/MySQL
http://tools.percona.com
https://dev.mysql.com/doc/innodb/1.1/en/innodb-compression.html
https://technet24.ir

See also
MySQL tuner script at https://github.com/major/MySQLTuner-perl
MySQL docs at https://dev.mysql.com/doc/refman/5.7/en/optimization.html
InnoDB table compression at https://dev.mysql.com/doc/refman/5.7/en/innodb-
table-compression.html

https://github.com/major/MySQLTuner-perl
https://dev.mysql.com/doc/refman/5.7/en/optimization.html
https://dev.mysql.com/doc/refman/5.7/en/innodb-table-compression.html

Creating MySQL replicas for scaling
and high availability
When your application is small, you can use a single MySQL server for all your
database needs. As your application becomes popular and you get more and more
requests, the database starts becoming a bottleneck for application performance. With
thousands of queries per second, the database write queue gets longer and read latency
increases. To solve this problem, you can use multiple replicas of the same database
and separate read and write queries between them.

In this recipe, we will learn how to set up replication with the MySQL server.

https://technet24.ir

Getting ready
You will need two MySQL servers and access to administrative accounts on both.

Make sure that port 3306 is open and available on both servers.

How to do it…
Follow these steps to create MySQL replicas:

1. Create the replication user on the Master server:

$ mysql -u root -p
mysql> grant replication slave on *.* TO ‘slave_user’@’10.0.2.62’
identified by ‘password’;
mysql> flush privileges;
mysql> quit

2. Edit the MySQL configuration on the Master server:

$ sudo nano /etc/mysql/my.cnf
[mysqld]
bind-address = 10.0.2.61 # your master server ip
server-id = 1
log-bin = mysql-bin
binlog-ignore-db = “mysql”

3. Restart MySQL on the Master server:

$ sudo service mysql restart

4. Export MySQL databases on the Master server. Open the MySQL connection and
lock the database to prevent any updates:

$ mysql -u root -p
mysql> flush tables with read lock;

5. Read the Master status on the Master server and take a note of it. This will be used
shortly to configure the Slave server:

mysql> show master status;

6. Open a separate terminal window and export the required databases. Add the
names of all the databases you want to export:

https://technet24.ir

$ mysqldump -u root -p --databases testdb > master_dump.sql

7. Now, unlock the tables after the database dump has completed:

mysql> UNLOCK TABLES;
mysql> quit;

8. Transfer the backup to the Slave server with any secure method:

$ scp master_backup.sql
ubuntu@10.0.2.62:/home/ubuntu/master_backup.sql

9. Next, edit the configuration file on the Slave server:

$ sudo nano /etc/mysql/my.cnf
[mysqld]
bind-address = 10.0.2.62
server-id = 2
relay_log=relay-log

10. Import the dump from the Master server. You may need to manually create a
database before importing dumps:

$ mysqladmin -u admin -p create testdb
$ mysql -u root -p < master_dump.sql

11. Restart the MySQL server:

$ sudo service mysql restart

12. Now set the Master configuration on the Slave. Use the values we received from
show master status command in step 5:

$ mysql -u root -p
mysql > change master to
master_host=’10.0.2.61’, master_user=’slave_user’,
master_password=’password’, master_log_file=’mysql-bin.000010’,
master_log_pos=2214;

13. Start the Slave:

mysql> start slave;

14. Check the Slave's status. You should see the message Waiting for master to
send event under Slave_IO_state:

mysql> show slave status\G

Now you can test replication. Create a new database with a table and a few sample
records on the Master server. You should see the database replicated on the Slave
immediately.

https://technet24.ir

How it works…
MySQL replication works with the help of binary logs generated on the Master server.
MySQL logs any changes to the database to local binary logs with a lightweight buffered
and sequential write process. These logs will then be read by the slave. When the slave
connects to the Master, the Master creates a new thread for this replication connection
and updates the slave with events in a binary log, notifying the slave about newly
written events in binary logs.

On the slave side, two threads are started to handle replication. One is the IO thread,
which connects to the Master and copies updates in binary logs to a local log file,
relay_log. The other thread, which is known as the SQL thread, reads events stored on
relay_log and applies them locally.

In the preceding recipe, we have configured Master-Slave replication. MySQL also
supports Master-Master replication. In the case of Master-Slave configuration, the
Master works as an active server, handling all writes to database. You can configure
slaves to answer read queries, but most of the time, the slave server works as a passive
backup server. If the Master fails, you manually need to promote the slave to take over
as Master. This process may require downtime.

To overcome problems with Master - Slave replication, MySQL can be configured in
Master-Master relation, where all servers act as a Master as well as a slave.
Applications can read as well as write to all participating servers, and in case any
Master goes down, other servers can still handle all application writes without any
downtime. The problem with Master-Master configuration is that it’s quite difficult to
set up and deploy. Additionally, maintaining data consistency across all servers is a
challenge. This type of configuration is lazy and asynchronous and violates ACID
properties.

In the preceding example, we configured the server-id variable in the my.cnf file.
This needs to be unique on both servers. MySQL version 5.6 adds another UUID for the
server, which is located at data_dir/auto.cnf. If you happen to copy data_dir from
Master to host or are using a copy of a Master virtual machine as your starting point for
a slave, you may get an error on the slave that reads something like master and slave
have equal mysql server UUIDs. In this case, simply remove auto.cnf from the slave
and restart the MySQL server.

There’s more…
You can set MySQL load balancing and configure your database for high availability
with the help of a simple load balancer in front of MySQL. HAProxy is a well known
load balancer that supports TCP load balancing and can be configured in a few steps, as
follows:

1. Set your MySQL servers to Master - Master replication mode.
2. Log in to mysql and create one user for haproxy health checks and another for

remote administration:

mysql> create user ‘haproxy_admin’@’haproxy_ip’;
mysql> grant all privileges on *.* to
‘haproxy_admin’@’haproxy_ip’ identified by ‘password’ with grant
option;
mysql> flush privileges;

3. Next, install the MySQL client on the HAProxy server and try to log into the mysql
server with the haproxy_admin account.

4. Install HAProxy and configure it to connect to mysql on the TCP port:

listen mysql-cluster
 bind haproxy_ip:3306
 mode tcp
 option mysql-check user haproxy_check
 balance roundrobin
 server mysql-1 mysql_srv_1_ip:3306 check
 server mysql-2 mysql_srv_2_ip:3306 check

5. Finally, start the haproxy service and try to connect to the mysql server with the
haproxy_admin account:

$ mysql -h haproxy_ip -u hapoxy_admin -p

https://technet24.ir

See also
MySQL replication configuration at
http://dev.mysql.com/doc/refman/5.6/en/replication.html
How MySQL replication works at
https://www.percona.com/blog/2013/01/09/how-does-mysql-replication-really-
work/
MySQL replication formats at http://dev.mysql.com/doc/refman/5.5/en/replication-
formats.html

http://dev.mysql.com/doc/refman/5.6/en/replication.html
https://www.percona.com/blog/2013/01/09/how-does-mysql-replication-really-work/
http://dev.mysql.com/doc/refman/5.5/en/replication-formats.html

Troubleshooting MySQL
In this recipe, we will look at some common problems with MySQL and learn how to
solve them.

https://technet24.ir

Getting ready
You will need access to a root account or an account with sudo privileges.

You will need administrative privileges on the MySQL server.

How to do it…
Follow these steps to troubleshoot MySQL:

1. First, check if the MySQL server is running and listening for connections on the
configured port:

$ sudo service mysql status
$ sudo netstat -pltn

2. Check MySQL logs for any error messages at /var/log/mysql.log and
mysql.err.

3. You can try to start the server in interactive mode with the verbose flag set:

$ which mysqld
/usr/sbin/mysqld
$ sudo /usr/sbin/mysqld --user=mysql --verbose

4. If you are accessing MySQL from a remote system, make sure that the server is set
to listen on a public port. Check for bind-address in my.cnf:

bind-address = 10.0.247.168

5. For any access denied errors, check if you have a user account in place and if it is
allowed to log in from a specific IP address:

mysql> select user, host, password from mysql.user where user =
‘username’;

6. Check the user has access to specified resources:

mysql > grant all privileges on databasename.* to ‘username’@’%’;

7. Check your firewall is not blocking connections to MySQL.
8. If you get an error saying mysql server has gone away, then increase

wait_timeout in the configuration file. Alternatively, you can re-initiate a
connection on the client side after a specific timeout.

9. Use a repair table statement to recover the crashed MyISAM table:

$ mysql -u root -p
mysql> repair table databasename.tablename;

10. Alternatively, you can use the mysqlcheck command to repair tables:

$ mysqlcheck -u root -p --auto-repair \
--check --optimize databasename

https://technet24.ir

See also
InnoDB troubleshooting at https://dev.mysql.com/doc/refman/5.7/en/innodb-
troubleshooting.html

https://dev.mysql.com/doc/refman/5.7/en/innodb-troubleshooting.html

Installing MongoDB
Until now, we have worked with the relational database server, MySQL. In this recipe,
we will learn how to install and configure MongoDB, which is a not only SQL
(NoSQL) document storage server.

https://technet24.ir

Getting ready
You will need access to a root account or an account with sudo privileges.

How to do it…
To get the latest version of MongoDB, we need to add the MongoDB source to Ubuntu
installation sources:

1. First, import the MongoDB GPG public key:

$ sudo apt-key adv \
--keyserver hkp://keyserver.ubuntu.com:80 \
--recv 7F0CEB10

2. Create a list file and add an install source to it:

$ echo “deb http://repo.mongodb.org/apt/ubuntu “$(lsb_release -
sc)”/mongodb-org/3.0 multiverse” | sudo tee
/etc/apt/sources.list.d/mongodb-org-3.0.list

3. Update the apt repository sources and install the MongoDB server:

$ sudo apt-get update
$ sudo apt-get install -y mongodb-org

4. After installation completes, check the status of the MongoDB server:

$ sudo service mongod status

5. Now you can start using the MongoDB server. To access the Mongo shell, use the
following command:

$ mongo

https://technet24.ir

How it works…
We have installed the MongoDB server from the MongoDB official repository. The
Ubuntu package repository includes the MongoDB package in it, but it is not up to date
with the latest release of MongoDB. With GPG keys, Ubuntu ensures the authenticity of
the packages being installed. After importing the GPG key, we have created a list file
that contains the installation source of the MongoDB server.

After installation, the MongoDB service should start automatically. You can check logs
at /var/log/mongodb/mongod.log.

See also
MongoDB installation guide at http://docs.mongodb.org/manual/tutorial/install-
mongodb-on-ubuntu/

http://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/
https://technet24.ir

Storing and retrieving data with
MongoDB
In this recipe, we will look at basic CRUD operations with MongoDB. We will learn
how to create databases, store, retrieve, and update stored data. This is a recipe to get
started with MongoDB.

Getting ready
Make sure that you have installed and configured MongoDB. You can also use the
MongoDB installation on a remote server.

https://technet24.ir

How to do it…
Follow these steps to store and retrieve data with MongoDB:

1. Open a shell to interact with the Mongo server:

$ mongo

2. To open a shell on a remote server, use the command given. Replace server_ip
and port with the respective values:

$ mongo server_ip:port/db

3. To create and start using a new database, type use dbname. Since schemas in
MongoDB are dynamic, you do not need to create a database before using it:

> use testdb

4. You can type help in Mongo shell to get a list of available commands and help
regarding a specific command:

> help: Let’s insert our first document:

> db.users.insert({‘name’:’ubuntu’,’uid’:1001})

5. To view the created database and collection, use the following commands:

> show dbs

> show collections

6. You can also insert multiple values for a key, for example, which groups a user
belongs to:

> db.users.insert({‘name’:’root’,’uid’:1010, ‘gid’:[1010, 1000,
1111]})

7. Check whether a document is successfully inserted:

> db.users.find()

8. To get a single record, use findOne():

> db.users.findOne({uid:1010})

9. To update an existing record, use the update command as follows:

> db.users.update({name:’ubuntu’}, {$set:{uid:2222}})

10. To remove a record, use the remove command. This will remove all records with a
name equal to ubuntu:

> db.users.remove({‘name’:’ubuntu’})

11. To drop an entire collection, use the drop() command:

> db.users.drop()

12. To drop a database, use the dropDatabase() command:

> db.users.dropDatabase()

https://technet24.ir

How it works…
The preceding examples show very basic CRUD operations with the MongoDB shell
interface. MongoDB shell is also a JavaScript shell. You can execute all JS commands
in a MongoDB shell. You can also modify the shell with the configuration file,
~/.mongorc.js. Similar to shell, MongoDB provides language-specific drivers, for
example, MongoDB PHP drivers to access MongoDB from PHP.

MongoDB works on the concept of collections and documents. A collection is similar to
a table in MySQL and a document is a set of key value stores where a key is similar to a
column in a MySQL table. MongoDB does not require any schema definitions and
accepts any pair of keys and values in a document. Schemas are dynamically created. In
addition, you do not need to explicitly create the collection. Simply type a collection
name in a command and it will be created if it does not already exist. In the preceding
example, users is a collection we used to store all data. To explicitly create a
collection, use the following command:

> use testdb
> db.createCollection(‘users’)

You may be missing the where clause in MySQL queries. We have already used that
with the findOne() command:

> db.users.findOne({uid:1010})

You can use $lt for less than, $lte for less than or equal to, $gt for greater than, $gte
for greater than or equal to, and $ne for not equal:

> db.users.findOne({uid:{$gt:1000}})

In the preceding example, we have used the where clause with the equality condition
uid=1010. You can add one more condition as follows:

> db.users.findOne({uid:1010, name:’root’})

To use the or condition, you need to modify the command as follows:

> db.users.find ({$or:[{name:’ubuntu’}, {name:’root’}]})

You can also extract a single key (column) from the entire document. The find
command accepts a second optional parameter where you can specify a select criteria.

You can use values 1 or 0. Use 1 to extract a specific key and 0 otherwise:

> db.users.findOne({uid:1010}, {name:1})

> db.users.findOne({uid:1010}, {name:0})

https://technet24.ir

There’s more…
You can install a web interface to manage the MongoDB installation. There are various
open source web interfaces listed on Mongo documentation at
http://docs.mongodb.org/ecosystem/tools/administration-interfaces/.

When you start a mongo shell for the first time, you may see a warning message
regarding transperent_hugepage and defrag. To remove those warnings, add the
following lines to /etc/init/mongod.conf, below the $DAEMONUSER
/var/run/mongodb.pid line:

if test -f /sys/kernel/mm/transparent_hugepage/enabled; then
 echo never > /sys/kernel/mm/transparent_hugepage/enabled
fi
if test -f /sys/kernel/mm/transparent_hugepage/defrag; then
 echo never > /sys/kernel/mm/transparent_hugepage/defrag
fi

Find more details on this Stack Overflow post at
http://stackoverflow.com/questions/28911634/how-to-avoid-transparent-hugepage-
defrag-warning-from-mongodb

http://docs.mongodb.org/ecosystem/tools/administration-interfaces/
http://stackoverflow.com/questions/28911634/how-to-avoid-transparent-hugepage-defrag-warning-from-mongodb

See also
Mongo CRUD tutorial at https://docs.mongodb.org/manual/applications/crud/
MongoDB query documents at https://docs.mongodb.org/manual/tutorial/query-
documents/

https://docs.mongodb.org/manual/applications/crud/
https://docs.mongodb.org/manual/tutorial/query-documents/
https://technet24.ir

Chapter 6. Network Storage
In this chapter, we will cover the following recipes:

Installing the Samba server
Adding users to the Samba server
Installing the secure FTP server
Synchronizing files with Rsync
Performance tuning the Samba server
Troubleshooting the Samba server
Installing the Network File System

Introduction
Often we need to store a lot of data and local systems don't have enough space.
Sometimes, we need to quickly share this data across multiple systems and users. Also,
when you have a big network, chances are you have Linux systems as well as Windows
or Mac. Centralized networked storage can help to solve these storage and sharing
problems. Linux provides various options, such as Samba and NFS, to host a
centralized storage server and share data across multiple computers.

In this chapter, we will learn how to set up a centralized storage system. We will set up
the Samba server and NFS server. We will learn how to enable synchronization with
Rsync and set Windows clients to access storage servers.

https://technet24.ir

Installing the Samba server
In this recipe, we will learn how to install Samba as our network storage server. Samba
is a collection of open source applications that implement Server Message Block
(SMB) and Common Internet File System (CIFS) protocols on Unix systems. This
allows Samba to be accessible across different types of network system. Samba
provides various other functionalities, such as a domain controller for the networks of
Windows systems. In this recipe, we will focus on using Samba as a storage server.

Getting ready
You will need access to a root account or an account with sudo privileges

If your server is using any firewall system, make sure to open the necessary network
ports. Samba runs on TCP 139 and 445 and UDP ports 137 and 138. Check Chapter 2,
Networking, for more details on firewall configuration.

https://technet24.ir

How to do it…
Follow these steps to install the Samba server:

1. Install the Samba server with the following command:

$ sudo apt-get update
$ sudo apt-get install samba -y

2. After installation is complete, you can check the Samba version with the following
command:

$ smbd --version

3. Next, we need to configure Samba to enable sharing on the network. First, create a
backup of the original configuration file:

$ sudo cp /etc/samba/smb.conf /etc/samba/smb.conf.orignl

4. Next, open smb.conf and replace its contents with the following:

[global]
workgroup = WORKGROUP
server string = Samba Server
netbios name = ubuntu
security = user
map to guest = bad user
dns proxy = no
[Public]
path = /var/samba/shares/public
browsable =yes
writable = yes
guest ok = yes
read only = no
create mask = 644

5. Next, we need to create a shared directory:

$ sudo mkdir -p /var/samba/shares/public

6. Change the directory permissions to make it world writable:

$ sudo chmod 777 /var/samba/shares/public

7. Restart the Samba service for the changes to take effect:

$ sudo service smbd restart

Now you can access this Samba share on the Windows client. Open Windows Explorer
and in the address bar, type in \\ubuntu or \\your-server-ip. You should see the
shared directory, Public, as follows:

https://technet24.ir

How it works…
Samba is quite an old technology, especially in the age of Cloud storage such as
Dropbox and Amazon S3. However, when it comes to private networking, Samba offers
a hassle-free setup and is always available for free. All you need is a small server with
some free storage space. The release of Samba 4 has added Active Directory (AD)
support. Now it's possible to set up Windows AD on Linux servers. Support for AD
comes with a wide range of other features, including DNS for name resolution,
centralized storage, and authentication with LDAP and Kerberos.

As you can see in the preceding example, setting up Samba is quick and easy, and you
can easily get started with network storage within minutes. We can install the Samba
server with a single command, as Samba packages are available in the Ubuntu default
package repository. After installation, we have created a new quick and dirty
configuration file which defines a few parameters, such as the server name (netbios
name) and a share definition. We have created a publicly-shared directory where
everyone can read and write the contents.

Once you are done with installation and initial testing, make sure that you remove public
sharing and enable authenticated access to your Samba shares. You don't want the server
to fill up with data from unknown people. In the next recipes, we will take a closer look
at user management and access control for Samba shares.

There's more…
To secure your Samba installation and limit access to your local network or subnet, you
can use the following configuration parameters:

[globals]
hosts deny = ALL
hosts allow = xxx.xxx.xxx.xxx/yy 127.
interfaces = eth0 lo
bind interfaces only = Yes

This configuration limits Samba to listen only on listed interfaces. In this case, its eth0,
the Ethernet network, and lo, localhost. Connection requests from all other hosts are
denied.

Tools for personal file sharing

If you need a simple file sharing tool for your personal use and do not want to set up and
configure Samba, then you can try using a tool named OwnCloud. It is very similar to
Dropbox and is open source. It gives you web access to all your files and documents.
Plus, you get desktop and mobile client apps to sync all files to a remote server.

Another good tool is BitTorrent Sync. Again, this is a file synchronization tool, but this
time it is peer-to-peer file synchronization. If you really care about the privacy and
security of data, then this tool is made for you. All files are synchronized between two
or more systems (say, your desktop and laptop) without the use of any centralized
server.

https://technet24.ir

See also
Ubuntu server guide for Samba at https://help.ubuntu.com/lts/serverguide/samba-
fileserver.html

https://help.ubuntu.com/lts/serverguide/samba-fileserver.html

Adding users to the Samba server
In the previous recipe, we installed the Samba server and created a public share
accessible to everyone. In this recipe, we will learn how to add authentication to the
Samba server and password protect shared directories.

https://technet24.ir

Getting ready
You will need access to a root account or an account with sudo privileges.

Make sure that the Samba server is installed and running.

How to do it…
Follow these steps to add users to the Samba server:

1. Create a new user account. You can use any existing account or add a new Samba
only account with the following command. Change smbuser to your desired
username:

$ sudo useradd -d /home/smbuser -s /sbin/nologin smbuser

2. Now, we need to allocate a Samba password to this new user. First, enter your
sudo password, followed by the new password for your Samba account, and then
verify the password:

$ sudo smbpasswd -a smbuser

3. Create a shared directory for this user and change its ownership:

$ sudo chown smbuser:smbuser /var/samba/share/smbuser

4. Next, edit the Samba configuration to add the preceding share:

[Private]
path = /var/samba/shares/smbuser
browsable = yes
writable = yes
valid users = smbuser

5. Save the changes to the configuration file and reload the Samba server:

$ sudo service smbd reload

6. Now, check in Windows Explorer. You should see the new shared directory. On
trying to open that directory, you will be asked for a Samba username and
password:

https://technet24.ir

How it works…
Samba allows various different types of configuration for shared resources. In the
previous recipe, we learned how to set up a public share, and in this recipe we have
created a private share for a single user. We have created a new user with the nologin
permission. This will allow smbuser to access only the Samba shared directory and
nothing else. You can also use existing user accounts on the Ubuntu server.

After adding a user, we set a password to be used with the Samba server. Samba
maintains a database of passwords separately from Ubuntu passwords. You can enable
or disable Samba users with the following commands:

Enable a Samba user:

$ sudo smbpasswd -e username

Disable a Samba user:

$ sudo smbpasswd -d username

Remove a Samba user:

$ sudo smbpasswd -x username

To enable multiple users to access a shared resource, you can specify the list of users
under the valid users line, as follows:

valid users = userone, usertwo, userthree

Similarly, you can limit write permissions to a set of users, as follows:

write list = userone, usertwo

Samba also supports the sharing of users, home directories. This will enable users to
create shares for all existing Ubuntu users with a single block of configuration. Add the
following lines to the Samba configuration to enable the sharing of home directories:

[homes]
browseable = No
valid users = %S

After this configuration, user's home directories will be available at //server-
name/user-name. You will be required to provide a username and password to access
these shares. Home directories are by default shared as read only. To enable write

https://technet24.ir

permissions, add the following line to the preceding block:

writable = yes

Note that on Windows, you will not be able to access multiple home directories from a
single Windows system. Windows does not allow multiple user authentications to a
single host.

Alternatively, to share a directory with a group of users, you can use group sharing. Use
the following line to share a directory with a group of users:

path=/var/samba/shares/group-share
valid users = @groupname

Then, set group ownership on the directory, group-share:

$ sudo chgrp groupname /var/samba/shares/group-share

There are some other directives such as create mask, directory mask, force user,
and force group. These directives can be used to determine the permissions and
ownership of the newly created files under Samba share.

After any changes to the Samba configuration file, use testparm to check the
configuration for any syntax errors:

$ testparm

It should show the Loaded services file OK message, as listed in following screenshot:

There's more…
With the release of version 4, Samba can be set as a domain controller. Check the
official documentation for more details at the following link:

https://wiki.samba.org/index.php/Setup_a_Samba_Active_Directory_Domain_Controller

You can also configure the Samba server to authenticate against the LDAP server. LDAP
installation and configuration is covered in Chapter 14, Centralized Auth Service. For
more details on Samba and LDAP integration, check out the Ubuntu server guide at
https://help.ubuntu.com/lts/serverguide/samba-ldap.html.

https://wiki.samba.org/index.php/Setup_a_Samba_Active_Directory_Domain_Controller
https://help.ubuntu.com/lts/serverguide/samba-ldap.html
https://technet24.ir

See also
Linux home server Samba guide at http://www.brennan.id.au/18-
Samba.html#useraccounts

http://www.brennan.id.au/18-Samba.html#useraccounts

Installing the secure FTP server
In this recipe, we will learn how to install the File Transfer Protocol (FTP) server and
configure it to use SSL encryption.

https://technet24.ir

Getting ready
You will need access to a root account or an account with sudo privileges.

How to do it…
Follow these steps to install the secure FTP server:

1. Install vsftpd with the following command:

$ sudo apt-get update
$ sudo apt-get install vsftpd

2. After installation, we can configure vsftpd by editing /etc/vsftpd.conf.
3. First create the SSL certificate for the FTP server:

sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout
/etc/ssl/private/vsftpd.pem -out /etc/ssl/private/vsftpd.pem

4. Next, configure Vsftpd. Add or edit the following lines in vsftpd.conf:

anonymous_enable=no
local_enable=yes
write_enable=yes
chroot_local_user=yes
Add the SSL certificate created in the previous step:
rsa_cert_file=/etc/ssl/private/vsftpd.pem
rsa_private_key_file=/etc/ssl/private/vsftpd.pem
ssl_enable=yes
ssl_ciphers=high
force_local_data_ssl=yes
force_local_logins_ssl=yes

5. Save and exit the configuration file.
6. Restart the Vsftpd server:

$ sudo service vsftpd restart

7. Now you can use any FTP client that supports the SFTP protocol to connect to your
FTP server. The following is the configuration screen for SFTP client FileZilla:

https://technet24.ir

How it works…
FTP is an insecure protocol and you should avoid using it, especially in a production
environment. Limit use of FTP to downloads only and use more secure methods, such as
SCP, to upload and transfer files on servers. If you have to use FTP, make sure that you
have disabled anonymous access and enable SFTP to secure your data and login
credentials.

In this recipe, we have installed Vsftpd, which is a default FTP package in the Ubuntu
repository. Vsftpd stands for very secure FTP daemon, and it is designed to protect
against possible FTP vulnerabilities. It supports both FTP and SFTP protocols.

As Vsftpd is available in the Ubuntu package repository, installation is very simple,
using only a single command. After Vsftpd installed, we created an SSL certificate to be
used with an FTP server. With this configuration, we will be using the SFTP protocol,
which is more secure than FTP. You can find more details about SSL certificates in
Chapter 3, Working with Web Servers.

Under the Vsftpd configuration, we have modified some settings to disable anonymous
logins, allowed local users to use FTP, enabled write access, and used chroot for local
users. Next, we have set a path for previously generated SSL certificates and enabled
the use of SSL. Additionally, you can force the use of TLS over SSL by adding the
following lines to the configuration file:

ssl_tlsv1=yes
ssl_sslv2=no
ssl_sslv3=no

https://technet24.ir

There's more…
This recipe covers FTP as a simple and easy-to-use tool for network storage. FTP is
inherently insecure and you must avoid its use in a production environment. Server
deployments can easily be automated with simple Git hooks or the sophisticated
integration of continuous deployment tools such Chef, Puppet, or Ansible.

See also
Ubuntu server FTP guide at https://help.ubuntu.com/lts/serverguide/ftp-server.html

https://help.ubuntu.com/lts/serverguide/ftp-server.html
https://technet24.ir

Synchronizing files with Rsync
In this recipe, we will learn how to use the Rsync utility to synchronize files between
two directories or between two servers.

How to do it…
Follow these steps to synchronize files with Rsync:

1. Set up key-based authentication between source and destination servers. We can
use password authentication as well, which is described later in this recipe.

2. Create a sample directory structure on the source server. You can use existing files
as well:

ubuntu@src$ mkdir sampledir
ubuntu@src$ touch sampledir/file{1..10}

3. Now, use the following command to synchronize the entire directory from the
source server to your local system. Note the / after sampledir. This will copy
contents of sampledir in the backup. Without /, the entire sampledir will be
copied to the backup:

ubuntu@dest$ rsync -azP -e ssh
ubuntu@10.0.2.8:/home/ubuntu/sampledir/ backup

As this is the first time, all files from sampledir on the remote server will be
downloaded in a backup directory on your local system. The output of the
command should look like the following screenshot:

4. You can check the downloaded files with the ls command:

$ ls -l backup

5. Add one new file on the remote server under sampledir:

ubuntu@src$ touch sampledir/file22

6. Now re-execute the rsync command on the destination server. This time, rsync
will only download a new file and any other update files. The output should look
similar to the following screenshot:

https://technet24.ir

ubuntu@dest$ rsync -azP -e ssh
ubuntu@10.0.2.8:/home/ubuntu/sampledir backup

7. To synchronize two local directories, you can simply specify the source and
destination path with rsync, as follows:

$ rsync /var/log/mysql ~/mysql_log_backup

How it works…
Rsync is a well known command line file synchronization utility. With Rsync, you can
synchronize files between two local directories, as well as files between two servers.
This tool is commonly used as a simple backup utility to copy or move files around
systems. The advantage of using Rsync is that file synchronization happens
incrementally, that is, only new and modified files will be downloaded. This saves
bandwidth as well as time. You can quickly schedule a daily backup with a cron and
Rsync. Open a cron jobs file with ctontab-e and add the following line to enable daily
backups:

$ crontab -e # open crontab file
@daily rsync -aze ssh ubuntu@10.0.2.50:/home/ubuntu/sampledir
/var/backup

In the preceding example, we have used a pull operation, where we are downloading
files from the remote server. Rsync can be used to upload files as well. Use the
following command to push files to the remote server:

$ rsync -azP -e ssh backup ubuntu@10.0.2.50:/home/ubuntu/sampledir

Rsync provides tons of command line options. Some options that are used in the
preceding example are –a, a combination of various other flags and stands for achieve.
This option enables recursive synchronization and preserves modification time,
symbolic links, users, and group permissions. Option -z is used to enable compression
while transferring files, while option -P enables progress reports and the resumption of
interrupted downloads by saving partial files.

We have used one more option, -e, which specifies which remote shell to be used while
downloading files. In the preceding command, we are using SSH with public key
authentication. If you have not set public key authentication between two servers, you
will be asked to enter a password for your account on the remote server. You can skip
the -e flag and rsync will use a non-encrypted connection to transfer data and login
credentials.

Note that the SSH connection is established on the default SSH port, port 22. If your
remote SSH server runs on a port other than 22, then you can use a slightly modified
version of the preceding command as follows:

rsync -azP -e "ssh -p port_number" source destination

https://technet24.ir

Anther common option is --exclude, which specifies the pattern for file names to be
excluded. If you need to specify multiple exclusion patterns, then you can specify all
such patterns in a text file and include that file in command with the options --
exclude-from=filename. Similarly, if you need to include some specific files only,
you can specify the inclusion pattern with options --include=pattern or --include-
from=filename.

Exclude a single file or files matching with a single pattern:

$ rsync -azP --exclude 'dir*' source/ destination/

Exclude a list of patterns or file names:

$ rsync -azP --exclude-from 'exclude-list.txt' source/ destination/

By default, Rsync does not delete destination files, even if they are deleted from the
source location. You can override this behavior with a --delete flag. You can create a
backup of these files before deleting them. Use the --backup and --backup-dir
options to enable backups. To delete files from the source directory, you can use the --
remove-source-files flag. Another handy option is --dry-run, which simulates a
transfer with the given flags and displays the output, but does not modify any files. You
should use --dry-run before using any deletion flags.

Use this to remove source files with --dry-run:

$ rsync --dry-run --remove-source-files -azP source/ destination/

There's more…
Rsync is a great tool to quickly synchronize the files between source and destination, but
it does not provide bidirectional synchronization. It means the changes are synchronized
from source to destination and not vice versa. If you need bi-directional
synchronization, you can use another utility, Unison. You can install Unison on Debian
systems with the following command:

$ sudo apt-get -y install unison

Once installed, Unison is very similar to Rsync and can be executed as follows:

$ unison /home/ubuntu/documents
ssh://10.0.2.56//home/ubuntu/documents

You can get more information about Unison in the manual pages with the following
command:

$ man unison

If you wish to have your own Dropbox-like mirroring tool which continuously monitors
for local file changes and quickly replicates them to network storage, then you can use
Lsyncd. Lsyncd is a live synchronization or mirroring tool, which monitors the local
directory tree for any events (with inotify and fsevents), and then after few seconds
spawns a synchronization process to mirror all changes to a remote location. By default,
Lsyncd uses Rsync for synchronization.

As always, Lsyncd is available in the Ubuntu package repository and can be installed
with a single command, as follows:

$ sudo apt-get install lsyncd

To get more information about Lsyncd, check the manual pages with the following
command:

$ man lsyncd

https://technet24.ir

See also
Ubuntu Rsync community page at https://help.ubuntu.com/community/rsync

https://help.ubuntu.com/community/rsync

Performance tuning the Samba server
In this recipe, we will look at Samba configuration parameters in order to get optimum
performance out of your Samba installation.

https://technet24.ir

Getting ready
You will need root access or an account with sudo privileges.

It is assumed that you have installed the Samba server and it is properly working.

How to do it…
1. Open the Samba configuration file located at /etc/samba/smb.conf:

$ sudo vi /etc/samba/smb.conf

2. Add or edit the following options under the global section of the configuration
file:

[global]
log level = 1
socket options = TCP_NODELAY IPTOS_LOWDELAY SO_RCVBUF=131072
SO_SNDBUF=131072 SO_KEEPALIVE
read raw = Yes
write raw = Yes
strict locking = No
oplocks = yes
max xmit = 65535
dead time = 15
getwd cache = yes
aio read size = 16384
aio write size = 16384
use sendfile = true

3. Save the configuration file and restart the Samba service:

$ sudo service smbd restart

https://technet24.ir

How it works…
The Samba server provides various configuration parameters. It uses TCP sockets to
connect with clients and for data transfer. You should compare Samba's performance
with similar TCP services such as FTP.

The preceding example lists some commonly used configuration options for Samba.
Some of these options may work for you and some of them may not. The latest Samba
version ships with default values for these options that work fairly well for common
network conditions. As always, test these options one at a time or in a group, and
benchmark each modification to get optimum performance.

The explanation for the preceding is as follows:

log level: The default log level is set to 0. Samba produces a lot of debugging
information and writing all this to disk is a slow operation. Increasing the log level
results in increased logs and poor performance. Unless you are debugging the
server, it is good to have the log level set to the lowest value.
socket options: These are the TCP/IP stack level options.
read raw and write raw: These options enable Samba to use large read and
writes to a network up to 64 KB in a single request. Some older clients may have
issues with raw reads and writes. Check your setup before using these options.
dead time and so_keepalive: These options set periodic checks for dead
connections and close such connections and free unused memory.
oplocks: This allows clients to cache files locally and results in overall
performance improvement. The default setting disables oplocks.
aio read size and aio write size: This Asynchronous IO (AIO) allows
Samba to read and write asynchronously when a file's size is bigger than the
specified size values.

You can find various other options and respective explanations in the Samba manual
pages. Use the following command to open the manual pages on your server:

$ man smbd

Troubleshooting the Samba server
In this recipe, we will look at the various tools available for troubleshooting Samba
shares.

https://technet24.ir

How to do it…
Samba troubleshooting can be separated in to three parts: network connectivity, Samba
process issues, and Samba configuration issues. We will go through each of them step
by step. As a first step for troubleshooting, let's start with network testing.

Checking network connectivity

Follow these steps to check network connectivity:

1. Send ping requests to the Samba server to check network connectivity:

$ ping samba-server-ip

2. Check name resolution. Ping the Samba server by its name. Windows uses
netbios for name resolution:

$ ping samba-server-name

3. Check the Samba configuration for network restrictions. Temporarily open Samba
to all hosts.

4. Use tcpdump to check Samba network communication. Start tcpdump as follows
and let it run for some time while accessing the Samba server from clients. All
packets will be logged in a file named tcpdump in the current directory:

$ sudo tcpdump -p -s 0 -w tcpdumps port 445 or port 139

5. If you know the client IP address, you can filter tcpdumps with the following
command:

$ sudo tcpdump -s 0 -w tcpdumps host client_IP

6. Connect to the Samba process with telnet:

$ echo "hello" | telnet localhost 139

7. Check whether your Samba server uses a firewall. If so, check the allowed ports
on your firewall. If the firewall is on, make sure you have allowed the Samba ports
as follows:

8. Try connecting to FTP or a similar TCP service on the Samba server. This may
identify the problems with the TCP stack.

9. Use nmblookup to test netbios name resolution for Windows systems.

Checking the Samba service

Follow these steps to check Samba service:

1. Check whether the Samba service has started properly:

$ sudo service samba status

2. Use netstat to check the Samba daemon is listening on the network:

$ sudo netstat -plutn

3. Use ps to check the Samba processes. Look for the process name, smbd, in the
output of the following command:

https://technet24.ir

$ ps aux

4. Use strace to view the Samba process logs. This will list all filesystem activities
by smbd process:

$ strace smbd

Checking Samba logs

Follow these steps to check Samba logs:

1. Check Samba log files for any warning or errors.
2. Increase the log level to get more debugging information:

[global]
log level = 3

3. Enable logging for a specific client with client-specific configuration. First, set the
following options under smb.conf to enable client-specific configuration:

[global]
 log level = 0
 log file = /var/log/samba/log.%m
 include = /etc/samba/smb.conf.%m

4. Now create a new configuration file for a specific client:

$ sudo vi /etc/samba/smb.conf.client1
[global]
log level = 3

5. Similarly, you can create separate logs for each Samba user:

[global]
 log level = 0
 log file = /var/log/samba/log.%u
 include = /etc/samba/smb.conf.%u

Checking Samba configuration

Follow these steps to check Samba configuration:

1. Check the registered users and accounts in the Samba server user database with the
pdbedit command:

$ sudo pdbedit -L

2. Check the shares with the smbtree command:

3. Use the testparm command to find any errors in the Samba configuration:

$ testparm

4. Check for allowed users and group names. Make sure that group names start with
the @ symbol.

5. Back up your configuration files and then use minimal configuration to test Samba:

[global]
 workgroup = WORKGROUP
 security = user
 browsable = yes
[temp]
 path = /tmp
 public = yes

Note

Publicly writable directories are not good for server security. Remove the
preceding configuration as soon as testing is finished.

6. Test your configuration with smbcclient. It should list all Samba shares:

$ smbclient -L localhost -U%

https://technet24.ir

See also
Samba docs troubleshooting at
https://www.samba.org/samba/docs/using_samba/ch12.html

https://www.samba.org/samba/docs/using_samba/ch12.html
https://technet24.ir

Installing the Network File System
Network File System (NFS) is a distributed filesystem protocol that allows clients to
access remote files and directories as if they are available on the local system. This
allows client systems to leverage large centrally shared storage. Users can access the
same data from any system across the network. A typical setup for NFS includes a
server that runs the NFS daemon, nfsd, and lists (export) files and directories to be
shared. A client system can mount these exported directories as their local file system.

In this recipe, we will learn how to install the NFS server and client systems.

Getting ready
You will need two Ubuntu systems: one as a central NFS server and another as a client.
For this recipe, we will refer to the NFS server with the name Host and the NFS client
with the name Client. The following is an example IP address configuration for the
Host and Client systems:

Host - 10.0.2.60
Client - 10.0.2.61

You will need access to a root account on both servers, or at least an account with sudo
privileges.

https://technet24.ir

How to do it…
Follow these steps to install NFS:

1. First, we need to install the NFS server:

$ sudo apt-get update
$ sudo apt-get install nfs-kernel-server

2. Create the directories to be shared:

$ sudo mkdir /var/nfs

3. Add this directory to NFS exports under /etc/exports:

$ sudo nano /etc/exports

4. Add the following line to /etc/exports:

/var/nfs *(rw,sync,no_subtree_check)

5. Save and close the exports file.
6. Now, restart the NFS service:

$ sudo service nfs-kernel-server restart

7. Next, we need to configure the client system to access NFS shares.
8. Create a mount point for NFS shares.
9. Install the nfs-common package on the client side:

$ sudo apt-get install nfs-common
$ sudo mkdir -p /var/nfsshare

10. Mount the NFS shared directory on the newly-created mount point:

$ sudo mount 10.0.2.60:/var/nfs /var/nfsshare

11. Confirm the mounted share with the following command:

$ mount -t nfs

12. Now, change the directory to /var/nfsshare, and you are ready to use NFS.

How it works…
In the preceding example, we have installed the NFS server and then created a directory
that will share with clients over the network. The configuration file /etc/exports
contains all NFS shared directories. The syntax to add new exports is as follows:

directory_to_share client_IP_or_name(option1, option2, option..n)

The options used in exports are as follows:

rw: This enables read/write access. You can enable read-only access with the ro
option.
sync: This forces the NFS server to write changes to disk before replying to
requests. sync is the default option; you can enable async operations by explicitly
stating async. Async operations may get a little performance boost but at the cost of
data integrity.
no_subtree_check: This disables subtree checking, which provides more stable
and reliable NFS shares.

You can check the exports documentation for more export options. Use the man
command to open the exports manual pages, as follows:

$ man exports

In the preceding example, we have used the mount command to mount the NFS share.
Once the client system has restarted, this mount will be removed. To remount the NFS
share on each reboot, you can add the following line to /etc/fstab file:

10.0.2.60:/var/nfs /var/nfsshare nfs4 _netdev,auto 0 0

To mount all shares exported by the NFS server, you can use the following command:

$ sudo mount 10.0.2.60:/ /var/nfsshare

https://technet24.ir

There's more…
NFS 4.1 adds support for pNFS, which enables clients to access the storage device
directly and in parallel. This architecture eliminates scalability and performance issues
with NFS deployments.

See also
NFS exports options at
http://manpages.ubuntu.com/manpages/trusty/man5/exports.5.html
Parallel NFS at http://www.pnfs.com/
NFS documentation in manual pages, by using the following command:

$ man nfs

http://manpages.ubuntu.com/manpages/trusty/man5/exports.5.html
http://www.pnfs.com/
https://technet24.ir

Chapter 7. Cloud Computing
In this chapter, we will cover the following recipes:

Creating virtual machine with KVM
Managing virtual machines with virsh
Setting up your own cloud with OpenStack
Adding a cloud image to OpenStack
Launching a virtual instance with OpenStack
Installing Juju a service orchestration framework
Managing services with Juju

Introduction
Cloud computing has become the most important terminology in the computing sphere. It
has reduced the effort and cost required to set up and operate the overall computing
infrastructure. It has helped various businesses quickly start their business operations
without wasting time planning their IT infrastructure, and has enabled really small teams
to scale their businesses with on-demand computing power.

The term cloud is commonly used to refer to a large network of servers connected to the
Internet. These servers offer a wide range of services and are available for the general
public on a pay-per-use basis. Most cloud resources are available in the form of
Software as a Service (SaaS), Platform as a Service (PaaS), or Infrastructure as a
Service (IaaS). A SaaS is a software system hosted in the cloud. These systems are
generally maintained by large organizations; a well-known example that we commonly
use is Gmail and the Google Docs service. The end user can access these application
through their browsers. He or she can just sign up for the service, pay the required fees,
if any, and start using it without any local setup. All data is stored in the cloud and is
accessible from any location.

PaaS provide a base platform to develop and run applications in the cloud. The service
provider does the hard work of building and maintaining the infrastructure and provides
easy-to-use APIs that enable developers to quickly develop and deploy an application.
Heroku and the Google App Engine are well-known examples of PaaS services.

Similarly, IaaS provides access to computing infrastructure. This is the base layer of
cloud computing and provides physical or virtual access to computing, storage, and
network services. The service builds and maintains actual infrastructure, including
hardware assembly, virtualization, backups, and scaling. Examples include Amazon
AWS and the Google Compute Engine. Heroku is a platform service built on top of the
AWS infrastructure.

These cloud services are built on top of virtualization. Virtualization is a software
system that enables us to break a large physical server into multiple small virtual
servers that can be used independently. One can run multiple isolated operating systems
and applications on a single large hardware server. Cloud computing is a set of tools
that allows the general public to utilize these virtual resources at a small cost.

Ubuntu offers a wide range of virtualization and cloud computing tools. It supports

https://technet24.ir

hypervisors, such as KVM, XEN, and QEMU; a free and open source cloud computing
platform, OpenStack; the service orchestration tool Juju and machine provisioning tool
MAAS. In this chapter, we will take a brief look at virtualization with KVM. We will
install and set up our own cloud with OpenStack and deploy our applications with Juju.

Creating virtual machine with KVM
Ubuntu server gives you various options for your virtualization needs. You can choose
from KVM, XEN, QEMU, VirtualBox, and various other proprietary and open source
tools. KVM, or Kernel virtual machine, is the default hypervisor on Ubuntu. In this
recipe, we will set up a virtual machine with the help of KVM. Ubuntu, being a popular
cloud distribution provides prebuilt cloud images that can be used to start virtual
machines in the cloud. We will use one of these prebuilt images to build our own local
virtual machine.

https://technet24.ir

Getting ready
As always, you will need access to the root account or an account with sudo privileges.

How to do it…
Follows these steps to install KVM and launch a virtual machine using cloud image:

1. To get started, install the required packages:

$ sudo apt-get install kvm cloud-utils \
genisoimage bridge-utils

Tip

Before using KVM, you need to check whether your CPU supports hardware
virtualization, which is required by KVM. Check CPU support with the following
command:

$ kvm-ok

You should see output like this:

INFO: /dev/kvm exists

KVM acceleration can be used.

2. Next, download the cloud images from the Ubuntu servers. I have selected the
Ubuntu 14.04 Trusty image:

$ wget http://cloud-
images.ubuntu.com/releases/trusty/release/ubuntu-14.04-server-
cloudimg-amd64-disk1.img -O trusty.img.dist

This image is in a compressed format and needs to be converted into an
uncompressed format. This is not strictly necessary but should save on-demand
decompression when an image is used. Use the following command to convert the
image:

$ qemu-img convert -O qcow2 trusty.img.dist trusty.img.orig

3. Create a copy-on-write image to protect your original image from modifications:

$ qemu-img create -f qcow2 -b trusty.img.orig trusty.img

4. Now that our image is ready, we need a cloud-config disk to initialize this image
and set the necessary user details. Create a new file called user-data and add the
following data to it:

https://technet24.ir

$ sudo vi user-data
#cloud-config
password: password
chpasswd: { expire: False }
ssh_pwauth: True

This file will set a password for the default user, ubuntu, and enable password
authentication in the SSH configuration.

5. Create a disk with this configuration written on it:

$ cloud-localds my-seed.img user-data

6. Next, create a network bridge to be used by virtual machines. Edit
/etc/network/interfaces as follows:

auto eth0
iface eth0 inet manual

auto br0
iface br0 inet dhcp
 bridge_ports eth0

Note

On Ubuntu 16.04, you will need to edit files under the
/etc/network/interfaces.d directory. Edit the file for eth0 or your default
network interface, and create a new file for br0. All files are merged under
/etc/network/interfaces.

7. Restart the networking service for the changes to take effect. If you are on an SSH
connection, your session will get disconnected:

$ sudo service networking restart

8. Now that we have all the required data, let's start our image with KVM, as
follows:

$ sudo kvm -netdev bridge,id=net0,br=br0 \
-net user -m 256 -nographic \
-hda trusty.img -hdb my-seed.img

This should start a virtual machine and route all input and output to your console.
The first boot with cloud-init should take a while. Once the boot process
completes, you will get a login prompt. Log in with the username ubuntu and the
password specified in user-data.

9. Once you get access to the shell, set a new password for the user ubuntu:

$ sudo passwd ubuntu

After that, uninstall the cloud-init tool to stop it running on the next boot:

$ sudo apt-get remove cloud-init

Your virtual machine is now ready to use. The next time you start the machine, you
can skip the second disk with the cloud-init details and route the system console to
VNC, as follows:

$ sudo kvm -netdev bridge,id=net0,br=br0 \
-hda trusty.img \
-m 256 -vnc 0.0.0.0:1 -daemonize

https://technet24.ir

How it works…
Ubuntu provides various options to create and manage virtual machines. The previous
recipe covers basic virtualization with KVM and prebuilt Ubuntu Cloud images. KVM
is very similar to desktop virtualization tools such as VirtualBox and VMware. It comes
as a part of the Qemu emulator and uses hardware acceleration features from the host
CPU to boost the performance of virtual machines. Without hardware support, the
machines need to run inside the Qemu emulator.

After installing KVM, we have used Ubuntu cloud image as our pre-installed boot disk.
Cloud images are prebuilt operating system images that do not contain any user data or
system configuration. These images need to be initialized before being used. Recent
Ubuntu releases contain a program called cloud-init, which is used to initialize the
image at first boot. The cloud-init program looks for the metadata service on the
network and queries user-data once the service is found. In our case, we have used a
secondary disk to pass user data and initialize the cloud image.

We downloaded the prebuilt image from the Ubuntu image server and converted it to
uncompressed format. Then, we created a new snapshot with the backing image set to
the original prebuilt image. This should protect our original image from any
modifications so that it can be used to create more copies. Whenever you need to
restore a machine to its original state, just delete the newly created snapshot images and
recreate it. Note that you will need to use the cloud-init process again during such
restores.

This recipe uses prebuilt images, but you can also install the entire operating system on
virtual machines. You will need to download the required installation medium and
attach a blank hard disk to the VM. For installation, make sure you set the VNC
connection to follow the installation steps.

There's more…
Ubuntu also provides the virt-manager graphical interface to create and manage KVM
virtual machines from a GUI. You can install it as follows:

$ sudo apt-get install virt-manager

Alternatively, you can also install Oracle VirtualBox on Ubuntu. Download the .deb
file for your Ubuntu version and install it with dpkg -i, or install it from the package
manager as follows:

1. Add the Oracle repository to your installation sources. Make sure to substitute
xenial with the correct Ubuntu version:

$ sudo vi /etc/apt/sources.list
deb http://download.virtualbox.org/virtualbox/debian xenial
contrib

2. Add the Oracle public keys:

wget -q https://www.virtualbox.org/download/oracle_vbox_2016.asc
-O- | sudo apt-key add -

3. Install VirtualBox:

$ sudo apt-get update && sudo apt-get install virtualbox-5.0

https://technet24.ir

See also
VirtualBox downloads: https://www.virtualbox.org/wiki/Linux_Downloads
Ubuntu Cloud images on a local hypervisor:
https://help.ubuntu.com/community/UEC/Images#line-105
The Ubuntu community page for KVM: https://help.ubuntu.com/community/KVM

https://www.virtualbox.org/wiki/Linux_Downloads
https://help.ubuntu.com/community/UEC/Images#line-105
https://help.ubuntu.com/community/KVM

Managing virtual machines with virsh
In the previous recipe, we saw how to start and manage virtual machines with KVM.
This recipe covers the use of Virsh and virt-install to create and manage virtual
machines. The libvirt Linux library exposes various APIs to manage hypervisors and
virtual machines. Virsh is a command-line tool that provides an interface to libvirt
APIs.

To create a new machine, Virsh needs the machine definition in XML format. virt-install
is a Python script to easily create a new virtual machine without manipulating bits of
XML. It provides an easy-to-use interface to define a machine, create an XML definition
for it and then load it in Virsh to start it.

In this recipe, we will create a new virtual machine with virt-install and see how it can
be managed with various Virsh commands.

https://technet24.ir

Getting ready
You will need access to the root account or an account with sudo privileges.

Install the required packages, as follows:

$ sudo apt-get update
$ sudo apt-get install -y qemu-kvm libvirt-bin virtinst

Install packages to create the cloud init disk:

$ sudo apt-get install genisoimage

Add your user to the libvirtd group and update group membership for the current
session:

$ sudo adduser ubuntu libvirtd
$ newgrp libvirtd

How to do it…
We need to create a new virtual machine. This can be done either with an XML
definition of the machine or with a tool called virt-install. We will again use the prebuilt
Ubuntu Cloud images and initialize them with a secondary disk:

1. First, download the Ubuntu Cloud image and prepare it for use:

$ mkdir ubuntuvm && cd ubuntuvm
$ wget -O trusty.img.dist \
http://cloud-images.ubuntu.com/releases/trusty/release/ubuntu-
14.04-server-cloudimg-amd64-disk1.img
$ qemu-img convert -O qcow2 trusty.img.dist trusty.img.orig
$ qemu-img create -f qcow2 -b trusty.img.orig trusty.img

2. Create the initialization disk to initialize your cloud image:

$ sudo vi user-data
#cloud-config
password: password
chpasswd: { expire: False }
ssh_pwauth: True
$ sudo vi meta-data
instance-id: ubuntu01;
local-hostname: ubuntu
$ genisoimage -output cidata.iso -volid cidata -joliet \
-rock user-data meta-data

3. Now that we have all the necessary data, let's create a new machine, as follows:

$ virt-install --import --name ubuntu01 \
--ram 256 --vcpus 1 --disk trusty.img \
--disk cidata.iso,device=cdrom \
--network bridge=virbr0 \
--graphics vnc,listen=0.0.0.0 --noautoconsole -v

This should create a virtual machine and start it. A display should be opened on the
local VNC port 5900. You can access the VNC through other systems available on
the local network with a GUI.

Tip

You can set up local port forwarding and access VNC from your local system as
follows:

https://technet24.ir

$ ssh kvm_hostname_or_ip -L 5900:127.0.0.1:5900
$ vncviewer localhost:5900

4. Once the cloud-init process completes, you can log in with the default user,
ubuntu, and the password set in user-data.

5. Now that the machine is created and running, we can use the virsh command to
manage this machine. You may need to connect virsh and qemu before using them:

$ virsh connect qemu:///system

6. Get a list of running machines with virsh list. The --all parameter will show
all available machines, whether they are running or stopped:

$ virsh list --all # or virsh --connect qemu:///system list

7. You can open a console to a running machine with virsh as follows. This should
give you a login prompt inside the virtual machine:

$ virsh console ubuntu01

To close the console, use the Ctrl +] key combination.
8. Once you are done with the machine, you can shut it down with virsh shutdown.

This will call a shutdown process inside the virtual machine:

$ virsh shutdown ubuntu01

You can also stop the machine without a proper shutdown, as follows:

$ virsh destroy ubuntu01

9. To completely remove the machine, use virsh undefine. With this command, the
machine will be deleted and cannot be used again:

$ virsh destroy ubuntu01

How it works…
Both the virt-install and virsh commands collectively give you an easy-to-use
virtualization environment. Additionally, the system does not need to support hardware
virtualization. When it's available, the virtual machines will use KVM and hardware
acceleration, and when KVM is not supported, Qemu will be used to emulate virtual
hardware.

With virt-install, we have easily created a KVM virtual machine. This command
abstracts the XML definition required by libvirt. With a list of various parameters, we
can easily define all the components with their respective configurations. You can get a
full list of virt-install parameters with the --help flag.

Tip

The virtinst package, which installs virt-install, also contains some more
commands, such as virt-clone, virt-admin, and virt-xml. Use tab completion in
your bash shell to get a list of all virt-* commands.

Once the machine is defined and running, it can be managed with virsh subcommands.
Virsh provides tons of subcommands to manage virtual machines, or domains as they are
called by libvirt. You can start or stop machines, pause and resume them, or stop them
entirely. You can even modify the machine configuration to add or remove devices as
needed, or create a clone of an existing machine. To get a list of all machine (domain)
management commands, use virsh help domain.

Once you have your first virtual machine, it becomes easier to create new machines
using the XML definition from it. You can dump the XML definition with virsh
dumpxml machine, edit it as required, and then create a new machine using XML
configuration with virsh create configuration.xml.

There are a lot more options available for the virsh and virt-install commands;
check their respective manual pages for more details.

https://technet24.ir

There's more…
In the previous example, we used cloud images to quickly start a virtual machine. You
do not need to use cloud machines, and you can install the operating system on your own
using the respective installation media.

Download the installation media and then use following command to start the
installation. Make sure you change the -c parameter to the downloaded ISO file, along
with the location:

$ sudo virt-install -n ubuntu -r 1024 \
--disk path=/var/lib/libvirt/images/ubuntu01.img,bus=virtio,size=4 \
-c ubuntu-16.04-server-i386.iso \
--network network=default,model=virtio
--graphics vnc,listen=0.0.0.0 --noautoconsole -v

The command will wait for the installation to complete. You can access the GUI
installation using the VNC client.

Forward your local port to access VNC on a KVM host. Make sure you replace 5900
with the respective port from virsh vncdisplay node0:

$ ssh kvm_hostname_or_ip -L 5900:127.0.0.1:5900

Now you can connect to VNC at localhost:5900.

Easy cloud images with uvtool

Ubuntu provides another super easy tool named uvtool. This tool focuses on the creation
of virtual machines out of Ubuntu Cloud images. It synchronizes cloud images from
Ubuntu servers to your local machine. Later, these images can be used to launch virtual
machines in minutes. You can install and use uvtool with the following commands:

$ sudo apt-get install uvtool

Download the Xenial image from the cloud images:

$ uvt-simplestreams-libvirt sync release=xenial arch=amd64

Start a virtual machine:

$ uvt-kvm create virtsys01

Finally, get the IP of a running system:

$ uvt-kvm ip virtsys01

Check out the manual page with the man uvtool command and visit the official uvtool
page at https://help.ubuntu.com/lts/serverguide/cloud-images-and-uvtool.html for more
details.

https://help.ubuntu.com/lts/serverguide/cloud-images-and-uvtool.html
https://technet24.ir

See also
Check out the manual pages for virt-install using $ man virt-install
Check out the manual pages for virsh using $ man virsh
The official Libvirt site: http://libvirt.org/
The Libvirt documentation on Ubuntu Server guide:
https://help.ubuntu.com/lts/serverguide/libvirt.html

http://libvirt.org/
https://help.ubuntu.com/lts/serverguide/libvirt.html

Setting up your own cloud with
OpenStack
We have already seen how to create virtual machines with KVM and Qemu, and how to
manage them with tools such as virsh and virt-manager. This approach works when you
need to work with a handful of machines and manage few hosts. To operate on a larger
scale, you need a tool to manage host machines, VM configurations, images, network,
and storage, and monitor the entire environment. OpenStack is an open source initiative
to create and manage a large pool of virtual machines (or containers). It is a collection
of various tools to deploy IaaS clouds. The official site defines OpenStack as an
operating system to control a large pool of compute, network, and storage resources, all
managed through a dashboard.

OpenStack was primarily developed and open-sourced by Rackspace, a leading cloud
service provider. With its thirteenth release, Mitaka, OpenStack provides tons of tools
to manage various components of your infrastructure. A few important components of
OpenStack are as follows:

Nova: Compute controller
Neutron: OpenStack networking
Keystone: Identity service
Glance: OpenStack image service
Horizon: OpenStack dashboard
Cinder: Block storage service
Swift: Object store
Heat: Orchestration program

OpenStack in itself is quite a big deployment. You need to decide the required
components, plan their deployment, and install and configure them to work in sync. The
installation itself can be a good topic for a separate book. However, the OpenStack
community has developed a set of scripts known as DevStack to support development
with faster deployments. In this recipe, we will use the DevStack script to quickly
install OpenStack and get an overview of its workings. The official OpenStack
documentation provides detailed documents for the Ubuntu based installation and
configuration of various components. If you are planning a serious production
environment, you should read it thoroughly.

https://technet24.ir

Getting ready
You will need a non-root account with sudo privileges. The default account named
ubuntu should work.

The system should have at least two CPU cores with at least 4 GB of RAM and 60 GB
of disk space. A static IP address is preferred. If possible, use the minimal installation
of Ubuntu.

Tip

If you are performing a fresh installation of Ubuntu Server, press F4 on the first screen
to get installation options, and choose Install Minimal System. If you are installing
inside a virtual machine, choose Install Minimal Virtual Machine. You may need to go
to the installation menu with the Esc key before using F4.

DevStack scripts are available on GitHub. Clone the repository or download and
extract it to your installation server. Use the following command to clone:

$ git clone https://git.openstack.org/openstack-dev/devstack \
-b stable/mitaka --depth 1
$ cd devstack

You can choose to get the latest release by selecting the master branch. Just skip the -b
stable/mitaka option from the previous command.

How to do it…
Once you obtain the DevStack source, it's as easy as executing an installation script.
Before that, we will create a minimal configuration file for passwords and basic
network configuration:

1. Copy the sample configuration to the root of the devstack directory:

$ cp samples/local.conf

2. Edit local.conf and update passwords:

ADMIN_PASSWORD=password
DATABASE_PASSWORD=password
RABBIT_PASSWORD=password
SERVICE_PASSWORD=$ADMIN_PASSWORD

3. Add basic network configuration as follows. Update IP address range as per your
local network configuration and set FLAT_INTERFACE to your primary Ethernet
interface:

FLOATING_RANGE=192.168.1.224/27
FIXED_RANGE=10.11.12.0/24
FIXED_NETWORK_SIZE=256
FLAT_INTERFACE=eth0

Save the changes to the configuration file.
4. Now, start the installation with the following command. As the Mitaka stable

branch has not been tested with Ubuntu Xenial (16.04), we need to use the FORCE
variable. If you are using the master branch of DevStack or an older version of
Ubuntu, you can start the installation with the ./stack.sh command:

$ FORCE=yes ./stack.sh

The installation should take some time to complete, mostly depending on your
network speed. Once the installation completes, the script should output the
dashboard URL, keystone API endpoint, and the admin password:

https://technet24.ir

5. Now, access the OpenStack dashboard and log in with the given username and
password. The admin account will give you an admin interface. The login screen
looks like this:

6. Once you log in, your admin interface should look something like this:

Now, from this screen, you can deploy new virtual instances, set up different cloud
images, and configure instance flavors.

How it works…
We used DevStack, an unattended installation script, to install and configure basic
OpenStack deployment. This will install OpenStack with the bare minimum components
for deploying virtual machines with OpenStack. By default, DevStack installs the
identity service, Nova network, compute service, and image service. The installation
process creates two user accounts, namely admin and dummy. The admin account gives
you administrative access to the OpenStack installation and the dummy account gives you
the end user interface. The DevStack installation also adds a Cirros image to the image
store. This is a basic lightweight Linux distribution and a good candidate to test
OpenStack installation.

The default installation creates a basic flat network. You can also configure DevStack to
enable Neutron support, by setting the required options in the configuration. Check out
the DevStack documentation for more details.

https://technet24.ir

There's more…
Ubuntu provides its own easy-to-use OpenStack installer. It provides options to install
OpenStack, along with LXD support and OpenStack Autopilot, an enterprise offering by
Canonical. You can choose to install on your local machine (all-in-one installation) or
choose a Metal as a Service (MAAS) setup for a multinode deployment. The single-
machine setup will install OpenStack on multiple LXC containers, deployed and
managed through Juju. You will need at least 12 GB of main memory and an 8-CPU
server. Use the following commands to get started with the Ubuntu OpenStack installer:

$ sudo apt-get update
$ sudo apt-get install conjure-up
$ conjure-up openstack

While DevStack installs a development-focused minimal installation of OpenStack,
various other scripts support the automation of the OpenStack installation process. A
notable project is OpenStack Ansible. This is an official OpenStack project and
provides production-grade deployments. A quick GitHub search should give you a lot
more options.

See also
A step-by-step detailed guide to installing various OpenStack components on
Ubuntu server: http://docs.openstack.org/mitaka/install-guide-ubuntu/
DevStack Neutron configuration:
http://docs.openstack.org/developer/devstack/guides/neutron.html
OpenStack Ansible: https://github.com/openstack/openstack-ansible
A list of OpenStack resources: https://github.com/ramitsurana/awesome-openstack
Ubuntu MaaS: http://www.ubuntu.com/cloud/maas
Ubuntu Juju: http://www.ubuntu.com/cloud/juju
Read more about LXD and LXC in Chapter 8, Working with Containers

http://docs.openstack.org/mitaka/install-guide-ubuntu/
http://docs.openstack.org/developer/devstack/guides/neutron.html
https://github.com/openstack/openstack-ansible
https://github.com/ramitsurana/awesome-openstack
http://www.ubuntu.com/cloud/maas
http://www.ubuntu.com/cloud/juju
https://technet24.ir

Adding a cloud image to OpenStack
In the previous recipe, we installed and configured OpenStack. Now, to start using the
service, we need to upload virtual machine images. The OpenStack installation uploads
a test image named Cirros. This is a small Linux distribution designed to be used as a
test image in the cloud. We will upload prebuilt cloud images available from Ubuntu.

Getting ready
Make sure you have installed the OpenStack environment and you can access the
OpenStack dashboard with valid credentials. It is not necessary to have an admin
account to create and upload images.

Select the cloud image of your choice and get its download URL. Here, we will use the
Trusty Ubuntu Server image. The selected image format is QCOW2, though OpenStack
support various other image formats. The following is the URL for the selected image:

https://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img

https://cloud-images.ubuntu.com/trusty/current/trusty-server-cloudimg-amd64-disk1.img
https://technet24.ir

How to do it…
The OpenStack dashboard provides a separate section for image management. You can
see the images that are already available and add or remove your own images. Follow
these steps to create your own image:

1. Log in to your OpenStack dashboard. On successful login, you should get an
Overview page for your account.

2. Now, from the left-hand side Project menu, under the Compute submenu, click on
Images:

This should show you a list of all publicly available images—something like this:

3. Click on the Create Image button to add a new image. This should open a popup
box with various details. Here, you can choose to add an image URL or enter an
image path if you have downloaded the image to your local machine.

4. Fill in the name and other required details. Under Image Source, select the image
location, and in the next box, Image Location, enter the URL for the Ubuntu Cloud
image.

5. Under Format, select the image format of your selected image. In this case, it's
QCOW2.

6. Enter amd64 under Architecture. Make sure you match this with your selected
image.

7. Enter the minimum disk and RAM size. As we have selected an Ubuntu image, the
minimum disk size should be 5 GB and minimum RAM 256 MB. These values will
affect the selection of instance flavors while creating a new instance.

8. Finally, click on the Create Image button to save the details and add the image to
OpenStack. This will download the image from the source URL and save it in the
image repository. The resulting image will be listed under the Project tab, as
follows:

Now, the image is ready can be used to launch new cloud instances.

https://technet24.ir

How it works…
OpenStack is a cloud virtualization platform and needs operating system images to
launch virtual machines in the cloud. The Glance OpenStack imaging service provides
the image-management service. It supports various types of image, including Qemu
format, raw disk files, ISO images, and images from other virtualization platforms, as
well as Docker images. Like every other thing in OpenStack, image management works
with the help of APIs provided by Glance.

OpenStack, being a cloud platform, is expected to have ready-to-use images that can be
used to quickly start a virtual instance. It is possible to upload the operating system
installation disk and install the OS to a virtual instance, but that would be a waste of
resources. Instead, it is preferable to have prebuilt cloud images. Various popular
operating systems provide their respective cloud images, which can be imported to
cloud systems. In the previous example, we used the Ubuntu Cloud image for the Ubuntu
Trusty release.

We imported the image by specifying its source URI. Local image files can also be
uploaded by selecting the image file as an image source. You can also build your own
images and upload them to the image store to be used in the cloud. Along with the image
source, we need to provide a few more parameters, which include the type of the image
being uploaded and the minimum resource requirements of that image. Once the image
has been uploaded, it can be used to launch a new instance in the cloud. Also, the image
can be marked as public so that it is accessible to all OpenStack users. You will need
specific rights for your OpenStack account to create public images.

There's more…
OpenStack images can also be managed from the command line with the client called
glance. To access the respective APIs from the command line, you need to authenticate
with the Glance server. Use the following steps to use glance from the command line:

1. First, add authentication parameters to the environment:

export OS_USERNAME=demo
export OS_PASSWORD=password
export OS_AUTH_URL=http://10.196.69.158/identity
export OS_TENANT_ID=8fe52bb13ca44981aa15d9b62e9133f4

Tip

DevStack makes things even easier by providing a script, openrc. It's located
under the root directory of DevStack and can be used as follows:

$ source openrc demo # source openrc username

You are then ready, without multiple export commands.

2. Now, use the following command to obtain the image list for the specified user:

$ glance image-list

You can get a list of available command-line options with glance help.

https://technet24.ir

See also
Read more about OpenStack image management: http://docs.openstack.org/image-
guide/
Command-line image management: http://docs.openstack.org/user-
guide/common/cli_manage_images.html
Dashboard image management: http://docs.openstack.org/user-
guide/dashboard_manage_images.html
Glance documentation: http://docs.openstack.org/developer/glance/

http://docs.openstack.org/image-guide/
http://docs.openstack.org/user-guide/common/cli_manage_images.html
http://docs.openstack.org/user-guide/dashboard_manage_images.html
http://docs.openstack.org/developer/glance/

Launching a virtual instance with
OpenStack
Now that we have OpenStack installed and have set our desired operating system
image, we are ready to launch our first instance in a self-hosted cloud.

https://technet24.ir

Getting ready
You will need credentials to access the OpenStack dashboard.

Uploading your own image is not necessary; you can use the default Cirros image to
launch the test instance.

Log in to the OpenStack dashboard and set the SSH key pair in the Access & Security
tab available under the Projects menu. Here, you can generate a new key pair or import
your existing public key.

Note

If you generate a new key pair, a file with the .pem extension will be downloaded to
your local system. To use this key with PuTTy, you need to use PuTTYgen and extract
the public and private keys.

How to do it…
OpenStack instances are the same virtual machines that we launch from the command
line or desktop tools. OpenStack give you a web interface to launch your virtual
machines from. Follow these steps to create and start a new instance:

1. Select the Instance option under the Projects menu and then click on the Launch
Instance button on the right-hand side. This should open a modal box with various
options, which will look something like this:

2. Now, start filling in the necessary details. All fields that are marked with * are
required fields. Let's start by naming our instance. Enter the name in the Instance
Name field.

3. Set the value of Count to the number of instances you want to launch. We will
leave it at the default value of 1.

4. Next, click on the Source tab. Here, we need to configure the source image for our
instance. Set Select Boot Source to Image and select No for Create New
Volume. Then, from the Available Images section, search the desired image and
click on the button with the + sign to select the image. The list should contain our
recently uploaded image. The final screen should look something like this:

https://technet24.ir

5. Next, on the Flavor tab, we need to select the desired resources for our instance.
Select the desired flavor by clicking on the + button. Make sure that the selected
row does not contain any warning signs.

6. Now, from the Key Pair tab, select the SSH key pair that we just created. This is
required to log in to your instance.

7. Finally, click on the Launch Instance button from the bottom of the modal box. A
new instance should be created and listed under the instances list. It will take some
time to start; wait for the Status column to show Active:

8. You are now ready to access your virtual instance. Log in to your host console and
try to ping the IP address of your instance. Then, open an SSH session with the
following command:

$ ssh -i your_key ubuntu@instance_ip

This should give you a shell inside your new cloud instance. Try to ping an
external server, such as an OpenDNS server, from within an instance to ensure
connectivity.

To make this instance available on your local network, you will need to assign a
floating IP address to it. Click on the drop-down arrow from the Actions column
and select Associate Floating IP. This should add one more IP address to your
instance and make it available on your local network.

How it works…
OpenStack instances are the same as the virtual machines that we build and operate with
common virtualization tools such as VirtualBox and Qemu. OpenStack provides a
central console for deploying and managing thousands of such machines on multiple
hosts. Under the hood, OpenStack uses the same virtualization tools as the others. The
preferred hypervisor is KVM, and if hardware acceleration is not available, Qemu
emulation is used. OpenStack supports various other hypervisors, including VMware,
XEN, Hyper-V, and Docker. In addition, a lightervisor, LXD, is on its way to a stable
release. Other than virtualization, OpenStack adds various other improvements, such as
image management, block storage, object storage, and various network configurations.

In the previous example, we set various parameters before launching a new instance;
these include the instance name, resource constraints, operating system image, and login
credentials. All these parameters will be passed to the underlying hypervisor to create
and start the new virtual machine. A few other options that we have not used are
volumes and networks. As we have installed a very basic OpenStack instance, new
developments in network configurations are not available for use. You can update your
DevStack configuration and install the OpenStack networking component Neutron.

Volumes, on the other hand, are available and can be used to obtain disk images of the
desired size and format. You can also attach multiple volumes to a single machine,
providing extended storage capacity. Volumes can be created separately and do not
depend on the instance. You can reuse an existing volume with a new instance, and all
data stored on it will be available to the new instance.

Here, we have used a cloud image to start a new instance. You can also choose a
previously stored instance snapshot, create a new volume, or use a volume snapshot.
The volume can be a permanent volume, which has its life cycle separate from the
instance, or an ephemeral volume, which gets deleted along with the instance. Volumes
can also be attached at instance runtime or even removed from an instance, provided
they are not a boot source.

Other options include configuration and metadata. The configuration tab provides an
option to add initialization scripts that are executed at first boot. This is very similar to
cloud-init data. The following is a short example of a cloud-init script:

#cloud-config
package_update: true

https://technet24.ir

package_upgrade: true
password: password
chpasswd: { expire: False }
ssh_pwauth: True
ssh_authorized_keys:
 - your-ssh-public-key-contents

This script will set a password for the default user (ubuntu in the case of Ubuntu
images), enable password logins, add an SSH key to authorize keys, and update and
upgrade packages.

The metadata section adds arbitrary data to instances in the form of key-value pairs.
This data can be used to identify an instance from a group and automate certain tasks.

Once an instance has been started, you have various management options from the
Actions menu available on the instance list. From this menu, you can create instance
snapshots; start, stop, or pause instances; edit security groups; get the VNC console; and
so on.

There's more…
Similar to the glance command-line client, a compute client is available as well and is
named after the compute component. The nova command can be used to create and
manage cloud instances from the command line. You can get detailed parameters and
options with the nova help command or, to get help with a specific subcommand, nova
help <subcommand>.

https://technet24.ir

See also
The cloud-init official documentation: https://cloudinit.readthedocs.io/en/latest/
More on cloud-init: https://help.ubuntu.com/community/CloudInit
OpenStack instance guide: http://docs.openstack.org/user-
guide/dashboard_launch_instances.html
Command-line cheat sheet: http://docs.openstack.org/user-
guide/cli_cheat_sheet.html#compute-nova

https://cloudinit.readthedocs.io/en/latest/
https://help.ubuntu.com/community/CloudInit
http://docs.openstack.org/user-guide/dashboard_launch_instances.html
http://docs.openstack.org/user-guide/cli_cheat_sheet.html#compute-nova

Installing Juju a service orchestration
framework
Up to now in this chapter, we have learned about virtualization and OpenStack for
deploying and managing virtual servers. Now, it's time to look at a service-modeling
tool, Juju. Juju is a service-modeling tool for Ubuntu. Connect it to any cloud service,
model your application, and press deploy—done. Juju takes care of lower-level
configuration, deployments, and scaling, and even monitors your services.

Juju is an open source tool that offers a GUI and command-line interface for modeling
your service. Applications are generally deployed as collections of multiple services.
For example, to deploy WordPress, you need a web server, a database system, and
perhaps a load balancer. Service modeling refers to the relations between these
services. Services are defined with the help of charms, which are collections of
configurations and deployment instructions, such as dependencies and resource
requirements. The Juju store provides more than 300 predefined and ready-to-use
charms.

Once you model your application with the required charms and their relationships, these
models can be stored as a bundle. A bundle represents a set of charms, their
configurations, and their relationships with each other. The entire bundle can be
deployed to a cloud or local system with a single command. Also, similar to charms,
bundles can be shared and are available on the Juju store.

This recipe covers the installation of Juju on Ubuntu Server. With the release of Xenial,
the latest Ubuntu release, Canonical has also updated the Juju platform to version 2.0.

https://technet24.ir

Getting ready
You need access to the root account or an account with sudo privileges.

Make sure you have the SSH keys generated with your user account. You can generate a
new key pair with the following command:

$ ssh-keygen -t rsa -b 2048

How to do it…
Juju 2.0 is available in the Ubuntu Xenial repository, so installation is quite easy.
Follow these steps to install Juju, along with LXD for local deployments:

1. Install Juju, along with the LXD and ZFSUtils packages. On Ubuntu 16, LXD
should already be installed:

$ sudo apt-get update
$ sudo apt-get install juju-2.0 lxd zfsutils-linux

2. The LXD installation creates a new group, lxd, and adds the current user to it.
Update your group membership with newgrp so that you don't need to log out and
log back in:

$ newgrp lxd

3. Now, we need to initialize LXD before using it with Juju. We will create a new
ZFS pool for LXD and configure a local lxd bridge for container networking with
NAT enabled:

$ sudo lxd init
Name of the storage backend to use (dir or zfs): zfs
Create a new ZFS pool (yes/no)? yes
Name of the new ZFS pool: lxdpool
Would you like to use an existing block device (yes/no)? no
Size in GB of the new loop device (1GB minimum): 20
Would you like LXD to be available over the network (yes/no)? no
Do you want to configure the LXD bridge (yes/no)? yes

LXD has been successfully configured.
4. Now that LXD has been configured, we can bootstrap Juju and create a controller

node. The following command will bootstrap Juju with LXD for local
deployments:

$ juju bootstrap juju-controller lxd

This command should take some time to finish as it needs to fetch the container
image and the install Juju tools inside the container.

5. Once the bootstrap process completes, you can check the list of controllers, as
follows:

$ juju list-controllers
CONTROLLER MODEL USER SERVER

https://technet24.ir

local.juju-controller* default admin@local 10.155.16.114:17070

6. You can also check the LXD container created by Juju using the lxc list
command:

$ lxc list

7. From Juju 2.0 onwards, every controller will install the Juju GUI by default. This
is a web application to manage the controller and its models. The following
command will give you the URL of the Juju GUI:

$ juju gui
...
https://10.201.217.65:17070/gui/2331544b-1e16-49ba-8ac7-
2f13ea147497/
...

8. You may need to use port forwarding to access the web console. Use the following
command to quickly set up iptables forwarding:

$ sudo iptables -t nat -A PREROUTING -p tcp --dport 17070 -j DNAT
\
--to-destination 10.201.217.65:17070

9. You will also need a username and password to log in to the GUI. To get these
details, use the following command:

$ juju show-controller --show-passwords juju-controller
...
accounts:
 admin@local:
 user: admin@local
 password: 8fcb8aca6e22728c6ac59b7cba322f39

When you log in to the web console, it should look something like this:

Now, you are ready to use Juju and deploy your applications either with a
command line or from the web console.

https://technet24.ir

How it works…
Here, we installed and configured the Juju framework with LXD as a local deployment
backend. Juju is a service-modeling framework that makes it easy to compose and
deploy an entire application with just a few commands. Now, we have installed and
bootstrapped Juju. The bootstrap process creates a controller node on a selected cloud;
in our case, it is LXD. The command provides various optional arguments to configure
controller machines, as well as pass the credentials to the bootstrap process. Check out
the bootstrap help menu with the juju bootstrap --help command.

We have used LXD as a local provider, which does not need any special credentials to
connect and create new nodes. When using pubic cloud providers or your own cloud,
you will need to provide your username and password or access keys. This can be done
with the help of the add-credentials <cloud> command. All added credentials are
stored in a plaintext file: ~/.local/share/juju/credentials.yaml. You can view a
list of available cloud credentials with the juju list-credentials command.

The controller node is a special machine created by Juju to host and manage data and
models related to an environment. The container node hosts two models, namely admin
and default, and the admin model runs the Juju API server and database system. Juju can
use multiple cloud systems simultaneously, and each cloud can have its own controller
node.

From version 2.0 onwards, every controller node installs the Juju GUI application by
default. The Juju GUI is a web application that provides an easy-to-use visual interface
to create and manage various Juju entities. With its simple interface, you can easily
create new models, import charms, and set up relations between them. The GUI is still
available as a separate charm and can be deployed separately to any machine in a Juju
environment. The command-line tools are more than enough to operate Juju, and it is
possible to skip the installation of the GUI component using the --no-gui option with
the bootstrap command.

There's more…
In the previous example, we used LXD as a local deployment backend for Juju. With
LXD, Juju can quickly create new containers to deploy applications. Along with LXD,
Juju supports various other cloud providers. You can get a full list of supported cloud
providers with the list-clouds option:

$ juju list-clouds

Juju also provides the option to fetch updates to a supported cloud list. With the
update-clouds subcommand, you can update your local cloud with the latest
developments from Juju.

Along with public clouds, Juju also supports OpenStack deployments and MaaS-based
infrastructures. You can also create your own cloud configuration and add it to Juju with
the juju add-cloud command. Like with LXD, you can use virtual machines or even
physical machines for Juju-based deployments. As far as you can access the machine
with SSH, you can use it with Juju. Check out the cloud-configuration manual for more
details: https://jujucharms.com/docs/devel/clouds-manual

https://jujucharms.com/docs/devel/clouds-manual
https://technet24.ir

See also
Read more about Juju concepts at https://jujucharms.com/docs/devel/juju-concepts
Get to know Juju-supported clouds or how to add your own at
https://jujucharms.com/docs/devel/clouds
The Juju GUI: https://jujucharms.com/docs/devel/controllers-gui
Juju controllers: https://jujucharms.com/docs/devel/controllers
Refer to Chapter 8, Working with Containers for more details about LXD
containers
Learn how to connect Juju to a remote LXD server:
https://insights.ubuntu.com/2015/11/16/juju-and-remote-lxd-host/

https://jujucharms.com/docs/devel/juju-concepts
https://jujucharms.com/docs/devel/clouds
https://jujucharms.com/docs/devel/controllers-gui
https://jujucharms.com/docs/devel/controllers
https://insights.ubuntu.com/2015/11/16/juju-and-remote-lxd-host/

Managing services with Juju
In the previous recipe, we learned how to install the Juju service orchestration
framework. Now, we will look at how to use Juju to deploy and manage a service.

https://technet24.ir

Getting ready
Make sure you have installed and bootstrapped Juju.

How to do it…
We will deploy a sample WordPress installation with a load balancer. The MySQL
service will be used as the database for WordPress. Both services are available in the
Juju Charm store.

Follow these steps to manage services with Juju:

1. Let's start by deploying the WordPress service with juju deploy. This should
give you the following output:

$ juju deploy wordpress
Added charm "cs:trusty/wordpress-4" to the model.
Deploying charm "cs:trusty/wordpress-4" with the charm series
"trusty".

2. Now, deploy a MySQL service to store WordPress contents:

$ juju deploy mysql
Added charm "cs:trusty/mysql-38" to the model.
Deploying charm "cs:trusty/mysql-38" with the charm series
"trusty".

3. Now, you can use juju status to confirm your deployed services. It should show
you the deployed services, their relations, and respective machine statuses, as
follows:

$ juju status

4. Now that both services have been deployed, we need to connect them together so
that wordpress can use the database service. Juju calls this a relation, and it can
be created as follows:

$ juju add-relation mysql wordpress

https://technet24.ir

5. Finally, we need to expose our wordpress service so that it can be accessed
outside our local network. By default, all charms start as unexposed and are
accessible only on a local network:

$ juju expose wordpress

You can get the IP address or DNS name of the wordpress instance with the juju
status command from the Machines section. Note that in a local LXD environment,
you may need a forwarded port to access WordPress.

How it works…
In this example, we deployed two separate services using Juju. Juju will create two
separate machines for each of them and deploy the service as per the instructions in the
respective charms. These two services need to be connected with each other so that
wordpress knows the existence of the MySQL database. Juju calls these connections
relations. Each charm contains a set of hooks that are triggered on given events. When
we create a relation between WordPress and MySQL, both services are informed about
it with the database-relation-changed hook. At this point, both services can
exchange the necessary details, such as MySQL ports and login credentials. The
WordPress charm will set up a MySQL connection and initialize a database.

Once both services are ready, we can expose them to be accessed on a public network.
Here, we do not need MySQL to be accessible by WordPress users, so we have only
exposed the wordpress service. WordPress can access MySQL internally, with the help
of a relation.

You can use the Juju GUI to visualize your model and add or remove charms and their
relations. At this point, if you open a GUI, you should see your charms plotted on the
graph and connected with each other through a small line, indicating a relation. The GUI
also provides an option to set constraints on a charm and configure charm settings, if
any.

Note that both charms internally contain scaling options. WordPress is installed behind
an Nginx reverse proxy and can be scaled with extra units as and when required. You
can add new units to the service with a single command, as follows:

$ juju add-unit mysql -n 1

https://technet24.ir

There's more…
When you no longer need these services, the entire model can be destroyed with the
juju destroy-model <modelname> command. You can also selectively destroy
particular services with the remove-service command and remove relations with
remove-relations. Check out the Juju manual page for tons of commands that are not
listed in the Juju help menu.

See also
How to create your own charm: https://jujucharms.com/docs/stable/authors-charm-
writing
More about hooks: https://jujucharms.com/docs/stable/authors-hook-environment

https://jujucharms.com/docs/stable/authors-charm-writing
https://jujucharms.com/docs/stable/authors-hook-environment
https://technet24.ir

Chapter 8. Working with Containers
In this chapter, we will cover the following recipes:

Installing LXD, the Linux container daemon
Deploying your first container with LXD
Managing LXD containers
Managing LXD containers – advanced options
Setting resource limits on LXD containers
Networking with LXD
Installing Docker
Starting and managing Docker containers
Creating images with a Dockerfile
Understanding Docker volumes
Deploying WordPress using a Docker network
Monitoring Docker containers
Securing Docker containers

Introduction
Containers are quite an old technology and existed in the form of chroot and FreeBSD
Jails. Most of us have already used containers in some form or other. The rise of Docker
gave containers the required adoption and popularity. Ubuntu has also released a new
tool named LXD with Ubuntu 15.04.

A container is a lightweight virtual environment that contains a process or set of
processes. You might already have used containers with chroot. Just as with containers,
we create an isolated virtual environment to group and isolate a set of processes. The
processes running inside the container are isolated from the base operating system
environment, as well as other containers running on the same host. Such processes
cannot access or modify anything outside the container. A recent development in the
Linux kernel to support namespaces and cgroups has enabled containers to provide
better isolation and resource-management capabilities.

One of the reasons for the widespread adoption of containers is the difference between
containers and hypervisor-based virtualization, and the inefficiencies associated with
virtual machines. A VM requires its own kernel, whereas containers share the kernel
with the host, resulting in a fast and lightweight isolated environment. Sharing the kernel
removes much of the overhead of VMs and improves resource utilization, as processes
communicate with a single shared kernel. You can think of containers as OS-level
virtualization.

With containers, the entire application can be started within milliseconds, compared to
virtual minutes. Additionally, the image size becomes much smaller, resulting in easier
and faster cloud deployments. The shared operating system results in smaller footprints,
and saved resources can be used to run additional containers on the same host. It is
normal to run hundreds of containers on your laptop.

However, containerization also has its own shortcomings. First, you cannot run cross-
platform containers. That is, containers must use the same kernel as the host. You cannot
run Windows containers on a Linux host, and vice versa. Second, the isolation and
security is not as strong as hypervisor-based virtualization. Containers are largely
divided into two categories: OS containers and application containers. As the name
suggests, application containers are designed to host a single service or application.
Docker is an application container. You can still run multiple processes in Docker, but it
is designed to host a single process.

https://technet24.ir

OS containers, on the other hand, can be compared to virtual machines. They provide
user space isolation. You can install and run multiple applications and run multiple
processes inside OS containers. LXC on Linux and Jails on BSD are examples of OS
containers.

In this chapter, we will take a look at LXC, an OS container, and Docker, an application
container. In the first part of the chapter, we will learn how to install LXC and deploy a
containerized virtual machine. In subsequent recipes, we will work with Docker and
related technologies. We will learn to create and deploy a container with Docker.

Installing LXD, the Linux container
daemon
LXC is a system built on the modern Linux kernel and enables the creation and
management of virtual Linux systems or containers. As discussed earlier, LXC is not a
full virtualization system and shares the kernel with the host operating system, providing
lightweight containerization. LXC uses Linux namespaces to separate and isolate the
processes running inside containers. This provides much better security than simple
chroot-based filesystem isolation. These containers are portable and can easily be
moved to another system with a similar processor architecture.

Ubuntu 15.04 unveiled a new tool named LXD, which is a wrapper around LXC. The
official page calls it a container hypervisor and a new user experience for LXC. Ubuntu
16.04 comes preinstalled with its latest stable release, LXD 2.0. With LXD, you no
longer need to work directly with lower-level LXC tools.

LXD adds some important features to LXC containers. First, it runs unprivileged
containers by default, resulting in improved security and better isolation for containers.
Second, LXD can manage multiple LXC hosts and can be used as an orchestration tool.
It also supports the live migration of containers across hosts.

LXD provides a central daemon named lxd and a command-line client named lxc.
Containers can be managed with the command-line client or the REST APIs provided
by the LXD daemon. It also provides an OpenStack plugin, nova-compute-lxd, to deploy
containers on the OpenStack cloud.

In this recipe, we will learn to install and configure the LXD daemon. This will set up a
base for the next few recipes in this chapter.

https://technet24.ir

Getting ready
You will need access to the root account or an account with sudo privileges.

Make sure that you have enough free space available on disk.

How to do it…
Ubuntu 16.04 ships with the latest release of LXD preinstalled. We just need to
initialize the LXD daemon to set the basic settings.

1. First, update the apt cache and try to install LXD. This should install updates to
the LXD package, if any:

$ sudo apt-get update
$ sudo apt-get install lxd

Tip

If you are using Ubuntu 14.04, you can install LXD using the following command:

$ sudo apt-get -t trusty-backports install lxd

2. Along with LXD, we will need one more package named ZFS—the most important
addition to Ubuntu 16.04. We will be using ZFS as a storage backend for LXD:

$ sudo apt-get install zfsutils-linux

3. Once LXD has been installed, we need to configure the daemon before we start
using it. Use lxd init to start the initialization process. This will ask some
questions about the LXD configuration:

$ sudo lxd init
Name of the storage backend to use (dir or zfs): zfs
Create a new ZFS pool (yes/no)? yes
Name of the new ZFS pool: lxdpool
Would you like to use an existing block device (yes/no)? no
Size in GB of the new loop device (1GB minimum): 10
Would you like LXD to be available over the network (yes/no)? no
Do you want to configure the LXD bridge (yes/no)? yes
Warning: Stopping lxd.service, but it can still be activated by:
lxd.socket
LXD has been successfully configured.

Now, we have our LXD setup configured and ready to use. In the next recipe, we will
start our first container with LXD.

https://technet24.ir

How it works…
Ubuntu 16.04 comes preinstalled with LXD and makes it even easier to start with
system containers or operating system virtualization. In addition to LXD, Ubuntu now
ships with inbuilt support for ZFS (OpenZFS), a filesystem with support for various
features that improve the containerization experience. With ZFS, you get faster clones
and snapshots with copy-on-write, data compression, disk quotas, and automated
filesystem repairs.

LXD is a wrapper around lower-level LXC or Linux containers. It provides the REST
API for communicating and managing LXC components. LXD runs as a central daemon
and adds some important features, such as dynamic resource restrictions and live
migrations between multiple hosts. Containers started with LXD are unprivileged
containers by default, resulting in improved security and isolation.

This recipe covers the installation and initial configuration of the LXD daemon. As
mentioned previously, LXD comes preinstalled with Ubuntu 16. The installation
commands should fetch updates to LXD, if any. We have also installed zfsutils-
linux, a user space package to interact with ZFS. After the installation, we initialized
the LXD daemon to set basic configuration parameters, such as the default storage
backend and network bridge for our containers.

We selected ZFS as the default storage backend and created a new ZFS pool called
lxdpool, backed by a simple loopback device. In a production environment, you should
opt for a physical device or separate partition. If you have already created a ZFS pool,
you can directly name it by choosing no for Create new ZFS pool. To use a separate
storage device or partition, choose yes when asked for block storage.

Tip

Use the following commands to get ZFS on Ubuntu 14.04:

$ sudo apt-add-repository ppa:zfs-native/stable
$ sudo apt-get update && sudo apt-get install ubuntu-zfs

ZFS is the recommended storage backend, but LXD also works with various other
options, such as Logical Volume Manager (LVM) and btrfs (pronounced "butter F S"),
that offer nearly the same features as ZFS or a simple directory-based storage system.

Next, you can choose to make LXD available on the network. This is necessary if you

are planning a multi-host setup and support for migration. The initialization also offers
to configure the lxdbr0 bridge interface, which will be used by all containers. By
default, this bridge is configured with IPv6 only. Containers created with the default
configuration will have their veth0 virtual Ethernet adapter attached to lxdbr0 through
a NAT network. This is the gateway for containers to communicate with the outside
world. LXD also installs a local DHCP server and the dnsmasq package. DHCP is used
to assign IP addresses to containers, and dnsmasq acts as a local name-resolution
service.

If you misplace the network bridge configuration or need to update it, you can use the
following command to get to the network configuration screen:

$ sudo dpkg-reconfigure -p medium lxd

https://technet24.ir

There's more…
The LXD 2.0 version, which ships with Ubuntu 16, is an LTS version. If you want to get
your hands on the latest release, then you can install stable versions from the following
repository:

$ sudo add-apt-repository ppa:ubuntu-lxc/lxd-stable

For development releases, change the PPA to ppa:ubuntu-lxc/lxd-git-master.

For more information, visit the LXC download page at
https://linuxcontainers.org/lxc/downloads/.

If you still want to install LXC, you can. Use the following command:

$ sudo apt-get install lxc

This will install the required user space package and all the commands necessary to
work directly with LXC. Note that all LXC commands are prefixed with lxc-, for
example, lxc-create and lxc-info. To get a list of all commands, type lxc- in your
terminal and press Tab twice.

https://linuxcontainers.org/lxc/downloads/

See also
For more information, check the LXD page of the Ubuntu Server guide:
https://help.ubuntu.com/lts/serverguide/lxd.html
The LXC blog post series is at https://www.stgraber.org/2013/12/20/lxc-1-0-blog-
post-series/
The LXD 2.0 blog post series is at https://www.stgraber.org/2016/03/11/lxd-2-0-
blog-post-series-012/
Ubuntu 16.04 switched to Systemd, which provides its own container framework,
systemd-nspawn; read more about systemd containers on its Ubuntu man page at
http://manpages.ubuntu.com/manpages/xenial/man1/systemd-nspawn.1.html
See how to get started with systemd containers at
https://community.flockport.com/topic/32/systemd-nspawn-containers

https://help.ubuntu.com/lts/serverguide/lxd.html
https://www.stgraber.org/2013/12/20/lxc-1-0-blog-post-series/
https://www.stgraber.org/2016/03/11/lxd-2-0-blog-post-series-012/
http://manpages.ubuntu.com/manpages/xenial/man1/systemd-nspawn.1.html
https://community.flockport.com/topic/32/systemd-nspawn-containers
https://technet24.ir

Deploying your first container with LXD
In this recipe, we will create our first container with LXD.

Getting ready
You will need access to the root account or an account with sudo privileges.

https://technet24.ir

How to do it…
LXD works on the concept of remote servers and images served by those remote
servers. Starting a new container with LXD is as simple as downloading a container
image and starting a container out of it, all with a single command. Follow these steps:

1. To start your first container, use the lxc launch command, as follows:

$ lxc launch ubuntu:14.04/amd64 c1

LXC will download the required image (14.04/amd64) and start the container.

You should see the progress like this:

2. As you can see in the screenshot, lxc launch downloads the required image,
creates a new container, and then starts it as well. You can see your new container
in a list of containers with the lxc list command, as follows:

$ lxc list

3. Optionally, you can get more details about the containers with the lxc info
command:

$ lxc info c1

4. Now that your container is running, you can start working with it. With the lxc
exec command, you can execute commands inside a container. Use the following
command to obtain the details of Ubuntu running inside a container:

$ lxc exec c1 -- lsb_release -a

5. You can also open a bash shell inside a container, as follows:

$ lxc exec c1 -- bash

https://technet24.ir

How it works…
Creating images is a time-consuming task. With LXD, the team has solved this problem
by downloading the prebuilt images from trusted remote servers. Unlike LXC, where
images are built locally, LXD downloads them from the remote servers and keep a local
cache of these images for later use. The default installation contains three remote
servers:

Ubuntu: This contains all Ubuntu releases
Ubuntu-daily: This contains all Ubuntu daily builds
images: This contains all other Linux distributions

You can get a list of available remote servers with this command:

$ lxc remote list

Similarly, to get a list of available images on a specific remote server, use the following
command:

$ lxc image list ubuntu:

In the previous example, we used 64-bit Ubuntu 14.04 from one of the preconfigured
remote servers (ubuntu:). When we start a specific container, LXD checks the local
cache for the availability of the respective image; if it's not available locally, the
required images gets fetched from the remote server and cached locally for later use.
These images are kept in sync with remote updates. They also expire if not used for a
specific time period, and expired images are automatically removed by LXD. By
default, the expiration period is set to 10 days.

Note

You can find a list of various configuration parameters for LXC and LXD documented
on GitHub at https://github.com/lxc/lxd/blob/master/doc/configuration.md.

The lxc launch command creates a new container and then starts it as well. If you
want to just create a container without starting it, you can do that with the lxc init
command, as follows:

$ lxc init ubuntu:xenial c2

All containers (or their rootfs) are stored under the /var/lib/lxd/containers

https://github.com/lxc/lxd/blob/master/doc/configuration.md

directory, and images are stored under the /var/lib/lxd/images directory.

Note

All LXD containers are non-privileged containers by default. You do not need any
special privileges to create and manage containers. On the other hand, LXD does
support privileged containers as well.

While starting a container, you can specify the set of configuration parameters using the
--config flag. LXD also supports configuration profiles. Profiles are a set of
configuration parameters that can be applied to a group of containers. Additionally, a
container can have multiple profiles. LXD ships with two preconfigured profiles:
default and docker.

To get a list of profiles, use the lxc profile list command, and to get the contents of
a profile, use the lxc profile show <profile_name> command.

Sometimes, you may need to start a container to experiment with something—execute a
few random commands and then undo all the changes. LXD allows us to create such
throwaway or ephemeral containers with the -e flag. By default, all LXD containers are
permanent containers. You can start an ephemeral container using the --ephemeral or -
e flag. When stopped, an ephemeral container will be deleted automatically.

With LXD, you can start and manage containers on remote servers as well. For this, the
LXD daemon needs to be exposed to the network. This can be done at the time of
initializing LXD or with the following commands:

$ lxc config set core.https_address "[::]"
$ lxc config set core.trust_password some-password

Next, make sure that you can access the remote server and add it as a remote for LXD
with the lxc remote add command:

$ lxc remote add remote01 192.168.0.11 # lxc remote add name
server_ip

Now, you can launch containers on the remote server, as follows:

$ lxc launch ubuntu:xenial remote01:c1

https://technet24.ir

There's more…
Unlike LXC, LXD container images do not support password-based SSH logins. The
container still has the SSH daemon running, but login is restricted to a public key. You
need to add a key to the container before you can log in with SSH. LXD supports file
management with the lxc file command; use it as follows to set your public key inside
an Ubuntu container:

$ lxc file push ~/.ssh/id_rsa.pub \
c1/home/ubuntu/.ssh/authorized_keys \
--mode=0600 --uid=1000

Once the public key is set, you can use SSH to connect to the container, as follows:

$ ssh ubuntu@container_IP

Alternatively, you can directly open a root session inside a container and get a bash
shell with lxc exec, as follows:

$ lxc exec c1 -- bash

See also
The LXD getting started guide: https://linuxcontainers.org/lxd/getting-started-cli/
The Ubuntu Server guide for LXC: https://help.ubuntu.com/lts/serverguide/lxd.html
Container images are created using tools such as debootstrap, which you can read
more about at https://wiki.debian.org/Debootstrap
Creating LXC templates from scratch:
http://wiki.pcprobleemloos.nl/using_lxc_linux_containers_on_debian_squeeze/creating_a_lxc_virtual_machine_template

https://linuxcontainers.org/lxd/getting-started-cli/
https://help.ubuntu.com/lts/serverguide/lxd.html
https://wiki.debian.org/Debootstrap
http://wiki.pcprobleemloos.nl/using_lxc_linux_containers_on_debian_squeeze/creating_a_lxc_virtual_machine_template
https://technet24.ir

Managing LXD containers
We have installed LXD and deployed our first container with it. In this recipe, we will
learn various LXD commands that manage the container lifecycle.

Getting ready…
Make sure that you have followed the previous recipes and created your first container.

https://technet24.ir

How to do it…
Follow these steps to manage LXD containers:

1. Before we start with container management, we will need a running container. If
you have been following the previous recipes, you should already have a brand
new container running on your system. If your container is not already running, you
can start it with the lxc start command:

$ lxc start c1

2. To check the current state of a container, use lxc list, as follows:

$ lxc list c1

This command should list only containers that have c1 in their name.
3. You can also set the container to start automatically. Set the boot.autostart

configuration option to true and your container will start automatically on system
boot. Additionally, you can specify a delay before autostart and a priority in the
autostart list:

$ lxc config set c1 boot.autostart true

4. Once your container is running, you can open a bash session inside a container
using the lxc exec command:

$ lxc exec c1 -- bash
root@c1:~# hostname
c1

This should give you a root shell inside a container. Note that to use bash, your
container image should have a bash shell installed in it. With alpine containers, you
need to use sh as the shell as alpine does not contain the bash shell.

5. LXD provides the option to pause a container when it's not being actively used. A
paused container will still hold memory and other resources assigned to it, but not
receive any CPU cycles:

$ lxc pause c1

6. Containers that are paused can be started again with lxc start.
7. You can also restart a container with the lxc restart command, with the option

to perform a stateful or stateless restart:

$ lxc restart --stateless c1

8. Once you are done working with the container, you can stop it with the lxc stop
command. This will release all resources attached to that container:

$ lxc stop c1

At this point, if your container is an ephemeral container, it will be deleted
automatically.

9. If the container is no longer required, you can explicitly delete it with the lxc
delete command:

$ lxc delete c1

https://technet24.ir

There's more…
For those who do not like to work with command line tools, you can use a web-based
management console known as LXD GUI. This package is still in beta but can be used
on your local LXD deployments. It is available on GitHub at
https://github.com/dobin/lxd-webgui.

https://github.com/dobin/lxd-webgui

See also
Get more details about LXD at https://www.stgraber.org/2016/03/19/lxd-2-0-
your-first-lxd-container-312/
LXC web panel: https://lxc-webpanel.github.io/install.html

https://www.stgraber.org/2016/03/19/lxd-2-0-your-first-lxd-container-312/
https://lxc-webpanel.github.io/install.html
https://technet24.ir

Managing LXD containers – advanced
options
In this recipe, we will learn about some advanced options provided by LXD.

How to do it…
Follow these steps to deal with LXD containers:

1. Sometimes, you may need to clone a container and have it running as a separate
system. LXD provides a copy command to create such clones:

$ lxc copy c1 c2 # lxc copy source destination

You can also create a temporary copy with the --ephemeral flag and it will be
deleted after one use.

2. Similarly, you can create a container, configure it as per you requirements, have it
stored as an image, and use it to create more containers. The lxc publish
command allows you to export existing containers as a new image. The resulting
image will contain all modifications from the original container:

$ lxc publish c1 --alias nginx # after installing nginx

The container to be published should be in the stopped state. Alternatively, you can
use the --force flag to publish a running container, which will internally stop the
container before exporting.

3. You can also move the entire container from one system to another. The move
command helps you with moving containers across hosts. If you move a container
on the same host, the original container will be renamed. Note that the container to
be renamed must not be running:

$ lxc move c1 c2 # container c1 will be renamed to c2

4. Finally, we have the snapshot and restore functionality. You can create snapshots of
the container or, in simple terms, take a backup of its current state. The snapshot
can be a stateful snapshot that stores the container's memory state. Use the
following command to create a snapshot of your container:

$ lxc snapshot c1 snap1 # lxc snapshot container cnapshot

5. The lxc list command will show you the number of snapshots for a given
container. To get the details of every snapshot, check the container information with
the lxc info command:

$ lxc info c1
...
Snapshots:
 c1/shap1 (taken at 2016/05/22 10:34 UTC) (stateless)

https://technet24.ir

Tip

You can skip the snapshot name and LXD will name it for you. But, as of writing
this, there's no option to add a description with snapshots. You can use the filename
to describe the purpose of each snapshot.

6. Once you have the snapshots created, you can restore it to go back to a point or
create new containers out of your snapshots and have both states maintained. To
restore your snapshot, use lxc restore, as follows:

$ lxc restore c1 snap1 # lxc restore container snapshot

7. To create a new container out of your snapshot, use lxc copy, as follows:

$ lxc copy c1/snap1 c4 # lxc copy container/snapshot
new_container

8. When you no longer need a snapshot, delete it with lxc delete, as follows:

$ lxc delete c1/snap1 # lxc delete container/snapshot

How it works…
Most of these commands work with the rootfs or root filesystem of containers. The
rootfs is stored under the /var/lib/lxd/containers directory. Copying creates a
copy of the rootfs while deleting removes the rootfs for a given container. These
commands benefit with the use of the ZFS file system. Features such as copy-on-write
speed up the copy and snapshot operations while reducing the total disk space use.

https://technet24.ir

Setting resource limits on LXD
containers
In this recipe, we will learn to set resource limits on containers. LXD uses the cgroups
feature in the Linux kernel to manage resource allocation and limits. Limits can be
applied to a single container through configuration or set in a profile, applying limits to
a group of containers at once. Limits can be dynamically updated even when the
container is running.

How to do it…
We will create a new profile and configure various resource limits in it. Once the
profile is ready, we can use it with any number of containers. Follow these steps:

1. Create a new profile with the following command:

$ lxc profile create cookbook
Profile cookbook created

2. Next, edit the profile with lxc profile edit. This will open a text editor with a
default profile structure in YML format:

$ lxc profile edit cookbook

Add the following details to the profile. Feel free to select any parameters and
change their values as required:

name: cookbook
config:
 boot.autostart: "true"
 limits.cpu: "1"
 limits.cpu.priority: "10"
 limits.disk.priority: "10"
 limits.memory: 128MB
 limits.processes: "100"
description: A profile for Ubuntu Cookbook Containers
devices:
 eth0:
 nictype: bridged
 parent: lxdbr0
 type: nic

Save your changes to the profile and exit the text editor.
3. Optionally, you can check the created profile, as follows:

$ lxc profile show cookbook

https://technet24.ir

4. Now, our profile is ready and can be used with a container to set limits. Create a
new container using our profile:

$ lxc launch ubuntu:xenial c4 -p cookbook

5. This should create and start a new container with the cookbook profile applied to
it. You can check the profile in use with the lxc info command:

$ lxc info c4

6. Check the memory limits applied to container c4:

$ lxc exec c4 -- free -m

7. Profiles can be updated even when they are in use. All containers using that profile
will be updated with the respective changes, or return a failure message. Update
your profile as follows:

$ lxc profile set cookbook limits.memory 256MB

How it works…
LXD provides multiple options to set resource limits on containers. You can apply
limits using profiles or configure containers separately with the lxc config command.
The advantage of creating profiles is that you can have various parameters defined in
one central place, and all those parameters can be applied to multiple containers at
once. A container can have multiple profiles applied and also have configuration
parameters explicitly set. The overlapping parameters will take a value from the last
applied profile. Also the parameters that are set explicitly using lxc config will
override any values set by profiles.

The LXD installation ships with two preconfigured profiles. One is default, which is
applied to all containers that do not receive any other profile. This contains a network
device for a container. The other profile, named docker, configures the required kernel
modules to run Docker inside the container. You can view the parameters of any profile
with the lxc profile show profile_name command.

In the previous example, we used the edit option to edit the profile and set multiple
parameters at once. You can also set each parameter separately or update the profile
with the set option:

$ lxc profile set cookbook limits.memory 256MB

Similarly, use the get option to read any single parameter from a profile:

$ lxc profile get cookbook limits.memory

Profiles can also be applied to a running container with lxc profile apply. The
following command will apply two profiles, default and cookbook, to an existing
container, c6:

$ lxc profile apply c6 default,cookbook

Tip

We could have skipped the network configuration in the cookbook profile and had our
containers use the default profile along with cookbook to combine both configurations.

Updating the profiles will update the configuration for all container using that profile.
To modify a single container, you can use lxc config set or pass the parameters
directly to a new container using the -c flag:

https://technet24.ir

$ lxc launch ubuntu:xenial c7 -c limits.memory=64MB

Similar to lxc profile, you can use the edit option with lxc config to modify
multiple parameters at once. The same command can also be used to configure or read
server parameters. When used without any container name, the command applies to the
LXD daemon.

There's more…
The lxc profile and lxc config commands can also be used to attach local devices
to containers. Both commands provide the option to work with various devices, which
include network, disk IO, and so on. The simplest example will be to pass a local
directory to a container, as follows:

$ lxc config device add c1 share disk \
source=/home/ubuntu path=home/ubuntu/shared

https://technet24.ir

See also
Read more about setting resource limits at
https://www.stgraber.org/2016/03/26/lxd-2-0-resource-control-412
For more details about LXC configuration, check the help menu for the lxc
profile and lxc config commands, as follows:

$ lxc config --help

https://www.stgraber.org/2016/03/26/lxd-2-0-resource-control-412

Networking with LXD
In this recipe, we will look at LXD network setup. By default, LXD creates an internal
bridge network. Containers are set to access the Internet through Network Address
Translation (NAT) but are not accessible from the Internet. We will learn to open a
service on a container to the Internet, share a physical network with a host, and set a
static IP address to a container.

https://technet24.ir

Getting ready
As always, you will need access to the root account or an account with sudo privileges.

Make sure that you have created at least one container.

How to do it…
By default, LXD sets up a NAT network for containers. This is a private network
attached to the lxdbr0 port on the host system. With this setup, containers get access to
the Internet, but the containers themselves or the services running in the containers are
not accessible from an outside network. To open a container to an external network, you
can either set up port forwarding or use a bridge to attach the container directly to the
host's network:

1. To set up port forwarding, use the iptables command, as follows:

$ sudo iptables -t nat -A PREROUTING -p tcp -i eth0 \
--dport 80 -j DNAT --to 10.106.147.244:80

This will forward any traffic on the host TCP port 80 to the containers' TCP port
80 with the IP 10.106.147.244. Make sure that you change the port and IP address
as required.

2. You can also set a bridge that connects all containers directly to your local
network. The bridge will use an Ethernet port to connect to the local network. To
set a bridge network with the host, we first need to create a bridge on the host and
then configure the container to use that bridge adapter.

To set up a bridge on the host, open the /etc/network/interfaces file and add
the following lines:

auto br0
iface br0 inet dhcp
 bridge_ports eth0

Make sure that you replace eth0 with the name of the interface connected to the
external network.

3. Enable IP forwarding under sysctl. Find the following line in
/etc/sysctl.conf and uncomment it:

net.ipv4.ip_forward=1

4. Start a new bridge interface with the ifup command:

$ sudo ifup br0

Note

Note that if you are connected to a server over SSH, your connection will break.

https://technet24.ir

Make sure to have a snapshot of the working state before changing your network
configuration.

5. If required, you can restart the networking service, as follows:

$ sudo service networking restart

6. Next, we need to update the LXD configuration to use our new bridge interface.
Execute a reconfiguration of the LXD daemon and choose <No> when asked to
create a new bridge:

$ sudo dpkg-reconfigure -p medium lxd

7. Then on the next page, choose <Yes> to use an existing bridge:

8. Enter the name of the newly created bridge interface:

This should configure LXD to use our own bridge network and skip the internal
bridge. You can check the new configuration under the default profile:

$ lxc profile show default

9. Now, start a new container. It should receive the IP address from the router on your
local network. Make sure that your local network has DHCP configured:

https://technet24.ir

How it works…
By default, LXD sets up a private network for all containers. A separate bridge,
lxdbr0, is set up and configured in the default profile. This network is shared (NAT)
with the host system, and containers can access the Internet through this network. In the
previous example, we used IPtables port forwarding to make the container port 80
available on the external network. This way, containers will still use the same private
network, and a single application will be exposed to the external network through the
host system. All incoming traffic on host port 80 will be directed to the container's port
80.

You can also set up your own bridge connected to the physical network. With this
bridge, all your containers can connect to and be directly accessible over your local
network. Your local DHCP will be used to assign IP addresses to containers. Once you
create a bridge, you need to configure it with LXD containers either through profiles or
separately with container configuration. In the previous example, we reconfigured the
LXD network to set a new bridge.

Tip

If you are using virtual machines for hosting containers and want to set up a bridge, then
make sure that you have enabled promiscuous mode on the network adapter of the
virtual machine. This can be enabled from the network settings of your hypervisor. Also,
a bridge setup may not work if your physical machine is using a wireless network.

LXD supports more advanced network configuration by attaching the host eth interface
directly to a container. The following settings in the container configuration will set the
network type to a physical network and use the host's eth0 directly inside a container.
The eth0 interface will be unavailable for the host system till the container is live:

$ lxc config device add c1 eth0 nic nictype=physical parent=eth0

There's more…
LXD creates a default bridge with the name lxdbr0. The configuration file for this
bridge is located at /etc/default/lxd-bridge. This file contains various
configuration parameters, such as the address range for the bridge, default domain, and
bridge name. An interesting parameter is the additional configuration path for dnsmasq
configurations.

The LXD bridge internally uses dnsmasq for DHCP allocation. The additional
configuration file can be used to set up various dnsmasq settings, such as address
reservation and name resolution for containers.

Edit /etc/default/lxd-bridge to point to the dnsmasq configuration file:

Path to an extra dnsmasq configuration file
LXD_CONFILE="/etc/default/dnsmasq.conf"

Then, create a new configuration file called /etc/default/dnsmasq.conf with the
following contents:

dhcp-host=c5,10.71.225.100
server=/lxd/10.71.225.1
#interface=lxdbr0

This will reserve the IP 10.71.225.100 for the container called c5, and you can also
ping containers with that name, as follows:

$ ping lxd.c5

https://technet24.ir

See also
Read more about bridge configuration at
https://wiki.debian.org/LXC/SimpleBridge
Find out more about LXD bridge at the following links:

https://insights.ubuntu.com/2016/04/07/lxd-networking-lxdbr0-explained/
http://askubuntu.com/questions/754323/lxd-2-0-local-networking
https://insights.ubuntu.com/2015/11/10/converting-eth0-to-br0-and-getting-
all-your-lxc-or-lxd-onto-your-lan/

Read more about dnsmasq at https://wiki.debian.org/HowTo/dnsmasq
Sample dnsmasq configuration file: http://oss.segetech.com/intra/srv/dnsmasq.conf
Check the dnsmasq manual pages with the man dnsmasq command

https://wiki.debian.org/LXC/SimpleBridge
https://insights.ubuntu.com/2016/04/07/lxd-networking-lxdbr0-explained/
http://askubuntu.com/questions/754323/lxd-2-0-local-networking
https://insights.ubuntu.com/2015/11/10/converting-eth0-to-br0-and-getting-all-your-lxc-or-lxd-onto-your-lan
https://wiki.debian.org/HowTo/dnsmasq
http://oss.segetech.com/intra/srv/dnsmasq.conf

Installing Docker
In last few recipes, we learned about LXD, an operating system container service. Now,
we will look at a hot new technology called Docker. Docker is an application container
designed to package and run a single service. It enables developers to enclose an app
with all dependencies in an isolated container environment. Docker helps developers
create a reproducible environment with a simple configuration file called a Dockerfile.
It also provides portability by sharing the Dockerfile, and developers can be sure that
their setup will work the same on any system with the Docker runtime.

Docker is very similar to LXC. Its development started as a wrapper around the LXC
API to help DevOps take advantage of containerization. It added some restrictions to
allow only a single process to be running in a container, unlike a whole operating
system in LXC. In subsequent versions, Docker changed its focus from LXC and started
working on a new standard library for application containers, known as libcontainer.

It still uses the same base technologies, such as Linux namespaces and control groups,
and shares the same kernel with the host operating system. Similarly, Docker makes use
of operating system images to run containers. Docker images are a collection of multiple
layers, with each layer adding something new to the base layer. This something new can
include a service, such as a web server, application code, or even a new set of
configurations. Each layer is independent of the layers above it and can be reused to
create a new image.

Being an application container, Docker encourages the use of a microservice-based
distributed architecture. Think of deploying a simple WordPress blog. With Docker,
you will need to create at least two different containers, one for the MySQL server and
the other for the WordPress code with PHP and the web server. You can separate PHP
and web servers in their own containers. While this looks like extra effort, it makes
your application much more flexible. It enables you to scale each component separately
and improves application availability by separating failure points.

While both LXC and Docker use containerization technologies, their use cases are
different. LXC enables you to run an entire lightweight virtual machine in a container,
eliminating the inefficiencies of virtualization. Docker enables you to quickly create and
share a self-dependent package with your application, which can be deployed on any
system running Docker.

https://technet24.ir

In this recipe, we will cover the installation of Docker on Ubuntu Server. The recipes
after that will focus on various features provided by Docker.

Getting ready
You will need access to the root account or an account with sudo privileges.

https://technet24.ir

How to do it…
Recently, Docker released version 1.11 of the Docker engine. We will follow the
installation steps provided on the Docker site to install the latest available version:

1. First, add a new gpg key:

$ sudo apt-key adv --keyserver hkp://p80.pool.sks-
keyservers.net:80 --recv-keys
58118E89F3A912897C070ADBF76221572C52609D

2. Next, add a new repository to the local installation sources. This repository is
maintained by Docker and contains Docker packages for 1.7.1 and higher versions:

$ echo "deb https://apt.dockerproject.org/repo ubuntu-xenial
main" | \
sudo tee /etc/apt/sources.list.d/docker.list

Note

If you are using an Ubuntu version other than 16.04 (Xenial), then make sure that
you replace the repository path with the respective codename. For example, on
Ubuntu 14.04 (Trusty), use the following repository:

deb https://apt.dockerproject.org/repo ubuntu-trusty main

3. Next, update the apt package list and install Docker with the following commands:

$ sudo apt-get update
$ sudo apt-get install docker-engine

4. Once the installation completes, you can check the status of the Docker service, as
follows:

$ sudo service docket status

5. Check the installed Docker version with docker version:

$ sudo docker version
Client:
 Version: 1.11.1
 API version: 1.23
 ...
Server:
 Version: 1.11.1
 API version: 1.23
 ...

6. Download a test container to test the installation. This container will simply print a
welcome message and then exit:

$ sudo docker run hello-world

7. At this point, you need to use sudo with every Docker command. To enable a non-
sudo user to use Docker, or to simply avoid the repeated use of sudo, add the
respective usernames to the docker group:

$ sudo gpasswd -a ubuntu docker

Note

The docker group has privileges equivalent to the root account. Check the official
Docker installation documentation for more details.

Now, update group membership, and you can use Docker without the sudo
command:

$ newgrp docker

https://technet24.ir

How it works…
This recipe installs Docker from the official Docker repository. This way, we can be
sure to get the latest version. The Ubuntu 16.04 repository also contains the package for
Docker with version 1.10. If you prefer to install from the Ubuntu repository, it's an
even easier task with a single command, as follows:

$ sudo apt-get install docker.io

As of writing this, Docker 1.11 is the latest stable release and the first release to have
been built on Open Container Initiative standards. This version is built on runc and
containerd.

There's more…
Docker provides a quick installation script, which can be used to install Docker with a
single command. This scripts reads the basic details of your operating system, such as
the distribution and version, and then executes all the required steps to install Docker.
You can use the bootstrap script as follows:

$ sudo curl -sSL https://get.docker.com | sudo sh

Note that with this command, the script will be executed with sudo privileges. Make
sure you cross-check the script's contents before executing it. You can download the
script without executing it, as follows:

$ curl -sSL https://get.docker.com -o docker_install.sh

https://technet24.ir

See also
The Docker installation guide: http://docs.docker.com/installation/ubuntulinux/
Operating system containers versus application containers:
https://blog.risingstack.com/operating-system-containers-vs-application-
containers/
What Docker adds to lxc-tools:
http://stackoverflow.com/questions/17989306/what-does-docker-add-to-lxc-tools-
the-userspace-lxc-tools
A curated list of Docker resources: https://github.com/veggiemonk/awesome-
docker

http://docs.docker.com/installation/ubuntulinux/
https://blog.risingstack.com/operating-system-containers-vs-application-containers/
http://stackoverflow.com/questions/17989306/what-does-docker-add-to-lxc-tools-the-userspace-lxc-tools
https://github.com/veggiemonk/awesome-docker

Starting and managing Docker
containers
So, we have installed the latest Docker binary. In this recipe, we will start a new
container with Docker. We will see some basic Docker commands to start and manage
Docker containers.

https://technet24.ir

Getting ready
Make sure that you have installed Docker and set your user as a member of the Docker
group.

You may need sudo privileges for some commands.

How to do it…
Let's create a new Docker container and start it. With Docker, you can quickly start a
container with the docker run command:

1. Start a new Docker container with the following command:

$ docker run -it --name dc1 ubuntu /bin/bash
Unable to find image 'ubuntu:trusty' locally
trusty: Pulling from library/ubuntu
6599cadaf950: Pull complete
23eda618d451: Pull complete
...
Status: Downloaded newer image for ubuntu:trusty
root@bd8c99397e52:/#

Once a container has been started, it will drop you in a new shell running inside it.
From here, you can execute limited Ubuntu or general Linux commands, which will
be executed inside the container.

2. When you are done with the container, you can exit from the shell by typing exit
or pressing Ctrl + D. This will terminate your shell and stop the container as well.

3. Use the docker ps command to list all the containers and check the status of your
last container:

$ docker ps -a

By default, docker ps lists all running containers. As our container is no longer
running, we need to use the -a flag to list all available containers.

4. To start the container again, you can use the docker start command. You can use
the container name or ID to specify the container to be started:

$ docker start -ia dc1

https://technet24.ir

The -i flag will start the container in interactive mode and the -a flag will attach
to a terminal inside the container. To start a container in detached mode, use the
start command without any flags. This will start the container in the background
and return to the host shell:

$ docker start dc1

5. You can open a terminal inside a detached container with docker attach:

$ docker attach dc1

6. Now, to detach a terminal and keep the container running, you need the key
combinations Ctrl + P and Ctrl + Q. Alternatively, you can type exit or press Ctrl
+ C to exit the terminal and stop the container.

7. To get all the details of a container, use the docker inspect command with the
name or ID of the container:

$ docker inspect dc1 | less

This command will list all the details of the container, including container status,
network status and address, and container configuration files.

Tip

Use grep to filter container information. For example, to get the IP address from
the docker inspect output, use this:

$ docker inspect dc1 | grep-iipaddr

8. To execute a command inside a container, use docker exec. For example, the
following command gets the environment variables from the dc1 container:

$ docker exec dc1 env

This one gets the IP address of a container:

$ docker exec dc1 ifconfig

9. To get the processes running inside a container, use the docker top command:

$ docker top dc1

10. Finally, to stop the container, use docker stop, which will gracefully stop the
container after stopping processes running inside it:

$ docker stop dc1

11. When you no longer need the container, you can use docker rm to remove/delete
it:

$ docker rm dc1

Tip

Want to remove all stopped containers with a single command? Use this:

$ docker rm $(dockerps -aq)

https://technet24.ir

How it works…
We started our first Docker container with the docker run command. With this
command, we instructed the Docker daemon to start a new container with an image
called Ubuntu, start an interactive session (-i), and allocate a terminal (-t). We also
elected to name our container with the --name flag and execute the /bin/bash
command inside a container once it started.

The Docker daemon will search for Ubuntu images in the local cache or download the
image from Docker Hub if the specified image is not available in the local cache.
Docker Hub is a central Docker image repository. It will take some time to download
and extract all the layers of the images. Docker maintains container images in the form
of multiple layers. These layers can be shared across multiple container images. For
example, if you have Ubuntu running on a server and you need to download the Apache
container based on Ubuntu, Docker will only download the additional layer for Apache
as it already has Ubuntu in the local cache, which can be reused.

Docker provides various other commands to manage containers and images. We have
already used a few of them in the previous example. You can get the full list of all
available commands from the command prompt itself, by typing docker followed by the
Enter key. All commands are listed with their basic descriptions. To get more details on
any specific subcommand, use its help menu, as follows:

$ docker rmi --help

There's more…
Docker images can be used to quickly create runc containers, as follows:

$ sudo apt-get install runc
$ mkdir -p runc/rootfs && cd runc
$ docker run --name alpine alpine sh
$ docker export alpine > alpine.tar
$ tar -xf alpine.tar -C rootfs
$ runc spec
$ sudo runc start alpine

https://technet24.ir

See also
Docker run documentation:
http://docs.docker.com/engine/reference/commandline/run/
Check manual entries for any Docker command: $ man docker create

http://docs.docker.com/engine/reference/commandline/run/

Creating images with a Dockerfile
This recipe explores image creation with Dockerfiles. Docker images can be created in
multiple ways, which includes using Dockerfiles, using docker commit to save the
container state as a new image, or using docker import, which imports chroot
directory structure as a Docker image.

In this recipe, we will focus on Dockerfiles and related details. Dockerfiles help in
automating identical and repeatable image creation. They contain multiple commands in
the form of instructions to build a new image. These instructions are then passed to the
Docker daemon through the docker build command. The Docker daemon
independently executes these commands one by one. The resulting images are committed
as and when necessary, and it is possible that multiple intermediate images are created.
The build process will reuse existing images from the image cache to speed up build
process.

https://technet24.ir

Getting ready
Make sure that your Docker daemon is installed and working properly.

How to do it…
1. First, create a new empty directory and enter it. This directory will hold our

Dockerfile:

$ mkdir myimage
$ cd myimage

2. Create a new file called Dockerfile:

$ touch Dockerfile

3. Now, add the following lines to the newly created file. These lines are the
instructions to create an image with the Apache web server. We will look at more
details later in this recipe:

FROM ubuntu:trusty
MAINTAINER ubuntu server cookbook

Install base packages
RUN apt-get update && apt-get -yq install apache2 && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*

RUN echo "ServerName localhost" >> /etc/apache2/apache2.conf

ENV APACHE_RUN_USER www-data
ENV APACHE_RUN_GROUP www-data
ENV APACHE_LOG_DIR /var/log/apache2
ENV APACHE_PID_FILE /var/run/apache2.pid
ENV APACHE_LOCK_DIR /var/www/html

VOLUME ["/var/www/html"]
EXPOSE 80
CMD ["/usr/sbin/apache2", "-D", "FOREGROUND"]

4. Save the changes and start the docker build process with the following
command:

$ docker build.

https://technet24.ir

This will build a new image with Apache server installed on it. The build process
will take a little longer to complete and output the final image ID:

5. Once the image is ready, you can start a new container with it:

$ docker run -p 80:80 -d image_id

Replace image_id with the image ID from the result of the build process.
6. Now, you can list the running containers with the docker ps command. Notice the

ports column of the output:

$ docker ps

Apache server's default page should be accessible at your host domain name or IP
address.

How it works…
A Dockerfile is a document that contains several commands to create a new image. Each
command in a Dockerfile creates a new container, executes that command on the new
container, and then commits the changes to create a new image. This image is then used
as a base for executing the next command. Once the final command is executed, Docker
returns the ID of the final image as an output of the docker build command.

This recipe demonstrates the use of a Dockerfile to create images with the Apache web
server. The Dockerfile uses a few available instructions. As a convention, the
instructions file is generally called Dockerfile. Alternatively, you can use the -f flag to
pass the instruction file to the Docker daemon. A Dockerfile uses the following format
for instructions:

comment
INSTRUCTION argument

All instructions are executed one by one in a given order. A Dockerfile must start with
the FROM instruction, which specifies the base image to be used. We have started our
Dockerfile with Ubuntu:trusty as the base image. The next line specifies the maintainer
or the author of the Dockerfile, with the MAINTAINER instruction.

Followed by the author definition, we have used the RUN instruction to install Apache on
our base image. The RUN instruction will execute a given command on the top read-
write layer and then commit the results. The committed image will be used as a starting
point for the next instruction. If you've noticed the RUN instruction and the arguments
passed to it, you can see that we have passed multiple commands in a chained format.
This will execute all commands on a single image and avoid any cache-related
problems. The apt-get clean and rm commands are used to remove any unused files
and minimize the resulting image size.

After the RUN command, we have set some environment variables with the ENV
instruction. When we start a new container from this image, all environment variables
are exported to the container environment and will be accessible to processes running
inside the container. In this case, the process that will use such a variable is the Apache
server.

Next, we have used the VOLUME instruction with the path set to /var/www/html. This
instruction creates a directory on the host system, generally under Docker root, and

https://technet24.ir

mounts it inside the container on the specified path. Docker uses volumes to decouple
containers from the data they create. So even if the container using this volume is
removed, the data will persist on the host system. You can specify volumes in a
Dockerfile or in the command line while running the container, as follows:

$ docker run -v /var/www/html image_id

You can use docker inspect to get the host path of the volumes attached to container.

Finally, we have used the EXPOSE instruction, which will expose the specified container
port to the host. In this case, it's port 80, where the Apache server will be listening for
web requests. To use an exposed port on the host system, we need to use either the -p
flag to explicitly specify the port mapping or the -P flag, which will dynamically map
the container port to the available host port. We have used the -p flag with the argument
80:80, which will map the container port 80 to the host port 80 and make Apache
accessible through the host.

The last instruction, CMD, sets the command to be executed when running the image. We
are using the executable format of the CMD instruction, which specifies the executable to
be run with its command-line arguments. In this case, our executable is the Apache
binary with -D FOREGROUND as an argument. By default, the Apache parent process will
start, create a child process, and then exit. If the Apache process exits, our container
will be turned off as it no longer has a running process. With the -D FOREGROUND
argument, we instruct Apache to run in the foreground and keep the parent process
active. We can have only one CMD instruction in a Dockerfile.

The instruction set includes some more instructions, such as ADD, COPY, and
ENTRYPOINT. I cannot cover them all because it would run into far too many pages. You
can always refer to the official Docker site to get more details. Check out the reference
URLs in the See also section.

There's more…
Once the image has been created, you can share it on Docker Hub, a central repository
of public and private Docker images. You need an account on Docker Hub, which can
be created for free. Once you get your Docker Hub credentials, you can use docker
login to connect your Docker daemon with Docker Hub and then use docker push to
push local images to the Docker Hub repository. You can use the respective help
commands or manual pages to get more details about docker login and docker push.

Alternatively, you can also set up your own local image repository. Check out the
Docker documents for deploying your own registry at
https://docs.docker.com/registry/deploying/.

Note

GitLab, an open source Git hosting server, now supports container repositories. This
feature has been added in GitLab version 8.8. Refer to Chapter 11, Git Hosting, for
more details and installation instructions for GitLab.

We need a base image or any other image as a starting point for the Dockerfile. But how
do we create our own base image?

Base images can be created with tools such as debootstrap and supermin. We need to
create a distribution-specific directory structure and put all the necessary files inside it.
Later, we can create a tarball of this directory structure and import the tarball as a
Docker image using the docker import command.

https://docs.docker.com/registry/deploying/
https://technet24.ir

See also
Dockerfile reference: https://docs.docker.com/reference/builder/
Dockerfile best practices: https://docs.docker.com/articles/dockerfile_best-
practices
More Dockerfile best practices: http://crosbymichael.com/dockerfile-best-
practices.html">
Create a base image: http://docs.docker.com/engine/articles/baseimages/

https://docs.docker.com/reference/builder/
https://docs.docker.com/articles/dockerfile_best-practices
http://crosbymichael.com/dockerfile-best-practices.html
http://docs.docker.com/engine/articles/baseimages/

Understanding Docker volumes
One of the most common questions seen on Docker forums is how to separate data from
containers. This is because any data created inside containers is lost when the container
gets deleted. Using docker commit to store data inside Docker images is not a good
idea. To solve this problem, Docker provides an option called data volumes. Data
volumes are special shared directories that can be used by one or more Docker
containers. These volumes persist even when the container is deleted. These directories
are created on the host file system, usually under the /var/lib/docker/ directory.

In this recipe, we will learn to use Docker volumes, share host directories with Docker
containers, and learn basic backup and restore tricks that can be used with containers.

https://technet24.ir

Getting ready
Make sure that you have the Docker daemon installed and running. We will need two or
more containers.

You may need sudo privileges to access the /var/lib/docker directory.

How to do it…
Follow these steps to understand Docker volumes:

1. To add a data volume to a container, use the -v flag with the docker run
command, like so:

$ docker run -dP -v /var/lib/mysql --name mysql\
-e MYSQL_ROOT_PASSWORD= passwdmysql:latest

This will create a new MySQL container with a volume created at
/var/lib/mysql inside the container. If the directory already exists on the volume
path, the volume will overlay the directory contents.

2. Once the container has been started, you can get the host-specific path of the
volume with the docker inspect command. Look for the Mounts section in the
output of docker inspect:

$ docker inspect mysql

3. To mount a specific directory from the host system as a data volume, use the
following syntax:

$ mkdir ~/mkdir
$ docker run -dP -v ~/mysql:/var/lib/mysql \
--name mysql mysql:latest

This will create a new directory named mysql at the home path and mount it as a
volume inside a container at /var/lib/mysql.

4. To share a volume between multiple containers, you can use named volume
containers.

https://technet24.ir

First, create a container with a volume attached to it. The following command will
create a container with its name set to mysql:

$ docker run -dP -v /var/lib/mysql --name mysql\
-e MYSQL_ROOT_PASSWORD= passwd mysql:latest

5. Now, create a new container using the volume exposed by the mysql container and
list all the files available in the container:

$ docker run --rm --volumes-from mysql ubuntu ls -l
/var/lib/mysql

6. To back up data from the mysql container, use the following command:

$ docker run --rm--volumes-from mysql -v ~/backup:/backup \
$ tar cvf /backup/mysql.tar /var/lib/mysql

7. Docker volumes are not deleted when containers are removed. To delete volumes
along with a container, you need to use the -v flag with the docker rm command:

$ dockerrm -v mysql

How it works…
Docker volumes are designed to provide persistent storage, separate from the
containers' life cycles. Even if the container gets deleted, the volume still persists unless
it's explicitly specified to delete the volume with the container. Volumes can be attached
while creating a container using the docker create or docker run commands. Both
commands support the -v flag, which accepts volume arguments. You can add multiple
volumes by repeatedly using the volume flag. Volumes can also be created in a
Dockerfile using the VOLUME instruction.

When the -v flag is followed by a simple directory path, Docker creates a new
directory inside a container as a data volume. This data volume will be mapped to a
directory on the host filesystem under the /var/lib/docker directory. Docker volumes
are read-write enabled by default, but you can mark a volume to be read-only using the
following syntax:

$ docker run -dP -v /var/lib/mysql:ro --name mysql mysql:latest

Once a container has been created, you can get the details of all the volumes used by it,
as well as its host-specific path, with the docker inspect command. The Mounts
section from the output of docker inspect lists all volumes with their respective
names and paths on the host system and path inside a container.

Rather than using a random location as a data volume, you can also specify a particular
directory on the host to be used as a data volume. Add a host directory along with the
volume argument, and Docker will map the volume to that directory:

$ docker run -dP -v ~/mysql:/var/lib/mysql \
--name mysql mysql:latest

In this case, /var/lib/mysql from the container will be mapped to the mysql directory
located at the user's home address.

Need to share a single file from a host system with a container? Sure, Docker supports
that too. Use docker run -v and specify the file source on the host and destination
inside the container. Check out following example command:

$ docker run --rmd -v ~/.bash_history:/.bash_history ubuntu

The other option is to create a named data volume container or data-only container. You

https://technet24.ir

can create a named container with attached volumes and then use those volumes inside
other containers using the docker run --volumes-from command. The data volumes
container need not be running to access volumes attached to it. These volumes can be
shared by multiple containers, plus you can create temporary, throwaway application
containers by separating persistent data storage. Even if you delete a temporary
container using a named volume, your data is still safe with a volume container.

From Docker version 1.9 onwards, a separate command, docker volume, is available
to manage volumes. With this update, you can create and manage volumes separately
from containers. Docker volumes support various backend drivers, including AUFS,
OverlayFS, BtrFS, and ZFS. A simple command to create a new volume will be as
follows:

$ docker volume create --name=myvolume
$ docker run -v myvolume:/opt alpine sh

See also
The Docker volumes guide:
http://docs.docker.com/engine/userguide/dockervolumes/
Clean up orphaned volumes with this script: https://github.com/chadoe/docker-
cleanup-volumes

http://docs.docker.com/engine/userguide/dockervolumes/
https://github.com/chadoe/docker-cleanup-volumes
https://technet24.ir

Deploying WordPress using a Docker
network
In this recipe, we will learn to use a Docker network to set up a WordPress server. We
will create two containers, one for MySQL and the other for WordPress. Additionally,
we will set up a private network for both MySQL and WordPress.

How to do it…
Let's start by creating a separate network for WordPress and the MySQL containers:

1. A new network can be created with the following command:

$ docker network create wpnet

2. Check whether the network has been created successfully with docker network
ls:

$ docker network ls

3. You can get details of the new network with the docker network inspect
command:

$ docker network inspect wpnet

4. Next, start a new MySQL container and set it to use wpnet:

$ docker run --name mysql -d \

https://technet24.ir

-e MYSQL_ROOT_PASSWORD=password \
--net wpnet mysql

5. Now, create a container for WordPress. Make sure the WORDPRESS_DB_HOST
argument matches the name given to the MySQL container:

$ docker run --name wordpress -d -p 80:80 \
--net wpnet\
-e WORDPRESS_DB_HOST=mysql\
-e WORDPRESS_DB_PASSWORD=password wordpress

6. Inspect wpnet again. This time, it should list two containers:

Now, you can access the WordPress installation at your host domain name or IP address.

How it works…
Docker introduced the container networking model (CNM) with Docker version 1.9.
CNM enables users to create small, private networks for a group of containers. Now,
you can set up a new software-assisted network with a simple docker network
create command. The Docker network supports bridge and overlay drivers for
networks out of the box. You can use plugins to add other network drivers. The bridge
network is a default driver used by a Docker network. It provides a network similar to
the default Docker network, whereas an overlay network enables multihost networking
for Docker clusters.

This recipe covers the use of a bridge network for wordpress containers. We have
created a simple, isolated bridge network using the docker network command. Once
the network has been created, you can set containers to use this network with the --net
flag to docker run command. If your containers are already running, you can add a new
network interface to them with the docker network connect command, as follows:

$ # docker network connect network_name container_name
$ docker network connect wpnet mysql

Similarly, you can use docker network disconnect to disconnect or remove a
container from a specific network. Additionally, this network provides an inbuilt
discovery feature. With discovery enabled, we can communicate with other containers
using their names. We used this feature while connecting the MySQL container to the
wordpress container. For the WORDPRESS_DB_HOST parameter, we used the container
name rather than the IP address or FQDN.

If you've noticed, we have not mentioned any port mapping for the mysql container.
With this new wpnet network, we need not create any port mapping on the MySQL
container. The default MySQL port is exposed by the mysql container and the service is
accessible only to containers running on the wpnet network. The only port available to
the outside world is port 80 from the wordpress container. We can easily hide the
WordPress service behind a load balancer and use multiple wordpress containers with
just the load balancer exposed to the outside world.

https://technet24.ir

There's more…
Docker also supports links to create secure communication links between two or more
containers. You can set up a WordPress site using linked containers as follows:

1. First, create a mysql container:

$ docker run --name mysql -d \
-e MYSQL_ROOT_PASSWORD=password mysql

2. Now, create a wordpress container and link it with the mysql container:

$ docker run --name wordpress -d -p 80:80 --link mysql:mysql

And you are done. All arguments for wordpress, such as DB_HOST and
ROOT_PASSWORD, will be taken from the linked mysql container.

The other option to set up WordPress is to set up both WordPress and MySQL in a
single container. This needs process management tools such as supervisord to run two
or more processes in a single container. Docker allows only one process per container
by default.

See also
You can find the respective Dockerfiles for MySQL and WordPress containers at the
following addresses:

Docker Hub WordPress: https://hub.docker.com/_/wordpress/
Docker Hub MySQL: https://hub.docker.com/_/mysql/
Docker networking: https://blog.docker.com/2015/11/docker-multi-host-
networking-ga/
Networking for containers using libnetwork: https://github.com/docker/libnetwork

https://hub.docker.com/_/wordpress/
https://hub.docker.com/_/mysql/
https://blog.docker.com/2015/11/docker-multi-host-networking-ga/
https://github.com/docker/libnetwork
https://technet24.ir

Monitoring Docker containers
In this recipe, we will learn to monitor Docker containers.

How to do it…
Docker provides inbuilt monitoring with the docker stats command, which can be
used to get a live stream of the resource utilization of Docker containers.

1. To monitor multiple containers at once using their respective IDs or names, use this
command:

$ docker stats mysql f9617f4b716c

Tip

If you need to monitor all running containers, use the following command:

$ docker stats $(dockerps -q)

2. With docker logs, you can fetch logs of your application running inside a
container. This can be used similarly to the tail -f command:

$ docker logs -f ubuntu

3. Docker also records state change events from containers. These events include
start, stop, create, kill, and so on. You can get real-time events with docker
events:

$ docker events

To get past events, use the --since flag with docker events:

$ docker events --since '2015-11-01'

4. You can also check the changes in the container filesystem with the docker diff
command. This will list newly added (A), changed (C), or deleted (D) files.

$ docker diff ubuntu

5. Another useful command is docker top, which helps look inside a container. This
commands displays the processes running inside a container:

https://technet24.ir

$ docker top ubuntu

How it works…
Docker provides various inbuilt commands to monitor containers and the processes
running inside them. It uses native system constructs such as namespaces and cgroups.
Most of these statistics are collected from the native system. Logs are directly collected
from running processes.

Need something more, possibly a tool with graphical output? There are various such
tools available. One well-known tool is cAdvisor by Google. You can run the tool itself
as a Docker container, as follows:

docker run -d -p 8080:8080 --name cadvisor \
 --volume=/:/rootfs:ro \
 --volume=/var/run:/var/run:rw \
 --volume=/sys:/sys:ro \
 --volume=/var/lib/docker/:/var/lib/docker:ro \
google/cadvisor:latest

Once the container has been started, you can access the UI at your server domain or IP
on port 8080 or any other port that you use. cAdvisor is able to monitor both LXC and
Docker containers. In addition, it can report host system resources.

https://technet24.ir

There's more…
Various external tools are available that provide monitoring and troubleshooting
services. Sysdig is a similar command-line tool that can be used to monitor Linux
systems and containers. Read some examples of using sysdig at
https://github.com/draios/sysdig/wiki/Sysdig%20Examples.

Also, check out Sysdig Falco, an open source behavioral monitor with container
support.

https://github.com/draios/sysdig/wiki/Sysdig%20Examples

See also
Docker runtime metrics at http://docs.docker.com/v1.8/articles/runmetrics/
cAdvisor at GitHub: https://github.com/google/cadvisor

http://docs.docker.com/v1.8/articles/runmetrics/
https://github.com/google/cadvisor
https://technet24.ir

Securing Docker containers
In this recipe, we will learn Docker configurations that may result in slightly improved
security for your containers. Docker uses some advanced features in the latest Linux
kernel, which include kernel namespaces to provide process isolation, control groups to
control resource allocation, and kernel capabilities and user namespaces to run
unprivileged containers. As stated on the Docker documentation page, Docker
containers are, by default, quite secure.

This recipe covers some basic steps to improve Docker security and reduce the attack
surface on the Ubuntu host as well as the Docker daemon.

How to do it…
The first and most common thing is to use the latest versions of your software. Make
sure that you are using the latest Ubuntu version with all security updates applied and
that your Docker version is the latest stable version:

1. Upgrade your Ubuntu host with the following commands:

$ sudo apt-get update
$ sudo apt-get upgrade

2. If you used a Docker-maintained repository when installing Docker, you need not
care about Docker updates, as the previous commands will update your Docker
installation as well.

3. Set a proper firewall on your host system. Ubuntu comes preinstalled with UFW;
you simply need to add the necessary rules and enable the firewall. Refer to
Chapter 2, Networking for more details on UFW configuration.

On Ubuntu systems, Docker ships with the AppArmor profile. This profile is
installed and enforced with a Docker installation. Make sure you have AppArmor
installed and working properly. AppArmor will provide better security against
unknown vulnerabilities:

$ sudo apparmor_status

4. Next, we will move on to configure the Docker daemon. You can get a list of all
available options with the docker daemon --help command:

$ docker daemon --help

5. You can configure these settings in the Docker configuration file at
/etc/default/docker, or start the Docker daemon with all required settings
from the command line.

6. Edit the Docker configuration and add the following settings to the DOCKER_OPTS
section:

$ sudo nano /etc/default/docker

7. Turn off inter-container communication:

--icc=false

8. Set default ulimit restrictions:

--default-ulimitnproc=512:1024 --default-ulimitnofile=50:100

https://technet24.ir

9. Set the default storage driver to overlayfs:

---storage-driver=overlay

10. Once you have configured all these settings, restart the Docker daemon:

$ sudo service docker restart

11. Now, you can use the security bench script provided by Docker. This script checks
for common security best practices and gives you a list of all the things that need to
be improved.

12. Clone the script from the Docker GitHub repository:

$ git clone https://github.com/docker/docker-bench-security.git

13. Execute the script:

$ cd docker-bench-security
$ sh docker-bench-security.sh

Try to fix the issues reported by this script.
14. Now, we will look at Docker container configurations.

The most important part of a Docker container is its image. Make sure that you
download or pull the images from a trusted repository. You can get most of the
images from the official Docker repository, Docker Hub.

15. Alternatively, you can build the images on your own server. Dockerfiles for the
most popular images are quite easily available and you can easily build images
after verifying their contents and making any changes if required.

When building your own images, make sure you don't add the root user:

RUN group add -r user && user add -r -g user user
USER user

16. When creating a new container, make sure that you configure CPU and memory
limits as per the containers requirements. You can also pass container-specific

ulimit settings when creating containers:

$ docker run --cpu-shares1024 --memory 512 --cpuset-cpus 1

17. Whenever possible, set your containers to read-only:

$ docker run --read-only

18. Use read-only volumes:

$ docker run -v /shared/path:/container/path:ro ubuntu

19. Try not to publish application ports. Use a private Docker network or Docker links
when possible. For example, when setting up WordPress in the previous recipe,
we used a Docker network and connected WordPress and MySQL without
exposing MySQL ports.

20. You can also publish ports to a specific container with its IP address. This may
create problems when using multiple containers, but is good for a base setup:

$ docker run -p 127.0.0.1:3306:3306 mysql

https://technet24.ir

See also
Most of these recommendations are taken from the Docker security cheat sheet at
https://github.com/konstruktoid/Docker/blob/master/Security/
The Docker bench security script: https://github.com/docker/docker-bench-security
The Docker security documentation:
http://docs.docker.com/engine/articles/security/

https://github.com/konstruktoid/Docker/blob/master/Security/
https://github.com/docker/docker-bench-security
http://docs.docker.com/engine/articles/security/

Chapter 9. Streaming with Ampache
In this chapter, we will cover the following recipes:

Installing the Ampache server
Uploading contents and creating catalogs
Setting on-the-fly transcoding
Enabling API access for remote streaming
Streaming music with Ampache

https://technet24.ir

Introduction
This chapter covers the installation and configuration of the open source audio and
video streaming service, Ampache. It is a web-based streaming application that allows
you to upload your own audio/video contents and access them across multiple Internet-
enabled devices. You can easily set up your home media server using Ampache and
your old personal computer running Ubuntu. We will focus on installing Ampache on the
Ubuntu server, but you can install Ampache on any Linux distribution of your choice.

Installing the Ampache server
This recipe covers the installation of the Ampache server. It is a simple PHP-based web
application. Once installed and set up, you can use a web interface to play your
audio/video files or use any of the various popular streaming clients to stream content
over the intranet or even the Internet.

https://technet24.ir

Getting ready
We will be using Ubuntu Server 16.04, but you can choose to have any version of
Ubuntu.

Additionally, we will need the Samba server. It will be used as shared network storage.

As always, access to a root account or an account with sudo privileges will be
required.

How to do it…
Ampache is a web application developed in PHP. We will start the installation with the
LAMP stack. This recipe covers installation with the Apache web server, but you can
choose any other web server:

1. Install the LAMP stack if it's not already installed:

$ sudo apt-get update
$ sudo apt-get install apache2 mysql-server-5.5 php7 \
php7-mysql php7-curl libapache2-mod-php7

Note

For more details on Apache and PHP installation, check Chapter 3, Working with
Web Server

2. Next, download the latest Ampache server source code. Ampache is a PHP
application:

$ wget https://github.com/ampache/ampache/archive/3.8.0.tar.gz
Extract achieve contents under a web root directory
$ tar -xf 3.8.0.tar.gz -C /var/www
$ mv /var/www/ampache-3.8.0 /var/www/ampache

3. We also need to create some configuration files. You can use the default
configuration that ships with the Ampache setup and rename the existing files:

$ cd /var/www/ampache
$ mv rest/.htaccess.dist rest/.htaccess
$ mv play/.htaccess.dist play/.htaccess
$ mv channel/.htaccess.dist channel/.htaccess

4. The Ampache web setup will save the configuration under the config directory. It
will need write access to that directory:

$ chmod 777 -R config

5. Next, we need to configure the Apache web server, enable mod_rewrite, and set a
virtual host pointing to the Ampache directory.

6. Enable mod_rewrite with the following command:

$ sudo a2enmod rewrite

7. Create a new virtual host configuration:

https://technet24.ir

$ cd /etc/apache2/sites-available/
$ sudo vi ampache.conf

8. Add the following lines to ampache.conf:

<VirtualHost *:80>
 DocumentRoot /var/www/ampache
 <Directory /var/www/ampache/>
 DirectoryIndex index.php
 AllowOverride All
 Order allow,deny
 Allow from all
 </Directory>
 ErrorLog ${APACHE_LOG_DIR}/error.log
 LogLevel warn
 CustomLog ${APACHE_LOG_DIR}/access.log combined
</VirtualHost>

9. Now, disable any default configuration that is using port 80, or alternatively you
can use a port other than 80 for Ampache installation.

10. Reload the Apache server for the changes to take effect:

$ sudo service apache2 reload

Here, we have installed and configured the base setup. Now, we can move on to
configuration through a web-based installer. You can access the web installer at the
domain name or IP address of your server. The installer should greet you with a big
Ampache logo and a language selection box; something similar to the following:

11. Select the language of your choice and click the Start configuration button.
12. On the next page, Ampache will check all the requirements and show you a list of

settings that need to be fixed. These are mostly the configuration changes and file
permissions.

13. Most of these requirements should already be marked with a green OK button. You
need to fix things that are marked in red. The requirements screen will look as
follows:

https://technet24.ir

14. Click the Continue button when you are done reviewing all the requirements.
15. On the next page, you need to configure the MySQL settings. Fill in the necessary

details and select Create Database User to create a new Ampache user under the
MySQL server:

16. Click Insert Database to configure database settings.
17. The next screen will confirm the database settings and write the configuration

changes to a file under the config directory. You can choose to change the
installation type and enable transcoding configuration from this screen. Once done,
click the Continue button to write the configuration file. If you see any errors,
scroll to the bottom of the page and click the write button to write config changes.

18. Finally, the web setup will ask for admin account credentials for the Ampache
server. The Create Admin Account form will be shown with Username and
Password fields, as follows. Set the admin account username and password and
click the Create Account button:

19. Once the account is created, the Ampache installation script will redirect you to
the web player screen. If it shows a login screen, use the admin account credentials
created in the last step to log in. The landing page of the web player will be
rendered as follows:

https://technet24.ir

You have completed the Ampache setup process. Now you need to upload content and
enjoy your own streaming server. We will learn to create a catalog and upload content
in the next recipe.

How it works…
Ampache is a web application written in PHP. We have downloaded the latest Ampache
code and set it to work with our web server using Virtual Host configuration. Ampache
provides sample htaccess files that set required redirection rules. We have enabled
respective rules by renaming the sample files. If you are using a web server other than
Apache, make sure you check the Ampache documentation for your web server. It
supports Nginx and lighttpd as web servers.

Ampache has made it easy to cross-check all requirements and configure your database
connection using the web installer. The installer checks for the required PHP settings
and extensions and returns a simple page with things that need to fixed. Next, we can
configure database settings and push schema directly from the web installer.

Once everything is configured, the web installer returns the login page, from where you
can access the Ampache server.

https://technet24.ir

There's more…
The Ampache community have created a Docker image for the Ampache server. If you
have a Docker system set up, you can quickly get started with Ampache with its Docker
image.

You can get the Dockerfile at https://github.com/ampache/ampache-docker.

Ampache is also available in the Ubuntu package repository and can be installed with
the following single command:

$ sudo apt-get install ampache mysql-server-5.5

The currently available version of Ampache is 3.6. If you don't care about the latest and
greatest updates, you can use the Ubuntu repository for quick and easy installation.

https://github.com/ampache/ampache-docker

See also
Ampache installation guide: https://github.com/ampache/ampache/wiki/Installation

https://github.com/ampache/ampache/wiki/Installation
https://technet24.ir

Uploading contents and creating catalogs
So, we have installed the Ampache streaming server. Now, we will learn how to upload
our audio/video content and create our first catalog.

Getting ready
You will need audio and video files to be uploaded on your server and enough space to
save all this content. I will be using podcasts from Ubuntu podcasts in the MP3 format.

Upload all content to your Ampache server and note the directory path. I will be using
the podcasts directory under home for my user.

Open the Ampache server homepage and log in with admin credentials.

https://technet24.ir

How to do it…
Ampache provides the admin page, where you can perform all administrative tasks,
such as catalogue management, user management, and other configurations. We will
create a new catalogue from the admin panel and then point it to already uploaded
content:

1. From your Ampache homepage, click on the admin icon in the upper-left corner of
the screen. This should list all administrative tools:

2. Now, click on the Add a Catalog link. This should load the Add a Catalog page:

3. Enter the catalog name. Use a name that describes your content. I will use Ubuntu
podcasts.

4. Set the Catalog Type to local, as we will be loading content from your local
filesystem.

5. Enter the path for your MP3 (or video) files, /home/ubuntu/podcasts in my

case.
6. Click on the Add Catalog button. This will create a new catalog and import all

content to it. The process will check for meta tags and try to collect more
information about the content. It will take some time to process all the files and add
details to the Ampache database:

7. Finally, click Continue to complete catalog creation and go to the catalog list:

8. Once catalog creation is complete, you can go to the homepage by clicking the
home icon (first) in the upper-left of the screen and then clicking on the song title
link. This should list all the files available under your catalog directory:

https://technet24.ir

9. From this song list, you can play songs/podcasts, add or remove ratings, add them
to playlists, and more:

How it works…
Catalog creation simply reads the content from the upload directory and adds the
respective details to the MySQL database. The process tries to gather more details
about content using information collected from meta tags and track titles or file names.
This information is then used to group the content by artist and album. Note that
Ampache is not tagging software where you upload random content and receive a well-
organized media library. For Ampache to work well, you need to have properly tagged
and well-organized content.

https://technet24.ir

Setting on-the-fly transcoding
Transcoding means converting media from one format to another. Suppose your music
files are in a format different to MP3 and your media player only understands MP3
format. In that case, you need to convert your music files to MP3. This conversion task
is done by transcoder programs. There are various transcoding programs available,
such as ffmpeg and avconv. These programs need codec before they can convert media
from source format to destination format. We need to separately install and configure
these components.

Ampache supports on-the-fly transcoding of media files. That is, your music that is not
in an MP3 format can be converted into the MP3 format just before it is delivered to
your music player, and your high definition video content can be optimized for mobile
consumption to reduce bandwidth use.

In this recipe, we will learn how to install and configure transcoding programs with
Ampache.

Getting ready
Make sure you have working a setup of the Ampache server.

You will need access to a root account or an account with root privileges.

https://technet24.ir

How to do it…
Ampache depends on external libraries for transcoding to work. We will first install the
dependencies and then configure Ampache to work with them:

1. First, add the ffmpeg PPA to the Ubuntu installation sources:

$ sudo apt-add-repository ppa:mc3man/trusty-media
$ sudo apt-get update

2. Now, install ffmpeg and other required codecs:

$ sudo apt-get install flac mp3splt lame faad ffmpeg vorbis-tools

3. Next, we need to configure Ampache and enable transcoding. Open the
configuration file located at /var/www/ampache/config/ampache.cfg.php, find
the following lines in the file, and uncomment them:

max_bit_rate = 576
min_bit_rate = 48
transcode_flac = required
transcode_mp3 = allowed
encode_target = mp3
transcode_cmd = "ffmpeg"

Here, we have set ffmpeg for the encoding/decoding of media files. You can
choose any encoder of your choice. Change the value of transcode_cmd
respectively.

4. Next, enable debug mode to get details of the transcoding. Find the debug section
in the configuration file and set it as follows:

debug = true
Enable log file path which is, by default, set to null
log_path = "/var/log/ampache"

5. Save the changes to the configuration file and reload the Apache web server:

$ sudo service apache2 reload

Now your transcoding setup should be working. You should be able to upload media in
a different format and play it as MP3 or other respective formats.

It often happens that we have content in a format that is not supported by the device we
are using for playback. Maybe the device does not have the required codec or the

hardware is not capable of playing a high bit rate. We may even need to convert content
to a lower bit rate and reduce the bandwidth used to stream. The transcoding feature of
Ampache helps us to cover these scenarios.

With transcoding, you can convert the content to the desired device-supported format
before actually starting the streaming. This is called on-the-fly transcoding. The contents
are encoded in a new format as and when needed. Once the conversion is completed,
the new format can be cached for repeat use. In the above example, we set Ampache to
convert FLAC files to MP3 using the ffmpeg tool. Now whenever we request a file that
is originally available in the FLAC format, Ampache will convert it to MP3 before
streaming it to our device.

Ampache uses external, well-established media conversion tools for transcoding. Any
tool that works with the Ubuntu command line can be configured to work with Ampache.
Refer to the Ampache configuration file to get more details and configuration examples.

https://technet24.ir

Enabling API access for remote
streaming
A streaming client needs to get the details of the media available on the streaming
server. The client needs to authenticate with server access the catalog and list of songs
and even request offline access to store media locally. With Ampache, we can use its
REST and XML APIs. Through these APIs, clients can communicate with Ampache.
You can even write your own client tool using any of the supported APIs.

This recipe covers the setup process for streaming content to remote devices. As of
writing this, Ampache allows all users to use all available APIs. We will learn how to
modify this setting and configure it to limit access based on user accounts.

Getting ready
Open Ampache in your browser and log in with admin credentials.

https://technet24.ir

How to do it…
We will create a separate user account for remote streaming. From the Ampache
homepage, click on the admin icon in the top-left corner and then click on the Add User
link from the User Tools section. An add user menu will be shown that looks like this:

1. Fill in the Username, E-mail, and Password fields for the new user account and
set User Access to User.

2. Click the Add User button to create this user and then click Continue.
3. We will use this new user account to log in from the remote client.
4. Next, we need to configure access rights and allow this user to use APIs to stream

music.
5. Click on the admin icon and then click on the Add ACL link under the Access

Control section.

6. Set the name for this access control list.

7. Set level to Read/Write.
8. Set the user to the user account created in the previous step.
9. Set ACL type to Stream Access.

10. Set the start and end IP addresses to 0.0.0.0 and 255.255.255.255 respectively.
11. Click Create ACL to save the settings.
12. Click on the Add ACL link again and repeat the preceding settings, except, for

ACL Type that choose API/RPC.
13. Now you can use Ampache streaming from your mobile client. When asked for

your username and password, use our new user account, and for the streaming
server URL, use your Ampache FQDN followed by /ampache, for example:

http://myampachehost.com/ampache

14. If your client needs an API key, you can generate one from the User Tools section.
15. Click on the Browse Users link and then select the user account in question. Click

the edit icon to update user details and then click on the generate API key icon.
16. Finally, click the Update User button to save your changes.

https://technet24.ir

How it works…
By default, the Ampache server creates an Access Control List that allows all access to
all users. It is a good idea to create a separate user and grant only the required
permissions. Here, we have created a new user account with access to the REST API
and to stream content. This will allow better control over users and content, as well as
allow us to set various user-specific default settings, such as default bitrate and
encoding formats.

Streaming music with Ampache
We have set up the Ampache server and configured it for streaming. In this recipe, we
will learn how to set up an Android client to play content from our Ampache server.

https://technet24.ir

Getting ready
You will need an Android or iOS phone or tablet. We will focus on the configuration of
an Android client, but the same configuration should work with an iOS device, and even
desktop clients such as VLC.

How to do it…
Follow these steps to stream music with Ampache:

1. First, install Just Player on your Android device. It is an Ampache client and uses
XML APIs to stream content from Ampache. It is available from the Play Store.

2. Once installed, open the settings of Just Player and search for Ampache under
cloud player.

3. We need to add our Ampache server details here. Enter the server URL as the
domain name or IP address of your Ampache server and append /ampache at the
end, for example:

http://myampacheserver.com/ampache

4. Next, enter the username and password in their respective fields. You can use the
user account created in the last recipe.

5. Click Check to confirm the settings and then save.

Now you should be able to access your Ampache songs on your Android device or
phone.

https://technet24.ir

Chapter 10. Communication Server with
XMPP
In this chapter, we will cover the following recipes:

Installing Ejabberd
Creating users and connecting with the XMPP client
Configuring the Ejabberd installation
Creating web client with Strophe.js
Enabling group chat
Chat server with Node.js

Introduction
Extensible Messaging and Presence Protocol (XMPP) is a communication protocol
that provides near-real-time message passing between two or more entities. XMPP is
based on XML and transfers data in predefined formats that are known to server as well
as client systems. Being an XML-based protocol, you can easily extend XMPP to suit
your requirements. It also provides various standard extensions to extend the base
functionality of the XMPP server.

In this chapter, we will learn how to set up our own XMPP server. The main focus will
be on implementing a simple chat application. In later recipes, we will also look at a
Node.js and socket-based alternative to implementing the messaging server.

We will be working with a popular XMPP server Ejabberd. It is a well-known XMPP
implementation supported by ProcessOne. Ejabberd is based on Erlang, a functional
programming language specifically designed for soft real-time communication.

https://technet24.ir

Installing Ejabberd
In this recipe, we will learn how to install the Ejabberd XMPP server. We will be using
an integrated installation package that is available from the Ejabberd download site.
You can also install Ejabberd from the Ubuntu package repository, but that will give you
an older, and probably outdated, version.

Getting ready
You will need an Ubuntu server with root access or an account with sudo privileges.

https://technet24.ir

How to do it…
The following are the steps to install Ejabberd:

1. Download the Ejabberd installer with the following command. We will be
downloading the 64-bit package for Debian-based systems.

2. Make sure you get the updated link to download the latest available version:

$ wget https://www.process-one.net/downloads/downloads-
action.php?file=/ejabberd/15.11/ejabberd_15.11-0_amd64.deb -O
ejabberd.deb

3. Once the download completes, you will have an installer package with the .deb
extension. Use the dpkg command to install Ejabberd from this package:

$ sudo dpkg -i ejabberd.deb

4. When installation completes, check the location of the Ejabberd executable:

$ whereis ejabberd

5. Now you can start the Ejabberd server, as follows:

$ sudo /opt/ejabberd-15.11/bin/ejabberdctl start

6. The start command does not create any output. You can check the server status
with the ejabberdctl status command:

$ sudo /opt/ejabberd-15.11/bin/ejabberdctl status

7. Now your XMPP server is ready to use. Ejabberd includes a web-based admin
panel. Once the server has started, you can access it at
http://server_ip:5280/admin. It should ask you to log in, as shown in the

following screenshot:

8. The admin panel is protected with a username and password. Ejabberd installation
creates a default administrative user account with the username and password both
set to admin.

Tip

In older versions of Ejabberd, you needed to create an admin account before
logging in. The Ejabberd configuration file grants all admin rights to the username
admin. The following command will help you to create a new admin account:

$ sudo ejabberdctl register_user admin ubuntu password

9. To log in, you need a JID (XMPP ID) as a username, which is a username and
hostname combination. The hostname of my server is ubuntu and the admin JID is
admin@ubuntu. Once you have entered the correct username and password, an
admin console will be rendered as follows:

https://technet24.ir

How it works…
Ejabberd binaries are available as a Debian package. It includes a minimum Erlang
runtime and all other dependencies. You can download the latest package from the
Ejabberd download page.

The installer unpacks all the contents at the /opt/ejabberd-version directory. You
can get an exact location of the installation with the whereis command. All executable
files are generally located under the bin directory. We will mostly be working with
ejabberdctl, which is a command line administrative tool. It provides various options
to manage and monitor Ejabberd installation. You can see the full list of supported
options by entering ejabberdctl without any options.

The following screenshot shows the partial output of executing ejabberdctl without
any options:

Note

If the server is not running, you will only see options to start the server or launch a
debug console.

If you have noticed, I am using sudo with each ejabberdctl command. You can avoid
the use of the sudo command by switching to the ejabberd user, which is created at the
time of Ejabberd installation. The installer creates a system user account, ejabberd,
and sets its home directory to the Ejabberd installation directory, /opt/ejabberd-
version. You will still need to use sudo to switch user accounts as the ejabberd user
has no password set. Use the following command to log in as the ejabberd user:

$ sudo su ejabberd

https://technet24.ir

In addition to creating the system user to run the Ejabberd process, the installer also
creates an ejabberd admin account. The username and password for the administrator
account is set to admin/admin. Make sure that you change this password before using
your server in production. The installation process also creates a default XMPP host.
The hostname is set to match your server hostname. It can be modified from the
configuration file.

Once the server has started, you can access the handy web administrative console to
manage most of the Ejabberd settings. You can add new users, create access control
lists and set access rules, check the participating servers (node), and all hosted XMPP
domains (host). Additionally, you can enable or disable Ejabberd modules separately
for each domain. That means if you are using the same server to host
xmpp1.example1.com and xmpp2.example2.com, you can enable a multi-user chat for
xmpp1.example1.com and disable the same module for xmpp2.example2.com.

See also
Ejabberd download page at https://www.process-one.net/en/ejabberd/downloads/

https://www.process-one.net/en/ejabberd/downloads/
https://technet24.ir

Creating users and connecting with the
XMPP client
We have installed the XMPP server, Ejabberd. In this recipe, we will learn how to add
new user accounts to the Ejabberd server. We will also learn how to configure the
XMPP client and connect to our server.

Getting ready
Make sure that you have installed the Ejabberd server and it is running properly.

Additionally, you will need XMPP client software. You can choose from multiple free
and open source clients such as pidgin, PSI, Adium, Gajim, and many more. I will be
using PSI as it provides various low-level administrative features.

https://technet24.ir

How to do it…
Ejabberd supports multiple methods for registering a new user account. These include
adding a new user from the command line, creating a new user from the admin panel,
and allowing clients to register with the server using in-band registration. Here, we will
create a new user from a command line admin tool. Later in this recipe, I will briefly
explain another two methods.

Follow these steps to create a user account and connect it with a XMPP client:

1. Use the following command to register a new user using the ejabberdctl
command:

$ # ejabberdctl register username host password
$ sudo ejabberdctl register user1 ubuntu password

2. You can get a list of registered users with the registered_users option to
ejabberdctl:

$ # ejabberdctl registered_users host
$ sudo ejabberdctl registered_users ubuntu

3. Now you can create a connection to the server with the XMPP client and your new
account. Download and install the XMPP client tool, PSI.

4. Open PSI, click the General tab, and then select Account Setup. This will open
the XMPP Accounts window, which looks something like this:

5. Click the Add button in the XMPP Accounts window. This will open another
window named Add Accounts:

6. Now, in the Add Account window, enter the name for this connection, or you can
choose to keep the name as Default. Click the Add button to open one more
window.

7. In the newly opened window, enter the account details that we created with the
ejabberdctl command:

https://technet24.ir

8. On the Account tab, enter the full XMPP address (JID) and password for your
account.

Note

If your server IP address is mapped with a domain name and your JID refers to the
same domain, you can click Save and the account setup is completed for you. If
not, you need to provide a server IP or FQDN in the Connection tab.

9. Click on the Connection tab, then click to check the Manually Specify Server
Host/Port: checkbox, and then enter the server IP or FQDN and change the port to
match your configuration:

10. Next, click the Save button to complete the account setup and then click Close to
close the account setup window. Your account will be listed in the main window of
Psi, as follows:

11. Now you are ready to connect to your XMPP server. Select the listed account and
change the drop-down box at the bottom to Online. This will start the connection
process and set the user status as Online.

12. The PSI client will show a prompt regarding self-signed certificates if you are
using the default certificate provided by Ejabberd. Click Trust this certificate to
proceed.

It will take a few seconds to complete the connection process. Once connected,
your PSI status will change to Online:

https://technet24.ir

13. Now click General menu to add XMPP contacts or to join a group chat or to send
a message to existing contact. To change your Instant Messaging account status,
click on the Status menu and select your desired option.

How it works…
The preceding example demonstrates the account creation and client setup process for
connecting with the XMPP server. We have used an administrative command to create
an XMPP account and then configured client software to use the existing account.

You can also create a new account from the Ejabberd web console. The web console
lists all the configured hostnames under the Virtual Hosts section, and each host lists
options for user and access management, and other administration tools. Both these
options need the server administrator to create an account.

Additionally, XMPP supports an extension that enables a user to self-register with the
server. This is called in-band registration (xep-0077), where a user can send his
registration request with his desired username, password, and other details, such as
email, and the server creates a new user account. This is useful with public XMPP
servers where administrators cannot handle all registration requests. The Ejabberd
server supports in-band registration with the mod_register plugin, which is enabled
by default. From the client side, you can use any XMPP client that supports in-band
registration. If you have noticed, PSI also supports in-band registration and provides an
option to register a new account in the Add Account process:

https://technet24.ir

There's more…
When it is an XMPP administration task, PSI is a handy tool. It provides a debug
console where you can monitor all XML data transfers between the client and server, as
well as send arbitrary XML stanzas to the server. You can access the XML console from
right-clicking the menu of your PSI account. Once opened, check Enable checkbox to
enable traffic monitoring. The XML Console looks similar to the following screenshot:

XML Console also allows the filtering of traffic based on packet type. Button Dump
Ringbuf can be used to dump any traffic before opening the XML Console.

Another option is service discovery from the right-click menu. You need to log in as an
administrator to see all the options under service discovery. From here, you can monitor
user accounts and various services that are available on the server. The Service
Discovery window looks something like this:

https://technet24.ir

See also
A list of XMPP client tools at https://xmpp.org/xmpp-software/clients/

https://xmpp.org/xmpp-software/clients/

Configuring the Ejabberd installation
Ejabberd comes with various default settings that make it easy to get started. We can
install Ejabberd and start using it as soon as installation completes. This works when
we are testing our setup, but when we need a production server, we need to make a
number of changes to the default installation. Ejabberd provides a central configuration
file through which we can easily configure our XMPP installation.

This recipe covers the basic configuration of the Ejabberd server.

https://technet24.ir

Getting ready
Make sure that you have installed the Ejabberd server.

You will need access to a root account or an account with sudo privileges.

How to do it…
Ejabberd configuration files are located under the conf directory in the Ejabberd
installation. On the Ubuntu server, it should be /opt/ejabberd-version/conf.

Follow these steps to configure the Ejabberd installation:

1. Open the ejabberd.yml file. It contains configuration settings in the YML format.
2. Let us start by setting the domain for our XMPP service. This is located under the

SERVED HOSTNAMES section in the configuration file. The default setting uses the
server hostname as a host for the XMPP service.

3. Add a fully qualified domain name under the hosts section. You can choose to
keep the default host entry or remove it:

4. Next, you may want to change the default ports for XMPP connections. Search for
the LISTENING PORTS section in ejabberd.yml and change the respective ports. I
will use the default port configuration. The following is the configuration snippet
listing port 5222:

5. The LISTENING PORTS section contains different port configurations, each serving
a separate service. Three of them are enabled by default and serve a client to
server connection (5222), server to server connection (5269), and HTTP module
for admin console and http_bind service (5280).

6. The same section contains the parameter named certfile, which specifies the
SSL certificate file to be used while creating client connections. The default

https://technet24.ir

settings point to a certificate created by the Ejabberd installation process. You can
change it to your own signed certificate.

7. Also note the shaper and access settings. These settings specify the connection
throttling and access control settings used for the client to server connections
respectively.

8. At the end of the LISTENING PORTS section, there is a configuration for BOSH (port
5280) connections, as well as the web admin panel. This section also enables web
socket connections with the ejabberd_http_ws module.

9. Under the AUTHENTICATION section, you can configure the authentication
mechanism to be used. By default, Ejabberd uses internal authentication but it
can be set to use external scripts, system-level authentication, external databases,
or even a centralized LDAP service. The following is the list of all supported
options:

10. Default internal authentication works well enough and we will proceed with it.
If you are planning to use a different authentication mechanism, make sure that you
comment out internal authentication.

11. You can also enable anonymous login support, where clients can open an XMPP
connection without a username and password. Simply uncomment the respective
settings from Anonymous login support:

12. Next, under the DATABASE SETUP section, you can set Ejabberd to use an external
database system. Ejabberd supports all leading relational database systems,
including SQLite. The following is the list of all supported database systems:

13. The default database settings use an inbuilt database server known as Mnesia. It
provides in-memory and disk-based storage and can be easily replicated across
Ejaberd nodes. Mnesia works well even for very busy XMPP operations.

14. To define an admin user, search for the ACCESS CONTROL LISTS section and add
your desired username and hostname under the admin users list:

This same section includes a list of blocked users.

You can also define your own access control lists, which can be used to restrict
permissions to specific hostnames or users. The Access Rules section define the
rules applicable to listed ACLs.

15. Finally, under the modules section, you can configure the modules to be used by
Ejabberd. Modules are plugins to extend the functionality of the Ejabberd server.
Comment out the modules that you are not planning to use. You can also enable or
disable any module in runtime from the web admin panel. The following is the
partial list of modules:

https://technet24.ir

Each module is named after respective XEPs (XMPP extensions). You can get
details of the functionality of any module by looking for the related XEP. Also
check the Ejabberd documentation to find out the dependencies between modules.

16. Once you are done with all the configuration, you can restart the Ejabberd server
with ejabberdctl restart or reload configuration changes with the
ejabberdctl reload_config command:

$ sudo bin/ejabberdctl reload_config

How it works…
Most of the core settings of Ejabberd are controlled through the configuration file,
ejabberd.yml. Alternatively, you can change settings with the ejabberdctl command,
but those settings will not persist after restart. If you need the settings to be permanent,
change them in the configuration file. You can always reload the configuration file
changes without restarting the server.

While editing the configuration file, make sure that you follow the indentation and
spacing as shown in examples. Ejabberd configuration follows the YML format and any
change in spacing will leave that setting undefined. The good news is that the latest
version of Ejabberd will prompt you about any mistakes in configuration.

There's another file named ejabberdctl.cfg that contains Erlang runtime settings. You
may need to update those parameters while performance tuning the Ejabberd server.

https://technet24.ir

There's more…
The Ejabberd server is highly extensible and customizable thanks to its modular
architecture. Most Ejabberd features are implemented as external modules. Modules are
pluggable components that can be used to extend core functionality. These modules can
be enabled or disabled as per requirements and do not affect the core functionality.
Ejabberd modules are written in either Erlang or Elixir.

Ejabberd modules work with the hook mechanism implemented in the Ejabberd core.
Hooks are nothing but simple events such as message received, user logged in, and
connection time out. You can get a full list of supported hooks in the Ejabberd
documentation, although it may not be a complete list. Each hook gets its own handler
chain, with each handler assigned with a priority number. When you enable a module, it
registers a given handler with a respective hook and a position or priority in the handler
chain. When a hook is triggered by an event, it executes each handler in a chain, one
after another. Additionally, a handler function may request to stop processing hooks and
not to execute any further handlers.

The Ejabberd administrative command ejabberdctl provides an option to search for
and install external modules. Ejabberd takes care of downloading the module,
compiling, and installing it. You can even write your own module and add it to the local
repository for installation. Check Ejabberd's developer documents for more details on
module development.

See also
List of XMPP extensions at http://xmpp.org/xmpp-protocols/xmpp-extensions/
Ejabberd document at link - https://www.process-
one.net/docs/ejabberd/guide_en.html
Ejabberd developer documentation at http://docs.ejabberd.im/developer/modules/
Ejabberd hooks at http://docs.ejabberd.im/developer/hooks/

http://xmpp.org/xmpp-protocols/xmpp-extensions/
https://www.process-one.net/docs/ejabberd/guide_en.html
http://docs.ejabberd.im/developer/modules/
http://docs.ejabberd.im/developer/hooks/
https://technet24.ir

Creating web client with Strophe.js
In this recipe, we will learn how to use web technologies to create a web-based XMPP
client. I will demonstrate the use of the popular JavaScript library StropheJS to create
a basic web client and connect to the XMPP server.

Strophe is a collection of libraries that can be used to communicate with the XMPP
server. It contains libstrophe, which is a C-based implementation of XMPP client
functionalities, and Strophe.js, which is a JavaScript implementation. Strophe provides
core XMPP client functionality and can be extended with custom modules. The
community has contributed various extensions to support additional XMPP functions.

With a limit on page count, I will focus on a simple demo of Strophe.js where we
download the code and modify an example to connect with our XMPP server.

Getting ready
You will need the XMPP server installed and running. You can also use public XMPP
servers, but make sure that you register with them and obtain your username (JID) and
password.

You will need at least two user accounts to communicate with each other.

As we are using a web-based connection, it needs a Bidirectional-streams Over
Synchronous HTTP (BOSH) extension enabled on the XMPP server. Ejabberd
supports this functionality with mod_http_bind and it should be enabled by default.

Download and extract the latest source achieve from the Strophe.js site:
http://strophe.im/strophejs/.

Optionally, you will need a web server set up to access a web client.

http://strophe.im/strophejs/
https://technet24.ir

How to do it…
I assume the source code is located in the StropheJS directory. We will use one of the
examples shipped with the StropheJS source:

1. Change the directory to examples under the extracted StropheJS code. This
directory contains multiple examples, demonstrating different features of
StropheJS. We will use echobot.js and echobot.html as our starting point.

2. Open echobot.js and change the BOSH_SERVICE URL on the first line, as follows:

var BOSH_SERVICE = 'http://hostname:5280/http-bind';

3. Replace the hostname with your XMPP domain or XMPP server IP address. For
example, if your XMPP server is available at xmpp.mysrv.com, then the
BOSH_SERVICE URL will be as follows:

var BOSH_SERVICE = 'http://xmpp.mysrv.com:5280/http-bind';

4. Optionally, you can enable debug logging to watch actual data exchanged between
client and server. Find the $(document).ready() section and uncomment the
following lines:

// uncomment the following lines to spy on the wire traffic.
connection.rawInput = function (data) { log('RECV: ' + data); };
connection.rawOutput = function (data) { log('SEND: ' + data); };

5. Save the changes to echobot.js and open echobot.html in your browser. You
should see a page with two text fields, one for JID and another for Password:

6. Enter your JID (XMPP username) and respective password and click connect.
7. Now, Strophe.js will try to open an XMPP connection and log in with the given

details. If the connection is successful, you should see the following screen:

8. The last line includes your JID, with a unique identifier for the current session
appended at the end. This form of JID is also called full JID.

9. Open a separate client connection with, say, PSI, log in with some other user, and
send a message on your given JID. This should print your message on the web page
and the same message will be echoed back to the sender. Your web page should
look similar to the following screenshot:

Tip

When you are done playing around, click disconnect to properly close the XMPP
connection.

https://technet24.ir

How it works…
Strophe.js is a JavaScript-based XMPP client library that makes it easy to write your
own web-based XMPP clients. Strophe handles all actual communication parts, such as
the encoding and decoding of XML stanzas, the connection procedure, and so on. You
can use simple APIs provided by Strophe to create your client. Strophe.js uses jQuery
to work with the HTML DOM, so if you are familiar with jQuery you will feel at home
when working with Strophe.

If you browse through the code in echobot.js, you will see two main event handlers:
onConnect and onMessage. These event handlers are attached to specific events and
are executed when that event occurs. The onConnect handler is attached to a connection
object to capture any change in connection state, and onMessage is attached as a handler
for message events. It will be triggered when our client receives any message from the
server.

If you are interested in the syntax for the addHandler function, it is as follows:

addHandler: function (handler,ns,name,type,id,from,options)

The handler parameter is the actual function to manipulate an incoming message
object; ns is the XMPP namespace and can be used to receive packets only from a
certain namespace. It defaults to jabber:client, the name parameter, which is the name of
an element to act upon—in our case, it is message. You can use iq or presence to
receive respective data types. Other parameters add more filtering options, where you
can specify a specific ID for the message, type of the message packet (chat or normal or
group, defaults to chat) and other options.

The handler function onMessage gets triggered whenever a connection object receives
a new message from the server. Then, it parses the received data and extracts all
required information. As it is an echo bot, it simply reads the message and echoes it
back to the sender. The new message packet is generated with the following lines:

var reply = $msg({to: from, from: to, type: 'chat'})
 .cnode(Strophe.copyElement(body));

The message is passed to a connection object with the following lines, which in turn
sends it to the server:

connection.send(reply.tree());

The last section initiates the Strophe client on page load (ready). When we click on the
connect button, a click handler in this section gets triggered and opens a new
connection with the XMPP server. The same button is changed to disconnect so that we
can send a proper disconnect request to the server.

https://technet24.ir

There's more…
Strophe.js supports WebSocket-based XMPP connections, and the latest version of
Ejabberd has also added support for WebSockets. WebSockets provides noticeable
performance improvements and reduces connection time over BOSH connections. In the
preceding example, we have used the BOSH protocol, which can be replaced with
WebSocket simply by changing the BOSH_SERVICE URL as follows:

var BOSH_SERVICE = 'ws:// hostname:5280/websocket';

If you need a secure WebSocket connection, use the wss protocol instead of:

wsvar BOSH_SERVICE = 'wss:// hostname:5280/websocket';

You should check other examples, mainly prebind and restore. Both demonstrate
connection features that can help in reducing connection delay.

See also
StropheJS official page at http://strophe.im/strophejs/
StropheJS GitHub repo at https://github.com/strophe/strophejs
StropheJS API documentation at
http://strophe.im/strophejs/doc/1.1.3/files/strophe-js.html
StropheJS plugins at https://github.com/metajack/strophejs-plugins

http://strophe.im/strophejs/
https://github.com/strophe/strophejs
http://strophe.im/strophejs/doc/1.1.3/files/strophe-js.html
https://github.com/metajack/strophejs-plugins
https://technet24.ir

Enabling group chat
In this recipe, we will learn how to set up and use the group chat feature of XMPP.
Group chat is also called Multi User Chat (MUC). Ejabberd supports MUC with the
help of an extension and is enabled by default.

Getting ready
You will need the Ejabberd server set up and running. Make sure you have enabled
MUC with the mod_muc and mod_muc_admin modules.

You will need two users for the group chat. One of them needs to have admin rights to
set up MUC and create rooms.

Check your XMPP client for the support of MUC or conference protocol. I will be using
PSI as a client for this recipe.

https://technet24.ir

How to do it…
For multi-user chat, we need two or more users logged in on the server at the same time,
plus a chat room. Let's first set up our chat client with user accounts and create a chat
room.

Follow these steps to enable group chat:

1. Open PSI and set up two different accounts. Log in to the XMPP server and set the
Status to Online. Your PSI window should look something like this:

2. You can access the MUC statistics on the Ejabberd web panel to check available
rooms.

3. Now we will create our first chat room. In PSI, click the General menu, select
Service Discovery, and then select your admin account:

4. This will open a Service Discovery window with a list of all administrative
services on your Ejabberd XMPP server:

5. Look for the Chatrooms node under the Name column and double-click it to
browse its options. A new window will pop up, which should look something like
this:

6. Now type the name of the chat room you want to create under the Room
information section. Set your nickname as it should be displayed to other
participants and click the Join button.

7. This will open a new window for your chat room. You will notice the chat room
name on the title bar of the window. As the user admin created this room, he is
assigned as a moderator:

https://technet24.ir

8. For now, the admin is the only participant in this room. Repeat the same steps with
other user accounts to get them to join this room. Make sure that you use the same
room name again. Once a new user joins the room, the admin user will get notified.
Both users can see each other in the participants section:

Tip

You can always share your room name with other users to let them in.

How it works…
A group chat works in a similar way to a one on one chat. In a one-on-one chat, we send
a message to the JID of a specific user, while in a multi-user chat we send a message to
the JID of a chat room. As the message is received on room ID, XMPP takes care of
forwarding it to all participants in that room.

https://technet24.ir

There's more…
By default, XMPP chat rooms are not persistent and will be deleted when all
participants leave that room. PSI uses the default configuration to quickly create a new
chat room. Once the chat room is created, you can configure it in the same chat room
window. Click on the options button, the downward triangle in the upper-right corner of
the chat room window, and then select Configure room:

On the first tab, you can set members, administrators, and ban user accounts. On the
General tab, you can set other room configurations. You can mark a room as persistent
and make it private password-protected. This tab contains a number of other options;
check them at your leisure.

You may have noticed we have used an admin account to create a chat room. You can
allow non-admin users to act as an MUC admin. Open the Ejabberd configuration and
search for muc_admin configuration. Add your desired username below the admin entry
and set it to allow.

See also
Candy - JavaScript-based multi-user chat client at https://candy-
chat.github.io/candy/
Strophe.js MUC plugin at https://github.com/metajack/strophejs-
plugins/tree/master/muc

https://candy-chat.github.io/candy/
https://github.com/metajack/strophejs-plugins/tree/master/muc
https://technet24.ir

Chat server with Node.js
Up to now, this chapter has covered XMPP and its usages. It is a good, mature protocol
with multiple servers developed around it. Sometimes, however, you may need to set up
a quick application that uses a simple message transfer, or develop a small chat
application for your team. For such projects, XMPP servers may turn out to be overkill.
You may not use all the features of XMPP and waste resources, even for a basic setup.
Plus, developing an XMPP application is a time consuming process.

In this case, you can quickly start using Node.js-based socket communication. Node.js
has gained popularity in the developer community. It is a framework developed in a
commonly known language, JavaScript. In this recipe, we will learn how to develop a
message passing application using Node.js sockets. We will use Socket.io, a popular
Node.js library, to work with sockets and a demo app provided by Socket.io.

Getting ready
You will need access to a root account or an account with sudo privileges.

https://technet24.ir

How to do it…
We are going to set up a Node.js-based application, so we need to install Node.js on
our Ubuntu server.

Follow these steps to install Node.js:

1. Install Node.js with the following command:

$ sudo apt-get update
$ sudo apt-get install nodejs

2. Optionally, check your Node.js version:

$ node -v

3. Next, download the sample application from the Socket.io GitHub repo:

$ wget https://github.com/rauchg/chat-example/archive/master.zip

4. Unzip the downloaded contents. This will create a new directory named chat-
sample-master:

$ unzip master.zip

5. Change the path to the newly created directory:

$ cd chat-sample-master

6. Next, we will need to install the dependencies for this sample application. Use the
following Node.js command to install all dependencies.

$ npm install

7. This will fetch all dependencies and install them in the node_modules directory
under chat-sample-master. Once the install command completes, you can
start your application with the following command:

$ node index.js
ubuntu: ~/chat-example-master $ node index.js listening on *:3000

8. This will start an inbuilt HTTP server and set it to listen on default port 3000.
Now you can access the app at http://server-ip:3000. The screen will look
similar to the following image:

9. Open another instance in a separate browser window and start sending your
messages.

https://technet24.ir

How it works…
We have set up a very simple application that listens on a given Node.js socket. To send
a message, we have used the socket.emit() function, which writes the data from text
box to socket:

$('form').submit(function(){
 socket.emit('chat message', $('#m').val());
 ...
});

When this message is received on the server side, the server writes it to all connected
sockets, resulting in a group chat scenario:

io.on('connection', function(socket){
 socket.on('chat message', function(msg){
 io.emit('chat message', msg);
 });
});

Similarly, to receive a message, we keep listening on the socket, and when an event chat
message happens, we write the received data to an HTML page as a message:

socket.on('chat message', function(msg){
 $('#messages').append($('').text(msg));
});

This is very basic application and can be extended easily to implement one-on-one chat.
All we need is a unique ID for all clients and a little modification to the interface to
separate messages. Right now, the message is sent as it is; you can collect the message
and create a JSON object to contain sender and receiver IDs, plus any additional
information.

The advantage of using NodeJS is quick and easy development. JavaScript is a
commonly used language and you can easily get support from the large community. You
can always develop the application as per your requirements. The disadvantage is
regarding scaling; you will need to code the clustering mechanism on your own,
whereas for XMPP, clustering is implemented by nearly all leading servers.

There's more…
The Node.js setup available with the Ubuntu repository is not the latest one. You can
download the latest version from the node official download page.

Download NodeJS binaries for Linux. Choose your desired version by visiting the
NodeJS download page. As of writing this, the latest stable version is 5.1:

$ wget https://nodejs.org/download/release/v5.1.0/node-v5.1.0-linux-
x64.tar.xz

Extract binaries and move it to /use/local so that it is accessible globally:

$ tar Jxv --strip=1 -C /usr/local/

Check the node version with the following command:

$ node -v

https://technet24.ir

See also
Node.js download page: https://nodejs.org/en/download
Node: how to install: https://github.com/nodejs/help/issues/41
Sample chat application on GitHub: https://github.com/rauchg/chat-example

https://nodejs.org/en/download
https://github.com/nodejs/help/issues/41
https://github.com/rauchg/chat-example

Chapter 11. Git Hosting
In this chapter, we will cover the following recipes:

Installing Git
Creating a local repository with Git CLI
Storing file revisions with Git commit
Synchronizing the repository with a remote server
Receiving updates with Git pull
Creating repository clones
Installing GitLab, your own Git hosting
Adding users to the GitLab server
Creating a repository with GitLab
Automating common tasks with Git hooks

https://technet24.ir

Introduction
In this chapter, we will learn how to set up a popular version control system: Git. A
version control system, also known as revision control system, can be thought of as a
repository of files that record every single change in a file. Every update to a file or set
of files is recorded as a new version, with some metadata about that specific
modification. Metadata contains details of who made the change, a small comment
explaining why the change was made, details on exactly what changed in each file, and a
timestamp. You can easily switch back to an older version when needed.

Version control systems are generally used to track software source code, but they can
be used with virtually any type of file. It is necessary for collaborative work where two
or more people are working on the same file. Everyone maintains their own local copy
of each file and works on them. When a person satisfactorily completes his work, he
sends the updated file to the central repo. Others can synchronize their local copies with
this central repo and receive any updates. If two people happen to modify the same file
at the same time, they can choose what to keep and what to remove before sending
updates to the central repository. If any issue happens with the latest updates, source
code can be replaced with previous known-to-work versions. This allows you to track
the changes over time and find the cause of the problem.

Over time, multiple version control systems have been developed; some are
centralized version control systems (CVCS) and others are distributed version
control systems. Centralized systems consist of a single central server that hosts all the
versions and updates. Everyone sends new changes to the central server and gets
updates from it. This makes it easy to administer the repository and enable fine-grained
control, but it also becomes a candidate for a single point of failure. If a central server
goes down, no one can push changes or get updates. CVS and Subversion are well
known centralized version control systems.

Distributed version control systems, on the other hand, overcome this problem by
distributing a full copy of the repository on each participating system. If a central server
goes down, a copy from any client can be sent to the server to restore it. One can even
choose to promote a client as a new server. Git, Mercurial, and Bazaar are examples of
distributed version control systems. Bazaar is sponsored and developed by Canonical,
the developer of Ubuntu. It is primarily focused on community-supported open source
software development.

In this chapter, we will focus on Git, a popular version control system. It was primarily
developed by Linus Torvalds to support the development of the Linux kernel. Git is
influenced by the lessons learned from other version control systems. It was developed
with the aim to support large projects, such as the Linux kernel, and the need for a fully
distributed system and high speed. Later, GitHub, a social network for code and
developers, ensured the widespread adoption of Git.

In this chapter, we will learn how to work with Git. Starting with the basics, such as
installing Git and using it locally, we will also cover some advanced features of Git. We
will also set up our own Git hosting with GitLab, an open source tool.

https://technet24.ir

Installing Git
This recipe covers the installation of Git binaries on the Ubuntu server. As always, we
will install the latest available Git package.

Getting ready
You will need access to a root account or an account with sudo privileges.

https://technet24.ir

How to do it…
Git maintains a separate repository of the latest binaries on Launchpad. We will use
PPA for this repository,to install the latest Git version:

1. Add PPA to the Ubuntu installation source:

$ sudo add-apt-repository ppa:git-core/ppa

2. Update the apt repository cache:

$ sudo apt-get update

3. Now, install Git with a simple apt-get install git command:

$ sudo apt-get install git -y

4. Once installation completes, you can check the Git version with the following
command. You can cross check the version with the official Git download page:

$ git version

5. Now introduce yourself to Git by providing your name and email address. Git will
add this information to every commit message made by you:

$ git config --global user.name "Your Name"
$ git config --global user.email "email@domain.com"

6. You can cross-check the configuration by using the --list parameter to git
config:

$ git config --list

7. Use git help to get a list of the basic daily use commands:

$ git help

How it works…
Here, we have the installed the latest Git version from the repository maintained by Git
developers. The Ubuntu default package repository contains the Git package, but often it
is not updated. Ubuntu 14.04 still provides Git version 1.9.1.

Once the Git packages are installed, you need to identify yourself to Git. This
information is used to tag the commits created by you. We have globally set the
username and email with the git config command. Now, whenever you create a new
commit in any repository on this system, the commit will get tagged with your username
and email. This helps in tracking who did what, especially when you are working in a
large group. You can get a list of configuration settings with the command git config
--list, and the output should look something like the following:

$ git config --list
user.name=yourname
user.email=youremail@example.com

If you execute the same command from within a repository directory, the list will show
some extra settings specific to that repository:

~/sample-repo$ git config --list
user.name=yourname
user.email=youremail@example.com
core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true

Now, if you are not already familiar with Git, you can make use of the git help
command to get documentation and manual pages. The default help menu lists commonly
used commands with a short description. You can get a list of all available commands
with the same git help command and a flag, -a.

$ git help -a

Additionally, the installation contains some guides or manual pages to help you get
started with Git. To get a list of the available guides, use:

$ git help -g

The common Git guides are as follows:

https://technet24.ir

attributes: Defines attributes per path
glossary: A Git glossary
ignore: Specifies intentionally untracked files to ignore

To open a particular guide, use the git help guidename or the man git[guidename]
command:

$ git help everyday # or man giteveryday

There's more…
Git has become a mainstream version control system, especially after the rise of the
social coding site GitHub. There are other well-known version control systems
available, such as Subversion and Mercurial. Facebook uses a modified version of
Mercurial for their internal code hosting. Bazaar is another distributed version control
system sponsored and developed by Canonical, the force behind Ubuntu. Bazaar
provides tight integration with Launchpad, a collaborative development platform by
Canonical.

You can get more details about Bazaar on their official page at
http://bazaar.canonical.com/en/.

http://bazaar.canonical.com/en/
https://technet24.ir

See also
You can read more by following these links:

Git basics: https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
Git book: https://git-scm.com/book/en/v2
Check out the Git interactive tutorial at: https://try.github.io and http://git.rocks/
Launchpad: https://launchpad.net/

https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2
https://try.github.io
http://git.rocks/
https://launchpad.net/

Creating a local repository with Git CLI
Now that we have the Git binaries installed, let's take a step forward and create our first
local Git repository.

https://technet24.ir

Getting ready 
Make sure that you have installed Git.

How to do it…
We will take a common path by starting a new pet project, where we will simply create
a new local directory, add some files to it, and then realize, Ohh I am gonna need a
version control system:

1. So, yes, quickly create your new project:

$ mkdir mynewproject
$ touch mynewproject /index.html
$ touch mynewproject /main.js
$ touch mynewproject/main.css

2. Add some sample content to these files by editing them:

Now you need to create a Git repository for this project. Sure, Git covered you
with the git init command.

3. Make sure you are in the project directory and then initialize a new repository, as
follows:

$ cd mynewproject
$ git init

This will initialize a new empty repository under the project directory. A new hidden
directory gets created with the name .git. This directory will contain all the metadata
of your Git repository and all revisions of every single file tracked by Git.

https://technet24.ir

How it works…
Here, we have used the git init command to initialize a new repository on our local
system. The files created before initializing a repo are optional; you can always skip
that step and directly use git init to create a new local repository. Later, when you
need to push (synchronize) this repo with a remote hosted repository, you can simply
use the git remote add command. We will see examples of git remote add in the
next recipes.

With the git init command, you can also create a bare repository by using the --bare
flag. The difference between a normal repository and a bare repository is that a bare
repository does not have a working copy. You cannot use a bare repository directly to
edit and commit files. Unlike a normal repository, where revision history, tags, and head
information is stored in a separate .git directory, a bare repo stores all this data in the
same directory. It is meant to be a central shared repository where multiple people can
commit their changes. You need to clone these types of repositories to access and edit
files. The changes can be pushed using the git push command from the cloned copy.

There's more…
You can also use git clone to clone existing repositories. The repository can be local
or remote. The clone command will replicate the contents of a parent repository,
including revision history and other details. We will see more details of git clone in
the next recipes.

https://technet24.ir

See also
You can read more by following these links:

Git init: https://git-scm.com/docs/git-init
Git clone: https://git-scm.com/docs/git-clone

https://git-scm.com/docs/git-init
https://git-scm.com/docs/git-clone

Storing file revisions with Git commit
We have initialized a new repository for our project. Now we will learn how to store
file modifications using git add and git commit.

https://technet24.ir

Getting ready
Make sure you have initialized a new git repository and created sample files under your
project directory. Follow the previous recipes to get more details.

How to do it…
Now that we have a new repo initialized for our project, let's go ahead and check in our
files.

1. Before we add any files, simply check the current status of the repo with the git
status command. This should list all the files under the Untracked files list, as
follows:

$ git status

As shown by git status, none of our files are being tracked by Git. We need to
add those files before Git tracks any changes to them.

2. Let's add all the files to the tracking list with git add:

$ git add .

This command does not create any output, but stages all untracked files to be added
to the repo. The symbol (.) specifies the current directory and processes all files
under the current directory. You can also specify file name(s) to add specific files.

3. Now check the git status again. This time, it will show newly added files marked
by green text and a message saying Changes to be committed:

https://technet24.ir

4. Next, commit the current state of the files with the git commit command. Commit
means asking Git to save the current state of staged files:

$ git commit -m "First commit"

The git commit command will display details of updates to the repository, along
with the commit ID (4459fcc). In this case, we have added three new files without
any new insertion or deletion of contents.

5. Now if you check the git status again, it should show the nothing to commit
message:

$ git status
On branch master
nothing to commit, working directory clean

6. Next, make some changes in any file and check the repo status again. This time, it
should show the modified files as follows:

7. You can check the exact differences to the previous version and current
modifications with the git diff command. Use git diff without any file name
to get all modifications in all files, or use it with a file name to check specific
files:

$ git diff

8. Now you can repeat the add and commit process to store these changes. We have
modified an existing file without creating new files. We can use the -a flag with git
commit to stage changes and commit them in a single command, as follows:

$ git commit -a -m "index.html updated"

The -a flag will stage all modified files and commit will proceed with newly staged
contents. Note that this only works with modified files. If you have created any new file,
you need to use git add to stage them.

https://technet24.ir

How it works…
This recipe uses two primary commands: git add and git commit. The first one
stages the content for the next commit, and the second actually stores the current state of
the content. The git add command is used to add new files, stage updates to existing
files, and remove any entries of deleted files. All these modifications to the current
working tree are staged for the next commit. The command can be used multiple times to
stage multiple modifications. Additionally, you can stage all files under the current
directory at once by adding a single file, naming it explicitly, or even choosing a single
line from a bunch of updates in the single file.

Once the modifications are staged, you can use git commit to store the updates. When
the changes are committed, Git stores the updates in the revision history and changes Git
Head to point to the latest revision. All updated files are stored in the form of a binary
large object (blob) as a new snapshot. The commit process also triggers some hooks or
events that can be used to execute external scripts to carry out some additional
functions. Later in this chapter, we will discuss Git hooks in more detail.

Other than git add and git commit, we have used git status and git diff commands.
As the name suggests, git status shows the current status of the repository in
question. It lists all files that have been modified after the last commit, newly created or
deleted files, and any updates that have already been staged. The git diff command
can be used to list all modifications to a given file. It compares the current state of a file
against its last committed or indexed state. Note that you can use git diff before
indexing any file with git add.

There's more…
Another useful command is git checkout. It can be used to discard any modifications
and restore a file to its previous state, or restore the deleted file to its known revision.

https://technet24.ir

Synchronizing the repository with a
remote server
Up to now, we have learned how to create a local Git repository and add or update files
to it. In this recipe, we will learn how to set up a remote repo and synchronize local
code with it. We will be using GitHub to host our remote repository; feel free to choose
any other code hosting service.

Getting ready
You will need a GitHub account. Sign up for a free account if you do not already have
one.

https://technet24.ir

How to do it…
To create a new repository on GitHub, log in to your GitHub account and create a new
public repository:

1. Click the Create repository button. Make sure that the checkbox Initialize this
repository with a README is unchecked. The new repository form should look
something like this:

2. On the next page, you will be given an option to initialize this repository. We
already have a local repository, so we will use the ... or push an existing
repository from the command line option:

3. Copy both commands and execute them on a local Git repository:

$ git remote add origin
https://github.com/sawantuday/mynewproject.git
$ git push -u origin master

The first command, git remote, adds a reference to the remote repository on
GitHub and sets it as its origin. The next command, git push, synchronizes all
local content with the remote repository. The git push command will show the
details, as follows:

4. You will be prompted to authenticate with your GitHub account from the command
line. Enter your GitHub username and password. This ensures that you are allowed
to push the changes to the repository. Alternatively, you can add your local SSH
public key to your GitHub account to avoid manual authentication.

https://technet24.ir

Now you can use your GitHub repository to share code with others or clone it to some
other system. On the GitHub page, check the code tab to take a look at files in the
repository.

How it works…
Local repositories are good for personal work. A single person can work with them
easily. A centrally hosted repository is required when you need to share the code base
with a group of people. Everyone can make a local copy of the central code base and
send their changes back to the central copy. GitHub solves this problem by hosting
repositories that are accessible over the Internet. You can simply create a free public
repository and share its URL with colleagues. Through access control, you can select
who can check in their code. You can also set up your own centrally hosted repository.
All you need is a system accessible over your network or Internet.

Here, we have created a central shared repository on GitHub. GitHub provides various
options to initialize a repository and add code to it. As we already have our local
repository ready, we just need to add a reference to the remote repo and synchronize our
changes with git push. The git remote command is used to add a reference to the
remote repository. We have set the remote repository as origin , that is, the default
remote repository. When using git push or git pull commands, if we do not specify
any remote name it is assumed to be origin. Also, by default, Git marks the first remote
as origin.

Next, we used Git push to push or synchronize our local contents to a remote copy. We
have explicitly mentioned the remote name as origin and the remote branch as master.
By default, Git always pushes to a remote named origin and branch master.

https://technet24.ir

There's more…
You can create your own remote copy on a local shared server. All you need is a normal
user account on that server.

Log in to the shared server and create a bare repository with the following command:

$ git init --bare shared_repo

This will create an empty bare repository under the shared_repo directory. If you
check its contents, you will find all Git-specific files and directories.

Now you can clone this repo from your workstation or use the git remote add
command to add a remote to your already initialized repository. Use the following
command to clone the repo. Replace the username with the user account on a shared
server:

$ git clone ssh://user@ server_ip_or_name/full/path/to/repo

This command will ask for the password of the user account you have used in the
username. Additionally, you can remove the password prompt by setting key-based SSH
authentication with a shared server.

GitHub pages

You can host your own simple static website with GitHub for free. All you need is a Git
repository hosted on GitHub. Follow these steps to get your own GitHub page:

1. Create a new repository with the name username.github.io, where username
should be your GitHub username.

2. Clone this repository to your local system. If you already have a project created on
your local system, you can add this repository as a remote. Check this recipe for
how to add a remote.

3. Create index.html if you do not have one. Add some content to index.html.
4. Stage all content, commit to the local repository, and then push to GitHub.
5. Next, point your browser to username.github.io. You should see the content of

index.html.

GitHub pages works with websites generated using static website generators such as
Jeykyll, Hugo, and Octopress. By default, you get a github.io sub-domain, but you can

use your own domain name as well.

https://technet24.ir

See also
Check the manual pages for git remote and git push with man git-remote and man
git-push respectively:

Read more about generating SSH keys: https://help.github.com/articles/generating-
ssh-keys/
Get free hosting for your static website at GitHub pages: https://pages.github.com/

https://help.github.com/articles/generating-ssh-keys/
https://pages.github.com/

Receiving updates with Git pull
In the last recipe, we learned how to set up a remote repository and send local changes
to a remote using the git push command. The story is not complete yet. When the
repository is shared by multiple people, everyone will push their own changes. The
central repository will keep on updating. When you want to synchronize or push your
changes to the central repo, you need to download any updates made by other users and
then push your modifications on top of that. A git pull command will be used to pull
down any updates to the remote central repository to your local repository.

This recipe covers the git pull command. We will use this command to resolve a
rejected push, but it is generally used simply to update your local copy.

https://technet24.ir

Getting ready
You will need one central remote repository; it may be hosted on GitHub or anywhere
else.

Secondly, you will need two local copies of the central repo. Use the git clone
command to create a local replica of the remote repository. These two copies are used
for demonstration purposes; in the real world, you will already have multiple copies
with different users of your repository:

$ git clone https://github.com/sawantuday/mynewproject.git
local_copy_1
$ git clone https://github.com/sawantuday/mynewproject.git
local_copy_2

Now enter local_copy_1, create a new file with random content and then commit and
push the changes back to the remote repository:

$ cd local_copy_1
$ echo "// Modifications by user 1" >> index.php
$ git add .
$ git commit -m "Index.php created with comments"
$ git push origin master

Your push command should complete without any errors or warnings.

Next, enter local_copy_2 and create a new file with random contents:

$ cd local_copy_2
$ echo "\\ Modifications by user 2" >> main.php

How to do it…
Suppose you are user two working on a copy, local_copy_2. You cloned the repository
and started working with the code base. In the meantime, user one completed his work
and pushed his changes back to the central repo. Now, after you have completed your
work, you are ready to send updates to the remote repo:

1. Commit your modifications to the local repository:

$ git add .
$ git commit -m "main.php created with comments"

2. Try to push your commit to the central repo:

$ git push origin master

This time, your push should fail, saying someone else had already updated the
remote repository. Git will give you details of a rejected push, as follows:

3. Now you need to pull remote changes; first, with git pull, merge any potential
conflicts, and then try to push again:

$ git pull origin master

https://technet24.ir

4. You will be asked to enter a merge message in nano or a similar editor. Simply
accept the pre-filled message and save the file by pressing Ctrl + O, then press
Enter to save, and then Ctrl + X to exit.

5. Now try to push again. This time it should complete successfully:

$ git push origin master

How it works…
As we saw in the previous example, git pull is used to pull the remote modifications
to the local repository. It is a good idea to use git pull before starting your work on the
local copy. This way you can be sure that you have all remote updates in your local
repository, thus reducing the chances of a rejected push.

The git pull command can be used any time, even to simply update your local
codebase with the remote copy. I have used it in a commit and push flow just to
demonstrate the rejected push and merge scenario.

The example demonstrates the simple automated merge. It may happen that both user one
and user two are working on the same file and incidentally modify the same part of the
code. Git will report a Merge conflict, as follows:

Now, in this case, Git may not be able to automatically merge both updates. It will
combine both updates in single file and mark them in a special format, as follows:

In this case, you need to decide what to keep and what to remove. Once you are done
with solving conflicts, remove the special tags added by Git and commit the conflicting
file. After that, you can push your updates along with the new commit for merging.

https://technet24.ir

See also
You can read more by following these links:

Git pull: https://git-scm.com/docs/git-pull
Git merge: https://git-scm.com/docs/git-merge
Git fetch: https://git-scm.com/docs/git-fetch

https://git-scm.com/docs/git-pull
https://git-scm.com/docs/git-merge
https://git-scm.com/docs/git-fetch

Creating repository clones
Git clone allows you to create a copy of your repository in a new directory or location.
It can be used to replicate a remote repository on your local system or create a local
clone to be shared over an intranet. This recipe covers the git clone command. We
will learn to create a clone of a remote repository and then take a look at various
transport protocols supported by Git for cloning.

https://technet24.ir

Getting ready
You will need Git binaries installed on your local system, plus a remote repository.
Note down the full path (clone URL) of the remote repository.

How to do it…
Create a clone of the repository with the git clone command, as follows:

$ git clone ssh://ubuntu@192.168.0.100:22/home/ubuntu/cookbook.git \
ubuntu_cookbook

You will be asked to enter a password for the user account ubuntu.

This command will create a new directory named ubuntu_cookbook and clone the
repository cookbook.git into this directory.

https://technet24.ir

How it works…
As seen in the previous example, the git clone command will create a new copy of an
existing repository. The repository can be a local repository or one located on a remote
server. Git supports various protocols to transfer the content between two systems. This
includes well-known protocols such as SSH, HTTP/S, and rsync. In addition, Git
provides a native transport protocol named Git. Note that the Git protocol does not
require any authentication and should be used carefully. In the previous example, we
have used the SSH protocol. When working with local repositories, you can use
file///path/to/repo.git or even an absolute path /path/to/repo.git format.

Cloning requires a single argument, which is the path of the repository to be cloned. You
can skip the destination directory and Git will create a clone in a new directory named
after the repository name.

You can also create a new bare clone with the --bare option of the git clone
command. This is useful for creating a shared central clone that is used by a group of
people.

Another important option is the depth clone. When cloning a large repository that
contains years of work, and you do not really need the entire history of the repository,
the option --depth can be used to copy only a specified number of revisions. This will
help you in quickly downloading just the tip of an entire repository, and will save you
some bandwidth by avoiding unnecessary downloads. The syntax for the --depth
option is as follows:

git clone --depth 1 https://github.com/torvalds/linux.git mylinux

See also
You can read more by following these links:

Git clone: https://git-scm.com/docs/git-clone

https://git-scm.com/docs/git-clone
https://technet24.ir

Installing GitLab, your own Git hosting
Up to now in this chapter, we have worked with the Git command line interface (CLI).
It is a very flexible and powerful interface. This recipe covers the installation of a web
interface for Git repositories. We will install GitLab, an open source self-hosted Git
server. Through GitLab, you can do most administrative tasks, such as creating new
repositories, managing access rights, and monitoring history. You can easily browse
your files or code and quickly make small edits. GitLab is also adding support for
collaboration tools.

Getting ready
You will need access to a root account or an account with sudo privileges

Make sure you check out the minimum requirements for installation. You can use a
single core 1 GB server for an installation with less than 100 users. An server with 2
cores and 2 GB ram is recommended.

Also check the available disk space. The installer itself takes around 400 MB of disk
space.

https://technet24.ir

How to do it…
We will use the recommended Omnibus Package Installer. It provides a .deb package
for Debian/Ubuntu systems. Additionally, the omnibus installation takes care of
housekeeping tasks such as restarting the worker process to maintain memory use. If you
choose to follow the manual installation process, you can get the detailed installation
guide from the GitLab documentation:

1. First, we will need to download the installer package. Download the latest
installer package from the GitLab download page at
https://packages.gitlab.com/gitlab/gitlab-ce:

$ wget https://packages.gitlab.com/gitlab/gitlab-
ce/packages/ubuntu/xenial/gitlab-ce_8.7.1-ce.1_amd64.deb/download

2. Once download completes, install GitLab using the dpkg command, as follows:

$ sudo dpkg -i gitlab-ce_8.7.1-ce.1_amd64.deb

3. After installation, use the following command to configure GitLab:

$ sudo gitlab-ctl reconfigure

4. Optionally, check the system status with the gitlab-ctl status command. It
should return a list of processes and their respective PIDs, as follows:

ubuntu@ubuntu:~$ sudo gitlab-ctl status
[sudo] password for ubuntu:
run: gitlab-workhorse: (pid 806) 57803s; run: log: (pid 805)
57803s
run: logrotate: (pid 31438) 202s; run: log: (pid 810) 57803s
run: nginx: (pid 813) 57803s; run: log: (pid 812) 57803s
run: postgresql: (pid 817) 57803s; run: log: (pid 811) 57803s

5. Then, open your browser and point it to your server IP or hostname. You will be
asked to set a new password for the administrator account. Once you set a new
password, use root as the username and your password to login.

https://packages.gitlab.com/gitlab/gitlab-ce

How it works…
GitLab is a Ruby-based web application that provides centralized hosting for your Git
repositories. We have installed an open source community edition of GitLab using their
Omnibus installer. It is an integrated installer package that combines all dependencies
and default settings. The installer combines Nginx, Redis, Sidekiq, Unicorn, and
PostgreSQL. Unfortunately, the community edition with the Omnibus installer does not
support switching to the MySQL database server. To use MySQL, you need to follow the
manual installation process and compile GitLab from source, along with other various
dependencies.

The configuration file is located at /etc/gitlab/gitlab.rb. It is quite a lengthy file
and contains numerous parameters, separated by each component. Some important
settings to look at include external_url, where you can set your domain name,
database settings, if you are planning to use external PostgreSQL setup, and email
server settings, to set up your outgoing email server. If you choose to modify any
settings, you will need to reconfigure the installation using the gitlab-ctl
reconfigure command. You can get a list of enabled configurations using the gitlab-
ctl show-config command.

The GitLab Omnibus package ships with some extra components: GitLab CI, a
continuous integration service, and GitLab mattermost, an integrated installation of
mattermost that provides an internal communication functionality with a chat server and
file sharing. GitLab CI is enabled by default and can be accessed at http://ci.your-
gitlab-domain.com. You can enable mattermost from the configuration file and then
access it at http://mattermost.your-gitlab-domain.com.

https://technet24.ir

There's more…
Git provides an inbuilt web interface to browse your repositories. All you need is a
repository, web server, and the following command:

$ git instaweb --httpd apache2 # defaults to lighttpd
You can access the page at http://server-ip:1234

Check the GitWeb documentation for more details at https://git-scm.com/docs/gitweb.

https://git-scm.com/docs/gitweb

See also
Check out the requirements for GitLab installation:
https://github.com/gitlabhq/gitlabhq/blob/master/doc/install/requirements.md.

https://github.com/gitlabhq/gitlabhq/blob/master/doc/install/requirements.md
https://technet24.ir

Adding users to the GitLab server
We have set up our own Git hosting server with GitLab, but it still contains a single
admin user account. You can start using the setup and create a new repository with an
admin account, but it is a good idea to set up a separate non-root account. In this recipe,
we will cover the user management and access control features of the GitLab server.

Getting ready
Make sure you have followed the previous recipe and installed the GitLab server.

Login to GitLab with your root or admin account.

You will need to configure the email server before creating a user account. You can use
an external email service, such as sendgrid or mailgun. Update your GitLab email
server configuration and reconfigure the server for the changes to take effect.

https://technet24.ir

How to do it…
The default landing page for GitLab is a projects page. The same page is listed even
when you log in as root. To create a new user, we need to access the admin area:

1. To open the admin console, click on the admin area icon located at the top-right
corner of the screen. Alternatively, you can add /admin to the base URL and
access the admin area.

The admin dashboard will greet you with details about your installation and the
features and components list. The left-hand menu will list all available options.

2. Click on the Users menu to get user account-related options.
3. Next, click on the big green New User button to open a new user form.

Now fill in the required details such as name, username, and email. The form
should looks something like this:

4. You cannot set a password for a new user account on the create user form. The
reset password link will be mailed to the user at a given email ID. A new user can
set his password through that link:

5. Under the Access section, you can mark this user as admin and set a limit on
projects created by him:

6. Next, under the profile section, you can add some more details for this user
account.

7. Now, click on the Create User button at the bottom-left of the form. This will save
the given details and trigger a password reset email. A screen will change to the
User Details page where you can see the account details, groups, and projects of a
given user, as well as other details. From the same page, you can block or remove
the user account.

Tip

A little workaround if you do not have email server set up is to click on the edit button
on the user details page. This will open the same form as add new user, with the
password fields enabled. Type in the new password, then confirm them, and click on the
Save changes button. You have set the password for your new user without a reset
email or the email server.

The new user account is ready to be used. Open the login page in a new window or
private browser and use the email or username and newly set password to log in.

https://technet24.ir

Creating a repository with GitLab
Now that we have set up our own Git hosting and created a new user account, we can
start using our Git hosting by creating a new Git repository.

https://technet24.ir

Getting ready
This recipe uses the GitLab setup. Make sure that you have followed the previous
recipe and installed your GitLab server.

Log in with your user account on the GitLab server. You can choose the admin account,
but a normal user account is recommended.

If you need to use SSH to clone and push to your repositories, you will need to set up
your SSH key. From the dashboard, click on Profile Settings and then select SSH Keys
to add a new SSH key. Check Chapter 2, Networking, for more details on how to create
an SSH key.

How to do it…
In the previous recipe, we learned how to create a local repository and then push it to
the remote. Here, we will first create a remote or hosted repository and then clone it to
our local system:

1. Log in to your GitLab account. You will be greeted with the Welcome screen
detailing your projects.

2. Click on the NEW PROJECT button to create a new repository:

3. On a new screen, enter the project or repository name in the project path field. Add
an optional descriptive message and select the proper checkbox to make your
repository public or private:

4. Next, click on the Create Project button to create a new repository. This will
redirect you to the repository page.

https://technet24.ir

A URL for your repository is listed, with some details on how to use your new
repository. You can use HTTP URL if you have not set up SSH keys. Additionally,
you may need to replace the hostname with the server IP from the repository URL:

5. Alternatively, you can create a readme file from the GitLab interface itself. Click
on the README link to open a file editor in your browser.

When you clone the private repository using its HTTP URL, a local Git daemon will ask
you for the username and password details for authentication.

Automating common tasks with Git
hooks
One of the more interesting features of Git is hooks. With hooks, you can tie an arbitrary
script to various Git events. Whenever a particular event, such as a git commit or git
push, occurs, the script attached to that event gets executed.

Typically, an event consists of several steps, and a script can be attached to each of
these steps. The most common steps are pre-event and post-event, with pre hooks
executed before the event and post hooks after the event. A pre hook, such as pre-
commit, is generally used to cross-check the updates and can approve or reject an actual
event. A post hook is used to execute additional activities after an event, such as start a
built process when a new push is received or a notification sent.

Every Git repository consists of a .git/hooks directory with sample scripts. You can
start using those hooks by removing the .sample extension from the script name.
Additionally, the hook scripts belong to a single repository instance and do not get
copied with the repository clone. So, if you add some hooks to your local repository
and then push changes to the remote, the hooks will not get replicated on the remote. You
will need to manually copy those scripts on the remote system. Built-in sample hooks
generally use the shell scripts, but you can use any scripting language, such as Python or
even PHP.

In this recipe, we will learn how to use Git hooks. We will create our own post-commit
hook that deploys to a local web server.

https://technet24.ir

Getting ready
We will need a local web server installed. I have used an Apache installation; feel free
to use your favorite server:

1. Set up a new virtual host under Apache and enable it:

$ cd /var/www/
$ sudo mkdir git-hooks-demo
$ sudo chown ubuntu:ubuntu git-hooks-demo
$ cd git-hooks-demo

2. Create index.html and add the following contents to it:

$ vi index.html

<!DOCTYPE html>
<html>
<head><title>Git hooks demo</title></head>
 <body>
 <h2>Deployed Manually </h2>
 </body>
</html>

3. Create the virtual host configuration:

$ cd /etc/apache2/sites-available
$ sudo cp 000-default.conf git-hooks-demo.conf

4. Open the virtual host configuration, git-hooks-demo.conf, and replace its
contents with following:

<VirtualHost *:80>
 DocumentRoot /var/www/git-hooks-demo/html
</VirtualHost>

5. Check the initial version by visiting your IP address in your browser.
6. Next, initialize a Git repository under the home directory:

$ cd ~/
$ mkdir git-hooks-repo
$ cd git-hooks-repo
$ git init

7. Copy index.html from the web root to the repository:

$ cp /var/www/git-hooks-demo/index.html .

Now we are equipped with the basic requirements to create our Git hook.

https://technet24.ir

How to do it…
Git hooks are located under the .git/hooks directory. We will create a new post
commit hook that deploys the latest commit to our local web server. We will be using a
shell script to write our hook:

1. Create a new file under the .git/hooks directory of your repository:

$ touch .git/hooks/post-commit

2. Add the following contents to our post-commit hook:

#!/bin/bash
echo "Post commit hook started"
WEBROOT=/var/www/git-hooks-demo
TARBALL=/tmp/myapp.tar
echo "Exporting repository contents"
git archive master --format=tar --output $TARBALL
mkdir $WEBROOT/html_new
tar -xf $TARBALL -C $WEBROOT/html_new --strip-components 1
echo "Backup existing setup"
mv $WEBROOT/html $WEBROOT/backups/html-'date +%Y-%m-%d-%T'
echo "Deploying latest code"
mv $WEBROOT/html_new $WEBROOT/html
exit 0

3. We need to set executable permissions to a post-commit file so that Git can
execute it:

$ chmod +x .git/hooks/post-commit

4. Now, update the index.html content. Change the line <h2>Deployed Manually
</h2> to <h2>Deployed using Git Hooks </h2>.

5. Commit the changes as usual. We have edited the existing file, so staging and
committing can be done in a single command, as follows:

$ git commit -a -m "deployed using hooks"

This time, the git commit result should output all echo statements from our git hook.
It should look as follows:

You can check the latest deployed index.html by visiting the IP address of your
system:

https://technet24.ir

How it works…
We have created a simple post commit hook that exports all files from the Git
repository, backs up the existing live site, and replaces it with new contents. This is a
very simple shell script, set to execute after each commit event on the local repository.
A script that starts with a hash bang signature defines that the script is expecting bash
runtime. Later, we defined the WEBROOT and TARBALL variables, which contain the full
path for the web-root directory and backup location respectively. Next, we created an
archive of all the files with the git archive command. This command creates an
archive of a named tree; a tree can be a specific commit ID or a branch. We have used a
master branch for our export. The contents are exported in a tarball format with the
export location set using the --output parameter. Once we have the tarball in place,
we need to replace the live site with contents from the tarball. We have also taken a
backup of the running site, just in case anything goes wrong.

This is a very primitive script and deploys only to the local server. To deploy on a
remote server, you will need to use some synchronization tools such as rsync to update
the content on a remote server. Make sure you are using an SSH connection for your
deployments to live servers. Many blogs advise you to have a Git instance running on a
live web server and setting it to deploy the live site using a post-receive hook. This
can be an option for staging or a demo server, but on a live server I would try to avoid
installing any tool other than a web server. Any additional packages will increase the
effective attack surface and may compromise the security of your servers. Who knows
whether Git contains some unknown shocks (remember shell shock?)

Note that we are creating a backup on each new commit. You may end up with an out of
disk space error if your deployment is big or if you are doing frequent commits. That is
not a big problem, though. The script can be easily modified to delete any directories
created X days before. You can even choose to keep the last, say, 10 backups and delete
others.

As we are deploying to a local web server, we have set the script to be a post-commit
hook. If you choose to deploy it on a remote server, then make sure you set the script as
a post receive or update script. We commit on a local repository and push updates to the
remote server.

As we have seen, this is a plain shell script, and you can easily use any bash command
in this script. Additionally, you can execute the script manually using the sh script.sh

command or the short hand notation, ./script.sh. This will help in debugging the
script and monitoring the output without the need to create any Git commits. Also make
sure that the script file is set as executable and that all directories you are working with
are writable by your user account.

If you are using remote repositories hosted with GitHub or GitLab, they provide a
webhook feature which works similar to Git hooks. You will need to set a script
accessible over the Web through a URL. When a particular event happens, GitLab will
make a POST request to a given URL with the relevant event data.

https://technet24.ir

See also
Read more about Git hooks at https://git-scm.com/docs/githooks
Customizing Git hooks at https://git-scm.com/book/en/v2/Customizing-Git-Git-
Hooks

https://git-scm.com/docs/githooks
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks

Chapter 12. Collaboration Tools
In this chapter, we will cover the following recipes:

Installing the VNC Server
Installing Hackpad, a collaborative document editor
Installing Mattermost – a self-hosted slack alternative
Installing OwnCloud, self-hosted cloud storage

https://technet24.ir

Introduction
This chapter covers various collaboration tools. Collaboration enables people to share
thoughts and solve problems collectively. With the help of the Internet, we can
communicate quickly and more effectively. Tools such as WhatsApp and Slack have
changed the way we communicate personally, as well as in corporate life. Services such
as Google Docs hosts our documents in the cloud, which can then be shared with
multiple people and simultaneously modified by them. Need a comment on your latest
edit? Click that chat button and send your request. Need to discuss face to face? Click
another button to start video call. Need to send a long detailed message? Yes, we've got
e-mail services.

Most of these services are hosted by Internet giants and available as SAAS (Software
as a Service) products. Simply choose subscription plans and start using them. Many of
these services even offer free basic plans. The only problem with these services is
you've got to trust a service provider with your data. All your messages, emails, photos,
and important documents are hosted with some third party.

In this chapter, we will learn to how set up various open source tools on our own
servers. We have already installed an email and instant messaging service, central Git
hosting, and a file server. This chapter will focus on more advanced collaboration tools.
We will cover the VNC server to share your desktop, the OwnCloud server for
document and file sharing, and Mattermost, an open source Slack alternative.

Installing the VNC server
VNC (Virtual Network Computing) enables us to access the GUI of a remote system
over a secured network. The VNC client installed on a local system captures the input
events of a mouse and keyboard and transfers them to the remote VNC server. Those
events are executed on a remote system and the output is sent back to the client. VNC is
a desktop sharing tool and is generally used to access the desktop system for remote
administration and technical support.

With Ubuntu server, we rarely need a desktop environment. However, if you are a
newbie administrator or quite unfamiliar with the command line environment, then GUI
becomes a handy tool for you. Plus, you may want to deploy a shared remote desktop
environment where people can collaborate with each other. This recipe covers the
installation of the VNC server on Ubuntu Server 14.04. We will install a GUI
component that is required by VNC and then install and configure the VNC server.

https://technet24.ir

Getting ready
You will need access to a root account or an account with sudo privileges.

How to do it…
The Ubuntu server and cloud editions generally ship with a minimal installation
footprint and do not contain GUI components. We will use Gnome-core as our desktop
component. Gnome-core is a part of an open source desktop environment.

1. Access the server shell and use the following command to install gnome-core:

$ sudo apt-get update
$ sudo apt-get install gnome-core -y

This will take some time as the command needs to download a bunch of
components and install them.

2. Once Gnome is installed, we can proceed with VNC server installation using the
following command:

 $ sudo apt-get install vnc4server -y

3. When installation completes, start a new VNC session by using the following
command:

$ vncserver

As this is the first time we have started VNC, you will be prompted to set up a
password. This session will also create a few configuration files required for VNC.
Your screen should look similar to the screenshot below:

1. Next, we will edit the default configuration files created by our first session, kill
the VNC process, and then edit the configuration file:

https://technet24.ir

$ vncserver -kill :1
Killing Xvnc4 process ID 2118

2. Edit the default configuration file and set it to use the Gnome session. Open
~/.vnc/xstartup and uncomment or add the following line to it:

$ nano ~/.vnc/xstartup
#!/bin/sh

Uncomment the following two lines for normal desktop:
unset SESSION_MANAGER
exec /etc/X11/xinit/xinitrc

#[-x /etc/vnc/xstartup] && exec /etc/vnc/xstartup
#[-r $HOME/.Xresources] && xrdb $HOME/.Xresources
#xsetroot -solid grey
#vncconfig -iconic &
#x-terminal-emulator -geometry 80x24+10+10 -ls -title
"$VNCDESKTOP Desktop" &
#x-window-manager &
metacity &
gnome-settings-daemon &
gnome-panel &

3. Optionally, disable the Gnome startup script. This will stop Gnome from starting
with a system boot and you will see a CLI login instead of the new Gnome-based
graphical login screen. Open /etc/init/gdm.conf and comment out the
following lines:

$ sudo nano /etc/init/gdm.conf
#start on ((filesystem
and runlevel [!06]
and started dbus
and plymouth-ready)
or runlevel PREVLEVEL=S)

4. Save all modifications in configuration files and start a new VNC session. This
time, we will add screen resolution and color depth options:

$ vncserver -geometry 1366x768 -depth 24

5. Next, from your local system, install the VNC client software and open it. I have
used the TightVNC client. Enter your server IP address and a VNC desktop number
to be connected. Here, we have created a single session to a sample IP address,
which will be 192.168.0.1:1:

6. Click Connect; you will be prompted for a password to authenticate your session:

7. Enter the password that we created while starting the first session. You should see
a desktop screen with a basic Gnome theme. The following is the scaled
screenshot of the VNC viewer:

https://technet24.ir

How it works…
VNC works with a client-server model. We have installed the VNC server daemon on
our Ubuntu Server and a client on the local system. The server daemon communicates
with the GUI buffer or frame buffer on the server side and transfers that buffer data to
the client. The client renders that buffer in specially designed software called the VNC
viewer. In addition to rendering the remote buffer, the VNC client or viewer captures
mouse and keyboard (input) events happening over the client window. Those events are
then sent to the VNC server, which applies them to the current graphics frame and any
updates are sent back to client.

The pevious example uses simple Gnome-core components. This is a basic graphics
suite which contains graphics drives, plus some other tools such as the Firefox browser
and an instant messaging client. You can even choose to have a limited setup and install
selective, required selected required Gnome packages as follows:

$ sudo apt-get install gnome-panel gnome-settings-daemon \
metacity nautilus gnome-terminal

This GUI does not match the one provided by Ubuntu Desktop. If you prefer to have the
same experience as Ubuntu Desktop, you can separately install a package, ubuntu-
desktop:

$ sudo apt-get install ubuntu-desktop

VNC does support multiple sessions to a single server. You may have noticed in the
connection address used previously that we used :1 to represent the first session or
display. This is shorthand for the full port number, which is 5901 for the first session,
5092 for the second, and so on. You can use the full port or just the last digit to refer to a
session. Notice the change in desktop number when we start multiple VNC sessions:

https://technet24.ir

Additionally, you can start a new VNC session for different users with its own
password. Simply log in or switch (su user1) to the user account, start vncserver, set
the password, and you are done.

See also
How VNC works on Stack Overflow -
http://stackoverflow.com/questions/4833152/how-realvnc-works

http://stackoverflow.com/questions/4833152/how-realvnc-works
https://technet24.ir

Installing Hackpad, a collaborative
document editor
In this recipe, we will install a collaborative document editor, Hackpad. It is a
document editor based on an open source editor, EtherPad. Hackpad was acquired by
Dropbox, and in early 2015 they open sourced its code.

Getting ready
You will need a system with at least 2 GB of memory.

As always, you will need an account with super user privileges.

https://technet24.ir

How to do it…
Hackpad is a web application based on Java. We will need to install the JDK; Scala,
which is another programming language; and MySQL as a data store. We will start by
installing dependencies and then cloning the Hackpad repository from GitHub.

1. Install JDK and Scala. The installation document mentions Sun JDK as a
requirement but it works with Open JDK.

$ sudo apt-get update
$ sudo apt-get install openjdk-7-jdk scala -y

2. Install the MySQL server. You can get more details on MySQL installation in the
chapter handling the database:

$ sudo apt-get install mysql-server-5.6

3. Next, clone the Hackpad repository. You can choose not to install Git and
download the ZIP archive of Hackpad from GitHub:

$ git clone https://github.com/dropbox/hackpad.git

4. This will create a new directory, hackpad. Before we run the build script, we
need to set some configuration parameters to match our environment. Change the
directory to hackpad and edit the bin/exports.sh file as follows:

export SCALA_HOME="/usr/share/java"
export SCALA_LIBRARY_JAR="$SCALA_HOME/scala-library.jar"
export JAVA_HOME="/usr/share/java"

5. Next, create a configuration file as a copy of the default configuration, as follows:

$ cp etherpad/etc/etherpad.localdev-default.properties \
etherpad/etc/etherpad.local.properties

6. Edit the newly created configuration, get the admin email address, and search for
the following line in etherpad/etc/etherpad.local.properties:

etherpad.superUserEmailAddresses =
__email_addresses_with_admin_access__

Replace it with:

etherpad.superUserEmailAddresses = admin@yourdomain.tld

Optionally, you can set the project to production mode by setting isProduction to

true:

devMode = false
verbose = true
etherpad.fakeProduction = false
etherpad.isProduction = true

7. If you are using a domain name other than localhost, then configure the same with
the following option:

topdomains =yourdomain.tld,localhost

8. Set your email host settings. You will need an email address to receive your
registration confirmation email. However, this is not a hard requirement for initial
setup:

smtpServer = Your SMTP server
smtpUser = SMTP user
smtpPass = SMTP password

9. Next, run a build script from the bin directory:

$./bin/build.sh

10. Once the build completes, set up the MySQL database. The script will create a
new database named hackpad and a MySQL user account. You will be asked to
enter your MySQL root account password:

$./contrib/scripts/setup-mysql-db.sh

11. Finally, you can start the server by executing run.sh from the bin directory:

$./bin/run.sh

This will take a few seconds to start the application. Once you see the HTTP
server is listening to the line, you can access Hackpad at
http://yourdomain.tld:9000:

https://technet24.ir

12. Access Hackpad and register with an email address that is used for an admin
account. If you have set up an email server, you should receive a confirmation
email containing a link to activate your account.

If you have not set up email server access to the MySQL database to get your
authentication token, open the MySQL client and use the following queries to get
your token. The MySQL password for the Hackpad account is taken from the
configuration file:

$ mysql -h localhost -u hackpad -ppassword
mysql> use hackpad;
mysql> select * from email_signup;

13. Select your token from the row matching your email address and replace it in the
following URL. In this case, the auth toke is PgEJoGAiL3E2ZDl2FqMc:

http://yourdomain.com:9000/ep/account/validate-email?
email=user@youremail.com&token=your_auth_token_from_db

The full auth URL for my admin account will look like this:

http://localhost.local:9000/ep/account/validate-email?
email=admin@localhost.local&token= PgEJoGAiL3E2ZDl2FqMc

14. Open this URL in the browser and your account registration will be confirmed. You
will be logged in to your Hackpad account.

Once you log in to your new account, Hackpad will start with a welcome screen
listing all the default pads that looks something like the following:

You can click any of them and start editing or create a new document. When
opened, you will get a full page to add contents, with basic text editing options in
the top bar:

https://technet24.ir

The document can be shared using the invite box or simply by sharing the URL.

How it works…
As mentioned before, Hackpad is a collaborative editor based on an open source
project, EtherPad. It allows you to create online documents directly in your browser. In
the same way as Google Docs, you can use Hackpad to create and store your documents
in the cloud. Plus, you can access Hackpad from any device. All your documents will be
rendered in a proper format suitable for your device.

When you log in for the first time, the home screen will greet you with stock pads. You
can edit existing pads or start a new one from the top bar. An editor will give you a
basic text editing setting, plus options to create lists and add comments. You can even
add data in a tabular format. Click on the gear icon from the top bar and it will give you
options to view document history, get an embedded link, or delete the document.

Every change in the document will be marked with your username, and if two or more
people are working with the document at the same time, then the specific line being
edited by each user is marked with the user's tag:

On the right-hand side of the document, you can see the options to invite your peers to
collaborate on this document. You can invite people using their email address. Make
sure that you have configured your email server before using this feature. Alternatively,
the invites are also shown in a chat window with clickable links, as shown in the
following screenshot:

https://technet24.ir

At the bottom of the document, you can find all activity logs about the new initiation and
the editing of this document. There is an option to chat with participating people directly
from the same window. It is located at the bottom corner of the right-hand side; it's the
small bar with a chat icon named after your domain. This provides one-to-one chat, as
well as a group chat:

Note

Note that this setup does not work with IP addresses. You will need a domain name that
maps to an IP address. You can set localhost files to set up local domain mappings, or
use a local DNS server for your internal network.

There's more
Hackpad is a collaborative document editor. You can add snippets of code in a given
document but not entire code files. To edit your code, you can use an open source Cloud
IDE named Cloud 9 IDE. Check out the GitHub repo at https://github.com/c9/core/.
Alternatively, you can get Docker images set up quickly and play around with the IDE.

Using Hackpad with Docker

The Hackpad setup contains a Docker file as well. If you have Docker installed, you can
build a Docker image for Hackpad. Simply change your directory to Hackpad git
repo and build a Docker image with the following command:

$ docker build -t hackpad

https://github.com/c9/core/
https://technet24.ir

See also
Read more about Hackpad at the following links:

Hackpad with Docker at
https://github.com/dropbox/hackpad/blob/master/DOCKER.md
Hackpad repo at https://github.com/dropbox/hackpad
Etherpad at http://etherpad.org/
Cloud 9 IDE at https://c9.io/

https://github.com/dropbox/hackpad/blob/master/DOCKER.md
https://github.com/dropbox/hackpad
http://etherpad.org/
https://c9.io/

Installing Mattermost – a self-hosted
slack alternative
This recipe covers another open source collaboration tool, Mattermost. Mattermost is
a modern communication tool that includes one-to-one chat, group chat IRC-like
channels, file sharing, and a super-fast search functionality. It can be thought of as a
modern IRC tool. Mattermost is well known as an open source Slack alternative, but the
Mattermost website says it is not limited to being a Slack alternative. You can find a list
of features at http://www.mattermost.org/features.

The GitHub repository contains a step-by-step guide for installing Mattermost on
production servers. We will use the same guide as our base.

http://www.mattermost.org/features
https://technet24.ir

Getting ready
You will need a 64-bit Ubuntu server and access to an account with sudo privileges.
Mattermost prebuilt binaries are available only on a 64-bit platform. If you are running
32-bit Ubuntu, you will need to compile Mattermost from source. We will use MySQL
as a database for Mattermost. I will use the same server for the database and
Mattermost. You may want to separate these services on two different servers for better
performance.

Create a separate MySQL user account and database for Mattermost. I will use the
lowercase mattermost as a database name as well as a username.

Additionally, you will need a proxy if you are planning to load balance multiple
Mattermost instances or have a secure setup with SSL enabled.

You will need a separate storage directory for shared multimedia contents. You should
use a separate large volume specifically assigned for this purpose. Make sure that the
directory is owned by the current user. To keep things simple, I will use a data directory
under the current user's home, that is, /home/ubuntu/mattermost-data.

How to do it…
Mattermost is based on Golang as a backend and React, a JavaScript framework, for the
frontend. Golang is capable of creating self-sufficient independent binaries. We will
download the prebuilt package available on GitHub. As of writing this, the latest stable
version is 1.3.0:

1. Download the Mattermost archive with the following command:

$ wget
https://github.com/mattermost/platform/releases/download/v1.3.0/m
attermost.tar.gz

2. Extract content from the archive. This will create a new directory named
mattermost:

$ tar -xf mattermost.tar.gz

3. Next, edit the Mattermost configuration file located under the config directory:

$ cd mattermost
$ vi config/config.json

4. It is already configured to use MySQL as a data source. We need to set our
username and password details for the database. Search for the SqlSettings section
and replace the content of the DataSource parameter with the following line:

"DataSource": "mattermost:
password@tcp(localhost:3306)/mattermost?charset=utf8mb4,utf8"

5. Next, search for the FileSettings section and set the Directory parameter to the
directory we created for multimedia content:

"Directory":"/home/ubuntu/mattermost-data/"

6. Now, run the Mattermost server with the following command, and wait for the
server to start listening:

$./bin/platform

7. Now you can access the Mattermost service at the hostname of your server at
http://server_ip_or_host:8065. However, the service is still running from
the console and will be terminated when we close the terminal.

8. Terminate this process by pressing Ctrl + C and set a startup daemon so that we
can start Mattermost in the backend and automatically start the service on system
reboot.

https://technet24.ir

9. Create a new upstart configuration under the /etc/init directory:

$ sudo nano /etc/init/mattermost.conf

10. Add the following content to the newly created file:

start on runlevel [2345]
stop on runlevel [016]
respawn
chdir /home/ubuntu/mattermost
setuid ubuntu
exec bin/platform

11. Now you can start Mattermost with any of the following commands:

$ sudo start mattermost

Or
$ sudo service mattermost start

Optionally, if you want to load balance the Mattermost service using Nginx or
HAProxy in front of it, please refer to Chapter 3, Working with Web Servers, for
detail on how to do so. The use of a load balancer will also give you an option to
enable SSL security for all communication.

12. Once you start the Mattermost service and access the homepage, you will be asked
to sign up. Create an account with an email address and you can start using your
own Mattermost instance. You can access the server at
http://yourserver:8065.

How it works…
Mattermost is all about team communication and collaboration. When you access the
Mattermost server for the first time and sign up with your email address, you will get an
option to create a new team or join existing teams.:

To join an existing team, you need to submit your email address and Mattermost will
reply with links to the team page where you are a member. If you have not yet created a
team, simply proceed with signup. On signup, after you have entered your email
address, you will be asked to select a team name and URI or a web address for your
team page. Enter a good name for your team and click Next:

On the next page, you will be asked to choose a URL for your team page. The box

https://technet24.ir

should be pre-filled with a suggested URL. Feel free to change it if you have a better
idea:

Once you are done with signup, you will be greeted with a welcome message and a
simple walkthrough of the Mattermost service. Once you are done with the introduction,
you will land on the Town Square channel. This is a prebuilt public channel accessible
to all users. There's one more prebuilt channel named Off-Topic listed on the left side
menu. You can create your own public channel, create a Private Group, or have a one-
to-one chat through Direct Messages.

Before you start using the service, invite some more users to your team. Click on the
Invite others to this team link or click on your username at the top left and then select
the Invite New Member link. Here, you can enter the email and name of a single member

to invite them. Optionally, you can get a team invite link, which can be shared with a
group:

The username menu on the left gives you some more options. You can update team
settings, manage team members, and even create a new team altogether. You will need to
be a team admin to access these options. If you are part of multiple teams, then you can
see an option to switch to a different team.

The team members will receive all communication in public channels. A user can
decide to be a part of a channel or leave it and not receive any communication from a
specific channel. Other options are Private group and Direct messages. In private
groups, you can communicate and share with selected people and not the entire team,
whereas in a direct message, as the name suggests, it is a one-to-one chat.

Every single message shared using Mattermost is archived and stored on the Mattermost
server. Users can access their respective communication history and even search for a
specific message, or documents from a specific user. Shared documents also become
part of the archive and are available for later use. The search menu is available at the
top-right corner of the screen.

The first user to sign up on Mattermost will get additional admin rights and can access
the System Console (from the username menu) to configure system settings and set
global defaults. Here, you can configure the database, set your email server and
configure email notifications, configure default team settings, check system logs, and
much more. When using Mattermost in production mode, make sure that you have
configured the SMTP service under email settings and enabled email notifications. You

https://technet24.ir

can also enable email verification where account activation will need a user to verify
their email address.

There's more …
The Mattermost service provides an option to integrate with various other popular
services. One such service we have worked with is the GitLab server. While working
with Git, we have seen the installation process of the GitLab omnibus package. The
omnibus package contains Mattermost as a configurable component. If you have GitLab
installed through the Omnibus package, check its configuration to enable the Mattermost
service. Alternatively, you can configure GitLab integration from the Mattermost
settings as well.

From version 1.1, Mattermost added support for web hooks to integrate with external
services. Mattermost supports both incoming and outgoing hooks. Incoming hooks can
pull events from external services and vice versa. These hooks are compatible with
Slack APIs and the tools developed to work with Slack should work with self-hosted
Mattermost as well.

https://technet24.ir

See also
Read more about Mattermost by following these resources:

Mattermost features: http://www.mattermost.org/features
Installation on Ubuntu: http://docs.mattermost.com/install/prod-ubuntu.html
Mattermost Dockerfile: https://hub.docker.com/r/mattermost/platform/
Mattermost web-hooks: http://www.mattermost.org/webhooks/
Mattermost Source Code on GitHub: https://github.com/mattermost/platform

http://www.mattermost.org/features
http://docs.mattermost.com/install/prod-ubuntu.html
https://hub.docker.com/r/mattermost/platform/
http://www.mattermost.org/webhooks/
https://github.com/mattermost/platform

Installing OwnCloud, self-hosted cloud
storage
OwnCloud is a self-hosted file storage and synchronization service. It provides client
tools to upload and sync all your files to a central storage server. You can access all
your data through a well-designed web interface, which can be accessed on any device
of your choice. In addition to a simple contact service, OwnCloud supports contacts,
email, and calendar synchronization. Plus, all your data is stored on your own server,
making it a more secure option.

In this recipe, we will learn how to install the OwnCloud service on the Ubuntu server.
We will be working with a basic OwnCloud setup that includes file sharing and storage.
Later, you can add separate plugins to extend the capability of your OwnCloud
installation.

https://technet24.ir

Getting ready
You will need access to an account with sudo privileges.

How to do it…
OwnCloud is a PHP-based web application. Its dependencies include a web server,
PHP runtime, and a database server. We will use the installation package provided by
OwnCloud. The package takes care of all dependencies, plus it will help in updating
our installation whenever a new version is available. We will install the latest stable
version of OwnCloud. As of writing this, OwnCloud does not provide any packages for
Ubuntu 16.04. I have used the package for Ubuntu 15.10:

1. Add the OwnCloud repository public key to your Ubuntu server:

$ wget
https://download.owncloud.org/download/repositories/stable/Ubuntu
_15.10/Release.key -O owncloud.key
$ sudo apt-key add - < owncloud.key

2. Next, add the OwnCloud repository to installation sources. Create a new source
list:

$ sudo touch /etc/apt/sources.list.d/owncloud.list

3. Add an installation path to the newly created source list:

$ sudo nano /etc/apt/sources.list.d/owncloud.list
deb
http://download.owncloud.org/download/repositories/stable/Ubuntu_
15.10/ /

4. Update installation sources with the apt-get update command:

$ sudo apt-get update

5. Install the OwnCloud package. This will download and install all dependencies,
download the OwnCloud package, and set up the Apache web server virtual host
configuration. By default, OwnCloud use SQLite as a default database. This can be
changed at the signup page:

$ sudo apt-get install owncloud

6. Once installed, you can access your OwnCloud installation at
http://your_server/owncloud. This will open the registration page for an
admin account. Enter the admin username and password for a new account. The
first user to register will be marked as the admin of the OwnCloud instance.

Note

https://technet24.ir

Your server may return a Not Found error for the preceding URL. In that case, you
need to configure Apache and point it to the OwnCloud setup. Open the default
virtual host file /etc/apache2/sites-available/000-default.conf and
change DocumentRoot to match the following:

DocumentRoot /var/www/owncloud

Reload the Apache server for the changes to take effect. Now you should be able to
access OwnCloud at http://your_server.

The same page contains a warning saying the default database is SQLite. Click the
configure database link; this will show you the option to enter database connection
details. Enter all the required details and click submit.

Once registration completes, you will be redirected to the OwnCloud homepage. If you
need any help, this page contains the OwnCloud user manual. You can start uploading
content or create new text files right from the homepage.

Optionally, install OwnCloud desktop and mobile applications to sync files across all
your devices.

How it works…
OwnCloud is a web application that enables you to synchronize and share files across
the web. Store a backup of all your files on a central OwnCloud server, or use it as a
central place to send and receive files. OwnCloud also provides native applications for
all platforms so that you can easily replicate the necessary data across all your devices.
Once you have logged in to your account, OwnCloud will list the default directory
structure with a PDF file for the user manual. The screen should look similar to the
following:

With the recent updates, OwnCloud has removed various default packages and reduced
the overall binary size. For now, the default installation contains a file browser, an
activity monitor, and a gallery. The file browser supports the uploading, viewing, and
sharing of files. You can create new text files and open PDF files right from the
browser:

https://technet24.ir

Default features can be extended from the Apps submenu accessible from the Files link
at the top, left of the screen. It gives you a list of installed and enabled or disabled apps.
Plus, you can search for apps across categories such as Multimedia, Productivity,
Games, and Tools. Choose your desired category, scroll to the desired app and click
enable to install a new component:

OwnCloud also allows flexible user management. When logged in as an admin user, you
can access the Users menu from the top-right login section of the screen. Under users,
you can create a new user, assign them to a group, create a new group, and even set the
disk quota allowed:

Next is the admin section, which is again accessible to users from the admin group at the
top-right of the screen. This section lists all the administrative settings relating to the
core OwnCloud setup, as well as for installed apps. Each section contains a link to
detailed documentation. The important part of the settings is the email server setup. By
default, OwnCloud uses default PHP-based emails. It is recommended you set up an
SMTP service. You can use external SMTP service providers, such as MailChimp, or
set up your own SMTP server. At the bottom of the admin settings page, you can see
some links to improve your OwnCloud experience. This includes performance tuning
the OwnCloud setup, security guidelines, theme support, and so on.

https://technet24.ir

See also
OwnCloud repositories:
https://download.owncloud.org/download/repositories/stable/owncloud/
OwnCloud admin manual: https://doc.owncloud.org/server/8.2/admin_manual/

https://download.owncloud.org/download/repositories/stable/owncloud/
https://doc.owncloud.org/server/8.2/admin_manual/

Chapter 13. Performance Monitoring
In this chapter, we will cover the following recipes:

Monitoring the CPU
Monitoring memory and swap
Monitoring the network
Monitoring storage
Setting performance benchmarks

https://technet24.ir

Introduction
When starting a new server, we tend to use stock images of the Ubuntu server and
default installation process. The focus is on developing and improving the application
code. The base operating system is not given much attention until we hit some
performance issues. Once you reach the tip of application level optimizations and have
collected all low-hanging fruit, the next obvious target is system monitoring and
resource optimization. In this chapter, we will focus on various performance monitoring
tools. We will learn to use various tools to track down the bottlenecks and then briefly
look at possible solutions.

The chapter is separated in various recipes, and each covers the monitoring of a single
system resource, such as the CPU and memory. At the end of the chapter, we will learn
how to set up a performance baseline and use it to compare different configurations of
system parameters.

Monitoring the CPU
Modern CPUs generally do not become bottlenecks for performance. The processing
power is still far ahead of the data transfer speeds of I/O devices and networks.
Generally, the CPU spends a big part of processing time waiting for synchronous IO to
fetch data from the disk or from a network device. Tracking exact CPU usage is quite a
confusing task. Most of the time, you will find higher CPU use, but in reality, the CPU is
waiting for data to become available.

In this recipe, we will focus on tracking CPU performance. We will look at some
common tools used to get CPU usage details.

https://technet24.ir

Getting ready
You may need sudo privileges to execute some commands.

How to do it…
Let's start with the most commonly used monitoring command that is top command. The
top command shows a summarized view of various resource utilization metrics. This
includes CPU usage, memory and swap utilization, running processes, and their
respective resource consumption, and so on. All metrics are updated at a predefined
interval of three seconds.

Follow these steps to monitor the CPU:

1. To start top, simply type in top in your command prompt and press Enter:

$ top

2. As you can see in the preceding screenshot, a single Python process is using 80%
of CPU time. The CPU is still underutilized, with 58% time in idle processes:

Optionally, you can use the htop command. This is the same process monitor as
top, but a little easier to use, and it provides text graphs for CPU and memory
utilization. You will need to install htop separately:

$ sudo apt-get install htop # one time command
$ htop

https://technet24.ir

3. While top is used to get an overview of all running processes, the command
pidstat can be used to monitor CPU utilization by an individual process or
program. Use the following command to monitor CPU consumed by MySQL (or
any other task name):

$ pidstat -C mysql

4. With pidstat, you can also query statistics for a specific process by its process
ID or PID, as follows:

$ pidstat -p 1134

5. The other useful command is vmstat. This is primarily used to get details on
virtual memory usages but also includes some CPU metrics similar to the top
command:

6. Another command for getting processor statistics is mpstat. This returns the same
statistics as top or vmstat but is limited to CPU statistics. Mpstat is not a part of
the default Ubuntu installation; you need to install the sysstat package to use the
mpstat command:

$ sudo apt-get install sysstat -y

7. By default, mpstat returns combined averaged stats for all CPUs. Flag -P can be
used to get details of specific CPUs. The following command will display
statistics for processor one (0) and processor two (1), and update at an interval of
3 seconds:

$ mpstat -P 0,1 3

8. One more command, sar (System Activity Reporter), gives details of system
performance.

The following command will extract the CPU metrics recorded by sar. Flag -u
will limit details to CPU only and -P will display data for all available CPUs
separately. By default, the sar command will limit the output to CPU details only:

$ sar -u -p ALL

https://technet24.ir

9. To get current CPU utilization using sar, specify the interval, and optionally,
counter values. The following command will output 5 records at an interval of 2
seconds:

$ sar -u 2 5

10. All this data can be stored in a file specified by the (-o) flag. The following
command will create a file named sarReport in your current directory, with
details of CPU utilization:

$ sar -u -o sarReport 3 5

Other options include flag –u, to limit the counter to CPU, and flag A, to get system-wide
counters that include network, disk, interrupts, and many more. Check sar manual (man
sar) to get specific flags for your desired counters.

How it works…
This recipe covers some well known CPU monitoring tools, starting with the very
commonly used command, top, to the background metric logging tool SAR.

In the preceding example, we used top to get a quick summarized view of the current
state of the system. By default, top shows the average CPU usage. It is listed in the third
row of top output. If you have more than one CPU, their usage is combined and
displayed in one single column. You can press 1 when top is running to get details of all
available CPUs. This should expand the CPU row to list all CPUs. The following
screenshot shows two CPUs available on my virtual machine:

The CPU row shows various different categories of CPU utilization, and the following
is a list of their brief descriptions:

us: Time spent in running user space processes. This reflects the CPU consumption
by your application.
sy: Time taken by system processes. A higher number here can indicate too many
processes, and the CPU is spending more time process scheduling.
ni: Time spent with user space processes that are assigned with execution priority
(nice value).
id: Indicates the time spent in idle mode, where the CPU is doing nothing.
wa: Waiting for IO. A higher value here means your CPU is spending too much time
handling IO operations. Try improving IO performance or reducing IO at
application level.
hi/si: Time spent in hardware interrupts or software interrupts.
st: Stolen CPU cycles. The hypervisor assigned these CPU cycles to another
virtual machine. If you see a higher number in this field, try reducing the number of
virtual machines from the host. If you are using a cloud service, try to get a new

https://technet24.ir

server, or change your service provider.

The second metric shown is the process level CPU utilization. This is listed in a tabular
format under the column head, %CPU. This is the percentage of CPU utilization by each
process. By default, the top output is automatically sorted in descending order of CPU
utilization. Processes that are using higher CPU get listed at top. Another column, named
TIME+, displays total CPU time used by each process. Check the processes section on
the screen, which should be similar to the following screenshot:

If you have noticed the processes listed by top you should see that top itself is listed in
the process list. Top is considered as a separate running process and also consumes
CPU cycles.

Note

To get help on the top screen, press H; this will show you various key combinations to
modify top output. For additional details, check out the manual pages with the command,
man top. When you are done with top, press Q, to exit or use the exit combination, Ctrl
+ C.

With top, you can get a list of processes or tasks that are consuming most of the CPU
time. To get more details of these tasks, you can use the command, pidstat. By default,
pidstat shows CPU statistics. It can be used with a process name or process ID (pid).
With pidstat , you can also query memory usages, IO statistics, child processes, and
various other process related details. Check the manual page for pidstat using the
command man pidstat.

Both commands, top as well as pidstat, give a summarized view of CPU utilization.
Top output is refreshed at a specific interval and you cannot extract utilization details
over a specific time period. Here comes the other handy command that is vmstat. When

run without any parameters, vmstat outputs a single line with memory and CPU
utilization, but you can ask vmstat to run infinitely and update the latest metrics at
specific intervals using the delay parameter. All the output lines are preserved and can
be used to compare the system stats for a given period. The following command will
render updated metrics every 5 seconds:

$ vmstat 5

Optionally, specify the count after delay parameter to close vmstat after specific
repetitions. The following command will update the stats 5 times at 1 second intervals
and then exit:

$ vmstat 1 5

The details provided by vmstat are quite useful for real-time monitoring. The tool sar
helps you to store all this data in log files and then extract specific details whenever
needed. Sar collects data from various internal counters maintained by the Linux kernel.
It collects data over a period of time which can be extracted when required. Using sar
without any parameters will show you the data extracted from the previously saved file.
The data is collected in a binary format and is located at the /var/log/sysstat
directory. You may need to enable data collection in the /etc/default/sysstat file.
When the stats collection is enabled, sar automatically collects data every 10 minutes.
Sar is again available from the package sysstat. Along with the sar package, sysstat
combines two utilities: command sa1 to record daily system activity data in a binary
format, and command sa2 to extract that data to a human readable format. All data
collected by sar can be extracted in a human readable format using the sa2 command.
Check the manual pages for both commands to get more details.

https://technet24.ir

There's more…
Similar to sar, one more well-known tool is collectd. It gathers and stores system
statistics, which can later be used to plot graphs.

See also
Get information on your system CPU with the following command:

$ less /proc/cpuinfo

Details on /proc file system: http://tldp.org/LDP/Linux-Filesystem-
Hierarchy/html/proc.html

http://tldp.org/LDP/Linux-Filesystem-Hierarchy/html/proc.html
https://technet24.ir

Monitoring memory and swap
Memory is another important component of system performance. All files and data that
are currently being used are kept in the system main memory for faster access. The CPU
performance also depends on the availability of enough memory. Swap, on the other
hand, is an extension to main memory. Swap is part of persistent storage, such as hard
drives or solid state drives. It is utilized only when the system is low on main memory.

In this chapter, we will learn how to monitor system memory and swap utilization.

Getting ready
You may need sudo privileges for some commands.

https://technet24.ir

How to do it…
In the last recipe, we used commands top and vmstat to monitor CPU utilization. These
commands also provided details of memory usage. Let's start with the top command
again:

1. Run the top command and check for the Mem and Swap rows:

2. The memory line displays the size of total available memory, size of used memory,
free memory, and the memory used for buffers and the file system cache. Similarly,
swap row should display the allocated size of the swap if you have enabled the
swapping. Along with these two lines, top shows per process memory utilization
as well. The columns VIRT, RES, SHR, and %MEM all show different memory
allocation for each process:

3. Similar to the top command, you can query memory statistics for a specific PID or
program by using the pidstat command. By default, pidstat displays only CPU
statistics for a given process. Use flag -r to query memory utilization and page
faults:

$ pidstat -C mysql -r

4. Next, we will go through the vmstat command. This is an abbreviation of virtual
memory statistics. Enter the command vmstat in your console and you should see
output similar to the following screenshot:

Using vmstat without any option returns a single line report of memory, swap, io,
and CPU utilization. Under the memory column, it shows the amount of swap, free
memory, and the memory used for cache and buffers. It also display a separate
swap column with Swap In (si) and Swap Out (so) details.

5. To get detailed statistics of memory and event counters, use flag -s. This should
display a table, as follows:

$ vmstat -s

6. Another handy command is free, which displays the amount of used and available
memory in the system. Use it as follows, with the -h flag to get human-friendly
units:

$ free -h

7. Finally, command sar can give you periodic reports of memory utilization. Simply
enable sar to collect all reports and then extract memory reports from it or set a

https://technet24.ir

specific command to log only memory and swap details.
8. Finally, use sar to monitor current memory and swap utilizations. The following

command will query the current memory (-r) and swap (-S) utilization:

$ sar -rS 1 5

9. For more details on using sar, check Monitoring the CPU recipe or read the
manual pages using the man sar command. The command sar is available in the
package sysstat; you will need to install it separately if not already installed.

10. All these tools show process-level memory statistics. If you are interested in
memory allocation inside a particular process, then the command pmap can help
you. It reports the memory mapping of a process, including details of any shared
libraries in use and any program extensions with their respective memory
consumptions. Use pmap along with the PID you want to monitor as follows:

$ sudo pmap -x 1322

Note

All information displayed by pmap is read from a file named maps located in the
/proc/ file system. You can directly read the file as follows:

$ sudo cat /proc/1322/maps

How it works…
System memory is the primary storage for processes in execution. It is the fastest
available storage medium, but is volatile and limited in storage space. The limited
storage is generally extended with the help of slower, disk-based Swap files. Processes
that are not being actively executed are swapped to disk so that active processes get
more space in the faster main memory. Similar to other operating systems, Ubuntu
provides various tools to monitor system-wide memory utilization as well as memory
uses by process. Commonly used tools include top, vmstat, and free.

We have used the top command to monitor CPU uses and know that top provides a
summarized view of system resource utilization. Along with a CPU summary, top also
provides the memory statistics. This includes overall memory utilization plus per
process usage. The summary section in the top output displays the total available and
used memory. It also contains a separate row for swap. By default, all Ubuntu systems
enable the swap partition with nearly the same size as main memory. Some cloud
service providers disable the cache for performance reasons.

The details section of top shows per process memory usage separated into multiple
columns:

Column VIRT shows the virtual memory assigned to a task or process; this includes
memory assigned for program code, data, and shared libraries, plus memory that is
assigned but not used.
Column RES shows the non-swapped physical memory used by processes. Whereas
column SHR shows the amount of shared memory, this is the memory that can be
shared with other processes through shared libraries.
The column %MEM shows the percentage of main memory assigned to a specific
process. This is a percentage of RES memory available to task out of total
available memory.
By default, all memory values are shown in the lowest units, KB. This can be
changed using the key combination, Shift + E for summary rows and E for process
columns.

Similar to top, the command ps lists running processes but without refreshing the list.
Without any options, ps shows the list of processes owned by the current user. Use it as
follows to get a list of all running processes:

$ ps aux

https://technet24.ir

Tip

Sometimes it is useful to monitor a specific process over a period of time. Top shows
you a list of all running processes and ps gives you a one-time list. The following
command will help you monitor a single program within top:

$ top -p $(pgrep process-name | head -20 | tr "\\n" "," | sed
's/,$//')

The command vmstat gives you overall detail regarding memory and swap utilization.
The memory column shows the amount of available memory. Next to the memory
column, the swap column indicates the amount of memory read from disk (si) or written
to disk (so) per second. Any activity in the si and so columns indicates active swap
utilization. In that case, you should either increase the physical memory of the system or
reduce the number of processes running. Large numbers under the swap column may
also indicate higher CPU utilization, where the CPU waits for IO operations (wa) to
complete. As seen before, you can specify the delay and interval options to repeatedly
query vmstat reports.

One more command, named free, shows the current state of system memory. This
shows overall memory utilization in the first row and swap utilization in the second
row. You may get confused by looking at the lower values in the free column and
assume higher memory uses. Part of free memory is being used by Linux to improve file
system performance by caching frequently used files. The memory used for file caching
is reflected in the buff/cache column and is available to other programs when
required. Check the last column, named available, for the actual free memory.

Note

If you are on Ubuntu 14.04 or lower, the output of the free command will contain three
rows, with overall memory utilization in the first row, actual memory utilization with
cache and buffer adjustments in the second, and swap listed in the third row.

The second row of free output displays the swap utilization. You may see swap being
used under the used column. This is the amount of swap allocated but not effectively
used. To check if your system is effectively swapping, use the command vmstat 1 and
monitor si/so columns for any swap activity.

System swapping behavior also depends on the value of the kernel parameter named
vm.swappiness. Its value can range between 0 to 100, where 0 configures the kernel to

avoid swapping as much as possible and 100 sets it to swap aggressively. You can read
the current swappiness value using the following command:

$ sudo sysctl vm.swappiness
vm.swappiness = 60

To modify the swappiness value for the current session, use the sysctl command with
a new value, as follows. It is a good idea to use lower values and avoid swapping as
much as possible:

$ sudo sysctl vm.swappiness=10
vm.swappiness = 10

To permanently set swappiness, you need to edit the /etc/sysctl.conf file and add
or uncomment vm.swappiness=10 to it. Once the file is updated, use the following
command to read and set a new value from the configuration file:

$ sudo sysctl -p

Check the swapon and swapoff commands if you need to enable swapping or disable it.

https://technet24.ir

There's more…
Most of these statistics are read from the /proc partition. The two main files listing
details of memory and swap are /proc/meminfo and /proc/swaps.

The command lshw (list hardware) can give you the details of actual hardware. This
includes the physical memory configuration, the firmware version, CPU details, such as
clock speed, the cache, and various other hardware information. Use lshw as follows:

$ sudo lshw

See also
Check the swapon and swapoff commands to enable or disable swap files:

$ man swapon
$ man swapoff

https://technet24.ir

Monitoring the network
When we are talking about a server, its network is the most important resource.
Especially in the cloud network, when it is the only communication channel to access
the server and connect with other servers in the network. The network comes under an
Input/Output device category. Networks are generally slow in performance and are an
unreliable communication channel. You may lose some data while in transit, data may
be exposed to external entities, or a malicious guy can update original data before it
reaches you.

The Ubuntu server, as well as Linux in general, provides tons of utilities to ease
network monitoring and administration. This recipe covers some inbuilt tools to monitor
network traffic and its performance. We will also look at a few additional tools that are
worth a space on your system.

Getting ready
Some commands may need sudo access.

You may need to install a few tools.

https://technet24.ir

How to do it…
1. We will start with a commonly used command, that is, ifconfig. We mostly use

this command to read the network configuration details such as the IP address.
When called without any parameters, ifconfig displays details of all active
network interfaces as follows:

2. These details contain the IP address assigned to each network interface, its
hardware address, the maximum packet size (MTU) and basic statistics of
received (RX) and transmitted (TX) packets, and the count of errors or dropped
packets, and so on.

3. If you are only interested in quick network statistics, use ifconfig with flag -s, as
follows:

4. If you do not see a specific network interface listed in the active list, then query for
all available interfaces with the -a option to ifconfig.

5. Another commonly used command is ping. It sends ICMP requests to a specified
host and waits for the reply. If you query for a host name, ping will get its IP
address from DNS. This also gives you confirmation that the DNS is working
properly. Ping also gives you the latency of your network interface. Check for the
time values in the output of the ping command:

6. Next, comes netstat. It is mainly used to check network connections and routing
tables on the system. The commonly used syntax is as follows:

$ sudo netstat -plutn

7. The preceding command should list all TCP (-t) / UDP (-u) connections, plus any
ports that are actively listening (-l) for connection. The flag, -p, queries the
program name responsible for a specified connection. Note that flag -p requires
sudo privileges. Also check flag -a to get all listening as well as non-listening
sockets, or query the routing table information with flag -r as follows:

$ netstat -r

8. You can also get protocol level network statistics using the netstat command as

https://technet24.ir

follows:

$ netstat -s

9. One more utility very similar to netstat is ss. It displays detailed TCP socket
information. Use ss without any parameters to get a list of all the sockets with a
state established.

10. Another command, lsof, gives you a list of all open files. It includes the files used
for network connections or sockets. Use with flag -i to list all network files, as
follows:

$ sudo lsof -i

11. To filter output, use flag -s with protocol and state as filter options:

$ sudo lsof -iTCP -sTCP:LISTEN

12. Next, we will look at a well-known tool, tcpdump. It collects network traffic and
displays it to a standard output or dump in a file system. You can dump the content
of the packets for any network interface. When no interface is specified, tcpdump
defaults to the first configured interface, which is generally eth0. Use it as follows
to get a description of packets exchanged over eth0:

$ sudo tcpdump -i eth0

13. To log raw packets to a file, use flag -w. These logged packets can later be read
with the -r flag. The following command will log 100 packets from the interface
eth0 to the file tcpdump.log:

$ sudo tcpdump -i eth0 -w tcpdump.log -c 100
$ tcpdump -r tcpdump.log

14. Next, to get statistics of network traffic, use the command sar. We have already
used sar to get CPU and memory statistics. To simply extract all network statistics,
use sar as follows:

$ sar -n ALL 1 5

15. This will log all network statistics at an interval of 1 second. You can also enable
periodic logging in the file /etc/default/sysstat. For network specific usage
of sar, check flag -n in the man pages.

16. There is one more utility named collectl which is similar to sar. In the same
way as sar, you will need to separately install this command as well:

$ sudo apt-get install collectl

17. Once installed, use collectl with the -s flag and value sn to get statistics about
the network. Using it without any parameters gives you statistics for the CPU, disk,
and network:

https://technet24.ir

How it works…
This recipe covers various network monitoring commands including the commonly used
ifconfig and ping, netstat, tcpdump, and collectl.

If you have been working with Linux systems for a while, you should have already used
the basic network commands, ifconfig and ping. Ifconfig is commonly used to read
network configuration and get details of network interfaces. Apart from its basic use,
ifconfig can also be used to configure the network interface. See Chapter 2,
Networking, to get more details on network configuration. With netstat, you can get a
list of all network sockets and their respective processes using those socket
connections. With various parameters, you can easily separate active or listening
connections and even separate connections with the protocol being used by the socket.
Additionally, netstat provides details of routing table information and network
statistics as well. The command ss provides similar details to netstat and adds some
more information. You can use ss to get memory usages of socket (-m) and the process
using that particular socket (-p). It also provides various filtering options to get the
desired output. Check the manual pages of ss with the command, man ss.

https://technet24.ir

There's more…
Following are some more commands that can be useful when monitoring network data.
With a limit on page count, it is not possible to cover them all, so I am simply listing the
relevant commands:

Tip

Many of these commands need to be installed separately. Simply type in the command if
it's not available, and Ubuntu will help you with a command to install the respective
package.

nethogs: Monitors per process bandwidth utilization
ntop / iftop: Top for network monitoring
iptraf: Monitors network interface activity
vnstat: Network traffic monitoring with logging
ethtool: Queries and configures network interfaces
nicstat / ifstat / nstat: Network interface statistics
tracepath: Traces a network route to destination host

Monitoring storage
Storage is one of the slowest components in a server's system, but is still the most
important component. Storage is mainly used as a persistence mechanism to store a
large amount of processed/unprocessed data. A slow storage device generally results in
heavy utilization of read write buffers and higher memory consumption. You will see
higher CPU usage, but most of the CPU time is spent waiting for I/O requests.

The recent developments of the flash storage medium have vastly improved storage
performance. Still, it's one of the slowest performing components and needs proper
planning— I/O planning in the application code, plus enough main memory for read
write buffers.

In this recipe, we will learn to monitor storage performance. The main focus will be on
local storage devices rather than network storage.

https://technet24.ir

Getting ready
As always, you will need sudo access for some commands.

Some of the commands many not be available by default. Using them will prompt you if
the command is not available, along with the process necessary to install the required
package.

Install the sysstat package as follows. We have already used it in previous recipes:

$ sudo apt get install sysstat

How to do it…
1. The first command we will look at is vmstat. Using vmstat without any option

displays an io column with two sub entries: bytes in (bi) and bytes out (bo). Bytes
in represents the number of bytes read in per second from the disk and bytes out
represents the bytes written to the disk:

2. Vmstat also provides two flags, -d and -D, to get disk statistics. Flag -d displays
disk statistics and flag -D displays a summary view of disk activity:

3. There's one more option, -p, that displays partition-specific disk statistics. Use the
command lsblk to get a list of available partitions and then use the vmstat -p
partition:

4. Another command, dstat, is a nice replacement for vmstat, especially for disk
statistics reporting. Use it with flag -d to get disk read writes per seconds. If you

https://technet24.ir

have multiple disks, you can use dstat to list their stats separately:

$ dstat -d -D total,sda

5. Next, we will look at the command iostat. When used without any options, this
command displays basic CPU utilization, along with read write statistics for each
storage device:

6. The column tps specifies the I/O requests sent to a device per second, and
kb_read/s and kb_wrtn/s specifies per second blocks read and blocks written
respectively. kb_read and kb_wrtn shows the total number of blocks read and
written.

7. Some common options for iostat include –d, that displays disk only statistics, -g
that displays statistics for a group of devices, flag -p to display partition specific
stats, and -x to get extended statistics. Do not forget to check the manual entries for
iostat to get more details.

8. You can also use the command iotop, which is very similar to the top command
but it displays disk utilization and relevant processes.

9. The command lsof can display the list of all open files and respective processes
using that file. Use lsof with the process name to get files opened by that process:

$ lsof -c sshd

10. To get a list of files opened by a specific pid, use the following command: $ lsof

-p 1134. Or, to get a list of files opened by a specific user, use the $ lsof -u
ubuntu command.

All these commands provide details on the read write performance of a storage
device. Another important detail to know is the availability of free space. To get
details of space utilization, you can use command df -h. This will list a partition-
level summary of disk space utilization:

11. Finally, you can use the sar command to track disk performance over a period of
time. To get real-time disk activity, use sar with the -d option, as follows:

$ sar -d 1

12. Use flag -F to get details on file system utilization and flag -S to display swap
utilization. You can also enable sar logging and then extract details from those logs.
Check the previous recipes in this chapter for how to enable sar logging. Also
check manual entries for sar to get details of various options.

https://technet24.ir

Setting performance benchmarks
Until now, in this chapter we have learned about various performance monitoring tools
and commands. This recipe covers a well-known performance benchmarking tool:
Sysbench. The purpose of performance benchmarking is to get a sense of system
configuration and the resulting performance. Sysbench is generally used to evaluate the
performance of heavy load systems. If you read the Sysbench introduction, it says that
Sysbench is a benchmarking tool to evaluate a system running database under intensive
load. It is also being used as a tool to evaluate the performance of multiple cloud
service providers.

The current version of Sysbench supports various benchmark tests including CPU,
memory, IO system, and OLTP systems. We will primarily focus on CPU, memory, and
IO benchmarks.

Getting ready
Before using Sysbench, we will need to install it. Sysbench is available in the Ubuntu
package repository with a little older (0.4.12) version. We will use the latest version
(0.5) from Percona Systems, available in their repo.

To install Sysbench from the Percona repo, we need to add the repo to our installation
sources. Following are the entries for Ubuntu 14.04 (trusty). Create a new file under
/etc/apt/source.list.d and add the following lines to it:

$ sudo vi /etc/apt/sources.list.d/percona.list
deb http://repo.percona.com/apt trusty main
deb-src http://repo.percona.com/apt trusty main

Next, add the PGP key for the preceding repo:

$ sudo apt-key adv --keyserver keys.gnupg.net --recv-keys
1C4CBDCDCD2EFD2A

Now we are ready to install the latest version of Sysbench from the Percona repo.
Remember to update the apt cache before installation:

$ sudo apt-get update
$ sudo apt-get install sysbench

Once installed, you can check the installed version with the --version flag to
sysbench:

$ sysbench --version
sysbench 0.5

https://technet24.ir

How to do it…
Now that we have Sysbench installed, let's start with performance testing our system:

1. Sysbench provides a prime number generation test for CPU. You can set the
number of primes to be generated with the option --cpu-max-prime. Also set the
limit on threads with the --num-threads option. Set the number of threads equal
to the amount of CPU cores available:

$ sysbench --test=cpu --num-threads=4 \
--cpu-max-prime=20000 run

2. The test should show output similar to the following screenshot:

3. Following are the extracted parts of the result from multiple tests with a different
thread count on a system with a dual core CPU. It is clear that using two threads
give better results:

Threads 1 2 3 4

Total time 33.0697s 15.4335s 15.6258s 15.7778s

4. Next, we will run a test for main memory. The memory tests provides multiple
options, such as block-size, total data transfer, type of memory operations, and
access modes. Use the following command to run memory tests:

$ sysbench --test=memory --memory-block-size=1M \
--num-threads=2 \
--memory-total-size=100G --memory-oper=read run

5. Following is part of the output from the memory test:

6. If you have enabled huge page support, set the memory test support allocation from
the huge page pool with the parameter, --memory-hugetlb. By default, it's set to
off.

7. Next comes the storage performance test. This test also provides you with a
number of options to test disk read write speeds. Depending on your requirements,
you can set parameters like block-size, random or sequential read writes,
synchronous or asynchronous IO operations, and many more.

8. For the fileio test we need a few sample files to test with. Use the
sysbenchprepare command to create test files. Make sure to set a total file size
greater than the size of memory to avoid caching effects. I am using a small
1GBnode with 20G disk space, so I am using 15 files of 1G each:

$ sysbench --test=fileio --file-total-size=15G \
--file-num=15 prepare

9. Once the test preparation is complete, you can run the fileio test with different
options, depending on what you want to test. The following command will perform

https://technet24.ir

random write operations for 60 seconds:

$ sysbench --test=fileio --file-total-size=15G \
--file-test-mode=rndwr --max-time=60 \
--file-block-size=4K --file-num=15 --num-threads=1 run

10. To perform random read operations, change --file-test-mode to rndrd, or to
perform sequential read operations, use seqrd. You can also combine read write
operations with rndrw or seqrewr. Check the help menu for more options.

Tip

To get a full list of available options, enter the sysbench command without any
parameter. You can also query details of a specific test with sysbench --test=
<name> help. For example, to get help with I/O tests, use:

$ sysbench --test=fileio help

11. When you are done with the fileio test, execute the cleanup command to delete
all sample files:

$ sysbench --test=fileio cleanup

12. Once you have gathered various performance details, you can try updating various
performance tuning parameters to boost performance. Make sure you repeat related
tests after each change in parameter. Comparing results from multiple tests will
help you to choose the required combination for best performance and a stable
system.

There's more…
Sysbench also supports testing MySQL performance with various tests. In the same way
as the fileio test, Sysbench takes care of setting a test environment by creating tables
with data. When using Sysbench from the Percona repo, all OLTP test scripts are
located at /usr/share/doc/sysbench/tests/db/. You will need to specify the full
path when using these scripts. For example:

$ sysbench --test=oltp

The preceding command will change to the following:

$ sysbench --test=/usr/share/doc/sysbench/tests/db/ol1tp.lua

Graphing tools

Sysbench output can be hard to analyze and compare, especially with multiple runs.
This is where graphs come in handy. You can try to set up your own graphing
mechanism, or simply use prebuilt scripts to create graphs for you. A quick Google
search gave me two good, looking options:

A Python script to extract data from Sysbench logs:
https://github.com/tsuna/sysbench-tools
A shell script to extract Sysbench data to a CSV file, which can be converted to
graphs: http://openlife.cc/blogs/2011/august/one-liner-condensing-sysbench-
output-csv-file

More options

There are various other performance testing frameworks available. Phoronix Test Suite,
Unixbench, and Perfkit by Google are some popular names. Phoronix Test Suite focuses
on hardware performance and provides a wide range of performance analysis options,
whereas Unixbench provides an option to test various Linux systems. Google open-
sourced their performance toolkit with a benchmarker and explorer to evaluate various
cloud systems.

https://github.com/tsuna/sysbench-tools
http://openlife.cc/blogs/2011/august/one-liner-condensing-sysbench-output-csv-file
https://technet24.ir

See also
Get more details on benchmarking with Sysbench at
https://wiki.mikejung.biz/Benchmarking
Sysbench documentation at http://imysql.com/wp-
content/uploads/2014/10/sysbench-manual.pdf
A sample script to run batch run multiple Sysbench tests at
https://gist.github.com/chetan/712484
Sysbench GitHub repo at https://github.com/akopytov/sysbench
Linux performance analysis in 60 seconds. A good read for what to check when
you are debugging a performance issue at
http://techblog.netflix.com/2015/11/linux-performance-analysis-in-60s.html

https://wiki.mikejung.biz/Benchmarking
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
https://gist.github.com/chetan/712484
https://github.com/akopytov/sysbench
http://techblog.netflix.com/2015/11/linux-performance-analysis-in-60s.html

Chapter 14. Centralized Authentication
Service
In this chapter, we will cover the following recipes:

Installing OpenLDAP
Installing phpLDAPadmin
Ubuntu server logins with LDAP
Authenticating Ejabberd users with LDAP

https://technet24.ir

Introduction
When you have a large user base using multiple services across the organization, a
centralized authentication service becomes a need rather than a luxury. It becomes
necessary to quickly add new user accounts across multiple services when a new user
comes in, and deactivate the respective access tokens when a user leaves the
organization. A centralized authentication service enables you to quickly respond by
updating the user database on a single central server.

Various different services are available to set up centralized authentication. In this
chapter, we will learn how to set up a centralized authentication service using a
Lightweight Directory access Protocol (LDAP). A directory is a special database
designed specifically for high volume lookups. LDAP directories are tree-based data
structures, also known as Directory Information Trees (DIT). Each node in a tree
contains a unique entry with its own set of attributes.

LDAP is specifically designed for high volume read systems with limited write
activities. These directories are commonly used for storing details of users with their
respective access control lists. Some examples include shared address books, shared
calendar services, centralized authentication for systems such as Samba, and storage
DNS systems. LDAP provides lightweight access to the directory services over the
TCP/IP stack. It is similar to the X.500 OSI directory service, but with limited features
and limited resource requirements. For more details on LDAP, check out the OpenLDAP
admin guide at http://www.openldap.org/doc/admin24/intro.html.

http://www.openldap.org/doc/admin24/intro.html

Installing OpenLDAP
This recipe covers the installation and initial configuration of LDAP. The Ubuntu
package repository makes the installation easy by providing the required packages for
the LDAP service.

https://technet24.ir

Getting ready
You will need access to a root account or an account with sudo privileges.

How to do it…
Let's start with installing the LDAP package and helper utilities:

1. Update your repository using the apt-get update command and then install the
OpenLDAP package, slapd:

$ sudo apt-get update
$ sudo apt-get install slapd ldap-utils

2. You will be asked to enter the admin password and to confirm it.
3. The installation process simply installs the package without any configuration. We

need to start the actual configuration process with the reconfiguration of the slapd
package. Use the following command to start the re-configuration process:

$ sudo dpkg-reconfigure slapd

4. This command will ask you a series of questions including the domain name, admin
account, password, database type, and others. Match your answers as follows:

Omit LDAP server configuration – NO.
DNS Domain name – Enter your domain name. You can use any domain name.
For this setup, I will be using example.com. This domain name will
determine the top structure of your directory:

Organization name – Enter your organization name. I am using example as my
organization.
Admin password – Enter a password for the admin account. It can be the
same as the one entered during installation, or a totally different one. Make
sure you note this password as it will be used to access the admin account.
Database backend – HDB

https://technet24.ir

Remove the database when slapd is purged - this is about removing the
database in case you uninstall the slapd package. Choose NO as you don't
want the database to be deleted:
Move old database - YES
Allow the LDAPv2 protocol - unless you are planning to use some old tools,
choose NO:

5. Once you have answered all the questions, the process will reconfigure the LDAP
service. Now your LDAP service is installed and ready to use:

6. Now you can use utility commands to query existing data. To test whether the
LDAP service is installed and running properly, use the ldapsearch -x command.
You should see output similar to following screenshot:

7. Use ldapsearch as follows to query our newly added domain, example.com:

$ ldapsearch -x -LLL -H ldap:/// -b dc=example,dc=com dn

8. The following command will query the default content for example.com:

$ ldapsearch -x -LLL -b dc=example,dc=com

The ldap-utils package also provides more commands to configure the LDAP

https://technet24.ir

service, but it is quite a lengthy and complex task. In the next recipe, we will learn how
to set up a web-based admin interface that make things a little easier.

How it works…
With the respective packages available in the Ubuntu package repository, installing
OpenLDAP is quite an easy task. All we have to do is install the required binaries and
then configure the LDAP system to serve our desired domain. We have installed two
packages: one is slapd, the LDAP daemon, and the other is ldap-utils, which
provides various commands to work with the LDAP daemon. After installation is
complete, we have re-configured LDAP to match our required directory setup. We have
chosen to go with LDAPv3 API and disabled LDAPv2. If you have any older systems
working with LDAPv2, then you will need to enable support for old APIs.

https://technet24.ir

See also
Open LDAP admin guide at http://www.openldap.org/doc/admin24/intro.html
Ubuntu OpenLDAP guide at https://help.ubuntu.com/lts/serverguide/openldap-
server.html
LDAP protocol RFC at http://www.rfc-editor.org/rfc/rfc2251.txt
LDAP protocol technical details at http://www.rfc-editor.org/rfc/rfc3377.txt
Get more help with LDAP configuration using the man ldap.conf command.

http://www.openldap.org/doc/admin24/intro.html
https://help.ubuntu.com/lts/serverguide/openldap-server.html
http://www.rfc-editor.org/rfc/rfc2251.txt
http://www.rfc-editor.org/rfc/rfc3377.txt

Installing phpLDAPadmin
In the previous recipe, we installed the LDAP service, but working with LDAP using the
command line interface is quite a complex and lengthy task. This recipe covers the
installation of a user interface, phpLDAPadmin. The phpldapadmin package provides
an easy-to-use web-based user interface for the LDAP service.

https://technet24.ir

Getting ready
Make sure that you have the LDAP service installed and running.

How to do it…
Follow these steps to install phpLDAPadmin:

1. The Ubuntu package repository makes things easy again by providing the package
for phpLDAPadmin. The web interface can be quickly installed in a single
command as follows:

$ sudo apt-get install phpldapadmin

2. The installation process takes care of installing all dependencies including PHP
and the Apache web server. It also creates necessary configurations and sets up
Apache with the required settings for phpLDAPadmin. Once installation is
complete, you can access the admin interface at
http://youServerIP/phpldapadmin.

3. Before we access the admin page, let's make some small changes in the
configuration file. The file is located at /etc/phpldapadmin/config.php. By
default, phpLDAPadmin shows warning messages for unused template files. These
warning messages get shown in the main interface before the actual content. To
hide them, search for hide_template_warning in the configuration file and set it
to true. You will also need to uncomment the same line:

$config->custom->appearance['hide_template_warning'] = true;

4. The other settings should have already been set by the installation process. You can
cross-check the following settings:

$servers->setValue('server','host','127.0.0.1');
$servers->setValue(
 'login','bind_id',
 'cn=admin,dc=example,
 dc=com'
);
$servers->setValue(
 'server','base',array('dc=example,dc=com')
);

5. Once you are done with the configuration file changes, save and close it and then
access the admin interface through your browser:

https://technet24.ir

6. Click on the login link on the left of the page to get the login dialogue box. The
username (Login DN) field is already filled with details for the admin account.
Make sure the details match the domain you have set up. Enter the password for the
admin account and click the Authenticate button:

Note

You can also log in as an anonymous user. In the login box, do not enter a
password, click to check the Anonymous checkbox, and then click the
Authenticate button. This gives you a read-only view, which is quite useful when
you just need to verify some details.

7. You should have noticed the warning on the login box saying the connection is
unencrypted. This is just a reminder that you are using the admin console over a
non-HTTPs connection. You can set up Apache with SSL certificates to get an
encrypted, secure connection with your LDAP server. Check Chapter 3, Working
with Web Servers, for more details on how to set up SSL certificates on the
Apache web server.

8. Once you log in to phpLDAPadmin, you can see the domain listed in the left-hand
side menu. Click on the domain link to view its details.

9. Next, click on the small plus link (+) to expand the domain link and see its
children. With the default settings, it should show only the admin account:

10. Along with the link for the admin account, you will see an option to create a new
entry. Clicking on this link will show you a list of templates for the new entry:

Note

While clicking on some of these templates, for example Generic: User Account, you
may notice a PHP error saying Error trying to get non-existent value. The
form rendering fails and you cannot see the complete form the with submit button. This

https://technet24.ir

is a small bug and can be fixed with a small edit.

Open /usr/share/phpldapadmin/lib/TemplateRender.php.

Search for the following line:

$default = $this->getServer()
->getValue('appearance','password_hash');

Now update the preceding command as follows:

$default = $this->getServer()
->getValue('appearance','password_hash_custom');

Now you are ready to create groups and respective user accounts on your LDAP server.

How it works…
In this recipe, we have installed a web-based administration console for the LDAP
server. The ldap-utils package provides various commands to work with the LDAP
server, but it is quite a complex and lengthy task. A graphical user interface gives you a
better listing of all options and existing configurations, making things a little easier.

The phpLDAPadmin package is a PHP/Apache-based web application that provides a
graphical interface for the LDAP server. It displays all options and configurations in an
easy-to-use graphical format and passes all user actions to LDAP APIs.

https://technet24.ir

There's more…
Apache directory studio is another user interface for LDAP administration. It is a
desktop application based on Java. You can get more details at
https://directory.apache.org/studio/.

https://directory.apache.org/studio/

See also
A StackOverflow answer for the phpLDAPadmin error message at
http://stackoverflow.com/a/21195761/1012809

http://stackoverflow.com/a/21195761/1012809
https://technet24.ir

Ubuntu server logins with LDAP
So, we have installed and configured our own centralized auth server with LDAP. Now
is the time to use LDAP to authenticate client logins. In this recipe, we will set up a
separate Ubuntu server to use our LDAP server for authenticating users.

Getting ready
You will need a new Ubuntu server to be set as an LDAP client. Also, sudo privileges
are needed for the initial setup.

Make sure you have followed the previous recipes and have set up your LDAP server.

https://technet24.ir

How to do it…
1. We will need to install the LDAP client-side package on the client system. This

package will install all the required tools to authenticate with the remote LDAP
server:

$ sudo apt-get update
$ sudo apt-get install ldap-auth-client nscd

2. The installation process will ask you some questions regarding your LDAP server
and its authentication details. Answer those questions as follows:

LDAP server URI: ldap://you-LDAP-server-IP: Make sure you change
the protocol line from ldapi:/// to ldap://
Distinguished name of search base: Match this to the domain set on the
LDAP server in the format dc=example,dc=com
LDAP version to use: 3
Make local root database admin: Yes
Does LDAP database require login: No
LDAP account for root: cn=admin,dc=example,dc=com
LDAP root account password: The password for the LDAP admin account

3. Next, we need to change the authentication configuration to check with the LDAP
server. First, run the following command to set the name service switch file
/etc/nsswitch.conf:

$ sudo auth-client-config -t nss -p lac_ldap

4. This will change /etc/nsswitch.conf as follows:

5. Next, add the following line to /etc/pam.d/common-session. This will create a
local home directory for LDAP users. Edit the common-session file and add the
following line at the end of the file:

session required pam_mkhomedir.so umask=0022
skel=/etc/skel

6. Now restart the nscd service with the following command:

$ sudo /etc/init.d/nscd restart

Now you should be able to log in with the user account created on your LDAP
server. I have set up an Organizational Unit (OU) named users and created an
admin user under it:

7. Next, change the login to the newly created LDAP user account with the su
username command. You will need to enter a password that is configured on
LDAP server. As this is a first-time login for this new user, our PAM settings have
created a new home directory for him:

This new user is a member of the admin group on the LDAP server, so he will get sudo
privileges on the local server as well.

You can always use a default login prompt to log in with LDAP users, as well as local
user accounts that already exist on the server.

https://technet24.ir

How it works…
Here we have configured the Ubuntu server to authenticate with our centralized LDAP
system. This is not limited to the Ubuntu server and you can configure the Ubuntu
desktop in a similar way as well. Using a centralized authentication makes it easy to
administer hundreds of user accounts from a single place. A user can still log in as a
local user if he has any local credentials.

Using centralized authentication enables you to log in from any system. You will get the
same access rights and permissions from any terminal. Additionally, if the LDAP
configuration supports roaming profiles then all your data will be replicated to any new
system you log in from. You may have noticed the home directory for the LDAP user
account is located in the /home/users directory and not in /home. This separates your
account from any local users.

Finally, the groups and roles configured on the LDAP server also apply on the system
you are logging in from. So, if the user is assigned admin rights on the LDAP server, he
will get admin rights, including sudo privileges, on the system he is logged in from.
This is because Ubuntu contains a default group named admin with sudo privileges.
When a user logs in with his LDAP account, the groups and roles assigned to his LDAP
account are matched with local groups and roles. You can either disable such groups
from any remote systems, or set the proper access rights on the LDAP server itself.

See also
The Ubuntu community page for LDAP client authentication at
https://help.ubuntu.com/community/LDAPClientAuthentication

https://help.ubuntu.com/community/LDAPClientAuthentication
https://technet24.ir

Authenticating Ejabberd users with
LDAP
In this recipe, we will learn to set up the Ejabberd server to authenticate the user with
our LDAP server. Until now, we have set up the LDAP server and used it to log in to the
Ubuntu server with a user account created on the LDAP server. This recipe covers the
configuration of an external service to work with our LDAP installation.

The Ejabberd server provides built-in support for LDAP-based authentication. You can
use LDAP for user authentication as well as vCard storage. As stated in the Ejabberd
admin guide, Ejabberd use LDAP as a read-only data source. We cannot create new user
accounts in the LDAP directory, but we can change passwords if the mod_register
module is enabled.

Getting ready
You will need the Ejabberd service installed and running. Go through Chapter 10,
Communication Server with XMPP, for details on the installation and configuration of
the Ejabberd server.

Create a user account on the LDAP server to be used with Ejabberd.

https://technet24.ir

How to do it…
As Ejabberd provides inbuilt support for LDAP-based authentication, we simply need
to edit configurations and set the auth method to LDAP. If you have used a Debian
package for the Ejabberd installation, your Ejabberd should be installed in
/opt/ejabberd-version directory and the configuration can be found at
/etc/ejabberd-version/conf. If you have installed Ejabberd from source, all
configuration files are located in the /etc/ejabberd directory:

1. Open ejabberd.yml from your Ejabberd configuration directory and search for
Authentication. With the default settings, it should contain the following line
indicating internal authentication:

auth_method: internal

2. Comment out that line by changing it as follows:

auth_method: internal

3. Next, find Authentication using LDAP. This section contains a few parameters and
configures communication with the LDAP server. Search and update the following
parameters:

ldap_servers:
 - "domain/IP of LDAP server"
ldap_port: 389
ldap_rootdn: "cn=admin,dc=example,dc=com"
ldap_password: "password"
ldap_base: "ou=ejabberd,dc=example,dc=com"

I have used a default admin account to authenticate with the LDAP server itself. In
a production environment, you should change it to a different account. With a
default LDAP setup, you can skip the ldap_rootdn and ldap_password settings
to enable anonymous connection.

4. Next, under the ldap_base parameter, I have restricted users to the Organizational
Unit named Ejabberd. Only the user accounts that are configured under the
Ejabberd unit can log in with the Ejabberd server.

5. Now, save the configuration file changes and close the file, and then restart the
Ejabberd server with the following command:

$ sudo /opt/ejabberd-version/bin/ejabberdctl restart

6. If the server fails to restart, check the log files for any configuration errors.

Alternatively, you can use the reload_config option to ejabberdctl to update
the in-memory configuration without restarting:

$ sudo /opt/ejabberd-version/bin/ejabberdctl reload_config

7. Once the server has started, you can log in with your LDAP accounts. You will
need a JID to log in with Ejabberd, which is a combination of a UID from the
LDAP server and any host configured on Ejabberd, for instance,
uday@cookbook.com, where uday is the UID on LDAP and cookbook.com is the
host served by Ejabberd server. The domain entries on the LDAP server and
Ejabberd need not match.

The following is the default host entry for my Ejabberd installation:

8. Now you can log in to Ejabberd with your LDAP username. Here is the account set
up in my chat client with the JID uday@ubuntu, where uday is my LDAP user and
ubuntu is the Ejabberd host:

Once all things are set up, you should be able to connect to the Ejabberd server using
your LDAP user account.

https://technet24.ir

How it works…
Here, we have set up Ejabberd as an example of LDAP-based authentication. Similar to
Ejabberd, various other systems support centralized authentication through LDAP with
either built-in support or with a plug-in module. Make sure that you create a proper
directory structure with organizational units, roles, and separate users in proper groups.
Also use a separate user account for authenticating with the LDAP server itself. You
need to set the respective LDAP credentials in the Ejabberd configuration file. If
somehow your Ejabberd server gets compromised, then the LDAP server credentials
are readily available to an attacker. To limit the risk, using separate and limited
accounts is a good idea. Ejabberd also supports anonymous authentication with the
LDAP server and mostly uses it as a read-only database. So, even if you skip the
authentication details (depending on the LDAP configuration), Ejabberd should work
well and authenticate your users.

Ejabberd also provides good enough debug logging, where you can see the actual
communication with the LDAP server. You will need to set logging to debug mode in the
Ejabberd configuration. The log files are located in the /opt/ejabberd-
version/logs directory or the /var/log/ejabberd directory, depending on the
source of the Ejabberd installation.

See also
Ejabberd docs LDAP section at https://www.process-
one.net/docs/ejabberd/guide_en.html#ldap

https://www.process-one.net/docs/ejabberd/guide_en.html#ldap
https://technet24.ir

Part 2. Module 2
CentOS 7 Linux Server Cookbook, Second Edition

Over 80 recipes to get up and running with CentOS 7 Linux server

Chapter 1. Installing CentOS
In this chapter, we will cover:

Downloading CentOS and confirming the checksum on Windows or OS X
Creating USB installation media on Windows or OS X
Performing an installation of CentOS using the graphical installer
Running a netinstall over HTTP
Installing CentOS using a kickstart file
Re-installing the boot loader
Troubleshooting the system in rescue mode
Getting started and customizing the boot loader
Updating the installation and enhancing the minimal install with additional
administration and development tools

https://technet24.ir

Introduction
This chapter is a collection of recipes that covers the basic practice of installing the
CentOS 7 operating system. The purpose of this chapter is to show you how quickly you
can get CentOS up and running whilst enabling you to customize your installation with a
few 'tricks of the trade' thrown in for good measure.

Downloading CentOS and confirming
the checksum on Windows or OS X
In this recipe, we will learn how to download and confirm the checksum of one or more
CentOS 7 disk images using a typical Windows or OS X desktop computer. CentOS is
made available in various formats by HTTP, FTP, or the rsync protocol from a series of
mirror sites located across the world or via the BitTorrent network. For downloading
very important files from the Internet, such as operating system images, it is considered
best practices to validate those files' checksum, in order to ensure that any resulting
media would function and perform as expected when installing. This also makes certain
that the files are genuine and come from the original source.

https://technet24.ir

Getting ready
To complete this recipe, it is assumed that you are using a typical Windows-based
(Windows 7, Windows Vista, or similar) or OS X computer with full administration
rights. You will need an Internet connection to download the required installation files
and also need access to a standard DVD/CD disk burner with the appropriate software,
in order to create the relevant installation disks from the image files. For the purpose of
this recipe, it is assumed that all the downloads will be stored on Windows in your
personal C:\Users\<username>\Downloads folder, or if using an OS X system, in the
/Users/<username>/Downloads folder.

How to do it...
Regardless of the type of installation files you download, the following techniques can
be applied to all the image files supplied by the CentOS project:

1. Let's begin by visiting http://www.centos.org in a web browser and navigate to the
button link Get CentOS Now. Then click the link list of the current mirrors in
the text.

2. The mirror sites are categorized, so from the resulting list of links, choose a mirror
that is geographically near your current location. For example, if you are in London
(UK), you can choose a mirror from EU and United Kingdom. Now choose a
mirror site by selecting either the HTTP or the FTP link.

3. Having made your selection, you will now see a list of directories of all the
available CentOS versions. To proceed, simply click the appropriate folder that
reads 7. Next, you will see an additional list of directories, such as atomic,
centosplus, cloud, and so on. We proceed by choosing the isos directory.

4. CentOS 7 currently only supports the 64-bit architecture, so browse to the only
directory available labeled x86_64, which is a container for the 64-bit version.

5. You will now be presented with a series of files available for download. Begin by
downloading a copy of the valid checksum result identified as md5sum.txt.

6. If you are new to CentOS or are intending to follow the recipes found throughout
this book, then the minimal installation is ideal. This contains the least amount of
packages to have a functional system, so choose the following (XXXX is the month
stamp of this release):

CentOS-7-x86_64-Minimal-XXXX.iso

7. On a Windows-based system only (on Mac, this tool is already available in the
system), visit http://mirror.centos.org/centos/dostools/ in your browser and
download the program md5sum.exe.

8. Now on Windows, open the command prompt (typically found at Start | All
Programs | Accessories | Command Prompt) and type the following commands
into the window that will open (press the Enter key at the end of all the lines):

cd downloads
dir

9. On OS X, open the program Finder | Applications | Utilities | Terminal, then type
the following commands (press the Enter key at the end of all the lines):

cd ~/Downloads

http://www.centos.org
http://mirror.centos.org/centos/dostools/
https://technet24.ir

ls

10. You should now see all the files in your download folder (including all the
downloaded CentOS installation image files, the md5sum.txt file and on Windows,
the md5sum.exe program).

11. Based on the file names shown, modify the following command in order to check
the checksum of your downloaded ISO image file. On Windows, type the following
command (change the XXXX month stamp accordingly):

md5sum.exe CentOS-7-x86_64-Minimal-XXXX.iso

12. On OS X, use instead:

md5 CentOS-7-x86_64-Minimal-XXXX.iso

13. Press the Return key to proceed and then wait for the command prompt to respond.
The response is known as the MD5 sum and the result could look like the
following:

d07ab3e615c66a8b2e9a50f4852e6a77 CentOS-7-x86_64-Minimal-1503-
01.iso

14. Now look at the the sum and compare against the relevant listing for your
particular image file in md5sum.txt (open in a text editor). If both the numbers
match, then you can be confident that you have indeed downloaded a valid CentOS
image file. If not, your downloaded file is probably corrupted, so please restart
this procedure by downloading the image file again.

15. When you have finished, simply burn your image file(s) to a blank CD-ROM or
DVD-ROM using your preferred desktop software, or create a USB installation
media from it, as we will show you in the next recipe in this chapter.

How it works…
So what have we learned from this experience?

The act of downloading a CentOS installation image is just the first step towards
building the perfect server. Although this process is very simple, many do forget the
need to confirm the checksum. In this book, we will work with the minimal installation
image, but you should be aware that there are other installation options available to you,
such as NetInstall, DVD, Everything, and various LiveCDs.

https://technet24.ir

Creating USB installation media on
Windows or OS X
In this recipe, we will learn how to create a USB installation media on Windows or OS
X. Nowadays, more and more server systems, desktop PCs, and laptops get shipped
without any optical drive. Installing a new operating system, such as CentOS Linux
using USB devices gets essential for them as no other installation option is available, as
there is no other way to boot the installation media. Also, installing CentOS using USB
media can be considerably faster than using the CD/DVD approach.

Getting ready
Before we begin, it is assumed that you have followed the previous recipe in which you
were shown how to download a minimal CentOS image and confirm the checksum of
the relevant image files. It is also assumed that all the downloads (including the
downloaded ISO file) are stored on Windows in your C:\Users\
<username>\Downloads folder or if using a OS X system, in the
/Users/<username>/Downloads folder. Next, you will need a free USB device which
can be discovered by your operating system, with enough total space, and which is
empty or with data on it that can be discarded. The total space of the USB device
needed for preparing as an installation media for CentOS 7 for the minimal version must
be roughly 700 megabyte. If you are working on a Windows computer, you will need a
working Internet connection to download additional software. On OS X, you need an
administrator user account.

https://technet24.ir

How to do it...
To begin this recipe, start up your Windows or OS X operating system, then connect a
free USB device with enough capacity, and wait until it gets discovered by File
Manager under Windows or Finder under OS X.

1. On a Windows based system, we need to download an additional software called
dd. Visit http://www.chrysocome.net/dd in your favorite browser. Now download
the latest dd-XX.zip file you can find there, with XX being the latest stable version
number. For example, dd-0.5.zip.

2. On Windows, navigate to your Downloads folder using File Manager. Here you
will find the dd-05.zip file. Right-click on it and click on Extract All, and
extract the dd.exe file without creating any subdirectory.

3. On Windows, open the command prompt (typically found at Start | All Programs |
Accessories | Command Prompt) and type the following commands:

cd downloads
dd.exe --list

4. On OS X, open the program Finder | Applications | Utilities | Terminal, and then
type the following commands:

cd ~/Downloads
diskutil list

5. On Windows, to spot the name of the right USB device you want to use as
installation media, look into the output of the command under the removable
media section. Below that, you should find a line starting with Mounting on and
then a drive letter, for example, \.\e:. This cryptic written drive letter is the most
important part we need in the next step, so please write it down.

6. On OS X, the device path can be found in the output of the former command and
has the format of /dev/disk<number>, where number is a unique identifier of the
disk. The disks are numbered, starting with zero (0). Disk 0 is likely to be the OS
X recovery disk, and disk 1 is likely to be your main OS X installation. To identify
your USB device, try to compare the NAME, TYPE, and SIZE columns to the
specifications of your USB stick. If you have identified the device name, write it
down, for example, /dev/disk3.

7. On Windows, type the following command, assuming your USB device selected as
a installation media has the Windows device name \\.\e: (change this as required
and be careful what you type – this can create tremendous data loss). Also,
substitute XXXX with the correct iso file version number in the next command:

http://www.chrysocome.net/dd

dd.exe if=CentOS-7-x86_64-Minimal-XXXX.iso of=\\.\e: bs=1M

8. On OS X, you need two commands which will ask for the administrator password
(replace XXXX and disk3 with the correct version number and the correct USB
device path):

sudo diskutil unmountDisk /dev/disk3
sudo dd if=./CentOS-7-x86_64-Minimal-XXXX.iso of=/dev/disk3 bs=1m

9. After the dd program finishes, there will be some output statistics on how long it
took and how much data has been transferred during the copy process. On OS X,
ignore any warning messages about the disk not being readable.

10. Congratulations! You now have created your first CentOS 7 USB installation
media. You now can safely remove the USB drive in Windows or OS X, and
physically unplug the device and use it as a boot device for installing CentOS 7 on
your target machine.

https://technet24.ir

How it works...
So what have we learned from this experience?

The purpose of this recipe was to introduce you to the concept of creating an exact copy
of a CentOS installation ISO file on a USB device, using the dd command-line program.
The dd program is a Unix based tool which can be used to copy bits from a source to a
destination file. This means that the source gets read bit by bit and written to a
destination without considering the content or file allocation; it just involves reading
and writing pure raw data. It expects two file name based arguments: input file (if) and
output file (of). We will use the CentOS image file as our input filename to clone it
exactly 1:1 to the USB device, which is accessible through its device file as our output
file parameter. The bs parameter defines the block size, which is the amount of data to
be copied at once. Be careful, it is an absolute expert tool and overwrites any existing
data on your target while copying data on it without further confirmation or any safety
checks. So at least double-check the device drive letters of your target USB device and
never confuse them! For example, if you have a second hard disk installed at D: and
your USB device at E: (on OS X, at /dev/disk2 and /dev/disk3 respectively) and
you confuse the drive letter E: with D: (or /dev/disk3 with /dev/disk2), your second
hard disk would be erased with little to no chances of recovering any lost data. So
handle with care! If you're in doubt of the correct output file device, never start the dd
program!

In conclusion, it is fair to say that there are other far more convenient solutions
available for creating a USB installation media for CentOS 7 than the dd command, such
as the Fedora Live USB Creator. But the purpose of this recipe was not only to create a
ready-to-use CentOS USB installer but also to get you used to the dd command. It's a
common Linux command that every CentOS system administrator should know how to
use. It can be used for a broad variety of daily tasks. For example, for securely erasing
hard disks, benchmarking network speed, or creating random binary files.

Performing an installation of CentOS
using the graphical installer
In this recipe, we will learn how to perform a typical installation of CentOS using a
new graphical installer interface introduced in CentOS 7. In many respects, this is
considered to be the recommended approach to installing your system, as it not only
provides you with the ability to create the desired hard disk partitions but also to
customize your installation in lots of ways (for example, keyboard layout, package
selection, installation type, and so on). Your installation will then form the basis of a
server on which you can build, develop, and run any type of service you may want to
provide in the future.

https://technet24.ir

Getting ready
Before we begin, it is assumed that you have followed the previous recipe in which you
were shown how to download a CentOS image, confirm the checksum of the relevant
image files, and create the relevant installation optical disks or USB media. Your
system must be a 64 bit (x64_86) architecture, must have at least 406 MB RAM to load
the graphical installer 1 GB or more is recommended if installing a graphical window
manager such as Gnome), and have at least 10 GB free hard disk space.

How to do it...
To begin this recipe, insert your installation media (CD/DVD or USB device), restart
the computer, and press the correct key for selecting the boot device during startup.
Then choose the inserted device from the list (for many computers, this can be reached
using F11 or F12 but can be different on your system. Please refer to your motherboard's
manual).

1. On the welcome splash screen, the option Test this media & install CentOS 7 is
preselected and we will use this option. When you are ready, press the Return key
to proceed.

2. After loading some initial files, the installer then starts to test the installation
media. A single test should take between 30 seconds to five minutes and will
report if there are any errors on your installation media. When this process is
complete, the system will finally load the graphical installer.

3. The CentOS installer will now present the graphical installation welcome screen.
From this point onwards, you can use your keyboard and mouse (the latter is highly
recommended), but remember to enable the number lock on your keyboard if you
intend to use the keypad.

4. On the left side you see the main language category and on the right side, the sub-
languages for the installer. You can also search for a language using the textbox on
the left bottom. All changes to your language settings will take effect immediately,
so when you are ready, choose the Continue button to proceed.

5. Now we reach the main installation menu, which is called Installation summary.
6. Most options shown here already have some predefined values and can be used

without changing, others which do not have any default value and which need your
attention are labeled with a red exclamation mark like the Installation Destination
under System category. So let's click on it using the mouse.

7. After clicking the Installation Destination button, you will see a graphical list of
all the hard disk devices currently connected to your computer, which you can use
for installing the operating system on. You can select your target hard disk by
clicking on the correct hard disk symbol. It will then put a check mark on it. If you
are unsure about the right hard disk, try to identify it by comparing its brand and
total size shown in the menu. Before the installation can proceed, you must select a
hard disk. Be careful and choose your target hard disk wisely as it will erase any
existing data on it during the installation. When you are ready, click the Done
button.

8. If your selected hard disk already contained data, then when clicking on Done, you

https://technet24.ir

may see what could be described as a warning/error message. The message may
read: You don't have enough space available to install CentOS. Don't worry!
This is to be expected and the message is simply asking you to re-initialize your
hard disk because CentOS can only be installed on an empty disk. In most cases,
especially if you have more than one partition on the hard disk, simply click on
Reclaim space which will show a new window with a detailed list of all the
partitions on this drive. Here just click on Delete All and then again on Reclaim
space to discard any data on this disk, which will complete the task of disk
initialization and enable you to proceed to the next step. When finished, click the
Done button.

9. Back at the Installation Summary screen, the exclamation mark on the Installation
Destination item should be gone now.

10. Optionally, we can click on Network & Hostname under System category. On
the following page, on the left side, you can choose the primary network adapter
you would like to connect to the Internet and select it by clicking on it. For the
selected device, click on the switch on the right side to enable and connect it
automatically using the On position of the switch. Finally, before closing this
submenu, change the hostname in its text field to something appropriate. Click
Done.

11. Now back at the Installation Summary screen, all the important settings have been
made or have got predefined values, and all the exclamation marks are gone. If you
are happy with these settings, click on the Start installation button or change the
settings appropriately.

12. On the next screen, you will be required to create and confirm a root password for
the root user while the new system gets installed in the background. Choose a
secure password with not less than six characters.

13. Here on this screen you can also create a standard user account which is highly
recommended. If you create a new user do not check Make this user
administrator. When you are ready, click Done (if you entered a weak password,
you have to confirm this by clicking twice)

14. CentOS will now partitionate and format your hard disk in the background and
resolve any dependencies, and the installer will begin writing to the hard disk.
This may take some time, but a progress bar will indicate the status of your
installation. When finished, the installer will inform you that the entire process is
complete and that the installation was successful. So when you are ready, click on
the Reboot button. Now release your installation media from the drive.

15. Congratulations! You have now installed CentOS 7 on your computer.

How it works…
In this recipe, you have discovered how to install the CentOS 7 operating system.
Having covered the typical approach to the graphical installation process, you are now
in a position to develop the server with additional configuration changes and packages
that will suit the role you intend the server to fulfill. This graphical installer has been
built with the aim to be very intuitive and flexible, and makes installation very easy as it
will guide the user through some mandatory tasks that he has to fulfill before the
installation of the main system can be started.

https://technet24.ir

Running a netinstall over HTTP
In this recipe, we will learn how to initiate the process of running a netinstall over
HTTP (using the URL method) in order to install CentOS 7. It is a process in which a
small image file is used to boot the computer and let the user select and install only the
software packages and services he wants and nothing more over a network connection
thus providing great flexibility.

Getting ready
Before we begin, it is assumed that you already know how to download and checksum a
CentOS 7 installation image and how to create the relevant installation media from it.
For this recipe here, we will need to download and create installation media for the
netinstall image (download the latest CentOS-7-x86_64-NetInstall-XXXX.iso file)
instead of the minimal ISO shown in another recipe in this chapter. Also, it is assumed
that you have at least gone through the graphical installation procedure once to exactly
know how to boot from your installation media and work with the installer program.

https://technet24.ir

How to do it...
To begin this recipe, insert your prepared netinstall media, boot your computer from it,
and wait for the welcome screen to appear:

1. On the welcome splash screen, the option Test this media & install CentOS 7 is
preselected and we will use this option. When you are ready, press the Return key
to proceed.

2. After the tests finish, the graphical installer will load and present the typical
graphical installation summary screen.

Note

Here the installer should be configured exactly as in the normal graphical
installation recipe, besides the following mandatory changes to the Network &
Host name and Installation source menu items (which is shown by the red
exclamation marks).

3. Before we can install CentOS over the network, we have to make sure that we
have a working network connection. Therefore, you should first click on the
Network & Host name menu entry and activate one of your network adapters to
the connected state. Refer to the normal installation recipe for more details.

4. Next, click on Installation source to enter the settings. As we will be installing
over HTTP (also referred to as the URL method), you should leave the default On
the network selected in the Which installation source would you like to use?
section.

5. Now type in the following URL in the standard http:// textfield, which we will
use to download all the required installation packages at
http://mirror.centos.org/centos/7/os/x86_64/.

6. Alternatively, you can also use a personal repository which you would have to
create in advance (see Chapter 4, Managing Packages with YUM)

7. When you are ready, click on Done to start the initialization process.
8. On success, the installer will begin to retrieve the appropriate install.img file.

This may take several minutes to complete, but once resolved, a progress bar will
indicate all the download activity. When this process finishes successfully, the
exclamation mark at the installation source will go away but another one will pop
up which will tell the user that it is missing the software selection. Click on it and
choose whatever fits your need. As for the purpose of this recipe, just select
Minimal install under Base environment and then click on Done.

9. If the Which installation source would you like to use stays greyed out and cannot

http://%20http://mirror.centos.org/centos/7/os/x86_64/

be changed, then there are connection problems with your network adapter. If this
is the case, go back to configure Network & Hostname and change the network
settings until the connected state can be reached.

10. CentOS 7 will now install the operating system the usual way and will congratulate
you when this process finishes. It may be slower than installing from a physical
installation media since all the packages have to be retrieved from the Internet.

https://technet24.ir

How it works...
The purpose of this recipe was to introduce you to the concept of the CentOS network
installation process, in order to show you just how simple this approach can be. By
completing this recipe you have not only saved time by limiting your initial download to
those files that are required by the installation process, but you have also been able to
take advantage of the full graphical installation method without the need for a complete
DVD suite.

Installing CentOS 7 using a kickstart file
While installing CentOS 7 manually using the graphical installer utility is fine on a
single server, doing so on a multiple number of systems can be tedious. Kickstart files
can automate the installation process of a server system and here we will show how this
can be done. They are simple text based configuration files which provide detailed and
exact instructions on how the target system should be set up and installed (for example,
which keyboard layout or additional software packages to install).

https://technet24.ir

Getting ready
To successfully complete this recipe, you will need access to an already installed
CentOS 7 system to retrieve the kickstart configuration file we want to work with and
use for automated installation. On this pre-installed CentOS server, you also need a
working Internet connection to download additional software.

Next, we will need to download and create installation media for the DVD or the
Everything image (download the latest CentOS-7-x86_64-DVD-XXXX.iso or CentOS-
7-x86_64-Everything-XXXX.iso file), instead of the minimal iso file shown in
another recipe in this chapter. Then you need another USB device which must be read
and writable on Linux systems (formatted as FAT16, FAT32, EXT2, EXT3, EXT4, or
XFS filesystem).

How to do it...
For this recipe to work, we first need physical access to an existing kickstart file from
another finished CentOS 7 installation, which we will use as a template for a new
CentOS 7 installation.

1. Log in as root on the existing CentOS 7 system and make sure the kickstart
configuration file exists by typing the following command and pressing the Return
key to execute (this will show you the details of the file):

ls -l /root/anaconda-ks.cfg

2. Next, physically plug in a USB device and then type the following command,
which will give you a list of all the hard disk devices currently connected to the
computer:

fdisk -l

3. Try to identify the device name by comparing its size, partitions, and identified
filesystems with the specifications of your USB device. The device name will be
of kind /dev/sdX, where X is an alphabetical character, such as b, c, d, e, … and
so on. If you cannot find the right device name for your USB media using the fdisk
command, try the following trick: run fdisk -l twice - first with plugged-out and
then with plugged-in USB device and compare how the second output changed - it
has one device name more than the first output: your device name of interest !

4. If you have found the right device name in the list, create a directory to mount it to
the current filesystem:

mkdir /mnt/kickstart-usb

5. Next, actually mount the stick to this folder, assuming that your USB partition of
choice is at /dev/sdc1 (change this as required):

mount /dev/sdc1 /mnt/kickstart-usb

6. Now we will create our working copy of the kickstart file on the USB device for
customizing:

cp /root/anaconda-ks.cfg /mnt/kickstart-usb

7. Next, open the copied kickstart file on the USB device with your favorite text
editor (here we will use the editor nano, if you have not installed it yet type yum
install nano):

https://technet24.ir

nano /mnt/kickstart-usb/anaconda-ks.cfg

8. We will now modify the file for installing CentOS on a new target system. In nano,
use the up and down arrow keys to go to the line which starts with
(<your_hostname> will be the name of the hostname you gave during installation
e.g. minimal.home):

network --hostname=<your_hostname>

9. Now edit the <your_hostname> string to give it a new unique hostname. For
example, add a -2 to the end of any existing name, as shown next:

network --hostname=minimal-2.home

10. Next, move the cursor down using the up and down arrow keys until it stops at the
line which says %packages. Append the following lines right below it (you can
further customize this and provide additional packages that you want to install
automatically):

mariadb-server
httpd
rsync
net-tools

11. Now save and close the file, to do this in the nano editor use the key combination
Ctrl+o (which means, hold down the Ctrl key on the keyboard and then the o key
without releasing the Ctrl key) to write the changes. Then press Return to confirm
the filename and Ctrl+x to exit the editor.

12. Next, install the following CentOS package:

yum install system-config-kickstart

13. Now we validate the syntax of our kickstart file using the ksvalidator program,
which is included in the package we just installed:

ksvalidator /mnt/kickstart-usb/anaconda-ks.cfg

14. If the config file is error-free, unmount the USB stick now by using the following
commands:

cd
umount /mnt/kickstart-usb

15. When you get a new command prompt again, unplug the USB device with the
kickstart file for using on the target machine physically from the system.

16. Now you need physical access to the target machine you want to install CentOS on,

using the kickstart file just created. Disconnect any other external file storage(s)
that you do not need during the installation.

17. Power on the computer and put in your prepared CentOS installation media (must
be a CentOS DVD or Everything installation disk image prepared on a CD/DVD
disc or a USB device installer). Also connect to the computer the USB stick
containing the kickstart file you just created in the earlier steps (if you using a USB
drive for installing CentOS then you will need two free USB ports in total to
complete this recipe).

18. Next, start the server and press the correct key during the initial bootup screen,
associated with booting the CentOS installation media you just connected.

19. After the CentOS installer starts loading, the common standard CentOS 7
installation welcome screen will show up and the option Test this media & install
CentOS 7 will be pre-selected by the cursor.

20. Next, press the Esc key on your keyboard once to switch to the boot: prompt.
21. Now we are ready to start the kickstart installation. To do this, you need to know

the exact partition name on the USB device where the kickstart file is located. Type
the following command, assuming that your partition is at /dev/sdc1 (change this
as required), and press the Return key to start the kickstart installation process:

linux ks=hd:sdc1:/anaconda-ks.cfg

Note

If you cannot find out the right device and partition name of the USB stick, you
have to start the target system in rescue mode (refer to the Troubleshooting the
system in rescue mode recipe) to identify the right device name and partition
number by comparing its size, partitions, and identified filesystems with the
specifications of your stick.

22. The new system now gets installed automatically using the instructions from the
provided kickstart file. You can watch the installation output messages as it is
showing the user detailed installation progress.

23. If the system has finished installing, reboot the system and log in to your new
machine to verify that the new system has been setup the way we described using
the kickstart file.

https://technet24.ir

How it works...
In this recipe, you have seen that every server running a CentOS 7 installation keeps the
kickstart file in its root directory, which contains detailed information on how the
system had been set up during the installation. The kickstart files can be used to
automate the installations of multiple systems with the same configuration. This can save
a lot of time doing repetitive work as no user interaction during installation is needed.
Also, we can use this method if the target machines don't meet the minimum requirement
in RAM for graphical based installations but when needed other features the text mode
installer does not provide such as custom partitioning of the system. Kickstart
configuration files are simple plain text files which can be created manually from
scratch. Because there are quite a number of different commands available to construct
your system using the kickstart syntax, we used an existing file as a template and
customized it to fit our needs, instead of starting out completely new. We did not use the
minimal installation image to drive our kickstart installation because we installed some
extra packages not included on the minimal ISO file, such as the Apache webserver.

Getting started and customising the boot
loader
When you turn on your computer, the boot loader is the first program that starts up and is
responsible for loading and transferring control to an underlying operating system.
Nowadays, almost any modern Linux distribution uses the GRand Unified Bootloader
version 2 (GRUB2) for starting the system. It has a lot of flexibility in configuration
and supports a lot of different operating systems. In this recipe, we will show how to
customize the GRUB2 boot loader by disabling the waiting time of the menu display and
therefore improving the time it takes for booting the system.

https://technet24.ir

Getting ready
To complete this recipe, you will require access to an already installed CentOS 7
operating system (minimal or any other CentOS 7 installation type will work) with root
privileges. Also, you need to have some basic experiences with a text based editor, such
as nano, for changing the configuration files.

How to do it...
We begin this recipe by opening the main GRUB2 configuration file with our text editor
of choice and modifying it.

1. First log in as root into your system and create a copy of the GRUB2 configuration
file for backup and rollback, if needed. Press the Return key to finish:

cp /etc/default/grub /etc/default/grub.BAK

2. Open the main GRUB2 configuration file that we want to edit with the following
command and press the Return key (here we will use the editor nano, if you have
not installed it yet type yum install nano):

nano /etc/default/grub

3. Press the Return key in the first line where the cursor is at to insert a new line at
the top, and then insert the following line:

GRUB_HIDDEN_TIMEOUT=0

4. Add a # sign to the beginning of the following line, as shown:

GRUB_TIMEOUT=0

5. Now save the file in the nano using Ctrl+o (and Return to confirm the filename to
save). Use Ctrl+x to exit the editor and then run the following command:

dmesg | grep -Fq "EFI v"

6. If the preceding command does not produce any output, run the following
command:

grub2-mkconfig -o /boot/grub2/grub.cfg

7. Otherwise, if there is an output, run:

grub2-mkconfig -o /boot/efi/EFI/centos/grub.cfg

8. If grub2-mkconfig is successful, it will print Done. Now reboot your system
using the following command:

reboot

9. During the rebooting process, you will notice that the GRUB2 boot menu will not
appear any more and the system will boot up faster.

https://technet24.ir

How it works...
Having completed this recipe, we now know how to customize the GRUB2 boot loader.
In this very easy recipe, we only showed you very basic modifications to the boot
loader but it can do much more! It supports a broad variety of filesystems and can boot
almost any compatible operating system. This is also particularly useful if you plan to
run multiple operating systems on the same machine. To learn more about GRUB2's
configuration file syntax type the info grub2 | less command and go to the section 6.1
Simple configuration handling (read the recipe Navigating text files with less in
Chapter 2, Configuring the System to learn how to browse this document).

Troubleshooting the system in rescue
mode
We all make mistakes and this is especially true for novice Linux system administrators.
Linux can have a steep learning curve and sooner or later there will be a point in your
career where your CentOS installation does not start up due to broad number of reasons,
including hardware problems or human mistakes such as configuration errors. If this has
happened to you then you can use the CentOS rescue mode in order to boot an otherwise
unbootable system and try to undo your mistakes or find out the root of the problems. In
this recipe, we will show you three common use cases when to use this option:

Accessing the filesystem for recovering important data or undoing changes to
configuration files if CentOS is not booting up
Changing the root password if you forgot it
Re-installing the boot loader which can be damaged when installing another
operating system on the same harddisk where CentOS is installed

https://technet24.ir

Getting ready
To complete this recipe, you will require a standard installation media (CD/DVD or
USB device) of the CentOS 7 operating system. For recovering the data from the system,
you will need to connect some sort of external storage device to the system, such as an
external hard disk or a working network connection to another computer to copy all your
precious data to a different location.

How to do it...
To begin this recipe, you should boot your server from the CentOS installation CD/DVD
or the USB device and wait until the first welcome splash screen appears with the
cursor waiting at the Test this media & install CentOS 7 menu option.

Reaching rescue mode
1. From the main menu, use the down arrow key to select Troubleshooting and then

press the Return key to proceed.
2. On the Troubleshooting screen, use the down arrow key to highlight Rescue a

CentOS system. When you are ready, press the Return key to proceed.
3. After some loading time, we enter the rescue screen, which includes various

confirmation sub-screens. To begin this section, use the left and right arrow keys to
choose Continue and press the Return key to proceed.

4. On the first sub-screen, choose OK and press the Return key to proceed.
5. Again, in the following sub-screen, choose OK and press the Return key to

proceed.
6. On the next screen, choose the Start shell and by using the Tab key, highlight OK

and press the Return key to proceed.
7. By completing the preceding steps, you will launch a shell session. You will notice

this at the bottom of your display. The current status of the shell session will read
as follows:

bash-4.2#_

8. At the prompt, type the following instruction to change the root filesystem, before
pressing the Return key to complete your request:

chroot /mnt/sysimage

9. Congratulations! You just reached the rescue mode. To exit it at any time, simply
type the following command and then press the Return key to complete your request
(don't do this right now as this will restart the system):

reboot

10. After the basic rescue mode is reached, we have the following options, depending
on the type of problem.

Accessing the filesystem

If you are now in the rescue mode and need to backup important files from the

https://technet24.ir

filesystem, you need a destination location for the data transfer. For transferring the data
we want to recover from the server to another computer please physically connect an
external USB device to it. You can also use network storages for the recovery. For
example, you could import an NFS server share and copy data to it. Refer to the
Working with NFS recipe in Chapter 7, Building a Network.

1. On the rescue mode command line, type in the following command, which will
show you all the current partitions connected to the system, and then press the
Return key to complete your request:

fdisk -l

2. You now need to find out the right device name with the partition number of your
connected device; comparing the total size or the filesystem output of the various
devices with the specifications from your stick can help you in this process. You
can also try the following trick: run the fdisk -l command twice, first with the
plugged-in USB device and then again with the USB device unplugged, and
compare the output of both the commands. It should be different by one device
name which you are searching for!

3. If you have found the right device name in the list, create a directory to mount the
stick to the filesystem:

mkdir /mnt/hdd-recovery

4. Next, mount the disk partition to this folder. Here we assume that the USB device
of interest has the device name sdd1 (please change if different on your system):

mount /dev/sdd1 /mnt/hdd-recovery

5. The original system's hard disk's root partition has been mounted under a specific
folder by the rescue system automatically (under /mnt/sysimage), if you need to
access it for example to change configuration files which caused startup problems
or make a full or partial backup. For example, if you need to backup your Apache
webserver configuration files, use:

cp -r /mnt/sysimage/etc/http /mnt/hdd-recovery

6. If you need to access the data that lives on partitions other than the currently
mounted root partition, use fdisk -l to identify the partition of interest. Then
create a directory and mount the partition to it and change to that directory to
access your data similar you did when mounting the USB device.

7. To finish backing up the files, type:

reboot

Accessing the filesystem
1. If you are in the rescue mode for changing the root password, just use the following

command and provide a new password:

passwd

2. To complete changing the password, type:

reboot

Re-install the CentOS boot loader
1. We will now use the fdisk command to find the name of all the current partitions.

To do this, type the following instruction and then press the Return key to complete
your request:

fdisk –l

2. Now run the following command:

dmesg | grep -Fq "EFI v"

3. If the preceding command does not produce any output look for the * symbol in the
fdisk listing in the boot column to find the correct start partition, and assuming
that your boot disk is on /dev/sda1 (change this as required), type the following:

grub2-install /dev/sda

4. Otherwise, if there is an output, run instead:

yum reinstall grub2-efi shim

5. If no error is reported, the console should respond as follows:

this device map was generated by anaconda
(hd0) /dev/sda

6. The console output from the last step has confirmed that GRUB has now been
successfully restored.

7. To reboot the computer, type:

reboot

https://technet24.ir

How it works...
There are a broad variety of problems which can be resolved by the tools provided
through the rescue mode environment. Often these problems refer to booting problems
but can also be from different types, such as forgetting the root password. Rescue mode
can be a life-saver and an understanding of it is a very important skill to learn. It was
felt that such a recipe should thus remain close at hand.

Tip

Remember to always be careful when working with bootloader commands as improper
use can make your operating system unbootable.

Updating the installation and enhancing
the minimal install with additional
administration and development tools
In this recipe, we will learn how to enhance the minimal install with additional tools
that will give you a variety of administrative and development options, which in turn
will prove vital during the lifetime of your server and which are essential for some
recipes in this book. The minimal install is probably the most efficient way you can
install a server, but having said that, a minimal install does require some additional
features in order to make it a more compelling model.

https://technet24.ir

Getting ready
To complete this recipe, you will require a minimal installation of the CentOS 7
operating system with root privileges and a connection to the Internet in order to
facilitate the download of additional packages.

How to do it...
We will begin this recipe by updating the system.

1. To update the system, log in as root and type:

yum -y update

2. CentOS will now search for the relevant updates and, if available, they will be
installed. On completion and depending on what was updated (that is, kernel and
new security features to name but a few), you can decide to reboot your computer.
To do this, type:

reboot

3. Your server will now reboot and return to the login screen. We will now complete
this recipe and enhance our current installation with a series of package groups that
will prove to be very useful in the future. To do this, log in as root and type:

yum -y groupinstall "Base" "Development Libraries" "Development
Tools"
yum -y install policycoreutils-python

https://technet24.ir

How it works...
The purpose of this recipe is to enhance the minimal installation of the CentOS 7
operating system and by doing this you have not only introduced yourself to the
Yellowdog Updater Modified (YUM) package manager (something to which we will
return to later on in this book), but you now have a system that is capable of running a
vast amount of applications right out-of-the-box.

So what have we learned from this experience?

We started the recipe by updating the system in order to ensure that it is up to date. At
this stage, it is often a good idea to reboot the system. It is not expected that we will do
this very often but it is expected when updating for the first time after the installation of
the operating system, as it is most likely that there are major changes available. The
reason behind this is typically based on the desire to take advantage of a new kernel or
revised security updates. In the next phase, the recipe showed you how to add a series
of package groups that may prove to be more than useful in the future. To save time, we
wrapped the instruction to install the three main package groups: Base, Development
Libraries, and Development Tools. The preceding action alone installs over 200
individual packages, thereby giving your server the ability to compile the code and run a
vast array of applications out-of -the-box, that you may need over the life time of your
server. To see a list of all the packages within a group, for example, from Base, run the
yum groupinfo Base command. Another package we installed was
policycoreutils-python which provides tools and programs to manage the security
enhanced access control to Linux, which we will use quite often throughout the chapters
of this book.

Chapter 2. Configuring the System
In this chapter, we will cover the following topics:

Navigating text files with less
Introduction to Vim
Speaking the right language
Synchronizing the system clock with NTP and the chrony suite
Setting your hostname and resolving the network
Becoming a superuser
Building a static network connection
Customizing your system banners and messages
Priming the kernel

https://technet24.ir

Introduction
This chapter is a collection of recipes that covers the basic practice of establishing the
basic needs of a server. For many, building a server can often seem to be a daunting
task, and so the purpose of this chapter is to provide you with an instant method to
achieve the desired goals.

Navigating text files with less
Throughout this book, you will often use programs and tools that use the program less or
a less-like navigation to view and read file content or display output. At first, the
control can seem a bit unintuitive .Here, in this recipe, we will show you the basics of
how to navigate through a file using less controls.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges.

How to do it...
1. To begin, log in as root and type the following command to open a program that

uses less for navigation:

man man

2. To navigate, press the up and down key to scroll up and down one line at a time,
the spacebar to scroll down a page, and the b key to scroll up a page. You can
search within the text using the forward slash key, /,followed by the search term,
then press Return to search. Press n to jump to the next search result. Press the q
key to exit.

https://technet24.ir

How it works...
Here, in this short recipe, we have shown you the very basics of less navigation, which
is essential for reading man pages and is used by a lot of other programs throughout this
book to display text. We only showed you the basic commands and there is much more
to learn. Please read the less manual to find out more on man less command.

Introduction to Vim
In this recipe, we will give you a very brief introduction to the text editor, Vim, which is
used as the standard text editor throughout this book. You can also use any other text
editor you prefer, such as nano or emacs, instead.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges.

How to do it...
We will start this recipe by installing the vim-enhanced package, as it contains a
tutorial you can use to learn working with Vim:

1. To begin, log in as root and install the following package:

yum install vim-enhanced

2. Afterwards, type the following command to start the Vim tutorial:

vimtutor

3. This will open the Vim tutorial in the Vim editor. To navigate, press the up and
down key to scroll up and down single-line wise. To exit the tutorial, press the Esc
key, then type :q!, followed by the Return key to exit.

4. You should now read through the file and go through the lessons to get a basic
understanding of Vim, to learn how to edit your text documents.

https://technet24.ir

How it works...
The tutorial shown in this recipe should be seen as a starting point from which to learn
the basics for working with one of the most powerful and effective text editors available
for Linux. Vim has a very steep learning curve, but after dedicating about half an hour to
the vimtutor guide you should be able to do all the common text editing tasks without
any problem, such as opening, editing, and saving text files.

Speaking the right language
In this recipe, we will show you how to change the language settings of your CentOS 7
installation for the whole system and for single users. The need to change this is rare but
can be important, for example if we accidentally chose the wrong language during
installation.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, and a console-based text editor of your choice.
You should have read the Navigating text files with less recipe, because some
commands in this recipe will use less for printing output.

How to do it...
There are two categories of settings that you have to adjust if you want to change the
system-wide language settings of your CentOS 7 system. We begin by changing the
system locale information and then the keyboard settings:

1. To begin, log in as root and type the following command to show the current locale
settings for the console, graphical window managers (X11 layout), and also the
current keyboard layout:

localectl status

2. Next, to change these settings, we first need to know all the available locale and
keyboard settings on this system (both commands use less navigation):

localectl list-locales
localectl list-keymaps

3. If you have picked the right locale from the output above in our example,
de_DE.utf8 and keymap de-mac (change to your own appropriate needs), you
can change your locale and keyboard settings using:

localectl set-locale LANG=de_DE.utf8
localectl set-keymap de-mac

4. Now, verify the persistence of your changes using the same command again:

localectl status

https://technet24.ir

How it works...
As we have seen, the localectl command is a very convenient tool that can take care
of managing all important language settings in a CentOS 7 system.

So what have we learned from this experience?

We started by logging in to our command line with the root user. Then, we ran the
localectl command with the parameter status, which gave us an overview of the
current language settings in the system. The output of this command showed us that
language properties in a CentOS 7 system can be separated into locale (system locale)
and keymap (VC keymap and all X11 layout properties) settings.

Locales on Linux are used to set the system's language as well as other language-
specific properties. This can include texts from error messages, log output, user
interfaces, and, if you are using a window manager such as Gnome, even Graphical
User Interfaces (GUI). Locale settings can also define region-specific formatting such
as paper sizes, numbers and their natural sorting, currency information, and so on. They
also define character encoding, which can be important if you chose a language that has
characters that cannot be found in the standard ASCII encoding.

Keymap settings on the other hand define the exact layout of each key on your keyboard.

Next, to change these settings, we first issued the localectl command with the list-
locales parameter to retrieve a full list of all locales on the system, and list-
keymaps to show a list of all keyboard settings available in the system. Locales as
outputted from the list-locales parameter use a very compact annotation for defining
a language:

Language[_Region][.Encoding][@Modificator]

Only the Language part is mandatory, all the rest is optional. Examples for language and
region are: en_US for English and region United States or American English, es_CU
would be language Spanish and Region Cuba or Cuban Spanish.

Encodings are important for special characters such as German umlaut or accents in the
French language. The memory representation of these special characters can be
interpreted differently depending on the used encoding type. In general UTF-8 should be
used as it is capable of encoding almost any character in every language.

Modificators are used to change settings defined by the locale. For example,
sr_RS.utf8@latin is used if you want to have Latin settings for serbian Serbia, which
normally uses Cyrillic definitions. This will change to western settings such as sorting,
currency information, and so on.

To change the actual locale, we used the set-locale LANG=de_DE.utf8 parameter.
Here, the encoding was selected to display proper German umlauts. Please note that we
used the LANG option to set the same locale value (for example, de_DE.utf8) for all
available locale options. If you don't want to have the same locale value for all
available options, you can use a more fine-grained control over single locale options.
Please refer to the locale description using the man page, man 7 locale (on minimal
installation; you need to install all Linux documentation man pages before using the yum
install man-pages command). You can set these additional options using a similar
syntax, for example, to set the time locale use:

localectl set-locale LC_TIME="de_DE.utf8"

Next, we showed all available keymap codes using the list-keymaps parameter. As
we have seen from running localectl status, the keymaps can be separated in non-
graphical (VC keymap) and graphical (X11 layout) settings, which allows the flexible
configuration of different keyboard layouts when using a window manager such as
Gnome and for the console. Running localectl with the parameter, set-keymap de-
mac, sets the current keymap to a German Apple Macintosh keyboard model. This
command applies the given keyboard type to both the normal VC and the X11 keyboard
mappings. If you want different mappings for X11 than for the console, use localectl
--no-convert set-x11-keymap cz-querty, where we use cz-querty for the
keymap code to a Czech querty keyboard model (change this accordingly).

https://technet24.ir

There's more…
Sometimes, single system users need different language settings than the system's locale
(which can only be set by the root user), according to their regional keyboard
differences and for interacting with the system in their preferred human language.
System-wide locales get inherited by every user as long as they are not overwritten by
local environment variables.

Note

Changing system-wide locales does not necessarily have an effect on your user's locales
if they have already defined something else for themselves.

To print all the current locale environment variables for any system user, we can use the
command, locale. To set single environment variables with the appropriate variable
name; for example, to set the time locale to US time we would use the following line:

export LC_TIME="en_US.UTF-8"

But, most likely we would want to change all the locales to the same value; this can be
done by setting LANG. For example, to set all the locales to American English, use the
following line:

export LANG="en_US.UTF-8"

To test the effect of locale changes, we can now produce an error message that will be
shown in the language set by the locale command. Here is the different language output
for changing locale from English to German:

export LANG="en_US.UTF-8"
ls !

The following output will be printed:

ls: cannot access !: No such file or directory

Now, change to German locale settings:

export LANG="de_DE.UTF-8"
ls !

The following output will be printed:

ls: Zugriff auf ! nicht möglich: Datei oder Verzeichnis nicht
gefunden

Setting a locale in an active console using the export command will not survive closing
the window or opening a new terminal session. If you want to make those changes
permanent, you can set any locale environment variables, such as the LANG variable, in a
file called .bashrc in your home directory, which will be read everytime a shell is
opened. To change the locale settings permanently to de_DE.UTF-8 in our example
(change this to your own needs) use the following line:

echo "export LANG='de_DE.UTF-8'" >> ~/.bashrc

https://technet24.ir

Synchronizing the system clock with
NTP and the chrony suite
In this recipe, we will learn how to synchronize the system clock with an external time
server using the Network Time Protocol (NTP) and the chrony suite. From the need to
time-stamp documents, e-mails, and log files, to securing, running, and debugging a
network, or to simply interact with shared devices and services, everything on your
server is dependent on maintaining an accurate system clock, and it is the purpose of
this recipe to show you how this can be achieved.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet to facilitate downloading additional packages.

https://technet24.ir

How to do it...
In this recipe, we will use the chrony service to manage our time synchronization. As
chrony is not installed by default on CentOS minimal, we will start this recipe by
installing it:

1. To begin, log in as root and install the chrony service, then start it and verify that it
is running:

yum install -y chrony
systemctl start chronyd
systemctl status chronyd

2. Also, if we want to use chrony permanently, we will have to enable it on server
startup:

systemctl enable chronyd

3. Next, we need to check whether the system already uses NTP to synchronize our
system clock over the network:

timedatectl | grep "NTP synchronized"

4. If the output from the last step showed No for NTP synchronized, we need to
enable it using:

timedatectl set-ntp yes

5. If you run the command (from step 3) again, you should see that it is now
synchronizing NTP.

6. The default installation of chrony will use a public server that has access to the
atomic clock, but in order to optimize the service we will need to make a few
simple changes to streamline and optimize at what time servers are used. To do
this, open the main chrony configuration file with your favorite text editor, as
shown here:

vi /etc/chrony.conf

7. In the file, scroll down and look for the lines containing the following:

server 0.centos.pool.ntp.org iburst
server 1.centos.pool.ntp.org iburst
server 2.centos.pool.ntp.org iburst
server 3.centos.pool.ntp.org iburst

8. Replace the values shown with a list of preferred local time servers:

server 0.uk.pool.ntp.org iburst
server 1.uk.pool.ntp.org iburst
server 2.uk.pool.ntp.org iburst
server 3.uk.pool.ntp.org iburst

Note

Visit http://www.pool.ntp.org/ to obtain a list of local servers geographically near
your current location. Remember, the use of three or more servers will have a
tendency to increase the accuracy of the NTP service.

9. When complete, save and close the file before synchronizing your server using the
sytstemctl command:

systemctl restart chronyd

10. To check whether the modifications in the config file were successful, you can use
the following command:

systemctl status chronyd

11. To check whether chrony is taking care of your system time synchronization, use the
following:

chronyc tracking

12. To check the network sources chrony uses for synchronization, use the following:

chronyc sources

http://www.pool.ntp.org/
https://technet24.ir

How it works...
Our CentOS 7 operating system's time is set on every boot based on the hardware clock,
which is a small-battery driven clock located on the motherboard of your computer.
Often, this clock is too inaccurate or has not been set right, therefore it's better to get
your system time from a reliable source over the Internet (that uses real atomic time).
The chrony daemon, chronyd, sets and maintains system time through a process of
synchronization with a remote server using the NTP protocol for communication.

So, what have we learned from this experience?

As a first step, we installed the chrony service, since it is not available by default on a
CentOS 7 minimal installation. Afterwards, we enabled the synchronization of our
system time with NTP using the timedatectl set-ntp yes command.

After that, we opened the main chrony configuration file, /etc/chrony.conf, and
showed how to change the external time servers used. This is particularly useful if your
server is behind a corporate firewall and have your own NTP server infrastructure.

Having restarted the service, we then learned how to check and monitor our new
configuration using the chronyc command. This is a useful command line tool (c stands
for client) for interacting and controlling a chrony daemon (locally or remotely). We
used the tracking parameter with chronyc, which showed us detailed information of
the current NTP synchronization process with a specific server. Please refer to the man
pages of the chronyc command if you need further help about the properties shown in
the output (man chronyc).

We also used the sources parameter with the chronyc program, which showed us an
overview of the used NTP time servers.

You can also use the older date command to validate correct time synchronization. It is
important to realize that the process of synchronizing your server may not be
instantaneous, and it can take a while for the process to complete. However, you can
now relax in the full knowledge that you now know how to install, manage and
synchronize your time using the NTP protocol.

There's more...
In this recipe, we set our system's time using the chrony service and the NTP protocol.
Usually, system time is set as Coordinated Universal Time (UTC) or world time,
which means it is one standard time used across the whole world. From it, we need to
calculate our local time using time zones. To find the right time zone, use the following
command (read the Navigating textfiles with less recipe to work with the output):

timedatectl list-timezones

If you have found the right time zone, write it down and use it in the next command; for
example, if you are located in Germany and are near the city of Berlin, use the following
command:

timedatectl set-timezone Europe/Berlin

Use timedatectl again to check if your local time is correct now:

timedatectl | grep "Local time"

Finally, if it is correct, you can synchronize your hardware clock with your system time
to make it more precise:

hwclock --systohc

https://technet24.ir

Setting your hostname and resolving the
network
The process of setting the hostname is typically associated with the installation process.
If you ever need to change it or your server's Domain Name System (DNS) resolver,
this recipe will show you how.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, and a console-based text editor of your choice.

https://technet24.ir

How to do it...
To begin this recipe, we shall start by accessing the system as root and opening the
following file in order to name or rename your current server's hostname:

1. Log in as root and type in the following command to see the current hostname:

hostnamectl status

2. Now, change the hostname value to your preferred name. For example, if you want
to call your server jimi, you would type (change appropriately):

hostnamectl set-hostname jimi

Note

Static hostnames are case-sensitive and restricted to using an Internet-friendly
alphanumeric string of text. The overall length should be no longer than 63
characters, but try to keep it much shorter.

3. Next, we need the IP address of the server. Type in the following command to find
it (you need to identify the correct network interface in the output):

ip addr list

4. Afterwards, we will set the Fully Qualified Domain Name (FQDN), in order to
do this, we will need to open and edit the hosts file:

vi /etc/hosts

5. Here, you should add a new line appropriate to your needs. For example, if your
server's hostname was called jimi, (with an IP address of 192.168.1.100, and a
domain name of henry.com) your final line to append will look like this:

192.168.1.100 jimi.henry.com jimi

Note

For a server found on a local network only, it is advisable to use a non-Internet
based top-level address. For example, you could use .local or .lan, or even
.home, and by using these references you will avoid any confusion with the typical
.com, .co.uk, or .net domain names.

6. Next, we will open the resolv.conf file, which is responsible for configuring
static DNS server addresses that the system will use:

vi /etc/resolv.conf

7. Replace the content of the file with the following:

use google for dns
nameserver 8.8.8.8
nameserver 8.8.4.4

8. When complete, save and close your file before rebooting your server to allow the
changes to take immediate effect. To do this, return to your console and type:

reboot

9. On a successful reboot, you can now check your new hostname and FQDN by
typing the following commands and waiting for the response:

hostname --fqdn

10. To test if we can resolve domain names to IP addresses using our static DNS
server addresses, use the following command:

ping -c 10 google.com

https://technet24.ir

How it works...
A hostname is a unique label created to identify a machine on a network. It is restricted
to alphanumeric-based characters, and making a change to your server's hostname can
be achieved by using the hostnamectl command. A DNS server is used to translate
domain names to IP addresses. There are several public DNS servers available; in a
later recipe, we will build our own DNS service.

So, what have we learned from this experience?

In the first stage of the recipe, we changed the current hostname used by our server with
the hostnamectl command. This command can set three different types of hostnames.
Using the command with the set-hostname parameter will set the same name for all
three hostnames: the high-level pretty hostname, which might include all kinds of
special characters (for example, Lennart's Laptop), the static hostname which is
used to initialize the kernel hostname at boot (for example lennarts-laptop), and the
transient hostname, which is a default received from network configurations.

Following this, we set the FQDN of our server. A FQDN is the hostname along with a
domain name after it. A domain name gets important when you are running a private
DNS, or allowing external access to your server. Besides using a DNS server setting the
FQDN can be achieved by updating the hosts file found at /etc/hosts.

This file is used by CentOS to map hostnames to an IP address, and it is often found to
be incorrect on a new, un-configured, or recently installed server. For this reason, we
first had to find out the IP address of the server using ip addr list.

An FQDN should consist of a short hostname and the domain name. Based on the
example shown in this recipe, we set the FQDN for a server named henry, whose IP
address is 192.168.1.100 and domain name is henry.com.

Saving this file would arguably complete this process. However, because the kernel
makes a record of the hostname during the boot process, there is no choice but to reboot
your server before you can use the changed settings.

Next, we opened the system's resolv.conf file, which keeps the IP addresses of the
system's DNS servers. If your server does not use or have any DNS records, your
system is not able to use domain names for network destinations in any program at all.
In our example, we entered the public Google DNS server IP addresses, but you are

allowed to use any DNS server you want or have to use (often in a cooperate
environment, behind a firewall, you have to use internal DNS server infrastructures). On
a successful reboot, we confirmed your new settings by using the hostname command,
which can print out the hostname or the FQDN based on the parameters given.

So, in conclusion, you can say that this recipe has not only served to show you how to
rename your server and resolve the network, but has also showed you the difference
between a hostname and domain name:

As we have learned, a server is not only known by the use of a shorter, easier-to-
remember, and quicker-to-type single-word-based host name, it also consists of three
values separated with a period (for example jimi.henry.com). The relationship between
these values may have seemed strange at first, especially where many people would
have seen them as a single value, but by completing this recipe you have discovered that
the domain name remains distinct from the hostname by virtue of being determined by
the resolver subsystem, and it is only by putting them together that your server will yield
the FQDN of the system as a whole.

https://technet24.ir

There's more...
The hosts file consists of a list of IP addresses and corresponding hostnames, and if
your network contains computers whose IP addresses are not listed in an existing DNS
record, then in order to speed up your network it is often recommended that you add
them to this file.

This can be achieved on any operating system, but to do this on CentOS, simply open the
hosts file in your favorite text editor, as shown next:

vi /etc/hosts

Now, scroll down to the bottom of the file and add the following values by substituting
the domain names and IP addresses shown here with something more appropriate to
your own needs:

192.168.1.100 www.example1.lan
192.168.1.101 www.example2.lan

You can even use external address such as:

83.166.169.228 www.packtpub.com

This method provides you with the chance to create mappings between domain names
and IP addresses without the need to use a DNS, and it can be applied to any
workstation or server. The list is not restricted by size, and you can even employ this
method to block access to certain websites by simply re-pointing all requests to visit a
known website to a different IP address. For example, if the real address of
www.website.com is 192.168.1.200 and you want to restrict access to it, then simply
make the following changes to the hosts file on the computer that you want to block from
access:

127.0.0.1 www.website.com

It isn't failsafe, but in this instance anyone trying to access www.website.com on this
system will automatically be sent to 127.0.0.1, which is your local network address,
so this will just block access.

When you have finished, remember to save and close your file in the usual way before
proceeding to enjoy the benefits of faster and safer domain name resolution across any
available network.

https://technet24.ir

Building a static network connection
In this recipe, we will learn how to configure a static IP address for a new or existing
CentOS server.

While a dynamically assigned IP address or DHCP reservation may be fine for most
desktop and laptop users, if you are setting up a server, it is often the case that you will
require a static IP address. From web pages to e-mail, databases to file sharing, a static
IP address will become a permanent location from which your server will deliver a
range of applications and services, and it is the intention of this recipe to show you how
easily it can be achieved.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice.

https://technet24.ir

How to do it...
For the purpose of this recipe, you will be able to find all the relevant files in the
directory, /etc/sysconfig/network-scripts/. First, you need to find out the correct
name of the network interface that you want to set as static. If you need to set more than
one network interface as static, repeat this recipe for every device.

1. To do this, log in as root and type the following command to get a list of all of your
system's network interfaces:

ip addr list

2. If you have only one network card installed, it should be very easy to find out its
name; just select the one not named lo (which is the loopback device). If you got
more than one, having a look at the IP addresses of the different devices can help
you choose the right one. In our example, the device is called enp0s3.

3. Next, make a backup of the network interface configuration file (change the enp0s3
part accordingly, if your network interface is named differently):

cp /etc/sysconfig/network-scripts/ifcfg-
enp0s3/etc/sysconfig/network-scripts/ifcfg-enp0s3.BAK

4. When you are ready to proceed, open the following file in your favorite text editor
by typing what is shown next:

vi /etc/sysconfig/network-scripts/ifcfg-enp0s3

5. Now, work down the file and apply the following changes:

NM_CONTROLLED="no"
BOOTPROTO=none
DEFROUTE=yes
PEERDNS=no
PEERROUTES=yes
IPV4_FAILURE_FATAL=yes

6. Now, add your IP information by customizing the values of XXX.XXX.XXX.XXX as
required:

IPADDR=XXX.XXX.XXX.XXX
NETMASK= XXX.XXX.XXX.XXX
BROADCAST= XXX.XXX.XXX.XXX

7. We must now add a default gateway. Typically, this should be the address of your
router. To do this, simply add a new line at the bottom of the file, as shown next,

and customize the value as required:

GATEWAY=XXX.XXX.XXX.XXX

8. When ready, save and close the file before repeating this step for any remaining
Ethernet devices that you want to make static. When doing this, remember to assign
a different IP address to each device.

9. When finished, save and close this file before restarting your network service:

systemctl restart network

https://technet24.ir

How it works...
In this recipe, you have seen the process associated with changing the state of your
server's IP address from a dynamic value obtained from an external DHCP provider, to
that of a static value assigned by you. This IP address will now form a unique network
location from which you will be able to deliver a whole host of services and
applications. It is a permanent modification, and yes, you could say that the process
itself was relatively straightforward.

So, what have we learned from this experience?

Having started the recipe by identifying your network interface name of choice and
creating a backup of the original Ethernet configuration files, we then opened the
configuration file located at /etc/sysconfig/network-scripts/ifcfg-XXX (with
XXX being the name of your interface, for example, enp0s3). As being static no longer
requires the services of the network manager, we disabled NM_CONTROLLED by setting
the value to no. Next, as we are in the process of moving to a static IP address,
BOOTPROTO has been set to none, as we are no longer using DHCP. To complete our
configuration changes, we then moved on to add our specific network values and set the
IP address, the netmask, broadcast, and the default gateway address.

In order to assist the creation of a static IP address, the default gateway is a very
important setting in as much as it allows the server to contact the wider world through a
router.

When finished, we were asked to save and close the file before repeating this step for
any remaining Ethernet devices. Having done this, we were then asked to restart the
network service in order to complete this recipe and to enable our changes to take
immediate effect.

Becoming a superuser
In this recipe, we will learn how to provide nominated users or groups with the ability
to execute a variety of commands with elevated privileges.

On CentOS Linux, many files, folders, or commands can only be accessed or executed
by a user called root, which is the name of the user who can control everything on a
Linux system. Having one root user per system may suit your needs, but for those who
want a greater degree of flexibility, a solid audit trail, and the ability to provide a
limited array of administrative capabilities to a select number of trusted users, you have
come to the right place. It is the purpose of this recipe to show you how to activate and
configure the sudo (superuser do) command.

https://technet24.ir

Getting ready
To complete this recipe, you will require a minimal installation of the CentOS 7
operating system with root privileges. It is assumed that your server maintains one or
more users (other than root) who qualify for this escalation in powers. If you did not
create a system user account during installation, please do so by first applying the
recipe, Managing users and their groups, in Chapter 3, Managing the System.

How to do it...
To start this recipe, we will first test the sudo command with a non-privileged user.

1. To begin, log in to your system using a non-root user account, then type the
following to verify that sudo is not enabled (use your user account's password
when asked):

sudo ls /var/log/audit

2. This will print the following error output with <username>, which is the user you
are currently logged in with:

<username> is not in the sudoers file. This incident will be
reported.

3. Now, log out the system user using the command:

logout

4. Next, log in as root and use the following command to give the non-root user sudo
power (change <username> appropriately):

usermod -G wheel <username>

5. Now, you can test if sudo is working by logging out root again and re-logging in
the user from step 1, and then trying again:

sudo ls /var/log/audit

6. Congratulations, you've now set a normal user to have sudo powers and can view
and execute files and directories restricted to the root user.

https://technet24.ir

How it works...
Unlike some Linux distributions, CentOS does not provide sudo by default. Instead, you
are typically allowed to access restricted parts of the system with the root user only.
This offers a certain degree of security, but for a multi-user server there is little to no
flexibility unless you simply provide these individuals with full administrative root
access permissions. This is not advisable, and for this reason it was the purpose of this
recipe to show you how to provide one or more users with the right to execute
commands with elevated privileges.

So, what did we learn from this experience?

We started by logging in to the system with a normal user account having no root
privileges or sudo powers. With this user, we then tried to list a directory that normally
only the root user is allowed to see, so we applied the sudo command on it. It failed,
giving us the error that we are not in the sudoers list.

The sudo command provides nominated users or groups with the ability to execute a
command as if they were the root user. All actions are recorded (in a file called
/var/log/secure), so there will be a trace of all the commands and arguments used.

We then logged in as the true root user and added a group called wheel to the system
user that we wanted sudo rights for. This group is used as a special administration group
and every member of it is granted sudo rights automatically.

From now on, the nominated user can implement sudo in order to execute any command
with elevated privileges. To do this, the user would be required to type the word sudo
before any command, for example, they could run the following command:

sudo yum update

They will be asked to confirm their user password (not the root password!), and after
successful authentication the program will be executed as the user root.

Finally, we can say that there are three ways to become root on a CentOS Linux system:

First, to log in as the true user root to the system. Second, you can use the command, su
– root, while any normal system user is logged in, giving the root user's password to
switch to a root shell prompt permanently. Third, you can give a normal user sudo rights
so that they can execute single commands using their own passwords as if they were the

root user, while staying logged in as themselves.

Note

sudo (superuser do) should not be confused with the su (substitute user) command,
which allows you to switch to another user permanently instead of executing only single
commands as you would do being the root user.

The sudo command allows great flexibility for servers that have a lot of users, where
one administrator is not enough to manage the whole system.

https://technet24.ir

Customizing your system banners and
messages
In this recipe, we will learn how to display a welcome message if a user successfully
logs in to our CentOS 7 system using SSH or console, or opens a new terminal window
in a graphical window manager. This is often used to show the user informative
messages, or for legal reasons.

Getting ready
To complete this recipe, you will require a minimal installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice.

https://technet24.ir

How to do it...
1. To begin, log in to your system using your root user account and create the

following new file with your favorite text editor:

vi /etc/motd

2. Next, we will put in the following content in this new file:

###
This computer system is for authorized users only.
All activity is logged and regularly checked.
Individuals using this system without authority or
in excess of their authority are subject to
having all their services revoked...
###

3. Save and close this file.
4. Congratulations, you have now set a banner message for whenever a user

successfully logs in to the system using ssh or a console.

How it works...
For legal reasons, it is strongly recommended that computers display a banner before
allowing users to log in; lawyers suggest that the offense of unauthorized access can
only be committed if the offender knows at the time that the access he intends to obtain
is unauthorized. Login banners are the best way to achieve this. Apart from this reason,
you can provide the user with useful system information.

So, what did we learn from this experience?

We started this recipe by opening the file, /etc/motd, which stands for message of the
day; this content will be displayed after a user logged in a console or ssh. Next, we put
in that file a standard legal disclaimer and saved the file.

https://technet24.ir

There's more...
As we have seen, the /etc/motd file displays static text after a user successfully logs in
to the system. If you want to also display a message when an ssh connection is first
established, you can use ssh banners. The banner behavior is disabled in the ssh daemon
configuration file by default, which means that no message will be displayed if a user
establishes an ssh connection. To enable this feature, log in as root on your server and
open the /etc/ssh/sshd_config file using your favorite text editor, and put in the
following content at the end of the file:

Banner /etc/ssh-banner

Then, create and open a new file called /etc/ssh-banner, and put in a new custom ssh
greeting message.

Finally, restart your ssh daemon using the following line:

systemctl restart sshd.service

The next time someone establishes an ssh connection to your server, this new message
will be printed out.

The motd file can only print static messages and some system information details, but it
is impossible to generate real dynamic messages or use bash commands in it if a user
successfully logs in.

Also, motd does not work in non-login shells, such as when you open a new terminal
within a graphical window manager. In order to achieve this, we can create a custom
script in the /etc/profile.d directory. All scripts in this directory get executed
automatically if a user logs in to the system. First, we delete any content in the
/etc/motd file, as we don't want to display two welcome banners. Then, we open the
new file, /etc/profile.d/motd.sh, with our text editor and create a custom message,
such as the following, where we can use bash commands and write little scripts (use the
back ticks to run bash shell commands in this file):

#!/bin/bash
echo -e "
##################################
#
Welcome to `hostname`, you are logged in as `whoami`
This system is running `cat /etc/redhat-release`

kernel is `uname -r`
Uptime is
`uptime | sed 's/.*up ([^,]*), .*/1/'`
Mem total `cat /proc/meminfo | grep MemTotal | awk {'print $2'}` kB
###################################"

https://technet24.ir

Priming the kernel
The Linux kernel is a program that constitutes the central core of the operating system. It
can directly access the underlying hardware and make it available to the user to work
with it using the shell.

In this recipe, we will learn how to prime the kernel by working with dynamically
loaded kernel modules. Kernel modules are device driver files (or filesystem driver
files) that add support for specific pieces of hardware so that we can access them.

You will not work very often with kernel modules as a system administrator, but having
a basic understanding of them can be beneficial if you have a device driver problem or
an unsupported piece of hardware.

Getting ready
To complete this recipe, you will require a minimal installation of the CentOS 7
operating system with root privileges.

https://technet24.ir

How to do it...
1. To begin, log in to your system using your root user account, and type the following

command in order to show the status of all Linux kernel modules currently loaded:

lsmod

2. In the output, you will see all loaded device drivers (module); let's see if a cdrom
and floppy module have been loaded:

lsmod | grep "cdrom\|floppy"

3. On most servers, there will be the following output:

cdrom 42556 1 sr_mod
floppy 69417 0

4. Now, we want to show detailed information about the sr_mod cdrom module:

modinfo sr_mod

5. Next, unload these two modules from the kernel (you can only do this if the module
and hardware have been found and loaded on your system; otherwise skip this
step):

modprobe -r -v sr_mod floppy

6. Check if the modules have been unloaded (output should be empty now):

lsmod | grep "cdrom\|floppy"

7. Now, to show a list of all kernel modules available on your system, use the
following directory where you can look around:

ls /lib/modules/$(uname -r)/kernel

8. Let's pick a module from the subfolder /lib/modules/$(uname -
r)/kernel/drivers/ called bluetooth and verify that it is not loaded yet
(output should be empty):

lsmod | grep btusb

9. Get more information about the module:

modinfo btusb

10. Finally, load this bluetooth USB module:

modprobe btusb

11. Verify again that it is loaded now:

lsmod | grep "btusb"

https://technet24.ir

How it works...
Kernel modules are the drivers that your system's hardware needs to communicate with
the kernel and operating system (also, they are needed to load and enable filesystems).
They are loaded dynamically, which means that only the drivers or modules are loaded
at runtime, which reflects your own custom specific hardware.

So, what did we learn from this experience?

We started using the lsmod command to view all the currently loaded kernel modules in
our system. The output shows three columns: the module name, the amount of RAM the
module occupies while loaded, and the number of processes this module is used by and
a list of dependencies of other modules using it. Next, we checked if the cdrom and
floppy modules have been loaded by the kernel yet. In the output, we saw that the
cdrom module is dependent on the sr_mod module. So, next we used the modinfo
command to get detailed information about it. Here, we learned that sr_mod is the SCSI
cdrom driver.

Since we only need the floppy and cdrom drivers while we first installed the base
system we can now disable those kernel modules and save us some memory. We
unloaded the modules and their dependencies with the modprobe -r command and
rechecked whether this was successful by using lsmod again.

Next, we browsed the standard kernel module directory (for example,
/lib/modules/$(uname -r)/kernel/drivers). The uname substring command
prints out the current kernel version so that it makes sure that we are always listing the
current kernel modules after having installed more than one version of the kernel on our
system.

This kernel module directory keeps all the available modules on your system structured
and categorized using subdirectories. We navigated to drivers/bluetooth and picked
the btusb module. Doing modinfo on the btusb module, we found out that it is the
generic bluetooth USB driver. Finally, we decided that we needed this module, so we
loaded it using the modprobe command again.

There's more...
It's important to say that loading and unloading kernel modules using the modprobe
command is not persistent; this means that if you restart the system, all your changes to
kernel modules will be gone. To load a kernel module at boot time create a new
executable script file, /etc/sysconfig/modules/<filename>.modules, where
<filename> is a name of your choice. There you put in modprobe execution commands
just as you would on the normal command line. Here is an example of additionally
loading the bluetooth driver on startup, for example
/etc/sysconfig/modules/btusb.modules:

#!/bin/sh
if [! -c /dev/input/uinput] ; then
exec /sbin/modprobe btusb >/dev/null 2>&1
fi

Finally, you need to make your new module file executable via the following line:

chmod +x /etc/sysconfig/modules/btusb.modules

Recheck your new module settings with lsmod after reboot.

To remove a kernel module at boot time for example sr_mod, we need to blacklist the
module's name using the rdblacklist kernel boot option. We can set this option by
appending it to the end of the GRUB_CMDLINE_LINUX directive in the GRUB2
configuration file /etc/default/grub so it will look like:

GRUB_CMDLINE_LINUX="rd.lvm.lv=centos/root rd.lvm.lv=centos/swap
crashkernel=auto rhgb quiet rdblacklist=sr_mod"

If you need to blacklist multiple modules, the rdblacklist option can be specified
multiple times like rdblacklist=sr_mod rdblacklist=nouveau.

Next recreate the GRUB2 configuration using the grub2-mkconfig command (to learn
more read the Getting started and customizing the boot loader recipe in Chapter 15,
Installing CentOS).

grub2-mkconfig -o /boot/grub2/grub.cfg

Finally we also need to blacklist the module name using the blacklist directive in a
new.conf file of your choice in the /etc/modprobe.d/ directory for example:

https://technet24.ir

echo "blacklist sr_mod" >> /etc/modprobe.d/blacklist.conf

Chapter 3. Managing the System
In this chapter, we will cover the following topics:

Knowing and managing background services
Troubleshooting background services
Tracking system resources with journald
Configuring journald to make it persistent
Managing users and their groups
Scheduling tasks with cron
Synchronizing files and doing more with rsync
Maintaining backups and taking snapshots
Monitoring important server infrastructure
Taking control with Git and Subversion

https://technet24.ir

Introduction
This chapter is a collection of recipes that provides for the need to maintain a
performance-based server solution. From monitoring your free disk space, to working
with system services and managing the synchronization of remote files, the purpose of
this chapter is to show you how quickly and easily you can get to grips with the task of
server maintenance.

Knowing and managing your
background services
Linux system services are one of the most fundamental concepts of every Linux server.
They are programs which run continuously in your system, waiting for external events to
process something or do it all the time. Normally, when working with your server, a
system user will not notice the existence of such a running service because it is running
as a background process and is therefore not visible. There are many services running
all the time on any Linux server. These can be a web server, database, FTP, SSH or
printing, DHCP, or LDAP server to name a few. In this recipe, we will show you how to
manage and work with them.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet to facilitate the download of additional packages. Some
commands shown here use less navigation in their output. Read the Navigating text files
with less recipe from Chapter 2, Configuring the System to learn how to browse them.

How to do it...
systemctl is a program that we will use to manage all our background service tasks in
a CentOS 7 system. Here, we will show you how to use it, taking the Apache web
server service as an example in order to get familiar with it. For a full explanation of
Apache, read Chapter 12, Providing Web Services:

1. First, we log in as root and install the Apache web server package:

yum install httpd

2. Next we will check Apache's service status:

systemctl status httpd.service

3. Start the webserver service in the background and print out it's status again:

systemctl start httpd.service
systemctl status httpd.service

4. Next, let's print out a list of all services currently running in the background of your
system; in this list, you should identify the httpd service you just started:

systemctl -t service -a --state running

5. Now, let's make a backup of the Apache configuration file:

cp /etc/httpd/conf/httpd.conf /etc/httpd/conf/httpd.conf.BAK

6. Now, we will make some changes to the main Apache configuration file using sed:

sed -i 's/Options Indexes FollowSymLinks/Options -Indexes
+FollowSymLinks/g' /etc/httpd/conf/httpd.conf

7. Now, type the following command to stop and start the service and apply our
changes:

systemctl stop httpd.service
systemctl start httpd.service
systemctl status httpd.service

8. Next, let's enable the httpd service to start automatically at boot time:

systemctl enable httpd.service

9. The last command will show how to restart a service:

systemctl restart httpd.service

https://technet24.ir

How it works...
As we have seen, the systemctl utility can be used to take full control of your system's
services. The systemctl is the control program for systemd, which is the system and
service manager in CentOS 7 Linux. The systemctl command can be used for a variety
of other tasks as well, but here we concentrate on managing services.

So, what have we learned from this experience?

We started this recipe by logging in as root and installed the Apache web server
package as we want to use it for showing how to manage services in general using the
systemctl program. Apache or the httpd.service, as it is called by systemd, is just
an example we will use; other important services that might be running in a basic server
environment could be sshd.service, mariadb.service, crond.service, and so on.
Afterwards, we checked httpd's current status with the systemctl status command
parameter. The output showed us two fields: Loaded and Active. The Loaded field
tells us if it is currently loaded and if it will automatically be started at boot time; the
Active field denotes whether the service is currently running or not. Next, we showed
how to start a service using systemctl. The command's exact starting syntax for
services is the systemctl start <name of the service>.service.

Note

By starting a service, the program gets detached from the terminal by forking off a new
process that gets moved into the background where it runs as a non-interactive
background process. This is sometimes called daemon.

Next, after we started the Apache webserver daemon, we then used systemctl's status
parameter again to show how the status changes if we run it. The output shows us that it
is currently loaded but disabled on reboot. We also see that it is running, along with the
latest logging output from this service and other detailed information about the process.
To get an overview of all status information for all services on the system, use
systemctl --type service --all. A systemctl service must not be running all the
time. Its state can also be stopped, degraded, maintained, and so on. Next, we used the
following command to get a list of all currently running services on your system:

systemctl -t service -a --state running

As you can see here, we used the -t flag in order to filter only for type service units. As
you may guess, systemctl can not only deal with service units, but also with a lot of

https://technet24.ir

other unit types. systemd units are resources systemd can manage using configuration
files, and which encapsulate information about services, listening sockets, saved system
state snapshots, mounting devices, and other objects that are relevant to the system. To
get a list of all possible unit types, type systemctl -t help. These configuration unit
files reside in special folders in the system, and the type they belong to can be read from
the extension; all the service unit files have the file extension, .service (for example,
device unit files have the extension, .device). There are two places where the system
stores them. All the systemd unit files installed by the basic system during installation
are in /usr/lib/systemd/system, all other services that come from installing
packages such as Apache or for your own configurations should go to
/etc/systemd/system. We can find our Apache service configuration file exactly at
/usr/lib/systemd/system/httpd.service. Next, we showed the user how to stop a
service, which is the opposite of starting it, using the syntax, systemctl stop <name
of the service>. Finally, as a last step, we used systemctl's restart parameter,
which just handles the stopping and starting of a service in one step with less typing.
This is often useful if a service hangs and is unresponsive, and you quickly need to reset
it to get it working. Before showing how to stop and restart a service, we did another
important thing. While the Apache service was running, we changed its main service
configuration file with the sed command, adding an -Indexes option that disables the
directory web site file listings, and which is a common measure to increase the security
of your web server. Since the Apache web server was already running and loading its
configuration into memory during service startup, any changes to this file will never be
recognized by the running service.

Note

Normally, to apply any configuration file change, running services need a full service
restart, because configuration files will normally only be loaded during startup
initialization.

Now, imagine that your web server is reachable from the Internet and at the moment
there are a lot of people accessing your web pages or applications in parallel. If you
restart the Apache normally, the web server will be inaccessible for a while (as long as
it takes to restart the server) as the process will actually end and afterwards start all
over again. All the current users would get HTML 404 error pages if they were to
request something at that moment. Also, all the current session information would have
gone; imagine you have an online web shop where people use shopping carts or logging
in. All this information would also be gone. To avoid the disruption of important
services such as the Apache web server, some of these services have a reload option

(but not every service has this feature!) that we can apply instead of the restart
parameter. This option just reloads and applies the service's configuration file, while
the service itself stays online and does not get interrupted during execution. For Apache,
you can use the following command-line: systemctl reload httpd.service. To get
a list of all the services that have the reload functionality, use the following lines:

grep -l "ExecReload" /usr/lib/systemd/system/*.service
/etc/systemd/system/*.service

So, having completed this recipe, we can say that we now know how to work with the
basic systemctl parameters to manage services. It can be a very powerful program and
can be used for much more than only starting and stopping services. Also, in this recipe,
we have used different names that all mean the same: system service, background
process, or daemon.

https://technet24.ir

There's more...
There is another important unit type called target. Targets are also unit files and there
are quite a number of them already available in your system. To show them, use the
following:

ls -a /usr/lib/systemd/system/*.target /etc/systemd/system/*.target

Simply said, targets are collections of unit files such as services or other targets. They
can be used to create runlevel-like environments, which you may know from earlier
CentOS versions. Runlevels define which services should be loaded at which system
state. For example, there is a graphical state, or a rescue mode state, and so on. To see
how the common runlevels correspond to our targets, run the following command, which
shows us all the symbolic links between them:

ls -al /lib/systemd/system | grep runlevel

Targets can be dependent on other targets; to get a nice overview of target
dependencies, we can run the following command to show all dependencies from the
multi-user target to all the other targets (green means active and red means inactive):

systemctl list-dependencies multi-user.target

You can show the current target that we are in at the moment with:

systemctl get-default

You can also switch to another target:

systemctl set-default multi-user.target

Troubleshooting background services
Often, a big part of every system administrator's work is troubleshooting the server
when something goes wrong. This is especially true for your system's services, as they
are constantly running and processing information all the time. Services can be
dependent on other services and on the server's system, and there will be situations in
your administrator's life where the system services will fail or refuse to start. Here, in
this recipe, we will show you how to troubleshoot them if something goes wrong.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice;
you should also have completed the Knowing and managing your background services
recipe from this chapter, where we installed the Apache web server.

How to do it...
In order to show you how to troubleshoot services, we will introduce a random error in
the Apache service's configuration file and then show you how to troubleshoot and fix
it:

1. Log in as root and type the following command to append content to the
httpd.conf:

echo "THIS_IS_AN_ERRORLINE" >> /etc/httpd/conf/httpd.conf

2. Next, reload the httpd service and show its output:

systemctl reload httpd.service
systemctl status httpd.service -l

3. Let's revert this error line:

sed -i 's/THIS_IS_AN_ERRORLINE//g' /etc/httpd/conf/httpd.conf

4. Now, restart the service again:

systemctl reload httpd.service
systemctl status httpd.service

https://technet24.ir

How it works...
In this fairly short recipe, we showed you how an example service will behave if it
contains errors, and what you can do to fix it to get you started. There are a lot of
different scenarios where something can go wrong when services malfunction, and it
can be a big part of a system administrator's job to solve those kinds of problem.

So, what have we learned from this experience?

We started this recipe by introducing a line of text in the main Apache configuration file,
which does not contain any valid configuration syntax, and therefore the httpd service
cannot interpret it. Then, we used the systemctl reload parameter to reload our
server's configuration file. As said before, not all services have the reload option, so if
your service of interest does not support this, use the restart parameter instead. Since
Apache will try to reload the configuration file with our current changes, it will refuse
to accept the new configuration because of the wrong syntax that we introduced. Since
we are just reloading the configuration, the running Apache process will not be affected
by this problem and will stay online using its original configuration. The systemctl
parameter will print out the following error message, giving us a hint of what to do next:

Job for httpd.service failed. Take a look at systemctl status
httpd.service and journalctl -xe for details.

As suggested by the error output, the systemctl status parameter is a very powerful
tool to see what's going on behind the scenes with this service, and to try and find out
the reason for any failure (here you can also see that Apache is still running). If you start
the systemctl status with the -l flag, it prints out an even longer version of the
output, which can help you even more.

The output of this command shows us the exact reason for failing the configuration
reload, so we can easily trace down the cause of the problem (the output has been
truncated):

AH00526: Syntax error on line 354 of /etc/httpd/conf/httpd.conf:
Invalid command ERRORLINE, perhaps misspelled or defined by a module,
is not included in the server configuration.

This output is part of the complete journald log information. If you want to read more
about it, please refer to the Tracking system resources with journald recipe in this
chapter. So, with this very useful information from the output, we can easily spot the

problem and redo the introduction of ERRORLINE using the sed command and reload the
service again; this time everything will work fine.

So, in summary, we can say that the systemctl status command is a very comfortable
command that can be tremendously helpful in finding out problems with your service.
Most services are very sensitive to syntax errors, and sometimes it can be just a
misplaced space character that caused the service to refuse to work. Therefore, system
administrators must work precisely all the time.

https://technet24.ir

Tracking system resources with journald
Log files contain system messages and output from services, the kernel, and all kinds of
running applications. They can be very useful in many situations, for instance, to
troubleshoot system problems and monitor services or other system resources, or doing
security forensics after a breach of security. In this recipe, you will learn the basics of
how to work with logging services using journald.

Getting ready
To complete this recipe, you will need a working installation of the CentOS 7 operating
system with root privileges and a console-based text editor of your choice. Also, setting
the time and date correctly is very crucial for the whole logging concept, so please
apply the Synchronizing the system clock with NTP and the chrony suite recipe from
Chapter 2, Configuring the System before using this recipe. Also, a basic knowledge of
systemd and units can be advantageous. This is covered in the Knowing and managing
background services recipe in this chapter. Journalctl uses less navigation to show
output; please read the Navigating text files with less recipe from Chapter 2,
Configuring the System if you don't know how to work with it.

https://technet24.ir

How to do it...
On CentOS 7, we have a choice between two logging mechanisms called rsyslog and
the journald log system, which is a component of the new systemd system manager,
for viewing and managing logging information. Here, we will show you how to work
with the journalctl command, which is the controlling client for the journald
daemon:

1. To begin, log in as root and type the following command to view the whole journal
log:

journalctl

2. Next, we want to show only the messages within a specific time frame (change the
date accordingly):

journalctl --since "2015-07-20 6:00:00" --until "2015-07-20
7:30:00"

3. Afterwards, we want to filter the log system by all messages from the sshd service:

journalctl -u sshd.service --since "yesterday"

4. Now, we want to show only messages with type error:

journalctl -p err -b

5. To get the most verbose version of journalctl, use the verbose option:

journalctl -p err -b -o verbose

6. To get a current view on the log output, use the following command (this is not less
navigation—use the key combination Ctrl+C to exit this view):

journalctl -f

How it works...
In CentOS 7, we can use the new journald logging system, which is a part of the
systemd system management. It is a centralized tool that will log just about everything
on your system including all output from the early boot over kernel to services and all
program messages. The main advantage over other logging mechanisms is that you don't
have to configure logging for each of your services or other resources, because
everything is already set up for all applications that are controlled and running through
the centralized systemd system.

So, what have we learned from this experience?

We began our journey by running the journalctl command, which when applied
without any parameters show us the complete journal log, which includes everything
from starting your system and capturing the first boot log entries to the latest system
messages in the order they appeared, appending new messages to the bottom
(chronological order). If your system has been running for a while, it can contain
hundreds of thousands of lines of logging data, and is very impractical to work with in
this raw form.

This output is constantly captured by the journald daemon, but is not written to text
files as other logging systems such as rsyslog do it. Instead, it uses a structured and
indexed binary file, which stores a lot of additional meta information such as user Id,
timestamp, and so on, and which makes it easy to transform into all kinds of different
output formats. This can be very convenient if you want to further process journal
information by another tool. As you cannot read binary files, you will need the client
journalctl for it, which is used to query the journald database. Since it is almost
impossible to parse through this sheer amount of data manually, we then take advantage
of journalctl's rich filtering options. First, we used the --since and --until
parameters to extract all log messages within a specific time frame. The syntax for
specifying the time and date here is very flexible and understands phrases such as
yesterday or now, but we stick with the simple date syntax, YYYY-MM-DD HH:MM:SS.
Next, we used journalctl's -u parameter to filter log messages for a specific unit type.
We used it to filter messages coming from the sshd daemon service. We added another
filter using the --since parameter, which tightens the result of the -u unit filter even
more, outputting only sshd service results that occurred yesterday. The next filter we
applied was using the parameter string, -p err -b, which filters the log database by
priority or log level. Every log message can have an associated priority that determines

https://technet24.ir

the importance of the message. To find out more about different log levels, refer to the
manual using the command line man 3 syslog (if this manual is not available, install it
by typing yum install man-pages). Our command will print out all log messages
labeled as error or above, which includes: error, critical, alert, or emergency.

Next, we used the same command parameters but added -o verbose, which gives the
most verbose output of logging information. Lastly we presented the -f parameter (for
follow), which will give us a live view of the latest log messages and leaves this
connection open, appending any new messages to the end of the output when they occur.
This is often useful to see how the system reacts if you are currently testing out settings
or starting/stopping services.

Summing up, one can say that, on CentOS 7, two logging systems do coexist: the older
rsyslog and the newer journald, with the latter being your primary tool of choice for
troubleshooting your system. But remember that on CentOS 7, journald is not a full
replacement for rsyslog though. There are some rsyslog features that are missing in
journald, and also there are lots of tools and scripts, such as log digesting tools or
monitoring suites such as Nagios, that work exclusively with rsyslog.

System administrators often face a big challenge troubleshooting system errors or
unexpected server behaviors. Often, it's not easy to find the single point of failure by
searching through massive amounts of different log file texts while applying regular
expression searches or Linux command line kung fu. Journald provides a very
convenient alternative by providing a powerful and well-defined centralized querying
system to get the log file analysis done quickly and efficiently!

Configuring journald to make it
persistent
Journald's advantages over other logging systems such as rsyslog is that it is very
efficient and logs just about everything on your system automatically without the need to
configure anything, because it is a part of the systemd suite. The main disadvantage is
that all journald log information will get lost after a system's restart. Journald logging
can produce huge amounts of data and by default all logging information is only kept in
memory, which is not very practicable if you need to access older log information or
analyze causes of system crash reboots. Here, in this recipe, we show you how to
configure journald to make it persistent.

https://technet24.ir

Getting ready
To complete this recipe, you will require a minimal installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice.

How to do it...
To begin this recipe, we need to create a location that will hold our persistent journal
database:

1. Log in as the root user and create the following directory:

mkdir /var/log/journal

2. Next, add the new directory to journald to use it as a storage location and fix
permissions:

systemd-tmpfiles --create --prefix /var/log/journal

3. Now, restart journald:

systemctl restart systemd-journald

4. Finally, to check whether the log survived the reboot, restart the computer and type
the following:

journalctl --boot=-1

https://technet24.ir

How it works...
We started this recipe by creating the new directory, /var/log/journal. By default,
journald writes its log database to /run/log/journal, which is a directory only for
runtime information, and its content does not survive system reboots. Afterwards, we
used the systemd-tmpfiles command to set up our new directory for journald.
Finally, we restarted the journald server daemon to apply our changes to the system.
To test if persistence is working, restart your server and afterwards use journalctl –
boot=-1. This will show us all journal information from the last boot. If persistence is
not working, it will print out the following error; otherwise it will correctly show all
journal messages before the last boot:

Failed to look up boot -1: Cannot assign requested address

In this fairly simple recipe, we have shown how to make journald persistent over
system reboots. This is really useful if you need to review older log files from the past,
which can sometimes help you find out problems, for example, the roots of past
hardware failures.

Managing users and their groups
In this recipe, we will learn how to manage your system's users and groups on CentOS
7. Essential user and group managing skills are one of the most important CentOS
system administrator fundamentals.

https://technet24.ir

Getting ready
To complete this recipe, you will need a working installation of the CentOS 7 operating
system with root privileges and a console-based text editor of your choice.

How to do it...
This recipe shows you how to manage users and groups by learning how to add, delete,
and modify them:

1. To begin this recipe, we log in as root and type the following command to get a list
of all the users known to the system: cat /etc/passwd.

2. Now, show the root user ID (UID) and group ID (GID):

id root

3. Next, we will run the following command to add a new user to the system
(exchange your_new_username with a username of your choice):

useradd your_new_username

4. However, in order to complete this process, you will be expected to provide a
suitable password. To do this, type the following command (change
your_new_username with a username of choice) than enter a secure password
when prompted:

passwd your_new_username

Note

Passwords should not be less than six characters, but should not be longer than
sixteen characters. They should consist of alphanumeric values, and for obvious
reasons you must avoid the use of whitespaces. Do not use a dictionary-based
word and refrain from using a known or obvious phrase.

5. Next, create a new group and give it a special name:

groupadd your_new_group

6. Then, we add our new user to this new group:

usermod -G your_new_group your_new_username

7. Finally, let's print the user ID and group IDs of our new user to see what has
changed:

id your_new_username

https://technet24.ir

How it works...
The purpose of this recipe was to create a new user and group and show how to connect
them together.

So, what did we learn from this experience?

First, we printed out the content of file /etc/passwd to show all the current users in the
system. This list not only contains normal user-accounts that belong to real persons, but
also accounts that are used to control and own a specific application or service. Then,
we used the id command to display the unique user UID and GID for our existing user
root. In Linux, every user can be identified by their UID and GID, and every file in the
filesystem has specific permission settings that manage its access for the file owner,
group owner, and the rest of the users. For each of those three groups, you can enable or
disable read, write, and execute permissions using the command, chmod (use man
chmod to learn more, and also check out man chown). The owner and group permissions
correspond to a UID and GID that we can display for every file using ls -l.

Next, we issued the useradd command that required us to supply a suitable name for the
new user, which in turn will enable the server to establish the new identity with a
default set of values and criteria that includes a user ID, home directory, primary group
(GID), and also set the default shell to bash. Completing this process is simply a matter
of confirming a suitable password. To remove a user, there is the opposite command,
userdel, which works similarly but can be given the option -f to remove the home
directory instead of leave it on the system. Next, we used the groupadd command,
which, as the name implies, will create a new group and associate a new unique GID to
it. Afterwards, we made our user in question a member of the new group that we created
before using the usermod -G command. As said before, each user has exactly one
unique UID and GID. The first group is the primary group and is mandatory; however a
user can belong to a number of different groups, which are then called secondary
groups. The primary group is needed when creating a new file because it will set the
GID and UID of the user creating it. To delete a group, we can use the groupdel
command. Finally, we used the id command again on our new user to show its UID,
primary GID, and the new secondary GID groups we added to it.

You are now able to fully control your user and groups with just a few commands:
useradd, usermod, userdel, groupadd, groupmod, and groupdel.

https://technet24.ir

Scheduling tasks with cron
In this recipe, we will investigate the role of server automation and the convenience of
running specific tasks at predefined periods by introducing you to the time-based job
scheduler known as cron. Cron allows for the automation of tasks by enabling the
administrator to determine a predefined schedule based on any hour, any day, or any
month. It is a standard component of the CentOS operating system, and it is the purpose
of this recipe to introduce you to the concept of managing recurring tasks in order to take
advantage of this invaluable tool and to make CentOS work for you.

Getting ready
To complete this recipe, you will require a minimal installation of the CentOS 7
operating system with root privileges, and a console-based text editor of your choice.
The crontab program uses Vim for file editing. If you do not know how to work with
Vim, go through the tutorial shown in the recipe Introduction to Vim in Chapter 2,
Configuring the System.

https://technet24.ir

How to do it...
The purpose of this recipe is to create a script that will write the time and date with a
few words of your choice to a text file every five minutes. This may seem to be a
relatively simple exercise, but the intention is to show you that, from such simplicity,
cron can be used to do so much more that will make working with CentOS an absolute
pleasure.

1. To begin this recipe, log in as root and create your first cron job by typing:

crontab -e

2. We will now create a simple cron job that will write the date and time with the
words hello world to a file located at /root/cron-helloworld.txt every five
minutes. To do this, add the following line:

*/5 * * * * echo `date` "Hello world" >>$HOME/cron-helloworld.txt

3. When complete, simply save the file and exit the editor. The system will now
respond with the following message:

crontab: installing
 new crontab

4. The preceding message informs you that the server is now creating the new cron
job and will automatically activate it. You can view the output of the script by
reviewing the file found at /root/cron-helloworld.txt (you have to wait 5
minutes), or by monitoring the logfile found at /var/log/cron (use tail -f
/var/log/cron and Ctrl+C to exit).

How it works...
Cron is the name of a program that enables CentOS users to execute commands or
scripts automatically at a specified time and date. Cron's settings are kept in a user-
specific file called crontab, and as we have seen in this recipe this file can be edited
to create automated tasks as often as they are required.

So what did we learn from this experience?

The example used was very simple, but in many ways this was the purpose of this
recipe. Crontab uses a daemon, crond, which runs constantly in the background and
checks once a minute to see if any of the scheduled jobs need to be executed. If a task is
found, then cron will execute it. To edit an existing crontab file or to create a new
crontab, we use the crontab -e command. To view a list of current cron jobs, you
can type crontab -l. Alternatively, to view a list of the current jobs for another user,
you can type crontab -u username -l. Tasks or jobs are generally referred to as
cron jobs, and by avoiding complication in our first script, it was the intention to show
you that the nature of command construction was very simple. The formation of a cron
job looks like this:

<minute> <hour> <day of the month> <month of the year> <day of the
week> <command>

Entries are separated by a single or tabbed space, and the allowed values are primarily
numeric (that is, 0-59 for a minute, 0-23 for an hour, 1-31 for a day of the month, 1-12
for month of the year, and 0-7 for day of the week). However, in saying this, it is also
true to say that there are more specific operators (/ , -) and cron-specific shortcuts
(that is, @yearly, @daily, @hourly, and @weekly) that do allow for additional
controls. For example, where the / operator is used to step through specified units, it
can be read as every, so in our recipe the use of */5 will run the task every five minutes
while the use of */1 runs the task every minute. As an addition to this, you should be
aware that the use of this syntax will align all commands on the hour. So, with this in
mind, the most suitable template or starting point for anyone wanting to write their first
cron job is to start with a series of five asterisks followed by the command, like this:

* * * * * /absolute/path/to/script.sh

Then, proceed to configure the minute, hour, day, month, and day-of-the-week values as
desired. For example, if you want a particular PHP script to run at 8 P.M. (20:00 hrs) on
every weekday (Monday-Friday), it may look like this:

https://technet24.ir

0 20 * * 1-5 /full/path/to/your/php/script.php

So, with this in mind, and by completing this recipe, you can see how cron can be used
to manage a database backup, run a scheduled system backup, provide support to
websites by activating scripts at predefined intervals, or run various bash scripts and a
whole lot more.

There's more...
To delete or disable a cron job, it is simply a matter of either removing the instruction
from an individual user's cron file or by placing a hash (#) at the beginning of the line.
Individual cron files can be found at /var/spool/cron/<username>, and the use of the
hash will either disable the cron job or allow you to write comments. To completely
remove a crontab file, you can also use crontab -r. For example, if you want to
remove the cron job created in the main recipe, you can log in as root and begin by
typing the command, crontab -e. At this point, you may either remove the entire line
or comment it out, as shown here:

*/15 * * * * echo `date` "Hello world" >>$HOME/cron-helloworld.txt

Next, save the file. There are also some special cron directories in the filesystem for
system-wide cron jobs that will, if you drop a script file in it, run it automatically at a
certain time point. The folders are called cron.daily, cron.hourly, cron.weekly,
and cron.monthly in the /etc directory, and their names refer to the time point that
they are run. Just remove the script from the folder if you don't want to execute it
anymore. Take a look at the Monitoring important server infrastructure recipe for an
example.

https://technet24.ir

Synchronizing files and doing more with
rsync
rsync is a program that can be used to synchronize files and directories across a variety
of local and remote locations. It can interact with multiple operating systems, work over
SSH, provide incremental backups, execute commands on a remote machine, and
replace the need for the cp and scp commands. The rsync program is an invaluable
asset for any system administrator who intends to run a server or manage a network of
computers, as it not only simplifies the process of making backups in general, but it can
be used to action a complete backup solution. For this reason, it is the purpose of this
recipe to offer a suitable starting point for a small utility that will quickly become your
trusted friend.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional packages.

https://technet24.ir

How to do it...
During the course of this recipe, it will be assumed that you know the location of the
source files and directories that you wish to synchronize, and that a suitable destination
is available:

1. To begin this recipe, log in as root and install rsync by typing:

yum install rsync

2. Now, create a target directory for our synchronization (change the folder name
appropriately):

mkdir ~/sync-target

3. To begin the synchronization process, simply repeat the following command by
modifying the value used for /path/to/source/files/ with something more
applicable to your needs:

rsync -avz --delete /path/to/source/files/ ~/sync-target

4. Having used the Return key to confirm the preceding instruction, your system will
now respond with a live report of what is being copied. When this process has
finished, you can then compare both directories to see that the contents are exactly
the same. To do this, use the diff command (if both are the same, no output will be
written):

diff -r /path/to/source/files/ ~/sync-target

How it works...
In this recipe, we considered the use of rsync through the command line. Of course, this
is only one of the many ways that this tool can be used, but by using this approach we
were able to explore a handful of the features provided by this very valuable utility.

So, what did we learn from this experience?

Rsync is not intended to be complicated. It is a fast and efficient file synchronization
tool that is designed to be versatile by giving you complete access to an array of
features on the command line. It can be used to maintain an exact copy (or mirror) of the
source directory on the same machine or on a completely different system, and it does
this by copying all the files once and then only updating the files that have changed the
next time you run it. This can save tremendous bandwidth and should be your primary
tool when copying data over the network. The use of the phrase, --delete, is
important, as it instructs rsync to delete files on the target that do not exist in the
source, while the chosen flags imply that rsync should use -a archive mode in order to
recursively copy files and directories while keeping all permissions and time-based
information; –v)verbosity mode so you can see what is happening; and –z to compress
the data during the file transfer in order to save bandwidth and reduce the amount of
time required to complete the entire process.

As you can see, rsync is very flexible and has many options that go beyond the purpose
of this recipe, but if you want to exclude certain files you could always extend the
original instruction by invoking the --exclude flag. By doing this, you tell rsync to
back up an entire directory but ensure that it does not include a predefined pattern of
files and folders. For example, if you are copying files from your server to a USB
device and you do not want to include large files (such as an .iso image) or ZIP files,
then your command may look similar to this:

rsync --delete -avz --exclude="*.zip" --exclude="*.iso"
/path/to/source/ /path/to/external/disk/

On a final note, there is the subject of verbosity. Verbosity is very useful, but a tendency
to use bytes as its primary unit of measurement can be a source of confusion. So, in
order to change this, you can invoke rsync with the –h (or human readable) option, as
shown next:

rsync -avzh --exclude="home/path/to/file.txt" /home/
/path/to/external/disk/

https://technet24.ir

Maintaining backups and taking
snapshots
In this recipe, we will show you how to do data backups, on a regular basis, that will
take snapshots of some of your system's directory using the crond daemon. This will run
the rsync program at regular intervals to implement a fully automated backup solution.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice. It
is also advantageous if you have read the Synchronizing files and doing more with rsync
and Scheduling tasks with cron recipes in this chapter to get a deeper understanding of
used commands.

How to do it...
It's important to install the rsync program on your server before proceeding with this
recipe.

1. First, log in as root and create a directory where our backups will land:

mkdir /backups

2. Now, we will create the following shell script file and open it for editing:

mkdir ~/bin;vi ~/bin/mybackup.sh

3. Put in the following content, replacing /backups in the environment variable DEST
and SOURCE with the one you would like to backup as well as the recipient's
EMAIL:

#!/bin/bash
SBJT="cron backup report for `hostname -s` from $(date
+%Y%m%d:%T)"
FROM=root@domain
EMAIL=johndoe@internet.com
SOURCE=/root
DEST=/backups
LFPATH=/tmp
LF=$LFPATH/$(date +%Y%m%d_%T)_logfile.log
rsync --delete --log-file=$LF -avzq $SOURCE $DEST
(echo "$SBJT"; echo; cat $LF) | sendmail -f $FROM -t $EMAIL

4. Make the script executable:

chmod a+x /root/bin/mybackup.sh

5. Now, open crontab using:

crontab -e

6. Next, create the following entry by adding the following line to the end of the
document, then save and close it:

30 20 * * * /root/bin/mybackup.sh

https://technet24.ir

How it works...
In this recipe, we have created a full automatic backup solution for a single system
directory, which will create a snapshot of the files at a certain time point. At the time the
backup process is complete you will receive an e-mail informing you that a backup has
been made with a brief review of the actions taken.

So what did we learn from this experience?

We started this recipe by creating a directory where our backup will be placed. Next we
created the actual script and filled it with some commands. Line 1 defines the file as a
bash script, lines 2-6 are variables you can modify and customize to fit your own needs.
lines 7-8 create a path and name for the log file based on the date, and line 9 calls
rsync which will synchronize all our source files to the target directory /backups. It
uses a special --log-file parameter which writes all output to the given file. The final
line (10) sends the content of this log file to an email address.

Remember, you should customize the values as required (that is, change the e-mail
address used, select a source directory, and choose a destination directory, and so on.).
Before it can be used and executed by cron, we made it executable. Finally, we added
this script as a cron job to run on a daily schedule at 20:30 hours. However, as this may
be some hours away, if you would like to test your script right now, you can execute it
on the command line using the following:

/root/bin/mybackup.sh

In conclusion, it will go without saying that a backup should be located on an external
drive or on a separate partition, but having completed this introduction I think you will
agree that rsync is ideally positioned in such a way that it will enable any server
administrator to develop their own policy with regard to maintaining an effective
backup of important data.

Monitoring important server
infrastructure
In this recipe, we will use a small script that will monitor the available filesystem's
disk space periodically using cron, and if it exceeds a certain percentage threshold the
script will send out a mail with a warning message.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice.
You should have read the Scheduling tasks with cron recipe to have a basic
understanding of the principles behind the cron system.

How to do it...
1. To begin this recipe, log in as root and create the following file that will contain

our monitoring script:

vi /etc/cron.daily/monitor_disk_space.sh

2. Now, put in the following content:

#!/bin/bash
EMAIL="root@localhost"
THRESHOLD=70
df -H | grep -vE '^Filesystem|tmpfs|cdrom' | awk '{ print $5 " "
$6 }' | while read output;
do
 usep=$(echo $output | awk '{ print $1}' | cut -d'%' -f1)
 partition=$(echo $output | awk '{ print $2 }')
 if [$usep -ge $THRESHOLD]; then
 (echo "Subject: Alert: Free space low on `hostname -s`, $usep %
used on $partition"; echo)|
 sendmail -t $EMAIL
 fi
done

3. Now, save the file and make it executable:

chmod +x /etc/cron.daily/monitor_disk_space.sh

https://technet24.ir

How it works...
We made this script executable and put it in the /etc/cron.daily directory, which is
all we need to do to run this script automatically every day via the crond service.

This simple script showed us how easy it is to build monitoring scripts, and this can be
a real alternative to installing and configuring big monitoring suites such as Nagios. You
can use the shown script as a starting point to expand on, adding further resources that
are important to monitor, such as CPU load, available RAM, and so on.

We used a script that executes the Linux command df, which is a tool to report file
system disk space usage. From this command's output, the script then parsed the USE%
column (with the Unix tools awk and cut), which gives us the total disk percentage
used. This number will then be compared to a threshold the user can set by editing the
script and changing the environment variable, THRESHOLD. If the extracted percentage
number is higher than our threshold, there will be an email sent to the email address
defined with the environment variable, EMAIL (change appropriately if needed).

Taking control with GIT and Subversion
Document revision control systems or version control systems, as they are sometimes
called, are used for the management of changes to documents. These systems get more
and more important these days as modern work often connects people from around the
globe to collaborate and work together on all kinds of documents (for example,
software source code) making it important to manage the file changes by different
people using revisions. In this recipe, we will show you how to use modern version
control systems such as GIT and Subversion to manage the versioning of config files.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, and a connection to the Internet in order to
facilitate the download of additional packages.

How to do it...
Here in this recipe, we will put the complete main Linux configuration directory, /etc/,
under version control of a Git repository to keep track of all our changes to
configuration files:

1. To begin, log in as root, install Git, and configure it by providing an email address
and username (please substitute your_username and your_email_address with
real names):

yum install git
git config --global user.email "your_email_address"
git config --global user.name "your_username"

2. Now, let's create a new repository in the /etc directory:

cd /etc/
git init

3. Now, after we have our new repository, let's add all the files in the /etc/
directory under version control:

git add *

4. To commit the files to the repository creating your first revision, type the
following:

git commit -a -m "inital commit of the full /etc/ directory"

5. Now, let's change a file:

echo "FILE HAS CHANGED" >> yum.conf

6. Next, show the changes to your repository:

git status

7. Next, we will commit these changes and create a new revision of it:

git commit -a -m "changing yum.conf files"

8. Next, show all the commits so far:

git log --pretty=oneline --abbrev-commit

9. This will output the following commits on my system (the number hashes will be
different on yours):

https://technet24.ir

8069c4a changing yum.conf
5f0d50a inital commit of the full /etc directory

10. Based on the output from the earlier step, we will now show all the differences
between the two revision numbers (change the number hashes on your system
based on the output from the earlier step):

git diff 8069c4a 5f0d50a

11. To complete this recipe, we will revert our changes to the original file revision
(the initial commit):

git checkout 5f0d50a

How it works
Here, in this recipe, we showed you how to use Git to manage changes to system config
files in the /etc directory. This can be important, for example, if you are testing things
out, so a lot of changes will be made to some configuration files and you will want to
keep track of your changes, which is nice because you don't need to memorize every
single step you have taken if you later have to revert the changes or go back to a specific
revision, or compare different file versions.

So, what did we learn from this experience?

We started by installing Git and added a username and an e-mail address to its
configuration, which is essential for using it later in the process. Then, we changed to
the /etc directory and initialized (using the init parameter) a new empty Git project
there, which is called repository and keeps track of all the files associated to it. This
command will add a hidden .git directory to it, which will contain the complete file
changes and revision information. Next, we added all the files (using the wildcard *
operator) from this directory, including all sub-directories to the next revision. A
revision is like a state the files are in at a given time point, and is identified by a unique
hash ID such as 8069c4a. Then, we actually created a new revision using the commit
parameter and supplied a meaningful message using the -m parameter. After we set up
the Git repository and added all the files to it, every change to the files gets watched in
the /etc directory. Next, we changed the main YUM configuration file in our repository
by adding a random string to the end of it using the echo >> command. If we now use
git's status parameter again, we see in the output that the Git system has notified that
this file has been changed. We can now create a new revision with the changed file by
using git's commit parameter again, using another meaningful message here stating that
yum.conf has been changed. We then used the git log command. This will show us all
the committed revisions with their unique md5 hash string IDs. With this ID, we can fuel
the git diff command to see all the file changes between two revisions. To learn more
about the output format, use man git-diff-files and read its section COMBINED DIFF
FORMAT. In our last step, we used the checkout command to go to a specific file revision;
here we reverted all our changes and went back to the original file state.

Git is a very powerful version management tool, and in this recipe we just scratched the
surface of what can be done with it. To learn more about Git's wonderful techniques,
such as branching, merging, pull requests, and so on, start with the Git tutorial pages by
typing in man gittutorial.

https://technet24.ir

There's more...
You can also use the program Subversion to bring your /etc directory under version
control. Subversion is another common document revision control system whose main
difference from Git is that it uses a centralized server to keep track of the file changes.
Git is distributed, meaning that everybody working on a Git project will have the
complete repository locally on their computer. Here, we will show you the exact steps
necessary to use Subversion instead of Git for this purpose:

1. First, install Subversion and configure a new server directory for our /etc
repository:

yum install subversion
mkdir -p /var/local/svn/etc-repos
svnadmin create --fs-type fsfs /var/local/svn/etc-repos

2. Now, make an in-place import of the /etc filesystem to our new repository:

svn mkdir file:///var/local/svn/etc-repos/etc
-m "Make a directory in the repository to correspond to /etc"

3. Now, switch to the /etc directory and add all the files to a new revision:

cd /etc
svn checkout file:///var/local/svn/etc-repos/etc ./
svn add *

4. Now, create your first commit:

svn commit -m "inital commit of the full /etc/ directory"

5. Next, change the yum.conf file:

echo "FILE HAS CHANGED" >> yum.conf

6. Commit your changes to a new file revision:

svn commit -m "changing yum.conf files"

7. Now, show the change log:

svn log -r 1:HEAD

8. Show the file differences between our two commits (the first commit was the /etc
import):

svn diff -r 2:3

9. Finally, revert to the first revision of our yum.conf file:

svn update -r 2 yum.conf

https://technet24.ir

Chapter 4. Managing Packages with
YUM
In this chapter, we will cover the following topics:

Using YUM to update the system
Using YUM to search for packages
Using YUM to install packages
Using YUM to remove packages
Keeping YUM clean and tidy
Knowing your priorities
Using a third-party repository
Creating a YUM repository
Working with the RPM package manager

Introduction
This chapter is a collection of recipes that provides a review of the tools required to
grow your server. Package management is at the heart of any Linux-based system and the
purpose of this chapter highlights the critical tools needed to manage software packages
on a CentOS based server.

https://technet24.ir

Using YUM to update the system
In this recipe, we will investigate the role of the Yellowdog Updater, Modified (YUM)
package manager with regard to running a system update. Every once in a while, you
may become aware of an update or may simply wish to discover if one exists. Applying
patches and updates is a regular task for every server administrator, and an up-to-date
system can help increase or ensure the security of your server as software bugs and
vulnerabilities are found all the time and must be fixed promptly. In this recipe, you will
learn how to achieve this with the help of YUM.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional packages.

https://technet24.ir

How to do it...
You can run this recipe, as often as required but it should be done frequently, based on a
schedule of your own choosing in the full knowledge that on occasion, some updates
may require a full system reboot:

1. Log in as root and check whether there are any updates for your installed packages.
To do this, log in and type the following:

yum check-update

2. If no updates are available, then the update process will end and no further work
will need to be done. However, if updates are available, YUM will now return a
list of all package updates from the repositories known to your system. To
complete the update process, type the following command:

yum -y update

3. By using the -y flag, the preceding command will now bypass the need to confirm
the transaction summary, and your system will now undergo an immediate update
process. When complete, you will be provided with a final report that identifies
what dependencies have been installed and what packages have been updated.

4. Generally speaking, no further work is required and you may resume typical
operations. However, if a new kernel has been installed, or an important security
update has taken place, it may be necessary to reboot the system for the new
changes to take effect. To do this, type the following:

reboot

Note

While there is much debate as to whether an update will require a full system
restart in practice, this is only to be considered after a kernel update, which is an
update to glibc and particular security-based features that are activated during the
boot process.

How it works...
YUM is the default package management system for CentOS and part of its role is to
automatically calculate what packages may require updating, what dependencies are
required, and to manage the entire process of updating your system in a very simple
way.

So, what have we learned from this experience?

We started the recipe by checking to see if any updates were available to our system
using the yum command with the check-update option. In this way, YUM will now
check a central repository to confirm if an update is applicable to our system. A
repository is a remote directory or website that contains prepared software packages
and utilities. YUM will use this facility to automatically locate and obtain the correct
Red Hat Package Manager (RPM) and dependencies, and if an update is available,
then YUM will respond accordingly with a full summary of what packages and
dependencies are available. For this reason, YUM is a very useful tool, and without
doubt its mechanism does serve to simplify the processes associated with package
management, because it can talk to repositories and this saves us from having to find and
install new applications or updates manually. If there are updates available, the output
will show us exactly which packages are affected, then we can proceed to update the
system by using YUM's update parameter. In this instance, the preceding command
includes the -y flag. This is done in order to circumvent the need to agree with the
transaction summary given, and to confirm that we have already agreed to make these
updates after running the previous check. Otherwise, you would simply confirm the
requests by using the Y key.

https://technet24.ir

There's more...
You can also use the update parameter to update single packages instead of the whole
system by providing the package name like so: yum update package_name. YUM will
serve to ensure that all of the requirements for an application are met during installation,
and it will automatically install the packages for any dependencies that are not already
present on your system. However, and I am sure you will be pleased to hear this, if a
new application has requirements that conflict with existing software, YUM will abort
the process without making any changes to your system. If you want to automate the
updating of your system using a specific time interval, you can install the yum-cron
package, which can be highly customized but is outside the scope of this book. To start
after installation, use man yum-cron.

Using YUM to search for packages
In this recipe, we will investigate the role of using YUM to find a package. YUM was
developed to improve the installation of RPM software packages, and it is used to
access a growing list of packages that provide a full range of services offered by your
server. YUM is simple to use, but if you are not sure what a package is called, then your
duties as the server administrator can become that much harder. To overcome this, YUM
maintains an extensive range of discovery tools and it is the purpose of this recipe to
show you how to use this functionality in order to search through the various
repositories and find the package you need.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet.

How to do it...
This recipe will show you how to find one or more packages by invoking YUM's
searching options. To do this, you will need to log in as the root user and complete the
following process:

1. To search for a single package, replace the keyword value with the appropriate
phrase, string, or parameter, and type the following:

yum search keyword

2. Wait for a summary of the search results, and when a list is generated, you can
query any package shown by simply replacing package_name with the appropriate
value:

yum info package_name

3. If the preceding results prove satisfactory, and you want to view a list of
dependencies associated with the package in question, type the following:

yum deplist package_name

https://technet24.ir

How it works...
Searching for packages with YUM can be achieved in the same way as you would
search for anything on the World Wide Web (WWW). The types of words you can
search for can be as specific or as general as you like. They can even consist of full or
partial words; having found a package that you may be interested in, you will have
noticed that this recipe has also served to show you how to discover additional
information about the package in question.

So, what have we learned from this experience?

YUM maintains extensive search features and it allows you to query packages by
keyword, package name, and pathname. For example, if you want to locate the correct
package for compiling C, Objective-C, and C++ code, you can use the yum search
compiler query. When using these search terms on the command line, there are a
number of related results, and each package carries a brief description that enables us to
use a simple process of elimination in order to select the most obvious or the most
relevant value. With this in mind, you can then query YUM using the info parameter to
find out more about certain packages. This option reveals the full package details
together with a detailed description of what functionality the package is intended to
provide. Generally speaking, you may not need to know any further details.

However, there may be circumstances in which you want to know how this package
interacts with the server as a whole (especially if you are working with source
installations or troubleshooting broken packages), so we can use YUM's deplist
parameter that can give quite a detailed report; if you do happen to have any broken
packages, you could simply use this output to detail what dependencies you may or may
not need to install in order to fix an underlying issue. This command is particularly
useful when debugging dependencies or when working with source-based installations.

There's more...
Sometimes, you may not want to search for a specific package, and instead you may
prefer to display the contents of your repositories in a catalog-style format. Again, this
is easy to do and YUM provides for this functionality with the following commands. If
you would like to simply list all the packages available to you from the current
repositories used by your system, type yum list all. However, because this list may
be quite exhaustive, you may prefer to page through the results by using yum list all
| less. In a similar fashion, if you would simply like to list all the software currently
installed on your system, type yum list installed | less. If you would like to
determine which packages provide for a specific file or feature, simply run the
following command at any time by substituting your_filename_here with something
more relevant to your own needs: yum provides your_filename_here.

https://technet24.ir

Using YUM to install packages
In this recipe, we will investigate the role of YUM in installing new packages on your
server. An important task for every server administrator is the installation of
applications and services. There are several different ways to achieve this, but the most
effective method involves the YUM package manager. YUM is able to search through
any number of repositories, automatically resolve package dependencies, and specify
the installation of one or more packages. YUM is a modern and definitive way to install
your packages on your server, and it is the purpose of this recipe to show you how it is
done.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional packages. It's
also good if you have already found some interesting packages to install, which can be
learned by using the instructions from the Using YUM to search for packages recipe.

https://technet24.ir

How to do it...
This recipe will show you how to install one or more packages by invoking the YUM
installation option. To do this, you will need to log in as the root user and complete the
following process:

1. To install a single package, replace the package_name value with the appropriate
value and type the following:

yum install package_name

2. Your system will now provide a transaction report that will require your approval.
So, when prompted, simply respond by using the Y or N key and press the Return
key to either accept or decline the transaction, as shown as follows:

Is this ok [y/d/N]: y

3. If you have declined the transaction, then no further work is required and you will
exit the package management routine. However, if you have confirmed the
transaction, then watch the progress of your installation, and in the end it will show
you a Complete! message.

4. Congratulations! You now have successfully installed your package of choice.

How it works...
All packages are stored in the RPM package file format, and it is the role of YUM to
provide access to those files that are stored in various repositories on the Internet. YUM
is the power behind the package management for CentOS and it really does make the
installation process very easy, but what have we learned from this experience?

Having invoked the install command, YUM will conduct a search of the various
repositories in order to find the relevant headers and metadata associated with the
package in question. For example, if you wanted to install a package called wget, you
would begin by issuing the install command like so: yum install wget. YUM will
then locate the package and generate a transaction summary that will not only indicate
the required disk size and expected installation size, but will also indicate any
necessary dependencies required by the requested package. YUM will then check
several different repositories (base, extras, and updates) and, having resolved the
need for any necessary dependencies, YUM will be asking us to confirm the request
before continuing with the installation process. So, as you can see, by using the Y key,
we will be providing YUM with the permission to fulfill the request, which in turn will
result in the download, verification, and installation of the package(s) concerned.

https://technet24.ir

There's more...
There are times when you may wish to install more than one package at a time. To do
this, simply invoke the same install command, but instead of naming a single package,
simply identify the full list of packages you may require in such a way that it forms a
long shopping list:

yum install package_name1 package_name2 package_name3

The number of packages you can install in this way is unlimited, but always leave a
single space between each package name and keep the command on a single line. For
very long installation instructions, line-wrapping may occur.

You do not need to list the packages in any particular order and the request will be
processed in exactly the same way as it was in the original recipe, and again after
listing the transaction summary, it will remain pending until it is confirmed or declined.
Again, use the Y key to confirm your request so that the process completes.

Using YUM to remove packages
In this recipe, we will investigate the role of using YUM with the intention of removing
packages from your server. During the lifetime of your server, it is possible that certain
applications and services may no longer be required. In such situations, it is typical that
you will want to remove such packages in order to optimize your working environment,
and it is the purpose of this recipe to show you how this is done.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet.

How to do it...
This recipe will show you how to remove one or more packages by invoking the yum
remove option. To do this, you will need to log in as the root user and complete the
following process:

1. To remove a single package, replace the package_name value with the appropriate
value and type the following:

yum remove package_name

2. Wait for the transaction summary and confirmation prompt to be displayed, and
then press either the Y key to confirm, or the N key to decline the transaction, as
shown next:

Is this ok [y/d/N]: y

3. If you have declined the transaction, then no further work is required and you will
exit YUM. However, if you have confirmed the transaction, then simply watch the
progress of package removal until it is confirmed and prints out a Complete!
message.

https://technet24.ir

How it works...
Applications that are no longer required can be removed with YUM. The process is
very intuitive and similar to installing a new package, and it only requires you to
confirm the name of the packages you want to remove.

So, what have we learned from this experience?

Having invoked the remove command, YUM will search your system to discover the
relevant package; and by reading the package headers and metadata, it will also
determine what dependencies this will affect. For example, if we wanted to remove a
package called wget, we would begin by issuing the remove command like so: yum
remove wget. YUM, in turn, would then locate the package details from your system
and obtain a transaction summary that may include any necessary dependencies that are
no longer required. The transaction printed out will remain pending until you instruct
YUM to remove the package(s) concerned. When confirmed, YUM will complete the
transaction, which in return will result in the removal of the package or packages. You
should take extra care if the summary makes reference to any dependencies as these may
be required by other RPMs. If you are concerned that certain dependencies should
remain on the system, it is often a good idea to end the current transaction and simply
de-activate or disable the software concerned. As with the install command, you can
also remove multiple packages at a time, leaving a single space between the package
names:

yum remove package_name1 package_name2 package_name3

Keeping YUM clean and tidy
In this recipe, we will investigate the role of YUM with regard to ensuring that the
working cache remains current. As a part of its typical mode of operation, YUM will
create a cache that consists of metadata and packages. These files are very useful, but
over time, they will accumulate in size to such an extent that you may find that YUM is
acting erratically or not as intended. The frequency of this happening can vary from
system to system, but it generally implies that the YUM cache system requires your
immediate attention. Such a situation can be quite frustrating, but it is the purpose of this
recipe to provide a quick solution that will serve to assist you in cleaning the cache and
restoring YUM to its original working state.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional packages.

How to do it...
Before we begin, it is important to realize that, while we are troubleshooting a current
problem, this same recipe can be run as often as required in order to keep YUM in an
optimal working state:

1. We will begin this recipe by asking YUM to clean any cached package information.
To do this, log in as root and type the following:

yum clean packages

2. Allow time for your system to respond and when finished, type the following
command to remove any cached XML-based metadata:

yum clean metadata

3. Again, wait for YUM to respond and when ready, type the following command to
remove any cached database files:

yum clean dbcache

4. Following this, you will want to clean all the files to confirm the preceding
instructions and to ensure that unnecessary disk space is not used. To do this, type
the following line:

yum clean all

5. Finally, you will want to rebuild the YUM cache by typing what is shown next:

yum makecache

https://technet24.ir

How it works...
YUM is a very powerful tool that is known for its ability to resolve package
dependencies and automate the process of package management, but as with all things,
there are times when even the best utilities can get confused and may report errors or
behave erratically. Fixing this issue is relatively simple and the approach outlined in
this recipe will also serve to keep your package manager in a healthy running state for
the life of your operating system.

So, what have we learned from this experience?

During its typical operation, YUM will create a cache of metadata and packages that
can be found at /var/cache/yum. These files are essential, but as they grow in size,
this cache will ultimately serve to slow down the overall use of this utility and may
even cause some issues. To address this situation, we started by using the following
command to clean the current package-based cache using YUM's clean packages
parameter options. We then followed this by cleaning the metadata cache using the
command clean metadata, which will remove any excess XML-based files. YUM
uses a SQLite database as a part of its normal operation, so the next step was to remove
any remaining database files using the clean dbcache parameters. The next step was
to clean all files associated with enabled repositories in order to reclaim any unused
disk space: yum clean all. Finally, we restored YUM to its normal working state by
rebuilding the cache using the makecache option.

There's more...
On a typical server, YUM is a great tool that will solve the most complex problems
related to package dependencies and package management. However, in instances
where you have knowingly mixed incompatible repositories or have used incomplete
sources, there is a risk that YUM will not be able to help.

Note

Remember, in this situation, you should consider the following advice to be a temporary
remedy only. A tendency to ignore any warnings provided by YUM will only lead to
bigger problems later on.

If such instances occur, and if the error is RPM-based, as a temporary fix, you can skip
broken packages by using the following command:

yum -y update --skip-broken

This command will allow YUM to continue working by bypassing any packages with
errors, but as stated earlier this should be regarded as a temporary fix only. You should
always be aware that a system with broken dependencies is not considered to be a
healthy system. This situation is to be avoided at all costs, and under these
circumstances fixing such errors should become your first priority.

https://technet24.ir

Knowing your priorities
In this recipe, we will investigate the task of preparing YUM to manage additional
repositories by installing a plugin known as YUM priorities. YUM has the ability to
search, remove, install, retrieve, and update packages from various remote locations.
Such features make YUM a powerful tool, but if you ever decide to add an additional
third-party repository, there is a chance that conflicts will render the system unstable.
Stability is one of the many advantages of using the CentOS operating system, and it is
the purpose of this recipe to show you how this confidence can be maintained while
simultaneously allowing for the addition of new repositories.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional packages.

https://technet24.ir

How to do it...
This recipe will show you how to prepare YUM in order to manage the process of using
one or more third-party repositories by installing and configuring YUM priorities:

1. To begin this recipe, log in as root and type the following:

yum install yum-plugin-priorities

2. Confirm the installation, and when complete type what is shown here:

vi /etc/yum/pluginconf.d/priorities.conf

3. You should ensure that this file indicates that the plugin is enabled. It should show
the instruction enabled = 1. It is not expected that you will need to change
anything in this file, but if you have made any changes, simply save and close the
file before proceeding.

4. We now need to establish a priority value for each repository. This is a numeric
value in ascending order, where the highest priority is given the lowest number. To
do this, open the following file as shown next:

vi /etc/yum.repos.d/CentOS-Base.repo

5. Add the following line at the end of the [base] section:

priority=1

6. Now, add the following line at the end of the [updates] section:

priority=1

7. And finally, add the following line at the end of the [extras] section:

priority=1

8. When complete, save and close the file before running a package update:

yum update

How it works...
YUM priorities is a simple plugin that enables YUM to decide what repositories will
assume the highest priority when installing and updating new packages. Using this
plugin will reduce the chance of package confusion by ensuring that any particular
package will always be installed or updated from the same repository. In this way, you
can add an unlimited number of repositories and enable YUM to stay in control of
package management.

So, what did we learn from this experience?

Enhancing YUM with this plugin was simply a matter of installing the yum-plugin-
priorities package and ensuring that it was enabled in its configuration file. We then
discovered that the priority is set in ascending order, where the lowest values are given
precedence over all others. This, of course, serves to simplify the overall process, and
for this reason, we ensured that the default repositories were given a value of 1
(priority=1). This will ensure that the default repositories maintain the highest
priority, so when you do decide to add additional repositories you could assign them a
priority value of 2, 3, 4… and 10, or more. On the other hand, it should be noted that we
only set this value across three main sections: [base], [updates], and [extras]. In
simple terms, this was only because the other sections are shown to be disabled. For
example, you may have noticed that the [centosplus] section in
/etc/yum.repos.d/CentOS-Base.repo include the following line: enabled=0,
whereas the [updates] and [extras] sections show this value as enabled=1. Of
course, if you intend to activate this repository, you will need to set a priority value for
it, but for the purpose of this recipe such an action was not required. Finally, we ran a
simple YUM package update in order to activate our revised settings.

So, as we can see, YUM priorities is an extremely flexible package that enables you to
determine what repositories take priority when you want to expand your installation
options. However, you should always be aware that YUM priorities may not be
appropriate for your system, as you are giving it the power to decide what packages are
to be ignored, what packages are installed, what packages are updated, and in what
order and from which repository you will get them. For most users who tend not to stay
away from the typical server functions, this may not be an immediate concern; you may
even safely ignore this warning. But if stability and security are an overriding concern,
and you do intend to use additional packages from external repositories, then you should
give careful consideration to the use of this plugin or at least consider and research the

https://technet24.ir

integrity of the third-party repositories used.

Using a third-party repository
In this recipe, we will investigate the desire to take full advantage of the packages that
are available to CentOS by installing both the EPEL and Remi repositories. CentOS is
an enterprise-based operating system that prides itself on stability, and during the
lifetime of your server, it is possible that not every piece of software you need can be
found in the default repositories. It is also possible that you may require updated
packages of current software, and for these reasons many server administrators choose
to install both the EPEL and Remi repositories. These are not the only repositories
available, but because they represent one of the most popular combinations, it is the
purpose of this recipe to show you how both the EPEL and Remi repositories can be
added to your system.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional packages.

How to do it...
Before we start, it is assumed that you have followed the previous recipe that showed
you how to install and activate YUM priorities.

1. To begin, log in as root and install the EPEL release repository using YUM:

yum install epel-release

2. Next, from your home directory, type the following commands to download the
remi release rpm package:

curl -O http://rpms.famillecollet.com/enterprise/remi-release-
7.rpm

Note

Please note that, while you are reading this, this URL may have changed; if so,
please do some Internet research to find out if there is a new URL available.

3. The preceding file should now be located in your home folder. To proceed, type
the following command:

rpm -Uvh remi-release-7.rpm

4. After the installation is done, open the Remi repository file with your favorite text
editor:

vi /etc/yum.repos.d/remi.repo

5. Change enabled=0 to enabled=1 and add the line priority=10 to the end of the
[remi] section.

6. Now, open the EPEL repository file with your favorite text editor:

vi /etc/yum.repos.d/epel.repo

7. Again, change enabled=0 to enabled=1 if not set automatically and add the line
priority=10 in the [epel] section.

8. To finish, update YUM as shown here:

yum update

9. If updates are available, choose Y to proceed. Having completed the update
process, you will now be able to download and install packages from both the
Remi and EPEL repositories as an addition to those that are used by default.

https://technet24.ir

How it works...
In order to use and enjoy the benefits of a third-party repository, you are required to
install and enable it first using the YUM and RPM package manager.

So, what did we learn from this experience?

Having started the recipe, the task of installing both the Remi and EPEL repositories is a
remarkably smooth process. While the installation of the EPEL repository using YUM is
very safe to changes, the preceding URL for Remi is maintained at the discretion of the
repository owners, so you should always ensure that they are the most current.
However, having obtained the necessary repository setup file, it was then a matter of
applying an RPM-based command in order to install all necessary repository files on
your system. Having done this, we were then required to open the relevant configuration
files of each of the installed repositories and enable them (by changing enabled=0 to
enabled=1) and setting a priority value (priority=10). While the former value will
merely switch the repository on, the latter one will be used by YUM to correctly
identify which repositories were the most appropriate when we called the update
command. As it was discussed in the previous recipe regarding YUM priorities, the
simple rule of thumb is based on remembering the phrase "the lower the number, the
higher the priority." This, in itself (depending on your reasons), may not be a bad thing
to do, but for the purpose of this recipe, it is shown that the default CentOS repositories
should take priority over all others. Of course, you may disagree with this, and yes,
there is nothing stopping you from applying the same priority rule to a third-party
supplier, but I do caution you before diving in, and this is particularly the case if this is
for a mission-critical production server. Remember, if all the priority values are the
same, then YUM will attempt to download the latest version by default.

The reason for setting both Remi and EPEL to a higher value than the existing CentOS-
based repositories is based on the need to consider security updates. Unless you have
determined otherwise, it is always advised that the base files should come from CentOS
first. This includes, but it is not limited to, Kernel updates, SELinux, and related
packages. Third-party repositories should be used for additional packages that cannot
be obtained from the original sources, or for access to particular updates that may not be
available to the base release of CentOS. This may include packages such as Apache,
MariaDB, or PHP. As a final footnote, you will have noticed that both Remi and EPEL
repositories shared the same priority value. This is by design as these repositories are
often viewed as partners. However, if you decide to begin mixing repositories, or use

this recipe as a gateway to installing other repositories not mentioned here, then you
should always do your research and evaluate every third-party on a case-by-case basis.
The Remi and EPEL repositories are very popular, so if you do intend to add more
third-party resources, read around the subject, choose your repositories carefully, and
stay loyal.

https://technet24.ir

There's more...
There are many other interesting repositories available for CentOS 7, such as ELRepo,
which focuses on hardware-related packages such as filesystem drivers, graphics
drivers, network drivers, sound drivers, and webcam or video drivers. Go to
http://elrepo.org to learn how to install and access it.

http://elrepo.org

Creating a YUM repository
If you maintain multiple CentOS servers in your local network and want to save Internet
bandwidth or speed up the downloading of the same remote repository packages over
and over again, or are within a very restrictive network environment where access to
any remote CentOS repository is blocked for your clients, you might want to consider
running your own YUM repository. Having your own repository is also an excellent
solution if you want to rollout a few custom or unofficial RPM packages (for example
in-house configuration files or programs) to your local crowd or if you just want to
create an official CentOS 7 repository mirror site. Here in this recipe we will show you
how to set up your own first YUM CentOS 7 repository and how to serve it to your
local network.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet to facilitate the download of additional packages. For this
recipe to work, you will also need to place the CentOS 7 Everything DVD iso file
image in your server's root home directory, if you haven't downloaded it yet, refer to a
detailed description in the first recipe in Chapter 15, Installing CentOS (but download
the latest CentOS-7-x86_64-Everything-XXXX.iso file instead of the minimal iso
file). Also, we need a running Apache web server to share our YUM repository to our
local network; please read the first recipe in Chapter 12, Providing Web Services in
order to learn how to set it up.

How to do it...
To create our own YUM repository, we need the createrepo program, which is not
installed on CentOS 7 by default. Let's begin our journey by installing it. In this
example, we will use the IP address, 192.168.1.7, for our YUM repository server:

1. Log in as root on your server and install the following package:

yum install createrepo

2. Next, for every repository you want to share, create a subfolder beneath the
Apache web root folder under /var/www/html/repository/, which will be
publicly available when Apache is running; for example, to share the complete
CentOS 7 Everything repository packages, you could use:

mkdir -p /var/www/html/repository/centos/7.1

3. Now, put all your RPM package files of choice into the repository folders created
here. In our example, we will put all RPM packages from the Everything iso
image file into our new local repository location after we have mounted the content
of the iso file to the filesystem:

mount ~/CentOS-7-x86_64-Everything-1503-01.iso /mnt/
cp -r /mnt/Packages/* /var/www/html/repository/centos/7.1/

4. Afterwards, we need to update the SELinux security contexts for all the new files
copied into the Apache web root directory:

restorecon -v -R /var/www/html

5. Now, for every repository we want to set up, run the following command:

createrepo --database /var/www/html/repository/centos/7.1

6. Congratulations, you now have successfully created your first YUM repository,
which can be accessed from any computer in the same network through the running
Apache web server. In order to test it, log in as root to any other CentOS 7-based
system that can ping our repository server and add our new repository to its YUM
repository configuration directory:

vi /etc/yum.repos.d/myCentosMirror.repo

7. Add the following content to this empty file (change the baseurl appropriately to
fit your own needs):

[myCentosMirror]

https://technet24.ir

name=my CentOS 7.1 mirror
baseurl=http://192.168.1.7/repository/centos/7.1
gpgcheck=1
gpgkey=http://mirror.centos.org/centos/RPM-GPG-KEY-CentOS-7

8. Save and close the file, then test if your new repository is available (it should
appear on the list) on your client:

yum repolist | grep myCentosMirror

9. Now, to test our new YUM repository, we can try the following command:

yum --disablerepo="*" --enablerepo="myCentosMirror" list
available

How it works...
In this recipe, we have shown you how easy it is to install and set up a local YUM
repository. However, we have only shown you how to create a mirror site of all the
CentOS 7 Everything iso RPM packages, but you can repeat this process for creating
YUM repositories of every kind of package that you want to share with your network.

So, what did we learn from this experience?

Setting up your own YUM repository was simply a matter of installing the createrepo
package and copying all the RPM packages that you want to share into a subfolder of
your choice beneath your Apache's document root directory (In our example, we had to
mount the CentOS 7 Everything iso file to the filesystem, in order to access its included
RPM package files that we want to share). As the Apache's document root directory is
under the control of SELinux, afterwards we needed to set the security context for all the
new RPM files in this directory to the httpd_sys_content_t type label; otherwise, no
access through the web server would be possible. Finally, we needed to run the
createrepo command on our new repository folder, which will create our new
repository's metadata that is needed for any YUM client that wants to connect to the
repository later to make queries to it.

Afterwards, to test our new repository, we created a new repository definition file on
another CentOS 7 system that wants to use this new service and that must be in the same
network as our YUM repository server. In this custom .repo configuration file, we put
the correct URL path to the repository, enabled gpg checks, and took the standard
CentOS 7 gpgkey so that our YUM client can proof the validity of the RPM packages
official repository packages. Finally, we used the yum command with the --
disablerepo="*" and --enablerepo="myCentosMirror" parameters, which will
make sure to only use our new custom repository as a source. You can use these two
parameters in combination with any other yum command such as install, search,
info, list, and so on. This was just for testing; if you want to combine your new
repository with the existing ones, please use YUM priorities for it (as shown in another
recipe in this chapter).

https://technet24.ir

There's more...
Now, before we announce our new centralized YUM repository to our network, we
should first make an update of all the RPM packages that have changed since the release
of the CentOS Everything iso. In order to do this, visit http://www.centos.org and
choose a rsync:// mirror link that is geographically near your current location. For
example, if you are located in Germany one option could be
rsync://ftp.hosteurope.de/centos/ (for more detailed instructions on navigating the
CentOS website, read the first recipe in Chapter 15, Installing CentOS). Also, before
we can use the rsync protocol, we need to install the rsync package (yum install
rsync), if not done already. Now, open the following empty script file vi ~/update-
myCentosMirror-repo.sh file and put in the following content (replacing the
rsync:// location accordingly, if needed):

rsync -avz rsync://ftp.hosteurope.de/centos/7/os/x86_64/Packages/
/var/www/html/repository/centos/7.1
restorecon -v -R /var/www/html

Now, make the file executable using chmod +x ~/update-myCentosMirror-repo.sh,
and run it with ~/update-myCentosMirror-repo.sh. This should update your
repository to the latest version. Finally, to automate this process, let's create a cron job
that will update our repository packages with the other mirror site every night at 2:30
am (open crontab -e):

30 2 * * * /root/update-myCentosMirror-repo.sh

http://www.centos.org
http://rsync://ftp.hosteurope.de/centos/

Working with the RPM package
manager
All software on a CentOS 7 system is distributed through RPM packages. Most of the
time the YUM package manager is the first choice of any system administrator,
performing software installation and maintenance, and is highly recommended whenever
possible as it provides system integrity checks and has excellent package dependency
resolution. In this recipe, we will show you an alternative way to manage your
packages. We will be exploring the RPM package manager, which is a powerful tool
used to build, install, query, verify, update, and erase individual RPM software
packages. Though it is not as intelligent as YUM, as it cannot resolve package
dependencies or work with repositories, it can be still relevant today since it provides
very useful querying options that are not available in YUM, and it can be used to install
single software packages manually.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional RPM
packages.

How to do it...
We start this recipe by downloading a rpm package from the Internet, which we will use
to show you an example of how the rpm command works:

1. We will begin by logging in as root into the root's home directory and downloading
the pipe view program from the EPEL repository, which cannot be found in the
official CentOS repository:

Note
cd ~;curl -O http://dl.fedoraproject.org/pub/epel/7/x86_64/p/pv-
1.4.6-1.el7.x86_64.rpm

Please note that while you are reading this, the package URL may have changed.

2. After the download has been completed, we will install this package using the
following rpm command:

rpm -Uvh ~/pv-1.4.6-1.el7.x86_64.rpm

3. If the installation has finished, let's check if the installation of the package was
successful by querying the RPM database:

rpm -qa | grep "pv-"

4. You can also test the pv program directly (press Ctrl+C keys to quit):

dd if=/dev/urandom | pv | dd of=/dev/null

5. We can now use the rpm command's rich querying options to show useful
information of the installed package:

rpm -qi pv
rpm -ql pv
rpm -qd pv

6. Finally, let's remove the package if you don't like or need it anymore:

rpm -e pv

https://technet24.ir

How it works...
Here, in this recipe, we introduced you to the RPM package manager, which is the
original program to manage RPM packages. The RPM package is a packaging standard
for the distribution of software, and contains useful metadata in the file to verify the
authorship (for example, using signature verification with PGP) and integrity of the
software included. The installation of packages containing binary programs instead of
manually compiling and building them from scratch is much easier and more consistent,
but RPM packages can also contain any type of file, such as source code or just
documentation files. As said in the introduction, the rpm command has six different
modes of operation: building, installing, uninstalling, updating, querying, and verifying
rpm packages. Here, in this recipe, we showed you how to use the most important five
operations (we don't show building RPM's).

So, what have we learned from this experience?

We started by logging in as root and downloading the pv (pipe viewer) rpm package
example from the non-official EPEL CentOS repository (EPEL contains high-quality
add-on packages, thoroughly checked and officially conformed; see the Using a third-
party repository recipe to learn more about the EPEL repository) manually using curl,
because it is not available in the official repository but can be a very useful tool.

Note

Although there are many RPM repositories and download sources on the Internet, for
security and compatibility reasons, on productive systems you should consider installing
only official CentOS 7 RPM packages from valid and reputable repositories and
sources. In general, the packages contained are best tested and reviewed by many
experts and users.

The downloaded package file's name can be read the following way, which follows the
following non-mandatory naming convention for RHEL/CentOS packages:

pv-1.4.6-1.x86_64.rpm = package name (pv)-version number (1.4.6)-
release(1)-CPU architecture (x86_64)

Next, we installed the downloaded pv package using the RPM package manager, which
can be executed using the rpm command on the command line. We used it with the -Uvh
command parameters together with the full name of the downloaded package rpm file.

Note

If using the rpm command for installing or upgrading rpm software packages, you should
always use -Uvh with one exception; which are kernel packages. -U will remove old
packages while updating, and this is not what you want if you install a new kernel. Use
-i (for installing) here instead, as this will keep the old kernel files so that you can go
back to an earlier version if you run into some problems.

-U is the parameter for installing or upgrading a package. If the package is not installed
on the system, it will get installed; otherwise rpm tries to upgrade it if it the RPM
package version is newer than the one installed. The -v parameter prints a more
verbose output, while -h displays a nice progress bar. Installing the pv package when
you have not enabled the EPEL repository on your system will get the following
warning message:

pv-1.6.0-1.x86_64.rpm: Header V3 DSA/SHA1 Signature, key ID 3fc56f51:
NOKEY

RPM will automatically check the validity of the package's signature before installing to
make sure that the package's content has not been modified since it has been signed.
Also, it checks that an RPM package is trustworthy, as it should be signed by an official
third-party authority vendor using an encrypted key. You can ignore this message, as
packages from the EPEL repository are from a secure source. To permanently trust
EPEL sources, you can install its gpg public key on your system using the following
command and getting rid of all future signature warning messages:

rpm --import https://dl.fedoraproject.org/pub/epel/RPM-GPG-KEY-EPEL-7

Having successfully installed the package, we now have a nice command line tool
called pv to show the progress of data going through a Unix pipe, which can be useful if
you are transferring huge amounts of data through pipelines where you normally never
know the current state of progress. Afterwards, we queried the RPM database that
stores information about all installed packages on a CentOS 7 system, using the rpm
command with the -q flag. Working on the RPM database, we must use the true package
name (pv) instead of the filename (pv-1.4.6-1.x86_64.rpm) that we used when we
installed the packages in the first place. The same is true when removing an installed
package; please specify the package name and not the version number or full filename.

To get detailed information about the installed package, pv, we used -qi (i for
information), with the -ql parameter; we showed the full filename and path of all files

https://technet24.ir

in the package. -qd showed all the files in the package containing documentation. To
read about more querying options, type man rpm and look under the PACKAGE QUERY
OPTIONS section.

In summary, we can say that there are situations in a system administrator's life where
one needs to install a piece of software that is not distributed through an official
repository (for example, non-open-source, cutting-edge program or beta versions,
software that have a license disallowing the ability to put it into a repository such as
Java, or software from independent developers), and where one will have to download
individual RPM packages and install them manually. Under the hood, YUM also
depends and uses the RPM package manager in the background, so you are also able to
use the YUM program to install rpm files (yum install <filename.rpm>). However,
when it comes to querying your downloaded rpm files or installed packages on your
system, there are situations where it's better to use the older rpm command without
having to install additional YUM-based software such as yum-utils.

The biggest weakness of RPM is that it does not support repositories and is missing a
dependency management system. If you work with RPM alone to install all your
software on a CentOS system, you will easily run into package dependency problems
where you cannot install a specific package because it relies on some other packages.
Often, when you try to install the dependent packages, you need other packages that they
depend on and so on. This can be very tedious work and should always be avoided by
using YUM instead.

There's more...
The rpm command can not only be used to query the rpm database for information about
installed packages, you can also use it to query rpm files that you downloaded. For
example, use the -qlp parameter to show all files in a local rpm package file:

rpm -qlp ~/pv-1.4.6-1.el7.x86_64.rpm

To get detailed information about the package from the rpm file, use the -qip parameter,
as shown here:

rpm -qip ~/pv-1.4.6-1.el7.x86_64.rpm

If you want to install an RPM package that you have downloaded locally and that has
dependencies, you can use the yum localinstall command. This will install the local
package once supplied with its filename, and will try to resolve all the dependencies
from remote sources, for example:

wget http://location/to/a/rpm/package_name.rpm
yum localinstall package_name.rpm

https://technet24.ir

Chapter 5. Administering the Filesystem
In this chapter, we will cover the following topics:

Creating a virtual block device
Formatting and mounting a filesystem
Using disk quotas
Maintaining a filesystem
Extending the capacity of the filesystem

Introduction
This chapter is a collection of recipes that provides for the need to drive a CentOS-
based server solution. From formatting and mounting disks to extending a logical
volume and maintaining your filesystem and disk quotas, the purpose of this chapter is to
show you how quickly and easily you can get to grips with the task of managing the
needs of its users in today's most demanding environments.

https://technet24.ir

Creating a virtual block device
In this recipe, we will create a virtual block device that we will use to simulate real
devices and partitions so that we can test-drive concepts and commands used in all later
recipes in this chapter. Working with real disks and partitions often involves the risk of
losing important data or even having to re-install your complete system. A virtual block
device is ideal to learn the techniques and try things out before switching to "production
mode". Later, if you have gained enough experience and feel safe, you can easily
replace it with "real" hardware devices, partitions, and logical volumes (which is a part
of LVM; see the later recipe). All you need to do is substitute your virtual device with
"real" block device names.

Getting ready
To complete this recipe, you will require a minimal installation of the CentOS 7
operating system with root access. To create a virtual block device, you should have at
least one gigabyte of free hard disk space that we will use temporarily to create and
make. You can delete this reserved space later (or it will be automatically deleted on
reboot). It's just for testing.

https://technet24.ir

How to do it...
1. To begin, log in as root and create an empty file with the exact size of 1 gigabyte:

dd if=/dev/zero of=/tmp/test-image.dd bs=1M count=1000

2. Now, let's create a loop device from the file we just created:

losetup -fP /tmp/test-image.dd

3. Next, print the generated loop device name:

losetup -a

4. As this will be the first loop device created in the current system, the output will
be as follows (loop0 can be a different number if you have created a loop device
before):

/dev/loop0: [0035]:3714186 (/tmp/test-image.dd)

5. To get a list of all the block devices currently attached to the system, as well as
important details, type the following:

lsblk -io NAME,TYPE,SIZE,MOUNTPOINT,FSTYPE,MODEL

6. Now, let's create a new partition table of the type gpt on our new loop device
(confirm the deletion of any data):

parted /dev/loop0 mklabel gpt

7. Finally, create device maps from your loop device to make it more similar to real
hard disk partitions:

kpartx -a /dev/loop0

How it works...
In this recipe, we have learned how to create a virtual block device that acts as a
starting point for testing out how to create partitions, logical volumes, and filesystems in
later recipes in this chapter.

So, what did we learn from this experience?

We started this recipe by creating a new empty file, which was one gigabyte in size, in
the /tmp directory using the dd utility. dd is used to make exact copies of files (which is
sometimes called cloning) and expects two parameters: an input file (the if parameter)
and an output file (the of parameter). We used the zero device (/dev/zero) as our
input file that returns an endless stream of bytes containing zero. We then limited the
stream by defining a blocksize (bs) and count parameter. The bs defines the amount of
data in bytes read at a time, while the count parameter counts how many repetitions of
bs will be allowed. So, these arguments can be read as stop the copying process when
we reach a blocksize times count data received. In our example, we used a blocksize of
1 Megabyte times 1000 = 1 Gigabyte. This zero byte data was written to our output file
(of) called /tmp/test-image.dd.

After we created this empty file, we created a temporary loop device with it. A loop
device is just a pseudo-device that makes it possible to use a file as a block device.
Often, such a file is a CD ISO image, and using it as a loop device will make it
accessible as if it were a normal hardware drive. Any device that allows reading or
writing data in blocks can be called a block device; in order to get a list of all available
block devices in your system, we used the lsblk command, and as you can see, this
includes our loop device as well. Standard loop device names start with the number
zero, as in /dev/loop0.

Afterwards, we created a new partition table on our loop device using the parted
command. A partition table is a table maintained on a disk by the operating system
describing the partitions on it, and it must be created before we can create them. We
used the partition table type gpt, but you can also use the old msdos type here instead.

Normally, when creating a partition table on a virtual block device, we cannot access
individual partitions or make filesystems for different partitions on it, because the
partitions cannot be addressed individually. Here we used the kpartx command to
create device mappings from partition tables, which allows us later to access single
partitions for creating filesystems using the notation, /dev/loop0p1, for partition 1 on

https://technet24.ir

loop device 0 and /dev/loop0p2 for partition 2 on loop device 0.

Congratulations, you have now created a brand new virtual block device with a
standard partition table, which can be used and accessed as if it were a normal disk
device.

There's more...
If we want to remove a virtual block device, we first have to unmount it from the
filesystem if it is currently mounted (for example, umount /dev/loo0p1). Next, we
need to detach the virtual block device file from the loop device using the -d parameter
like so: losetup -d /dev/loop0. Afterwards, we can delete the block file if we want
to: rm /tmp/test-image.dd.

https://technet24.ir

Formatting and mounting a filesystem
In this recipe, you will be introduced to the standard CentOS filesystems XFS, Ext4,
and Btrfs. Filesystems form one of the most fundamental parts of any operating system
and nearly everything depends on them. Here, you will learn how to create different
types of standard filesystems available in CentOS 7, and how to link them to your
system so that we can access them afterwards for reading and writing. These two
techniques are called formatting and mounting filesystems; while you do not do this
very often, it remains one of the most fundamental Linux system administrator tasks.

Getting ready
To complete this recipe, you will require a minimal installation of the CentOS 7
operating system with root access. We will also use virtual block devices instead of
real disk devices because it's better to demonstrate the usage of creating filesystems and
formatting disks using "dummy" devices, instead of erasing your real hard disk contents.
Therefore, you should have applied the Creating a virtual block device recipe and
created a 1 Gigabyte virtual block device, which will be named /dev/loop0 in this
example.

If you want to apply this recipe for real disk devices, all you have to do is replace
/dev/loop0 with your correct partition—for logical volumes (lv) for example,
/dev/mapper/myServer/data, for a SATA device /dev/sdX, or for an IDE-based
hard disk name /dev/hdX (where X is a character a-z).

https://technet24.ir

How to do it...
In our example, this block device is labeled at /dev/loop0. Please note that, if you
have created more than one block device, your number could be different, so please
change the name accordingly:

1. First, let's log in as root and show information about all currently available block
devices:

lsblk -io NAME,TYPE,SIZE,MOUNTPOINT,FSTYPE,MODEL

2. Now, recheck that we have a valid partition table installed on the device:

parted /dev/loop0 print

3. The preceding line should print out the following content: Partition Table:
gpt. If this is not the case, let's create a new partition table (confirm the deletion of
any data):

parted /dev/loop0 mklabel gpt

4. Now, we will create a new partition spanning the complete disk space with an
ext4 filesystem label (no filesystem will be installed yet; it's just a label):

parted -a optimal /dev/loop0 mkpart primary ext4 2048KiB 100%

5. Print the partition table again to show the new partition we just created:

parted /dev/loop0 print

6. Now, let's remove the partition:

parted /dev/loop0 rm 1

7. We can also create a btrfs-labeled partition:

parted -a optimal /dev/loop0 unit MB mkpart primary btrfs 2048KiB
100%

8. Afterwards, let's create an XFS-labeled partition spanning the whole disk:

parted /dev/loop0 rm 1
parted -a optimal /dev/loop0 mkpart primary xfs 2048KiB 100%

9. Now, show the block table again to see what we have changed:

lsblk -io NAME,TYPE,SIZE,MOUNTPOINT,FSTYPE,MODEL

10. As we have only defined the partition type label, we still don't have a valid

filesystem on our partition; so, in the next step, we format our disk using the correct
type. We use XFS in our example. Please change mkfs -t <type> if you use ext4
or btrfs instead:

mkfs -t xfs /dev/loop0p1

11. Next, let's mount our virtual block device partition on the system, into the directory
/media/vbd-1, and please change -t <type> if you use ext4 or btrfs instead:

mkdir /media/vbd-1
mount -t xfs /dev/loop0p1 /media/vbd-1

12. Finally, test if we can read and write to the new filesystem:

echo "this is a test" > /media/vbd-1/testfile.txt
cat /media/vbd-1/testfile.txt

https://technet24.ir

How it works…
Here, in this recipe, we showed the user how to create CentOS 7 standard partitions
spanning the whole disk, and then we created some filesystems on them, which is called
formatting, using different filesystem types. The standard filesystem available in CentOS
7 is XFS, but as we have learned in this recipe, there are lots of other ones available as
well, including the popular ext4 and btrfs. XFS is a very robust and high-performing file
system for large storage configurations; it is considered very mature and stable. Before
CentOS 7, the standard file system was ext4, but it had some limitations and not the best
performance when working with millions of files and is considered barely suitable for
today's very large filesystems. btrfs is a relatively new filesystem and is included in
CentOS 7, but at the time of writing it is still under development and should not be used
for production systems. It is considered to be fully supported in later CentOS 7 minor
releases and is likely to replace XFS as the standard CentOS filesystem type in the
future, as it has a list of very promising features and enhancements, such as copy-on-
write, which copies files each time you write to them, and which makes it possible to go
back to former file versions.

So, what have we learned from this experience?

We started this recipe by using the lsblk command to print a list of all available block
devices currently attached to the system. We used this command to check if our target
block device that we want to use for installing partitions and filesystems on is
available. In our example we will use the /dev/loop0 device, please change this name
if it's different on your system (as said before, you could also use a "real" disk block
device, such as /dev/sda, but always be careful!). After confirming that we have our
device ready, we used the parted command to check the partition table of the disk. A
partition table is mandatory for any hard disk to keep track of the partition information
on it. As you have seen, our primary tool for creating partition tables and partitions is
parted, as it is the officially recommended CentOS 7 tool for these tasks, but there are
other programs that do the same as well, such as fdisk or gdisk. If there is no partition
table available, we must create one of type gpt using parted's mklabel gpt parameter.

Next, after we created the partition table, we put some partitions on it. Therefore, we
issued parted's mkpart command with the -a optimal primary ext4 2048KiB 100%
options.

Note

Be careful with the parted command all the time and recheck everything before
executing, as most of its commands will completely destroy all the data currently stored
on the disk.

This will create a new partition starting at 2,048 kilobytes (kb) until the end of the disk.
We did not start at the very beginning of the disk (0%) as 2,048 kb is the start of the first
sector on the disk to leave some space left to store some additional data. -a optimal
aligns the partition to a multiple of the physical block size that will guarantee optimal
performance. Next, we removed the partition again using the rm option and number 1,
which refers to the first partition we just created. We recreated new partitions of type
btrfs and finally xfs. After the disk is partitioned, we need an actual filesystem on it,
as parted only labels the partition to a specific type, but does not do the actual
formatting. To make the filesystem, we use the mkfs utility. You can either run it with the
-t flag, as we did, or use a dot notation, such as mkfs.xfs, to specify the type you want
to format it to. The mkfs command gives us a detailed output of what it has done, such
as how many blocks have been written and so on.

Finally, after we have created the filesystem on our disk partition, we can use the mount
command to make it available and work with it in our current system. mount either
attaches or detaches a device's filesystem to our system's root filesystem. Therefore, we
need to first create a directory to define where we want to attach it to. We use the
directory, /media/vbd-1, as a parameter for the actual mount command with the syntax,
mount -t <file system type> <device> <dir>. For almost all standard
filesystems, you can skip the -t parameter as it will automatically detect the right type.
To detach a filesystem from your system, you can use the umount command with the
argument of the device you want to remove (you can also use the folder it's mounted to;
both do work!). In our example, to unmount our loop device's first partition, type
umount /dev/loop0p1.

After mounting our formatted partition device, we can access it like any other
component beneath the root folder.

https://technet24.ir

There's more...
In this recipe, we always use one partition spanning the complete available disk space.
Often, you have more than one partition on a disk, so let's create this kind of layout
instead. In this example, we create three 100 MB partitions on /dev/loop0:

1. First, let's delete our partition once again using the rm parameter so that we can
add new ones:

parted /dev/loop0 rm 1

2. Now, let's create three equal partitions:

parted -a optimal /dev/loop0 unit MiB mkpart primary ext4 2048KiB
100
parted -a optimal /dev/loop0 unit MiB mkpart primary ext4 100 200
parted -a optimal /dev/loop0 unit MiB mkpart primary ext4 300 400

3. Let's review our layout:

parted /dev/loop0 print

Note

Using the gpt partition table, we can create up to 128 primary partitions on any
disk; when using the older msdos partition type, there is a maximum of four
primary partitions. If you need more, you have to create extended partitions out of
primary ones.

Using disk quotas
When administering a Linux multiuser system with many system users, it is wise to set
some kind of restrictions or limits to the resources shared by the system. On a filesystem
level, you can either restrict the available hard disk space or the total file number to a
fixed size at a user, group, or directory level. The introduction of such rules can prevent
people from "spamming" the system, filling up its free space, and generally your users
will get more aware of the differentiation between important and unimportant data and
will be more likely to keep their home directories tidy and clean. Here in this recipe,
we will show you how to set up a disk quota limiting system for XFS filesystems,
which puts restrictions on the amount of data your system's user accounts are allowed to
store.

https://technet24.ir

Getting ready
To complete this recipe, you will require a minimal installation of the CentOS 7
operating system with root access and a console-based text editor of your choice. For
this recipe to work, and in order to set quotas, you will need at least one system user
account next to your root account; if you don't have one yet, please refer to the recipe
Managing users and their groups in Chapter 3, Managing the System to learn how to
create one. Also, in the main recipe, it is expected that your CentOS 7 uses the XFS
filesystem, which is standard on installation. Finally, your CentOS 7 installation needs
to have been installed on a disk with at least 64 GB space, otherwise the installer will
not create a separate logical /home volume, which is required in this recipe to make
quotas work.

How to do it...
Here, we will learn how to set up a quota system for the XFS filesystem in two different
ways: first, setting limits on the user and groups, and then on the directory (project)
level. Disk quota systems have to be set on filesystem mount.

Enabling user and group quotas
1. To begin, log in as root and open the fstab file, which contains static mount

information:

vi /etc/fstab

2. Now, navigate the cursor to the line containing /home (with the up and down arrow
keys) and move it to the word defaults, and then add the following text after
defaults, separated by commas:

,uquota,gquota

3. The complete line will look like the following (your device name will be different,
depending on your individual LVM name; here, it is myserver):

/dev/mapper/myserver-home /home XFS defaults,uquota,gquota 0
0

4. Save and close the file, then remount the /home partition to activate the quota
directive:

umount /home;mount -a

5. Next, create a user quota on the total file size for a specific user named john
(change appropriately to match a user available on your system):

xfs_quota -x -c 'limit bsoft=768m bhard=1g john' /home/

6. Next, create a user quota for the total amount of files another user, joe, can have:

xfs_quota -x -c 'limit isoft=1000 ihard=5000 joe' /home/

7. Let's create a file amount and size limit for everyone in the user group devgrp (the
filesystem group devgrp must exist):

xfs_quota -x -c 'limit -g bsoft=5g bhard=6g isoft=10000
ihard=50000 devgrp' /home

8. Finally, show the whole quota report for the home volume:

https://technet24.ir

xfs_quota -x -c 'report -bi -h' /home

Enabling project (directory) quotas

In order to enable disk quotas for a single directory instead of user or group quotas, we
have to add the project quota directive called pquota to the volume containing the
directory. As we will use a directory called /srv/data for our project quota, we need
to take the full underlying / root partition under quota control. For the root partition, we
have to set quota flags as kernel boot options:

1. To begin with, open the following file as root after first making a backup of it:

cp /etc/default/grub /etc/default/grub.BAK
vi /etc/default/grub

2. Add the rootflags=pquota directive to the end of the line (add one whitespace
character before it) starting with GRUB_CMDLINE_LINUX= before the closing double
quote as shown here:

GRUB_CMDLINE_LINUX="rd.lvm.lv=centos/root rd.lvm.lv=centos/swap
crashkernel=auto rhgb quiet rootflags=pquota"

3. Save and close the file, and then rebuild the grub configuration with our new boot
option:

grub2-mkconfig -o /boot/grub2/grub.cfg

4. Now, add the pquota flag to your root volume in /etc/fstab as well:

vi /etc/fstab

5. Navigate the cursor to the line containing the root mount point / and move it to the
word defaults, and then add the following text, separated by a comma:

,prjquota

6. The complete line will look similar to the following:

/dev/mapper/myserver-root / XFS defaults,prjquota 0 0

7. Next, reboot your computer to apply your changes to the root volume:

reboot

8. After rebooting, make sure that the root volume has project quota enabled, which
is defined as the prjquota flag in the volume's options (otherwise, if it is wrong
and doesn't work, it will show as noquota):

cat /etc/mtab | grep root

9. Next, let's create our target folder that we want to set quotas for:

mkdir /srv/data

10. We need to add a project name and an associated new, unique ID:

echo "myProject:1400" >> /etc/projid

11. Now, define that /srv/data will use quota rules from our project ID:

echo "1400:/srv/data" >> /etc/projects

12. Next, initialize the project quota for the root volume:

xfs_quota -xc 'project -s myProject' /

13. Finally, apply the following rule to create specific directory limits:

xfs_quota -x -c 'limit -p bsoft=1000m bhard=1200m myProject' /

14. Print out our quota rules for this device:

xfs_quota -x -c 'report -bi -h' /

https://technet24.ir

How it works...
In this recipe, you learned how easy it is to set up a quota system on a user, group, or
directory (project) level. Also, you have learned that there are two basic ways of
defining quotas: either put a restriction on the total file size (called blocks), or a limit
on the number of files (called inodes).

So, what have we learned from this experience?

We began this recipe by setting user and group quotas. As you have seen, a quota system
can easily be enabled by adding associated directives to the partition of choice in the
/etc/fstab file. Therefore, we began this recipe by opening this file and adding the
special quota keywords for the XFS user, and group quotas to our /home partition. In
order to apply these changes, we had to remount the filesystem using the mount
command. As the quota system had been successfully started, we used the xfs_quota -
x -c command line to set some quota limits on our enabled filesystem /home. -x
enables expert mode while -c lets us run commands as arguments on the command line.
When running xfs_quota without the -c option, you will get to an interactive prompt
instead. First, we set some user limits for the users, john and joe. We did this by
defining the following parameters with numbers: bsoft, bhard, isoft, ihard. As you
can see, there are both soft and hard limits for file size (blocks) and file amount
(inodes). Block quotas can be given in the typical metrics such as kilobyte (k),
megabyte (m), and gigabyte (g), whereas an inode is a number. A soft limit is a threshold
that, when crossed, prints out a warning message to the command line, whereas a hard
limit will stop the user from adding any more data or files to the filesystem under quota
protection. Afterwards, we set a group-based quota. If you use the -g flag, the limit will
be defined for a group instead of the user. Using group rules can be very helpful to
separate your users into different groups depending on the amount of files or total file
size they should be allowed to have. Finally, we generated a report for all our current
quota limits. The command we used there was 'report -bi -h', which generates
reports for used filespace (-b for blocks) and the total amount of files (-i for inodes). -
h specified that we want the output to be human-readable in megabytes or gigabytes.

To test that quotas work, let's create the following block and inode quotas for the user
jack:

xfs_quota -x -c 'limit bhard=20m jack' /home/
xfs_quota -x -c 'limit ihard=1000 jack' /home/

Log in as the user jack (su - jack) and run the following command:

dd if=/dev/urandom of=~/test.dd bs=1M count=21

With this command, the user john will try to create a 21 megabyte size file, but when
starting to write the twentieth megabyte, the following error message will appear:

dd: error writing '/home/jack/test.dd': Disk quota exceeded

Now, delete the ~/test.dd file so that we can start another test. The same happens if
you exceed your file amount limit. Test the following quota limit by trying to create
2,000 multiple files while the quota is limited to 1,000; do this by adding a lot of new
files: for i in {1..2000}; do touch ~/test$i.txt; done. This results in the
following error message:

touch: cannot touch '/home/jack/test1001.txt': Disk quota exceeded

To temporarily turn off user and group quota checking for a specific filesystem, you can
run xfs_quota -x -c 'off -u -g' /home/ (-u for user, -g for group) as root user.
This is only temporary; to re-enable it, you need to remount the filesystem of interest,
which is umount /home;mount -a. To remove a specific quota rule, just set its limit to
zero, for example:

xfs_quota -x -c 'limit bhard=0 john' /home

Next, we set up quota on a directory, instead of the user/group level. This is a feature
only XFS file systems are capable of; all other filesystems can only set quotas on a disk
or partition level. Being able to control the disk usage of a directory hierarchy is useful
if you do not otherwise want to set quota limits for a privileged user or groups. To
activate directory quota, we first had to enable this as a kernel boot option because, by
default, the root volume is flagged as noquota. Also, we added the prjquota directive
in /etc/fstab to the root partition to make it work. If you want to learn more about
kernel boot options, read the boot loader recipe in Chapter 15, Installing CentOS. To set
file system flags for the root partition, we needed to reboot the system. After doing this,
we made sure that the boot option has been set successfully by looking into the mtab
file, which is a file that lists all currently mounted filesystems. Next, we set up a project
name with an associated unique project ID (we randomly choose 1400) in the
/etc/projid file. In the next step, we applied this new project ID (1400) to a directory
in the /etc/projects file called /srv/data. This system allows the application of
specific project quota rules to many different directories. Afterwards, we initialized
project quota for the root partition using the project option with the xfs_quota

https://technet24.ir

command, and then created a limit quota rule for this project name. All directories that
are defined in the /etc/projects file under the corresponding project id are affected
by this rule. This type of system can be used for fine-grain multiple folder quota rules.
For every directory, you can set up a new project name or reuse a specific one, making
this system very flexible.

In this recipe, we have created a block size hard limit of 1,200 megabytes for our
project name, which is myProject. To test this quota, type the following:

dd if=/dev/zero of=/srv/data/dd.img bs=1M count=1201

This should stop dd, exactly after writing 1200 megabytes, with the following command
line error message:

dd: error writing '/srv/data/dd.img': No space left on device

There's more...
As the name implies, the xfs_quota program shown in this recipe only works for XFS
filesystems. If you want to use disk quotas on a user or group level for other file systems
such as ext4 or btrfs, you have to install the quota package (yum install quota).
Setting quotas works in a similar way to the steps shown in this recipe; please read the
manual man quota to get you started.

https://technet24.ir

Maintaining a filesystem
In this recipe, we will learn how to check the consistency and optionally repair CentOS
7 filesystems. Filesystem inconsistencies are rare events and filesystem checks normally
are running automatically at boot time. But system administrators should also know how
to run such tests manually, if they believe there is a problem with the filesystem.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges. We will use virtual block devices instead of real
disk devices because we cannot apply any file system check on a mounted disk.
Therefore, you should have applied the Formatting and mounting a filesystem recipe and
created a 1 gigabyte virtual block device with two partitions of half the total size: first,
a partition with an XFS, and then another one with an ext4 filesystem. We will use the
virtual block device named /dev/loop0 in this example.

As said before, these can be easily exchanged with real disk names.

https://technet24.ir

How to do it...
1. To begin with, log in as root and show information about the current block

devices attached to the system:

lsblk -io NAME,TYPE,SIZE,MOUNTPOINT,FSTYPE,MODEL

2. Here, you should see two partitions on the loop0 device: /dev/loop0p1 and
/dev/loop0p2. If you see that they are currently mounted to the system, unmount
them now:

umount /dev/loop0p1
umount /dev/loop0p2

3. Now, let's check the XFS filesystem which in our example is loop0p1 (change
appropriately):

xfs_repair -n /dev/loop0p1

4. For the second partition on the disk that is ext4, we will use the following line:

fsck -f /dev/loop0p2

How it works...
In this recipe, we have learned how easy it is to run a filesystem check on a XFS or ext4
filesystem. The most important lesson you should have learned here is that you always
have to unmount your disk partitions before running any filesystem checks!

So, what did we learn from this experience?

Since we cannot run any filesystem checks on any mounted device, if you want to check
your system's disks and partitions, often you have to run such checks in the rescue mode
where your filesystems are not mounted (for example, you cannot unmount the root
partition to check because it's needed by the system all the time, whereas, for a separate
home partition, it would be possible).

For the XFS file system, we use the xfs_repair tool, and for all others we will use the
fsck program with the -f parameter (force) to check our filesystem.

It is important to note that we always need to run fsck instead of the specific fsck.
<file system type> (such as fsck.ext4, fsck.btrfs), because it auto-detects the
right tool for you. This is necessary because if you run the wrong specific fsck.<file
system type> tool on the wrong filesystem (let's say running fsck.ext4 on a btrfs
filesystem), it can completely destroy it!

https://technet24.ir

There's more...
So far, we have only showed you how to check a filesystem using xfs_repair and
fsck. If some errors occur during the "checking" run on an XFS filesystem, run
xfs_repair without the -n option—for example, use xfs_repair /dev/loop0p1. On
a non-XFS partition, such as ext4, you would run fsck with the -a option (a for auto
repair)—for example, fsck -a /dev/loop0p2. For fsck, if you got a lot of errors, it's
best to use -y as well so that you do not have to confirm every error fix.

Now, let's simulate what would happen if we got a corrupted XFS filesystem using our
virtual block device (never do this on any real disk partition!):

1. First, mount the /dev/loop0p1 partition to your root filesystem:

mkdir /media/vbd-1
mount -t xfs /dev/loop0p1 /media/vbd-1

2. Next, create a large number of files on this mounted filesystem—for example, 2000
files:

for i in {1..2000}; do dd if=/dev/urandom bs=16 count=1
of=/media/vbd-1/file$i; done

3. Now, unmount the device and corrupt the filesystem using dd:

umount /dev/loop0p1
dd bs=512 count=10 seek=100 if=/dev/urandom of=/dev/loop0p1

4. Now, run a filesystem check:

xfs_repair -n /dev/loop0p1

5. This will most likely show you a list of corrupted files; in order to fix it, use the
following line:

xfs_repair /dev/loop0p1

You can also simulate such a filesystem corruption on your ext4 virtual block device,
and then repair it using fsck -ay /dev/loop0p2.

Extending the capacity of the filesystem
CentOS 7 uses the Logical Volume Manager (LVM) to organize the structure and
available capacity of your partitions. It is a very dynamic and flexible system that can
be extended or rearranged over time, and which is essential in today's most demanding
and ever-changing environments. At the moment, buzzwords such as big data or cloud
computing can be heard everywhere. Since massive amounts of data get produced all the
time, storage requirements and disk space have to grow at the same steady pace. In this
recipe, you will learn how to work with the LVM system and how to extend your
physical drives, and also how to shrink and extend the capacity of your filesystems.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges. We will use virtual block devices instead of real
disk devices to show you from scratch how to set up a LVM first, and afterwards how to
work with it. Please read the Creating a virtual block device recipe and create three 1
gigabyte virtual block devices with the GPT partition table, which will be labeled as
/dev/loop0, /dev/loop1, and /dev/loop2 in this example.

Again, feel free to use real disk devices if you feel ready for it.

How to do it...
First, we will start by creating an LVM test environment similar to the standard CentOS
7 LVM structure, which is set up during the installation of every server system:

1. First, let's log in as root and show information about our virtual block devices:

lsblk -io NAME,SIZE

2. Next, create new partitions spanning the whole disk on each of the three virtual
block devices (without a filesystem label):

parted -a optimal /dev/loop0 mkpart primary 2048KiB 100%
parted -a optimal /dev/loop1 mkpart primary 2048KiB 100%
parted -a optimal /dev/loop2 mkpart primary 2048KiB 100%

3. Now, let's create LVM physical volumes on each of the loop devices (type yes to
remove the gpt label):

pvcreate /dev/loop0p1
pvcreate /dev/loop1p1
pvcreate /dev/loop2p1

4. Next, show information about our physical volumes:

pvdisplay

5. Next, we will create a new LVM volume group on our first physical volume:

vgcreate myVG1 /dev/loop0p1

6. Now, show information about the created group:

vgdisplay myVG1

7. Afterwards, let's create some logical volumes on our first volume group, which
will be treated as virtual partitions in our Linux system:

lvcreate -L 10m -n swap myVG1
lvcreate -L 100m -n home myVG1
lvcreate -L 400m -n root myVG1

8. Next, show information about the logical volumes:

lvdisplay myVG1

9. Now, display how much free space our underlying volume group has left, which
becomes important if you want to expand some logical volumes (see the section

https://technet24.ir

Free PE / Size in the output):

vgdisplay myVG1

10. Afterwards, let's create the filesystems on those new logical volumes:

mkswap /dev/myVG1/swap
mkfs.xfs /dev/myVG1/home
mkfs.xfs /dev/myVG1/root

11. Now, after we have created our test LVM system (which is very similar to the real
CentOS LVM standard layout, but with smaller sizes), let's start working with it.

12. First, let's shrink the root partition, which is currently 400 megabytes (M) in size,
by 200 megabytes, and afterwards, let's increase the home partition by 500
megabytes (confirm the possible data loss):

lvresize -L -200m /dev/myVG1/root
lvresize -L +500m /dev/myVG1/home

13. Use vgdisplay myVG1 again to see how the volume group's free space changes by
running the previous commands (see Free PE / Size).

14. Now, let's expand the XFS filesystem on the grown logical volume:

mkdir /media/home-test;mount /dev/myVG1/home /media/home-test
xfs_growfs /dev/myVG1/home

Note

It is very important not to use resize2fs for growing XFS filesystems, because
it's incompatible and can corrupt them.

15. Now, let's say that after some time your data has grown again, and you need the
home partition to be 1.5 gigabytes (G), but you only have 184.00 MiB left on the
underlying volume group. First, we need to add our two prepared physical
volumes from the beginning of this recipe to our volume group:

vgextend myVG1 /dev/loop1p1 /dev/loop2p1
vgdisplay myVG1

16. Afterwards, we have enough free space in our volume group (see Free PE /
Size) to expand our home logical volume (the volume must stay mounted):

lvresize -L +1500m /dev/myVG1/home
xfs_growfs /dev/myVG1/home

How it works...
Here, in this recipe, we have shown you how to work with the LVM for XFS partitions.
It has been developed with the purpose of managing disk space on several hard disks
dynamically. You can easily merge many physical hard disks together to make them
appear as a single virtual hard disk to the system. This makes it a flexible and very
scalable system in comparison to working with plain old static partitions. Traditional
partitions are bound to, and cannot grow over, the total disk capacity they reside on, and
their static partition layout cannot be changed easily. Also, we have introduced some
important LVM technical terms that provide different abstraction layers to a hard disk,
and which will be explained in this section so as to understand the concepts behind it:
physical volume (pv), volume group (vg), and logical volume (lv).

So, what did we learn from this experience?

We started this recipe by creating three virtual block devices of 1 gigabyte (G) each and
then one partition spanning the whole device on each of them. Afterwards, we defined
these single-partition devices as physical volumes (pv) using the pvcreate command.
A pv is an LVM term that defines a storage unit in the LVM world. It must be defined on
a partition, full drive, or loop device. A pv is just an abstraction of all the space
available in the surrounding partition so that we can work with it on an LVM basis.
Next, we created a volume group (vg) with the vgcreate command, where we also had
to define a volume group name of our choice and put the first pv in it as a basic storage
volume. As you can see, a vg is a container for at least one pv (we add more pv's later).
Adding or removing pv's to or from a vg is the heart of the whole scalability concept of
the LVM system. The pv's don't have to be all the same size, and it is possible to grow
your vg over time by adding dozens of new physical drives all defined as pv. You can
have more than one vg on your system, and you can identify them by the unique names
you are giving to them. So, in summary, to extend the space of your vg, you have to
create pv's out of physical drives, which you can then add to.

Finally, we created logical volumes (lv) on our vg, which can be seen and used like real
physical partitions within a vg. Here, we created three lv's using the lvcreate
command, by which we need to define the name of the vg (remember, there can be more
than one vg on your system) that we want to put our target lv on, along with the size of
the volume, as well as a name for it as the last parameter. You can add multiple lvs into
a vg and you don't need to use the whole allocated space from the underlying free space
of the vg. You can be very flexible with it. The best part is that your decision about your

https://technet24.ir

volumes' size and layout doesn't have to be fixed for all time; you can change them
anytime later. It is a very dynamic system that can be extended and shrunk, deleted and
created, without having to unmount the volume beforehand. But you have to remember
that all lvs are bound to a vg, and it is not possible to create them without it or outside
its spacial boundaries. If you need to extend an lv's space over the borders of the
underlying vg, you have to extend the vg, as show in this recipe.

Note

As you may have seen, for every LVM term, there is a "display" and "create" command,
so it's easy to remember: pvdisplay, vgdisplay, lvdisplay, pvcreate, vgcreate,
lvcreate.

After you have successfully created your lv's, you can work with them as you would
with every other block device partition on your system. The only difference is that they
reside in special device folders: /dev/<vg name>/<lv name> or /dev/mapper/<vg
name>/<lv name>. For example, the home volume created in this example has the name
/dev/myVG1/home. Finally, in order to use them as normal mount points, we created
some test filesystems on them.

In the second part of this recipe, we showed you how to extend our vg and how to shrink
and expand our lv's test system.

We started by using the vgdisplay myVG1 command to show the currently available
space on the vg. In the command output, we saw that our current volume group has a
total of 996M (VG Size), the allocated size from our lv's (swap, home, root) is 512M
(Alloc PE / Size), and the free size is 484M (Free PE /Size). Next, we used the
lvresize command to shrink and expand the logical volume's root and home. The -L
parameter sets the new size of the volume, and with the + or - sign, the value is added to
or subtracted from the actual size of the logical volume. Without it, the value is taken as
an absolute one. Remember that we could only increase the home partition because the
current volume layout does not occupy the complete vg's total space. After resizing, if
we use the vgdisplay command again, we see that we now occupy more space in the
vg; its free size has been decreased to 184M. Since we expanded the home volume from
100M to 500M in total, we need to remember to expand its XFS filesystem too, since
expanding a volume does not automatically expand its filesystem. Therefore, 400M of the
current volume are unallocated without any filesystem information. We used the
command, xfs_growfs, which will, without defining a limit parameter, use the
complete unallocated area for the XFS filesystem. If you want to resize any other

filesystem type, such as ext4, you would use the resize2fs command instead.

Finally, we wanted to grow the home volume by 1.5G, but we only have 184M left on
our vg to expand. This is where LVM really shines, because we can just add some more
physical volumes to it (in the real world, you would just install new hard disks in your
server and use them as pvs). We showed you how to extend the capacity of your vg by
adding two 1G-sized pvs to it using the vgextend command. Afterwards, we used
vgdisplay to see that our vg has now grown to 3G in total size, so finally we could
extend our home lv as it would now fit into it. As a last step, we expanded the XFS file
system once again to fill up the whole 2G home volume size.

Please remember, all the time, that if you use vg's with several physical hard disks, your
data will be distributed among these. An LVM is not a RAID system and has no
redundancy, so if one hard disk fails, your complete vg will fail too and your data will
be lost! In order to deal with this problem, a proposed solution could be to use a
physical RAID system for your hard disks and create an LVM on top of that.

https://technet24.ir

Chapter 6. Providing Security
In this chapter, we will cover the following topics:

Locking down remote access and hardening SSH
Installing and configuring fail2ban
Working with a firewall
Forging the firewall rules by example
Generating self-signed certificates
Using secure alternatives to FTP

Introduction
This chapter is a collection of recipes that provides a solid framework on which a
server can be made secure in almost any environment. Security is the cornerstone of a
good administrator, and this chapter illustrates how quickly and easily you can design
and implement a series of checkpoints that will deliver the protection you need.

https://technet24.ir

Locking down remote access and
hardening SSH
In this recipe, we will learn how to provide additional security measures in order to
harden the secure shell environment. The Secure Shell (SSH) is the basic toolkit that
provides remote access to your server. The actual distance to the remote machine is
negligible, but the shell environment enables you to perform maintenance, upgrades, the
installation of packages and file transfers; you can also facilitate whatever action you
need to carry out as the administrator in a secure environment. It is an important tool; as
the gateway to your system, it is the purpose of this recipe to show you how to perform
a few rudimentary configuration changes that will serve to protect your server from
unwanted guests.

Getting ready
To complete this recipe, you will require a minimal installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to download additional packages. It is assumed that
your server already maintains at least one non-root-based administration account that
can use the new features provided by this recipe.

https://technet24.ir

How to do it...
The role of SSH will be vital if you are forced to administer your server from a remote
location, and for this reason it is essential that a few basic steps are provided to keep it
safe:

1. To begin, log in as root and create a backup of the original configuration file by
typing the following command:

cp /etc/ssh/sshd_config /etc/ssh/sshd_config.bak

2. Now, open the main sshd configuration file by typing the following:

vi /etc/ssh/sshd_config

3. We shall begin by adjusting the time allowed to complete the login process, so
scroll down and find the line that reads:

#LoginGraceTime 2m

4. Uncomment this line and change its value to something more appropriate such as:

LoginGraceTime 30

5. Now, scroll down a couple of more lines and find the line that reads as follows:

#PermitRootLogin yes

6. Change this to the following:

PermitRootLogin no

7. Find the following line:

X11Forwarding yes

8. And change it to the following:

X11Forwarding no

9. Save and close the file before restarting the SSH service, as shown here:

systemctl restart sshd

10. At this stage, you may want to consider creating a new SSH session using the new
settings before exiting the current session. This is to ensure that everything is
working correctly and to avoid locking yourself out of the server accidentally. If
you have difficulty starting a new SSH session, then simply return to the original

session window and make the necessary adjustments (followed by a restart of the
SSH service). However, if no difficulties have been encountered and you are on a
successful secondary login, you may close the original shell environment by typing
exit.

Note

Remember, having followed this recipe you should now find that root access to the
shell is denied and you must log in using a standard user account. Any further work
requiring root privilege will require the su or sudo command, depending on your
preferences.

https://technet24.ir

How it works...
SSH is a vital service that enables you to access your server remotely. A server
administrator cannot work without it. In this recipe, you were shown how to make that
service a little more secure.

So, what did we learn from this experience?

We began the recipe by creating a backup copy of our original main sshd configuration
file. The next step was to open and edit it. The configuration file for SSH maintains a
long list of settings that is ideal for most internal needs, but for a server in a production
environment it is often advised that the default SSH configuration file will need
changing to suit your particular needs. In this respect, the first step was to make a
recommended change to the login grace time, LoginGraceTime 30. Instead of the
default two minutes, the preceding value will allow only up to 30 seconds. This is the
period of time where a user may be connected but will have not begun the authentication
process; the lower the number, the fewer unauthenticated connections are kept open.
Following this, we then removed the ability of a remote user to log in as the root user by
using the PermitRootLogin no directive. In most cases, this is a must and a remote
server should not allow a direct root login unless the server is in a controlled
environment. The main reason behind this is to reduce the risk of getting hacked. The
first thing every SSH hacker tries to crack is the password for the user root. If you
disallow root login, an attacker needs to guess the user name as well, which is far more
complex. The next setting simply disabled X11Forwarding. In situations like these, it is
often a good idea to apply the phrase "if you do not use it, disable it". To complete the
recipe, you were required to restart the SSH server in order to allow the changes to take
immediate effect and start a new SSH session with the intention of making sure that the
modifications did indeed work as expected. No system is ever safe, but having done this
you can now relax, safe in the knowledge of having made the SSH server a little bit
safer.

There's more...
There are a few more topics to cover to make your SSH server even more secure: we
should change the SSH port number and show you how to limit SSH access to specific
system users.

Changing the SSH port number of your server

Port 22 is the default port used by all SSH servers, and changing the port number used
can go a small way to increase the overall security of your server. Again, open the main
SSH daemon configuration file, sshd_config. Now, scroll down and locate the
following line that reads:

#Port 22

Remove the leading # character (uncomment) and change the port number to another
value by replacing XXXX with an appropriate port number:

Port XXXX

You must ensure that the new port number is not already in use, and when complete,
save the file and close it. It is important to remember that any changes made here are
reflected in your firewall configuration. So, we need to open the new port in firewalld
as well. Set the new port via the environment variable NEWPORT (replace XXXX with
your new SSH port), then execute the following sed command to change the SSH
firewalld service file and reload the firewalld daemon afterwards (for details, read
the firewall recipe in this chapter):

NEWPORT=XXXX
sed "s/port=\"22\"/port=\"$NEWPORT\"/g"
/usr/lib/firewalld/services/ssh.xml > /etc/firewalld/services/ssh.xml
firewall-cmd --reload

Also, we have to tell SELinux (see Chapter 14, Working with SELinux to learn more
about it) about the port change because it is restricted to port 22 by default. Make sure
that the SELinux tools have been installed, then create a security label for our custom
port, replacing XXXX with your changed port number:

yum install -y policycoreutils-python semanage port -a -t ssh_port_t
-p tcp XXXX

Finally restart the sshd service to apply our port change.

https://technet24.ir

Limiting SSH access by user or group

By default, all valid users on the system are allowed to log in and enjoy the benefit of
SSH. However, a more secure policy is to only allow a predetermined list of users or
groups to log in. When henry, james, and helen represent valid SSH users on the
system, in the sshd_config add this line to read as follows:

AllowUsers henry james helen

Alternatively, you can use the following method to enable any user that is a member of a
valid administration group to log in. When admin represents a valid SSH group on the
system, add this line to read as follows:

AllowGroups admin

When you have finished, save and close the file before restarting the SSH service.

Installing and configuring fail2ban
In this recipe, we will learn how to implement additional security measures for
protecting the SSH server with a package called fail2ban. This is a tool that serves to
protect a variety of services including SSH, FTP, SMTP, Apache, and many more
against unwanted visitors. It works by reading log files for patterns based on failed
login attempts and deals with the offending IP addresses accordingly. Of course, you
may have already hardened your SSH server or another service on a direct application
level, but it is the purpose of this recipe to show that, when faced with the possibility of
Brute Force Attacks, an added layer of protection is always useful.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to download additional packages. In addition to this,
it will be assumed that YUM is already configured to download packages from the
EPEL repository (see Chapter 4, Managing Packages with YUM).

How to do it...
Fail2ban is not installed by default, and for this reason we will need to invoke the YUM
package manager and download the necessary packages:

1. To begin this recipe, log in as root and type the following command:

yum install fail2ban-firewalld fail2ban-systemd

2. Create a new configuration file in your favorite text editor, like so:

vi /etc/fail2ban/jail.local

3. Put in the following content:

[DEFAULT]
findtime = 900
[sshd]
enabled = true

4. Now, append the following line that defines the ban period. It is calculated in
seconds, so adjust the time period to reflect a more suitable value. In this case, we
have chosen this to be one hour:

bantime = 3600

5. Then, append the maximum number of login attempts:

maxretry = 5

6. If you are running SSH over a custom port other than 22, you need to tell this to
fail2ban as well (replace XXXX with your port number of choice) otherwise skip
this step:

port=XXXX

7. Now, save and close the file in the usual way before proceeding to enable the
fail2ban service at boot. To do this, type the following command:

systemctl enable fail2ban

8. To complete this recipe, you should now start the service by typing:

systemctl start fail2ban

https://technet24.ir

How it works...
fail2ban is designed to monitor users who repeatedly fail to log in correctly on your
server, and its main purpose is to mitigate attacks designed to crack passwords and steal
user credentials. It works by continuously reading your system's log files, and if this
contains a pattern indicating a number of failed attempts, then it will proceed to act
against the offending IP address. We all know that servers do not exist in isolation, and
by using this tool, within a few minutes, the server will be running with an additional
blanket of protection.

So, what did we learn from this experience?

fail2ban is not available from the standard CentOS repositories, and for this reason
your server will need to have access to the EPEL repository. The installation of the
fail2ban packages was very simple; besides the main fail2ban package, we installed
two other packages to integrate it into CentOS 7's new systemd and firewalld server
technologies. Next, for our local customization, we created a new jail.local file. We
started specifying the findtime parameter for all targets (specified within the
[DEFAULT] section), which is the amount of time a user has when attempting to log in.
This value is measured in seconds and implies that, if a user fails to log in within the
maximum number of attempts during the designated period, then they are banned. Next,
we enabled fail2ban for the sshd daemon by adding a [sshd] section. In this section,
we introduced the bantime value, which represents the total number of seconds that a
host will be blocked from accessing the server if they are found to be in violation of the
rules. Based on this, you were then asked to determine the maximum number of login
attempts before blocking. Also, if you have changed your service's standard listening
port, you have to define the custom port using the port directive. To test your settings,
try to authenticate a user using SSH and provide a wrong password five times. On the
sixth occasion, you should not be able to get back to the login prompt for one hour!

Protecting the sshd service from Brute Force Attacks is just the first step to get you
started, and there is much more to learn with failban. To troubleshoot the service,
please look at its log file at /var/log/fail2ban.log. To get some ideas about what
can be done with it, open the following example failban config file: less
/etc/fail2ban/jail.conf.

Working with a firewall
A firewall is a program that monitors and controls your system's network interfaces'
incoming and outgoing network traffic, and can restrict the transmission to only useful
and non-harmful data into and out of a computer system or network. By default, CentOS
is made available with an extremely powerful firewall, built right into the kernel, called
netfilter. While, in older versions of CentOS, we used the famous iptables application
to control it, in version 7, the new standard netfilter management program has changed
to a service called firewalld, which is already installed and enabled on every CentOS
7 server by default.

It is a very powerful service to take full control over your server's firewall security, and
is much easier to work with than iptables. Its main advantages are that it features a
better structured and more logical approach to managing and configuring every aspect of
a modern firewall solution. Therefore, it will be the foundation of your server's security,
and for this reason it is the purpose of this recipe to get you started on the fundamentals
of firewalld quickly.

https://technet24.ir

Getting ready
To complete this recipe, you will require a minimal installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice.

How to do it...
As the firewalld service is running on every CentOS 7 server by default, we can start
directly working with the service by logging in to your server using the root user.

1. Type the following commands to query zone-related information:

firewall-cmd --get-zones | tr " " "\n"
firewall-cmd --list-all-zones
firewall-cmd --get-default-zone
firewall-cmd --list-all

2. We can switch to a different firewall default zone by using the following line:

firewall-cmd --set-default-zone=internal

3. Add a network interface to a zone temporarily:

firewall-cmd --zone=work --add-interface=enp0s8

4. Now, add a service to a zone temporarily:

firewall-cmd --zone=work --add-service=ftp

5. Test if adding the interface and service has been successful:

firewall-cmd --zone=work --list-all

6. Now, add the service permanently:

firewall-cmd --permanent --zone=work --add-service=ftp
firewall-cmd --reload
firewall-cmd --zone=work --list-all

7. Finally, let's create a new firewall zone by opening the following file:

vi /etc/firewalld/zones/seccon.xml

8. Now put in the following content:

<?xml version="1.0" encoding="utf-8"?>
<zone>
 <short>security-congress</short>
 <description>For use at the security congress. </description>
 <service name="ssh"/>
</zone>

9. Save and close, then reload the firewall config so that we can see the new zone:

https://technet24.ir

firewall-cmd --reload

10. Finally, check that the new zone is available:

firewall-cmd --get-zones

How it works...
In comparison to iptables, the new firewalld system hides away the creation of
sophisticated networking rules and has a very easy syntax that is less error-prone. It can
dynamically reload netfilter settings at runtime without having to restart the complete
service and we can have more than one firewall configuration set per system, which
makes it great for working in changing network environments, such as for mobile
devices like laptops. In this recipe, we have given you an introduction to the two
fundamental building blocks of firewalld: the zone and the service.

So, what did we learn from this experience?

We started this recipe using firewall-cmd to get information about available firewall
zones on the system. Firewalld introduces the new concept of network or firewall
zones, which assigns different levels of trust to your server's network interfaces and
their associated connections. In CentOS 7, there already exist a number of predefined
firewalld zones, and all of these (for example, private, home, public, and so on, with
the exception of the trusted zone) will block any form of incoming network connection
to the server unless they are explicitly allowed using special rules attached to the zone
(these rules are called firewalld services, which we will see later). We queried zone
information using firewall-cmd with --get-zones or (more detailed) with the --
list-all-zones parameter. Each of these zones acts as a complete and full firewall
that you can use, depending on your system's environment and location. For example, as
the name implies, the home zone is for use if your computer is located in home areas. If
this is selected, you mostly trust all other computers and services on the networks to not
harm your computer, whereas the public zone is more for use in public areas such as
public access points and so on. Here, you do not trust the other computers and services
on the network to not harm you. On CentOS 7, the standard default zone configuration
set after installation is the public zone, which we displayed using the command's --
get-default-zone parameter, and in more detail using --list-all.

Note

Simply put, firewalld zones are all about controlling incoming connections to the server.
Limiting outgoing connections with firewalld is also possible but is outside the scope of
this book.

Also, to get more technical information about all currently available zones, we used the
firewall client's --list-all-zones parameter. In the command's output, you will

https://technet24.ir

notice that a zone can have some associated networking interfaces and a list of services
belonging to it, which are special firewall rules applied to incoming network
connections. You may also notice that, while listing details of all zones and their
associated services by default, all firewalld zones are very restrictive and barely allow
anything to connect to the server at all. Also, another very important concept can be seen
in the command's output from the above. Our public zone is marked as default and
active. While the active zone is the one that is directly associated with a network
interface, the default zone can really get important if you have multiple network
adapters available. Here, it acts as a standard minimum firewall protection and fallback
strategy, in case you missed to assign some active zone for every interface. For systems
with only one network interface setting, the default zone will set the active zone
automatically as well. To set a default zone, we used the --set-default-zone
parameter and, to mark a zone as active for an interface, we used --add-interface.
Please note that, if you don't specify the --zone parameter, most firewall-cmd
commands will use the default zone to apply settings. Firewalld is listening on every
network interface in your system, and waiting for new network packets to arrive. In
summary we can say that if there is a new packet coming into a specific interface, the
next thing firewalld has to do is find out which zone is the correct one associated with
our network interface (using its active or if not available its default configuration); after
finding it, it will apply all the service rules against the network packets belonging to it.

Next, we showed you how to work with firewalld services. Simply put, firewalld
services are rules that open and allow a certain connection within our firewall to our
server. Using such service file definitions allows the reusability of the containing rules
because they can be added or removed to any zone. Also, using the predefined firewalld
services already available in your system, as opposed to manually finding out and
opening protocols, ports, or port ranges using a complicated iptables syntax for your
system services of interest, can make your administrative life much easier. We added the
ftp service to the work zone by invoking --add-service. Afterwards, we printed out
details of the work zone using --list-all. Firewalld is designed to have a separated
runtime and permanent configuration. While any change to the runtime configuration has
immediate effect but will be gone, the permanent configuration will survive reload or
restart of the firewalld service. Some commands such as switching the default zone are
writing the changes into both configurations which mean they are immediately applied at
runtime and are persistent over service restart. Other configuration settings such as
adding a service to a zone are only writing to the runtime configuration. If you restart
firewalld, reload its configuration, or reboot your computer, these temporary changes
will be lost. To make those temporary changes permanent, we can use the --permanent

flag with the firewall-cmd program call to write it to the permanent configuration file
as well.

Other than with the runtime options, here the changes are not effective immediately, but
only after a service restart/reload or system reboot. Therefore, the most common
approach to apply permanent settings for such runtime-only commands is to first apply
the setting with the --permanent parameter, and afterwards reload the firewall's
configuration file to actually activate them.

Finally, we showed you how to create your own zone, which is just a XML file you
have to create in the /etc/firewalld/zones/ directory, and where we specified a
name, description, and all the services that you want to activate. If you change
something in any firewall configuration file, don't forget to reload the firewall config
afterwards.

To finish this recipe, we will revert our permanent changes made to the work zone and
reload firewalld to reset all the non-permanent changes we applied in this recipe:

firewall-cmd --permanent --zone=work --remove-service=ftp
firewall-cmd --reload

https://technet24.ir

There's more...
To troubleshoot blocking services, instead of turning off the firewall completely, you
should just switch zone to trusted, which will open all the incoming ports to the
firewall:

firewall-cmd --set-default-zone=trusted

Once you have finished your tests, just switch back to the zone that you were in before,
for example:

firewall-cmd --set-default-zone=public

Forging the firewall rules by example
In this recipe, we want to show you how to create your own firewalld service
definitions or how to change existing ones, which any CentOS 7 system administrator
should know if the predefined service files don't fit your system's need.

https://technet24.ir

Getting ready
To complete this recipe, you will require a minimal installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice.
We will be changing the SSH service's port number in firewalld, so make sure that you
have configured the new port as shown in the recipe Locking down remote access and
hardening SSH. Here, in our example, we have changed the port to 2223. Also, we will
create a new firewalld service for a small Python-based web server that we will use to
demonstrate the integration of new system service's into firewalld. It's advantageous to
grasp the basics of firewalld by working through the Working with a firewall recipe
before starting here.

How to do it...
Here in this recipe, we will show you how to change and how to create new firewalld
service definitions. In this recipe, it is considered that we are in the default public zone.

To change an existing firewalld service (ssh)
1. First, log in as root and copy the ssh service to the right place to edit it:

cp /usr/lib/firewalld/services/ssh.xml /etc/firewalld/services

2. Next, open the ssh service definition file:

vi /etc/firewalld/services/ssh.xml

3. Change the port from 22 to 2223, then save the file and close it:

<port protocol="tcp" port="2223"/>

4. Finally, reload the firewall:

firewall-cmd --reload

To create your own new service

Perform the following steps to create your own new service:

1. Open a new file:

vi /etc/firewalld/services/python-webserver.xml

2. Put in the following service definition:

<?xml version="1.0" encoding="utf-8"?>
<service>
 <short>Python Webserver</short>
 <description>For pythons webservers</description>
 <port port="8000" protocol="tcp"/>
</service>

3. Save and close the file, and then finally reload the firewall:

firewall-cmd --reload

4. Now, add this new service to our default zone:

firewall-cmd --add-service=python-webserver

5. Afterwards, run the following command to start a simple Python web server in the

https://technet24.ir

foreground on port 8000 (press the key combination Ctrl + C to stop it):

python -m SimpleHTTPServer 8000

6. Congratulations! Your new web server sitting at port 8000 can now be reached
from other computers in your network:

http://<ip address of your computer>:8000/

How it works...
Here in this recipe, we have shown how easy it is to customize or define new firewalld
services if the predefined needs to be changed, or for new system services that are not
defined at all. Service definition files are simple XML files where you define rules for
a given system service or program. There are two distinct directories where our
firewalld service files live: /usr/lib/firewalld/services for all predefined
services available from the system installation, and /etc/firewalld/services for all
custom and user-created services.

So, what did we learn from this experience?

We started this recipe by making a working copy of the SSH firewalld service file in the
right place at /etc/firewalld/services. We could just copy the original file because
all files in this directory will overload the default configuration files from
/usr/lib/firewalld/services. In the next step, we then modified it by opening it
and changing the default port from 22 to 2223. We have to do this every time we change
a system's service standard listening port to make the firewall aware that it should
allow network traffic to flow through the changed port. As you can see when opening
this file, service files are simple XML text files with some mandatory and some
optional tags and attributes. They contain a list of one or more ports and protocols that
defines exactly what firewalld should enable if the service is connected to a zone. There
can be another important setting in the XML file: helper modules. For example, if you
open the SAMBA service file at /usr/lib/firewalld/services/samba.xml, you
will see the tag, <module name="nf_conntrack_netbios_ns"/>. These are special
kernel netfilter helper modules that can be dynamically loaded into the underlying
kernel-based firewall, and which are needed for some system services, such as Samba
or FTP, which create dynamic connections on temporary TCP or UDP ports instead of
using static ports. After reloading the firewall configuration, we should now be able to
test the connection from another computer in our network using the altered port.

In the second part of this recipe, we created a brand-new service file for a new system
service, which is a simple Python web server listening on port 8000 displaying a simple
directory content listing. Therefore, we created a simple XML service file for the
Python web server including the right port 8000, restarted the firewall, and afterwards
added this new service to our default public zone so that we can actually open
connections through this service. You should now be able to browse to our web server's
start page using another computer in the same network. However, as we did not use the

https://technet24.ir

--permanent flag, if you restart the firewalld daemon, the python-webserver service
will be gone from the public zone (or you can also use the parameter, --remove-
service=python-webserver).

In summary, we can say that the recommended firewall choice in CentOS 7 is firewalld,
as all important system services have already been set up to use it via predefined
service rules. You should remember that Linux firewalls are a very complex topic that
can easily fill up a whole book, and you can do a lot more with the firewall-cmd that
cannot be covered here in this book.

There's more...
Often, you just want to quickly open a specific port to test out things before writing your
own custom-made service definition. In order to do this, you can use the following
command line, which will open port 2888 using the tcp protocol temporarily on the
default zone:

firewall-cmd --add-port=2888/tcp

Once you have finished your tests, just reload the firewall configuration to remove and
close the specific port again.

https://technet24.ir

Generating self-signed certificates
In this recipe, we will learn how to create self-signed Secure Sockets Layer (SSL)
certificates using the OpenSSL toolkit. SSL is a technology used to encrypt messages
between two ends of a communication (for example, a server and client) so that a third-
party cannot read the messages sent between them. Certificates are not used for
encrypting the data, but they are very important in this communication process to ensure
that the party you are communicating with is exactly the one you suppose it to be.
Without them, impersonation attacks would be much more common.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice.

Note

Generally speaking, if you are intending to use an SSL Certificate on a production
server, you will probably want to purchase a SSL Certificate from a trusted Certificate
Authority. There are many options open to you regarding what certificate best suits your
requirements and your budget, but for the purpose of this recipe we will confine our
discussion to a self-signed certificate that is more than adequate for any development
server or internal network.

https://technet24.ir

How to do it...
1. To begin, log in as root and go to the following directory so that we can use the

Makefile to generate our intended certificates and keyfiles:

cd /etc/pki/tls/certs

2. Now, to create a self-signed certificate with an embedded public key (both in the
file, server.crt) along with its private key for the server (with the filename as
server.key), type the following:

make server.crt

3. You will then be asked for a password and will receive a series of questions, to
which you should respond with the appropriate values. Complete all the required
details by paying special attention to the common name value, which should reflect
the domain name of the server or IP address that you are going to use this
certificate for. For example, you may type:

mylocaldomainname.home

4. To create a pem file that includes a self-signed certificate and a public and a
private key in one file, and is valid for five years, type the following:

make server.pem DAYS=1825

5. Now, let's create a key pair (a private key and self-signed certificate that includes
the public key) for an Apache web server that we will need for enabling https,
and which will be generated in /etc/pki/tls/private/localhost.key and
/etc/pki/tls/certs/localhost.crt (use a secure password and repeat it in
the second command):

make testcert

6. To create a Certificate Signing Request (CSR) file instead of a self-signed
certificate, use this:

make server.csr

How it works...
Here in this recipe, we introduced you to the SSL technology that uses public key
cryptography (PKI) (where two forms of keys exist: public and private). On the server,
we store the private key and our clients get a public key. Every message sent from one
end to the other is encrypted by the key belonging to one side and can only be decrypted
by the corresponding key from the other. For example, a message encrypted with the
server's private key can only be decrypted and read by the client's public key and vice
versa. The public key is sent to the client through a certificate file, where it is part of the
file. As said before, the public key is encrypting and decrypting the data and the
certificate is not responsible for this, but rather for identifying a server against a client
and making sure that you are actually connected to the same server you are trying to
connect. If you want to set up secure services using SSL encryption in protocols such as
FTPS, HTTPS, POP3S, IMAPS, LDAPS, SMTPS, and so on, you need a signed server
certificate to work with. If you want to use these services for your business, and you
want them to be trusted by the people who are using and working with them, for
example, on the public Internet, your certificate should be signed from a official
certification authority (CA). Certificate prices are paid by subscription and can be
very expensive. If you don't plan to offer your certificate or SSL-enabled services to a
public audience, or you want to offer them only within a company's intranet or just want
to test out things before buying, here you can also sign the certificate by yourselves
(self-signed) with the OpenSSL toolkit.

Note

The only difference between a self-signed certificate and one coming from an official
CA is that most programs using the certificate for communication will give you a
warning that it does not know about the CA and that you should not trust it. After
confirming the security risk, you can work with the service normally.

So, what did we learn from this experience?

We started this recipe by going to the standard location where all the system's
certificates can be found in CentOS 7: /etc/pki/tls/certs. Here, we can find a
Makefile, which is a helper script for conveniently generating public/private key pairs,
SSL CSRs, and self-signed SSL test certificates. It works by hiding away from you
complicated command line parameters for the OpenSSL program. It is very easy to use
and will automatically recognize your target through the file extension of your file name
parameter. So, it was a simple process to generate an SSL key pair by providing an

https://technet24.ir

output filename with the .crt extension. As said before, you will be asked for a
password and a list of questions regarding the ownership of the certificate, with the
most important question being the common name. This should reflect the domain name
of the server you are planning to use this certificate for, because most programs, such as
web browsers or email clients, will check the domain names to see if they are valid.
The result of running this command was the certificate with its embedded public key in
file server.crt, as well as the corresponding private key for the server called
server.key.

Next, we created a .pem file and provided a DAYS parameter to make the certificate
valid for five years instead of the default one year when you are running without it. A
pem file is a container file that contains both parts of the key pair: the private keys and
the self-signed certificate (with its embedded public key). This file format is sometimes
required by some programs, such as vsftpd, to enable SSL encryption instead of
providing the key-pair in two separated files. Next, we ran the Makefile target
testcert, which generates a private key as well as public key, plus the certificate in
the correct location, where the Apache web server is expecting them for setting up
HTTPS. Please note that, if you need to repeat any Makefile run later, you need to delete
the generated output files; for example, for Apache, you need to delete the following
files before you can build the output files again:

rm /etc/pki/tls/certs/localhost.crt
/etc/pki/tls/private/localhost.key
make testcert

Finally, we showed you how to generate a CSR file, which will be needed if you plan to
purchase an SSL certificate from a trusted certificate authority.

There's more...
We did not cover all the possibilities that the Makefile script has to offer to generate
certificates. If you run the command, make, without giving any target parameter, the
program will print out a usage help text with all possible options.

As we have learned, the public and private keys are generated in pairs, and will encrypt
and decrypt each partner's messages. You can verify that your key pairs are valid and
belong together by comparing the output of the following (which must be exactly the
same):

openssl x509 -noout -modulus -in server.crt | openssl md5
openssl rsa -noout -modulus -in server.key | openssl md5

https://technet24.ir

Using secure alternatives to FTP
While using FTP is still popular to share data or to transfer files over the network, you
must be aware that you are using a very unsecure network protocol that has no
protection built into it out-of-the-box. This means that, during network transfer, your
data is fully exposed to potential attackers. This is not what you want for transferring
sensitive data, such as login credentials, at all. To avoid these potential risks, we will
show you in this recipe how to use and set up two alternatives for securing FTP using
FTPS (FTP over SSL or FTP/SSL) or SFTPS (SSH-enabled FTP).

Getting ready
To complete this recipe, you will require a minimal installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice.
You should already have installed and configured a basic vsftpd server (see Chapter 12,
Providing Web Services for how to do it). Also, for setting up SFTP, we will need to
create some self-signed certificates; if you want to know the details behind it, please
read the Generating self-signed certificates recipe in this chapter.

https://technet24.ir

How to do it...
You have to choose beforehand if you want to use SFTP or FTPS. These two methods
cannot be applied together, so you have to decide which option to choose first. If you
switch between those methods, you need to restore the default configuration file state of
vsftpd.conf or sshd_config first.

Securing your vsftpd server with SSL–FTPS

To secure your vsftpd server with SSL-FTPS perform the following steps:

1. Log in as root and go to the standard certificate location:

cd /etc/pki/tls/certs

2. Now, let's create a SSL key pair consisting of the certificate and its embedded
public key, as well as the private key in one file for our ftp-server configuration
(remember that the Common name value should reflect the domain name of your
FTP server):

make ftp-server.pem

3. Change to a more secure file access rule:

chmod 400 /etc/pki/tls/certs/ftp-server.pem

4. Now, before working on it, first make a backup of the vsftpd.conf file.

cp /etc/vsftpd/vsftpd.conf /etc/vsftpd/vsftpd.conf.BAK

5. Now, enable SSL and add the key pair file that we just created to our vsftpd
configuration:

echo "rsa_cert_file=/etc/pki/tls/certs/ftp-server.pem
ssl_enable=YES
force_local_data_ssl=YES
force_local_logins_ssl=YES
pasv_min_port=40000
pasv_max_port=40100" >> /etc/vsftpd/vsftpd.conf

6. Next, we need to add a new firewalld service file, so open the following:

vi /etc/firewalld/services/ftps.xml

7. Put in the following content:

<?xml version="1.0" encoding="utf-8"?>

<service>
 <description>enable FTPS ports</description>
 <port protocol="tcp" port="40000-40100"/>
 <port protocol="tcp" port="21"/>
 <module name="nf_conntrack_ftp"/>
</service>

8. Finally, reload the firewall, add the ftps service, and restart your vsftpd server:

firewall-cmd --reload; firewall-cmd --permanent --add-
service=ftps; firewall-cmd --reload
systemctl restart vsftpd

Securing your vsftpd server using SSH – SFTP

To secure your vsftpd server using SSL-SFTP perform the following steps:

1. First, create a group for all valid SFTP users:

groupadd sshftp

2. We will work on the sshd main config file, so please make a backup before
making any changes:

cp /etc/ssh/sshd_config /etc/ssh/sshd_config.BAK

3. Now, open the sshd_config file, go to the line containing the Subsystem
directive, disable it (which means putting a # sign at the beginning of the line), and
add the following line to read as shown:

#Subsystem sftp /usr/libexec/openssh/sftp-server
Subsystem sftp internal-sftp

4. Next, add the following lines to the end of the file to enable SFTP:

Match Group sshftp
ChrootDirectory /home
ForceCommand internal-sftp

5. Finally, restart the sshd daemon.

systemctl restart sshd

https://technet24.ir

How it works...
Here in this recipe, you have learned how to make your file sharing more secure by
switching from the standard FTP protocol to using FTP over SSL, or FTP over SSH.
Regardless of which option you prefer, SSL is used to encrypt the data during
transmitting, which helps you keep your privacy. Which variant you choose is up to you,
but remember that SFTP is a bit easier to set up as you do not have to configure
additional ports or certificates in your firewall, because everything runs over SSH and
this should be enabled by default on most systems.

So, what did we learn from this experience?

We began the recipe by configuring FTPS. We went into a special directory called
/etc/pki/tls/certs, where CentOS stores all its certificates. In it, there is a
Makefile, which we used to create a .pem file that contains the public/private key pair
and a self-signed certificate that we needed for our FTP server's configuration.
Afterwards, we used chmod to ensure that only the root user can read this file. Then, we
appended six lines of code to our main vsftpd configuration file (first, we made a
backup of the original file); they are pretty self-explanatory: enable the SSL protocol,
use the self-signed certificate, disallow any non-SSL communication, and use a static
range of passive control ports. Also, we created a new firewall service that will open
these passive control ports that are needed for FTPS.

Afterwards, we configured SFTP using a chroot jail. If setting up SFTP without it, every
login user can view the root filesystem, which is very unsecure. Configuring SFTP is
done completely in the main sshd config file. After making a backup of the original file,
we changed the FTP subsystem to internal-sftp, which is a newer ftp server version,
has better performance, and runs in the same process. Next, we added three lines to the
vsftpd configuration file; only users in the sshftp group are using SFTP and are put
into a chroot jail and can only view files up to their home directory. ForceCommand
ignores all local settings by the users and enforces these rules here instead. To add new
chrooted SFTP users, all you have to do is create a standard Linux user account and add
them to the sshftp user group.

There's more...
If you want to test your enabled FTPS server, you need an FTP client that supports "FTP
over TLS." You have to find and enable this option in your FTP client's settings. Under
Linux, you can install the lftp client to test if you can connect to our FTPS server. First,
install the lftp package (for example, yum install lftp). Then, configure the client
using TLS:

echo "set ftp:ssl-auth TLS
set ftp:ssl-force true
set ftp:ssl-protect-list yes
set ftp:ssl-protect-data yes
set ftp:ssl-protect-fxp yes
set ssl:verify-certificate no" >~/.lftprc

Now, you can connect and test your FTPS server using the following:

lftp -u username <server name>

If you want to test your enabled SFTP server, you need the program called sftp:

sftp john@<server name or ip address> -p 22

Note

You have to remember that all the changes to sshd_config will be reflected in SFTP as
well. So, if you disabled root login or ran SSH over a different port than 22, you have to
take it into consideration when you try to log in to SFTP.

https://technet24.ir

Chapter 7. Building a Network
In this chapter, we will cover the following topics:

Printing with CUPS
Running a DHCP server
Using WebDAV for file sharing
Installing and configuring NFS
Working with NFS
Securely sharing resources with Samba

Introduction
This chapter is a collection of recipes that covers the many facets of today's working
environment. From printing and file sharing across different types of office computer
systems to keeping your computers online, this chapter provides the necessary details on
how quickly you can use CentOS to implement the necessary tools that will maximize
efficiencies within your networking environment.

https://technet24.ir

Printing with CUPS
Print servers allow local printing devices to be connected to a network and be shared
among several users and departments. There are many advantages using such a system,
including the lack of a need to buy dedicated printer hardware for each user, room, or
department. The Common Unix Printing System (CUPS) is the de-facto standard for
print servers on Linux, as well as Unix distributions including OS X. It is built with a
typical client/server architecture, where clients in the network send print jobs to the
centralized print server that schedules these tasks, then delegates and executes the actual
printing on a printer that is locally connected to our printer server or sends the print job
remotely to the computer that has the physical connection to the requested printer or to a
standalone network printer. If you set up your printers within the CUPS system, almost
all Linux and OS X printing application on any client in your network will be
automatically configured to use them out-of-the box, without the need to install
additional drivers. Here, in this recipe, we will show you how to get started with the
CUPS printing server system.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to download additional packages. In this recipe, we
will use the network interface with the IP address, 192.168.1.8, and the corresponding
network address of 192.168.1.0/24 to serve the CUPS printer server to our network.

https://technet24.ir

How to do it...
We begin this recipe by installing the CUPS printing server software, which is not
available by default on a fresh CentOS 7 minimal system:

1. To do this, log in as root and install the following package:

yum install cups

2. Next, create an SSL certificate for the CUPS server, which we will need for secure
authentication to the CUPS web application (add a secure password when asked):

cd /etc/pki/tls/certs
make cups-server.key

3. Now, let's open the CUPS main configuration file to customize the server (backup
first):

cp /etc/cups/cupsd.conf /etc/cups/cupsd.conf.BAK
vi /etc/cups/cupsd.conf

4. First, to make CUPS available on the entire network, find the following line:
Listen localhost:631, than change it to:

Listen 631

5. Next, we want to configure access to all normal web pages of the web-based
CUPS frontend. Search for the <Location /> directive (don't confuse this with
other directives such as <Location /admin>) and change the complete block by
adding your network address. After changing, the complete block looks like this:

<Location />
 Order allow,deny
 Allow 192.168.1.0/24
</Location>

6. Next, set access permissions for the /admin and /admin/conf Location
directives, granting access to the local server only:

<Location /admin>
 Order allow,deny
 Allow localhost
</Location>
<Location /admin/conf>
 AuthType Default
 Require user @SYSTEM
 Order allow,deny

 Allow localhost
</Location>

7. Finally, add our SSL certificate information to the end of the configuration file:

ServerCertificate /etc/pki/tls/certs/cups-server.crt
ServerKey /etc/pki/tls/certs/cups-server.key

8. Close and save the file, then restart the CUPS server and enable it on boot:

systemctl restart cups.service systemctl enable cups.service

9. Now, we have to open the CUPS server ports in firewalld so that other computers
in the network can connect to it:

firewall-cmd --permanent --add-service=ipp firewall-cmd --reload

10. You can test the accessibility of your CUPS server from another computer in your
192.168.1.0/24 network by browsing to the following location (allow a security
exception in the browser when asked):

https://<IP address of your CUPS server>:631

11. To access the administration area within the CUPS frontend, you need to be on the
same server as CUPS is running (on a CentOS 7 minimal installation, please install
a window manager and browser), and then use the system user, root, with the
appropriate password to login.

https://technet24.ir

How it works...
In this recipe, we showed you how easy it is to install and set up a CUPS printing
server.

So, what did we learn from this experience?

We began our journey by installing the CUPS server package on our server because it is
not available on the CentOS 7 system by default. Afterwards, we generated a SSL key-
pair, which we will need later in the process (to learn more, read the Generating self-
signed certificates recipe in Chapter 6, Providing Security). It is used to allow the
encrypted submission of your login credentials to the CUPS administration web frontend
(over secure HTTPS connections). Next, we opened CUPS's main configuration file,
/etc/cups/cupsd.conf, with the text editor of our choice. As you may notice, the
configuration format is very similar to the Apache configuration file format. We started
changing the Listen address by removing the localhost name, therefore allowing all
clients from everywhere in your network (192.168.1.0/24) to access our CUPS server
at port 631 instead of allowing only the local interface to connect to the printer server.

Note

By default, the CUPS server has Browsing On enabled, which will broadcast, every 30
seconds, an updated list of all printers that are being shared in the system to all client
computers on the same subnet. If you want to broadcast to other subnets as well, use the
BrowseRelay directive.

Next, we configured access to the CUPS web interface. This frontend can be used to
conveniently browse all available printers on the network, or even install new printers
or configure them if you log in with an administrator account. As there are different
tasks in the user interface, there are three different directives that can be used to fine-
grain its access. Access to all normal web pages can be set using the <Location />
directive, whereas all administration pages can be managed with <Location /admin>
and more specifically to change the configuration within the <Location /admin/conf>
tag. In each of these Location tags, we added different Allow directives, thus granting
normal CUPS web pages (such as, browsing all available network printers) from your
complete network (for example, 192.168.1.0/24) while accessing the special
administration pages is restricted to the server that runs the CUPS service (localhost).
Remember, if this is too restrictive for your environment, you can always adjust these
Allow settings. Also, there are various other Location types available, such as one that

is used for activating our service in additional subnets. Please read the CUPS
configuration manual using man cupsd.conf. Next, we configured SSL encryption, thus
activating secure https:// addresses for the web interface. Then, we started the CUPS
server for the first time and enabled it to start automatically when the server boots up.
Finally, we added the ipp firewalld service, thus allowing incoming CUPS client
connections to the server.

https://technet24.ir

There's more...
Now that we have successfully set up and configured our CUPS server, it's time to add
some printers to it and print a test page. Here, we will show you how to add two
different types of printers to the system using the command line.

Note

Adding or configuring printers can also be done using the graphical web-based CUPS
interface.

First, we will install a true network printer that is already available in the same network
(in our case, the 192.168.1.0/24 network) as our CUPS server and afterwards a
locally connected printer (for example, via USB to our CUPS server or any other
computer in the same network).

Note

Why should you want to install an already connected network printer to our CUPS
server? CUPS can do much more than just printing: it is a centralized printer server, thus
managing scheduling and queuing of printers and their jobs, serving printers in different
subnets, and providing unified printing protocols and standards for convenient access on
any Linux or Mac client.

How to add a network printer to the CUPS server

To start adding a network printer to our CUPS server, we will use the command lpinfo
-v to list all the available printing devices or drivers known to the CUPS server.
Normally, the CUPS server will automatically identify all locally (USB, parallel, serial,
and so on) and remotely available (network protocols such as socket, http, ipp, lpd,
and so on) printers from most common printing protocols without any problems. In our
example, the following network printer has been successfully identified (the output has
been truncated):

network dnssd://Photosmart%20C5100%20series%20%5BF8B652%5D._pdl-
datastream._tcp.local/

Next, we will install this printer on the CUPS server to put it under its control. First, we
need to look for the correct printer driver. As we can see in the last output, it is an HP
Photosmart C5100 series printer. So, let's search for the driver in the list of all currently
installed drivers on our CUPS server:

lpinfo --make-and-model HP -m | grep Photosmart

The list does not contain our model C5100, so we have to install an additional HP
driver package using:

yum install hplip

Now, if we issue our command again, we can find the correct driver:

lpinfo --make-and-model HP -m | grep Photosmart | grep c5100

Note

For other printer models and manufacturers, there are other driver packages available
as well, for example, the gutenprint-cups RPM package.

The correct driver for this printer will be shown as follows:

drv:///hp/hpcups.drv/hp-photosmart_c5100_series.ppd

Now, we have everything ready to install the printer using the following syntax:

lpadmin -p <printer-name> -v <device-uri> -m <model> -L <location> -E

In our example, we installed it using:

lpadmin -p hp-photosmart -v
"dnssd://Photosmart%20C5100%20series%20%5BF8B652%5D._pdl-
datastream._tcp.local/" -m "drv:///hp/hpcups.drv/hp-
photosmart_c5100_series.ppd" -L room123 -E

Now, the printer should be under our CUPS server's control and should immediately be
shared and seen in the entire network from any Linux or OS X computer (on a CentOS 7
minimal client, you will first need to install the cups package as well and enable
incoming ipp connections using firewalld's ipp-client service before any shared
network printer information from our CUPS server will become available).

You can later change the configuration of this printer by opening and changing the file at
/etc/cups/printers.conf. To actually print a test page, you should now be able to
access the printer using its name, hp-photosmart, from any client (on a CentOS 7
minimal client, you would need to install the package cups-client):

echo "Hello printing world" | lpr -P hp-photosmart -H
192.168.1.8:631

https://technet24.ir

How to share a local printer to the CUPS server

If you want to share a local printer physically connected to our CUPS server, just plug
in the printer to the system (for example, via USB) and follow the previous recipe, How
to add a network printer to the CUPS server. In the step lpinfo -v, you should see it
appear as a usb:// address, so you need to take this address and follow the rest of the
steps.

If you want to connect and share a printer on your centralized CUPS server, which is
physically connected to any other computer on your CUPS network, install the cups
daemon on this other machine (follow all the steps in the main recipe) and then install
the printer driver for it as shown here in this section. This will make sure that the local
CUPS daemon will make the printer available on the network, as it would be on our
centralized CUPS server. Now that it is available on the network, you can easily add it
to our main CUPS server to enjoy all the benefits of a centralized printing server.

Here in this recipe, we have only scratched the surface and introduced you to the basics
of setting up a CUPS server for your network. There is always more to learn, and you
can build very complex CUPS server systems managing hundreds of printers in the
corporate environment, which is outside the scope of this recipe.

Running a DHCP server
If a connection to a network needs to be made, every computer needs a correct Internet
Protocol (IP) configuration installed on their system to communicate. Assigning IP
client configurations automatically from a central point using the Dynamic Host
Control Protocol (DHCP) can make the administrator's life easier and simplify the
process of adding new machines to a network in comparison to the tedious work of
manually setting up static IP information on each computer system in your network. In
small home-based networks, people often use DHCP servers directly installed in silico
on their Internet routers, but such devices often lack advanced features and have only a
basic set of configuration options available. Most of the time, this is not sufficient for
bigger networks or in the corporate environment, where you are more likely to find
dedicated DCHP servers for more complex scenarios and better control. In this recipe,
we will show you how to install and configure a DHCP server on a CentOS 7 system.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional packages. It is
expected that your DHCP server will be using a static IP address; if you do not have
one, refer to the recipe Building a static network connection in Chapter 2, Configuring
the System. If you plan to send DNS information to the clients through DHCP as well,
you should have already applied the recipe Installing and configuring a simple
nameserver in Chapter 8, Working with FTP.

How to do it...
Here in this example, we will configure a DHCP server for a static network interface
serving a single network with all its available IP addresses to all the computers
connected directly to it (they are all in the same subnet).

1. First, log in as root and type the following command in order to install the DHCP
server packages:

yum install dhcp

2. In our example, we will use a network interface with the name, ifcfg-enp5s0f1,
to serve our DHCP requests. Next, we need to collect some very important
network information, which we will use later for configuring the DHCP server
(change the network interface name to fit your own needs):

cat /etc/sysconfig/network-scripts/ifcfg-enp5s0f1

3. From this output, we need the following information, so please write it down (most
likely, your output will be different):

BOOTPROTO="static"
IPADDR="192.168.1.8"
NETMASK="255.255.255.0"
GATEWAY="192.168.1.254"

4. We also need the subnet network address, which can be calculated using the
following line:

ipcalc -n 192.168.1.8/24

5. This will print the following output (write it down for later):

NETWORK=192.168.1.0

6. Now, we will open our main DHCP configuration file, after we make a backup of
the original file:

cp /etc/dhcp/dhcpd.conf /etc/dhcp/dhcpd.conf.BAK
vi /etc/dhcp/dhcpd.conf

7. Append the following lines to the end of the file, taking into account your
individual network interface's configuration from the preceding steps (routers =
GATEWAY, subnet = NETWORK):

authoriative;

https://technet24.ir

default-lease-time 28800;
max-lease-time 86400;
shared-network MyNetwork {
 option domain-name "example.com";
 option domain-name-servers 8.8.8.8, 8.8.4.4;
 option routers 192.168.1.254;
 subnet 192.168.1.0 netmask 255.255.255.0 {
 range 192.168.1.10 192.168.1.160;
 }
}

8. Finally, start and enable the DHCP service:

systemctl start dhcpd
systemctl enable dhcpd

How it works...
Here in this recipe, we showed you how easy it is to set up a DHCP server for a single
network. With this, every time a new machine gets added to the network, the computer
gets the correct IP information automatically, which it needs in order to connect to the
network without any further human action.

So, what did we learn from this experience?

We started this recipe by installing the DHCP server package because it does not come
with CentOS 7 out-of-the-box. Since our DHCP daemon communicates with its clients
to assign IP information over a network interface, in the next step we had to choose a
network device that would be used for the service. In our example, we selected the
device named enp5s0f1. By default, the DHCP server can manage all available IP
addresses from the same subnet as the associated network interface. Remember that
your primary DHCP server's network interface must be configured to get its own IP
information statically and not through (another) DHCP server! Next, we used the cat
command to print out all the interesting lines from our enp5s0f1 network interface
configuration file, which we will need for configuring the DHCP server. Afterwards,
we used the ipcalc tool to calculate the (subnet) network address for our DHCP
server's network interface. Then, we opened the main DHCP server configuration,
started configuring some global settings, and defined a new shared network. In the
global settings, we first set our DHCP server to be authoriative, which means it is
the only and main responsible DHCP server in the network. Next, we defined default-
lease-time to 28800 seconds, which is eight hours, and the max-lease-time to
86400, which is 24 hours. The lease time is the amount of time the DHCP server "rents
out" an IP address to a client before it has to sign up again on the DHCP server asking
for an extension of the IP. If it is not requesting a renewal of an existing lease at that
time, the IP address will be released from the client and put into the pool of free IP
addresses again, ready to be served to new machines that want to connect to the
network. The client can define the amount of time it wants to lease an IP address by
itself. If no time frame has been supplied from the client to the DHCP server, the default
lease time will be used.

All subnets that share the same physical network interface should be defined within a
shared-network declaration, so we defined this area using square brackets. This is
also called a scope. In our example, we only have one network, so we only need one
shared-network scope. Within it, we first defined a domain-name option, which will be

https://technet24.ir

sent and can be used by clients as their base domain name. Next, we added the domain
name servers (DNS) to our configuration. Sending DNS information to the client is not
mandatory for the DHCP server but can be useful. The more information a client gets for
a given network, the better, because fewer manual configuration steps have to be made.

Note

You can send out a lot of other useful information to the client (using DHCP) about the
network he is connecting to: gateway, time, WINS, and so on.

Here in our example, we used the official Google DNS servers; if you have already set
up your own DNS server (see Chapter 8, Working with FTP), you could also use these
addresses here. Next, we specified a routers option, which is another useful piece of
information that will be sent out to the clients as well. Afterwards, we specified the
most important part of any DHCP server: the subnet scope. Here, we defined our
network ranges for assigning IP addresses for clients. We need to provide the subnet
network address, its submask, and then the starting and ending IP address range that we
want to allow to clients. In our example, we allow host IP addresses from
192.168.1.10, 192.168.1.11, 192.168.1.12 ... to 192.168.1.160. If you have
more than one subnet, you can use multiple subnet scope directives (called a
multihomed DHCP server).

Next, we started the DHCP server and enabled it on boot. Your clients should now be
able to get IP addresses dynamically from our new system.

In summary, we have only showed you some very basic DHCP server configuration
options to get you started, and there are many more settings available, letting you build
very complex DHCP server solutions. To get a better overview of its possibilities,
please have a look at the example configuration file provided with the DHCP server
documentation at less /usr/share/doc/dhcp-4*/dhcpd.conf.example.

There's more...
In the main recipe, we configured our basic DHCP server to be able to send complete IP
network information to our clients so that they should be able to join our network. To
use this server, you need to enable DHCP addressing on your client's network
interfaces. On CentOS clients, please do not forget to use BOOTPROTO=dhcp and remove
all static entries such as IPADDR in the appropriate network-scripts ifcfg file (read the
recipe, Building a static network connection in Chapter 2, Configuring the System to get
you started on network-scripts files). Then, to make a DHCP request, restart the network
using systemctl restart network or try to do a reboot of the client system (with the
ONBOOT=yes option). Confirm with ip addr list.

https://technet24.ir

Using WebDAV for file sharing
The Web-based Distributed Authoring and Versioning (WebDAV) open standard can
be used for sharing files over the network. It is a popular protocol to conveniently
access remote data as an online hard disk. There are a lot of online storage and e-mail
providers who offer online space through WebDAV accounts. Most graphical Linux or
Windows systems can access WebDAV servers in their file managers out-of-the-box.
For other operating systems, there are also free options available. Another big
advantage is that WebDAV is running over normal HTTP or HTTPS ports, so you can be
sure that it will work in almost any environment, even behind restricted firewalls.

Here, we will show you how to install and configure WebDAV as an alternative for the
FTP protocol for your file sharing needs. We will use HTTPS as our communication
protocol for secure connections.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice.
You will need a working Apache web server with SSL encryption enabled and
reachable in your network; see Chapter 11, Providing Mail Services for how to install
the HTTP daemon, and especially the recipe Setting up HTTPS with SSL. Also, some
experience working with the Apache config file format is advantageous.

https://technet24.ir

How to do it…
1. Create a location for sharing your data and for a WebDAV lock file:

mkdir -p /srv/webdav /etc/httpd/var/davlock

2. Since WebDAV is running as an Apache module over HTTPS, we have to set
proper permissions to the standard httpd user:

chown apache:apache /srv/webdav /etc/httpd/var/davlock
chmod 770 /srv/webdav

3. Now, create and open the following Apache WebDAV configuration file:

vi /etc/httpd/conf.d/webdav.conf

4. Put in the following content:

DavLockDB "/etc/httpd/var/davlock"
Alias /webdav /srv/webdav
<Location /webdav>
 DAV On
 SSLRequireSSL
 Options None
 AuthType Basic
 AuthName webdav
 AuthUserFile /etc/httpd/conf/dav_passwords
 Require valid-user
</Location>

5. Save and close the file. Now, to add a new WebDAV user named john (enter a
new password for the user as prompted):

htpasswd -c /etc/httpd/conf/dav_passwords john

6. Finally, restart the Apache2 web server:

systemctl restart httpd

7. To test if we can connect to our WebDAV server, you can use a graphical user
interface (most Linux file managers support WebDAV browsing) from any client in
your network, or we can mount the drive using the command line.

8. Log in on any client machine as root in the same network as our WebDAV server
(on CentOS, you need the davfs2 filesystem driver package to be installed from
the EPEL repository, and the usage of file locks must be disabled as the current
version is not capable of working with file locks), enter the password for our DAV
user account named john, and confirm the self-signed certificate when asked:

yum install davfs2
echo "use_locks 0" >> /etc/davfs2/davfs2.conf
mkdir /mnt/webdav
mount -t davfs https://<WebDAV Server IP>/webdav /mnt/webdav

9. Now, to see if we can write to the new network storage type:

touch /mnt/webdav/testfile.txt

10. If you've got connection problems, check the firewall settings on your WebDAV
server for the services http and https, as well as on your client.

https://technet24.ir

How it works…
Here in this recipe, we showed you how easy it is to set up a WebDAV server for easy
file sharing.

So, what did we learn from this experience?

We started our journey by creating two directories: one, where all the shared files of
our WebDAV server will live, and one for creating a lock file database for the WebDAV
server process. The latter is needed so that users can block access to documents to
avoid collisions with others if files are currently modified by them. As WebDAV runs as
a native Apache module (mod_dav) that is already enabled by default in CentOS 7, all
we need to do is create a new Apache virtual host configuration file, where we can set
up all our WebDAV settings. First, we have to link our WebDAV host to the full path of
the lock database that is used to track user locks. Next, we defined an alias for our
WebDAV sharing folder, which we then configured using a Location directive. This
will be activated if someone is using specific HTTP methods on the /webdav path URL.
Within this area, we specified that this URL will be a DAV-enabled share, enabled SSL
encryption for it, and specified basic user-based password authentication. The user
account's passwords will be stored in a user account database called
/etc/httpd/conf/dav_passwords. To create valid accounts in this database file, we
then used the Apache2 htpasswd utility on the command line. Finally, we restarted the
service to apply our changes.

For testing, we used the davfs filesystem driver, which you need to install on CentOS 7
using the davfs2 package from the EPEL repository. There are many other options
available, such as the cadaver WebDAV command-line client (also from the EPEL
repository); alternatively, you can access it directly using integrated WebDAV support in
a graphical user interface such as GNOME, KDE, or Xfce.

Installing and configuring NFS
The Network File System (NFS) protocol enables remote access to filesystems over a
network connection. It is based on a client-server architecture, allowing a centralized
server to share files with other computers. A client can attach those exported shares in
their own file system to access it conveniently, as they will be located on a local
storage. While Samba and AFP are more common distributed filesystems on Windows
and OS X, NFS is now the de-facto standard and a key element of any Linux server
system. Here in this recipe, we will show you how easy it is to set up an NFS server for
file sharing over the network.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional packages. It is
expected that your NFS server and all the clients will be able to ping each other and are
connected to each other by a static IP address (see the recipe, Building a static network
connection, in Chapter 2, Configuring the System). In our example, the NFS server is
running with IP 192.168.1.10 and two clients with the IPs 192.168.1.11 and
192.168.1.12 and the network's domain name example.com.

How to do it...
In this particular section, we are going to learn how to install and configure the NFS
server, and create and export a share on a client.

Installing and configuring the NFS server

NFSv4 is not installed by default, and for this reason we will begin by downloading and
installing the required packages:

1. To do this, log in as root on the server that you want to run the NFS daemon on
and type the following command in order to install the required packages:

yum install nfs-utils

2. For NFSv4 to work, we need the same base domain for all clients and the NFS
server. So, let's define sub-domain names for our NFS server and the clients, if you
haven't set up a domain name using DNS (see Chapter 9, Working with Domains),
we will set up a new hostname for our computers in the /etc/hosts file:

echo "192.168.1.10 myServer.example.com" >> /etc/hosts
echo "192.168.1.11 myClient1.example.com" >> /etc/hosts
echo "192.168.1.12 myClient2.example.com" >> /etc/hosts

3. Now, open the /etc/idmapd.conf file and put in the base domain name (not the
full domain name) of your NFS server; search for the line that reads #Domain =
local.domain.edu, and replace it with the following:

Domain = example.com

4. Next, we need to open some firewall ports for the server to have proper NFS
access:

for s in {nfs,mountd,rpc-bind}; do firewall-cmd --permanent --
add-service $s; done; firewall-cmd --reload

5. Finally, let's start the NFS server service and enable it on reboot:

systemctl start rpcbind nfs-server systemctl enable rpcbind nfs-
server systemctl status nfs-server

Creating an export share

Now that our NFS server is configured and up-and-running, it's time to create some file
shares that we can export to our clients:

https://technet24.ir

1. First, let's create a folder for our shares and change its permissions:

mkdir /srv/nfs-data

2. Create a new group with a specific GID and associate it with the export, and then
change permissions:

groupadd -g 50000 nfs-share;chown root:nfs-share /srv -R;chmod
775 /srv -R

3. Open the following file:

vi /etc/exports

4. Now, enter the following text, but be very focussed while typing:

/srv/nfs-data *(ro) 192.168.1.11(rw) 192.168.1.12(rw) /home
*.example.com(rw)

5. Save and close the file, then re-export all entries from /etc/exports using the
following:

exportfs -ra

How it works...
On CentOS 7, you can install version 4 of the NFS, which has some enhancements over
former versions, such as more flexible authentication options and being fully backward
compatible with older NFS versions. Here, we showed you how easy it is to install and
configure the NFS server and create some shared exports for our clients to use.

So, what did we learn from this experience?

We started this recipe by installing the nfs-utils package, since the NFS server
functionality is not available on CentOS 7 by default. Next, we configured our server's
domain name using the /etc/hosts file, as in our example, no DNS server of our own
has been configured. If you have set up a DNS server, you should follow a similar
domain name schema as shown here, because this is very important for NFSv4 to work,
as all clients and the server should be in the same base domain. In our example, we
specified that they are all sub-domains of example.com: myClient1.example.com,
myClient2.example.com, and myServer.example.com. This is a means of securing
the sharing of data, as the NFS server will only allow access to files from a client to a
server if the domain names match (in our example, both server and client are part of the
example.com domain). Next, we put this base domain in the idmapd.conf file, which
takes care of mapping user names and group IDs to NFSv4 IDs. Afterwards, we enabled
the nfs, mountd, and rpc-bind firewalld services in our firewalld instance, which are
all needed for full support and communication between our clients and server. To finish
our base configuration, we started the rpcbind and NFS servers and enabled them on
boot.

After the NFS server was successfully set up, we added some export to it, to actually
allow clients to access some shared folders from the server. Therefore, we created a
special directory in the filesystem, which will keep all our shared files. We associated
this sharing folder, /srv/nfs-data, with a new group, nfs-share, and gave it
read/write/execute permissions. For practical reasons we will control Linux file
permissions for our export on a group level. The name is unimportant but its group
identifier (GID) has to be set to a static value (for example, 50000). This new GID must
be the same on the server as well as on every client for every user who wants to have
write permissions because NFS transfers any access permissions between server and
client on a user (UID) or GID level over the network. The whole sharing magic then
happens in the /etc/exports file. It contains a table; in it you specify all the important
information about your shared folders and their access securities for the clients. Every

https://technet24.ir

line in this file is equivalent to one shared folder in your system, and a whitespaced list
of all the hosts allowed to access them together with their accessing options in brackets.
As you can see, there are different possibilities to define your target clients using IP
addresses or hostnames. For hostnames, you can use wildcards such as * and ? to keep
the file more compact and allow for multiple machines at once, but you can also define
export options for each single host name. Explaining all the options is outside the scope
of this book; if you need more help, read the exports manual, which can be found using
man exports.

For example, the line, /srv/nfs-data *(ro) 192.168.1.11(rw)
192.168.1.12(rw), defines that we want to export the content of the folder /srv/nfs-
data to all hostnames (because of the * symbol); read-only (ro) means that every client
can read the content of the folder but not write in it. For clients with the IP address
192.168.1, ending with 11 and 12, we allow reading and writing (rw). The second
line defines that we are exporting the /home directory to all clients in the subdomain of
*.example.com with read/write capacity. Whenever you make a change to the
/etc/exports file, run the exportfs -r command to apply your changes to the NFS
server.

Finally, we can say that NFSv4 in CentOS 7 is very easy to set up and start. It's the
perfect solution for sharing files between Linux systems, or for centralized home
directories.

Working with NFS
Before a client computer can use file system exports shared by an NFS server, it has to
be configured to correctly access this system. Here in this recipe, we will show you
how to set things up and work with NFS on the client machine.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional packages. It is
expected that you have already followed the Installing and configuring NFS recipe and
have set up an NFS server, such as in this example. It is expected that all the clients can
ping each other and are connected to the NFS server, and will be using a static IP
address (see the recipe, Building a static network connection, in Chapter 2, Configuring
the System). In our example, the NFS server is running with the IP 192.168.1.10 and
two clients with the IPs 192.168.1.11 and 192.168.1.12.

How to do it...
On our client systems, we also need the same NFS software package, and a similar
configuration to the one on the server, in order to establish a communication between
them:

1. To begin, log in on your client as root, and apply the exact same steps as in the
Installing and configuring NFS recipe until the end of step 3. Skip step 4 because
no firewalld service must be opened. Then, instead of step 5, use the following
commands, which will not start and enable the nfs-server, but only the rpcbind
service instead:

systemctl start rpcbind
systemctl enable rpcbind

2. Stop there and do not apply anything else from the original recipe. To test the
connection to our NFS server, use the following command:

showmount -e myServer.example.com

3. Now, to test if attaching the NFS exports works you can do so manually using a
new user, john. This needs to be added to the nfs-share group first in the
following way so that we can write on our share:

groupadd -g 50000 nfs-share;useradd john;passwd john;usermod -G
nfs-share john
mount -t nfs4 myServer.example.com:/srv/nfs-data /mnt
su - john;touch /mnt/testfile.txt

4. If the creation of the file in the shared directory works, you can put the import in
the fstab file so that it will be automatically mounted on system boot:

vi /etc/fstab

5. Append the following line:

myServer.example.com:/srv/nfs-data /mnt nfs defaults 0 0

6. Finally, to remount everything from fstab, type the following:

mount -a

https://technet24.ir

How it works...
In this recipe, we showed you how easy it is to use some shared file system exports
from an existing NFSv4 server.

So, what did we learn from this experience?

As you have seen, to set up an NFS client, you need a very similar setup to the one on
the NFS server itself, with the exception of starting the rpcbind service instead of nfs-
server (which, as the name implies, is only needed for the server side). The rpcbind
service is a port mapper and is used for Remote Procedure Calls (RPC), which is a
communication standard needed for NFS to work. Another very crucial step in the
configuration that you should remember was setting up the domain name in the
/etc/idmapd.conf file. We will have to use the same base domain name as on the
server (example.com) in order to make the NFSv4 communication between server and
client work. After having started and enabled the rpcbind service, we could then mount
the NFS share to a local directory, either using the mount command (with -t type nfs4)
directly, or via the fstab file. Remember, that every system user who wants proper
read/write/execute permissions to a share needs the same permissions on the NFS
server; in our example we manage correct permissions on an identical GID level. We
used the default options to mount the share; if you need different or advanced options,
please refer to man fstab. In order to apply changes to the fstab file, perform mount
-a to remount everything from that file.

Securely sharing resources with Samba
Samba is a software package that enables you to share files, printers, and other common
resources across a network. It is an invaluable tool for any working environment. One
of the most common ways to share file resources across a heterogeneous network
(meaning different computer systems such as Windows and Linux) is to install and
configure Samba as a standalone file server to provide basic file-sharing services
through user level security with the use of the system user's home directories.
Standalone servers are configured to provide local authentication and access control to
all the resources they maintain. All in all, every administrator knows that Samba
remains a very popular open source distribution, and it is the purpose of this recipe to
show you how to deliver an instant approach to file sharing that provides the seamless
integration of any number of users on any type of modern computer across your entire
working environment.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional packages. It is
expected that your server will use a static IP address.

How to do it...
Samba is not installed by default, and for this reason we will begin by downloading and
installing the required packages.

1. To do this, log in as root and type the following command in order to install the
required packages:

yum install samba samba-client samba-common

2. Having done this, the first step is to rename the original configuration file:

mv /etc/samba/smb.conf /etc/samba/smb.conf.BAK

3. Now, create a new configuration file in your preferred text editor by typing the
following:

vi /etc/samba/smb.conf

4. Begin building your new configuration by adding the following lines, replacing the
values shown with values that better represent your own needs:

[global]
unix charset = UTF-8
dos charset = CP932
workgroup = <WORKGROUP_NAME>
server string = <MY_SERVERS_NAME>
netbios name = <MY_SERVERS_NAME>
dns proxy = no
wins support = no
interfaces = 127.0.0.0/8 XXX.XXX.XXX.XXX/24 <NETWORK_NAME>
bind interfaces only = no
log file = /var/log/samba/log.%m
max log size = 1000
syslog only = no
syslog = 0
panic action = /usr/share/samba/panic-action %d

Note

WORKGROUP_NAME is the name of the Windows workgroup. Use the standard
Windows name WORKGROUP if you don't have this value. MY_SERVERS_NAME refers
to the name of your server. In most situations, this could be in the form of
FILESERVER or SERVER1 and so on. XXX.XXX.XXX.XXX/XX refers to the primary
network address that your Samba service is operating at, for example,
192.168.1.0/24. NETWORK_NAME refers to the name of your Ethernet interface.

https://technet24.ir

This could be enp0s8.

5. We will now configure Samba as a standalone server. To do this, simply continue
to add the following lines to your main configuration file:

security = user
encrypt passwords = true
passdb backend = tdbsam
obey pam restrictions = yes
unix password sync = yes
passwd program = /usr/bin/passwd %u
passwd chat = *Enter\snew\s*\spassword:* %n\n
Retype\snew\s\spassword:* %n\n
password\supdated\ssuccessfully .
pam password change = yes
map to guest = bad user
usershare allow guests = no

6. For the purpose of this recipe, we do not intend to configure Samba as a domain
master or master browser. To do this, add the following lines:

domain master = no
local master = no
preferred master = no
os level = 8

7. We will now add support for home directory sharing by enabling valid users to
access their home directories. This feature will support the appropriate read/write
permissions and all folders will remain private from other users. To do this, add
the following new lines:

[homes]
 comment = Home Directories
 browseable = no
 writable = yes
 valid users = %S
 create mask =0755
 directory mask =0755

8. Save and close the file. To test the syntax of the Samba configuration file we just
created, use the following:

testparm

9. Now, add an existing system user, john, to the Samba user management system
(this is for testing later; change it appropriately to a user name on your system):

smbpasswd -a john

10. Now, save the file and close it; back on the command line, open the ports in the
firewall:

firewall-cmd --permanent --add-service=samba && firewall-cmd --
reload

11. Configure SELinux to use the Samba home directory:

setsebool -P samba_enable_home_dirs on

12. Now, ensure that the samba and nmb services will start up during the boot process
and start them right away:

systemctl enable smb && systemctl enable nmb systemctl start smb
&& systemctl start nmb

https://technet24.ir

How it works...
It was the purpose of this recipe to install Samba and configure its file sharing services,
thus providing full connectivity across all modern computer systems in your network.

So, what did we learn from this experience?

Having installed the necessary packages, we renamed the originally installed
configuration file to have a backup in place if anything broke later, and then we began
setting up Samba from scratch, starting with an empty smb.conf configuration file.
Having opened this new file, we began with the global configuration options; the first
step was to declare compatibility with Unicode-based character sets. You will need to
be aware that the values can vary as a result of your circumstances and network. Read
more at man smb.conf.

Having done this, we then proceeded to confirm the name of our workgroup and server,
disable WINS, establish a Samba log file, and register the network interface. Then, we
elected the following standalone options by choosing a user-based security option,
password encryption, and a tdbsam database backend. The preferred mode of security
is user-level security, and using this approach implies that each share can be assigned to
a specific user. Therefore, when a user requests a connection for a share, Samba
authenticates this request by validating the given username and password with the
authorized users in the configuration file and the Samba database. Next, we added the
master information. In the case of a mixed operating system environment, a known
conflict will result when a single client attempts to become the master browser. This
situation may not disrupt the file-sharing service as a whole, but it will give rise to a
potential issue being recorded by the Samba log files. So by configuring the samba
server to not assert itself as the master browser, you will be able to reduce the chance
of such issues being reported. So, having completed these steps, the recipe then
considered the main task of enabling the homes directory file-sharing. Of course, you
can experiment with the options shown, but this simple set of instructions not only
ensures that valid users will be able to access their home directory with the relevant
read/write permissions, but also, by setting the browseable flag to no, you will be able
to hide the home directory from public view and achieve a greater degree of privacy for
the user concerned. In our setup, Samba works with your Linux system users, but you
should remember that any existing or new user is not added automatically to Samba and
must be added manually using smbpasswd -a.

So, having saved your new configuration file, we tested its correctness using the
testparm program and opened the Samba related incoming ports in firewalld using the
samba service. The next step was to ensure that Samba and its related processes would
be made available during the boot process using systemctl. Samba requires two
primary processes in order to work correctly: smbd and nmbd. Beginning with smbd, it
is the role of this service to provide file-sharing, printing services, user authentication,
and resource locking to Windows-based clients using the SMB (or CIFS) protocol. At
the same time, it is the role of the nmbd service to listen, understand, and reply to the
NetBIOS name service's requests.

Note

Samba often includes another service call named winbindd, but it has been largely
ignored because the intention to provide a Windows Internet Naming Service
(WINS)-based service or Active Directory authentication requires additional
consideration, which is beyond the scope of this recipe.

Consequently, our final task was to start both the Samba service (smb) and the
associated NetBIOS service (nmb).

You now know how incredibly simple Samba is to install, configure, and maintain.
There is always more to learn, and yet this simple introduction has served to illustrate
Samba's relative ease of use and the simplicity of its syntax. It has delivered a solution
that has the ability to support a wide variety of different needs and a range of different
computer systems, one that will fulfill your file-sharing requirements for many years to
come.

https://technet24.ir

There's more...
You can test our Samba server configuration from any client in your network that can
ping the server. If it is a windows-based client, open the Windows Explorer address
bar and use the following syntax: \\<ip address of the Samba server>\<linux
username>. For example, we use \\192.168.1.10\john (on successfully connecting
to it, you need to enter your Samba username's password). On any Linux client system,
(the package, samba-client, needs to be installed on CentOS 7) to list all the available
shares of an NFS server, use the following line:

smbclient -L <hostname or IP address of NFS server> -U <username>

In our example, we would use the following:

smbclient -L 192.168.1.10 -U john

To test, mount a share (this requires the cifs-utils package on CentOS 7) with the
following syntax:

mount -t cifs //<ip address of the Samba server>/<linux username>
<local mount point> -o "username=<linux username>"

In our example, we would use the following:

mkdir /mnt/samba-share
mount -t cifs //192.168.1.10/john /mnt/samba-share -o
"username=john"

You can also put this import in the /etc/fstab file for permanent mounting using the
following syntax:

//<server>/<share> <mount point> cifs <list of options> 0 0

for example:

For example, add the following line to the file:

//192.168.1.10/john /mnt/samba-share cifs username=john,password=xyz
0 0

If you don't want to use passwords in plaintext in this file, read the section about
credentials using man mount.cifs, then create a credentials file and protect it with
chmod 600 in your home directory so that no other person can read it.

Here in this chapter, we showed you how to configure Samba as a standalone server and
enable home directories, and how to connect to it from a client to get you started. But
Samba can do so much more! It can provide printing services or act as a complete
domain controller. If you want to learn more, feel free to visit
https://www.packtpub.com/ to learn more about other available material.

https://www.packtpub.com/
https://technet24.ir

Chapter 8. Working with FTP
In this chapter, we will cover the following topics:

Installing and configuring the FTP service
Working with virtual FTP users
Customizing the FTP service
Troubleshooting users and file transfers

Introduction
This chapter is a collection of recipes that provides the steps to unmask one of the most
fundamental services in the Linux world and also provides the necessary starting point
required to install, configure, and deliver the file transfer protocol without hesitation.

https://technet24.ir

Installing and configuring the FTP
service
While there are several modern and very secure network file sharing technologies, the
good old File Transfer Protocol (FTP) remains one of the most widely used and
popular protocols to share and transfer files between computers. There are a number of
different FTP servers available in the Linux world. In this recipe, you will learn how to
install and configure very secure FTP daemon (vsftpd), which is a well-known FTP
server solution that supports a wide range of features and enables you to upload and
distribute large files across a local network and the Internet. Here, we will show how to
install the vsftpd daemon and provide some basic settings with the main goal being to
increase the security of the daemon.

Note

After working on this recipe, you are advised to use SSL/TLS encryption to further
strengthen your FTP server (refer Chapter 6, Providing Security).

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the downloading of additional packages.
It is expected that your server will be using a static IP address and that it maintains one
or more system user accounts.

https://technet24.ir

How to do it...
vsftpd is not installed by default. For this reason, we must begin this recipe by installing
the relevant packages and associated dependencies:

1. To do this, log in as root and type the following command:

yum install vsftpd

2. After we have created a backup copy of it, open the main configuration file in your
favorite text editor as follows:

cp /etc/vsftpd/vsftpd.conf /etc/vsftpd/vsftpd.conf.BAK
vi /etc/vsftpd/vsftpd.conf

3. To disable anonymous users, scroll down and find the following line:
anonymous_enable=YES, and then change this as follows:

anonymous_enable=NO

4. Uncomment (remove # at beginning of the line) the following lines to enable the
chroot environment for more security:

chroot_local_user=YES
chroot_list_enable=YES

5. Next, scroll down to the bottom of the file and add the following line:

use_localtime=YES

6. Finally, add the following line to enable local users to write to their home
directories:

allow_writeable_chroot=YES

7. Save and close the file. Then create the following empty file:

touch /etc/vsftpd/chroot_list

8. Next, configure the firewall to allow incoming FTP connections to the server on
port 21:

firewall-cmd --permanent --add-service=ftp
firewall-cmd --reload

9. Now, we allow SELinux to use the FTP home directory feature:

setsebool -P ftp_home_dir on

10. Enable vsftpd at boot:

systemctl enable vsftpd

11. To complete this recipe, type the following command to start the FTP service:

systemctl start vsftpd

12. Now, we can test the connection from any client computer in the same network that
our FTP server is in. This computer needs a FTP client installed (if its a CentOS
computer, install one using yum install ftp). Log in to this computer with any
account and by typing in the following command that replaces <IPADDRESS> with
the IP address of the server running your vsftpd service:

ftp <IPADDRESS>

13. On successful connection to the server, the FTP client program will ask you for a
username and password. Here, enter a known system user (other than root) from
the FTP server. If the login was successful, you will get a 230 login successful
message and a ftp> prompt. Now to end our test, type the following FTP command
to show all the files in your current ftp directory and check whether you have
write-access on the remote server:

ls
mkdir test-dir
rmdir test-dir

14. Type the following command to end your FTP session:

exit

https://technet24.ir

How it works...
vsftpd is widely recognized as a fast, lightweight, and reliable FTP server. The purpose
of this recipe was to show you how to build a basic FTP service that is optimized to
provide excellent performance for any number of valid system users.

So what did we learn from this experience?

We began the recipe by installing the necessary YUM package called vsftpd. We then
opened the main configuration file located at /etc/vsftpd/vsftpd.conf, after we
made a backup copy of it. Next, we disabled anonymous FTP access and thereby
secured our FTP service against unknown users. We then restricted users to their home
directory by enabling a chroot jail.

Note

The chroot jail represents an essential security feature; once this is done, all the users
will be restricted to access the files in their own home directory only.

We then required vsftpd to use local time for our server. Afterwards, we fixed the
write permissions for our chrooted FTP users by enabling the
allow_writeable_chroot option. Having saved our work, we created a new empty
/etc/vsftpd/chroot_list file, which will hold all the user names that can leave
their chroot jails. We have to create this file; otherwise, vsftpd will not let us log in to
the system. However, you should remember that you must leave it empty all the time
because chroot jails are an important protection mechanism for your FTP server.

Next, we added the standard FTP protocol's port 21 to our firewall configuration to
allow incoming connections. Then, we reloaded the firewall to apply these changes.
After this, we activated our FTP home directories by setting the appropriate SELinux
boolean variable ftp_home_dir to true. This will make the directories valid for
SELinux. Please read Chapter 14, Working with SELinux to learn more about SELinux.
Next, we enabled vsftpd on boot and started the service within systemd. At this point,
vsftpd will now be operational and it can be tested with any regular FTP-based
desktop software. Users can log in using a valid system username and password by
connecting to the server's name, domain, or IP address (depending on the server's
configuration).

The purpose of this recipe was to show you that vsftpd is not a difficult package to

install and configure. There is always more to do but, by following this simple
introduction, we have quickly enabled our server to run a standard FTP service.

https://technet24.ir

There's more...
Having installed and configured a basic FTP service, you may wonder how to direct
users to a specific folder within their home directory. To do this, open the main
configuration file in an editor of your choice using /etc/vsftpd/vsftpd.conf.

Scroll down to the bottom of the file and add the following line by replacing the
<users_local_folder_name> value with something more applicable to your own
needs:

local_root=<users_local_folder_name>

For example, if this FTP server is mainly for accessing and uploading content for an
user's private web pages hosted on the same server, you may configure Apache to use
the user's home directories in a folder called /home/<username>/public_html. For
this reason, you may add the following reference at the bottom of your vsftpd
configuration file:

local_root=public_html

When finished, save and close the configuration file before restarting the vsftpd
service. When testing this new feature make sure that the local_root location exists in
the home directory of the user you want to login (for example, ~/public_html).

Working with virtual FTP users
In this recipe, you will learn how to implement virtual users in order to break away
from the restriction of using local system user accounts. During the lifetime of your
server, there may be occasions when you wish to enable FTP authentication for a user
that does not have a local system account. You may also want to consider implementing
a solution that allows a particular individual to maintain more than one account in order
to allow access to different locations on your server. This type of configuration implies
a certain degree of flexibility afforded by the use of virtual users. Since you are not
using a local system account, it can be argued that this approach gives improved
security.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice. It
is expected that your server will be using a static IP address and that vsftpd is already
installed with a chroot jail and is currently running. This recipe needs the
policycoreutils-python package installed.

How to do it...
1. The first step is to login as root on our vsftpd server and create a plain text file

called virtual-users.txt that maintains a list of usernames and passwords of
the virtual users. To do this, type the following command:

vi /tmp/virtual-users.txt

2. Now add your usernames and corresponding passwords in the following way:

virtual-username1
password1
virtual-username2
password2
virtual-username3
password3

Note

Repeat this process as required for every user you need but, for obvious reasons,
maintain a good password policy and do not use the same virtual-username more
than once.

3. When you have finished, simply save and close the file in the usual way. Then,
proceed to build the database file by typing the following command:

db_load -T -t hash -f /tmp/virtual-users.txt /etc/vsftpd/virtual-
users.db

4. Having done this, we will now create the PAM file that will use this database to
validate the virtual users. To do this, type the following command:

vi /etc/pam.d/vsftpd-virtual

5. Now add the following lines:

auth required pam_userdb.so db=/etc/vsftpd/virtual-users
account required pam_userdb.so db=/etc/vsftpd/virtual-users

6. When you have finished, save and close the file in the usual way. Open the main
vsftpd configuration file in your favorite text editor as follows:

vi /etc/vsftpd/vsftpd.conf

7. Now, in the opened file, search for the line pam_service_name=vsftpd and
disable it by adding a # sign at the beginning of the line so that it reads as follows:

https://technet24.ir

#pam_service_name=vsftpd

8. Scroll down to the bottom of the file and add the following lines by customizing the
value for local_root to suit your own specific needs—this will be the base
directory in which all your virtual users will live in (for example, we will use
/srv/virtualusers/$USER as shown here):

virtual_use_local_privs=YES
guest_enable=YES
pam_service_name=vsftpd-virtual
user_sub_token=$USER
local_root=/srv/virtualusers/$USER
hide_ids=YES

9. Now create a subfolder for each virtual user you defined in a previous step in your
/tmp/virtual-users.txt file within the directory that you stated with the
local_root directive. Remember to delegate the ownership of this folder to the
FTP user. To keep up with our /srv/virtualusers example, we will use the
following commands to do this in an automatic way (again, customize the
/srv/virtualusers directory if needed):

for u in `sed -n 1~2p /tmp/virtual-users.txt`;
do
mkdir -p /srv/virtualusers/$u
chown ftp: /srv/virtualusers/$u
done

10. Now we need to inform SELinux to allow read/write access to our custom
local_root directory outside of the typical /home directory:

setsebool -P allow_ftpd_full_access on
semanage fcontext -a -t public_content_rw_t
"/srv/virtualusers(/.*)?"
restorecon -R -v /srv/virtualusers

11. Next, restart the FTP service as follows:

systemctl restart vsftpd

12. For security reasons, remove the plain text file now and protect the generated
database file with this:

rm /tmp/virtual-users.txt
chmod 600 /etc/vsftpd/virtual-users.db

How it works...
Having followed the previous recipe, you will be now able to invite an unlimited
number of virtual users to access your FTP service. The configuration of this feature
was very simple; your overall security has been improved and all access is restricted to
a defined local_root directory of your choice. Please note that this usage of virtual
users will disable your system users' login to the FTP server from the first recipe.

So what did we learn from this experience?

We began this recipe by creating a new temporary text file that will contain all our
usernames with the corresponding passwords in plain text. We then added all the
required usernames and passwords one after another sequentially separated by
newlines. Having done this for each of our virtual users, we then saved and closed the
file before proceeding to run the db_load command that is installed on CentOS 7 by
default. This can be used to generate a BerkeleyDB database out of our text file, which
will be used for the FTP user authentication later in this process. Having completed this
step, our next task was to create a Pluggable Authentication Modules (PAM) file at
/etc/pam.d/vsftpd-virtual. This reads the previous database file to provide
authentication from it for our vsftpd service using a typical PAM configuration file
syntax (for more, see man pam.d). Then, we opened, modified, and added new
configuration directives to the main vsftpd configuration file at
/etc/vsftpd/vsftpd.conf in order to make vsftpd aware of our virtual users'
authentication via PAM.

The most important setting was the local_root directive that defines the base location
where all your user directories will be placed for your virtual users. Don't forget to put
the $USER string at the end of your path. You were then prompted to create the relevant
virtual hosting folder for every virtual user you have defined in the text file before.

Since virtual users are not real system users, we had to assign the FTP system user to
take full ownership of the files for our new FTP users. We used a bash for loop to
automate the process for all our users defined in the temporary /tmp/virtual-
users.txt file. Next, we set the proper SELinux boolean to allow virtual users access
to the system and also the right context on our /srv/virtualusers directory. Applying
all these changes was simply a matter of restarting the vsftpd service using the
systemctl command.

Afterwards, we removed the temporary user text file because it contains our passwords

https://technet24.ir

in plain text. We protected the access to the BerkleyDB database file by removing all
access other than root. If you update, add, or remove FTP users on a regular basis, it's
better to not delete this temporary plain text /tmp/virtual-users.txt file but rather
put it in a safe place such as the /root directory. Then, you should also protect this
using chmod 600. Then, you can rerun the db_load command whenever you make a
change to this file to keep your users up-to-date. If you need to add new users at a later
point, you have to create new virtual user folders for them as well (Please rerun the
commands from step 9). Run the restorecon -R -v /srv/virtualusers command
afterwards.

You can now test your new virtual user accounts by logging in to the FTP server using
your newly created accounts from this recipe.

Customizing the FTP service
In this recipe, you will learn how to customize your vsftpd installation. vsftpd has a
lot of configuration parameters, and here we will show how to create a custom
welcome banner, change the server's default-time out, limit user connections, and ban
users from the service.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice. It
is expected that your server will be using a static IP address and that vsftpd is already
installed with a chroot jail and is currently running.

How to do it...
1. To begin with, log in as root and open the main vsftpd configuration file:

vi /etc/vsftpd/vsftpd.conf

2. First provide an alternative welcome message, uncomment the following line, and
alter the message as required. For example, you could use this:

ftpd_banner=Welcome to my new FTP server

3. To change the default FTP time-outs, uncomment these lines and substitute the
numeric values as required:

idle_session_timeout=600
data_connection_timeout=120

4. Now, we will limit the connections: the data transfer rate in bytes per second, the
number of clients, and the maximum parallel connections per IP address. Add the
following lines to the end of the file:

local_max_rate=1000000
max_clients=50
max_per_ip=2

5. Next, save and close the file. To ban a specific user, you can use the following
commands while replacing the username with an appropriate system user value that
fits your needs:

echo "username" >> /etc/vsftpd/user_list

6. Now to apply the changes, restart the FTP service:

systemctl restart vsftpd

https://technet24.ir

How it works...
In this recipe, we have shown some of the most important vsftpd settings. Covering all
the configuration parameters here is outside the scope of this recipe. To learn more
about it, read through the entire main vsftpd configuration file at
/etc/vsftpd/vsftpd.conf, as it contains a lot of useful comments; alternatively, you
can read the man vsftpd.conf manual.

So what did we learn from this experience?

We began by opening the main vsftpd configuration file and then activated and
customized the welcome banner using the ftpd_banner directive. On the next
successful login, your users should see your new message. Next, when dealing with a
large number of users, you may want to consider changing the values for a default
timeout and limit the connections in order to improve the efficiency of your FTP service.

First, we changed our server's timeout numbers. An idle_session_timeout of 600
seconds will logout the user if he is inactive (not executing FTP commands) for 10
minutes, while a data_connection_timeout of 120 seconds will kill the connections
when a client data transfer is stalled (not progressing) for 20 minutes. Then we changed
the connection limits. A local_max_rate of 1000000 bytes per second will limit the
data transfer rate of a single user to roughly one megabyte per second. A max_clients
value of 50 will tell the FTP server to only allow 50 parallel users to the system, while
a max_per_ip of 2 allows only two connections per IP address.

Then we saved and closed the file. Finally, we showed how to ban users from using our
FTP service. If you wanted to ban a specific user from using the FTP service as a
whole, the user's name should be added to the /etc/vsftpd/user_list file. If you
ever need to re-enable the user at any time, simply reverse the previous process by
removing the user concerned from /etc/vsftpd/user_list.

Troubleshooting users and file transfers
Analyzing log files is the most important technique for troubleshooting all kinds of
problems or improving services on Linux. In this recipe, you will learn how to
configure and enable vsftpd's extensive logging features in order to help system
administrators when problems arise, or simply to monitor usage with this service.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice. It
is expected that your server will be using a static IP address and that vsftpd is already
installed with a chroot jail and is currently running.

How to do it...
1. To do this, log in as root and type the following command to open the main

configuration file in your favorite text editor:

vi /etc/vsftpd/vsftpd.conf

2. Now, add the following lines to the end of the configuration file to enable verbose
logging features:

dual_log_enable=YES
log_ftp_protocol=YES

3. Finally, restart the vsftpd daemon to apply the changes:

systemctl restart vsftpd

https://technet24.ir

How it works...
In this recipe, we have shown how to enable two separate logging mechanism: first, the
xferlog log file that will log detailed information about user uploads and downloads,
then the vsftpd log file that contains every FTP protocol transaction between the client
and the server outputting the most detailed logging information possible for vsftpd.

So what did we learn from this experience?

In this recipe, we opened the main vsftpd configuration file and added two directives
to the end of the file. First, dual_log_enable will make sure both the xferlog and
vsftpd log files will be used for logging. Afterwards, we increased the verbosity of the
vsftpd log file by enabling log_ftp_protocol.

After restarting the service, the two log files, /var/log/xferlog and
/var/log/vsftdp.log, will be created and filled with useful FTP activity
information. Now, before we open the files, let's create some FTP user activity. Log in
with any FTP user on the server using the ftp command-line tool and issue the
following FTP command at the ftp> prompt to upload a random file from the client to
the server:

put ~/.bash_profile bash_profile_test

Now, back on the server, inspect the /var/log/xferlog file to see detailed
information about the uploaded file and open /var/log/vsftpd.log for all other user
activities (such as login time or other FTP commands that users issued).

Please note that both the log files only keep track of user and FTP activity and are not
meant to debug problems with the vsftpd service such as configuration file errors. Use
the systemctl status vsftpd -l or journalctl -xn, to debug general problems
with the service.

Chapter 9. Working with Domains
In this chapter, we will cover:

Installing and configuring a caching-only nameserver
Setting up an authoritative-only nameserver
Creating an integrated nameserver solution
Populating the domain
Building a secondary (slave) DNS server

https://technet24.ir

Introduction
This chapter is a collection of recipes that attempt to demystify a technology that
remains the key component in making everything work in the networking world. From e-
mail to web pages and remote logins to online chats, this chapter provides the necessary
details on how quickly you can use CentOS to deliver a domain name service that will
power your working environment.

Installing and configuring a caching-only
nameserver
Every network communication between computers can only be made through the use of
unique IP addresses to identify the exact endpoints of the communication. For the human
brain, numbers are always harder to remember and work with than assigning names to
things. Therefore, IT pioneers started in the early 70s to invent systems for translating
names to physical network addresses using files and later simple databases. In modern
computer networks and on the Internet, the relationship between the name of a computer
and an IP address is defined in the Domain Name System (DNS) database. It is a
worldwide distributed system and provides domain name to IP address resolution and
also the reverse, that is IP address to domain name resolution. DNS is a big subject, and
it is the purpose of this recipe to provide the perfect starting point by showing you how
to install and setup your own caching-only and forwarding nameserver. Here we will
use Unbound, which is a highly secure and fast recursive and caching DNS server
solution, and therefore our preferred choice. But you need to remember that Unbound
cannot be used as a fully authoritative DNS server (which means that it provides its
own domain name resolution records) we will use the popular BIND server for this in a
later recipe. A caching-only DNS server will serve to forward all the name resolution
queries to a remote DNS server. Such a system has the intention of speeding up general
access to the Internet by caching the results of any domain resolution request made.
When a caching DNS server tracks down the answer to a client's query, it returns the
answer to the client. However, it also stores the answer in its cache for a specific
period of time. The cache can then be used as a source for subsequent requests in order
to speed up the total round-trip time.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a static IP address, and a console-based text
editor of your choice. An Internet connection will be required to download additional
packages. In this example, our DNS server runs in a private network with the network
address 192.168.1.0/24.

How to do it...
In this recipe, we will first configure a caching-only and then a forwarding only DNS
server.

Configuring a caching-only Unbound DNS server

In this section, we will consider the role of Unbound as a caching-only nameserver,
handling recursive DNS requests to the other remote DNS servers and caching the query
for a certain time period to improve the response time when the server is asked for the
same name resolution again:

1. To begin, log in as root and install the required packages by typing:

yum install unbound bind-utils

2. Now make a copy of the unbound configuration file so we can revert our changes
later, and then open it in your favorite text editor:

cp /etc/unbound/unbound.conf /etc/unbound/unbound.conf.BAK
vi /etc/unbound/unbound.conf

3. Scroll down to find the following line: # interface: 0.0.0.0 Remove the #
sign to uncomment it (activate it), so it reads as follows:

interface: 0.0.0.0

4. Next, scroll down to find the line # access-control: 127.0.0.0/8 allow.
Uncomment the line to activate it and change the network address to fit your needs:

access-control: 192.168.1.0/24 allow

5. Save and close the file, and then create an RSA keypair with certificates for secure
DNSSEC support before you check the correctness of the changed configuration
file:

unbound-control-setup && unbound-checkconf

6. Next, open the DNS service in your firewalld configuration on your server because
we want to be able to use our new DNS service from other clients in the network
for querying as well:

firewall-cmd --permanent --add-service dns && firewall-cmd --
reload

7. Now ensure the service will be available at boot and start it afterwards:

https://technet24.ir

systemctl enable unbound && systemctl start unbound

8. To test if we can reach our Unbound DNS server and make queries, execute the
following command from the same server running our Unbound DNS service
locally, which should give back the IP address of www.packtpub.com:

nslookup www.packtpub.com 127.0.0.1

9. For a more detailed view of the request you can also run locally on the DNS
server:

unbound-host -d www.packtpub.com

10. From any other client in the network (needs bind-utils installed), you can query
any public domain name using our new DNS server as well. For example, if our
DNS server has the IP 192.168.1.7:

nslookup www.packtpub.com 192.168.1.7

11. Finally, let us use our new nameserver on the server itself. To do this, open the
following file with your favorite text editor after you have made a backup copy:

cp /etc/resolv.conf /etc/resolv.conf.BAK; vi /etc/resolv.conf

12. Remove all the current nameserver references and replace them with the
following:

nameserver 127.0.0.1

Note

If you have set some DNS server information in your network-scripts interface (for
example, when configuring a static IP address, see Chapter 2, Configuring the
System), you will want to review the /etc/sysconfig/network-
scripts/ifcfg-XXX file and modify the current DNS reference to read as
DNS1=127.0.0.1 as well.

Configuring a forwarding only DNS server

Now after we have successfully configured our first caching BIND DNS server, here
we will show you how to transform it into a forwarding DNS server which will reduce
the total bandwidth for resolving hostnames in comparison to the caching-only solution:

1. Open BIND's main configuration file again:

vi /etc/unbound/unbound.conf

http://www.packtpub.com

2. Add the following lines to the end of the file:

forward-zone:
 name: "."
 forward-addr: 8.8.8.8

3. Next, check the correctness of your new configuration file and restart the service:

unbound-checkconf && systemctl restart unbound

4. Finally, test your new forwarding DNS server using the tests from the preceding
caching DNS server section.

https://technet24.ir

How it works...
In this recipe, we have installed a caching-only Unbound DNS server with the basic aim
of improving the responsiveness of our overall network by caching the answers to any
name-based queries. Using such a process will shorten the waiting time on any
subsequent visit to the same location. It is a feature that is particularly useful in saving
bandwidth if you happen to be managing a large, busy, or slow network. It does not have
its own domain name resolution feature but uses its default root domain's DNS servers
in order to perform this task (to learn more about the root domain, see later). Also, as
we have seen, you can easily transform your caching nameserver into a pure forwarding
system as well. While a caching DNS server makes recursive requests to several
associated DNS servers and constructs the complete name resolution result from those
multiple requests, a forwarding DNS delegates the complete recursive DNS search to
another resolving DNS server which executes the complete search instead. This saves
even more bandwidth for our DNS server because only single network requests to
communicate with the remote resolving server are made instead of multiple when using
the caching-only DNS service.

So what did we learn from this experience?

We started this recipe by installing the necessary packages. This included the main DNS
server program called Unbound and a reference to bind-utils, a small package that
enables you to run many different DNS related network tasks, such as dig, nslookup,
and host. The next step was to begin making the necessary configuration changes by
editing Unbound's main configuration after we made a simple backup of the original file.
Since after installation the default DNS server is completely restricted to doing
everything locally only, our main purpose was to adjust the server to make connections
from the outside possible. We began this process by allowing the DNS server to listen
to all the available network interfaces using the interface directive and afterwards
defined who on the network was allowed to make requests to our DNS server by setting
allow-query to our local network. This means we allowed anyone in our subnetwork
to make DNS resolution requests to our server.

At this point we created the RSA keypair with the unbound-control-setup tool,
which is needed for the unbound-checkconf command to work. The generated keys
and certificate are important if we want to use Unbound's DNS Security Extensions
(DNSSEC) features which help protect DNS data by providing authentication of origin
using digital signatures (configuring DNSSEC is outside the scope of this chapter. To

learn more, consult the Unbound configuration manual: man unbound.conf).
Afterwards, we used the unbound-checkconf command, which was necessary to
confirm that Unbound's configuration file was syntactically correct. If the output of the
command is empty, there are no errors in the file. We then proceeded by adding the
predefined dns firewalld service to our default firewall, thus allowing the other
computer systems in our local network to access the DNS server using port 53. Finally,
we activated Unbound at boot time and started the service.

Of course, to complete this recipe we then tested if our new DNS server worked as
expected in resolving domain names to IP addresses. We ran a simple nslookup query
locally on the server and also from the other computers in the same network to see if our
new DNS service was reachable from the outside. When using nslookup without any
additional parameters, the program will use the default DNS server resolver known to
the system (on CentOS 7 this is defined in /etc/resolv.conf) to resolve our host
names, so we added another parameter addressing our alternative DNS server we want
to query instead (127.0.0.1). For successful testing, the output must contain the
resolved IP address of the www.packtpub.com server. On the DNS server you could
also use the unbound-host -d command to get a more technical view of the DNS
query within the Unbound service.

After we successfully finished these tests, we updated the current nameserver resolver
information on our DNS server with our new DNS service running on localhost.

http://www.packtpub.com
https://technet24.ir

There's more...
Now we want to see how BIND will perform for caching DNS information. To do this,
on your DNS server simply select a target website you have not visited before and use
the dig command. For example:

dig www.wikipedia.org

Having run this test, you may see a query time that results in something like the
following:

;; Query time: 223 msec

Now repeat this exercise by retesting the same URL. Depending on your networking
environment, this may produce the following result:

;; Query time: 0 msec

Now do it again for another website. On every repeat of the preceding command, you
should not only see a reduced query time but also experience a faster response time in
delivering the output. This same result will be evident in the browser refresh rate, and
as a result we can say that this simple exercise has not only introduced you to Unbound
but it will ultimately serve to improve the speed of your local network when surfing the
World Wide Web.

Setting up an authoritative-only DNS
server
In this recipe, we will learn how to create an authoritative-only DNS server, which can
give answers to queries about domains under their control themselves instead of
redirecting the query to other DNS servers (such as our caching-only DNS server from
the previous recipe). We will create a DNS server to resolve all our own hostnames
and services in our own private local network.

As said before, while Unbound should be your first choice when needing a caching-only
DNS server as it is the most secure DNS server solution available, it has only limited
authoritative capabilities which often is not enough for professional DNS server usage.
Here, instead of name lookup of our local servers, we will use the popular authoritative
BIND DNS server package and configure a new DNS zone to provide highly
customizable name resolution. Technically speaking, we will be writing both a forward
and reverse zone file for our domain. Zone files are text files that contain the actual
domain name to IP address mappings or the other way around, that is, IP address
mappings to domain name mappings. While most queries to any DNS server will be the
translation of names to IP addresses, the reverse part is also important to set up if you
need the correct domain name for any given IP address. We will configure BIND to be
authoritative-only, which means that the server will only answer queries it is
authoritative for (has the matching records in its zones), so if the DNS server cannot
resolve a requested domain, it will stop the request and not contact other DNS servers
using recursive requests to fetch and construct the correct answer.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a static IP address, and a console-based text
editor of your choice. An Internet connection will be required to download additional
packages. In this example, our DNS server runs in the private network with the network
address 192.168.1.0/24. Our DNS server should manage a local private domain we
decide to be centos7.home (in the form domain.toplevel-domain). The IP address
of the new DNS server will be 192.168.1.7 and should get the hostname ns1, leading
to the Fully Qualified Domain Name (FQDN) ns1.centos7.home. (Refer to the Setting
your hostname and resolving the network recipe in Chapter 2, Configuring the System to
learn more about FQDNs). Our configured zone will have an administrative e-mail
address with the name admin@centos7.home, and for simplicity, all the other
computers in this network will get hostnames such as client1, client2, client3, and
so on. We will also have some mail, web, and FTP servers in our own network, each
running on separate dedicated servers. We will be using the port 8053 for our BIND
service as we already have Unbound running on the same server using the default DNS
port 53.

How to do it...
For security reasons, we will allow BIND to resolve internal LAN names only
(authoritative-only) and only allow localhost to make DNS queries; no other clients in
our network can connect to it:

1. To begin with, log in as root on your Unbound DNS server and install the required
BIND package and enable the DNS server on boot:

yum install bind && systemctl enable named

2. The actual name of the DNS server in the BIND package is called named, so let's
open its main configuration file to make some adjustments after creating a backup
copy of it first:

cp /etc/named.conf /etc/named.conf.BAK; vi /etc/named.conf

3. First find the line listen-on port 53 { 127.0.0.1; }; and then change the
port number to the custom port 8053, so it reads as follows:

listen-on port 8053 { 127.0.0.1; };

4. Next, find the line listen-on-v6 port 53 { ::1; } and change it to:

listen-on-v6 port 8053 { none; };

5. Next, since we are configuring an authoritative-only server, we will disable
contacting other remote DNS servers, find the line that reads recursion yes; and
change it to:

recursion no;

6. Save and close the file, and then validate the syntax of our config changes (no
output means no errors!):

named-checkconf

7. Now tell SELinux about the changed named DNS port (this needs package
policycoreutils-python):

semanage port -a -t dns_port_t -p tcp 8053

8. Now type the following command in order to create your forward zone file. Name
the file after the domain whose resource records it will contain:

vi /var/named/<domain>.<top-level domain>.db

https://technet24.ir

9. In our example, for our centos7.home domain, this will be:

vi /var/named/centos7.home.db

10. Now simply add the following lines (be careful not to forget typing the tailing dots
in the domain names). We will start with the Start of Authority (SOA) block:

$TTL 3h
@ IN SOA ns1.centos7.home. admin.centos7.home.(
 2015082400 ; Serial yyyymmddnn
 3h ; Refresh After 3 hours
 1h ; Retry Retry after 1 hour
 1w ; Expire after 1 week
 1h) ; Minimum negative caching

11. Afterwards, add the rest of the file's content:

; add your name servers here for your domain
 IN NS ns1.centos7.home.
; add your mail server here for the domain
 IN MX 10 mailhost.centos7.home.
; now follows the actual domain name to IP
; address mappings:

; first add all referenced hostnames from above
ns1 IN A 192.168.1.7
mailhost IN A 192.168.1.8
; add all accessible domain to ip mappings here
router IN A 192.168.1.0
www IN A 192.168.1.9
ftp IN A 192.168.1.10
; add all the private clients on the Lan here
client1 IN A 192.168.1.11
client2 IN A 192.168.1.12
client3 IN A 192.168.1.13
; finally we can define some aliases for
; existing domain name mappings
webserver IN CNAME www
johnny IN CNAME client2

12. When you have finished, simply save and close the file before proceeding to create
the reverse zone file for our private subnetwork used by our domain (the C-Class
are the first three numbers (octets) which are separated by dots: XXX.XXX.XXX. For
example, for the 192.168.1.0/24 subnet the C-Class is 192.168.1:

vi /var/named/db.<C-Class of our search IP in reverse order>

13. In our example, a reverse zone file resolving our centos7.home's 192.168.1 C-

Class subnet will be:

vi /var/named/db.1.168.192

14. First put in the exact same SOA as in step 10, and then append the following
content to the end of the file:

;add your name servers for your domain
 IN NS ns1.centos7.home.
; here add the actual IP octet to
; subdomain mappings:
7 IN PTR ns1.centos7.home.
8 IN PTR mailhost.centos7.home.
9 IN PTR www.centos7.home.
10 IN PTR ftp.centos7.home.
11 IN PTR client1.centos7.home.
12 IN PTR client2.centos7.home.
13 IN PTR client3.centos7.home.

15. Save and close the file, and then add our new zone pair to the named configuration.
To do this, open named.conf again:

vi /etc/named.conf

16. Now locate the line including "/etc/named.rfc1912.zones";. Immediately
following this line, create a space for your work and add the appropriate zone
statement to enable your reverse zone, as follows (substitute XXX.XXX.XXX with
the reversed C-Class of your reverse zone file name, in our example 1.168.192):

zone "XXX.XXX.XXX.in-addr.arpa." IN {
 type master;
 file "/var/named/db.XXX.XXX.XXX";
 update-policy local;
};

17. Having done this, you can now proceed to add a zone statement for your forward
zone right afterwards, as follows (replacing <domain>.<top-level domain>.db
with your forward zone file name, in our example centos7.home):

zone "<domain>.<top-level domain>." IN {
 type master;
 file "/var/named/<domain>.<top-level domain>.db";
 update-policy local;
};

18. When you have finished, simply save and close the file, and then restart the bind
service using:

https://technet24.ir

 named-checkconf && systemctl restart named

How it works...
All DNS servers are configured to perform caching functions, but where a caching-only
server is restricted in its ability to answer queries from remote DNS servers only, an
authoritative nameserver is a DNS server that maintains the master zone for a particular
record.

So what have we learned from this experience?

The purpose of this recipe was to setup an authoritative-only BIND DNS server and
provide a new zone for it. A DNS zone defines all the available resources (hostnames
and services) under a single domain. Any DNS zone should always consist of both a
forward and reverse zone file. To understand zone configurations, we need to discuss
DNS hierarchy first. For example, take a DNS domain from the example in this recipe
client1.centos7.home. Every computer in our private network has a hostname (for
example, client1 or www) and is a member of a domain. A domain consists of the
Second-level Domain (SLD) (for example, centos7) and a Top-level Domain name
(TLD) (for example, home, org, com, and so on). On top of that TLD is the root domain
(written . dot) which often is neglected when working with other programs or
configurations. However, when working or defining FQDN in zone configurations, it is
very important to never forget to add this dot . after the TLD. For example, a DNS
domain for our client1 computer would be client1.centos7.home., whereas an
FQDN for the /etc/hosts file is often written in the format client1.centos7.home
(technically this is incorrect but most of the time sufficient). The root domain is very
important because it contains the root DNS servers which will be queried first if an
authoritative DNS server cannot find an existing entry for a requested domain in its own
records (zones) or cache. But we have DNS servers in all the other domain hierarchies
as well and this is how a DNS server makes its recursive requests. A root DNS server,
as any other DNS server, resolves all its subdomains (defined in its zone files) which
are the TLDs. These TLDs themselves can resolve all the SLDs (also defined in their
zone files). The second-level domains resolve all their hostnames (which are special
subdomains as they refer to individual computer or services on your network). So any
DNS request traverses through the different DNS server hierarchies from the root DNS
over the TLD DNS to the SLD DNS server. The root and the TLD DNS servers cannot
fully resolve full domain DNS queries such as www.centos7.home and instead will
resolve the correct address of the next DNS hierarchy. This system ensures that the root
DNS will always find the correct TLD DNS server address and the TLD DNS server
will always send the request to the right SLD DNS which has the correct zone file and

https://technet24.ir

is finally able to answer the requested DNS query.

So what did we learn from this experience?

As we have learned, a zone file is a simple text file that consists of directives and
resource records and can look quite complicated as it contains a lot of two-letter
abbreviations. Remember, you need to set up a zone file pair (forward and reverse) on a
base domain level (for example, centos7.home) for all the hostnames and services
running under it (for example, www, host1, api, and so on). After installing the named
DNS server (which is part of the Berkeley Internet Name Domain (BIND) package),
we made a copy of the original main configuration file and changed the default listening
port from 53 to 8053 (as unbound is already listening on port 53) but kept it listening to
localhost only, and disabled IPv6 to keep compatibility with the other major DNS
servers (as IPv6 support is still limited on the Internet). Also, here we disabled
recursion because our BIND DNS server had to be authoritative-only, which means that
it is not allowed to forward DNS requests to other remote DNS servers when it could
not resolve the query from its own zone records.

Then we began creating and customizing our own forward DNS zone file with the
filename convention /var/named/<domain>.<top-level domain>.db. This file is
opened with the $TTL control statement, which stands for Time to Live and which
provides other nameservers with a time value that determines how long they can cache
the records from this zone. This directive, as many others, is defined using seconds as
the default time unit, but you can also use other units using BIND specific short forms to
indicate minutes (m), hours (h), days (d), and weeks (w), as we did in our example (3h).
Following this, we then provided a Start of Authority (SOA) record. This record
contains specific information about the zone as a whole. This begins with the zone name
(@), a specification of the zone class (IN), the FQDN of this nameserver in the format
hostname.domain.TLD., and an e-mail address of the zone administrator. This latter
value is typically in the form hostmaster.hostname.domain.TLD. and it is formed by
replacing the typical @ symbol with a dot (.). Having done this, it was then a matter of
opening the brackets to assign the zone's serial number, refresh value, retry value, expire
value, and negative caching time-to-live value. These directives can be summarized
as follows:

The serial-number value is a numeric value, typically taking the form of the date
in reverse (YYYYMMDD) with an additional value (VV), which is incremented every
time the zone file is modified or updated, in order to indicate that it is time for the
named service to reload the zone. The value VV typically starts at 00, and the next

time you modify this file, simply increment it to 01, 02, 03, and so on.
The time-to-refresh value determines how frequently the secondary or slave
nameservers will ask the primary nameserver if any changes have been made to the
zone.
The time-to-retry value determines how frequently the secondary or slave
nameservers should check the primary server after the serial number has failed. If a
failure has occurred during the time frame specified by the time-to-expire value
elapses, the secondary nameservers will stop responding as an authority for
requests.
The minimum-TTL value determines how long the other nameservers can cache
negative responses.

Having completed this section and having closed the corresponding bracket, we then
proceeded to add the authoritative nameserver information (NS) with the IN NS <FQDN
of the nameserver> definition. Typically speaking, you will have at least two, if not
three, nameservers (put each nameserver's FQDN in a new IN NS line). However, it is
possible to set only one nameserver, which is particularly useful if you are running the
server in an office or a home environment and would like to enjoy the benefit of local
name resolution, such as .home, .lan, or .dev. The next stage then required us to
include a reference for the Mail eXchanger (MX) records in order for us to specify a
mail server for the zone. The format is IN MX <priority> <FQDN of your
mailserver>. The priority becomes important if you define more than one mail server
(each in its separate IN MX line)—the lower the number, the higher the priority. In this
respect, a secondary mail server should have a higher value.

Note

In the SOA, NS and MX lines we already referenced hostnames which aren't defined as an
IP mapping yet (A record). We could do this because the zone file is not processed
sequentially. But do not forget to create corresponding A lines for each hostname later.

Depending on your needs, you may also intend to use your name server as your mail
server (then you would write instead MX 10 ns1.centos7.home.), although you may
have another server dedicated to that role as shown in the example.

Following this, it was then a matter of creating the appropriate A records (A for address)
and assigning the appropriate IP address to the values shown. This is the heart of any
domain name resolution requests to the server. An A record is used for linking an FQDN
to an IP address, but much of the preceding settings will be based on your exact needs.

https://technet24.ir

Here you can define all the local host names you want to map in your network. As we
have already used and referenced some domain names before in the zone file such as the
nameserver or mailserver we would begin with these. Afterwards, we defined all the
hostnames to IP address mappings for all public available and afterwards our internal
clients. Remember that when using the A records you can have multiple mappings of the
same IP address to different hostnames. For example, if you do not have dedicated
servers for every service in your network but rather one server running all your DNS,
mail, web, and ftp services, you can write the following lines instead:

ns1 IN A 192.168.1.7
mailhost IN A 192.168.1.7
www IN A 192.168.1.7
ftp IN A 192.168.1.7

You can also use a canonical name (CNAME) record for this task, which is used to assign
an alias to an existing A record. Arguably, the CNAME value make your DNS data easier
to manage by pointing back to an A record. So if you ever consider the need to change
the IP address of the A record, all your CNAME records pointed to that record
automatically. However, and as this recipe has tried to show, the alternative solution is
to have multiple A records, which implies the need for multiple updates in order to
change the IP address.

At this stage of the recipe, we then turned our attention towards the reverse DNS zone.
As with the forward zone file, the reverse zone files also have a special naming
convention /var/named/db.<C-Class of our search IP in reverse order>.
Naming your reverse zone file like db.1.168.192 can look strange first but makes
sense when you look at how reverse lookup works. It starts from the highest node (in
our example 192, which corresponds to the root domain in the forward zone file) and
traverses its way down from it. As you see, the content we put in this file has some
similarities between the directives and the resources used in the forward zone file.
However, it is important to remember that reverse DNS is wholly separate and distinct
from forward DNS.

The reverse DNS zone is designed to assist in the conversion of an IP address to a
domain name. This can be done by using the Pointer Resource Record (PTR) which
assigns unique IP addresses to one or more host names. For this reason, you must ensure
that a unique PTR record exists for every A record. Every reverse zone file collects IP
to hostname translations for a complete Class C address range (the first three dotted
numbers, for example, 192.168.1). The last octets of such an IP range are all the
hostnames which can be defined within such a file. Remember, the IP address value for

the first column in a PTR record should only show this last octet. For example, the line
9 IN PTR www.centos7.home. in the reverse zone file db.1.168.192 will be able to
resolve any reverse IP address requests of 192.168.1.9 to the domain value
www.centos7.home.

Having created our forward and reverse zone files in this recipe, we then completed the
configuration of the named service by adding our new zones to our BIND server in
order to start our own domain name service resolving local domain names of our
network. In these new appended forward and reverse zone definition blocks, we defined
that we are the master zone holder and also specified update-policy local; because
this is needed if we want to use the nsupdate command to update our zones
dynamically from the localhost (see later). You may add unlimited zone pairs, but
remember that each forward or reverse zone definition must be given a single zone entry
in curly brackets.

In summary, we can say that forward and reverse zone files are defined on a single base
domain name basis, one base domain gets one forward zone file. For reverse zone files,
it's a bit different because we are working with IP addresses. We create one zone file
based on the Class C address range of the network address of our domain and here the
last octet is called the hostname, for which we define our mappings in such a specific
file.

BIND is a big subject and there is a lot more to learn as this recipe has only served to
introduce you to the subject. In most cases, you may even find that your initial learning
period will become known as a process of trial and error, but it will improve.
Remember, practice makes perfect and if you do create additional forward zones,
always reference them in the reverse zone file.

https://technet24.ir

There's more...
Having created and added your zones to your BIND server, you are now able to test
your configuration. To do this, you can use the host, dig or nslookup command to
resolve internal hostnames from localhost only. For example, for testing forward DNS
resolution we can use the dig command by specifying that our DNS server is running on
localhost with port 8053: dig -p 8053 @127.0.0.1 client2.centos7.home. This
should finish DNS lookup successfully and return the following line (output is
truncated):

;; ANSWER SECTION:
client2.centos7.home. 10800 IN A 192.168.1.12

For reverse lookup, you will use an IP address instead (in this instance, the IP address
used should correspond to a domain for which you have configured reverse DNS):
nslookup -port=8053 192.168.1.12 127.0.0.1. As we have configured BIND as
an authoritative-only DNS server, any DNS request which is outside the local records
of our zone should not be able to get fully resolved. To test this use dig -p 8053
@127.0.0.1 www.google.com which should return the status REFUSED and WARNING:
recursion requested but not available message.

For security reasons, we restricted our BIND server to localhost only and did not allow
it to connect to other DNS servers. Therefore you cannot use it as your only DNS
solution for your private network. Instead, in the next recipe, we will learn how to
combine Unbound with BIND to create an integrated and very secure all-in-one DNS
server solution. But if you don't want to do this and use BIND as your single and full
authoritative DNS server solution (which is not recommended on CentOS 7 anymore),
you can do this by disabling or uninstalling Unbound, restoring the original
named.conf.BAK configuration file, and enabling the following directives in the BIND
configuration file: allow-query {localhost;192.168.1.0/24;}; (which enables the
complete 192.168.1.0/24 network to make DNS requests), listen-on port 53
{any;}; (listen for requests on any network), listen-on-v6 port 8053 { none; };
(for disabling IPv6). If you want BIND to be forwarding everything, which it is not
authoritative for, instead of using recursion to find out the answer, add the following
directives as well (in this example we use the official Google DNS servers for any
forwarding requests, but you can change this to fit your needs): forwarders {
8.8.8.8;};forward only;. Then restart the bind service.

https://technet24.ir

Creating an integrated nameserver
solution
So far in this chapter, we used Unbound as a caching-only DNS server solution because
it is very secure and fast, and BIND as our authoritative-only DNS server because its
zone management is highly configurable and customizable. BIND has been around for a
long time and is the most used DNS software ever. However, a number of critical bugs
have been found (and luckily fixed) in the past. Here in this recipe, we will combine
Unbound with BIND to get the best of both worlds: Only the very secure Unbound
service will be directly exposed to your private network and can take and serve DNS
queries from your clients. The BIND service stays bound to localhost only as it was
configured in a former recipe and is only allowed to resolve internal hostnames and
does not have direct access to the Internet or your clients. If a client connects to your
Unbound service and requests to resolve an internal hostname from your private
network, Unbound will query the BIND server locally for the DNS resolution and cache
the response. On the other hand, if a client requests to resolve an external domain name,
Unbound itself will recursively query or forward other remote DNS servers and cache
the response. The integration of both DNS server systems makes it the perfect all-round
DNS server solution.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system and a console-based text editor of your choice. It is expected that a
caching-only Unbound server (port 53) and an authoritative-only BIND server (port
8053) have been installed and are already running using recipes found in this chapter.

https://technet24.ir

How to do it...
In this recipe, we will show you how to configure Unbound so it will be able to query
our locally running authoritative-only BIND service whenever a client requests an
internal hostname. Any other request should go out as a recursive DNS request to a
remote root server to construct an answer:

1. Log in as root on our server running the Unbound and BIND service and open
Unbound's main configuration file:

vi /etc/unbound/unbound.conf

2. First put the following line somewhere in the server: clause:

local-zone: "168.192.in-addr.arpa." nodefault

3. Next, we will have to allow Unbound to connect to localhost which is disabled by
default, search for the line that reads: # do-not-query-localhost: yes, then
activate and set it to no:

do-not-query-localhost: no

4. Next, since our BIND server is not configured using DNSSEC, we need to tell
Unbound to use it anyway (Unbound by default refuses to connect to DNS servers
not using DNSSEC). Search for the line that starts with # domain-insecure:
"example.com", then activate it and change it so it reads as follows:

domain-insecure: "centos7.home."
domain-insecure: "168.192.in-addr.arpa."

5. Next, we need to tell Unbound to forward all the requests for our internal domain
centos7.home. to the locally running BIND server (on port 8053). Append the
following at the file's end:

stub-zone:
 name: "centos7.home."
 stub-addr: 127.0.0.1@8053

6. Also, we need to tell Unbound to do the same for any reverse lookup to our
internal domain using BIND:

stub-zone:
 name: "1.168.192.in-addr.arpa."
 stub-addr: 127.0.0.1@8053

7. Save and close the file, and then restart the Unbound service:

unbound-checkconf && systemctl restart unbound

https://technet24.ir

How it works
Congratulations! You now have a full authoritative and very secure DNS server solution
using an integrated approach combining all the good parts from Unbound and BIND. In
this recipe, we have shown you how to configure the Unbound service using stub-zones
to connect to an internally running BIND service for both forward and reverse requests.
A stub-zone is a special Unbound feature to configure authoritative data to be used that
cannot be accessed using the public Internet servers. Its name field defines the zone
name for which Unbound will forward any incoming DNS requests and the stub-addr
field configures the location (IP address and a port) of the DNS server to access; in our
example, this is the locally running BIND server on port 8053. For Unbound to be able
to connect to the localhost, we first had to allow this using the do-not-query-
localhost: no directive, had to mark our forward and reverse domain as being
insecure, and also had to define a new local-zone, which is necessary that Unbound
knows that clients can send queries to a stub-zone authoritative server.

There's more...
In order to test our new Unbound/BIND DNS cluster, make one public and one internal
hostname DNS request to the Unbound service from another computer in the same
network (you can also run similar tests locally on the DNS server itself). If our
Unbound/BIND DNS cluster has the IP 192.168.1.7, you should be able to get correct
answers for both dig @192.168.1.7 www.packtpub.com and dig @192.168.1.7
client1.centos7.home from any other computer in your network.

If you have to troubleshoot service problems or need to monitor the DNS queries of
your new Unbound/BIND DNS server, you can configure logging parameters. For
BIND, in the main configuration file named.conf you can set the verbosity of the
logging output (or log level). This parameter is called severity and can be found
within the logging directive. It is already set to dynamic; which gives the highest
amount of logging messages possible. You can then read your current log using tail -f
/var/named/data/named.run. For Unbound, you can set the level of verbosity in its
main configuration file unbound.conf using the verbosity directive which is set to the
lowest level of 1 but can be increased to 5. To learn more about the different levels, use
man unbound.conf. Use journald to read the Unbound logging information using the
command journalctl -f -u unbound.service (press Ctrl+c key to exit the
command).

We can not only log the system and service information but can also enable query logs.
For Unbound just use a verbosity of 3 or above to record query information. For
BIND, in order to activate the query log (query output will go to the log file
named.run), use the command rndc querylog on (to turn it off, use rndc querylog
off). Remember to turn off any excessive logging information, such as the query log,
when configuring your DNS server on a productive system as it can decrease your
service's performance. You can also install other third-party tools such as dnstop (from
the EPEL repository) to monitor your DNS activity.

https://technet24.ir

Populating the domain
In this recipe, we will show you how you can quickly add new local domain record
entries to your authoritative BIND server which are currently unknown to your
nameserver.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system and a console-based text editor of your choice. It is expected that
Unbound and BIND have both been installed and are already running, and that you have
read and applied the zone recipes in this chapter and have prepared the required
forward and reverse zone files for resolving hostnames of your private network.

https://technet24.ir

How to do it...
If you want to add new domain names to the IP address mappings to your DNS server,
for example for new or unknown hosts in your local network, you have two alternatives.
Since we have already created zone files for our local network, we can simply add new
A (and/or CNAME) and corresponding PTR entries for every new subdomain within our
base domain name into our forward and reverse zone file configuration using our text
editor of choice. Alternatively, we can use the nsupdate command-line tool to add
those records interactively without the need to restart the DNS server. In this section,
we will show you how to prepare and work with the nsupdate tool. In our example, we
will add a new subdomain client4.centos7.home for a computer with the IP address
192.168.1.14 to our DNS server's zone:

1. Log in as root on the server running your BIND service. Now first we need to
activate named to be allowed to write into its zone files by SELinux:

setsebool -P named_write_master_zones 1

2. Next, we need to fix some permission problems with the named configuration
directory, otherwise nsupdate cannot update our zone files later:

chown :named /var/named -R; chmod 775 /var/named -R

3. Since our BIND server is running on port 8053, type the following command to
start the interactive nsupdate session locally:

nsupdate -p 8053 -d -l

4. At the prompt (>), first connect to the local DNS server by typing the following
(press Return to finish commands):

 local 127.0.0.1

5. To add a new forward domain to IP mapping to your DNS server, type the
following:

update add client4.centos7.home. 115200 A 192.168.1.14
send

6. Now add the reverse relationship using the following command:

update add 14.1.168.192.in-addr.arpa. 115200 PTR
client4.centos7.home.
send

If both the update commands' outputs contained the message NOERROR, press Ctrl+c
key to exit the interactive nsupdate session.

7. Finally, check if both the domain and IP resolution for the new zone entry work
(this should also work remotely through the Unbound server):

dig -p 8053 @127.0.0.1 client4.centos7.home.
nslookup -port=8053 192.168.1.14 127.0.0.1

https://technet24.ir

How it works…
In this fairly easy recipe, we showed you how easily you can add new domain name
resolution records with the nsupdate tool dynamically at runtime without needing to
restart your BIND DNS server.

So what did we learn from this experience?

In this recipe, we introduced you to the nsupdate command-line tool which is a utility
for making changes to a running BIND DNS database without the need to edit the zone
files or restart the server. If you have already configured the zone files in your DNS
server, then this is the preferred way to make changes to the DNS server. It has several
options, for example, you can connect to the remote DNS servers but for simplicity and
for security reasons we will only use and allow the most simple form and only connect
nsupdate to our BIND server locally (to connect to a BIND server remotely using
nsupdate, you need to do more configuration, such as generate secure key-pairs, open
the firewall, and so on).

After allowing named to write into its own zone files, which otherwise is prohibited by
SELinux, and fixing some permission problems on the default named configuration
directory, we started the nsupdate program with -l for local connection, and -p 8053
to connect to our BIND DNS server on port 8053. -d gives us debug output which can
be useful for resolving any problems. We then got prompted by an interactive shell
where we could run BIND specific update commands. First we set local 127.0.0.1
which connects to our local server, than we used the commands update add to add a
new forward A record to our running DNS server. The syntax is similar to defining
records in the zone files. Here we used the line update add <domain-name> <TTL>
<type> <IP address> to add a new A record with a TTL of three days (115200
seconds) for the domain client4.centos7.home to resolve to the IP address
192.168.1.14. The next line was used to config some reverse resolution rules for our
new domain and which adds the domain name as a PTR entry into our reverse zone. Here
it is important to note that you need to define the domain part of the reverse update add
rule the following way: <host name for the rule>.<reverse C-class>.in-
addr.arpa. To finally execute our commands and make them permanent in our DNS
server's database, without the need to restart the server, we used the send command for
both the reverse and forward commands separately since they target different zones.
Finally, we tested if the new entries into the DNS server's zone files were working by
querying the BIND server.

https://technet24.ir

Building a secondary (slave) DNS server
To guarantee high-availability in your network, it can be useful to operate more than one
DNS server in your environment to catch up with any server failures. This is
particularly true if you run a public DNS server where continuous access to the service
is crucial and where it is not uncommon to have five and more DNS servers at once.
Since configuring and managing multiple DNS servers can be time consuming, the BIND
DNS server uses the feature of transferring zone files between the nodes so that every
DNS server has the same domain resolving and configuration information. In order to do
this, we need to define one primary and one or more secondary or slave DNS servers.
Then we only have to adjust our zone file once on the primary server which will
transfer the current version to all our secondary servers, keeping everything consistent
and up-to-date. For a client it will then make no difference which DNS server they are
connecting to.

Getting ready
To complete this recipe, you will require at least two CentOS 7 servers in the same
network which can see and ping each other. An Internet connection will be required to
download and install the BIND server software on all the computers we want to include
in our DNS server farm. In this example, we have two servers, 192.168.1.7 which is
already installed and configured as a BIND server, and 192.168.1.15 which will be
our second BIND server within the subnet 192.168.1.0/24. You should also have read
and applied the zone file recipe from this chapter and created a forward and reverse
zone file because this is what we want to transfer between DNS servers.

https://technet24.ir

How to do it...
We begin this recipe by installing BIND on every CentOS 7 computer we want to
include in our BIND DNS server cluster. To do this, follow the recipe Setting up an
authoritative-only DNS server for all the remaining systems. Before we can start, we
need to define which server will be our primary DNS server. For simplicity in our
example, we will choose the server with the IP address 192.168.1.7. Now let's make
all our DNS server nodes aware of their role.

Changes to the primary DNS server
1. Let's log in as root on the primary server and open its main configuration:

vi /etc/named.conf

2. Now we define which secondary DNS server(s) will be allowed to receive the
zone files at all, write the following command somewhere between the options
curly brackets in a new line (we only have one secondary DNS server with the IP
address 192.168.1.15, change accordingly):

allow-transfer { 192.168.1.15; };
notify yes;

3. Also, we must allow the other nameservers to connect to our primary nameserver.
In order to do this, you need to change your listen-on directive to include the
DNS server's primary network interface (in our example 192.168.1.7 , so change
appropriately):

listen-on port 8053 { 127.0.0.1;192.168.1.7; };

4. Save and close the file. Now open the new port 8053 in your server's firewall (or
create a firewalld service for it, see Chapter 6, Providing Security):

firewall-cmd --permanent --zone=public --add-port=8053/tcp --add-
port=8053/udp;firewall-cmd --reload

5. Save and close the file. Next, update the zone files we created earlier to include
the IP addresses of all the new nameservers we have available in the system.
Change both the forward and reverse zone files, /var/named/centos7.home.db
and /var/named/db.1.168.192, to include our new secondary DNS server. In the
forward zone file, add the following lines (you can also use the nsupdate program
to do this) into the appropriate sections:

NS ns2.centos7.home.

ns2 A 192.168.1.15

6. In the reverse zone file, add instead into the appropriate sections:

NS ns2.centos7.home.
15 PTR ns2.centos7.home.

7. Finally, restart BIND and recheck the configuration file:

named-checkconf && systemctl restart named

Changes to the secondary DNS server(s)

For simplicity and to demonstrate, just install named on any server you want to use as a
BIND slave (we only show the important configuration here):

1. Log in to the new server as root, install BIND, and open its main configuration:

yum install bind; vi /etc/named.conf

2. Now locate the line include /etc/named.rfc1912.zones;. Immediately
following this line, create a space for your work and add the following zones
(replace the zone and file names appropriately):

 zone "centos7.home" IN {
 type slave;
 masters port 8053 { 192.168.1.7; };
 file "/var/named/centos7.home.db";
};
 zone "1.168.192.in-addr.arpa" IN {
 type slave;
 masters port 8053{ 192.168.1.7; };
 file "/var/named/db.1.168.192.db";
 };

3. Save and close the file. Then fix some incorrect BIND folder permissions and
enable named to write into its zone file directory before restarting BIND:

chown :named /var/named -R; chmod 775 /var/named -R
setsebool -P named_write_master_zones 1
named-checkconf && systemctl restart named

4. Now initiate a new zone transfer using:

rndc refresh centos7.home.

5. After waiting a while, to test if our secondary DNS server is working as expected,
check if the master zone files have been transferred:

https://technet24.ir

ls /var/named/*.db

6. Finally, we can now test if we can query our local domain on the secondary DNS
server too:

dig @127.0.0.1 client2.centos7.home.

How it works...
In this recipe, we showed you how to set up secondary BIND servers in your network
which can help in increasing the stability and availability of your DNS server system.

So what did we learn from this experience?

We started our journey by deciding which of our servers should be the primary and
which should be the slave DNS servers. Then we opened the BIND main configuration
file on the primary server and introduced two lines of code to configure our server to be
the head of our DNS cluster. The allow-transfer directive defines to which clients
we want to transfer our updated zone files while the notify yes directive enables
automatic transfer when any changes to the zone files happen. If you have got several
secondary BIND DNS servers, you can add more than one IP address into the allow-
transfer directive, separated by semicolons. Then we opened our zone files we
created in a former recipe in this chapter and introduced a new line IN NS <IP
address> which defines the IP address of our secondary DNS servers we need to be
aware on every DNS node in our system. If we have got multiple servers, then we
introduce multiple IN NS lines. Finally, we introduced a small comment to easily check
the successful zone file transfer on our secondary servers.

Afterwards, we configured our slave DNS server(s). Here we introduced the same zone
file definitions as on the primary server's BIND configuration, with the exceptions that
we used type slave instead of master to denote we are a secondary DNS server and
will get a copy of the zone files from the master node by defining the primary DNS
server's IP address using the masters directive (please do not forget that our master
BIND is listening on the non-default port 8053 in our example).

Since we had not created or copied the zone files ourselves on the slave DNS server, it
was then easy to check if the zone file transfer had been successful after restarting the
BIND service using the ls command. Finally, we verified the transferred zone file
content by running test queries using dig or nslookup to see if we could resolve the
same local hostnames on our secondary DNS server. Remember if you later make
changes to your master's zone files you have to increase their serial number in order
that those changes get transferred to all your slaves.

https://technet24.ir

Chapter 10. Working with Databases
In this chapter, we will cover:

Installing a MariaDB database server
Managing a MariaDB database
Allowing remote access to a MariaDB server
Installing a PostgreSQL server and managing a database
Configuring remote access to a PostgresSQL
Installing phpMyAdmin and phpPgAdmin

Introduction
This chapter is a collection of recipes that deliver the necessary steps to implement and
maintain two of the most popular database management systems in the Linux world. The
need for data is everywhere and is a must have service for almost any server, and this
chapter provides the starting point required to deploy these database systems in any
environment.

https://technet24.ir

Installing a MariaDB database server
Supporting over 70 collations, more than 30 character sets, multiple storage engines,
and deployment in virtualized environment, MySQL is a mission-critical database
server that is used by production servers all over the world. It is capable of hosting a
vast number of individual databases and it can provide support for various roles across
your entire network. MySQL server has become synonymous with the World Wide Web
(WWW), is used by desktop software, extends local services, and is one of the world's
most popular relational database systems. The purpose of this recipe is to show you
how to download, install, and lockdown MariaDB, which is the default implementation
of MySQL in CentOS 7. MariaDB is open source and fully compatible with MySQL and
adds several new features; for example, a non-blocking client API library, new storage
engines with better performance, enhanced server status variables, and replication.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to download additional packages. It is expected that
your server will be using a static IP address.

https://technet24.ir

How to do it...
As the MariaDB Database Management System (DBMS) is not installed by default
on CentOS 7, we will start this recipe by installing the required packages.

1. To begin, log in as root and type the following command to install the required
packages:

yum install mariadb-server mariadb

2. When complete, ensure the service starts at boot before starting the service:

systemctl enable mariadb.service && systemctl start
mariadb.service

3. Finally, begin the secure installation process with the following command:

mysql_secure_installation

4. When you first run the previous command, you will be asked to provide a
password but as this value has not been set, press the Enter key to represent the
value (blank) none.

5. Now you will be asked a number of simple questions which will help you in the
process of hardening your MariaDB DBMS system. It is a good advice to choose
Yes (Y) to every question for maximum security unless you are already a MariaDB
expert and really require a certain feature.

6. Finally, test if you can connect and login to the MariaDB service locally using the
MariaDB command-line client called mysql. The test passes if the following
command outputs all the MariaDB user names together with their associated hosts
known to the MariaDB server (enter the administrator root password you set in the
last step when prompted):

echo "select User,Host from user" | mysql -u root -p mysql

How it works...
MariaDB is a fast, efficient, multithreaded, and robust SQL database server. It supports
multiple users and provides access to a number of storage engines, and by following a
few short steps, you now know how to install, secure, and login to your MariaDB
server.

So what did we learn from this experience?

We started the recipe by installing the necessary package for the MariaDB server
(mariadb-server) and also the client shell interface (mariadb) for controlling and
querying the server. Having done this, we then proceeded to ensure that the MariaDB
daemon (mariadb.service) would start during the boot process before we actually
started it. At this point we had a working installation, but in order to ensure that our
installation was safe we then invoked the secure installation script in order to guide us
through a few simple steps to harden our basic installation. As the basic installation
process does not enable us to set a default password for the root user, we did it here as
a first step in the script, so we could be certain that no one could access the MariaDB
root user account without the required authorization. We then discovered that a typical
MariaDB installation maintains an anonymous user. The purpose of this is to allow
anyone to login to our database server without having to have a valid user account. It is
typically used for testing purposes only, and unless you are in unique circumstances that
require this facility, it is always advisable to remove this feature. Following this, and to
ensure that the root user could not access our MariaDB server installation, we then
opted to disallow remote root access before removing the test database and performing
a reload of the privilege tables. Finally, we ran a small test to see if we could connect
to the database with the root user and query some data from the user table (which is
part of the standard mysql database).

Having completed the steps of the recipe, we have learned that the process of installing
and securing the MariaDB server is very simple. Of course, there are always more
things that can be done in order to make the installation useful but the purpose of this
recipe was to show you that the most important part of installing your new database
system was to make it secure. Remember, the act of running
mysql_secure_installation is recommended for all MariaDB servers and it is
advisable regardless of whether you are building a development server or one that is
used in a production environment. As a server administrator, security should always
remain your top priority.

https://technet24.ir

Managing a MariaDB database
In this recipe, we will learn how to create a new database and database user for the
MariaDB server. MariaDB can be used in conjunction with a wide variety of graphical
tools (for example, the free MySQL Workbench), but in situations where you simply
need to create a database, provide an associated user, and assign the correct
permissions, it is often useful to perform this task from the command line. Known as the
MariaDB shell, this simple interactive and text based-command line facility supports
the full range of SQL commands and affords both local and remote access to your
database server. The shell provides you with complete control over your database
server, and for this reason it represents the perfect tool for you to start your MariaDB
work.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system. It is expected that a MariaDB server is already installed and running
on your server.

How to do it...
The MariaDB command-line tool supports executing commands in both the batch mode
(reading from a file or standard input) and interactively (typing in statements and
waiting for the results). We will use the latter in this recipe.

1. To begin, log in on your CentOS 7 server with any system user you like and type
the following command in order to access the MariaDB server using the MariaDB
shell with the main MariaDB administration user called root (use the password
created in the previous recipe):

mysql -u root -p

2. On successful login, you will be greeted with the MariaDB command-line
interface. This feature is signified by the MariaDB shell prompt:

MariaDB [(none)]>

3. In this first step, we will create a new database. To do this, simply customize the
following command by substituting an appropriate value for the new <database-
name> value using:

CREATE DATABASE <database-name> CHARACTER SET utf8 COLLATE
utf8_general_ci;

Note

If this is your first introduction to the MariaDB shell, remember to end each line
with a semi-colon (;) and press the Enter key after typing each command.

4. Having created our database, we will now create a MariaDB user. Each user will
consist of a username and a password that is completely independent of the
operating system's user. For reasons of security, we will ensure that access to the
database is restricted to localhost only. To proceed, simply customize the
following command by changing the values <username>, <password>, and
<database-name> to reflect your needs:

GRANT ALL ON <database-name>.* TO '<username>'@'localhost'
IDENTIFIED BY '<password>' WITH GRANT OPTION;

5. Next, make the MariaDB DBMS aware of your new user:

FLUSH PRIVILEGES;

6. Now simply type the following command to exit the MariaDB shell:

https://technet24.ir

EXIT;

7. Finally, you can test the accessibility of your new <username> by accessing the
MariaDB shell from the command-line in the following way:

mysql -u <username> -p

8. Now back at the MariaDB shell (MariaDB [(none)]>), type the following
commands:

SHOW DATABASES;
EXIT;

How it works...
During the course of this recipe you were shown not only how to create a database, but
also how to create a database user.

So what did we learn from this experience?

We started the recipe by accessing the MariaDB shell as the root user with the mysql
command. By doing this, we were then able to create a database with a simple SQL
function called CREATE DATABASE, providing a custom name for the <database-name>
field. We also specified utf8 as the character set of our new database together with a
utf8_general_ci collation. A character set is how the characters are encoded in the
database and a collation is a set of rules for comparing the characters in a character set.
For historic reasons and to keep MariaDB backward-compatible with the older server
versions, the default character set is latin1 and latin1_swedish_ci, but for any
modern databases you should always prefer to use utf-8 instead as it is the most
standard and compatible encoding for international character sets (non-English
alphabets). However, this command can be modified to invoke the need to check if a
database name is already in use by using: CREATE DATABASE IF NOT EXISTS
<database-name>. In this way, you can then drop or remove a database by using the
following command:

DROP DATABASE IF EXISTS <database-name>;

Having done this, it is simply a matter of adding a new database user with the
appropriate permissions by running our GRANT ALL command. Here we provided
<username> with full privileges via a defined <password> for localhost. As a specific
<database-name> was elected, then this level of permission will be restricted to that
particular database and using <database-name>.* allows us to specify these rules to
all the tables (using the asterisks symbol) in this database. The general syntax in order
to provide a chosen user with specific permission is:

GRANT [type of permission] ON <database name>.<table name> TO
'<username>'@'<hostname>';

For security reasons, here in this recipe we limit <hostname> to localhost but if you
want to grant permissions to remote users you will need to change this value (see later).
In our example, we set [type of permission] to ALL but you can always decide to
minimize the privileges by providing a single or a comma-separated list of privilege-
types offered in the following way:

https://technet24.ir

GRANT SELECT, INSERT, DELETE ON <database name>.* TO
'<username>'@'localhost';

Using the previous technique, here is a summary of the permissions that can be
employed:

ALL: Allows the <username> value with all available privilege-types
CREATE: Allows the <username> value to create new tables or databases
DROP: Allows the <username> value to delete tables or databases
DELETE: Allows the <username> value to delete rows from tables
INSERT: Allows the <username> value to insert rows into tables
SELECT: Allows the <username> value to read from tables
UPDATE: Allows the <username> value to update table rows

However, once the privileges were granted, the recipe then showed you that we must
FLUSH the system in order to make our new settings available to the system itself. It is
important to note that all commands within the MariaDB shell should end in a semicolon
(;). Having completed our task, we simply exit the console using the EXIT; statement.

MariaDB is an excellent database system but like all services, it can be abused. So
remain vigilant at all times, and by considering the previous advices, you can be
confident that your MariaDB installation will remain safe and secure.

There's more...
Creating a restricted user is one way of providing database access but if you have a
team of developers who require constant access to a development server, you may wish
to consider providing a universal user who maintains superuser privilege. To do this,
simply login to the MariaDB shell with your administrator user root, then create a new
user in the following way:

GRANT ALL ON *.* TO '<username>'@'localhost' IDENTIFIED BY
'<password>' WITH GRANT OPTION;

By doing this, you will enable <username> to add, delete, and manage databases across
your entire MariaDB server (the asterisks in *.* tell MariaDB to apply the privileges
to all the databases and all their associated tables found on the database server), but
given the range of administrative features, this new user account will restrict all
activities to localhost only. So in simple terms, if you want to provide <username> with
access to any database or to any table, always use an asterisk (*) in place of the
database name or table name. Finally, every time you update or change a user
permission, always be sure to use the FLUSH PRIVILEGES command before exiting the
MariaDB shell with the EXIT; command.

Reviewing and revoking permissions or dropping a user

It is never a good idea to keep user accounts active unless they are used, so your first
consideration within the MariaDB shell (login with your administrator user root) will
be to review their current status by typing:

SELECT HOST,USER FROM mysql.user WHERE USER='<username>';

Having done this, if you intend to REVOKE permission(s) or remove a user listed here,
you can do this with the DROP command. First of all, you should review what privileges
the user of interest has by running:

SHOW GRANTS FOR '<username>'@'localhost';

You now have two options, starting with the ability to revoke the user's privileges as
follows:

REVOKE ALL PRIVILEGES, GRANT OPTION FROM '<username>'@'localhost';

Then you may either reallocate the privilege using the formula provided in the main

https://technet24.ir

recipe or alternatively, you can decide to remove the user by typing:

DROP USER '<username>'@'localhost';

Finally, update all your privileges the usual way using FLUSH PRIVILEGES; before
exiting the shell EXIT; command.

Allowing remote access to a MariaDB
server
Unless you are running your MariaDB database server to drive some local web
applications on the same server hardware, most working environments would be pretty
useless if remote access to a database server were forbidden. In many IT surroundings
you will find high-available, centralized dedicated database servers optimized in
hardware (for example, huge amounts of RAM) and hosting multiple databases allowing
hundreds of parallel connections from the outside to the server. Here in this recipe, we
will show you how to make remote connections to the server possible.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges. It is expected that a MariaDB server is already
installed and running and you have read and applied the Managing a MariaDB database
recipe for an understanding of permissions and how to test (local) database connections.

How to do it...
In our example, we want to access a MariaDB database server with the IP address
192.168.1.12 from a client computer in the same network, with the IP address
192.168.1.33. Please change appropriately to fit your needs:

1. To begin, log in as root on your MariaDB database server and open the firewall for
the incoming MariaDB connections:

firewall-cmd --permanent --add-service=mysql && firewall-cmd --
reload

2. Afterwards, we need to create a user account which can connect to our MariaDB
server remotely (as we have prevented root from doing this in a further step for
security reasons), login your database server using the MariaDB command line
interface mysql as user root and type the following MariaDB statement (replacing
the XXXX with a password of your choice, also feel free to adjust the username and
remote IP of the client who wants to connect to the server—in our case the client
has the IP 192.168.1.33—accordingly):

GRANT SELECT ON mysql.user TO 'johndoe'@'192.168.1.33' IDENTIFIED
BY 'XXXX';
FLUSH PRIVILEGES;EXIT;

3. Now we can test the connection from our client computer with the IP address of
192.168.1.33 in our network. This computer needs the MariaDB shell installed
(on a CentOS 7 client, install the package mariadb) and needs to be able to ping
the server running the MariaDB service (in our example, the IP 192.168.1.12).
You can test connecting to the server by using the following command (on success,
this will print out the content of the mysql user table):

echo "select user from mysql.user" | mysql -u johndoe -p mysql -h
192.168.1.12

https://technet24.ir

How it works...
We started our journey by opening the standard MariaDB firewall port 3306 using the
firewalld predefined MariaDB service, which is disabled by default on CentOS 7. After
this, we configured which IP addresses were allowed to access our database server,
which is done on a database level using the MariaDB shell. In our example, we used the
GRANT SELECT command to allow the user johndoe at the client IP address
192.168.1.33 and with the password in quotes 'XXXX' to access the database with the
name mysql and the table user to make SELECT queries only. Remember, here you can
also apply wildcards in the <hostname> field using the % sign (which means any
characters). For example, for defining any possible hostname combination in a Class C
network, you can use the % sign like so 192.168.1.%. Granting access to the
mysql.user database and table was just for testing purposes only and you should
remove the user johndoe from this access permission whenever you have finished your
tests, using: REVOKE ALL PRIVILEGES, GRANT OPTION FROM
'johndoe'@'192.168.1.33';. If you want you can also delete the user DROP USER
'johndoe'@'192.168.1.33'; because we don't need it anymore.

Installing a PostgreSQL server and
managing a database
In this recipe, we will not only learn how to install the PostgreSQL DBMS on our
server, but we will also discover how to add a new user and create our first database.
PostgreSQL is considered to be the most advanced open source database system in the
world. It is known for being a solid, reliable, and well-engineered system that is fully
capable of supporting high-transaction and mission-critical applications. PostgreSQL is
a descendant of the Ingres database. It is community-driven and maintained by a large
collection of contributors from all over the world. It may not be as flexible or as
pervasive as MariaDB, but because PostgreSQL is a very secure database system that
excels in data integrity, it is the purpose of this recipe to show you how to begin
exploring this forgotten friend.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional packages. It is
expected that your server will be using a static IP address.

How to do it...
PostgreSQL (also known as Postgres) is an object-relational database management
system. It supports a large part of the SQL standard and it can be extended by the server
administrator in many ways. However, in order to begin, we must start by installing the
necessary packages:

1. Start by logging in your server as root and type:

yum install postgresql postgresql-server

2. Having installed the database system, we must now enable the database server at
boot by typing:

systemctl enable postgresql

3. When you have finished, initialize the database system as follows:

postgresql-setup initdb

4. Now complete this process by starting the database server:

systemctl start postgresql

5. Now set a new initial password for our postgres administrator of your choice. As
the default postgres user is currently using peer authentication, we need to
execute any Postgres-related command with user postgres:

su - postgres -c "psql --command '\password postgres'"

6. To get rid of the requirement, that the postgres user has to be logged in on a
system user basis before he can execute Postgres-related commands such as psql,
and to allow login with database user accounts in general, we need to change the
authentication method for localhost from peer to md5 in the Postgres client
authentication configuration file. You can do this manually or use the sed tool as
shown next, after you have made a backup of the file first:

cp /var/lib/pgsql/data/pg_hba.conf
/var/lib/pgsql/data/pg_hba.conf.BAK
sed -i 's/^\(local.*\)peer$/\1md5/g'
/var/lib/pgsql/data/pg_hba.conf

7. Next, we have to restart the postgresql service in order to apply our changes:

systemctl restart postgresql

8. Now you will be able to login to your Postgres server with user postgres without

https://technet24.ir

the need to login the postgres Linux system user first:

psql -U postgres

9. To exit the shell (postgres=#), type the following command (followed by the
Return key):

\q

10. We will now issue a shell command to create a new database user, by substituting
<username> with a relevant user name to fit your own needs (type in a new
password for the user when prompted, repeat it, and afterwards enter the password
for the administrator user postgres to apply these settings):

createuser -U postgres -P <username>

11. Now, also on the shell create your first database and assign it to our new user by
replacing the <database-name> and <username> values with something more
appropriate to your needs (enter the password for the postgres user):

createdb -U postgres <database-name> -O <username>

12. Finally, test if you can access the Postgres server with your new user by printing
all the database names:

psql -U <username> -l

How it works...
PostgreSQL is an Object-Relational Database Management System and it is available to
all CentOS servers. Postgres may not be as common as MariaDB, but its architecture
and large array of features do make it an attractive solution for many companies
concerned with data integrity.

So what did we learn from this experience?

We began this recipe by installing the necessary server and client rpm packages using
yum. Having done this, we then proceeded to make the Postgres system available at boot
before initializing the database system using the postgresql-setup initdb command.
We completed this process by starting the database service. In the next stage, we were
then required to set the password for the Postgres administrator user to harden the
system. By default, the postgresql package creates a new Linux system user called
postgres (which is also used as an administrative Postgres user account to access our
Postgres DBMS), and by using su - postgres - c we were able to execute the psql
commands as the postgres user, which is mandatory upon installation (this is called
peer authentication).

Having set the admin password, to have more like a MariaDB shell-type of login
procedure where every database user (including the administrator postgres user) can
log in using the database psql client's user -U parameter, we changed this peer
authentication to md5 database password-based authentication for the localhost in the
pg_hba.conf file (see the next recipe). After restarting the service, we then used
Postgres's createuser and createdb command line tools to create a new Postgres user
and connect it to a new database (we needed to provide the postgres user with the -U
parameter because only he has the privileges for it). Finally, we showed you how to
make a test connection to the database with your new user using the -l flag (which lists
all the available databases). Also, you can use the -d parameter to connect to a specific
database using the syntax: psql -d <database-name> -U <username>.

https://technet24.ir

There's more...
Instead of using the createuser or createdb Postgres command-line tools, as we have
been showing you in this recipe, to create your databases and users, you can also do the
same using the Postgres shell. In fact, those command-line tools are actually just
wrappers around the Postgres shell commands, and there is no effective difference
between the two. psql is the primary command-line client tool for entering SQL queries
or other commands on a Postgres server, similar to the MariaDB shell shown to you in
another recipe in this chapter. Here, we will launch psql with a template called
template1, the boilerplate (or default template) that is used to start building databases.
After login (psql -U postgres template1), and typing in the administrator password
you should be presented with the interactive Postgres prompt (template1=#). Now to
create a new user in the psql shell, type:

CREATE USER <username> WITH PASSWORD '<password>';

To create a database, type:

CREATE DATABASE <database-name>;

The option to grant all privileges on the recently created database to the new user is:

GRANT ALL ON DATABASE <database-name> to <username>;

To exit the interactive shell, use: \q followed by pressing the Return key.

Having completed this recipe you could say that you not only know how to install
PostgreSQL, but this process has served to highlight some simple architectural
differences between this database system and MariaDB.

Configuring remote access to
PostgreSQL
In this recipe, we will learn how to configure remote access to a Postgres server which
is disabled by default. Postgres employs a method called host-based authentication and
it is the purpose of this recipe to introduce you to its concepts in order to provide the
access rights you need to run a safe and secure database server.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges and a text editor of your choice. It is expected that
PostgreSQL is already installed and running.

How to do it...
In the previous recipe, we have already modified the host-based authentication
configuration pg_hba.conf file using sed to manage our Postgres's client authentication
from peer to md5. Here we will make changes to it to manage remote access to our
Postgres server.

1. To begin, log in as root and first open the firewall to allow any incoming
PostgreSQL connections to the server:

firewall-cmd --permanent --add-service=postgresql;firewall-cmd --
reload

2. Now open the host-based authentication configuration file in your favorite text
editor by typing:

vi /var/lib/pgsql/data/pg_hba.conf

3. Scroll down to the end of the file and append the following line, to make these
lines read as follows (substitute the XXX.XXX.XXX.XXX/XX value with a network
address you want to grant access to. For example, if the IP address of your server
was 192.168.1.12 then the network address would be 192.168.1.0/24):

host all all XXX.XXX.XXX.XXX/XX md5

4. When you have finished, simply save and close the file in the usual way before
opening the main Postgres configuration file by typing:

vi /var/lib/pgsql/data/postgresql.conf

5. Add the following lines to the end of the file:

listen_addresses = '*'
port = 5432

6. When you have finished, save the file in the usual way before restarting the
database server by typing the following command:

systemctl restart postgresql

7. On any other computer which is in the same network (defined by the
XXX.XXX.XXX.XXX/XX value set previously), you can now test if the remote
connection to your Postgres server is working using the psql shell (if your client
computer is CentOS, you need to install it using yum install postgresql) by
logging in on the server remotely and printing out some test data. In our example,

https://technet24.ir

the Postgres server is running with the IP address 192.168.1.12.

psql -h 192.168.1.12 -U <username> -d <database-name>

How it works...
PostgreSQL is a safe and secure database system but where we access it (either
remotely or locally) can often become a cause of confusion. It was the purpose of this
recipe to lift the lid on host-based authentication and provide an easy-to-use solution
that will enable you to get your system up-and-running.

So what did we learn from this experience?

We began the recipe by opening the Postgres service's standard ports in firewalld in
order to make a connection from any remote computer possible in the first place. Then
we opened Postgres's host-based authentication configuration file called pg_hba.conf
with our favorite text editor. Remember, we already changed from peer to md5
authentication for all local connections to provide user based authentication in a former
recipe. The inserted host record line specifies a connection type, database name, a user
name, a client IP address range, and the authentication method. Many of the previous
commands may already be understood but it is important to realize that there are several
different methods of authentication:

trust: Allows the connection unconditionally and enables anyone to connect with
the database server without the need for a password.
reject: Allows the database server to reject a connection unconditionally, a feature
that remains useful when filtering certain IP addresses or certain hosts from a
group.
md5: Implies that the client needs to supply an MD5-encrypted password for
authentication.
peer and ident: Access is granted if the client's logged in Linux user name from
the operating system can be found as a database user in the system. ident is used for
remote connections and peer for local connections.

Having completed this task, we then saved and closed the file before opening the main
PostgreSQL configuration file located at /var/lib/pgsql/data/postgresql.conf.
As you may or may not be aware, remote connections will not be possible unless the
server is started with an appropriate value for listen_addresses, and where the
default setting placed this on a local loopback address it was necessary to allow the
database server to listen to all network interfaces (signified by the use of a star symbol
or *) for incoming Postgres connections on the 5432 port. When finished, we simply
saved the file and restarted the database server.

https://technet24.ir

There is always much more to learn, but as a result of completing this recipe, you not
only have a better understanding of host-based authentication but you have the ability to
access your PostgreSQL database server both locally and remotely.

Installing phpMyAdmin and
phpPgAdmin
Working with the MariaDB or Postgres command-line shell is sufficient for performing
basic database administration tasks, such as user permission settings or creating simple
databases as we have shown you in this chapter. The more complex your schemas and
relationships between tables get and the more your data grows, the more you should
consider using some graphical database user interfaces for better control and work
performance. This is also true for novice database administrators as such tools provide
you with syntax highlightning and validation and some tools even have graphical
representations of your databases (for example, showing Entity Relationship Models).
In this recipe, we will show you how to install two of the most popular graphical open-
source database management software for MariaDB and PostgreSQL on the market,
namely phpMyadmin and phpPgAdmin, which are web-based browser applications
written in PHP.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional packages. It is
expected that your MariaDB or PostgreSQL server is already running using the recipes
found in this chapter. Also, you will need a running Apache web server with PHP
installed, which must be accessible from all the computers in your private network to
deploy these applications (refer to Chapter 12, Providing Web Services for
instructions). In addition, you need to have enabled the EPEL repositories for installing
the correct software packages (refer to recipe Using a third-party repository in Chapter
4, Managing Packages with YUM). Finally, you will need one computer in your network
with a graphical window manager and a modern web-browser to access these web
applications.

How to do it...
In this recipe, we will first show you how to install and configure phpMyAdmin for
remote access and afterwards how to do the same for phpPgAdmin.

Installing and configuring phpMyAdmin

To install and configure phpMyAdmin, perform the following steps:

1. Type in the following command to install the required package:

yum install phpMyAdmin

2. Now create a copy of the main phpMyadmin configuration file:

cp /etc/httpd/conf.d/phpMyAdmin.conf
/etc/httpd/conf.d/phpMyAdmin.conf.BAK

3. Next, open the main phpMyAdmin.conf configuration file and add the line
Require ip XXX.XXX.XXX.XXX/XX with your defined subnet's network address
you want to grant access to the web application—for example, Require ip
192.168.1.0/24 below the line Require ip 127.0.0.1. You have to do this
twice in the file or you can use sed to do this automatically, as shown here. On the
command-line define the environment variable NET= accordingly to fit it to your
own subnet's network address.

NET="192.168.1.0/24"

4. Then type the following line to apply your changes to the configuration file:

sed -i "s,\(Require ip 127.0.0.1\),\1\nRequire ip $NET,g"
/etc/httpd/conf.d/phpMyAdmin.conf

5. Afterwards, reload your Apache server and now you should be able to browse to
the phpMyAdmin website from any other computer in your subnet using the server's
IP running the web application, for example 192.168.1.12 (log in with your
MariaDB administrator user called root or any other database user):

http://192.168.1.12/phpMyAdmin

Installing and configuring phpPgAdmin

Following are the steps to install and configure phpPgAdmin:

1. Type in the following command to install the required package:

https://technet24.ir

yum install phpPgAdmin

2. Before editing the phpPgAdmin main configuration, make a backup of it first:

cp /etc/httpd/conf.d/phpPgAdmin.conf
/etc/httpd/conf.d/phpPgAdmin.conf.BAK

3. Allowing remote access to phpPgAdmin is very similar to phpMyAdmin. Here you
can also add a Require ip XXX.XXX.XXX.XXX/XX line with your defined subnet's
network address below the line Require local in the phpPgAdmin.conf file, or
use the sed utility to do this automatically for you:

NET="192.168.1.0/24"
sed -i "s,\(Require local\),\1\nRequire ip $NET,g"
/etc/httpd/conf.d/phpPgAdmin.conf

4. Restart Apache and browse to the phpPgAdmin main page:

http://192.168.1.12/phpPgAdmin

How it works...
In this fairly simple recipe, we have shown you how to install two of the most popular
graphical administration tools for MariaDB and Postgres, running as web applications
in your browser (and written in PHP) on the same server where your database service
is running, and enabled remote access to them.

So what did we learn from this experience?

Installing phpMyAdmin for administering MariaDB databases and phpPgAdmin for
Postgres databases was as easy as installing the corresponding rpm packages using the
yum package manager. As both the tools are not to be found in the official CentOS 7
repositories, you need to enable the third-party repository EPEL before you can access
and install these packages. By default, when installing both the web applications, access
is denied to any connection not being made from the server itself (local only). Since we
want to have access to it from different computers in our network, having installed a
web browser you need to allow remote connections first. For both the web applications,
this can be achieved using the Apache Require ip directive which is part of the
Apache mod_authz_core module. In both the configuration files for phpMyAdmin and
phpPgAdmin, we defined a whole subnet, such as 192.168.1.0/24, to allow
connecting to the server, but you can also use a single IP address here which you want to
allow access to. The sed commands inserted these important Require lines into the
configuration file, but as said earlier you can also do this manually if you like by editing
these files with your text editor of choice. After reloading the Apache configuration, you
were then able to browse to the web pages using the two URLs shown in the recipe. On
the start page of both the web sites, you can use any database user to log in without the
need to enable remote privileges for them; any user with local permissions is sufficient.

In summary, we can say that we only showed you the basic configuration of both
administration tools. There is always more to learn; for example, you should consider
securing both PHP websites with SSL encryption or configuring your instances to
connect to different database servers. Also, if you prefer desktop software for managing
your databases, have a look at the open-source MySQL Workbench Community Edition,
which can be downloaded from the official MySQL website for all major operating
systems (Windows, OS X, Linux).

https://technet24.ir

Chapter 11. Providing Mail Services
In this chapter, we will cover:

Configuring a domain-wide mail service with Postfix
Working with Postfix
Delivering the mail with Dovecot
Using Fetchmail

Introduction
This chapter is a collection of recipes that deliver the necessary steps to implement and
maintain one of the oldest and most versatile technologies on the Internet today.
Everyone wants to send and receive e-mails and this chapter provides the necessary
starting point required to deploy such a service in a timely and efficient manner.

https://technet24.ir

Configuring a domain-wide mail service
with Postfix
Postfix is a Mail Transport Agent (MTA) responsible for the transfer of e-mails
between mail servers using the SMTP protocol. Postfix is now the default MTA on
CentOS 7. Here, as with most other critical network services, its default configuration
allows outgoing but does not accept incoming network connections from any host other
than the local one. This makes sense if all you need is a local Linux user mailing system
and for sending out mails to other external mail servers from localhost too. But if you
want to run your own centralized mail server for your own private network and domain,
this is quite restrictive. So the purpose of this recipe is to set up Postfix as a domain-
wide mail service to allow e-mails sent from any host in your network and if the
recipient is a valid e-mail address within your local domain, deliver them to the correct
mailbox on the mail server.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet to download additional software packages. You need to set up
your local network properly and make sure that all the computers that want to send
mails through your single-domain mailserver are in the same network and can ping this
server. Also, setting your system time correctly is very important for any mail server.
Apply the Synchronizing the system clock with NTP and the chrony suite recipe in
Chapter 2, Configuring the System before beginning your configuration. Finally, you
need to set a Fully Qualified Domain Name (FQDN) for your mail server. Refer to the
Setting your hostname and resolving the network recipe in Chapter 2, Configuring the
System. It is expected that your server will be using a static IP address and that it
maintains one or more system user accounts. It is also assumed that you are working
through this chapter recipe by recipe in the order in which they appear.

https://technet24.ir

How to do it...
Postfix is already installed by default on all CentOS 7 flavors and it should be in a
running state. In our example, we want to build a central mail server for our network
192.168.1.0/24 with the local domain name called centos7.home.

1. First login as root and test if Postfix is already working locally and can send local
mails to your system users. Type the following command to send a mail to a Linux
user specified by <username>:

echo "This is a testmail" | sendmail <username>

2. On CentOS 7, Postfix is also already configured to send out mails to external e-
mail addresses (but from localhost only) without any changes to the configuration
file. For example, you could use right out-of-the-box:

echo "This is a testmail" | sendmail contact@example.com

Note

If you don't have a trusted domain and certificate behind your Postfix server, in
times of massive spam e-mails most external e-mail servers will reject or put such
e-mails directly into the spam folders.

3. To see if the local mail message has been delivered successfully, show the latest
mail log (Press Ctrl+C to exit the log):

tail -f /var/log/maillog

4. Next, check if a FQDN for our server is available. This is mandatory, and if not set
properly, refer to Chapter 2, Configuring the System to set one (in our example, this
will output the name mailserver.centos7.home):

hostname --fqdn

5. Now create a backup copy of the main Postfix configuration file before opening
this file:

cp /etc/postfix/main.cf /etc/postfix/main.cf.BAK && vi /etc/
postfix/main.cf

6. First of all, we will want Postfix to listen on all network interfaces instead of only
the local one. Activate or uncomment the following line (which means remove the
sign at the beginning of the line) that starts with inet_interfaces to read:

inet_interfaces = all

7. Now, some lines below, you will find the line that reads inet_interfaces =
localhost. Deactivate it or comment it out by putting a # sign at the start of the
line:

inet_interfaces = localhost

8. Next we need to set the local domain-name of the mail server. For example, if our
mailserver's FQDN is mailserver.centos7.home and this mailserver is
responsible for delivering mail for the whole private centos7.home domain, the
domain name will be (it's best to put it below the line that reads #mydomain =
domain.tld):

mydomain = centos7.home

9. With the intention that this server may become a domain-wide mail server, you
should now update the following line that starts with mydestination to read as
follows (for example, in the mydestination section, comment out the first
mydestination line and uncomment the second line):

mydestination = $myhostname, localhost.$mydomain, localhost,
$mydomain

10. Next, we need to specify the pathname of a mailbox file relative to a user's home
directory. To do this, scroll down and locate the line that begins with
home_mailbox and uncomment the following option (remove the # sign at the line's
beginning):

home_mailbox = Maildir/

11. Save and close the file. Now we want to open the correct Postfix server ports in
the firewall to allow the incoming SMTP connections to the server:

firewall-cmd --permanent --add-service=smtp && firewall-cmd --
reload

12. Next, restart the Postfix service as follows:

systemctl restart postfix

13. Afterwards, login to a different computer in the same network and install Swiss
Army Knife SMTP (swaks) to test out our Postfix server connection remotely. On
CentOS, type the following (it needs the EPEL repository to be installed in
advance):

https://technet24.ir

yum install swaks

14. Now, to test if you can connect to our new Postfix server using the standard SMTP
mail port 25, with our Postfix server running on the IP address 192.168.1.100,
we are sending a mail remotely to a Linux system user john which has a system
user account on our Postfix server:

swaks --server 192.168.1.100 --to john@centos7.home

15. Swaks creates output which should give us a hint if the mail transport has been
successful. For example (the output has been truncated):

-> This is a test mailing
<- 250 2.0.0 Ok: queued as D18EE52B38
 -> QUIT
<- 221 2.0.0 Bye

16. You can also test that the last command has been successful by logging in as user
john on the Postfix server, then checking and reading your local mailbox's inbox,
which should contain a file with the test mail sent from the swaks tool (the
filename will be different on your computer), as follows:

ls ~/Maildir/new
less
~/Maildir/new/14941584.Vfd02I1M246414.mailserver.centos7.home

How it works...
As we have seen, Postfix is installed and running on every CentOS 7 system by default
and in its basic configuration the mail server is listening on the localhost address for
incoming mails so you can already send out local mails between your server's local
Linux system users without the need to contact an external MTA. It is already running
because your system is already using it for a number of local services, such as the crond
daemon or for sending out warnings about security breaches (for example, running a
sudo command as a non-sudo user).

Before we can explain how this recipe works, we need to review some more basics
about the Postfix MTA system in general. The Postfix MTA service can receive
incoming e-mails from mail clients or other remote MTA servers using the SMTP
protocol. If an incoming e-mail is destinated for the MTA server's configured final
destination domain (for example, a mail sent with the recipient address
john@centos7.home is incoming to the centos7.home configured Postfix MTA
server), it will deliver the mail to a local mailbox installed on the server (either in the
filesystem or in a database system such as MariaDB). If the incoming mail is not
destinated for this server, it will be relayed (forwarded) to another MTA.

Remember that this is all a Postfix server is capable of doing and nothing more:
receiving incoming SMTP connections from mail clients or other MTAs, delivering mail
to local mailboxes on the server, and forwarding mail to other MTAs using SMTP.
Contrary to common belief, Postfix cannot transfer the mails from its local mailboxes to
the end users. Here we need another type of MTA called delivery agent, which uses
different mail protocols, such as IMAP or POP3.

In this recipe, we configured our Postfix server so that the other computers and servers
in the same network could also send mails to our Postfix server, which is blocked by
default (by default only the server itself can send mails). If an incoming e-mail, sent
from another computer in our network, has the same domain name in the recipient's e-
mail address as our Postfix server has its FQDN in, then it gets delivered to the
appropriate local mailbox defined by the recipient's part of the e-mail; all external e-
mail addresses get relayed to an external MTA.

So what did we learn from this experience?

We began our journey by testing if we could send out local mails to system users. Here
we logged in as our root user and sent a mail to a valid local system user using the

https://technet24.ir

sendmail program, which is included in the Postfix package. For every mail you send
using sendmail, you should be able to see some new lines appearing in the
/var/log/maillog file, which contains status information and other important logging
text for the mail. If you sent a message from root to the user john and the FQDN of
your server is centos7.home, new output lines appended to the log file should contain
amongst other things a from=<root@centos7.home>, a to=<john@centos7.home> and
if delivered successfully, a status=sent information. If no such logging information
shows up, check the status of the Postfix service.

Afterwards, we displayed the FQDN for our server. It is very important to set this up
correctly because this information will be used to authenticate the Postfix server when
connecting to other MTAs or mail clients. MTAs check the FQDN which has been
announced by their partner and some even refuse to connect if it is not provided or if it
differs from the real DNS domain name of the server. After our initial test, we then
started editing the main Postfix configuration file after we made a backup copy of it
first. As said before, by default only the users sitting on the same server the Postfix
service is running on can send mails between them as the server defaults to listening on
the loopback device only. So first we enabled Postfix to listen to all the available
network interfaces instead, using the inet_interfaces = all parameter. This ensured
that all our clients in our network could connect to this server. Next, we set the domain
name using the mydomain parameter we wanted to have for Postfix. In order for Postfix
to work in our network, the domain name defined here in this variable must be the exact
same value as the domain name for our server's network. Afterwards, we changed the
mydestination parameter by choosing the line which adds the $mydomain parameter
to the list of allowed domains. This will define all domains our Postfix mail server
considers as the final destination. If a Postfix mail server is configured as the final
destination for a domain, it will deliver the messages to the local mailboxes of the
recipient users, which can be found in /var/spool/mail/<username> (we will
change this location in the next step) instead of forwarding the mails to the other MTAs
(as we added $mydomain to the list of final destinations in our example, we will deliver
all mails sent to the centos7.home domain).

Here, you also need to remember that, by default, Postfix trusts all the other computers
(SMTP clients) in the same IP subnetwork as the Postfix server is in to send mails to
external e-mail addresses (relay mails to external MTAs) through our centralized server,
which could be too relaxed for your network policy. Since e-mail spam is an ongoing
problem on the Internet and we don't want to allow any user to abuse our mail server
from sending spam (which an open relay mail server does; it this takes anything from
any client and sends it to any mail server), we can further increase security by setting

mynetworks_style = host, which only trusts and allows the localhost to send mails
to external MTAs. Another way to reduce the spam risk might be to use the mynetworks
parameter where you can specify which network or IP address is allowed to connect to
our mail server and send e-mails through it; for example, mynetworks =
127.0.0.0/8, 192.168.1.0/24. To learn more about all the available Postfix
settings, refer to the Postfix configuration parameter manual using the command man 5
postconf. Afterwards, we changed where the local mail should be stored. By default,
all the incoming mails go to a centralized mailbox space located at
/var/spool/mail/<username>. In order for local users to receive their mail in their
own home directory, we used the Maildir parameter for the home_mailbox option,
which changes this system to deliver all the mails to /home/<username>/Maildir/
instead. Afterwards, we opened the standard SMTP protocol port in firewalld using the
SMPT service, which Postfix uses for communication with the other MTAs or mail
clients sending incoming mails through.

Postfix is already configured to start at boot, but to complete this part of the recipe we
restarted the Postfix service for it to accept the new configuration settings. At this stage,
the process of configuring Postfix was complete, but to test remote access we needed to
log into another computer in the same network. Here we installed a small command
line-based mail client called swaks, which can be used to test local or remote SMTP
server connections. We ran our test by sending a mail to our remote Postfix mail server
and supplied a recipient user and the IP address of our SMTP server. Having done this,
you should have received a test message and as a result you should be happy to know
that everything is working correctly. However, if you did happen to encounter any
errors, you should refer to the mailserver log file located at /var/log/maillog.

https://technet24.ir

There's more...
In this section of the recipe, we will change your e-mail sender address, encrypt SMTP
connections, and configure your BIND DNS server to include our new mailserver's
information.

Changing an e-mail's appearing domain name

If an MTA sends out an e-mail, Postfix automatically appends the hostname of the
sender's e-mail address by default, if not provided explicitly otherwise, which is a great
feature to track down which computer in your network sent the e-mail locally
(otherwise it would be hard to find the origin of a mail if you got multiple computers
sending out mails by a user called root). Often when sending messages to a remote
MTA, you don't want to have your local hostname appear in the e-mail.

Here it is better to have only the domain name alone. In order to change this, go to the
Postfix MTA you want to send mails from, open the Postfix configuration file
/etc/postfix/main.cf, and enable this feature by uncommenting (removing the # sign
at the beginning of the line) the following line to determine the origin (restart the Postfix
service afterwards):

myorigin = $mydomain

Using TLS- (SSL) encryption for SMTP communication

Even if you are running your own Postfix server in a small or private environment, you
should always be aware that normal SMTP traffic will be sent in clear text over the
Internet, making it possible that anyone could sniff the communication. TLS will allow
us to set up an encrypted SMTP connection between the server and the mail client,
meaning that the complete communication will be made enciphered and impossible to
be read by a third-party. In order to do this, if you have not already bought an official
SSL certificate or generated some self-signed certificates for your domain, start by
creating one here (read the Generating self-signed certificates recipe in Chapter 6,
Providing Security to learn more). First login as root on your server and go to the
standard certificate location: /etc/pki/tls/certs. Next, create a TLS/SSL keypair
consisting of the certificate and its embedded public key as well as the private key
(enter your Postfix's FQDN as the Common name, for example,
mailserver.centos7.home) to do this type make postfix-server.pem. Afterwards,
open the main Postfix configuration file /etc/postfix/main.cf with your favorite text
editor and put in the following lines at the end of the file:

smtpd_tls_cert_file = /etc/pki/tls/certs/postfix-server.pem
smtpd_tls_key_file = $smtpd_tls_cert_file
smtpd_tls_security_level = may
smtp_tls_security_level = may
smtp_tls_loglevel = 1
smtpd_tls_loglevel = 1

Then save and close this file. Note that setting smtpd_tls_security_level to may
will activate TLS encryption if available in the mail client program, otherwise it will
use an unencrypted connection. You should only set this value to encrypt (which will
enforce SSL/TLS encryption in any case) if you are absolutely sure that all your senders
to your mail server are supporting this feature. If any sender (external MTA or mail
client) does not support this feature, the connection will be refused. This means that e-
mails from such sources will not be delivered into your local mailboxes. We also
specified TLS encryption for outgoing SMTP connections from our Postfix server to
other MTAs where possible using smtp_tls_security_level = may. By setting both
the Postfix's client and server mode TLS log level to 1 we get more verbose output so
we can check if the TLS connections are working. Some very old mail clients use an
ancient port 465 for encrypting SMTP over SSL/TLS instead of the standard SMTP port
25.

In order to activate this feature, open /etc/postfix/master.cf and search, then
uncomment (remove # at the start of each line) the following lines, so they read:

smtps inet n - n - - smtpd
-o syslog_name=postfix/smtps
-o smtpd_tls_wrappermode=yes

Save and close the file, and then restart Postfix. Next, we need to open the SMTPS port
in the firewall to allow incoming connections to our server. Since no SMTPS firewalld
rule is available in CentOS 7, we will create our own service file first using the sed
utility:

sed 's/25/465/g' /usr/lib/firewalld/services/smtp.xml | sed 's/Mail
(SMTP)/Mail (SMTP) over SSL/g' > /etc/firewalld/services/smtps.xml
firewall-cmd --reload
firewall-cmd --permanent --add-service=smtps; firewall-cmd --reload

You should now be able to test if an SMTPS connection can be made by using our
swaks SMTP command line tool with the -tls parameter from a remote computer to
our Postfix server running on IP 192.168.1.100, for example swaks --server
192.168.1.100 --to john@centos7.home -tls. This command line will test if the

https://technet24.ir

SMTP server supports TLS encryption (STARTTLS) and exit with an error message if it
is not available for any reason. A working output would look as follows (truncated to
only show you the most important lines):

 -> STARTTLS
<- 220 2.0.0 Ready to start TLS
=== TLS started with cipher TLSv1.2:ECDHE-RSA-AES128-GCM-SHA256:128
 ~> This is a test mailing
<~ 250 2.0.0 Ok: queued as E36F652B38

You can then also recheck your TLS setup by going to the main mail log file on your
Postfix server and watching for the following line corresponding to your swaks test mail
from the last step (your output will be different):

Anonymous TLS connection established from unknown[192.168.1.22]:
TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-SHA384 (256/256 bits)

Configure BIND to use your new mailserver

After our domain-wide Postfix server has been installed and configured, we should now
announce this new mail service in our domain using a DNS server. Refer to Chapter 8,
Working with FTP for details on how to set up and configure a BIND server, and
especially read the section about the Mail eXchanger (MX) record if you haven't
already. Then add a new MX entry to your BIND forward and corresponding reverse
zone file. In your forward zone file, add the following lines for our Postfix server with
the IP 192.168.1.100:

IN MX 10 mailhost.centos7.home.
mailhost IN A 192.168.1.100

In your reverse zone file, you could add the following lines instead:

100 IN PTR mailhost.centos7.local.

Working with Postfix
In a previous recipe, we learned how to install and configure Postfix as our domain-
wide e-mail server. When it comes to working with e-mails, there are lots of different
tools and programs available for Linux and we already showed you how to send e-mails
through the sendmail program as well as the swaks utility. Here in this recipe, we will
show you how to work with one of the most commonly used mail utilities in Unix and
Linux, called mailx, which has some useful features missing in the sendmail package
for sending mails or reading your mailbox.

https://technet24.ir

How to do it...
We will begin this recipe by installing the mailx package on our server running our
domain-wide Postfix service, as it is not available on CentOS 7 by default.

1. Begin by logging in as root and typing the following command:

yum install mailx

2. The easiest way is to use mailx with its standard input mode, as follows:

echo "this is the mail body." | mail -s "subject"
john@centos7.home

3. You can also send mails from a text file. This is useful when calling the mailx
command from a shell script, using multiple recipients, or attaching some files to
the e-mail:

cat ~/.bashrc | mail -s "Content of roots bashrc file" john
echo "another mail body" | mail -s "body"
john,paul@example.com,chris
echo "this is the email body" | mailx -s "another testmail but
with attachment" -a "/path/to/file1" -a "/path/to/another/file"
john@gmail.com

Connecting mailx to a remote MTA

One big advantage over the sendmail program is that we can use mailx to directly
connect to and communicate with remote MTA mail servers. In order to test this feature,
log in to another Linux-based computer, which should be in the same network as our
Postfix server, install the mailx package, and send a mail through our Postfix server's IP
address 192.168.1.100 (we have already opened the incoming SMTP firewall port in
a previous recipe). In our example, we will send a local mail to the user john:

echo "This is the body" | mail -S smtp=192.168.1.100 -s "This is a
remote test" -v john@centos7.home

Reading your local mails from the mailbox

Not only can the mail x program send e-mail messages to any SMTP server, it also
provides a convenient mail reader interface for your local mailbox when started locally
on the Postfix server. If you run the mail program with -f specifying a user mailbox, the
program will start by showing you all the inbox e-mails. But remember that mailx can
only read local mailboxes when the program is started on the same server your

mailboxes are located at (if you want to use it to access your mailbox remotely you need
to install an MTA access agent such as Dovecot—see later—with POP3 or IMAP). For
example, login as Linux system user john on the Postfix server, and then, to open the
mail reader with your user's local mailbox, type: mailx -f ~/Maildir.

You will now be presented with a list of all the mail messages in your current inbox. If
you want to read a specific mail, you need to type in its number and press the Return
key. After reading it, you can type d followed by Return to delete it or r followed by
Return to reply to it. To go back to your current mail message overview screen, type z
followed by Return. If you have more than one screen of mail messages, type z- (z
minus) followed by Return to go back one page. Type x followed by Return to exit the
program. To learn more, refer to the mailx manual (man mailx).

https://technet24.ir

How it works...
In this recipe, we showed you how to install and use mailx, a program to send and read
your Internet mail. It is based on an old Unix mail program called Berkely mail and
provides the functionality of the POSIX mailx command. It should be installed on every
serious CentOS 7 server because it has some advantages over the sendmail program
and understands the protocols IMAP, POP3, and SMTP (If you need an even more user-
friendly mail reader and sender, you can check out mutt. Type yum install mutt to
install it. Then type man mutt to read its manual).

So what did we learn from this experience?

We started this recipe by installing the mailx package using the YUM package manager
on our Postfix server. It includes the mailx command line program which can be run
either with the command mail or mailx. Afterwards, we ran the program with the -s
parameter, which specifies an e-mail subject and; also you need a recipient e-mail
address as argument, either an external address or a local Linux system user name or
mail. Without anything else, mailx suspects it's running on the same server as the mail
server is on, so it implicitly sends the mail to the localhost MTA, which is Postfix in our
example. Also, in its most simple form, mailx starts in interactive mode, which lets you
type in the message body fields manually at the command line. This is good for quickly
writing a mail for testing, but in most cases you will use mailx by piping in content
from another source. Here we showed you how to do this by using the echo command to
write a string to the Standard Input (STDIN) of mailx, but you can also cat a file
content into it.

One often used example is to send some kind of file output or a log file content of a
failing command to an administrator user or system reports at a certain scheduled time
point using cron. Afterwards, we saw that we could also send mails to multiple
recipients by comma-separating their e-mail addresses, and showed you how to send
attachments along with your mail messages by using the -a option. In the next section,
we then showed you how to send mails to a remote SMTP mail server using the -S
option to set internal options (variable=value). This is a very useful feature if you
haven't specified your standard mail server on your DNS server or for testing a remote
mail server. Finally, in the last section we showed you how you could read your local
mailbox on your Postfix server using mailx. It has a convenient browsing functionality
to read, delete, and reply, and do advanced e-mail management for your local mailbox.
You do this by typing in commands into the mailx interactive sessions followed by

pressing the Return key. Remember, if you don't like this way of browsing your mails,
you can also always read or filter your mails in your user's ~/Maildir directory using
command-line tools, such as grep, less, and so on. For example, to search all new
mails for the case-intensive keyword PackPub.com, type grep -i packtpub
~/Maildir/new.

https://technet24.ir

Delivering the mail with Dovecot
In a previous recipe, you were shown how to configure Postfix as a domain-wide mail
transport agent. As we have learned in the first recipe of this chapter, Postfix only
understands the SMTP protocol and does a remarkable job to transport messages from
another MTA or mail user client to other remote mail servers or storing mails which are
destinated to itself into its local mailboxes. After storing or relaying mails, Postfix jobs
end. Postfix can only understand and speak the SMTP protocol and is not capable of
sending messages to anything other than MTAs. Any possible recipient user for a mail
message who wants to read his mails would now need to log in to the server running the
Postfix service using ssh and look into his local mailbox directory, or alternatively use
mailx locally to view his messages on a regular basis to see if there are any new mails.
This is highly inconvenient and nobody would use such a system. Instead, the users
choose to access and read their mail from their own workstations other than where our
Postfix server is located. Therefore, another group of MTAs has been developed,
sometimes are called access agents and which have the main functionality to
synchronize or transfer those local mailbox messages from the server running the Postfix
daemon over to external mailing programs where users can read them. These MTA
systems use different protocols than SMTP, namely POP3 or IMAP. One such MTA
program is Dovecot. Most professional server administrators would agree that Postfix
and Dovecot are perfect partners and it is the purpose of this recipe to learn how to
configure Postfix to work with Dovecot in order to provide a basic POP3/IMAP and a
POP3/IMAP over SSL (POP3S/IMAPS) service for our mailboxes to provide an
industry standard e-mail service for your users across the local network.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to download additional packages. It is also assumed
that you are working through this chapter recipe by recipe in the order that they appear
and for this reason it is expected that Postfix has been configured as a domain-wide
MTA.

Note

This recipe serves as a guide to setting up a basic POP3S/IMAPS service for trusted
users on a local network. It is not suitable for general Internet use without applying
additional security measures.

https://technet24.ir

How to do it...
Dovecot is not installed by default, and for this reason we must begin by installing the
necessary packages by following the given steps:

1. To start, log in as root and type in the following command:

yum install dovecot

2. Once installed, enable the Dovecot service at boot by typing:

systemctl enable dovecot

3. Now open the main Dovecot configuration file in your favorite text editor, after
creating a backup copy, by typing:

cp /etc/dovecot/dovecot.conf /etc/dovecot/dovecot.conf.BAK
vi /etc/dovecot/dovecot.conf

4. Begin by confirming the protocols we want to use by activating (removing the #
sign at the beginning of the line) and modifying the following line, so it reads:

protocols = pop3 imap imaps pop3s

5. Next, enable Dovecot to listen to all network interfaces instead of only the
loopback address. Search for the line #listen = *, ::, then modify it so it reads:

listen = *

6. Now save and close the file in the usual way before making a backup of the 10-
mail.conf file and afterwards opening it in your favorite text editor:

cp /etc/dovecot/conf.d/10-mail.conf /etc/dovecot/conf.d/10-
mail.conf.BAK
vi /etc/dovecot/conf.d/10-mail.conf

7. Scroll down and uncomment (remove # character) the following line, so it reads:

mail_location = maildir:~/Maildir

8. Again, save and close the file in the usual way before creating a backup copy and
then opening the following file in your favorite text editor:

cp /etc/dovecot/conf.d/20-pop3.conf /etc/dovecot/conf.d/20-
pop3.conf.BAK
vi /etc/dovecot/conf.d/20-pop3.conf

9. Start by uncommenting the following line:

pop3_uidl_format = %08Xu%08Xv

10. Now scroll down and amend the following line:

pop3_client_workarounds = outlook-no-nuls oe-ns-eoh

11. Save and close the file in the usual way. Now we will allow plain text logins. To
do this, make a backup before opening the following file:

cp /etc/dovecot/conf.d/10-auth.conf /etc/dovecot/conf.d/10-
auth.conf.BAK
vi /etc/dovecot/conf.d/10-auth.conf

12. Change the line #disable_plaintext_auth = yes to state:

disable_plaintext_auth = no

13. Save and close the file. In our final configuration setting, we will tell Dovecot to
use our self-signed server certificate. Just use your Postfix certificate from another
recipe in this chapter or create a new one (otherwise skip this step):

cd /etc/pki/tls/certs; make postfix-server.pem

14. Open Dovecot's standard SSL config file after making a backup of the file:

cp /etc/dovecot/conf.d/10-ssl.conf /etc/dovecot/conf.d/10-
ssl.conf.BAK
vi /etc/dovecot/conf.d/10-ssl.conf

15. Now change the following line (ssl = required) to read:

ssl = yes

16. Now change the following two lines to point to your server's own certificate path:

ssl_cert = < /etc/pki/tls/certs/postfix-server.pem
ssl_key = </etc/pki/tls/certs/postfix-server.pem

17. Save and close this file. Next, enable IMAP, IMAPS, POP3, and POP3S ports in
our firewall to allow incoming connections on the corresponding ports. For POP3
and IMAP, we need to specify our own firewalld service files, since they are not
available in CentOS 7 by default:

sed 's/995/110/g' /usr/lib/firewalld/services/pop3s.xml | sed 's/
over SSL//g' > /etc/firewalld/services/pop3.xml
sed 's/993/143/g' /usr/lib/firewalld/services/imaps.xml | sed 's/
over SSL//g' > /etc/firewalld/services/imap.xml
firewall-cmd --reload
for s in pop3 imap pop3s imaps; do firewall-cmd --permanent --

https://technet24.ir

add-service=$s; done;firewall-cmd --reload

18. Now save and close the file before starting the Dovecot service:

systemctl start dovecot

19. Finally, to test our new POP3/SMTP network service, just login on another
computer in the same network and run the following commands to use mailx to
access the local mailboxes on the remote Postfix server, which is provided by
Dovecot with the different access agent protocols. In our example, we want to
access the local mailbox of the system user john on our Postfix server with the IP
192.168.1.100 (to login to john's account, you need his Linux user password)
remotely:

mailx -f pop3://john@192.168.1.100
mailx -f imap://john@192.168.1.100

20. Next, to test the secure connections, use the following commands and type yes to
confirm that the certificate is self-signed and not trusted:

mailx -v -S nss-config-dir=/etc/pki/nssdb -f
pop3s://john@192.168.1.100
mailx -v -S nss-config-dir=/etc/pki/nssdb -f
imaps://john@192.168.1.100

21. For all four commands, you should see the normal mailx inbox view of your
mailbox with all your mail messages of user john as you would run the mailx
command locally on the Postfix server to read local mails.

How it works...
Having successfully completed this recipe, you have just created a basic POP3/SMTP
service, (with or without SSL encryption) for all the valid server users in your network,
which will deliver local mails from the Postfix server to the client's e-mail program.
Every local system user can directly authenticate and connect to the mail server and
fetch their mail remotely. Of course, there is still much more that can be done to enhance
the service, but you can now enable all local system account holders to configure their
favorite e-mail desktop software to send and receive e-mail messages using your server.

Note

POP3 downloads the mails from the server on a local machine and deletes them
afterwards, whereas IMAP synchronizes your mails with your mail server without
deleting them.

So what did we learn from this experience?

We started the recipe by installing Dovecot. Having done this, we then enabled Dovecot
to run at boot before proceeding to make a few brief changes to a series of configuration
files. Starting with the need to determine which protocol will be used in the Dovecot
configuration file at /etc/dovecot/dovecot.cf here we will use: IMAP, POP3,
IMAPS, and POP3S. As with most other essential networking services, after installation
they only listen on the loopback device, so we enabled Dovecot to listen to all network
interfaces installed in the server. In the 10-mail.conf file we then confirmed the
mailbox directory location for Dovecot (with the mail_location directive) as the
location Postfix will put them into on receiving mails so Dovecot can find them here and
pick them up. Following this, we then opened the POP3 protocol in 20-pop3.conf by
adding a fix relating to various e-mail clients (for example, for the Outlook client) using
the pop3_uidl_format and pop3_client_workarounds directives. Finally, we
enabled plain text authorization by making several changes to
/etc/dovecot/conf.d/10-auth.conf. Remember that using plain text authorization
with POP3 or IMAP without SSL encryption is considered insecure but because we
were concentrating on a local area network (for a group of trusted server users) we
should not necessarily see this as a risk. Afterwards, we enabled POP3 and IMAP over
SSL (POP3S and IMAPS) by pointing the ssl directives in the 10-ssl.conf file to
some existing self-signed server certificates. Here we changed ssl = required to
ssl=yes to not force the client connecting to the Dovecot service to use SSL encryption,
as we do want to give the user the choice to enable encrypted authentication if he likes

https://technet24.ir

to but not make it mandatory for older clients. Afterwards, to make our Dovecot service
available from the other computers in our network, we had to enable the four ports to
allow POP3, IMAP, POP3S, and IMAPS, 993, 995, 110, 143, by using the predefined
firewalld service files and creating the missing ones for IMAP and POP3 ourselves.
Later, we started the Dovecot service and tested our new POP3/IMAP server using the
mailx command remotely. By supplying an -f file parameter, we were able to specify
our protocol and location. For using SSL connections, we needed to supply an
additional nss-config-dir option pointing to our local Network Security Services
database where certificates are stored in CentOS 7.

Remember, if you happen to encounter any errors, you should always refer to the log file
located at /var/log/maillog. Using plain text authorization should not be used in a
real corporate environment and POP3/IMAP over SSL should be preferred.

There's more...
In the main recipe, you were shown how to install Dovecot in order to enable trusted
local system users with system accounts to send and receive e-mails. These users will
be able to use their existing username as the basis of their e-mail address, but by making
a few enhancements you can quickly enable aliases, which is a way to define alternative
e-mail addresses for existing users.

To start building a list of user aliases, you should begin by opening the following file in
your favorite text editor:

vi /etc/aliases

Now add your new identities to the end of the file, where <username> will be the name
of the actual system account:

#users aliases for mail
newusernamea: <username>
newusernameb: <username>

For example, if you have a user called john who currently (only) accepts e-mails at
john@centos7.home, but you want to create a new alias for john called johnwayne@
centos7.home, you will write:

johnwayne: john

Repeat this action for all the aliases, but when you have finished remember to save and
close the file in the usual way before running the following command: newaliases.

Setting up e-mail software

There are a vast number of e-mail clients on the market and by now you will want to
start setting up your local users to be able to send and receive e-mails. This isn't
complicated by any means, but in order to have a good starting point you will want to
consider the following principles. The format of the e-mail address will be
system_username@domain-name.home.

The incoming POP3 settings will be similar to the following:

mailserver.centos7.home, Port 110
Username: system_username
Connection Security: None

https://technet24.ir

Authentication: Password/None

For POP3S, just change the port to 995 and use Connection Security: SSL/TLS. For
IMAP, just change the port to 143, and for IMAPS use port 993 and Connection
Security: SSL/TLS.

The outgoing SMTP settings will be similar to the following:

mailserver.centos7.home, Port 25
Username: system_username
Connection Security: None
Authentication: None

Using Fetchmail
So far in this chapter, we have shown you two different forms of MTA. First we
introduced you to the Postfix MTA, which is a transport agent used for routing e-mails
from a mail client to or between mail servers and delivering them to the local mailboxes
on the mail server using the SMTP protocol. Then we showed you another type of MTA
which sometimes called an access agent and which the Dovecot program can be used
for. This delivers mails from the local Postfix mailboxes to any remote mail client
programs using the POP3 or IMAP protocol. Now we will introduce you to a third type
of MTA, which can be termed a retrieval agent, and explain what we will use the
program Fetchmail for. Nowadays, almost everybody has more than one e-mail account,
from one or more different mail providers, which can be hard to maintain if you need to
login to all those different webmail sites or use different accounts in your mail program.
This is where Fetchmail comes into play. It is a program, running on the same server as
your domain-wide Postfix mail server and which can retrieve all your different e-mails
from all your different mail providers and pass them into the local user mailboxes of
your Postfix MTA. Once they are stored in their appropriate place, users can access all
these mails in the usual way provided by the access agent Dovecot over POP3 or IMAP.
Here in this recipe we will show you how to install and integrate Fetchmail into your
server running the Postfix MTA.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to download additional packages. It is assumed that
you are working through this chapter recipe by recipe in the order that they appear and
for this reason it is expected that Postfix has been configured as a domain-wide MTA
and Dovecot has been installed to provide a POP3/IMAP mail access service. In order
to test Fetchmail in this recipe, we also need to have registered some external e-mail
addresses: you need the name of the external e-mail server address and the port of your
e-mail provider, as well as your user login credentials at hand. Often you can find this
information from your mail provider's Frequently Asked Questions (FAQ) section on
their webpage. Also, for some e-mail addresses you need to first enable POP3 or IMAP
in your e-mail settings before you can use Fetchmail.

How to do it...
Fetchmail is not installed by default and for this reason we must begin by installing the
necessary packages. Perform the following steps:

1. To begin, log in your mail server running your Postfix server and type:

yum install fetchmail

2. Once installed, we will log into a system's user account for which we want to
enable Fetchmail to download external mail from an external mail provider into
his local mailbox, in our example it will be the system user john: su - john.
Now let's configure Fetchmail with an external e-mail address. If your e-mail
provider is called mailhost.com and it runs a POP3 server at
pop.mailhost.com and IMAP on imap.mailhost.com with the username
<user-name>, here (please substitute your own values) is an example command
line to test connecting and fetching mails from this provider:

fetchmail pop.mailhost.com -p pop3 -u <user-name> -k -v

3. If you want to use IMAP with the same provider instead:

fetchmail imap.mailhost.com -p IMAP -u <user-name> -v

4. If the Fetchmail command was successful, all new messages will be downloaded
from the server into your local mailbox in your user account.

https://technet24.ir

How it works...
Here in this recipe, we showed you how to install and test Fetchmail, which provides
automated mail retrieval capabilities for any user account having a local mailbox on our
Postfix server. As a result, for a client connecting to the mail server using POP3 or
IMAP, the mails fetched this way look like normal incoming e-mails. Fetchmail is often
used to combine and bundle all your different mail accounts into one single account, but
you can also use it if your mail provider does not have good virus or spam filter. Here
you download the mails from your host's e-mail server, then process the mails using
tools such as SpamAssassin or ClamAV before sending mails to your clients.

So what did we learn from this experience?

We began this recipe by installing the YUM package for Fetchmail. As we wanted to set
up Fetchmail for a system user's mailbox called john, next we logged in as this user.
Afterwards, we tested the Fetchmail program by running a simple command line to fetch
mail from a single mail provider. As said before, for a successful login to your external
mail provider, you need to know the exact login information (server address, port,
username, and password, as well as the type of protocol) of the server before you can
use Fetchmail.

Remember that, while some e-mail providers let the user decide if he wants to connect
securely using SSL or not, some hosters such as gmail.com only allow secure
connections. This means that the example command shown here in this recipe is likely to
fail on every major e-mail provider if they don't support POP3/IMAP access without
SSL connections. Proceed to the next section in order to learn how to use Fetchmail
with SSL POP3/IMAP encryption.

You should always prefer SSL encryption if your mail provider offers both. Also, some
providers such as gmail.com only let the user use their services via webmail and
disable POP3/IMAP service features by default; you need to enable them in your
account's settings on your provider's website (see later).

We specified with the -p parameter which mail protocol to use with the fetchmail
command. With the -u parameter, we specified the user identification to be used when
logging in to the mailserver, which is completely dependent on our e-mail provider. For
POP3, we applied the -k flag to ensure that the e-mails only get fetched from the server
but never deleted (which is the default when using the POP3 protocol). Finally, we used
-v to make the output more verbose and give us more information for our simple test. If

http://gmail.com
http://gmail.com

your e-mail provider supports SSL, you also need to add a -ssl flag to the Fetchmail
command as well as the root certificate of the mail server (see the next section for more
information). If you run the previous command, Fetchmail will immediately start asking
the mail server for any mail in the inbox on the server and download anything to your
user's local mailbox.

https://technet24.ir

There's more...
In this section, we will show you how to configure Fetchmail to download all your e-
mails from some real-life mail providers using POP3S, IMAPS, and the POP3 and
IMAP protocols to your local mailbox on the Postfix server using a configuration file.
Finally, we will show you how to automate the Fetchmail process.

Configuring Fetchmail with gmail.com and outlook.com e-mail
accounts

Here we will configure the different external mail accounts which Fetchmail will
download from: the popular gmail.com and outlook.com e-mail providers and a
hypothetical one at my-email-server.com.

As we learned in the main recipe that Fetchmail processes configuration options on the
command line by default, this should not be your preferred way of using Fetchmail to
download your mail from different mail accounts automatically. Normally Fetchmail
should be running as a service in daemon mode in the background at boot time or with a
cron job and polls a list of mail servers defined in a special configuration file at
specific time intervals. With this you can conveniently configure multiple mail servers
and a long list of other options.

Note

At the time of writing this book, for gmail.com to work with Fetchmail you need to login
to the gmail.com website with your user account and first enable IMAP by going to your
accounts settings in Forwarding and POP/IMAP. Also, enable Allow less secure apps
under Sign-in & security in My account. For outlook.com, login to your mail account
on the webpage, then click on options, again click on options, then click on Connect
devices and apps with POP, and then click on enable POP.

Both outlook.com and gmail.com use secure POP3S and IMAPS protocols, so you need
to download and install the root certificates they are signing their SSL certificates with
on your Fetchmail server first in order to be able to use their services. Here we can
install the Mozilla CA certification bundle, which has been compiled by the Mozilla
foundation and includes the most commonly used root server certificates used by all
major websites and services, such as those used by our mail providers. For gmail.com
we need the Equifax Secure Certificate Authority root certificate and for outlook.com
we need the root server certificate from Globalsign. Fetchmail needs these root

http://gmail.com
http://outlook.com
http://gmail.com
http://gmail.com
http://outlook.com
http://outlook.com
http://gmail.com
http://gmail.com
http://outlook.com

certificates to verify the validity of any other SSL certificate downloaded from the e-
mail server. Login as root on your Postfix server and install the following package:

yum install ca-certificates

Afterwards, login as a Linux system user, for example, john, who we will create a new
Fetchmail configuration file for, and who already has a local Postfix mailbox directory
on our server located in his home directory under ~/Maildir. Now before configuring
any account in the Fetchmail configuration file, you should always first test if the
connection and authentication to the specific account are working with the Fetchmail
command line, as shown in the previous recipe. For testing our different mail providers'
accounts, we need three different command line calls. For testing if your provider is
using SSL encryption, you need the –ssl flag; a typical output for a mail provider who
is not allowing non-SSL connections could be:

Fetchmail: SSL connection failed.
Fetchmail: socket error while fetching from <userid>@<mailserver>
Fetchmail: Query status=2 (SOCKET)

If your google and outlook username is johndoe at both mail providers for testing
google with the IMAPS protocol try (enter your e-mail user's password when
prompted):

fetchmail imap.gmail.com -p IMAP --ssl -u johndoe@gmail.com -k -v

If the login was successful, the output should be similar to (truncated):

Fetchmail: IMAP< A0002 OK johndoe@gmail.com authenticated (Success)
9 messages (2 seen) for johndoe at imap.gmail.com.
Fetchmail: IMAP> A0005 FETCH 1:9 RFC822.SIZE

For testing outlook.com with POP3S, use:

fetchmail pop-mail.outlook.com -p POP3 --ssl -u johndoe@outlook.com -
k -v

On success, the output should be similar to (it has been truncated):

Fetchmail: POP3> USER johndoe@outlook.com
Fetchmail: POP3< +OK password required
Fetchmail: POP3< +OK mailbox has 1 messages

For our third hypothetical e-mail account at my-email-server.com, we will use POP3
or IMAP without SSL so test it using our account:

http://outlook.com
https://technet24.ir

fetchmail pop3.my-email-server.com -p POP3 -u johndoe -k -v
fetchmail imap.my-email-server.com -p IMAP -u johndoe -v

You should also check if all the fetched mails from your external providers have been
downloaded correctly. View your system user's local mailbox using the mailx command
(mailx -f ~/Maildir). After we successfully verify that Fetchmail is able to connect
to the servers and fetch some mails, we now can proceed to create a local Fetchmail
configuration file in our system user's home directory in order to automate this process
and configure multiple mail addresses. Start by opening a new empty file using vi
~/.fetchmailrc. Remember that all the commands which can be put on the command
line can also be used with slightly different names in the configuration file (and much
more). Now put in the following content (replace john with your actual Linux system
user, johndoe with your e-mail user account name, and secretpass with your actual
mail password for this account):

set postmaster "john"
set logfile fetchmail.log
poll imap.gmail.com with proto IMAP
user 'johndoe@gmail.com' there with password 'secretpass' is john
here
ssl
fetchall
poll pop-mail.outlook.com with proto POP3
user 'johndoe@outlook.com' there with password 'secretpass' is john
here
ssl
fetchall
poll pop3.my-email-server.com with proto POP3
user 'johndoe@my-email-server.com' there with password 'secretpass'
is john here
fetchall

Save and close this file. In this file, we used the following important commands:

postmaster: Defines the local Linux user which will receive all the warning or
error mails if Fetchmail runs into problems.
logfile: Defines a filename for a log file, which can be very helpful for us to
supervise and debug Fetchmail output when it's running continuously over a long
period of time in the background.
poll section: Specifies downloading mails from a specific mail provider. For
every mail account, you will define one such poll section. As you can see here, the
syntax is very similar to the one used on the command line when we tested the
single connections. With proto we define the mail protocol, user is the login user

for the mail account, password is the login password of your account, and with the
is <username> here parameter you specify which local system user account this
mail account is tied to. For SSL connections you need the ssl flag, and we
specified the fetchall parameter to make sure we also download all the e-mail
messages flagged as read by the e-mail provider as otherwise Fetchmail would
not download e-mails that have already been read.

Next change the permissions of the .fetchmailrc file because it contains passwords
and should therefore not be read by anyone other than our own user:

chmod 600 ~/.fetchmailrc

Finally, we execute Fetchmail with the settings given in our configuration file. For
testing, we will use a very verbose parameter here: fetchmail -vvvv. All the new
mails from all your different e-mail providers should now be fetched, so afterwards you
should go through the output and see if every server was ready and could be polled just
as the single tests we did on the command line tests earlier. All the new mails should
have been downloaded to the local mailbox, so in order to read your local mails you
can use the mailx command as usual, like: mail -f ~/Maildir.

Automating Fetchmail

As just said, we can now manually start the polling process every time we want by just
typing in fetchmail on the command line. This will poll and fetch all new mails from
the mail servers specified in our new configuration file and then after processing each
entry once it will exit the program. Now what's still missing is a mechanism to
continuously query our mail servers at a specific interval updating our mailbox
whenever new mails can be fetched. Here you can use two approaches. Either run the
fetchmail command as a cron job or as an alternative you can start Fetchmail in
daemon mode (use the parameter set daemon in your .fetchmailrc config file to
activate it.) and put it in the background. This way Fetchmail will run constantly and
wake up at a given time point and start the polling until everything finishes processing
and then go back to sleep until the next interval has been reached.

As both methods are basically the same, here we will show you how to run Fetchmail as
a cron job, which is much easier to set up because we don't have to create some custom
systemd service files (currently in CentOS 7 there is no fetchmail systemd service
available out-of-the box). For every system user (for example, john) who has a
fetchmail configuration file, to start the e-mail server polling process every 10
minutes type in the following command once to register the cron job:

https://technet24.ir

crontab -l | { cat; echo "*/10 * * * * /usr/bin/fetchmail &>
/dev/null
"; } | crontab -

Note

Do not set the Fetchmail polling cycle shorter than every 5 minutes; otherwise, some
mail providers may block or ban you, as it just overloads their systems.

Chapter 12. Providing Web Services
In this chapter, we will cover the following:

Installing Apache and serving web pages
Enabling system users and building publishing directories
Implementing name-based hosting
Implementing CGI with Perl and Ruby
Installing, configuring, and testing PHP
Securing Apache
Setting up HTTPS with Secure Sockets Layer (SSL)

https://technet24.ir

Introduction
This chapter is a collection of recipes that provides the necessary steps to serve web
pages. From installing a web server to delivering a dynamic page through SSL, this
chapter provides the starting point required to implement an industry standard hosting
solution anywhere and at any time.

Installing Apache and serving web pages
In this recipe, we will learn how to install and configure the Apache web server to
enable the serving of static web pages. Apache is one of the world's most popular open
source web servers. It runs as the backend for over half of all the Internet's web sites
and can be used to serve both static and dynamic web pages. Commonly referred to as
httpd, it supports an extensive range of features. It is the purpose of this recipe to show
you how easily it can be installed using the YUM package manager so that you can
maintain your server with the latest security updates. Apache 2.4 is available on
CentOS 7.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to download additional packages. It is expected that
your server will be using a static IP address and a hostname.

How to do it...
Apache is not installed by default and for this reason we will begin by installing the
necessary packages using the YUM package manager.

1. To begin, log in as root and type the following command:

yum install httpd

2. Create a home page by typing:

vi /var/www/html/index.html

3. Now add the required HTML. You can use the following code as a starting point
but it is expected that you will want to modify it to suit your own needs:

<!DOCTYPE html>
<html lang="en">
<head><title>Welcome to my new web server</title></head>
<body><h1>Welcome to my new web server</h1>
<p>Lorem ipsum dolor sit amet, adipiscing elit.</p></body>
</html>

4. You can now remove the Apache 2 test page with the following command:

rm -f /etc/httpd/conf.d/welcome.conf

5. Having completed these steps, we will now consider the need to configure the
httpd service for basic usage. To do this, open the httpd configuration file in
your favorite text editor by typing (after you have made a backup of the file):

cp /etc/httpd/conf/httpd.conf /etc/httpd/conf/httpd.conf.BAK
vi /etc/httpd/conf/httpd.conf

6. Now scroll down to find the line ServerAdmin root@localhost. The traditional
approach to setting this value is based on the use of the webmaster identity, so
simply modify the e-mail address to reflect something more relevant to your own
needs. For example, if your server's domain name was www.centos7.home then
your entry will look similar to this:

ServerAdmin webmaster@centos7.home

7. Now scroll down a few more lines to find the ServerName directive as follows:
#ServerName www.example.com:80. Uncomment this line (which means remove
the leading # sign at its beginning) and replace the value www.example.com with
something more appropriate to your own needs. For example, if your server's

https://technet24.ir

domain name was www.centos7.home then your entry will look as follows:

ServerName www.centos7.home:80

8. Next, we will expand the DirectoryIndex directive a bit more. Find the line
DirectoryIndex index.html, which is part of the <IfModule dir_module>
block, then change it to:

DirectoryIndex index.html index.htm

9. Save and close the file, and then type the following command to test the config file:

apachectl configtest

10. Next, let's configure our web server's firewall by allowing incoming http
connections (this defaults to port 80) to the server:

firewall-cmd --permanent --add-service http && firewall-cmd --
reload

11. Now proceed to set the httpd service to start at boot and start the service:

systemctl enable httpd && systemctl start httpd

12. You can now test httpd from any computer in the same network as your web
server (both systems should be able to see and ping each other), pointing your
browser at the following URL by replacing XXX.XXX.XXX.XXX with the IP address
of your server in order to see our own custom Apache test page we created:

http://XXX.XXX.XXX.XXX.

13. Alternatively, if you don't have a web browser, you can check if Apache is up and
running using curl by fetching our test page on any computer in your network:

curl http://XXX.XXX.XXX

How it works...
Apache is a software package that enables you to publish and serve web pages, and is
more commonly known as httpd, Apache2 or simply Apache. It was the purpose of this
recipe to show you how easily CentOS enables you to get started with your very first
website.

So what did we learn from this experience?

We began the recipe by installing Apache via the YUM package manager and the
package named httpd. Having done this, we learned that on CentOS 7 the default
location to serve static HTML is /var/www/html so our first task was to create a
suitable home page, which we put in /var/www/html/index.html. Here we used a
basic HTML template to get you started and it is expected that you would like to
customize the look and feel of this page yourself. Following this, we then removed the
default Apache 2 welcome page found in /etc/httpd/conf.d/welcome.conf.
Following this, the next stage was to open the httpd.conf configuration file in our
favorite text editor after making a backup of it so we could revert our changes if any
problems occurred. First we defined the server's e-mail address and the server name,
which often appear in the error messages on the server-generated web pages; for this
reason it should reflect your domain name. Next, we adjusted the DirectoryIndex
directive, which defines which files will be sent first to the browser if a directory is
requested. Often people request not a specific web page but a directory instead. For
example, if you browse to www.example.com, you request a directory, while
www.example.com/welcome.html is a specific web page. By default Apache sends the
index.html in the requested directory but we expanded this since a lot of websites use
the .htm extension instead. Finally, we saved and closed the httpd configuration file in
the usual way before proceeding to check if the Apache configuration file contained any
errors by using the apachectl configtest command. This should print out a Syntax
OK message so we could enable the httpd service to start at boot time. We had to open
the standard HTTP port 80 in our firewalld to allow incoming HTTP requests to the
server, and finally we then started the httpd service. Remember, you can also always
reload Apache's configuration file if it has been changed without fully restarting the
service, by using: systemctl reload httpd. Having completed these steps, it was
simply a matter of opening your browser from another computer in the same network
and electing a method of viewing our new Apache start page. You can use your server's
IP address (for example, http://192.168.1.100), while those with hostname support
can type the hostname (for example, http://www.centos7.home) instead. Apache's

https://technet24.ir

access and error log files can be found in /var/log/httpd. To get a live view of who
is currently accessing your web server, open /var/log/httpd/access_log; to see all
the errors, type /var/log/httpd/error_log.

Apache is a big subject and we cannot cover every nuance, but over the coming recipes
we will continue to expose additional functionalities that will enable you to build a web
server of choice.

Enabling system users and building
publishing directories
In this recipe, we will learn how Apache provides you with the option to allow your
system users to host web pages within their home directories. This approach has been
used by ISPs since the outset of web hosting and in many respects it continues to
flourish due to its ability to avoid the more complex method of virtual hosting. In the
previous recipe you were shown how to install the Apache web server, and with the
desire to provide hosting facilities for system users, it is the purpose of this recipe to
show you how this can be achieved in CentOS 7.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice. It
is expected that your server will be using a static IP address that supports a hostname or
domain name and that the Apache web server is already installed and currently running.
Also, at least one system user account should be available on the server.

How to do it...
To provide the functionality offered by this recipe, no additional packages are required
but we will need to make some modifications to the Apache configuration file.

1. To begin, log in as root and open the Apache userdir configuration file in your
favorite text editor by typing the following command, after you have created a
backup copy of it first:

cp /etc/httpd/conf.d/userdir.conf
/etc/httpd/conf.d/userdir.conf.BAK
vi /etc/httpd/conf.d/userdir.conf

2. In the file, locate the directive that reads as UserDir disabled. Change it to the
following:

UserDir public_html

3. Now scroll down to the <Directory "/home/*/public_html"> section and
replace the existing block with the one here:

<Directory /home/*/public_html>
 AllowOverride All
 Options Indexes FollowSymLinks
 Require all granted
</Directory>

4. Save and exit the file. Now log in as any system user to work with your publishing
web directory (su - <username>), and then create a web publishing web folder
in your home directory and a new home page for your user:

mkdir ~/public_html && vi ~/public_html/index.html

5. Now add the required HTML. You can use the following code as a starting point
but it is expected that you will modify it to suit your own needs:

<!DOCTYPE html>
<html lang="en">
<head><title>Welcome to my web folder's home page</title></head>
<body><h1>Welcome to my personal home page</h1></body>
</html>

6. Now modify the permissions of the Linux system user's <username> home folders
by typing:

chmod 711 /home/<username>

https://technet24.ir

7. Set the read/write permissions for public_html 755 so Apache can execute it
later:

chmod 755 ~/public_html -R

8. Now log in as root again using su - root to configure SELinux appropriately for
the use of http home directories:

setsebool -P httpd_enable_homedirs true

9. As root, change the SELinux security context for your user's web public directory
(this needs policycoreutils-python package to be installed) with the username
<user>:

semanage fcontext -a -t httpd_user_content_t
/home/<user>/public_html
restorecon -Rv /home/<user>/public_html

10. To complete this recipe, simply reload the httpd service configuration:

apachectl configtest && systemctl reload httpd

11. You can now test your setup by browsing to (substitute <username> appropriately):
http://<SERVER IP ADDRESS>/~<username> in any browser.

How it works...
In this recipe, we learned how easy it is to host your own peers by enabling user
directories on the Apache web server.

So what did we learn from this experience?

We began the recipe by making a few minor configuration changes to Apache's
userdir.conf in order to set up the user directory support. We activated the user
directories by adjusting the UserDir directive from disabled to pointing to the name of
the HTML web directory within each user's home directory, which will contain all our
user's web content, and call this public_html (you can change this directory name to
anything you like but public_html is the de facto standard for naming it). Then we
proceeded to modify the <Directory /home/*/public_html> tag. This directive
applies all its enclosed options to the parts of the filesystem defined in the beginning tag
/home/*/public_html. In our example, the following options are enabled for this
directory: Indexes are used whenever a directory does not have index.html. This
will show the file and folder content of the directory as HTML. As we will see in the
recipe Securing Apache, this should be avoided for your web root whereas, for serving
user directories, this can be a good choice if you just want to make your home folder
accessible to your peers so they can quickly share some files (if you have any security
concerns, remove this option). The FollowSymLinks option allows symbolic links (man
ln) from this public_html directory to any other directory or file in the filesystem.
Again, avoid this in your web root folder but for home directories it can be useful if you
need to make files or folders accessible within the public_html folder without the
need to copy them into it (user directories often have disk quotas). Next we configured
access control to the public_html folder. We did so by setting Require all granted,
which tells Apache that in this public_html folder anyone from everywhere can access
the contents through the HTTP protocol. If you want to restrict access to your
public_html folder then you can replace all granted with different options. To
allow access based on a hostname use, for example Require host example.com.
With the ip parameter we can restrict the public_html folder to an internally available
network only, for example Require ip 192.168.1.0/24. This is particularly useful if
your web server has multiple network interfaces and one IP address is used for
connecting to the public Internet and another one for your internal private network. You
can add multiple Require lines within a Directory block. Remember to always set at
least Require local which allows local access.

https://technet24.ir

Having saved our work, we then began to make various changes to the home directories.
First we created the actual public_html folder within our user's home directory, which
will be the actual personal web publishing folder later. Next, we changed its
permissions to 755 which means that our user can do everything in the folder but all the
other users and groups can only read and execute its content (and change into this
folder). This type of permission is needed because all the files in the public_html
folder will be accessed by a user named apache with the group apache if someone
requests its content via the Apache web server later. If no read or execute permissions
are set for the other users flag (man chmod), we will get an Access denied message
in our browser. This will also be the case if we do not change the permissions for the
parent /home/<username> directory in advance because parent directory permissions
can affect its child subfolder permissions. A normal user home directory in CentOS
Linux has the permissions 700 which means that the home directory's owner can do
anything but everyone else is completely locked out of the home folder and its content.

As written before, the Apache user needs access to the subfolder public_html so we
have to change the permissions to 711 for the home folder so that everyone else can at
least change into the directory (and then access the subfolder public_html as well
since this is set to be read/write accessible). Next, we set the security context of our
new web folder for SELinux. On systems running SELinux, it's mandatory to set all the
Apache web publishing folders to the httpd_user_content_t SELinux label (along
with their contents) in order to make them available to Apache. Also, we made sure to
set the correct SELinux Boolean to enable Apache home directories (which is enabled
by default): httpd_enable_homedirs is true. Read Chapter 14, Working with
SELinux to learn more about SELinux.

You should be aware that the previous process of managing the home directories should
be repeated for each user. You will not have to restart Apache every time you enable a
new system user but, having completed these steps for the first time, it will be simply a
matter of reloading the configuration of the httpd service to reflect the initial changes
made to the configuration file. From this point on, your local system users can now
publish web pages using a unique URL based on their username.

Implementing name-based hosting
Normally, if you install Apache as shown in the previous recipe, you can host exactly
one website that is accessible as the server's IP address or the domain name Apache is
running on, for example, http://192.168.1.100 or http://www.centos7.home.
Such a system is very wasteful for your server resources as you would need individual
servers with Apache installed for every single domain you want to host. Name-based
or virtual hosting is used to host multiple domains on the same Apache web server. If a
number of different domain names have already been assigned to your Apache web
server's IP address using a DNS server or through a local /etc/hosts file, virtual hosts
can be configured for every available domain name to direct the user to a specific
directory on the Apache server containing the site's information. Any modern webspace
provider uses this kind of virtual hosting to divide one web server's space into multiple
sites. There is no limit to this system and to the number of sites to create from it as long
as your web server can handle its traffic. In this recipe, we will learn how to configure
name-based virtual hosting on the Apache web server.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice. It
is expected that your server will be using a static IP address and Apache is installed and
currently running, and that you have enabled system users publishing directories in an
earlier recipe. Virtual host names cannot work without previously setting up one or
more domains or subdomains outside Apache.

For testing, you could set up your /etc/hosts (see the Setting your hostname and
resolving the network recipe in Chapter 2, Configuring the System) or configure some A
or CNAMES in your BIND DNS server (refer to Chapter 9, Working with Domains) to
use different domain names or subdomains, such as www.centos7.home, all pointing to
your Apache web server's IP address.

Note

A common misconception is that Apache can create domain names for your Apache web
server on its own. This is not true. The different domain names you want to wire to
different directories using virtual hosts need to be set up in a DNS server or
/etc/hosts file to point to your Apache server's IP address before you can use them
with virtual hosts.

How to do it...
For the purpose of this recipe we will be building some local virtual hosts with the
following Apache example subdomain names: www.centos7.home,
web1.centos7.home, web2.centos7.home and <username>.centos7.home for the
corresponding web publishing folders /var/www/html, /var/www/web1,
/var/www/web2, and /home/<username>/public_html for the domain's network
name centos7.home. These names are interchangeable and it is expected that you will
want to customize this recipe based on something more appropriate to your own needs
and circumstances.

1. To begin, log in as root on your Apache server and create a new configuration file
that will hold all our virtual host definitions:

vi /etc/httpd/conf.d/vhost.conf

2. Now put in the following content, customizing the centos7.home value and the
username <username> to fit your own needs:

<VirtualHost *:80>
 ServerName centos7.home
 ServerAlias www.centos7.home
 DocumentRoot /var/www/html/
</VirtualHost>
<VirtualHost *:80>
 ServerName web1.centos7.home
 DocumentRoot /var/www/web1/public_html/
</VirtualHost>
<VirtualHost *:80>
 ServerName web2.centos7.home
 DocumentRoot /var/www/web2/public_html/
</VirtualHost>
<VirtualHost *:80>
 ServerName <username>.centos7.home
 DocumentRoot /home/<username>/public_html/
</VirtualHost>

3. Now save and close the file in the usual way before proceeding to create the
directories for both virtual hosts that are currently missing:

mkdir -p /var/www/web1/public_html /var/www/web2/public_html

4. Having done this, we can now create default index pages for the missing
subdomains web1 and web2 by using our favorite text editor, as follows:

echo "<html><head></head><body><p>Welcome to Web1</p></body>

https://technet24.ir

</html>" > /var/www/web1/public_html/index.html
echo "<html><head></head><body><p>Welcome to Web2</p></body>
</html>" > /var/www/web2/public_html/index.html

5. Now reload the Apache web server:

apachectl configtest && systemctl reload httpd

6. Now, for simple testing purposes, we will just configure all our new Apache web
server's subdomains in the hosts file of the client computer that wants to access
these virtual hosts, but remember that you can also configure these subdomains in a
BIND DNS server. Login to this client computer (it needs to be in the same
network as our Apache server) as root and add the following lines to the
/etc/hosts file, assuming our Apache server has the IP address 192.168.1.100:

192.168.1.100 www.centos7.home
192.168.1.100 centos7.home
192.168.1.100 web1.centos7.home
192.168.1.100 web2.centos7.home
192.168.1.100 john.centos7.home

7. Now on this computer, open a browser and test things out by typing the following
addresses into the address line (replace <username> with the username you
defined for the virtual host): http://www.centos7.home,
http://web1.centos7.home, http://web2.centos7.home and
http://<username>.centos7.home.

How it works...
The purpose of this recipe was to show you how easy it is to implement name-based
virtual hosting. This technique will boost your productivity and using this approach will
give you unlimited opportunities to domain-based web hosting.

So what did we learn from this experience?

We began by creating a new Apache configuration file to hold all our virtual host
configuration. Remember, all files ending with the .conf extension in the
/etc/httpd/conf.d/ directory will be loaded automatically when Apache is started.
Following this, we then proceeded to put in the relevant directive blocks, starting with
our default server root centos7.home and the alias www.centos7.home. The most
important option in any virtual host block is the ServerName directive, which maps an
existing domain name for our web server's IP address to a specific directory on the
filesystem. Of course, there are many more settings you can include, but the previous
solution provides the basic building blocks that will enable you to use it as the perfect
starting point. The next step was to then create individual entries for our centos7.home
subdomains web1, web2, and <username>. Remember, each virtual host supports the
typical Apache directives and can be customized to suit your needs. Refer to the official
Apache manual (install the YUM package httpd-manual, then go to the location
/usr/share/httpd/manual/vhosts/) to learn more. After we created our virtual host
blocks for every subdomain we wanted, we then proceeded to create the directories to
hold the actual content and created a basic index.html in each directory. In this
example, our web1 and web2 content directories were added to /var/www. This is not to
imply that you cannot create these new folders in another place. In fact most production
servers generally place these new directories in the home folder, as shown with our
/home/<username>/public_html example. However, if you do intend to take this
approach, remember to modify the permissions and ownership, as well as SELinux
labels (outside/var/www you need to label Apache directories as
httpd_sys_content_t) of these new directories so that they can be used as they were
intended. Finally, we reloaded the Apache web service so that our new settings would
take immediate effect. We could then directly use the subdomain names in our browser
to browse to our virtual hosts when correctly set up in /etc/hosts on the client or on a
BIND DNS server.

https://technet24.ir

Implementing CGI with Perl and Ruby
In the previous recipes in this chapter, our Apache service only served static content,
which means that everything requested by a web-browser already existed in a constant
state on the server, for example as plain HTML text files that don't change. Apache
simply sends the content of a specific file from the web server to the browser as a
response where it then gets interpreted and rendered. If there were no way to change the
contents sent to the client, the Internet would be really boring and not the huge success it
is today. Not even the simplest example of dynamic content, such as showing a web
page with the web server's current local time would be possible.

Therefore, early in the 1990's, some smart people started inventing mechanisms to make
communication possible between a web server and some executable programs installed
on the server to generate web pages dynamically. This means that the content of the
HTML sent to the user can change in response to different contexts and conditions. Such
programs are often written in scripting languages such as Perl or Ruby but can be
written in any other computer language as well, such as Python, Java, or PHP (see
later). Because Apache is written in pure C and C++, it cannot execute or interpret any
other programming language such as Perl directly. Therefore, a bridge between the
server and the program is needed to define how some external programs can interact
with the server. One of these methods is called the Common Gateway Interface (CGI)
which is a very old way to serve dynamic content. Most Apache web servers use some
form of CGI applications and in this recipe we will show you how to install and
configure CGI for use with Perl and Ruby to generate our first dynamic content.

Note

There also exist some special Apache web server modules such as mod_perl,
mod_python, mod_ruby, and so on which should be generally preferred as they directly
embed the interpreter of the language into the web server process and therefore are a lot
faster in comparison to any interface technology such as CGI.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional packages.

It is expected that your server will be using a static IP address, Apache is installed and
currently running, and that your server supports one or more domains or subdomains.

https://technet24.ir

How to do it...
As both scripting languages Perl as well as Ruby are not installed by default on CentOS
7 Minimal, we will start this recipe by installing all required packages using YUM.

1. To begin, log in as root and type the following command:

yum install perl perl-CGI ruby

2. Next, restart the Apache web server:

systemctl restart httpd

3. Next, we need to configure SELinux appropriately for the use of CGI scripts:

setsebool -P httpd_enable_cgi 1

4. Then we need to change the correct security context for our cgi-bin directory for
SELinux to work:

semanage fcontext -a -t httpd_sys_script_exec_t /var/www/cgi-bin
restorecon -Rv /var/www/cgi-bin

Creating your first Perl CGI script
1. Now create the following Perl CGI script file by opening the new file vi

/var/www/cgi-bin/perl-test.cgi and putting in the following content:

#!/usr/bin/perl
use strict;
use warnings;
use CGI qw(:standard);
print header;
my $now = localtime;
print start_html(-title=>'Server time via Perl CGI'),
h1('Time'),
p("The time is $now"),
end_html;

2. Next, change the file's permission to 755, so our apache user can execute it:

chmod 755 /var/www/cgi-bin/perl-test.cgi

3. Next, to test and actually see what HTML is being generated from the preceding
script, you can execute the perl script directly on the command line; just type:

/var/www/cgi-bin/perl-test.cgi

4. Now open a browser on a computer in your network and run your first Perl CGI
script, which will print the local time by using the URL:

http://<server name or IP address>/cgi-bin/perl-test.cgi

5. If the script is not working, have a look at the log file
/var/log/httpd/error_log.

Creating your first Ruby CGI script
1. Create the new Ruby CGI script file vi /var/www/cgi-bin/ruby-test.cgi and

put in the following content:

#!/usr/bin/ruby
require "cgi"
cgi = CGI.new("html4")
cgi.out{
 cgi.html{
 cgi.head{ cgi.title{"Server time via Ruby CGI"} } +
 cgi.body{
 cgi.h1 { "Time" } +
 cgi.p { Time.now}
 }
 }
}

2. Now change the file's permission to 755 so our apache user can execute it:

chmod 755 /var/www/cgi-bin/ruby-test.cgi

3. To actually see what HTML is being generated from the preceding script, you can
execute the Ruby script directly on the command line; just type /var/www/cgi-
bin/ruby-test.cgi. When the line offline mode: enter name=value pairs
on standard input is shown, press Ctrl+D to see the actual HTML output.

4. Now open a browser on a computer in your network and run your first Ruby CGI
script which will print the local time by using the following URL:

http://<server name or IP address>/cgi-bin/ruby-test.cgi

5. If it is not working, have a look at the log file /var/log/httpd/error.log.

https://technet24.ir

How it works...
Here in this recipe we showed you how easy it is to create some dynamic web sites
using CGI. When a CGI resource is accessed, the Apache server executes that program
on the server and sends its output back to the browser. The main advantage of this
system is that CGI is not restricted to any programming language but works as long as a
program is executable on the Linux command line and generates some form of text
output. The big disadvantage of CGI technology is that it is a very old and outdated
technology: every user request to a CGI resource starts a new process of the program.
For example, every request to a Perl CGI script will start and load a new interpreter
instance into memory, which will produce a lot of overhead, therefore making CGI only
usable for smaller websites or lower parallel user request numbers. As said before,
there are other technologies to deal with this issue, for example FastCGI or Apache
modules such as mod_perl.

So what did we learn from this experience?

We began this recipe by logging in as root and installing the perl interpreter and the
CGI.pm module for it as it is not included in the Perl standard library (we will use it in
our script), as well as by installing the ruby interpreter for the Ruby programming
language. Afterwards, to make sure our Apache web server takes notice of our new
programming languages installed on the system, we restarted the Apache process.

Next, we made sure that SELinux is enabled to work with CGI scripts and then we
provided the standard Apache cgi-bin directory /var/www/cgi-bin with the proper
SELinux context type to allow system-wide execution. To learn more about SELinux,
read Chapter 14, Working with SELinux. In this directory we then put our Perl and Ruby
CGI scripts and made them executable afterwards for the Apache user. In the main
Apache configuration file, the /var/www/cgi-bin directory has been defined as the
standard CGI directory by default, which means that every executable file you put into
this directory, with proper access and execution permissions and the .cgi extension, is
automatically defined as a CGI script and can be accessed and executed from your web
browser, no matter which programming or scripting language it has been written in. To
test our scripts, we then opened a web browser and went to the URL http://<server
name or IP address>/cgi-bin/ with the name of the .cgi script to follow.

There's more...
If you would like to allow execution of CGI scripts in other web directories as well,
you need to add the following two lines (Options and AddHandler) to any virtual host
or existing Directive directive, or create a new one in the following way (remember
that you then also have to set the SELinux httpd_sys_script_exec_t label on the new
CGI location as well):

<Directory "/var/www/html/cgi-new">
 Options +ExecCGI
 AddHandler cgi-script .cgi
</Directory>

https://technet24.ir

Installing, configuring, and testing PHP
Hypertext Preprocessor (PHP) remains one of the most popular server-side scripting
languages designed for web development. It already supports some nice features, such
as connecting to relational databases like MariaDB out-of-the-box which can be used to
implement modern web applications very fast. While a current trend can be seen for
larger enterprises to move away from PHP in favor of some newer technologies such as
Node.js (server-side JavaScript), it is still the superior scripting language on the
consumer market. Every hosting company in the world provides some kind of LAMP
stack (Linux, Apache, MySQL, PHP) to run the PHP code. Also, a lot of very popular
web applications are written in PHP, such as WordPress, Joomla, and Drupal, so it's
fair enough to say that PHP represents a must-have feature for almost any Apache web
server. Here in this recipe, we will show you how to get started with installing and
running PHP in your Apache web server with the module mod_php.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice and
a Internet connection. It is expected that your server will be using a static IP address and
Apache is installed and currently running, and that your server supports one or more
domains or subdomains.

https://technet24.ir

How to do it...
We will begin this recipe by installing the PHP Hypertext Processor together with the
Apache mod_php module, both not installed by default on CentOS 7 minimal.

1. To begin, log in as root and type the following command:

yum install mod_php

2. Now let's open the standard PHP configuration file after we have made a backup of
the original file first:

cp /etc/php.ini /etc/php.ini.bak && vi /etc/php.ini

3. Find the line ; date.timezone = and replace it with your own timezone. A list of
all the available PHP time zones can be found at
http://php.net/manual/en/timezones.php. For example (be sure to remove
the leading ; as this is disabling the interpretation of a command; this is called
commenting out) to set the timezone to the city Berlin in Europe use:

date.timezone = "Europe/Berlin"

4. To make sure the new module and settings have been properly loaded, restart the
Apache web server:

systemctl restart httpd

5. To be consistent with the CGI examples from the former recipe, here we will
create our first dynamic PHP script which will print out the current local server
time in the script vi /var/www/html/php-test.php, and run the popular PHP
function phpinfo() that we can use to print out important PHP information:

<html><head><title>Server time via Mod PHP</title></head>
<h1>Time</h1>
<p>The time is <?php print Date("D M d, Y G:i a");?></p><?php
phpinfo(); ?></body></html>

6. To actually see what HTML is being generated from the preceding script, you can
execute the PHP script directly on the command line; just type: php
/var/www/html/php-test.php.

7. Now open a browser on a computer in your network and run your first PHP script
which will print the local time by using the following URL: http://<server
name or IP address>/php-test.php.

How to do it...
In this recipe, we showed you how easy it is to install and incorporate PHP into any
Apache web server by using the mod_php module. This module enables an internal PHP
interpreter, which directly runs in the Apache process and is much more efficient than
using CGI, and should always be your preferred method whenever is available.

So what did we learn from this experience?

We began this recipe by installing the mod_php module using YUM, which will install
PHP as a dependency as well as both are not available on any standard CentOS 7
minimal installations. Installing mod_php added the /etc/php.ini configuration file
which we then opened after making a backup of the original file first. This file is the
main PHP configuration file and should be edited with care because a lot of settings can
be security relevant to your web server. If you are just starting out with PHP, leave
everything as it is in the file and don't change anything despite the date.timezone
variable. We set this to reflect our current time zone and it is necessary for PHP because
it is used by a lot of different time and date functions (we will use some date functions
in our first PHP script as well, see below). Next, we restarted the Apache web server
which automatically reloads the PHP configurations as well. Afterwards, we created
our first PHP script and put it in the main web root folder /var/www/html/php-
test.php; this prints out the current server time as well as the result of the phpinfo()
PHP function. This gives you a well categorized tabular overview of your current PHP
installation, helping you diagnose server-related problems or see which modules are
available in PHP.

In comparison to CGI, you may ask yourself why we don't have to put the PHP scripts
into any special folder such as cgi-bin. By installing mod_php, an Apache
configuration file called /etc/httpd/conf.d/php.conf gets deployed into the
Apache configuration folder, which exactly answers this question, it specifies that PHP
scripts will get executed as valid PHP code whenever they get the extension .php from
anywhere in every web directory.

https://technet24.ir

Securing Apache
Even though the Apache HTTP server is one of the most mature and safe server
applications included in CentOS 7, there is always room for improvement and a large
number of options and techniques are available to harden your web server's security
even more. While we cannot show the user every single security feature as it is outside
of the scope this book, in this recipe, we will try to teach what is considered to be good
practice when it comes to securing your Apache web server for a production system.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges and a console-based text editor of your choice. It
is expected that your server will be using a static IP address and Apache is installed and
currently running, and that your server supports one or more domains or subdomains.

https://technet24.ir

How to do it...
Most of the security options and techniques have to be set up in the main Apache
configuration file, so we will begin this recipe by opening it in our favorite text editor.

Configuring httpd.conf to provide better security
1. To begin, log in as root and open the main Apache config file:

vi /etc/httpd/conf/httpd.conf

2. Now go to your main document root. To do so, search the directive called:

<Directory "/var/www/html">

3. Within the beginning <Directory "/var/www/html"> and closing </Directory>
tags find the line Options Indexes FollowSymLinks, then disable (comment
out) this line by putting a # in front of it, so it reads:

Options Indexes FollowSymLinks

4. Now scroll down to the end of the configuration file and insert the following line
one line before the line # Supplemental configuration. We do not want our
server to leak any detailed information through the header, so we type:

ServerTokens Prod

5. Afterwards, reload the Apache configuration to apply your changes:

apachectl configtest && systemctl reload httpd

Removing unneeded httpd modules

Even the most stable, mature, and well-tested programs can include bugs and cause
vulnerabilities, as the latest news about the Heartbleed bug in OpenSSL or Shellshock
in Bash have shown, and the Apache web server is no exception. Therefore, it is often
beneficial to remove all unneeded software to limit the functionality, and thus the
likelihood of security problems in your system. For the Apache web server, we can
remove all unneeded modules to increase security (this can also increase performance
and memory consumption). Let's start this process by reviewing all the currently
installed Apache modules.

1. To show all currently installed and loaded Apache modules, type as user root:

httpd -M

2. All the modules outputted by the preceding command are loaded into the Apache
web server by special configuration files in the /etc/httpd/conf.modules.d
folder where they are grouped together by their primary target into the following
files:

00-base.conf, 00-dav.conf, 00-lua.conf, 00-mpm.conf, 00-
proxy.conf, 00-ssl.conf, 00-systemd.conf, 01-cgi.conf, 10-
php.conf

3. So instead of going through all the modules individually, this file structure in the
conf.modules.d folder can make our life much easier because we can
disable/enable whole groups of modules. For example, if you know that you will
not need any Apache DAV modules because you will not provide any WebDAV
server, you can disable all DAV-related modules by renaming the extension of the
00-dav.conf configuration file since only files with the ending .conf are read
and loaded automatically by Apache. In order to do so, type:

mv /etc/httpd/conf.modules.d/00-dav.conf
/etc/httpd/conf.modules.d/00-dav.conf.BAK

4. Afterwards, reload the Apache configuration to apply your changes to the modules
directory:

apachectl configtest && systemctl reload httpd

5. If you need more fine-grained control, you can also enable/disable single modules
in all the configuration files in this directory as well. For example, open 00-
base.conf in your favorite text editor and disable a single line by adding a # to
the beginning of the line of choice you want to disable. For example:

LoadModule userdir_module modules/mod_userdir.so

6. If you decide to use some disabled modules files later, just rename the .BAK file to
the original file name or remove the # in a specific module config file before
reloading httpd once again.

Protecting your Apache files

Another really simple way to increase the security of your Apache web server is to
protect your server-side scripts and configurations. In our scenario, we have one user
(root) who alone is responsible and maintains the complete Apache web server,
websites (for example, uploading new HTML pages to the server), server-side scripts,
and configurations. Therefore, we will give him/her full file permissions
(read/write/execute). The apache user still needs proper read and execute permissions

https://technet24.ir

to serve and access all Apache related files, thus minimizing the risk that your Apache
web server is exposing some potential security risks to other system users or can get
compromised through HTTP hacks. Do this in two steps:

1. First we will change or reset the ownership of the complete Apache configuration
directory and the standard web root directory to owner root and group apache:

chown -R root:apache /var/www/html /etc/httpd/conf*

2. Afterwards, we will change the file permissions so no one other than our dedicated
apache user (and also root) can read those files:

chmod 750 -R /var/www/html /etc/httpd/conf*

How it works...
We began this recipe by opening the main Apache configuration file httpd.conf to
change settings for our main Apache root web content directory /var/www/html. Here
we disabled the complete Options directive which included the Indexes as well as the
FollowSymLinks parameter. As we have learned, if you request a directory instead of a
file from the Apache server, index.html or the index.htm file within this directory
will be sent automatically. Now the Indexes option configures the Apache web server
in such a way that if no such file can be found in the requested directory, Apache will
auto-generate a listing of the directory's content, as if you had typed ls (for list
directory) in that directory on the command line, and show it to the user as a HTML
page. We don't want this feature in general because it can expose secret or private data
to unauthorized users and a lot of system administrators will tell you that indexing is
considered to be a security threat in general. The FollowSymLinks directive should
also not be used in production systems because if you make a mistake with it, it can
easily expose parts of the file system, such as the complete root directory. Finally, we
add another measurement to increase the server's base security and this is done by
disabling the server version banner information. When the Apache web server generates
either a web page or an error page, valuable information, for example the Apache
server version and the activated modules, is sent automatically to the browser and a
possible attacker can gain valuable information about your system. We stopped this from
happening by simply setting ServerTokens to Prod. Afterwards, we showed you how
to disable Apache modules to reduce the general risk of bugs and exploitations of your
system. Finally, we showed how to adjust your Apache file permissions which can also
be a good general protection.

There are lots of other things to consider when it comes to hardening your Apache web
server but most of these techniques, such as Limiting HTTP request methods,
TraceEnable, setting cookies with HttpOnly and secure flags, disabling the HTTP 1.0
protocol or SSL v2, or modifying the HTTP header with useful security-related HTTP
or custom headers such as X-XSS-Protection, are much more advanced concepts and
can restrict a general purpose Apache web server too much.

https://technet24.ir

Setting up HTTPS with Secure Sockets
Layer (SSL)
In this recipe, we will learn how to add a secure connection to the Apache web server
by creating a self-signed SSL certificate using OpenSSL. This is often a requirement for
web servers if the sites running on them transfer sensitive data such as credit card or
login information from the web browser to the server. In a previous recipe you were
shown how to install the Apache web server, and with the growing demand for secure
connections, it is the purpose of this recipe to show you how to enhance your current
server configuration by teaching you how to extend the features of the Apache web
server.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional packages. It is
expected that Apache web server has been installed and that it is currently running. Here
we will create a new SSL certificate for Apache. If you want to learn more about it,
refer to Chapter 6, Providing Security for advice on generating self-signed certificates.
As a correct domain name is crucial for SSL to work, we will continue naming our
Apache web server's configured domain name centos7.home to make this recipe work
(change it to fit your own needs).

https://technet24.ir

How to do it...
Apache does not support SSL encryption by default and for this reason we will begin by
installing the necessary package mod_ssl using the yum package manager.

1. To begin, log in as root and type the following command:

yum install mod_ssl

2. During installation of the mod_ssl package, a self-signed certificate as well as the
key pair for the Apache web server are generated automatically; these lack a
proper common name for your web server's domain name. Before we can re-
generate our own required SSL files using the Makefile in the next steps, we need
to delete those files:

rm /etc/pki/tls/private/localhost.key
/etc/pki/tls/certs/localhost.crt

3. We are now required to create our intended self-signed certificate and server key
for our Apache web server. To do this, type the following command:

cd /etc/pki/tls/certs

4. To create the self-signed Apache SSL keypair, consisting of the certificate and its
embedded public key as well as the private key, type:

make testcert

5. In the process of creating the certificate, first you will be asked to enter a new
passphrase and then to verify it. Afterwards, you need to type it in again for the
third time. As usual, enter a secure password. You will then be asked a number of
questions. Complete all the required details by paying special attention to the
common name value. This value should reflect the domain name of your web
server or the IP address the SSL certificate is for. For example, you may type:

www.centos7.home

6. When the process of creating your certificate is complete, we will proceed by
opening the main Apache SSL configuration in the following way (after making a
backup):

cp /etc/httpd/conf.d/ssl.conf /etc/httpd/conf.d/ssl.conf.BAK
vi /etc/httpd/conf.d/ssl.conf

7. Scroll down to the section that begins with <VirtualHost _default_:443> and

locate the line # DocumentRoot "/var/www/html" within this block. Then
activate it by removing the # character, so it reads:

DocumentRoot "/var/www/html"

8. Right below, find the line that reads #ServerName www.example.com:443.
Activate this line and modify the value shown to match the common name value
used during the creation of your certificate, as follows:

ServerName www.centos7.home:443

9. Save and close the file, next we need to enable the HTTPS port in our firewalld to
allow incoming HTTP SSL connections over port 443:

firewall-cmd --permanent --add-service=https && firewall-cmd --
reload

10. Now restart the Apache httpd service to apply your changes. Note that if
prompted you have to enter the SSL passphrase you added when you created the
SSL test certificate:

systemctl restart httpd

11. Well done! You can now visit your server with a secure connection by replacing
all the available HTTP URLs we have defined for the server using HTTPS instead.
For example, go to https://www.centos7.home instead of
http://www.centos7.home.

Note

When you browse to this website, you will get a warning message that the signing
certificate authority is not known. This exception is to be expected when using
self-signed certificates and can be confirmed.

https://technet24.ir

How it works...
We began the recipe by installing mod_ssl using the YUM package manager, which is
the default Apache module to enable SSL. The next step was then to go to the standard
location where all the system's certificates can be found in CentOS 7, that is,
/etc/pki/tls/certs. Here we can find a Makefile, which is a helper script for
conveniently generating self-signed SSL test certificates and which hides away
complicated command line parameters for the OpenSSL program from you. Remember
that the Makefile currently lacks a clean option and therefore every time we run it, we
need to delete any old versions of the generated files from a former run manually,
otherwise it will not start doing anything. After deleting the old Apache SSL files, we
used make with the testcert parameter, which creates self-signed certificates for the
Apache web server and puts them in the standard locations, already configured in the
ssl.conf file (the SSLCertificateFile and SSLCertificateKeyFile directives),
so we didn't have to change anything here. During the process, you were asked to
provide a password before completing a series of questions. Complete the questions but
pay special attention to the Common name. As was mentioned in the main recipe, this
value should reflect either the domain name of your server or your IP address. In the
next phase, you were required to open Apache's SSL configuration file in your favorite
text editor which can be found at /etc/httpd/conf.d/ssl.conf. In it we enabled the
DocumentRoot directive to put it under SSL control and activated the ServerName
directive with an expected domain value that must be the same as the one we defined as
our common name value. We than saved and closed the configuration file and enabled
the HTTPS ports in our firewall, thus allowing incoming connections over the standard
HTTPS 443 port. Having completed these steps, you can now enjoy the benefits of a
secure connection using a self-signed server certificate. Just type https:// instead of
http:// for any URL address available on your Apache web browser. However, if you
are intending to use an SSL Certificate on a production server for members of the
public, then your best option is to purchase an SSL certificate from a trusted Certificate
Authority.

There's more...
We learned that since our SSL certificate is protected by a passphrase, so whenever we
need to restart our Apache web server, we need to enter the password. This is
impractical for server restarts as Apache will refuse to start without a password. To get
rid of the password prompt, we will provide the passphrase in a special file and make
sure it is only accessible by root.

1. Create a backup of the file that will contain your password:

cp /usr/libexec/httpd-ssl-pass-dialog /usr/libexec/httpd-ssl-
pass-dialog.BAK

2. Now overwrite this password file with the following content, replacing XXXX in
the following command line with your current SSL passphrase:

echo -e '#!/bin/bash\necho "XXXX"' > /usr/libexec/httpd-ssl-
pass-dialog

3. Finally, change the permissions so that only root can read and execute them:

chmod 500 /usr/libexec/httpd-ssl-pass-dialog

https://technet24.ir

Chapter 13. Operating System-Level
Virtualization
In this chapter, we will cover:

Installing and configuring Docker
Downloading an image and running a container
Creating your own images from Dockerfiles and uploading to Docker Hub
Setting up and working with a private Docker registry

Introduction
This chapter is a collection of recipes that provides the essential steps to install,
configure, and work with Docker, which is an open platform to build, ship, share, and
run distributed applications through operating-system-level virtualization, a technology
that has been around for many years in the Linux world and can provide speed and
efficiency advantages over traditional virtualization technologies.

https://technet24.ir

Installing and configuring Docker
Traditional virtualization technologies provide hardware virtualization, which means
they create a complete hardware environment so each virtual machine (VM) needs a
complete operating system to run it. Therefore they have some major drawbacks
because they are heavyweight and produce a lot of overhead while running. This is
where the open-source Docker containerization engine offers an attractive alternative. It
can help you build applications in Linux containers, thus providing application
virtualization.

This means that you can bundle any Linux program of choice with all its dependencies
and its own environment and then share it or run multiple instances of it, each as a
completely isolated and separated process on any modern Linux kernel, thus providing
native runtime performance, easy portability, and high scalability. Here, in this recipe,
we will show you how to install and configure Docker on your CentOS 7 server.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to download additional rpm packages and a test
Docker image.

https://technet24.ir

How to do it...
While Docker is available as a package in the official CentOS 7 repository, we will use
the official Docker repository to install it on our system instead.

1. To begin, log in as root and update your YUM packages before downloading and
executing the official Docker Linux installation script using the following
command:

yum update && curl -sSL https://get.docker.com/ | sh

2. Next, enable Docker at boot time before starting the Docker daemon (the first time
you start, it will take a while):

systemctl enable docker && systemctl start docker

3. Finally, after starting Docker you can verify that it's working by typing:

docker run hello-world

How it works...
When installing any software on CentOS 7, most of the time it is a very good advice to
use the packages available in your official CentOS repository instead of downloading
and installing from third-party locations. Here by installing Docker using the official
Docker repository instead we made an exception. We did this because Docker is a very
young project and is evolving fast, and it keeps changing a lot. While you can use
Docker for running every Linux application, including critical web servers or programs
dealing with confidential data, bugs found or introduced into the Docker program can
have severe security consequences. By using the official Docker repository, we make
sure we always get the latest updates and patches available as fast as possible right
from the developers of this fast-moving project. So anytime you type yum update in the
future, your package manager will automatically query and check the Docker repos to
see if there is a new version of Docker available for you.

So what did we learn from this experience?

We started this recipe by logging into our server as root and updated the YUM package's
database. Then we used a command to download and execute the official Docker
installation script from https://get.docker.com/ in one step. What this script does is add
the official Docker repository to the YUM package manager as a new package source
and then automatically install Docker in the background. Afterwards, we enabled the
Docker service at boot-time and started it by using systemd. Finally, to test our
installation, we issued the command docker run hello-world, which downloads a
special image from the official Docker registry to test our installation. If everything
went fine, you should see the following success message (output truncated):

Hello from Docker

This message shows that your installation appears to be working correctly.

https://get.docker.com/
https://technet24.ir

Downloading an image and running a
container
A common misconception is that Docker is a system for running containers. Docker is
only a build-tool to wrap up any piece of Linux based software with all its
dependencies in a complete filesystem that contains everything it needs to run: code,
runtime, system tools, and system libraries. The technology to run Linux containers is
called operating-system-level virtualization and provides multiple isolated
environments built in every modern Linux kernel by default. This guarantees that it will
always run the same, regardless of the environment it is deployed in; thus making your
application portable. Therefore, when it comes to distributing your Docker applications
into Linux containers, two major conceptional terms must be introduced: Docker
images and containers. If you ever wanted to set up and run your own WordPress
installation, in this recipe we will show you how to do so the fastest way possible by
downloading a pre-made WordPress image from the official Docker hub; we will then
run a container from.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional Docker
images. It is expected that Docker has already been installed and is running.

https://technet24.ir

How to do it...
The official WordPress image from Docker Hub does not contain its own MySQL
server. Instead it relies on it externally, so we will start this recipe by installing and
running a MySQL docker container from Docker Hub.

1. To begin, log in as root and type the following command by replacing <PASSWORD>
in the following command with a strong MySQL database password of your own
choice (at the time of writing, the latest WordPress needs MySQL v.5.7; this can
change in the future, so check out the official WordPress Docker Hub page):

docker run --restart=always --name wordpressdb -e
MYSQL_ROOT_PASSWORD=<PASSWORD> -e MYSQL_DATABASE=wordpress -d
mysql:5.7

2. Next, install and run the official WordPress image and run an instance of it as a
Docker container, connecting it to the MySQL container (providing the same
<PASSWORD> string from the previous step):

docker run --restart=always -e WORDPRESS_DB_PASSWORD=<password> -
d --name wordpress --link wordpressdb:mysql -p 8080:80 wordpress

3. Now the MySQL and WordPress container should already be running. To check the
currently running containers, type:

docker ps

4. To get all the Docker WordPress container settings, use:

docker inspect wordpress

5. To check the container's log file for our WordPress container, run the following
command:

docker logs -f wordpress

6. Open a browser on a computer in the same network as the server running the
Docker daemon and type in the following command to access your Wordpress
installation (replace IP address with the one from your Docker server):

http://<IP ADDRESS OF DOCKER SERVER>:8080/

How it works...
A Docker image is a collection of all the files that make up a software application and
its functional dependencies, as well as information about any changes as you modify or
improve on its content (in the form of a change log). It is a non-runnable, read-only
version of your application and can be compared to an ISO file. If you want to run such
an image, a Linux container will be created out of it automatically by cloning the image.
This is what then actually executes. It's a real scalable system because you can run
multiple containers from the same image. As we have seen, Docker is really not only the
tools you need to work with images and containers but a complete platform as it also
provides tools to access already pre-made images of all kinds of Linux server software.
This is really the beauty of the whole Docker system because most of the time you don't
have to reinvent the wheel twice trying to create your own docker image from scratch.
Just go to the Docker Hub (https://hub.docker.com), search for a software you want to
run as a container, and when you find it then just use the docker run command,
providing the Docker Hub name of the image, and you are done. Docker really can be a
life-saver when thinking about all the endless hours trying to get the latest trendy
programs to work with all the dependencies you need to compile and trying to get it to
install.

So what did we learn from this experience?

We started our journey by using the docker run command which downloaded two
images from the remote Docker Hub repos and put them into a local image store (called
mysql:5.7 and wordpress) and then run them (create containers out of them). To get a
list of all the images downloaded on our machine, type docker images. As we have
seen, both run command lines provided the -e command line parameter, which we need
to set some essential environment variables that will then be visible within the
container. These include the MySQL database we want to run and the MySQL root
password to set and access them. Here we see a very important feature of Docker:
containers that can communicate which each other! Often you can just stack your
application together from different Docker container pieces and make the whole system
very easy to use. Another important parameter was -p which is used to create a port
mapping from our host port 8080 to the internal HTTP port 80 and opens the firewall to
allow incoming traffic on this port as well. --restart=always is useful to make the
image container restartable, so the containers automatically get restarted on reboot of
the host machine. Afterwards, we introduced you to Docker's ps command line
parameter which prints out all running Docker containers. Here the command should

https://hub.docker.com
https://technet24.ir

print out two running containers called wordpressdb and wordpress, together with
their CONTAINER_ID. This ID is a unique MD5 hash we will use all the time in most of
the Docker command line inputs whenever we need to reference a specific container (in
this recipe we referenced by container name which is also possible). Afterwards, we
showed you how to print out a container's configuration by using the inspect
parameter. Then, to get the Wordpress container's log file in an open stream, we used the
log -f parameter. Finally, since the -p 8080:80 mapping allows incoming access to
our server at port 8080, we could then access our Wordpress installation from any
computer in the same network using a browser. This will open the Wordpress
installation screen.

Note

Note that if you have any connection problems while downloading any containers from
Docker at any time, such as dial tcp: lookup index.docker.io: no such host,
restart the Docker service before trying again.

There's more...
In this section, we will show you how to start and stop a container and how to attach to
your container.

Stopping and starting a container

In the main recipe, we used Docker's run command which is actually a wrapper for two
other Docker commands: create and start. As the names of these commands suggest,
the create command creates (clones) a container from an existing image and if it does
not exist in the local image cache then it downloads it from a given Docker registry
(such as the predefined Docker hub), while the start command actually starts it. To get
a list of all the containers (running or stopped) on your computer, type: docker ps -a.
Now identify a stopped or a started container, and find out its specific CONTAINER_ID.
Then we can start a stopped container or stop a running one by providing the correct
CONTAINER_ID such as docker start CONTAINER_ID. Examples are: docker start
03b53947d812 or docker stop a2fe12e61545 (the CONTAINER_ID hashes will vary
on your computer).

Sometimes you need to remove a container; for example, if you want to completely
change its command line parameters when creating from an image. For removing a
container, use the rm command (but remember that it has to be stopped before): docker
stop b7f720fbfd23; docker rm b7f720fbfd23

Attaching and interacting with your container

Linux containers are completely isolated processes running in a separated environment
on your server and there is no way to log in to it like logging into a normal server using
ssh. If you need to access your containers BASH shell then you can run the docker
exec command, which is particularly useful for debugging problems or modifying your
container (for example, installing new packages or updating programs or files in it).
Note that this only works on running containers and you need to know your container's
ID before (type docker ps to find out) you run the following command: docker exec
-it CONTAINER_ID /bin/bash, for example docker exec -it d22ddf594f0d
/bin/bash. Once successfully attached to the container, you will see a slightly changed
command-line prompt with the CONTAINER_ID as hostname; for example,
root@d22ddf594f0d:/var/www/html#. If you need to exit your container, type exit.

https://technet24.ir

Creating your own images from
Dockerfiles and uploading to Docker
Hub
Besides images and containers, Docker has a third very important term called a
Dockerfile. A Dockerfile is like a recipe on how to create an environment for a specific
application, which means that it contains the blueprint and exact description on how to
build a specific image file. For example, if we would like to containerize a webserver-
based application, we would define all the dependencies for it, such as the base Linux
system that provides the system dependencies such as Ubuntu, Debian, CentOS, and so
on (this does not mean we virtualize the complete operating system but just use the
system dependencies), as well as all applications, dynamic libraries, and services such
as PHP, Apache, and MySQL in the Dockerfile and also all special configuration
options or environment variables. There are two ways to build your own custom
images. One, you could download an existing base image as we did in the previous
Wordpress recipe and then attach to the container using BASH, install your additional
software, make the changes to your configuration files, and then commit the container as
a new image to the registry. Alternatively, here in this recipe, we will teach you how to
build your own Docker image from a new Dockerfile for an Express.js web application
server and upload it to your own Docker Hub account.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to communicate with the Docker Hub. It is expected
that Docker is already installed and is running. Also, for uploading your new image to
the Docker Hub, you need to create a new Docker Hub user account there. Just go to
https://hub.docker.com/ and register there for free. In our example, we will use a
fictitious new Docker Hub user ID called johndoe.

https://hub.docker.com/
https://technet24.ir

How to do it...
1. To begin, log in as root and create a new directory structure using your Docker

Hub user ID (substitute the johndoe directory name appropriately with your own
ID), and open an empty Dockerfile where you put in your image's building
blueprint:

mkdir -p ~/johndoe/centos7-expressjs
cd $_; vi Dockerfile

2. Put in the following content into that file:

FROM centos:centos7
RUN yum install -y epel-release;yum install -y npm;
RUN npm install express --save
COPY . ./src
EXPOSE 8080
CMD ["node", "/src/index.js"]

3. Save and close the file. Now create your first Express.js web application, which
we will deploy on the new container. Open the following file in the current
directory:

vi index.js

4. Now put in the following JavaScript content:

var express = require('express'), app = express();
app.get('/', function (req, res) {res.send('Hello CentOS 7
cookbook!\n');});
app.listen(8080);

5. Now to build an image from this Dockerfile, stay in the current directory and use
the following command (don't forget the dot at the end of this line and replace
johndoe with your own Docker Hub ID):

docker build -t johndoe/centos7-expressjs .

6. After successfully building the image, let's run it as a container:

docker run -p 8081:8080 -d johndoe/centos7-expressjs

7. Finally, test if we can make an HTTP request to our new Express.js web
application server running in our new container:

curl -i localhost:8081

8. If the Docker image is successfully running on the Express.js server, the following
HTTP response should occur (truncated to the last line):

Hello CentOS 7 cookbook!

Uploading your image to the Docker Hub
1. After creating a new Docker Hub account ID called johndoe, we will start to

login to the site using the following command—stay in the directory where you put
your Dockerfile from the last step–for example ~/johndoe/centos7-expressjs
(provide the username, the password, and the registration e-mail when asked):

docker login

2. Now, to push your new image created in this recipe to the Docker Hub (again
replace johndoe with your own user ID), use:

docker push johndoe/centos7-expressjs

3. After uploading, you will be able to find your image on the Docker Hub web page
search. Alternatively, you can use the command line:

docker search expressjs

https://technet24.ir

How it works...
Here in this short recipe, we showed you how to create your first Dockerfile which will
create a CentOS 7 container to serve Express.js applications, which is a modern
alternative to LAMP stacks where you program JavaScript on the client-and server-
side.

So what did we learn from this experience?

As you can see, a Dockerfile is an elegant way to describe all the instructions on how to
create an image. The commands are straight-forward to understand and you use special
keywords to instruct Docker what to do in order to produce an image out of it. The FROM
command tells Docker which base image we should use. Fortunately, someone has
already created a base image from the CentOS 7 system dependencies (this will be
downloaded from Docker Hub). Next, we used the RUN command, which just executes
commands as on a BASH command-line. We use this command to install dependencies
on our system in order to run Express.js applications (it's based on the Node.js rpm
package which we access by installing the EPEL repository first). The COPY command
copies files from our host machine to a specific location on the container. We need this
to copy our index.js file which will create all our Express.js web server code in a
later step on to the container. EXPOSE, as the name implies, exposes an internal container
port to the outside host system. Since by default Express.js is listening on 8080, we
need to do this here. While all these commands shown up to this point will only be
executed once when creating the image, the next command CMD will be run every time
we start the container. The command node /src/index.js will be executed and
instructs the system to start the Express.js web server with the index.js file (which we
already provided in this directory by copying it from the host machine). We don't want
to go into any details about the JavaScript part of the program—it just handles HTTP
GET requests and returns the Hello World string. In the second part of this recipe, we
showed you how to push our new created image to the Docker Hub. In order to do so,
login with your Docker user account. Then we can push our image to the repository.

As this is a very simple Dockerfile, there is much more to learn about this subject. To
see a list of all the commands available in the Dockerfile, use man Dockerfile. Also,
you should visit the Docker Hub and browse the Dockerfiles (under the section Source
Repository hosted on GitHub) of some interesting projects to learn how to create some
highly sophisticated image files with just a handful of commands on your own.

https://technet24.ir

Setting up and working with a private
Docker registry
While we have learned in a former recipe in this chapter how easy it is to upload our
own images to the official Docker Hub, everything we put there will be exposed to the
public. If you work on a private or closed-source project within a corporate
environment or just want to test things out before publishing to everyone, chances are
high that you would prefer your own, protected or cooperate-wide private Docker
registry. Here in this recipe we will show you how you can set up and work with your
own Docker registry that will be available in your own private network and which will
be protected by TLS encryption and which will use user authentication so you can
control exactly who can use it (push and pull images to and from it).

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional packages. In
our example, we will install the Docker Registry on a server with the IP address
192.168.1.100. Change the recipe's commands appropriately to fit your needs. You
need to have set a FQDN for this server, otherwise the registry will not work. For
simplicity, we will use the /etc/hosts approach instead of setting up and configuring a
DNS server (see Chapter 9, Working with Domains if you would like to do this instead).
Also, you need an Apache web server on your Docker server running which must be
accessible from your whole private network.

https://technet24.ir

How to do it...
Complete all the following steps in this recipe with user root on every computer in your
network you want to connect to the Docker registry!

1. On each computer you want to access your Docker registry, as well as on our
Docker registry server itself, with the IP address 192.168.1.100, define the
domain name of the Docker registry, which in our example will be
dockerserver.home (replace the dockerserver.home part appropriately if you
use a different domain name):

echo "export DCKREG=dockerserver.home" >> ~/.bash_profile
source ~/.bash_profile

2. Now we will define the FQDN of our Docker server registry on each computer in
our network we want to use the registry on (as well as on the Docker registry
server itself). Log in as root on every machine and type the following command.
Skip this step if you have already defined your Docker registry's server's domain
name via a BIND DNS server (change the IP address of your Docker service
192.168.1.100 appropriately):

echo "192.168.1.100 $DCKREG" >> /etc/hosts

Steps to be done on our Docker registry server (192.168.1.100)
1. First create a TLS certificate for our Docker registry certificate (use the FQDN

you defined in DCKREG when asked for a Common name (for name; for example
your name or your server's hostname) []:dockerserver.home):

cd; mkdir -p ~/certs; openssl req -newkey rsa:4096 -nodes -sha256
-keyout certs/domain.key -x509 -days 365 -out certs/domain.crt

2. Next, we need to copy the new certificate to the Docker trusted certificate's
location as well as to the system's default trusted certificate location and rebuild
the certificate index:

mkdir -p /etc/docker/certs.d/$DCKREG\:5000
cp ~/certs/domain.crt /etc/docker/certs.d/$DCKREG\:5000/ca.crt
cp ~/certs/domain.crt /etc/pki/ca-trust/source/anchors/docker-
registry.crt
update-ca-trust

3. Also, copy the certificate to our Apache web server so we can easily access it
from the Docker clients later:

cp ~/certs/domain.crt /var/www/html/docker-registry.crt

4. Next, we will finally download, create, and run our Docker registry as a container:

mkdir ~/auth; touch ~/auth/htpasswd docker run -d -p 5000:5000 --
restart=always --name registry -v /
root/certs:/certs -v /root/auth:/auth -v /reg:/var/lib/registry -
e REGISTRY_HTTP_TLS_CERTIFICATE=/certs/domain.crt -e
 REGISTRY_HTTP_TLS_KEY=/certs/domain.key -e
"REGISTRY_AUTH_HTPASSWD_REALM=Registry Realm" -e
REGISTRY_AUTH_HTPASSWD_PATH=/auth/htpasswd -e
REGISTRY_AUTH=htpasswd registry:2

5. Now check if the registry is running (in the output you should find it listening on
[::]:5000, tls):

docker logs registry

6. For setting up user authentication for our registry, use the following command (here
we use johndoe as the username and mysecretpassword as the password for
authentication. Change these two values to fit your needs. Repeat this command for
every user account you want to have later for your users to login):

cd; docker run -it --entrypoint htpasswd -v $PWD/auth:/auth -w
/auth registry:2 -Bbc /auth/htpasswd johndoe mysecretpassword

7. Next restart the registry to apply your user account changes:

docker restart registry

8. Now create a new firewalld service and activate it in our firewall to make
incoming connections to our new Docker registry port 5000 possible:

sed 's/80/5000/g' /usr/lib/firewalld/services/http.xml | sed
's/WWW (HTTP)/Docker registry/g' | sed 's/<description>.*
<\/description>//g' > /etc/firewalld/services/docker-reg.xml
firewall-cmd --reload
firewall-cmd --permanent --add-service=docker-reg; firewall-cmd -
-reload

Steps to be done on every client needing access to our registry
1. Finally we can test connecting to our own new TLS-enhanced private Docker

registry with user authentication by logging in on any computer in the same network
as our Docker registry with root.

2. The first step is to install Docker on every client that wants to connect to the
Docker registry:

https://technet24.ir

yum update && curl -sSL https://get.docker.com/ | sh

3. Next, on every client wanting to connect to our new Docker registry, set up the
server's certificate on the client first before we are able to connect to it (this step
has been tested on CentOS 7 clients only):

mkdir -p /etc/docker/certs.d/$DCKREG\:5000
curl http://$DCKREG/docker-registry.crt -o /tmp/cert.crt
cp /tmp/cert.crt /etc/docker/certs.d/$DCKREG\:5000/ca.crt
cp /tmp/cert.crt /etc/pki/ca-trust/source/anchors/docker-
registry.crt
update-ca-trust

4. For testing, we start by pulling a new small test image from the official Docker
Hub. Log in to the official Docker Hub by using your Docker Hub account (see a
previous recipe in this chapter):

docker login

5. Now pull a small image called busybox:

docker pull busybox

6. Afterwards, switch the Docker registry server to use our own that we set up in this
recipe (enter the username and password, for example, johndoe /
mysecretpassword. Leave the e-mail field blank):

docker login $DCKREG:5000

7. Next, to push a Docker image from our client to our new private Docker registry,
we need to tag it to be in our registry's domain:

docker tag busybox $DCKREG:5000/busybox

8. Finally, push the image to our own registry:

docker push $DCKREG:5000/busybox

9. Congratulations! You have just pushed your first image to your private Docker
repository. You can now pull this image $DCKREG:5000/busybox on any other
client set up to communicate to our repository. To get a list of all the available
images, use (change the account information accordingly):

curl https://johndoe:mysecretpassword@$DCKREG:5000/v2/_catalog

How it works...
In this recipe we showed you how to set up your own Docker registry running in a
Docker container on the server. It is very important to understand that you will need to
configure a FQDN for your registry server because it is mandatory for the whole system
to work.

So what did we learn from this experience?

We began by configuring the Docker registry's FQDN on every computer using the
/etc/hosts approach. Then we created a new certificate on the Docker registry server
which will be used to communicate securely using TLS encryption between clients and
registry. Next we installed the new generated certificate on the httpd server, so it is
accessible to all the clients later; also in a specific Docker directory to make it
accessible for Docker as well; and in the default trusted certificate location of the
server where we also rebuilt the certificate cache for this server. Afterwards, we used
the docker run command to download, install, and run our new Docker registry in a
docker container itself on this server. We provided a list of parameters to configure TLS
encryption and user authentication.

In the next step, we attached to the registry to create new htpasswd accounts. You can
repeat this step whenever you need new accounts for your registry. Don't forget to
restart the registry container afterwards. Next, on every client we want to make
communications to our new Docker registry, we need to install the server's certificate
also in the same places as on the server itself; thus we downloaded it from the HTTP
source implemented previously and copied it to the various locations. To test things out
on the client, next we connected to the official Docker Hub to download a random
image we wanted to push to our own registry in the next step. We downloaded the
busybox image to our own image cache and afterwards switched to connecting to our
new private Docker registry. Before we could upload the image to the new location, we
had to give it a proper tag that fitted the new server name and then we were able to push
the image to our new Docker registry. The server is now available at port 5000 in the
complete network. Remember that, if you don't want to use your own registry any more
on the clients, you can always switch back to the official docker repository using
docker login.

There is so much more to learn about Docker. In the recipes of this chapter we only
scratched the surface of the Docker platform. If you want to learn more about it,

https://technet24.ir

consider going to https://www.Packtpub.com and check out one of the many titles
available at this website about it.

https://www.Packtpub.com

Chapter 14. Working with SELinux
In this chapter, we will cover the following topics:

Installing and configuring important SELinux tools
Working with SELinux security contexts
Working with policies
Troubleshooting SELinux

https://technet24.ir

Introduction
This chapter is a collection of recipes that strive to demystify Security-Enhanced
Linux (SELinux), a mature technology for hardening your Linux system using additional
security features added to the basic security system. It has been around for many years in
the CentOS world but nevertheless is a somewhat little-known and confusing topic for a
lot of system administrators.

Installing and configuring important
SELinux tools
The most significant security feature of any Linux system is providing access control—
often called Discretionary Access Control (DAC)—which allows the owner of an
object (such as a file) to set security attributes for it (for example, deciding who can
read or write to a file using the chown and chmod commands). While this old and very
simple security system was sufficient in ancient UNIX times, it does not meet all the
modern requirements of security, where servers and services are constantly connected
to the Internet.

Often, security breaches can be initiated by attackers exploiting buggy or misconfigured
applications and the permissions to them. This is why the SELinux has been developed.
Its main purpose is to enhance the security of the DAC system in Linux. It does so by
adding an additional security layer on top of DAC, which is called Mandatory Access
Control (MAC), and which can provide fine-grain access control to every single
component of your system. SELinux has already been enabled on CentOS 7 and is
absolutely recommended for any server connected directly to the Internet. Here in this
recipe, we will install additional tools and configure them to better manage your
SELinux system, and help in the troubleshooting and monitoring process.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges and a connection to the Internet in order to
download additional packages. For the best learning experience, it is also preferred that
you work through this chapter recipe by recipe, in the order that they appear, because
they build upon each other.

How to do it...
Throughout this book, we already applied programs such as semanage from the rpm
policecoreutils-python package to manage our SELinux environment. If you missed
installing it, we will begin this recipe by doing so (skip step 1 if you have already done
this before):

1. Log in as root and install the following basic toolkit to work with SELinux:

yum install policycoreutils-python

2. Now, we need some additional tools that will also be needed later in the course of
this chapter:

yum install setools setools-console setroubleshoot*

3. Next, install and configure the SELinux manual pages as they are not available by
default on CentOS 7, but are important for getting detailed information about
specific policies, security contexts, and SELinux Booleans later. First, we need to
install another package:

yum install policycoreutils-devel

4. Afterwards, let's generate all the man pages for all SELinux security context
policies currently available on the system, and then update the manual pages
database afterwards:

sepolicy manpage -a -p /usr/share/man/man8; mandb

https://technet24.ir

How it works...
By following this recipe, we installed all the tools needed for our daily work with
SELinux. Also, we generated all available SELinux manual pages, which will be our
primary source of information when working with SELinux, and also for troubleshooting
SELinux services later.

SELinux has two primary and fundamental terms that we need to understand before
diving into the remaining recipes in this chapter: labels (or more technically, security
contexts) and policies. From SELinux's perspective, a Linux system is divided into a
number of different objects. Objects, for example, are all files, processes, users,
sockets, and pipes in a system. In a SELinux context, every such object gets a special
label. SELinux policies are the rules to control access to these objects using the labels
defined on them: On every access attempt to such an object (for example, a file read),
all SELinux policies available to the system will be searched if there is a rule for the
specific label to make access control decisions (allow or deny the access).

So, what did we learn from this experience?

A lot of system administrators seem to avoid SELinux like the plague, and a trend in a
lot of instruction manuals and tutorials leans towards disabling it altogether right after
the installation of CentOS 7 because people seem to fear it and don't want to mess with
it, or are even frustrated if some networking service is not working correctly out-of-the-
box. Often, they blame SELinux for any connection problems, so it often looks easier to
disable it altogether rather than find out the true reasons by delving into the inner
workings of SELinux. If you are disabling it, you are missing out one of the most critical
security features of CentOS 7 that can prevent a lot of harm to your system in the event
of an attack! In the last few years, the SELinux project has evolved very much and is
easier to use than ever. A lot of convenient tools for working with it have emerged, and
we get more of a complete set of policies to work with all the major applications and
services available. By installing these tools, we are now ready to use SELinux and
work with it in the most convenient way possible.

There's more...
There are three different modes when it comes to SELinux. While Enhanced is the only
true mode that really protects us and enhances our server's security, there are two other
modes: Disabled and Permissive. Disabled means SELinux is turned off, which will
never be an option for us in this book and is not discussed any further as it does not
make sense to get rid of this fantastic CentOS feature. When disabled, our system is not
enhanced by SELinux and the good old DAC system is the only source of protection we
have at hand. Permissive mode means SELinux is turned on, the policy rules are loaded,
and all objects are labeled with a specific security context, but the system is not
enforcing these policies. This is like a dry-run parameter that a lot of Linux based
command-line tools have: it simulates the system under SELinux enhanced security
protection, and the system logs every SELinux policy violation as it would when
running for real. This is a great way to debug the system, or to analyze the consequences
that a normal, enforced run would have had on the system.

Often, it is used if you are unsure about the impact of using SELinux. As this mode does
not really provide us with any additional security, we will eventually need to switch to
Enforcing mode if we want enhanced security! Again, this is the only mode that protects
us; SELinux is fully running with all the policies loaded and is enforcing these rules on
the system. You should always aim for Enforcing mode on any system! To view the
current mode, use the command sestatus. We can see the current SELinux mode in the
Current mode line in the output. On CentOS 7, SELinux is in Enforcing mode by
default, which again tells us that the system is fully protected by it. To change this mode
to permissive mode, use the command setenforce permissive. Now, validate your
setting using sestatus again. To revert your changes back to Enforcing mode, use
setenforce enforcing. Setting the SELinux mode using setenforce is only setting it
temporarily, and it will not survive a reboot (take a look at the Mode from config file
in the sestatus output). To change this permanently, open the /etc/selinux/config
file and change the SELINUX= configuration parameter.

https://technet24.ir

Working with SELinux security contexts
As we have learned from the previous recipe in this chapter, SELinux is all about labels
and policies. In this recipe, we will show you how to work with these labels, also
known as security contexts.

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges. It is assumed that you are working through this
chapter recipe by recipe, so by now you should have installed the SELinux tools from
the previous recipe and generated all the SELinux man pages for the policies. As you
may notice, some of the commands that we will show you in this recipe have already
been applied in other recipes in this book. We will explain them here in detail. For
using the netstat program, install the package, net-tools, with the YUM package
manager.

https://technet24.ir

How to do it...
As we have learned in a previous recipe, almost every component in a SELinux system
is an object (files, directories, processes, users, and so on). We will begin this recipe
by showing you how to print out the SELinux labels for all kinds of objects using the -Z
command-line flag, which a lot of basic Linux commands on a SELinux system support.

1. To begin with, log in as root and type the following commands to explore SELinux
security context information from various kinds of objects:

id -Z
ls -Z
ps -auxZ
netstat -tulpenZ

2. Next, to list all available security context names for the files and directories on
your system, use the following command (which we filtered for httpd labels
only):

semanage fcontext -l | grep httpd

3. Next, let's create a new empty file that we can work with:

touch /tmp/selinux-context-test.txt

4. Show the current security context of the new file (should contain the type
user_tmp_t):

ls -Z /tmp/selinux-context-test.txt

5. Finally, change the user_tmp_t type to a random samba_share_t label name:

semanage fcontext -a -t samba_share_t /tmp/selinux-context-
test.txt
restorecon -v /tmp/selinux-context-test.txt

6. Perform a test to validate your changes:

ls -Z /tmp/selinux-context-test.txt

How it works...
Here in this recipe, we have shown you how to display labels (security contexts) of
various SELinux object types, how to show all available label names, and how to
modify or set them on the example of the file object. Working on a SELinux enhanced
system on a daily basis, most administrators would confirm that the most important
objects we have to manage security contexts for are files, directories, and processes.
Also, you need to remember that every SELinux object can have only one security
context.

So, what did we learn from this experience?

As we have have seen, we can use the -Z parameter on a lot of different standard Linux
command-line tools to print out their SELinux security context. Here, we have shown
you examples to display labels for users, files and directories, processes, and network
connections, which we could query with the id, ls, ps, and netstat commands. In the
output of these commands, we see that every security context label of every such object
consists of three values: user (flagged by _u), role (_r), and type (_t). The type field is
used as the main mechanism to do all our access control decisions in the standard
SELinux type (which is called targeted), so we often call the whole SELinux access
control process type enforcement (TE).

The other values user and role in an object's label are only necessary for very advanced
SELinux configurations not discussed here. In order to show all the available context
types for use on our system, use the command-line seinfo -t. These SELinux types are
a very important concept that we need to understand. For file and directory objects, they
are used to bundle together groups of objects related to each other, and that should be
protected or treated the same so that we can define specific policy rules on them. For
example, we can assign each file in the standard mail spool directory,
/var/spool/mail, of the type mail_spool_t, and then create an access rule policy in
which we will use this type to allow specific access. In the context of processes, type
values are called domains. Here, types are used as a way to isolate and sandbox
processes: any process that has a specified domain name can only communicate and
interact with other processes in the same domain (with some exceptions, such as
transitions not discussed here). This isolating of processes via domains greatly reduces
security risks. When processes get compromised, they can only damage themselves and
nothing else.

Note

https://technet24.ir

SELinux is sometimes called a sandboxing system. Starting from the assumption that
software will always have bugs, SELinux provides ways to isolate components of the
software such that a breach in one component doesn't compromise another.

If you type in ps -auxZ, you will also see that there are processes that run in a domain
called unconfined_t. Processes running with this label are not protected by SELinux
policies, which means that, if an unconfined process is compromised, SELinux does not
prevent an attacker from gaining access to other system resources and data. Here,
security falls back to standard DAC rules, which will be your only and exclusive
protection instead.

After we discussed how to display security contexts, next in the recipe we showed you
how you can set and change them. In some older documentation as well as in some
SELinux policy man pages, you will encounter examples with a tool called chcon,
which is used to modify the security context of your objects. The usage of this tool is not
the recommended approach any more, and you should always replace such command
line examples with the newer semanage fcontext -a -t command-line in
combination with the restorecon program. For semanage, you provide the label type
name with -t, and then provide the filename you want to set it for. Then, with
restorecon, you provide the filename to which you want to apply the change made by
semanage earlier. This is needed because security context can be set on two levels. It
can be set to the policy and on a filesystem level. The chcon command sets the new
context directly on the filesystem, while the policy context does not get altered. This can
be a problem, for example, if you want to reset or change the security context of your
filesystem later (this is called relabeling)—which means that all the security context
will be applied from the policy to the filesystem, overwriting all your changes made
with chcon. So it is better to use semanage, which will write to the policy, and then use
restorecon, which will synchronize the policy labels to the filesystem, keeping
everything up-to-date. If you want to set labels for directories instead of single files,
you can use regular expressions; to see some examples and further command-line
options; type man semanage-fcontext and browse to the EXAMPLES section.

Working with policies
At the core of every SELinux system are the policies. These are the exact rules that
define the access rights and relationships between all our objects. As we have learned
earlier, all our system's objects have labels, and one of them is a type identifier that can
then be used to enforce rules laid down by policies. In every SELinux enabled system,
by default, all access to any object is prohibited unless a policy rule has been defined
otherwise. Here, in this recipe, we will show you how we can query and customize
SELinux policies. As you may notice, some of the commands have already been applied
in other recipes in this book, such as for the httpd or ftpd daemons. Here, you will
find out how policies work.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges. It is assumed that you are working through this
chapter recipe by recipe, so by now you should have installed the SELinux tools from
the previous recipe and generated all SELinux man pages for the policies. For our tests
here, we will use the Apache web server, so please make sure it is installed and running
on your system (Refer to recipe Installing Apache and serving web pages in Chapter 12,
Providing Web Services).

How to do it...
1. To begin, log in as root and type the following command to show all SELinux

Boolean policy settings, filtered by the httpd daemon only:

semanage boolean -l | grep httpd

2. To get more information about a specific policy and its contained Booleans, read
the corresponding man page; for example, for httpd type the following:

man httpd_selinux

3. Here, within the manual pages for the httpd policy, we will, among others, find
detailed information about every httpd policy Boolean available. For example,
there is a section about httpd_use_nfso. To toggle single policy features, use the
setsebool command together with the policy Boolean name with the on or off
parameter, as shown here:

setsebool httpd_use_nfs on
setsebool httpd_use_nfs off

https://technet24.ir

How it works...
Here in this recipe, we have shown you how to work with SELinux Booleans.
Remember that SELinux follows the model of least privilege, which means that SELinux
policies enable only the least amount of features to any object; like a system service,
they need to perform their task and nothing more. These features of a policy can be
controlled (activated or deactivated) using corresponding SELinux Booleans at runtime
without the need to understand the inner workings of policy writing. It is a concept to
make policies customizable and extremely flexible. In other recipes in this book, we
have already worked with enabling SELinux Booleans to add special policy features,
such as enabling Apache or FTP home directories, which are all disabled by default.

What did we learn from this experience?

SELinux Booleans are like switches to enable or disable certain functionalities in your
SELinux policy. We started this recipe using the semanage command to show all
Booleans available on the system, and we filtered by http to get only those related to
this service. As you can see, there are a huge number of Booleans available in your
system, and most of them are disabled or off (the model of least privilege); to get more
information about a specific policy and its Boolean values, use the SELinux man pages
that we installed in a previous recipe. Sometimes, it can be difficult to find a specific
man page of interest. Use the following command to search for man page names that are
available: man -k _selinux | grep http. In our example, httpd_selinux is the
correct man page to get detailed information about the httpd policy. Finally, if we
decide to switch a specific SELinux Boolean feature, we will use the setsebool
command. You should remember that setting Booleans in this way only works until
reboot. To make those settings permanent, use the -p flag, for example, setsebool -P
httpd_use_nfs on.

There's more...
With all our knowledge from the previous recipes so far, we are now able to show an
example where we put everything together. Here, we will see SELinux security contexts
and policies in action for the httpd service. If the Apache web server is running, we
can get the SELinux domain name of the httpd process using the following line:

ps auxZ | grep httpd

This will show us that the httpd domain (type) is called httpd_t. To get the SELinux
label of our web root directory, type in the following command:

ls -alZ /var/www/html

This will tell us that the security context type of our Apache web server's web root
directory is called httpd_sys_content_t. Now, with this information, we can get the
exact rules for the Apache domain from our policy:

sesearch --allow | grep httpd_t

This will print out every httpd policy rule available. If we filter the output for the
httpd_sys_content_t context type, the following line comes up for files again:

allow httpd_t httpd_sys_content_t : file { ioctl read getattr lock
open }

This shows us which source target context is allowed to access, which destination target
context, and with which access rights. In our example for the Apache web server, this
specifies that the httpd process that runs as domain httpd_t can access, open, and
modify all the files on the filesystem that match the httpd_sys_content_t context type
(all files in the /var/www/html directory match this criterion). Now, to validate this
rule, create a temporary file and move it to the Apache web root directory: echo
"CentOS7 Cookbook" > /tmp/test.txt;mv /tmp/test.txt /var/www/html. Any
file inherits the security context of the directory in which it is created. If we had created
the file directly in the web root directory, or had copied the file instead of moving it
(copying means creating a copy), it would automatically be in the correct
httpd_sys_content_t context and fully accessible by Apache. But, as we moved the
file from the /tmp directory, it will stay as the user_tmp_t type in the web root
directory. If you now try to fetch the URL, for example,, curl
http://localhost/test.txt, you should get a 403 forbidden message. This is
because the user_tmp_t type is not part of the httpd_t policy rule for file objects,

https://technet24.ir

because, as said before, everything that is not defined in a policy rule will be blocked
by default. To make the file accessible, we will now change its security context label to
the correct type:

semanage fcontext -a -t httpd_sys_content_t /var/www/html/test.txt
restorecon -v /var/www/html/test.txt

Now, again fetch curl http://localhost/test.txt, which should be accessible,
and print out the correct text: CentOS7 cookbook.

Remember that, if you copy a file, the security context type is inherited from the targeted
parent directory. If you want to preserve the original context when copying, use cp -
preserve=context instead.

Troubleshooting SELinux
In this recipe, you will learn how to troubleshoot SELinux policies, which is most often
needed when access to some SELinux objects has been denied and you need to find out
the reasons for it. In this recipe, we will show you how to work with the sealert tool,
which will create human-readable and understandable error messages to work with.

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges. It is assumed that you are working through this
chapter recipe by recipe, so by now you should have installed the SELinux tools and
applied the Working with policies recipe in this chapter, as we will produce some
SELinux denial events in order to show you how to use the log file tools.

How to do it...
1. To begin, login as root and provoke a SELinux denial event:

touch /var/www/html/test2.html
semanage fcontext -a -t user_tmp_t /var/www/html/test2.html
restorecon -v /var/www/html/test2.html
curl http://localhost/test2.html

2. Now, let's generate an up-to-date human readable log file:

sealert -a /var/log/audit/audit.log

3. In the program's output, you will get a detailed description of any SELinux problem
and, at the end of each so called alert, you will even find a suggested solution to fix
the problem; in our example, the alert of interest should read (the output is
truncated) as shown next:

SELinux is preventing /usr/sbin/httpd from open access on the
file /var/www/html/test2.html.
/var/www/html/test2.html default label should be
httpd_sys_content_t

https://technet24.ir

How it works...
Here in this recipe, we showed you how easily one can troubleshoot SELinux problems
using the sealert program. We started by provoking a SELinux deny access problem
by creating a new file in the web root directory and assigning it a wrong context type of
value user_tmp_t, which has no access rule defined in the httpd policy. Then, we
used the curl command to try and fetch the website and actually produce the Access
Vector Cache (AVC) denial message in the SELinux logs. Denial messages are logged
when SELinux denies access. The primary source where all SELinux logging
information is stored is the audit log file, which can be found at
/var/log/audit/audit.log, and easier-to-read denial messages will also be written
to /var/log/messages. Here, instead of manually grepping for error messages and
combining both log files, we use the sealert tool, which is a convenience program that
will parse the audit and messages log file and present valuable AVC content in a human-
readable format. At the end of each alert message, you will also find a suggested
solution to the problem. Please note that those are auto-generated messages and should
always be questioned before applying.

Chapter 15. Monitoring IT
Infrastructure
In this chapter, we will cover the following topics:

Installing and configuring Nagios Core
Setting up NRPE on remote client hosts
Monitoring important remote system metrics

https://technet24.ir

Introduction
This chapter is a collection of recipes that provide the necessary steps to set up the de-
facto industry standard, open source network monitoring framework: Nagios Core.

Installing and configuring Nagios Core
In this recipe, we will learn how to install Nagios Core version 4, an open-source
network monitoring system that checks whether hosts and services are working and
notifies users when problems occur or services become unavailable. Nagios provides
solutions to monitor your complete IT infrastructure and is designed with an architecture
that is highly extendable and customizable and goes far beyond simple bash scripts to
monitor your services. (Refer to the Monitoring important server infrastructure recipe in
Chapter 3, Managing the System.)

https://technet24.ir

Getting ready
To complete this recipe, you will require a working installation of the CentOS 7
operating system with root privileges, a console-based text editor of your choice, and a
connection to the Internet in order to facilitate the download of additional packages.
Nagios Core 4 is not available in the official sources but from the EPEL repository;
make sure to have installed it before (refer to the Using a third-party repository recipe
in Chapter 4, Managing Packages with YUM). For the Nagios web frontend, you need a
running Apache2 web server as well as PHP (refer to the recipes from Chapter 12,
Providing Web Services) installed on your Nagios server. In our example, the Nagios
server has the IP address 192.168.1.7, and it will be able to monitor all IT infrastructure
in the complete 192.168.1.0/24 subnet.

How to do it...
Nagios Core 4 is not available by default, so let's begin by installing all the required
packages:

1. To do so, log in as root and type the following command:

yum install nagios nagios-plugins-all nagios-plugins-nrpe nrpe

2. First, create a new user account called nagiosadmin, which is needed for
authentication to the web frontend (enter a secure password when prompted), then
reload the Apache configuration:

htpasswd /etc/nagios/passwd nagiosadmin && systemctl reload
httpd

3. Now, add an e-mail address for the nagiosadmin web user to the Nagios
configuration, open the following file, and search and replace the string,
nagios@localhost, with an appropriate e-mail address you want to use here (it
can be a domain-wide or external e-mail address):

vi /etc/nagios/objects/contacts.cfg

4. Now, we need to adjust the main configuration file to activate
/etc/nagios/servers as our server's definition configuration directory, where
we will put all our server config files later, but first, make a backup:

cp /etc/nagios/nagios.cfg /etc/nagios/nagios.cfg.BAK
sed -i -r 's/^#cfg_dir=(.+)servers$/cfg_dir=\1servers/g'
/etc/nagios/nagios.cfg

5. We will have to create the server's config directory that we just defined in the last
step:

mkdir /etc/nagios/servers
chown nagios: /etc/nagios/servers;chmod 750 /etc/nagios/servers

6. Afterwards, to check the correctness of the nagios.cfg syntax, run the following:

nagios -v /etc/nagios/nagios.cfg

7. Finally, enable the Nagios daemon on boot and start the service:

systemctl enable nagios && systemctl start nagios

https://technet24.ir

How it works...
Here in this recipe, we have shown you how to install the Nagios Core v4 server (Core
is the open-source version of the Nagios project) on CentOS 7. Besides the main Nagios
package, we also required the NRPE package and all the Nagios plugins on our Nagios
server. After installing, we created a user account, which is able to log in to the web
frontend, and we set the e-mail address for this user in the main Nagios configuration
file. Next, we activated the /etc/nagios/servers directory using sed, where all our
server definition files will be put in a later recipe in this chapter. Then, we created the
directory and changed permissions to the Nagios user. To test the Nagios server
installation, open a web browser on a computer in the same subnet 192.168.1.0/24 as
your Nagios server, open the following URL (in our example, the Nagios server has the
IP 192.168.1.7, so change accordingly), and then log in with your newly created
nagiosadmin user account to http://192.168.1.7/nagios.

Setting up NRPE on remote client hosts
The Nagios Remote Plugin Executor (NRPE) is a system daemon that uses a special
client-server protocol and should be installed on all client hosts that you want to
monitor via your Nagios server remotely. It allows the central Nagios server to trigger
any Nagios checks on these client hosts securely and with low overhead. Here, we will
show you how to set up and configure any CentOS 7 client to use NRPE; if you've got
more than one computer in your network that you want to monitor, you need to apply this
recipe for every instance.

https://technet24.ir

Getting ready
To complete this recipe, you will require a computer other than your Nagios server with
an installation of the CentOS 7 operating system and root privileges, which you want to
monitor, and which needs a console-based text editor of your choice installed on it,
along with a connection to the Internet in order to facilitate the download of additional
packages. This computer needs to have access to our Nagios server over the network. In
our example, the Nagios server has the IP address 192.168.1.7, and our client system
will have the IP address 192.168.1.8.

How to do it...
1. Log in as root on your CentOS 7 client system and install all Nagios plugins as

well as NRPE on it:

yum install epel-release;yum install nrpe nagios-plugins-all
nagios-plugins-nrpe

2. Afterwards, open the main NRPE config file (after making a backup first):

cp /etc/nagios/nrpe.cfg /etc/nagios/nrpe.cfg.BAK && vi
/etc/nagios/nrpe.cfg

3. Find the line that starts with allowed_hosts, and add the IP address of your
Nagios server separated by a comma so that we can communicate with it (in our
example ,192.168.1.7, so change it accordingly); it should read as follows:

allowed_hosts=127.0.0.1,192.168.1.7

4. Save and close the file, then enable NRPE at boot and start it:

systemctl enable nrpe && systemctl start nrpe

5. Then enable the NRPE port in firewalld. To do this, create a new firewalld service
file for NRPE:

sed 's/80/5666/g' /usr/lib/firewalld/services/http.xml | sed
's/WWW (HTTP)/Nagios NRPE/g' | sed 's/<description>.*
<\/description>//g' > /etc/firewalld/services/nrpe.xml
firewall-cmd --reload
firewall-cmd --permanent --add-service=nrpe; firewall-cmd --
reload

6. Finally, test the NRPE connection. To do this, log in as root on your Nagios server
(for example, at 192.168.1.7) and execute the following command to check
NRPE on our client (192.168.1.8):

/usr/lib64/nagios/plugins/check_nrpe -H 192.168.1.8 -c check_load

7. If the output prints out an OK - load average message with some numbers, you
have successfully configured NRPE on the client!

https://technet24.ir

How it works...
Here in this recipe, we have shown you how to install NRPE on your CentOS 7 clients
that you want to monitor with your Nagios servers. If you want to monitor other Linux
systems running other distributions such as Debian or BSD, you should be able to find
appropriate packages using their own package managers or compile NRPE from source.
Besides the NRPE package, we also installed all the Nagios plugins on this machine
since NRPE is only the daemon for running monitoring commands on client computers,
but it does not include them. After installation, NRPE is listening only on localhost
(127.0.0.1) connections by default, so we then had to change this to also listen to
connections from our Nagios server, which runs with the IP 192.168.1.7, using the
allowed_hosts directive in the main NRPE configuration file. The NRPE port 5666 is
needed for incoming connections from the Nagios server, so we also had to open it in
the firewall. Since no firewalld rule is available for it by default, we created our own
new service file and added it to the current firewalld configuration. Afterwards, we
could test our NRPE installation from our Nagios server by running a check_nrpe
command using the client's IP address and a random check command (check_load
returns the system's load).

Monitoring important remote system
metrics
The Nagios plugin check_multi is a convenient tool to execute multiple checks within
a single check command that generates an overall returned state and output from it. Here
in this recipe, we will show you how to set it up and use it to quickly monitor a list of
important system metrics on your clients.

https://technet24.ir

Getting ready
It is assumed that you've gone through this chapter recipe by recipe, therefore by now,
you should have a Nagios server running and another client computer that you want to
monitor, which can already be accessed via its NRPE service externally by our Nagios
server. This client computer that you want to monitor needs an installation of the
CentOS 7 operating system with root privileges and a console-based text editor of your
choice installed on it, as well as a connection to the Internet in order to facilitate the
download of additional packages. The client computer will have the IP address
192.168.1.8.

How to do it...
The check_multi Nagios plugin is available from Github, so we will begin this recipe
to install the git program by downloading it:

1. Log in as root on your client computer and install Git if not done already:

yum install git

2. Now, download and install the check_multi plugin by compiling it from the
source:

cd /tmp;git clone git://github.com/flackem/check_multi;cd
/tmp/check_multi
./configure --with-nagios-name=nagios --with-nagios-user=nagios -
-with-nagios-group=nagios --with-plugin-
path=/usr/lib64/nagios/plugins --
libexecdir=/usr/lib64/nagios/plugins/
make all;make install;make install-config

3. Next, we install another very useful plugin called check_mem, which is not
available in the CentOS 7 Nagios plugin rpms:

cd /tmp;git clone https://github.com/justintime/nagios-
plugins.git
cp /tmp/nagios-plugins/check_mem/check_mem.pl
/usr/lib64/nagios/plugins/

4. Next, let's create a check_multi command file that will contain all your desired
client checks that you want to combine in a single run; open the following file:

vi /usr/local/nagios/etc/check_multi/check_multi.cmd

5. Put in the following content:

command[sys_load::check_load] = check_load -w 5,4,3 -c 10,8,6
command[sys_mem::check_mem] = check_mem.pl -w 10 -c 5 -f -C
command[sys_users::check_users] = check_users -w 5 -c 10
command[sys_disks::check_disk] = check_disk -w 5% -c 2% -X nfs
command[sys_procs::check_procs] = check_procs

6. Next, test out the command file that we just created in the last step using the
following commandline:

/usr/lib64/nagios/plugins/check_multi -f
/usr/local/nagios/etc/check_multi/check_multi.cmd

7. If everything is correct, it should print out the results of your five plugin checks and

https://technet24.ir

an overall result, for example, OK - 5 plugins checked. Next, we will install
this new command in the NRPE service on our client so that the Nagios server is
able to execute it remotely by calling its name. Open the NRPE configuration file:

vi /etc/nagios/nrpe.cfg

8. Add the following line to the end of the file right below the last # command line to
expose a new command called check_multicmd to our Nagios server:

command[check_multicmd]=/usr/lib64/nagios/plugins/check_multi -f
/usr/local/nagios/etc/check_multi/check_multi.cmd

9. Finally, let's reload NRPE:

systemctl restart nrpe

10. Now, let's check whether we can execute our new check_multicmd command that
we defined in the last step from our Nagios server. Log in as root and type the
following command (change the IP address of your client, 192.168.1.8,
appropriately):

/usr/lib64/nagios/plugins/check_nrpe -H 192.168.1.8 -c
"check_multicmd"

11. If the output is the same as running it locally on the client itself (take a look at the
former step), we can successfully execute remote NRPE commands on our client
through our server, so let's define the command on our Nagios server system for
real so that we can start using it within the Nagios system. Open the following file:

vi /etc/nagios/objects/commands.cfg

12. Put in the following content at the end of the file to define a new command called
check_nrpe_multi, which we can use in any service definition:

define command {
 command_name check_nrpe_multi
 command_line $USER1$/check_nrpe -H $HOSTADDRESS$ -c
"check_multicmd"
}

13. Next, we will define a new server definition for the client that we want to monitor
on our Nagios server (give the config file an appropriate name, for example, its
domain name or IP address):

vi /etc/nagios/servers/192.168.1.8.cfg

14. Put in the following content, which will define a new host with its service, using

our new Nagios command that we just created:

define host {
 use linux-server
 host_name host1
 address 192.168.1.22
 contact_groups unix-admins
}
define service {
 use generic-service
 host_name host1
 check_command check_nrpe_multi
 normal_check_interval 15
 service_description check_nrpe_multi service
}

15. Finally, we need to configure all persons who should get notification e-mails for
our new service in case of errors. Open the following file:

vi /etc/nagios/objects/contacts.cfg

16. Put in the following content at the end of the file:

define contactgroup{
 contactgroup_name unix-admins
 alias Unix Administrators
 }
define contact {
 contact_name pelz
 use generic-contact
 alias Oliver Pelz
 contactgroups unix-admins
 email oliverpelz@mymailhost.com
}

17. Now, restart the Nagios service:

systemctl restart nagios

https://technet24.ir

How it works...
We started this recipe by installing the check_multi and check_mem plugins from their
author's Github repositories; they are plain command-line tools. Nagios performs
checks by running such external commands, and it uses the return code along with output
from the command as information on whether the check was successful or not. Nagios
has a very flexible architecture that can be easily extended using plugins, add-ons, and
extensions. A central place to search for all kinds of extensions is at
https://exchange.nagios.org/. Next, we added a new command file for check_multi,
where we put five different system check_ commands in. These checks act as a starting
point for customizing your monitoring needs and will check system load, memory
consumption, system users, free space, and processes. All available check_ commands
can be found at /usr/lib64/nagios/plugins/check_*. As you can see in our
command file, the parameters of those check_ commands can be very different, and
explaining them all is out of the scope of this recipe. Most of them are used to set
threshold values to reach a certain state, for example, the CRITICAL state. To get more
information about a specific command, use the --help parameter with the command.
For example, to find out what all the parameters in the check_load -w 5,4,3 -c
10,8,6 command are doing, use run /usr/lib64/nagios/plugins/check_load --
help. You can easily add any number of new check commands to our command file from
existing plugins, or you can download and install any new commands, if you like. There
are also a number of command file examples shipped with the check_multi plugin,
which are very useful for learning, so please have a look at the directory:
/usr/local/nagios/etc/check_multi/*.cmd.

Afterwards, we checked the correctness of our new command file that we just created
by dry-running it as an -f parameter from the check_multi command locally on the
client. In its output, you will find all the single outputs as if you would have run these
five commands individually. If one single check fails, the complete check_multi will
do. Next, we defined a new NRPE command in the NRPE config file called
check_multicmd that can then be executed from the Nagios server, which we tested in
the next step from our Nagios server. For a test to be successful, we expect the same
results as we got when calling the command from the client itself. Afterwards, we
defined this command in our commands.cfg on the Nagios server so that we can reuse it
as much as we like in any service definition by referencing the command's name,
check_nrpe_multi. Next, we created a new server file named as the IP address (you
can name it anything you like as long it has the .cfg extension in the directory) of the
client we want to monitor: 192.168.1.8.cfg. It contains exactly one host definition

https://exchange.nagios.org/

and one or multiple service definitions, which are linked by the value of host_name of
the host with the host_name value in your service definitions.

In the host definition, we defined a contact_groups contact that links to the
contacts.cfg file's contact group and contact entry. These will be used to send
notification e-mails if the checked service has any errors. The most important value in
the service definition is the check_command check_nrpe_multi line, which executes
the command that we created before as our one and only check. Also, the
normal_check_interval is important as it defines how often the service will be
checked under normal conditions. Here, it gets checked every 15 minutes. You can add
as many service definitions to a host as you like.

Now, go to your Nagios web frontend to inspect your new host and service. Here, go to
the Hosts tab, where you will see the new host, host1, that you defined in this recipe,
and it should give you information about its status. If you click on the Services tab, you
will see the check_nrpe_multi service. It should show the Status as Pending, OK, or
CRITICAL, depending on the success of the single checks. If you click on its
check_nrpe_multi link, you will see details about the checks.

Here in this chapter, we could only show you the very basics of Nagios, and there is
always more to learn, so please read the official Nagios Core documentation at
https://www.nagios.org, or check out the book Learning Nagios 4, Packt Publishing, by
Wojciech Kocjan.

https://www.nagios.org
https://technet24.ir

Part 3. Module 3
Red Hat Enterprise Linux Server Cookbook

Over 60 recipes to help you build, configure, and orchestrate RHEL 7 Server to
make your everyday administration experience seamless

Chapter 1. Working with KVM Guests
In this chapter, we will cover the following recipes:

Installing and configuring a KVM
Configuring resources
Building VMs
Adding CPUs on the fly
Adding RAM on the fly
Adding disks on the fly
Moving disks to another storage
Moving VMs
Backing up your VM metadata

https://technet24.ir

Introduction
This book will attempt to show you how to deploy RHEL 7 systems without too much of
a hassle. As this book is written with automation in mind, I will emphasize on
command-line utilities rather than elaborating on its GUI counterparts, which are
useless for automation.

This chapter explains how to build and manage KVM guests using the libvirt interface
and various tools built around it. It will provide a brief overview on how to set up a
KVM on RHEL and manage its resources. The setup provided in this overview is far
from the ready enterprise as it doesn't provide any redundancy, which is generally
required in enterprises. However, the recipes provided are relevant in enterprise setups
as the interface stays the same. Most of the time, you will probably use a management
layer (such as RHEV or oVirt), which will make your life easier in managing
redundancy.

Note

Libvirt is the API between the user and the various virtualization and container layers
that are available, such as KVM, VMware, Hyper-V, and Linux Containers. Check
https://libvirt.org/drivers.html for a complete list of supported hypervisors and
container solutions.

As most tasks performed need to be automated in the end, I tend not to use any graphical
interfaces as these do not allow an easy conversion into script. Hence, you will not find
any recipes in this chapter involving a graphical interface. These recipes will primarily
focus on virsh, the libvirt management user interface that is used to manage various
aspects of your KVM host and guests. While a lot of people rely on the edit option of
virsh, it doesn't allow you to edit a guest's configuration in real time. Editing your
guest's XML configuration in this way will require you to shut down and boot your guest
for the changes to take effect. A reboot of your guest doesn't do the trick as the XML
configuration needs to be completely reread by the guest's instance in order for it to
apply the changes. Only a fresh boot of the guest will do this.

The virsh interface is also a shell, so by launching virsh without any commands, you
will enter the libvirt management shell. A very interesting command is help. This will
output all the available commands grouped by keyword. Each command accepts the --
help argument to show a detailed list of the possible arguments, and their explanation,
which you can use.

https://libvirt.org/drivers.html

https://technet24.ir

Installing and configuring a KVM
This recipe covers the installing of virtualization tools and packages on RHEL 7.

By default, a RHEL 7 system doesn't come with a KVM or libvirt preinstalled. This can
be installed in three ways:

Through the graphical setup during the system's setup
Via a kickstart installation
Through a manual installation from the command line

For this recipe, you should know how to install packages using yum, and your system
should be configured to have access to the default RHEL 7 repository (refer to Chapter
8, Yum and Repositories, for more information), which is required for the packages that
we will use.

Alternatively, you could install packages from the installation media using rpm, but
you'll need to figure out the dependencies yourself.

Check the dependencies of an rpm using the following command:

~]# rpm -qpR <rpm file>

This will output a list of binaries, libraries, and files that you need installed prior to
installing this package.

Check which package contains these files through this command:

~]# rpm -qlp <rpm package>

As you can imagine, this is a tedious job and can take quite some time as you need to
figure out every dependency for every package that you want to install in this way.

Getting ready
To install a KVM, you will require at least 6 GB of free disk space, 2 GB of RAM, and
an additional core or thread per guest.

Check whether your CPU supports a virtualization flag (such as SVM or VMX). Some
hardware vendors disable this in the BIOS, so you may want to check your BIOS as
well. Run the following command:

~]# grep -E 'svm|vmx' /proc/cpuinfo
flags : ... vmx ...

Alternatively, you can run the following command:

~]# grep -E 'svm|vmx' /proc/cpuinfo
flags : ... svm ...

Check whether the hardware virtualization modules (such as kvm_intel and kvm) are
loaded in the kernel using the following command:

~]# lsmod | grep kvm
kvm_intel 155648 0
kvm 495616 1 kvm_intel

https://technet24.ir

How to do it…
We'll look at the three ways of installing a KVM onto your system.

Manual installation

This way of installing a KVM is generally done once the base system is installed by
some other means. You need to perform the following steps:

1. Install the software needed to provide an environment to host virtualized guests
with the following command:

~]# yum -y install qemu-kvm qemu-img libvirt

The installation of these packages will include quite a lot of dependencies.
2. Install additional utilities required to configure libvirt and install virtual

machines by running this command:

~]# yum -y install virt-install libvirt-python python-virthost
libvirt-client

3. By default, the libvirt daemon is marked to autostart on each boot. Check
whether it is enabled by executing the following command:

~]# systemctl status libvirtd
libvirtd.service - Virtualization daemon
 Loaded: loaded (/usr/lib/systemd/system/libvirtd.service;
enabled)
 Active: inactive
 Docs: man:libvirtd(8)
 http://libvirt.org

4. If for some reason this is not the case, mark it for autostart by executing the
following:

~]# systemctl enable libvirtd

5. To manually stop/start/restart the libvirt daemon, this is what you'll need to
execute:

~]# systemctl stop libvirtd
~]# systemctl start libvirtd
~]# systemctl restart libvirtd

Kickstart installation

Installing a KVM during kickstart offers you an easy way to automate the installation of
KVM instances. Perform the following steps:

1. Add the following package groups to your kickstarted file in the %packages
section:

@virtualization-hypervisor
@virtualization-client
@virtualization-platform
@virtualization-tools

2. Start the installation of your host with this kickstart file.

Graphical setup during the system's setup

This is probably the least common way of installing a KVM. The only time I used this
was during the course of writing this recipe. Here's how you can do this:

1. Boot from the RHEL 7 Installation media.
2. Complete all steps besides the Software selection step.

https://technet24.ir

3. Go to Software Selection to complete the KVM software selection.
4. Select the Virtualization host radio button in Base Environment, and check the

Virtualization Platform checkbox in Add-Ons for Selected Environment:

5. Finalize the installation.
6. On the Installation Summary screen, complete any other steps and click on Begin

Installation.

See also
To set up your repositories, check out Chapter 8, Yum and Repositories.

To deploy a system using kickstart, refer to Chapter 2, Deploying RHEL "En Masse".

For more in-depth information about using libvirt, go to http://www.libvirt.org/.

RHEL 7 has certain support limits, which are listed at these locations:

https://access.redhat.com/articles/rhel-kvm-limits

https://access.redhat.com/articles/rhel-limits

http://www.libvirt.org/
https://access.redhat.com/articles/rhel-kvm-limits
https://access.redhat.com/articles/rhel-limits
https://technet24.ir

Configuring resources
Virtual machines require CPUs, memory, storage, and network access, similar to
physical machines. This recipe will show you how to set up a basic KVM environment
for easy resource management through libvirt.

A storage pool is a virtual container limited by two factors:

The maximum size allowed by qemu-kvm
The size of the disk on the physical machine

Storage pools may not exceed the size of the disk on the host. The maximum sizes are as
follows:

virtio-blk = 2^63 bytes or 8 exabytes (raw files or disk)
EXT4 = ~ 16 TB (using 4 KB block size)
XFS = ~8 exabytes

Getting ready
For this recipe, you will need a volume of at least 2 GB mounted on /vm and access to
an NFS server and export.

We'll use NetworkManager to create a bridge, so ensure that you don't disable
NetworkManager and have bridge-utils installed.

https://technet24.ir

How to do it…
Let's have a look into managing storage pools and networks.

Creating storage pools

In order to create storage pools, we need to provide the necessary details to the KVM
for it to be able to create it. You can do this as follows:

1. Create a localfs storage pool using virsh on /vm, as follows:

~]# virsh pool-define-as --name localfs-vm --type
dir --target /vm

2. Create the target for the storage pool through the following command:

~# mkdir -p /nfs/vm

3. Create an NFS storage pool using virsh on NFS server:/export/vm, as follows:

~]# virsh pool-define-as --name nfs-vm --type network --source-
host nfsserver --source-path /export/vm –target /nfs/vm

4. Make the storage pools persistent across reboots through the following commands:

~]# virsh pool-autostart localfs-vm
~]# virsh pool-autostart nfs-vm

5. Start the storage pool, as follows:

~]# virsh pool-start localfs-vm
~]# virsh pool-start nfs-vm

6. Verify that the storage pools are created, started, and persistent across reboots. Run
the following for this:

~]# virsh pool-list
 Name State Autostart

 localfs-vm active yes
 nfs-vm active yes

Querying storage pools

At some point in time, you will need to know how much space you have left in your
storage pool.

Get the information of the storage pool by executing the following:

~]# virsh pool-info --pool <pool name>
Name: nfs-vm
UUID: some UUID
State: running
Persistent: yes
Autostart: yes
Capacity: 499.99 GiB
Allocation: 307.33 GiB
Available: 192.66 GiB

As you can see, this command easily shows you its disk space allocation and
availability.

Tip

Be careful though; if you use a filesystem that supports sparse files, these numbers will
most likely be incorrect. You will have to manually calculate the sizes yourself!

To detect whether a file is sparse, run ls -lhs against the file. The -s command will
show an additional column (the first), showing the exact space that the file is occupying,
as follows:

~]# ls -lhs myfile
121M -rw-------. 1 root root 30G Jun 10 10:27 myfile

Removing storage pools

Sometimes, storage is phased out. So, it needs to be removed from the host.

You have to ensure that no guest is using volumes on the storage pool before proceeding,
and you need to remove all the remaining volumes from the storage pool. Here's how to
do this:

1. Remove the storage volume, as follows:

~]# virsh vol-delete --pool <pool name> --vol <volume name>

2. Stop the storage pool through the following command:

~]# virsh pool-destroy --pool <pool name>

3. Delete the storage pool using the following command:

~]# virsh pool-delete --pool <pool name>

https://technet24.ir

Creating a virtual network

Before creating the virtual networks, we need to build a bridge over our existing
network interface. For the sake of convenience, this NIC will be called eth0. Ensure
that you record your current network configuration as we'll destroy it and recreate it on
the bridge.

Unlike the storage pool, we need to create an XML configuration file to define the
networks. There is no command similar to pool-create-as for networks. Perform the
following steps:

1. Create a bridge interface on your network's interface, as follows:

~]# nmcli connection add type bridge autoconnect yes con-name
bridge-eth0 ifname bridge-eth0

2. Remove your NIC's configuration using the following command:

~]# nmcli connection delete eth0

3. Configure your bridge, as follows:

~]# nmcli connection modify bridge-eth0 ipv4.addresses <ip
address/cidr> ipv4.method manual
~# nmcli connection modify bridge-eth0 ipv4.gateway <gateway ip
address>
~]# nmcli connection modify bridge-eth0 ipv4.dns <dns servers>

4. Finally, add your NIC to the bridge by executing the following:

~]# nmcli connection add type bridge-slave autoconnect yes con-
name slave-eth0 ifname eth0 master bridge-eth0

For starters, we'll take a look at how we can create a NATed network similar to the one
that is configured by default and called the default:

1. Create the network XML configuration file, /tmp/net-nat.xml, as follows:

<network>
 <name>NATted</name>
 <forward mode='nat'>
 <nat>
 <port start='1024' end='65535'/>
 </nat>
 </forward>

 <bridge name='virbr0' stp='on' delay='0'/>
 <ip address='192.168.0.1' netmask='255.255.255.0'>
 <dhcp>
 <range start='192.168.0.2' end='192.168.0.254'/>
 </dhcp>
 </ip>
</network>

2. Define the network in the KVM using the preceding XML configuration file.
Execute the following command:

~]# virsh net-define /tmp/net-nat.xml

Now, let's create a bridged network that can use the network bound to this bridge
through the following steps:

1. Create the network XML configuration file, /tmp/net-bridge-eth0.xml, by
running the following:

<network>
 <name>bridge-eth0</name>
 <forward mode="bridge" />
 <bridge name="bridge-eth0" />
</network>

2. Create the network in the KVM using the preceding file, as follows:

~]# virsh net-define /tmp/net-bridge-eth0.xml

There's one more type of network that is worth mentioning: the isolated network. This
network is only accessible to guests defined in this network as there is no connection to
the "real" world.

1. Create the network XML configuration file, /tmp/net-local.xml, by using the
following code:

<network>
 <name>isolated</name>
 <bridge name='virbr1' stp='on' delay='0'/>
 <domain name='isolated'/>
</network>

2. Create the network in KVM by using the above file:

~]# virsh net-define /tmp/net-local.xml

https://technet24.ir

Creating networks in this way will register them with the KVM but will not activate
them or make them persistent through reboots. So, this is an additional step that you need
to perform for each network. Now, perform the following steps:

1. Make the network persistent across reboots using the following command:

~]# virsh net-autostart <network name>

2. Activate the network, as follows:

~]# virsh net-start <network name>

3. Verify the existence of the KVM network by executing the following:

~]# virsh net-list --all
 Name State Autostart Persistent
--
 bridge-eth0 active yes yes
 default inactive no yes
 isolated active yes yes
 NATted active yes yes

Removing networks

On some occasions, the networks are phased out; in this case, we need to remove the
network from our setup.

Prior to executing this, you need to ensure that no guest is using the network that you
want to remove. Perform the following steps to remove the networks:

1. Stop the network with the following command:

~# virsh net-destroy --network <network name>

2. Then, delete the network using this command:

~]# virsh net-undefine --network <network name>

How it works…
It's easy to create multiple storage pools using the define-pool-as command, as you can
see. Every type of storage pool needs more, or fewer, arguments. In the case of the NFS
storage pool, we need to specify the NFS server and export. This is done by specifying-
-source-host and--source-path respectively.

Creating networks is a bit more complex as it requires you to create a XML
configuration file. When you want a network connected transparently to your physical
networks, you can only use bridged networks as it is impossible to bind a network
straight to your network's interface.

https://technet24.ir

There's more…
The storage backend created in this recipe is not the limit. Libvirt also supports the
following backend pools:

Local storage pools

Local storage pools are directly connected to the physical machine. They include local
directories, disks, partitions, and LVM volume groups. Local storage pools are not
suitable for enterprises as these do not support live migration.

Networked or shared storage pools

Network storage pools include storage shared through standard protocols over a
network. This is required when we migrate virtual machines between physical hosts.
The supported network storage protocols are Fibre Channel-based LUNs, iSCSI, NFS,
GFS2, and SCSI RDMA.

By defining the storage pools and networks in libvirt, you ensure the availability of the
resources for your guest. If, for some reason, the resource is unavailable, the KVM will
not attempt to start the guests that use these resources.

When checking out the man page for virsh (1), you will find a similar command to net-
define, pool-define: net-create, and pool-create (and pool-create-as). The
net-create command, similar to pool-create and pool-create-as, creates
transient (or temporary) resources, which will be gone when libvirt is restarted. On the
other hand, net-define and pool-define (as also pool-define-as) create persistent
(or permanent) resources, which will still be there after you restart libvirt.

See also
You can find out more on libvirt storage backend pools at https://libvirt.org/storage.html

More information on libvirt networking can be found at
http://wiki.libvirt.org/page/Networking

https://libvirt.org/storage.html
http://wiki.libvirt.org/page/Networking
https://technet24.ir

Building guests
After you install and configure a KVM on the host system, you can create guest
operating systems. Every guest is defined by a set of resources and parameters stored in
the XML format. When you want to create a new guest, creating such an XML file is
quite cumbersome. There are two ways to create a guest:

Using virt-manager
Using virt-install

This recipe will employ the latter as it is perfect for scripting, while virt-manager is
a GUI and not very well suited to automate things.

Getting ready
In this recipe, we will cover a generic approach to create a new virtual machine using
the bridge-eth0 network bridge and create a virtual disk on the localfs-vm storage
pool, which is formatted as QCOW2. The QCOW2 format is a popular virtual disk
format as it allows thin provisioning and snapshotting. We will boot the RHEL 7
installation media located on the localfs-iso storage pool (rhel7-install.iso) to
start installing a new RHEL 7 system.

https://technet24.ir

How to do it…
Let's create some guests and delete them.

Create a guest

Let's first create a disk for the guest and then create the guest on this disk, as follows:

1. Create a 10 GB QCOW2 format disk in the localfs-vm pool, as follows:

~]# virsh vol-create-as --pool localfs-vm --name rhel7_guest-
vda.qcows2 --format qcows2 –capacity 10G

2. Create the virtual machine and start it through the following command:

~]# virt-install \
--hvm \
--name rhel7_guest \
–-memory=2048,maxmemory=4096 \
--vcpus=2,maxvcpus=4 \
--os-type linux \
--os-variant rhel7 \
--boot hd,cdrom,network,menu=on \
--controller type=scsi,model=virtio-scsi \
--disk device=cdrom,vol=localfs-iso/rhel7-
install.iso,readonly=on,bus=scsi \
--disk device=disk,vol=localfs-vm/rhel7_guest-
vda.qcow2,cache=none,bus=scsi \
--network network=bridge-eth0,model=virtio \
--graphics vnc \
--graphics spice \
--noautoconsole \
--memballoon virtio

Deleting a guest

At some point, you'll need to remove the guests. You can do this as follows:

1. First, ensure that the guest is down by running the following:

~]# virsh list –all
 Id Name State
--
- rhel7_guest shut off

If the state is not shut off, you can forcefully shut it down:

~]# virsh destroy --domain <guest name>

2. List the storage volumes in use by your guest and copy this somewhere:

~]# virsh domblklist <guest name>
Type Device Target Source
--
file disk vda /vm/rhel7_guest-vda.qcow2
file cdrom hda /iso/rhel7-install.iso

3. Delete the guest through the following command:

~]# virsh undefine --domain <guest name> --storage vda

Adding --remove-all-storage to the command will wipe off the data on the
storage volumes dedicated to this guest prior to deleting the volume from the pool.

https://technet24.ir

How it works…
The virt-install command supports creating storage volumes (disks) by specifying
the pool, size, and format. However, if this storage volume already exists, the
application will fail. Depending on the speed of your KVM host disks (local or
network) and the size of the guest's disks, the process of creating a new disk may take
some time to be completed. By specifying an existing disk with virt-install, you can
reuse the disk should you need to reinstall the guest. It would be possible to only create
the disk on the first pass and change your command line appropriately after this.
However, the fact remains that using virsh vol-create-as gives you more granular
control of what you want to do.

We're using the QCOW2 format to contain the guest's disk as it is a popular format when
it comes to storing KVM guest disks. This is because it supports thin provisioning and
snapshotting.

When creating the guest, we specify both the maxmemory option for memory
configuration and the maxvcpus option for vcpus configuration. This will allow us to
add CPUs and RAM to the guest while it is running. If we do not assign these, we'll
have to shut down the system before being able to change the XML configuration using
the following command:

~# virsh edit <hostname>

As you can see, we're using the virtio driver for any hardware (network, disks, or
balloon) that supports it as it is native to the KVM and is included in the RHEL 7 kernel.

Note

If, for some reason, your guest OS doesn't support virtio drivers, you should remove
the --controller option of the command line and the bus specification from the --
disk option.

For more information on virtio support, go to http://wiki.libvirt.org/page/Virtio.

The --memballoon option will ensure that we do not run into problems when we
overcommit our memory. When specific guests require more memory, the ballooning
driver will ensure that the "idle" guests' memory can be evenly redistributed.

The graphics option will allow you to connect to the guest through the host using either

http://wiki.libvirt.org/page/Virtio

VNC (which is a popular client to control remote computers) or spice (which is the
default client for virt-manager). The configuration for both VNC and spice is
insecure, though. You can either set this up by specifying a password—by adding
password=<password> to each graphics stanza—or by editing the
/etc/libvirt/qemu.conf file on the KVM host, which will be applied to all guests.

https://technet24.ir

There's more…
In this recipe, we used "local" install media in the form of an ISO image to install the
system. However, it is also possible to install a guest without a CD, DVD, or an ISO
image. The --location installation method option allows you to specify a URI that
contains your kernel/initrd pair, which is required to start the installation.

Using --location in combination with --extra-args will allow you to specify kernel
command-line arguments to pass to the installer. This can be used, for instance, to pass
on the location of an Anaconda kickstart file for automated installs and/or specifying
your IP configuration during the installer.

See also
Check the man page of virt-install (1) for more information on how to use it to your
advantage.

https://technet24.ir

Adding CPUs on the fly
Imagine an enterprise having to correctly add dimension to all their systems right from
the start. In my experience, this is very difficult. You will either underdimension it, and
your customers will complain about performance at some point, or you will
overdimension it, and then the machine will sit there, idling about, which is not optimal
either. This is the reason hardware vendors have come up with hot-add resources. This
allows a system to have its CPUs, memory, and/or disks to be upgraded/increased
without the need for a shutdown. A KVM implements a similar functionality for its
guests. It allows you to increase the CPUs, memory, and disks on the fly.

The actual recipe is very simple to execute, but there are some prerequisites to be met.

Getting ready
In order to be able to add CPUs on the fly to a guest, the guest's configuration must
support them.

There are two ways to achieve this:

It must be created with the max option, as follows:

--vcpus 2,maxvcpus=4

You can set the maximum using virsh (which will be applied at the next boot)
through the following command:

~]# virsh setvcpus --domain <guestname> --count <max cpu count> -
-config --maximum

You can edit the guests' XML files, as follows:

~]# virsh edit <guestname>

The last two options will require you to shut down and boot (not reboot) your guest as
these commands cannot change the "live" configuration.

The guest's XML file must contain the following element with the subsequent attributes:

<domain type='kvm'>
...
<vcpu current='2'>4</vcpu>
...
</domain>

Here, current indicates the number of CPUs in use, and the number within the node
indicates the maximum number of vCPUs that can be assigned. This number can be
increased but should never exceed the number of cores or threads in your host.

https://technet24.ir

How to do it…
Let's add some CPUs to the guest.

On the KVM host, perform the following steps:
1. Get the maximum number vCPUs that you can assign, as follows:

~]# virsh dumpxml <guestname> |grep vcpu
<vcpu placement='static' current='4'>8</vcpu>

2. Now, set the new number of vCPUs through this command:

~]# virsh setvcpus --domai
n <guestname> --count <# of CPUs> --live

On the KVM guest, perform the following:
1. Tell your guest OS there are more CPUs available by executing the following

command:

~]# for i in $(grep -H 0 /sys/devices/system/cpu/cpu*/online |
awk -F: '{print $1}'); do echo 1 > $i; done

Adding RAM on the fly
As with CPUs, the possibility to add memory on the fly is an added value in mission-
critical environments where downtime can literally cost a company millions of Euros.

The recipe presented here is quite simple, similar to the one on CPUs. Here, your guest
needs to be prepared to use this functionality as well.

https://technet24.ir

Getting ready
If you want to be able to add memory on the fly to a guest, it must be configured to
support it. As with the CPU, this has to be activated. There are three ways to do this:

The guest must be created with the maxmem option, as follows:

--memory 2G,maxmemory=4G

You can set the maximum memory using the virsh command, as follows:

~]# virsh setmaxmem --domain <guestname> --size <max mem> --live

You can edit the guests' XML files:

~]# virsh edit <guestname>

Of course, the latter 2 option requires you to shut down the guest, which is not always
possible in production environments.

Ensure that the guests' XML configuration files contain the following elements with the
subsequent attributes:

<domain type='kvm'>
...
 <memory unit='KiB'>4194304</memory>
 <currentMemory unit='KiB'>2097152</currentMemory>
...
</domain>

How to do it…
Let's increase the guest's memory.

On the KVM host, perform the following steps:

1. Get the current and maximum memory allocation for a guest, as follows:

~]# virsh dumpxml srv00002 |grep -i memory
 <memory unit='KiB'>4194304</memory>
 <currentMemory unit='KiB'>4194304</currentMemory>

2. Set the new amount of memory for the guest by executing the following command:

~]# virsh setmem --domain <guestname> --size <memory> --live

On the KVM guest, perform the following:

1. Tell your guest OS about the memory increase through this command:

~]# for i in $(grep -H offline
/sys/devices/system/memory/memory*/state | awk -F: '{print $1}');
do echo online > $i; done

https://technet24.ir

Adding disks on the fly
This recipe includes instructions on how to create different types of storage volumes.
Storage volumes are dedicated storage sets aside for use by guests.

Getting ready
There is not a lot of preparation to be done in order to add disks to your guest, which is
in contrast to adding CPUs and RAM.

You only need to ensure that the storage pool has enough free disk space to
accommodate the new disk.

https://technet24.ir

How to do it…
Similar to the recipe for creating guests, you'll need to create a disk first. This can be
done as follows:

1. Let's create a raw disk in the localfs-vm pool that is 30 GB big through the
following command:

~]# virsh vol-create-as --pool localfs-vm --name rhel7_guest-
vdb.raw --format raw --capacity 30G

2. Look up the path of the newly created volume, as follows:

~]# virsh vol-list --pool localfs-vm |awk '$1 ~ /^rhel7_guest-
vdb.raw$/ {print $2}'

This will result in the path of your volume; here's an example:

/vm/rhel7_guest-vdb.raw

3. Attach the disk to the guest, as follows:

~]# virsh attach-disk --domain <guestname> --source <the above
path> --target vdb --cache none --persistent –live

How it works…
Creating a disk using vol-create-as may take some time depending on the speed of
your host's disks and the size of the guest's disks.

We will look up the path of the newly created volume as it is a required argument for the
command that attaches the disk to the guest. In most cases, you won't need to do this as
you'll know how your host is configured, but when you script this kind of functionality,
you will require this step.

Adding a disk in this way will attach a disk using the virtio driver, which, as
specified earlier, is optimized for use with KVMs.

https://technet24.ir

There's more…
If, for some reason, the original guest doesn't support virtio drivers or you do not have
the virtio controller, you can create this yourself. Store the XML configuration file as
/tmp/controller.xml with the following contents:

<controller type='scsi' model='virtio' />

You can find this out by checking the host's XML file for the preceding statement.

Then, import the XML configuration file, as follows:

~]# virsh attach-device –domain <guestname> /tmp/controller.xml

This will allow you to create disks using virtio.

Moving disks to another storage
Moving disks around is part of the life cycle of a guest. Disks in the storage pools (local
or network) may fail or fill up due to bad capacity management. Another reason may be
the cost or speed of the disks involved. Sooner or later, one of these things will happen,
and then you will need to move the storage somewhere else.

Ordinarily, one would have to shut down the guest, copy the storage volume file
elsewhere (if it is a file), wait, update the machine's XML configuration, and launch it
again. However, in today's mission-critical enterprises, this may not always be
possible.

https://technet24.ir

Getting ready
In order to perform this copy, you need the source and destination paths of the disk. You
can get the source path by checking the XML configuration file or, even better, by
querying the storage volume itself. This does require you to know which storage pool it
is located on.

Execute the following command:

~]# virsh vol-list --pool <storage pool> |awk '$1 ~ /^<volume name>$/
{print $2}'

Ensure that your destination is an existing storage pool; if not, go ahead and create it.

Check out the Configuring resources recipe in this chapter to create storage pools.

If you can't remember the path to your pool's location, run the following:

~]# virsh pool-dumpxml <poolname> |awk '/<path>.*<\/path>/ {print
$1}'

How to do it…
Moving disks can take some time, so ensure that you have plenty of time available.
Perform the following steps:

1. Dump the inactive XML configuration file for the guest, as follows:

~]# virsh dumpxml --inactive <guestname> > /tmp/<guestname>.xml

The –-inactive file will ensure that it doesn't copy any temporary information
that is irrelevant to the guest.

2. Undefine the guest through the following command:

~]# virsh undefine <guestname>

3. Copy the virtual disk to another location by executing the following:

~]# virsh blockcopy --domain <guestname> --path <original path> -
-dest <destination path> --wait --verbose –-pivot

4. Now, edit the guest's XML configuration file and change the path of the disk to the
new location.

5. Redefine the guest, as follows:

~]# virsh define /tmp/<guestname>.xml

6. Remove the source disk after you are happy with the results. Run the following
command:

~]# virsh vol-delete --pool <poolname> --vol <volname>

https://technet24.ir

How it works…
The moving of disks can only be performed on transient domains, which is the reason
we execute the virsh undefine command. In order to be able to make it persistent
again after the transfer, we also need to dump the XML configuration file and modify the
storage volume path.

Moving the disk does two things, which are:

Firstly, it copies all the data of the source to the destination
Secondly, when the copying is complete, both source and destination remain
mirrored until it is either canceled with blockjob --abort or actually switched
over to the new target by executing the blockjob --pivot command

The preceding blockcopy command does everything at the same time. The --wait
command will not give control back to the user until the command fails or succeeds. It is
essentially the same as the following:

~]# virsh blockcopy --domain <guestname> --path <source path> --dest
<destination path>

Monitor the progress of the copy by executing the following:

~]# watch -n10 "virsh blockjob –domain <guestname> --path <source
path> --info"

When it's done, execute this:

~]# virsh blockjob –domain <guestname> --path <source path> --pivot

There's more…
It is also possible to change the disk format on the fly, by specifying the --format
argument with the format that you want to convert your disk into. If you want to copy it
to a block device, specify --blockdev.

https://technet24.ir

Moving VMs
Moving disks will mitigate the risk of failing disks. When your CPUs, memory, and
other non-disk-related components start failing, you have no other option but to move
the guests to other host(s).

The recipe for this task is rather simple, but it's the prerequisites that can make it
succeed or fail miserably.

Getting ready
The prerequisites for this recipe are quite extended.

For the host, the following are the requirements:

You'll need to have access to shared data. Both the source and destination KVM
machine will need to be able to access the same storage—for example, iSCSI,
NFS, and so on.
Both hosts need the same type of CPU—that is, Intel or AMD (one cannot live
migrate a guest from a host with Intel CPUs to a host with AMD CPUs).
Both hosts need to be installed with the same version and updates of libvirt.
Both hosts need to have the same network ports open.
Both hosts must have identical KVM network configurations or at least the same
network configurations for the interfaces used by the guest.
Both hosts must be accessible through the network.
It's a good idea to have a management network set up and connected to the two
hosts, which can be used for data transfer. This will cause less network traffic on
your "production" network and increase the overall speed.
The No execution bit must be the same on both hosts.

The requirement for the guest is:

The cache=none must be specified for all block devices that are opened in write
mode.

https://technet24.ir

How to do it…
There are multiple ways to migrate hosts, but we will only highlight the two most
common ways.

Live native migration over the default network

This process to migrate a host is luckily very simple and can be summarized in one
command.

On the source host, execute the following:

~]# virsh migrate --domain <guestname> --live –-persistent --
undefinesource --verbose --desturl qemu+ssh://<host 2>/system

Live native migration over a dedicated network

It is possible to perform the migration over a dedicated network. By default, this will
use the first network it finds that suits it needs. You'll need to specify the listening
address (on the host) and the protocol. This requires the same command as before, but
we'll need to specify the local listening IP address and protocol, such as TCP.

On the source host, execute the following:

~]# virsh migrate --domain <guestname> --live –-persistent --
undefinesource --verbose --desturl qemu+ssh://<host 2>/system
tcp://<local ip address on dedicated network>/

How it works…
This type of migration is called a "hypervisor native" transport. The biggest advantage
of this type of migration is that it incurs the lowest computational cost by minimizing the
number of data copies involved.

When we migrate a host, it performs a copy of the memory of the guest to the new host.
When the copying is successful, it kills the guest on the source host and starts it on the
new host. As the memory is copied, the interruption will be very short-lived.

https://technet24.ir

There's more…
Communication between the two hosts is over SSH, which is already pretty secure.
However, it's also possible to tunnel the data over an even more strongly encrypted
channel by specifying the --tunnelled option. This will impose more traffic on your
network as there will be extra data communication between the two hosts.

The --compress option can help you out if you wish to reduce the traffic over your
network, but this will increase the load on both your hosts as they need to
compress/decompress the data, which, in turn, may impact your guests performance. If
time is not of the essence but traffic is, this is a good solution.

See also
There's very good and in-depth documentation about this process at
https://libvirt.org/migration.html.

https://libvirt.org/migration.html
https://technet24.ir

Backing up your VM metadata
While a KVM stores some of the resources' configuration on the disk in a human
readable format, it is a good idea to query libvirt for the configuration of your
resources.

How to do it…
In this recipe we'll back up all relevant KVM metadata by performing the following
steps:

Here's the network configuration:

~]# for i in $(virsh net-list --all | sed -e '1,2d' |awk '{print
$1}'); do \
 virsh net-dumpxml --network $i --inactive > /tmp/net-$i.xml; \
done

Here's the storage configuration:

~]# for i in $(virsh pool-list --all | sed -e '1,2d' |awk '{print
$1}'); do \
 for j in $(virsh vol-list --pool $i |sed -e '1,2d') | awk '{print
$1}'; do \
 virsh vol-dumpxml --pool $i --vol $j > /tmp/vol-$j.xml; \
 done \
 virsh pool-dumpxml --pool $i --inactive > /tmp/pool-$i.xml; \
done

Here's the guest configuration:

~]# for i in $(virsh list --all | sed -e '1,2d' |awk '{print $1}');
do \
 virsh dumpxml --domain $i --inactive > /tmp/domain-$i.xml; \
done

https://technet24.ir

How it works…
The virsh net-dumpxml command allows you to dump the precise configuration of the
specified network. In combination with virsh net-list, you can create a loop that
enumerates all networks and dumps them on the file. By specifying –-all, you will
export all networks, even those that are not active. If you do not wish to back up the
configuration for nonactive networks, substitute virsh net-list --all with virsh
net-list.

Storage pools can be enumerated, similarly to networks, using virsh net-list.
However, besides the individual storage pool configuration, we are also interested in
the configuration of individual storage volumes. Luckily, both implement a list and
dumpxml command! If you're not interested in nonactive pools, you can omit the --all
option with virsh pool-list.

Guests can similarly be enumerated and their XML configuration dumped using
dumpxml. Again, if you're not interested in nonactive guests, you can omit the --all
option with virsh list.

See also
The man page for virsh (1) lists all the possible options for the commands used in the
preceding section.

https://technet24.ir

Chapter 2. Deploying RHEL "En
Masse"
In this chapter, the following recipes are provided:

Creating a kickstart file
Publishing your kickstart file using httpd
Deploying a system using pxe
Deploying a system using a custom boot ISO file

Introduction
In this chapter, you will find the answer to deploying multiple systems with the same
basic setup. We will first look at creating an answer file, the kickstart file that will
drive the unattended installation. Then, we'll take a look at a possible way to make this
kickstart file accessible through the Apache web server. Finally, we'll discuss two
common ways to install physical and virtual machines.

This chapter assumes that you have a working knowledge of system network
configuration components, such as DNS, DNS search, IP addresses, and so on, and yum
repositories.

https://technet24.ir

Creating a kickstart file
A kickstart file is essentially a file containing all the necessary answers to questions that
are asked during a typical install. It was created by Red Hat in response to the need for
automated installs. Using kickstart, an admin can create one file or template containing
all the instructions.

There are three ways to create a kickstart file:

By hand
Using the GUI's system-config-kickstart tool
Using the standard Red Hat installation program Anaconda

In this recipe, I will cover a combination of the first two.

Getting ready
Before we can get down to the nitty-gritty of generating our base kickstart file or
template, we need to install system-config-kickstart. Run the following command:

~# yum install -y system-config-kickstart

https://technet24.ir

How to do it…
First, let's create a base template for our kickstart file(s) through the following steps:

1. First, launch Kickstart Configurator from the menu.
2. Select your system's basic configuration from the Kickstart Configurator GUI.

The following screenshot shows the options you can set in the Basic
Configuration view:

3. Now, select the installation method from the Kickstart Configurator GUI.

The following screenshot shows the options that you can set in the Installation
method view:

4. Next, substitute the values for HTTP Server and HTTP Directory with your own
repositories.

5. Ensure that the correct settings are applied for Boot Loader.

The following screenshot shows the options that you can set in the Boot Loader
options view:

https://technet24.ir

6. Configure your disk and partition information. Simply create a /boot partition and
be done with it! We'll edit the file manually for better customization.

The following screenshot shows the options you can set in the Partition
Information view:

7. Configure your network. You need to know the name of your device if you want to
correctly configure your network.

The following screenshot shows the Network Device information that you can edit
in the Network Configuration view:

https://technet24.ir

8. Now, disable Installing a graphical environment.

We want as few packages as possible. The following screenshot shows the options
that you can set in the Display Configuration view:

9. Next, perform any preinstallation and/or postinstallation tasks you deem necessary.
I always try to make root accessible through SSH and keys.

The following screenshot shows the options that you can set in the Post-
Installation Script view:

https://technet24.ir

10. Save the kickstart file.
11. Open the file using your favorite editor and add the following to your partition

section:

part pv.01 --size=1 --ondisk=sda --grow
volgroup vg1 pv.01
logvol / --vgname=vg1 --size=2048 --name=root
logvol /usr --vgname=vg1 --size=2048 --name=usr
logvol /var --vgname=vg1 --size=2048 --name=var
logvol /var/log --vgname=vg1 --size=1024 --name=var
logvol /home --vgname=vg1 --size=512 --name=home
logvol swap --vgname=vg1 --recommended --name=swap –fstype=swap

12. Now, add the following script to your network line:

--hostname=rhel7

13. Add the following script before %post:

%packages –nobase
@core --nodefaults
%end

14. Create a password hash for use in the next step, as follows:

~]# openssl passwd -1 "MySuperSecretRootPassword"
1mecIlXKN$6VRdaRkevjw9nngcMtRlO.

15. Save the resulting file. You should have something similar to this:

#platform=x86, AMD64, or Intel EM64T
#version=DEVEL
Install OS instead of upgrade
install
Keyboard layouts
keyboard 'be-latin1'
Halt after installation
halt
Root password
rootpw --iscrypted 1mecIlXKN$6VRdaRkevjw9nngcMtRlO.
System timezone
timezone Europe/Brussels
Use network installation
url –url="http://repo.example.com/rhel/7/os/x86_64/"
System language
lang en_US
Firewall configuration
firewall --disabled
Network information
network --bootproto=static --device=eno1 --gateway=192.168.0.254
--ip=192.168.0.1 --nameserver=192.168.0.253 --
netmask=255.255.255.0 --hostname=rhel7# System authorization
information
auth --useshadow --passalgo=sha512
Use text mode install
text
SELinux configuration
selinux --enforcing
Do not configure the X Window System
skipx
System bootloader configuration
bootloader --location=none
Clear the Master Boot Record
zerombr
Partition clearing information
clearpart --all --initlabel

https://technet24.ir

Disk partitioning information
part /boot --fstype="xfs" --ondisk=sda --size=512
part pv.01 --size=1 --ondisk=sda --grow
volgroup vg1 pv.01
logvol / --vgname=vg1 --size=2048 --name=root --fstype=xfs
logvol /usr --vgname=vg1 --size=2048 --name=usr --fstype=xfs
logvol /var --vgname=vg1 --size=2048 --name=var --fstype=xfs
logvol /var/log --vgname=vg1 --size=1024 --name=var --fstype=xfs
logvol /home --vgname=vg1 --size=512 --name=home --fstype=xfs
logvol swap --vgname=vg1 --recommended --name=swap --fstype=swap

%packages --nobase
@core --nodefaults
%end

%post
mkdir -p ~/.ssh
chmod 700 ~/.ssh
Let's download my authorized keyfile from my key server...
curl -O ~/.ssh/authrorized_keys
https://keys.example.com/authorized_keys
chmod 600 ~/.ssh/authrorized_keys
%end

How it works…
The system-config-kickstart is used to generate a minimal install as any addition
would be more complex than the tool can handle and we need to be able to add them
manually/dynamically afterwards. The fewer the number of packages the better as you'll
need to apply bug and security fixes for every package installed.

Although the GUI allows us to configure the brunt of the options we need, I prefer
tweaking some portions of them manually as they are not as straightforward through the
GUI.

Step 9 adds the necessary information to use the rest of the disk as an LVM physical
volume and partitions it so that big filesystems can easily be extended if necessary.

The --recommended argument for the SWAP partition creates a swap partition as per
the swap size recommendations set by Red Hat.

Step 10 adds a hostname for your host. If you do not specify this, the system will attempt
to resolve the IP address and use this hostname. If it cannot determine any hostname, it
will use localhost.localdomain as fqdn.

Step 11 ensures that only the core system is installed and nothing more, so you can build
from here.

If you want to know exactly which packages are installed in the core group, run the
following command on an RHEL 7 system:

~# yum groupinfo core

https://technet24.ir

There's more…
I didn't cover one option that I mentioned in the Getting Ready section as it is
automatically generated when you install a system manually. The file can be found after
installation at /root/anaconda-ks.cfg. Instead of using the system-config-
kickstart tool to generate a kickstart file, you can use this file to get started.

Starting with RHEL 7, kickstart deployments support add-ons. These add-ons can
expand the standard kickstart installation in many ways. To use kickstart add-ons, just
add the %addon addon_name option followed by %end, as with the %pre and %post
sections. Anaconda comes with the kdump add-on, which you can use to install and
configure kdump during the installation by providing the following section in your
kickstart file:

%addon com_redhat_kdump --enable --reserve-mb=auto
%end

See also
For more detailed information about kickstart files, refer to the website
https://github.com/rhinstaller/pykickstart/blob/master/docs/kickstart-docs.rst.

For the consistent network device naming, refer to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-
Consistent_Network_Device_Naming.html.

https://github.com/rhinstaller/pykickstart/blob/master/docs/kickstart-docs.rst
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Consistent_Network_Device_Naming.html
https://technet24.ir

Publishing your kickstart file using httpd
You can save your kickstart file to a USB stick (or any other medium), but this becomes
a bit cumbersome if you need to install multiple systems in different locations.

Loading kickstart files over the network from the kernel line during an install only
supports NFS, HTTP, and FTP.

In this recipe, I choose HTTP as it is a common technology within companies and easy
to secure.

How to do it…
Let's start by installing Apache httpd, as follows:

1. Install Apache httpd through the following command:

~]# yum install -y httpd

2. Enable and start the httpd daemon, as follows:

~]# systemctl enable httpd
ln -s '/usr/lib/systemd/system/httpd.service'
'/etc/systemd/system/multi-user.target.wants/httpd.service'
~]# systemctl start httpd

3. Create a directory to contain the kickstart file(s) by running the following
command:

~]# mkdir -p /var/www/html/kickstart
~]# chown apache:apache /var/www/html/kickstart
~]# chmod 750 /var/www/html/kickstart

4. Copy your kickstart file to this new location:

~]# cp kickstart.ks /var/www/html/kickstart/

5. In a browser, browse to the kickstart directory on your web server, as shown in the
following screenshot:

https://technet24.ir

There's more…
In this way, you can create multiple kickstart files, which will be available from
anywhere in your network.

Additionally, you could use CGI-BIN, PHP, or any other technology that has an Apache
module to dynamically create kickstart files based on the arguments that you specify in
the URL.

An alternative to creating your own solution for dynamic kickstart files is Cobbler.

https://technet24.ir

See also
For more info on Cobbler, go to http://cobbler.github.io/.

http://cobbler.github.io/

Deploying a system using PXE
PXE, or Preboot eXecution Environment, allows you to instruct computers to boot using
network resources. This allows you to control a single source to install servers without
the need to physically insert cumbersome DVDs or USB sticks.

https://technet24.ir

Getting ready
For this recipe, you will need a fully working RHEL 7 repository.

How to do it…
With this recipe, we'll install and configure PXE boots from the RHEL 7 installation
media, as follows:

1. Install the necessary packages using the following command:

~]# yum install -y dnsmasq syslinux tftp-server

2. Configure the DNSMASQ server by editing /etc/dnsmasq.conf, as follows:

interfaces to bind to
interface=eno1,lo
the domain for this DNS server
domain=rhel7.lan
DHCP lease range
dhcp-range= eno1,192.168.0.3,192.168.0.103,255.255.255.0,1h
PXE – the address of the PXE server
dhcp-boot=pxelinux.0,pxeserver,192.168.0.1
Gateway
dhcp-option=3,192.168.0.254
DNS servers for DHCP clients(your internal DNS servers, and one
of Google's DNS servers)
dhcp-option=6,192.168.1.1, 8.8.8.8
DNS server to forward DNS queries to
server=8.8.4.4
Broadcast Address
dhcp-option=28,192.168.0.255
pxe-prompt="Press F1 for menu.", 60
pxe-service=x86_64PC, "Install RHEL 7 from network", pxelinux
enable-tftp
tftp-root=/var/lib/tftpboot

3. Enable and start dnsmasq using the following:

~]# systemctl enable dnsmasq
~]# systemctl start dnsmasq

4. Now, enable and start the xinet daemon by running the following:

~]# systemctl enable xinetd
~]# systemctl start xinetd

5. Enable the tftp server's xinet daemon, as follows:

~]# sed -i '/disable/ s/yes/no/' /etc/xinetd.d/tftp

6. Copy the syslinux boot loaders to the tftp server's boot directory by executing

https://technet24.ir

the following command:

~]# cp -r /usr/share/syslinux/* /var/lib/tftpboot

7. Next, create the PXE configuration directory using this command:

~]# mkdir /var/lib/tftpboot/pxelinux.cfg

8. Then, create the PXE configuration file, as follows:
/var/lib/tftpboot/pxelinux.cfg/default.

default menu.c32
prompt 0
timeout 300
ONTIMEOUT local
menu title PXE Boot Menu
label 1
 menu label ^1 - Install RHEL 7 x64 with Local http Repo
 kernel rhel7/vmlinuz
 append initrd=rhel7/initrd.img
method=http://repo.critter.be/rhel/7/os/x86_64/ devfs=nomount
ks=http://kickstart.critter.be/kickstart.ks
label 2
 menu label ^2 - Boot from local media

9. Copy initrd and kernel from the RHEL 7 installation media to
/var/lib/tftpboot/rhel7/, and run the following commands:

~]# mkdir /var/lib/tftpboot/rhel7
~]# mount -o loop /dev/cdrom /mnt
~]# cp /mnt/images/pxeboot/{initrd.img,vmlinuz}
/var/lib/tftpboot/rhel7/
~]# umount /mnt

10. Open the firewall on your server using these commands (however, this may not be
necessary):

~]# firewall-cmd --add-service=dns --permanent
~]# firewall-cmd --add-service=dhcp --permanent
~]# firewall-cmd --add-service=tftp --permanent
~]# firewall-cmd --reload

11. Finally, launch your client, configure it to boot from the network, and select the
first option shown in the following figure:

https://technet24.ir

How it works…
DNSMASQ takes care of pointing booting systems to the tftp server by providing the
enable-tftp option in the dnsmasq configuration file.

Syslinux is needed to provide the necessary binaries to boot from the network.

The tftp server itself provides access to the syslinux files, RHEL 7 kernel, and
initrd for the system to boot from.

The PXE configuration file provides the necessary configuration to boot a system,
including a kickstart file that automatically installs your system.

There's more…
This recipe's base premise is that you do not have a DHCP server installed. In most
companies, you already have DHCP services available.

If you have an ISC-DHCP server in place, this is what you need to add to the subnet
definition(s) you want to allow in PXE:

 next-server <ip address of TFTP server>;
 filename "pxelinux.0";

https://technet24.ir

See also
Check out Chapter 8, Yum and Repositories to set up an RHEL 7 repository from the
installation media.

Deploying a system using a custom boot
ISO file
PXE is a widely used way to deploy systems, and so are ISO's. PXE may not always be
at hand because of security, hardware availability, and so on.

Many hardware manufacturers provide remote access to their systems without an OS
installed. HP has iLO, while Dell has RIB. The advantage of these "remote" control
solutions is that they also allow you to mount "virtual" media in the form of an ISO.

https://technet24.ir

How to do it…
Red Hat provides boot media as ISO images, which you can use to boot your systems
from. We will create a custom ISO image, which will allow us to boot a system in a
similar way.

Let's create an ISO that you can mount as virtual media, write a CD-ROM, or even use
dd to write the contents on a USB stick/disk through the following steps:

1. Install the required packages to create ISO9660 images, as follows:

~]# yum install -y genisoimage

2. Mount the RHEL 7 DVD's ISO image by executing the following command:

~]# mount -o loop /path/to/rhel-server-7.0-x86_64-dvd.iso /mnt

3. Copy the required files for the custom ISO from the RHEL 7 media via the
following commands:

~]# mkdir -p /root/iso
~]# cp -r /mnt/isolinux /root/iso
~]# umount /mnt

4. Now, unmount the RHEL 7 DVD's ISO image by running the following:

~]# umount /mnt

5. Next, remove the isolinux.cfg file using the following command:

~]# rm -f /root/iso/isolinux/isolinux.cfg

6. Create a new isolinux.cfg file, as follows:

default vesamenu.c32
timeout 600
display boot.msg
menu clear
menu background splash.png
menu title Red Hat Enterprise Linux 7.0
menu vshift 8
menu rows 18
menu margin 8
menu helpmsgrow 15
menu tabmsgrow 13
menu color sel 0 #ffffffff #00000000 none
menu color title 0 #ffcc000000 #00000000 none
menu color tabmsg 0 #84cc0000 #00000000 none

menu color hotsel 0 #84cc0000 #00000000 none
menu color hotkey 0 #ffffffff #00000000 none
menu color cmdmark 0 #84b8ffff #00000000 none
menu color cmdline 0 #ffffffff #00000000 none
label linux
 menu label ^Install Red Hat Enterprise Linux 7.0
 kernel vmlinuz
 append initrd=initrd.img
ks=http://kickstart.critter.be/kickstart.ks text

label local
 menu label Boot from ^local drive
 localboot 0xffff

menu end

7. Now, create the ISO by executing the following command:

~]# cd /root/iso
~/iso]# mkisofs -o ../boot.iso -b isolinux/isolinux.bin -c
isolinux/boot.cat -no-emul-boot -boot-load-size 4 -boot-info-
table -J -r .

More information on the options used with the mkisofs command can be found in
the man pages for mkisofs(1).

The following image shows the progress on creating a custom ISO:

https://technet24.ir

8. Then, use the ISO to install a guest on a KVM server, as shown in the following
commands:

~]# virsh vol-create-as --pool localfs-vm --name rhel7_guest-
da.qcows2 --format qcows2 –capacity 10G
~]# virt-install \
--hvm \
--name rhel7_guest \
–-memory 2G,maxmemory=4G \
--vcpus 2,max=4 \
--os-type linux \
--os-variant rhel7 \
--boot hd,cdrom,network,menu=on \
--controller type=scsi,model=virtio-scsi \
--disk device=cdrom,vol=iso/boot.iso,readonly=on,bus=scsi \
--disk device=disk,vol=localfs-vm/rhel7_guest-
vda.qcow2,cache=none,bus=scsi \
--network network=bridge-eth0,model=virtio \

--graphics vnc \
--graphics spice \
--noautoconsole \
--memballoon virtio

The following screenshot shows the console when booted with the custom ISO
image:

https://technet24.ir

How it works…
Using the RHEL 7 installation media, we created a new boot ISO that allows us to
install a new system. The ISO can be used to either burn a CD, with the dd tool to be
copied on a USB stick, or to mount as virtual media. The way to mount this ISO as
virtual media is different on each hardware platform, so this recipe shows you how to
install it using KVM.

Chapter 3. Configuring Your Network
The recipes we'll be covering in this chapter are as follows:

Creating a VLAN interface
Creating a teamed interface
Creating a bridge
Configuring IPv4 settings
Configuring your DNS resolvers
Configuring static network routes

https://technet24.ir

Introduction
This chapter will attempt to explain how to use NetworkManager, which is the default
network configuration tool and daemon in RHEL 7. It is a set of tools that makes
networking simple and straightforward.

Configuring your network can be hard at times, especially when using the more exotic
configuration options in combination with well-known configuration scripts. The
NetworkManager allows you to easily configure your network without needing to edit
the configuration files manually.

Tip

You can still edit the network configuration files located in
/etc/sysconfig/network-scripts using your preferred editor; however, by default,
NetworkManager does not notice any changes you make. You'll need to execute the
following after editing the files located in the preceding location:

~]# nmcli connection reload

This is not enough to apply the changes immediately. You'll need to bring down and up
the connection or reboot the system.

Alternatively, you can edit /etc/NetworkManager/NetworkManager.conf and add
monitor-connection-files=yes to the [main] section. This will cause
NetworkManager to pick up the changes and apply them immediately.

Within these recipes, you will get an overview on how to configure your network using
the NetworkManager tools (nmcli and nmtui) and kickstart files.

Creating a VLAN interface
VLANs are isolated broadcast domains that run over a single physical network. They
allow you to segment a local network and also to "stretch" a LAN over multiple
physical locations. Most enterprises implement this on their network switching
environment, but in some cases, the tagged VLANs reach your server.

https://technet24.ir

Getting ready
In order to configure a VLAN, we need an established network connection on the local
network interface.

How to do it…
For the sake of ease, our physical network interface is called eth0. The VLAN's ID is
1, and the IPv4 address is 10.0.0.2, with a subnet mask of 255.0.0.0 and a default
gateway of 10.0.0.1.

Creating the VLAN connection with nmcli

With nmcli, we need to first create the connection and then activate it. Perform the
following steps:

1. Create a VLAN interface using the following command:

~]# nmcli connection add type vlan dev eth0 id 1 ip4 10.0.0.2/8
gw4 10.0.0.1
Connection 'vlan' (4473572d-26c0-49b8-a1a4-c20b485dad0d)
successfully added.
~]#

2. Now, via this command, activate the connection:

~]# nmcli connection up vlan
Connection successfully activated (D-Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/7)
~]#

3. Check your network connection, as follows:

~]# nmcli connection show
~]# nmcli device status
~]# nmcli device show eth0.1

Here is an example output of the preceding commands:

https://technet24.ir

Creating the VLAN connection with nmtui

The nmtui tool is a text user interface to NetworkManager and is launched by executing
the following in a terminal:

~]# nmtui

This will bring up the following text-based interface:

Navigation is done using the Tab and arrow keys, and the selection is done by pressing
the Enter key. Now, you need to do the following:

1. Go to Edit a connection and select <OK>. The following screen will appear:

https://technet24.ir

2. Next, select <Add> and the VLAN option. Confirm by Selecting <Create>:

3. Enter the requested information in the following form and commit by selecting
<OK>:

Your new VLAN interface will now be listed in the connections list:

https://technet24.ir

Creating the VLAN connection with kickstart

Let's explore what you need to add to your kickstart script in order to achieve the
same result as in the preceding section:

1. Look for the configuration parameters within your kickstart file with the
following command:

...
network --device=eth0
...

2. Replace it with the following configuration parameters:

network --device=eth0 --vlanid=1 --bootproto=static --ip=10.0.0.2
--netmask=255.0.0.0 --gateway=10.0.0.1

There's more…
The command line to create a VLAN with nmcli is pretty basic as it uses default values
for every piece of information that is missing. To make sure that everything is created to
your wishes, it is wise to also use con-name and ifname. These will respectively name
your connection and the device you're creating. Take a look at the following command:

~]# nmcli connection add type vlan con-name vlan1 ifname eth0.1 dev
eth0 id 1 ip4 10.0.0.2/8 gw4 10.0.0.1

This will create the vlan.1 connection with eth0 as the parent and eth0.1 as the target
device.

As with nmcli and nmtui, you can name your VLAN connection in kickstart; you
only need to specify the --interfacename option. If you cannot find any previous
network configuration in your kickstart file, just add the code to your kickstart file.

https://technet24.ir

See also
The nmcli tool lacks a man page, but execute the following command for for more
options to create VLAN connections:

~]# nmcli con add help

For more kickstart information on networks, check the following URL:
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kickstart-syntax.html.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kickstart-syntax.html

Creating a teamed interface
Interface teaming, interface bonding, and link aggregation are all the same. It was
already implemented in the kernel by way of the bonding driver. The team driver
provides a different mechanism (from bonding) to team multiple network interfaces into
a single logical one.

https://technet24.ir

Getting ready
To set up a teamed interface, we'll need more than one network interface.

How to do it…
For the sake of ease, our physical network interfaces are called eth1 and eth2. The
IPv4 address for the team interface is 10.0.0.2, with a subnet mask of 255.0.0.0 and
a default gateway of 10.0.0.1.

Creating the teamed interface using nmcli

Using this approach, we'll need to create the team connection and two team slaves and
activate the connection, as follows:

1. Use the following command line to create the team connection:

~]# nmcli connection add type team ip4 10.0.0.2/8 gw4 10.0.0.1
Connection 'team' (cfa46865-deb0-49f2-9156-4ca5461971b4)
successfully added.
~]#

2. Add eth1 to the team by executing the following:

~]# nmcli connection add type team-slave ifname eth1 master team
Connection 'team-slave-eth1' (01880e55-f9a5-477b-b194-
73278ef3dce5) successfully added.
~]#

3. Now, add eth2 to the team by running the following command:

~]# nmcli connection add type team-slave ifname eth2 master team
Connection 'team-slave-eth2' (f9efd19a-905f-4538-939c-
3ea7516c3567) successfully added.
~]#

4. Bring the team up, as follows:

~]# nmcli connection up team
Connection successfully activated (master waiting for slaves) (D-
Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/12)
~]#

5. Finally, check your network connections through the following commands:

~]# nmcli connection show
~]# nmcli device status
~]# nmcli device show nm-team

Here's an example output of the preceding commands:

https://technet24.ir

Creating the teamed interface using nmtui

Let's fire up nmtui and add a connection through the following steps:

1. First, create a team connection by selecting <Add>:

2. Enter the requested information in the following form and click on <Add> for
every interface to add:

3. Next, select <Add> within team slaves to add an interface by filling out the form
and selecting <OK>. Repeat this for every physical interface:

https://technet24.ir

4. Now, select <OK> to create the team interface:

Your new team interface will now be listed in the connections list, as shown in the
following screenshot:

https://technet24.ir

Creating the teamed interface with kickstart

Open your kickstart file with your favorite editor and perform the following steps:

1. Look for the network configuration parameters within your kickstart file by
running the following command:

...
network --device=eth0
...

2. Next, add the following configuration parameters:

network --device=team0 --teamslaves="eth1,eth2" --
bootproto=static --ip=10.0.0.2 --netmask=255.0.0.0 --
gateway=10.0.0.1

There's more…
Teaming comes with runners—a way of load-sharing backup methods that you can
assign to your team:

active-backup: In this, one physical interface is used, while the others are kept as
backup
broadcast: In this, data is transmitted over all physical interfaces' selectors
LACP: This implements 802.3ad Link Aggregation Control Protocol
loadbalance: This performs active Tx load balancing and uses a BPF-based Tx
port
round-robin: The data is transmitted over all physical interfaces in turn

These can also be defined upon creation using either of the presented options here:

nmcli

Add team.config "{\"runner\":{\"name\": \"activebackup\"}}" to your
command to create your team interface, and substitute activebackup with the runner
that you wish to use.

nmtui

Fill out the JSON configuration field for the team interface with {"runner": {"name":
"activebackup"}}, and substitute activebackup with the runner that you wish to use.

https://technet24.ir

kickstart

Add --teamconfig="{\"runner\":{\"name\": \"activebackup\"}}" to your

team device line, and substitute activebackup with the runner that you wish to use.

The options provided to create the team interface are bare bones using nmcli. If you
wish to add a connection and interface name, use con-name and ifname, respectively,
in this way:

~]# nmcli connection add type team con-name team0 ifname team0 ip4
10.0.0.2/8 gw4 10.0.0.1
Connection 'team0' (e1856313-ecd4-420e-96d5-c76bc00794aa)
successfully added.
~]#

The same is true for adding the team slaves, except for ifname, which is required to
specify the correct interface:

~# nmcli connection add type team-slave con-name team0-slave0 ifname
eth1 master team0
Connection 'team0-slave0' (3cb2f603-1f73-41a0-b476-7a356d4b6274)
successfully added.
~# nmcli connection add type team-slave con-name team0-slave1 ifname
eth2 master team0
Connection 'team0-slave1' (074e4dd3-8a3a-4997-b444-a781114c58c9)
successfully added.
~#

https://technet24.ir

See also
For more information on the networking team daemon and "runners", refer to the
following URL:

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-
Understanding_the_Network_Teaming_Daemon_and_the_Runners.html

For more information on using nmcli to create team interfaces, take a look at the
following link:

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-
Configure_a_Network_Team_Using-the_Command_Line.html

For more information on using nmtui to create team interfaces, follow this link:

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-
Configure_a_Network_Team_Using_the_Text_User_Interface_nmtui.html

For more information on creating team interfaces in kickstart scripts, the following link
will be useful:

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kickstart-syntax.html

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Understanding_the_Network_Teaming_Daemon_and_the_Runners.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Configure_a_Network_Team_Using-the_Command_Line.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Configure_a_Network_Team_Using_the_Text_User_Interface_nmtui.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kickstart-syntax.html

Creating a bridge
A network bridge is a logical device that forwards traffic between connected physical
interfaces based on MAC addresses. This kind of bridge can be used to emulate a
hardware bridge in virtualization applications, such as KVM, to share the NIC with
multiple virtual NICs.

https://technet24.ir

Getting ready
To bridge two physical networks, we need two network interfaces. Your physical
interfaces should never be configured with any address as the bridge will be configured
with the IP address(es).

How to do it…
For the sake of ease, the physical network interfaces we will bridge are eth1 and eth2.
The IPv4 address will be 10.0.0.2 with a subnet mask of 255.0.0.0 and a default
gateway of 10.0.0.1.

Creating a bridge using nmcli

Make sure that you activate the bridge after configuring the bridge and interfaces! Here
are the steps that you need to perform for this:

1. First, create the bridge connection via the following command:

~]# nmcli connection add type bridge ip4 10.0.0.2/8 gw4 10.0.0.1
Connection 'bridge' (36e40910-cf6a-4a6c-ae28-c0d6fb90954d)
successfully added.
~]#

2. Add eth1 to the bridge, as follows:

~]# nmcli connection add type bridge-slave ifname eth1 master
bridge
Connection 'bridge-slave-eth1' (6821a067-f25c-46f6-89d4-
a318fc4db683) successfully added.
~]#

3. Next, add eth2 to the bridge using the following command:

~]# nmcli connection add type bridge-slave ifname eth2 master
bridge
Connection 'bridge-slave-eth2' (f20d0a7b-da03-4338-8060-
07a3775772f4) successfully added.
~]#

4. Activate the bridge by executing the following:

~# nmcli connection up bridge
Connection successfully activated (master waiting for slaves) (D-
Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/30)
~]#

5. Now, check your network connection by running the following commands:

~]# nmcli connection show
~]# nmcli device status
~]# nmcli device show bridge

https://technet24.ir

Here is an example output of the preceding commands:

Creating a bridge using nmtui

Launch nmtui and select Edit a connection. After this, follow these steps to create a
bridge using nmtui:

1. Create a bridge connection by selecting <Add> and Bridge from the connection list
and then click on <Create>:

2. Fill out the presented form with the required information:

https://technet24.ir

3. Next, add the two network interfaces by selecting <Add> and providing the
requested information for each interface:

4. Finally, select <OK> to create the bridge:

https://technet24.ir

Your new bridge will now be listed in the connections list:

Creating a bridge with kickstart

Edit your kickstart file with your favorite editor through the following steps:

1. Look for the configuration parameters within your kickstart file using this
command line:

...
network --device=eth0
...

2. Now, add the following configuration parameters:

network --device=bridge0 --bridgeslaves="eth1,eth2" --
bootproto=static --ip=10.0.0.2 --netmask=255.0.0.0 --
gateway=10.0.0.1

https://technet24.ir

There's more…
The options provided to create the bridge are bare bones using nmcli. If you wish to
add a connection and interface name, use con-name and ifname, respectively, in this
way:

~# nmcli connection add type bridge con-name bridge0 ifname bridge0
ip4 10.0.0.2/8 gw4 10.0.0.1
Connection 'bridge0' (d04180be-3e80-4bd4-a0fe-b26d79d71c7d)
successfully added.
~#

The same is true for adding the bridge slaves, except for ifname, which is required to
specify the correct interface:

~]# nmcli connection add type bridge-slave con-name bridge0-slave0
ifname eth1 master bridge0
Connection 'bridge0-slave0' (3a885ca5-6ffb-42a3-9044-83c6142f1967)
successfully added.
~]# nmcli connection add type team-slave con-name team0-slave1 ifname
eth2 master team0
Connection 'bridge0-slave1' (f79716f1-7b7f-4462-87d9-6801eee1952f)
successfully added.
~]#

See also
For more information on creating network bridges using nmcli, go to the following
URL:

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-
Network_Bridging_Using_the_NetworkManager_Command_Line_Tool_nmcli.html

For more information on creating network bridges using nmtui, go to this website:

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-
Configure_Network_Bridging.html

For more information on kickstart and bridging, go to the following website:

https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kickstart-syntax.html

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/sec-Network_Bridging_Using_the_NetworkManager_Command_Line_Tool_nmcli.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Networking_Guide/ch-Configure_Network_Bridging.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Installation_Guide/sect-kickstart-syntax.html
https://technet24.ir

Configuring IPv4 settings
Changing your IP addresses is pretty straightforward in the old ifcfg-style files, and
it's actually pretty simple using NetworkManager tools as well.

As kickstart is only used to set up a system, it is not relevant to go in depth into this
matter in this recipe.

How to do it…
Let's change our current IPv4 address and gateway for eth1 to 10.0.0.3/8, with
10.0.0.2 as the default gateway.

Setting your IPv4 configuration using nmcli

Perform the following steps:

1. Set the ipv4 information by executing the following command line:

~]# nmcli connection modify eth0 ipv4.addresses 10.0.0.3/8
ipv4.gateway 10.0.0.2

2. Now, run the following to verify the information:

~]# nmcli connection show eth0

Here is an example output of the preceding commands:

https://technet24.ir

Setting your IPv4 configuration using nmtui

The nmtui tool takes a bit more work, but the end result remains the same. Perform the
following steps:

1. Start nmtui, select the interface that you wish to modify, and click on <Edit...>:

2. Now, modify the IPv4 configuration to your liking and click on <OK>.

https://technet24.ir

There's more…
Managing IPv6 ip addresses is as straightforward as configuring your IPv4 counterparts.

The options you need to use in kickstart to set your ip address and gateway are:

--ip: This is used to set the system's IPv4 address
--netmask: This is used for the subnet mask
--gateway: This is used to set the IPv4 gateway

Configuring your DNS resolvers
DNS servers are stored in /etc/resolv.conf. You can also manage this file using
NetworkManager.

As with the previous recipe, and for the same reasons, this recipe won't go into the
kickstart options.

https://technet24.ir

How to do it…
Let's set the DNS resolvers for eth1 to point to Google's public DNS servers: 8.8.8.8
and 8.8.4.4.

Setting your DNS resolvers using nmcli

Perform the following steps:

1. Set the DNS servers via the following command:

~]# nmcli connection modify System\ eth1 ipv4.dns
"8.8.8.8,8.8.4.4"

2. Now, use the following command to check your configuration:

~]# nmcli connection show System\ eth1

Here is an example output of the preceding commands:

Setting your DNS resolvers using nmtui

https://technet24.ir

The nmtui tool requires a bit more work to set the DNS resolvers, as follows:

1. Start nmtui, select the interface that you wish to modify, and click on <Edit...>:

There's more…
The nmcli tool supports adding multiple DNS servers by separating them with a
semicolon. Using a blank value ("") will remove all the DNS servers for this
connection.

Similarly, you can set the DNS search domains for your environment. When using
nmcli, you'll need to specify the ipv4.dns-search property.

Kickstart will allow you to specify the DNS servers using the --nameserver option for
each DNS server. If you do not wish to specify any DNS servers, use --nodns.
Unfortunately, there is no native way to set the DNS domain search using kickstart.
You will have to use nmcli, for example, in the %post section of your kickstart
script.

Tip

Be careful when setting DNS configurations for multiple network interfaces.
NetworkManager adds all your nameservers to your resolv.conf file, but libc may not
support more than six nameservers.

https://technet24.ir

Configuring static network routes
In some cases, it is required to set static routes on your system. As static routes are not
natively supported in kickstart, this is not covered in this recipe.

How to do it…
Add static routes to both the 192.168.0.0/24 and 192.168.1.0/24 networks via
10.0.0.1.

Configuring static network routes using nmcli

Here's what you need to do:

1. Set the route using the following command:

~]# nmcli connection modify eth0 ipv4.routes "192.168.0.0/24
10.0.0.1,192.168.1.0/24 10.0.0.1"

2. Now, execute the following command line to verify the configuration:

~]# nmcli connection show eth0

Here is an example output of the preceding commands:

https://technet24.ir

Configuring network routes using nmtui

Here are the steps for this recipe:

1. Launch nmtui, select the interface that you wish to modify the static routes for, and
click on <Edit...>:

2. Now, select <Edit...> next to the IPv4 Configuration – Routing entry and enter
your routes. Select <OK> to confirm:

https://technet24.ir

3. Finally, click on <OK> to confirm the changes and save them.

Chapter 4. Configuring Your New
System
Here's an overview of the recipes that we'll be covering in this chapter:

The systemd service and setting runlevels
Starting and stopping systemd services
Configuring the systemd journal for persistence
Monitoring services using journalctl
Configuring logrotate
Managing time
Configuring your boot environment
Configuring smtp

https://technet24.ir

Introduction
Once your system is installed and the network is configured, it's time to start configuring
everything else.

RHEL 7 comes with the systemd init daemon, which takes care of your daemon or
service housekeeping and more, replacing the old SysV (UNIX System V) init system.

Its main advantages are automatic dependency handling, parallel startup of services, and
the monitoring of started services with the ability to restart crashed services.

For a good read on systemd and its inner workings, head over to
https://n0where.net/understanding-systemd.

https://n0where.net/understanding-systemd

The systemd service and setting
runlevels
The systemd service doesn't use runlevels as SysV or Upstart do. The alternatives for
systemd are called targets. Their purpose is to group a set of systemd units (not only
services, but also sockets, devices, and so on) through a chain of dependencies.

https://technet24.ir

How to do it…
Managing targets with systemd is pretty simple, as shown through the following steps:

1. List all target units, as follows:

~]# systemctl list-unit-files --type target
UNIT FILE STATE
anaconda.target static
basic.target static
bluetooth.target static
cryptsetup.target static
ctrl-alt-del.target disabled
default.target enabled
...

sysinit.target static
system-update.target static
time-sync.target static
timers.target static
umount.target static

58 unit files listed.
~]#

This list shows all target units available followed by information regarding
whether the target is enabled or not.

2. Now, show the currently loaded target units.

The systemd targets can be chained unlike SysV runlevels, so you'll not only see
one target but a whole bunch of them, as follows:

~]# systemctl list-units --type target
UNIT LOAD ACTIVE SUB DESCRIPTION
basic.target loaded active active Basic System
cryptsetup.target loaded active active Encrypted Volumes
getty.target loaded active active Login Prompts
local-fs-pre.target loaded active active Local File Systems
(Pre)
local-fs.target loaded active active Local File Systems
multi-user.target loaded active active Multi-User System
network-online.target loaded active active Network is Online
network.target loaded active active Network
nfs-client.target loaded active active NFS client services
paths.target loaded active active Paths

remote-fs-pre.target loaded active active Remote File Systems
(Pre)
remote-fs.target loaded active active Remote File Systems
slices.target loaded active active Slices
sockets.target loaded active active Sockets
swap.target loaded active active Swap
sysinit.target loaded active active System Initialization
time-sync.target loaded active active System Time
Synchronized
timers.target loaded active active Timers

LOAD = Reflects whether the unit definition was properly
loaded.
ACTIVE = The high-level unit activation state, i.e.
generalization of SUB.
SUB = The low-level unit activation state, values depend on
unit type.

18 loaded units listed. Pass --all to see loaded but inactive
units, too.
To show all installed unit files use 'systemctl list-unit-files'.
~]#

3. Next, change the default systemd target by running the following commands:

~]# systemctl set-default graphical.target
rm '/etc/systemd/system/default.target'
ln -s '/usr/lib/systemd/system/graphical.target'
'/etc/systemd/system/default.target'
~]#

https://technet24.ir

There's more…
Sometimes, you want to change targets on the fly as you would in the past with runlevel
or telinit. With systemd, this is accomplished in the following way:

~]# systemctl isolate <target name>

Here's an example:

~]# systemctl isolate graphical.target

Let's take an overview of the former runlevels versus the systemd targets in the
following table:

Runlevel Target units Description

0 runlevel0.target or poweroff.target This is used to shut down and power off the system

1 runlevel1.target or rescue.target This is used to enter a rescue shell

2 runlevel2.target or multi-user.target This is used to set up a command-line multiuser system

3 runlevel3.target or multi-user.target This is used to set up a command-line multiuser system

4 runlevel4.target or multi-user.target This is used to set up a command-line multiuser system

5 runlevel5.target or graphical.target This is used to set up a graphical multiuser system

6 runlevel6.target or reboot.target This is used to reboot the system

See also
For more in-depth information about RHEL 7 and systemd targets, refer to the
following link: https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-
Managing_Services_with_systemd-Targets.html

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Targets.html
https://technet24.ir

Starting and stopping systemd services
Although this recipe uses services by their base name, they can also be addressed by
their full filename. For example, sshd can be substituted by sshd.service.

How to do it…
The following steps need to be performed to successfully start or stop systemd
services:

1. List all available systemd services, as follows:

~]# systemctl list-unit-files --type service
UNIT FILE STATE
atd.service enabled
auditd.service enabled
auth-rpcgss-module.service static
autovt@.service disabled
avahi-daemon.service disabled
blk-availability.service disabled
brandbot.service static

...

systemd-udev-trigger.service static
systemd-udevd.service static
systemd-update-utmp-runlevel.service static
systemd-update-utmp.service static
systemd-user-sessions.service static
systemd-vconsole-setup.service static
tcsd.service disabled
teamd@.service static
tuned.service enabled
wpa_supplicant.service disabled
xinetd.service enabled

161 unit files listed.

This shows all service units available followed by information regarding whether
the service is enabled or not.

2. Now, list all the loaded systemd services and their status, as follows:

~]# systemctl list-units --type service --all
UNIT LOAD ACTIVE SUB DESCRIPTION
atd.service loaded active running Job spooling
tools
auditd.service loaded active running Security
Auditing Service
auth-rpcgss-module.service loaded inactive dead Kernel Module
supporting RPC

https://technet24.ir

brandbot.service loaded inactive dead Flexible
Branding Service
cpupower.service loaded inactive dead Configure CPU
power related
crond.service loaded active running Command
Scheduler
cups.service loaded inactive dead CUPS Printing
Service
dbus.service loaded active running D-Bus System
Message Bus
...

systemd-...es-setup.service loaded active exited Create
Volatile Files and Di
systemd-...-trigger.service loaded active exited udev Coldplug
all Devices
systemd-udevd.service loaded active running udev Kernel
Device Manager
systemd-update-utmp.service loaded active exited Update UTMP
about System Reb
systemd-...sessions.service loaded active exited Permit User
Sessions
systemd-...le-setup.service loaded active exited Setup Virtual
Console
tuned.service loaded active running Dynamic
System Tuning Daemon
xinetd.service loaded active running Xinetd A
Powerful Replacemen
LOAD = Reflects whether the unit definition was properly
loaded.
ACTIVE = The high-level unit activation state, i.e.
generalization of SUB.
SUB = The low-level unit activation state, values depend on
unit type.

103 loaded units listed.
To show all installed unit files use 'systemctl list-unit-files'.
~]#

3. Next, get the status of a service.

To get the status of a particular service, execute the following, substituting
<service> with the name of the service:

~]# systemctl status <service>

Here's an example:

~]# systemctl status sshd
sshd.service - OpenSSH server daemon
 Loaded: loaded (/usr/lib/systemd/system/sshd.service; enabled)
 Active: active (running) since Fri 2015-07-17 09:13:55 CEST; 1
weeks 0 days ago
 Main PID: 11880 (sshd)
 CGroup: /system.slice/sshd.service
 +-11880 /usr/sbin/sshd -D

Jul 22 12:07:31 rhel7.mydomain.lan sshd[10340]: Accepted
publickey for root...
Jul 22 12:12:29 rhel7.mydomain.lan sshd[10459]: Accepted
publickey for root...
Jul 22 12:13:33 rhel7.mydomain.lan sshd[10473]: Accepted
publickey for root...
Jul 24 21:27:24 rhel7.mydomain.lan sshd[28089]: Accepted
publickey for root...
Hint: Some lines were ellipsized, use -l to show in full.
~]#

4. Now, start and stop the systemd services.

To stop a systemd service, execute the following, substituting <service> with the
name of the service:

~]# systemctl stop <service>

Here's an example:

~]# systemctl stop sshd

To start a systemd service, execute the following, substituting <service> with the
name of the service:

~]# systemctl start <service>

Here's an example:

~]# systemctl start sshd

5. Next, enable and disable the systemd services.

To enable a systemd service, execute the following, substituting <service> with
the name of the service:

~]# systemctl enable <service>

https://technet24.ir

Here's an example:

~]# systemctl enable sshd
ln -s '/usr/lib/systemd/system/sshd.service'
'/etc/systemd/system/multi-user.target.wants/sshd.service'
~]#

To disable a systemd service, execute the following, substituting <service> with
the name of the service:

~]# systemctl disable <service>

Here's an example:

~]# systemctl disable sshd
rm '/etc/systemd/system/multi-user.target.wants/sshd.service'
~]#

6. Now, configure a service to restart when crashed.

Let's make the ntpd service restart if it crashes after 1 minute.
1. First, create the directory, as follows:

/etc/systemd/system/ntpd.service.d.

~]# mkdir -p /etc/systemd/system/ntpd.service.d

2. Create a new file in that directory named restart.conf and add the
following to it:

[Service]
Restart=on-failure
RestartSec=60s

3. Next, reload the unit files and recreate the dependency tree using the
following command:

~]# systemctl daemon-reload

4. Finally, restart the ntpd service by executing the following command:

~]# systemctl restart ntpd

There's more…
When requesting the status of a service, the most recent log entries are also shown when
executed as root.

The service status information can be seen in the following table:

Field Description

Loaded
This provides information on whether the service is loaded and enabled. It also includes the absolute path to
the service file.

Active This provides information on whether the service is running, followed by the time it started.

Main
PID

This provides PID of the corresponding service, followed by its name.

Status This provides information about the corresponding service.

Process This provides information about the related process.

Cgroup This provides information about related control groups.

In some (rare) cases, you want to prevent a service from being started, either manually
or by another service; there is an option to mask the service, which is as follows:

~]# systemctl mask <service>

To unmask, execute the following:

~]# systemctl unmask <service>

When modifying service unit files (and this is not limited to services only), it is best
practice to copy the original service file, which is located at /lib/systemd/system to
/etc/systemd/service. Alternatively, you can create a directory in
/etc/systemd/service appended with .d, in which you will create conf files
containing only the directives that you wish to add or change, as in the previous recipe.
The advantage of the latter is that you don't need to keep up with changes in the original
service file as it will be "updated" with whatever is located in the service.d

https://technet24.ir

directory.

See also
For more information about managing systemd services, go to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-
Managing_Services_with_systemd-Services.html.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Services.html
https://technet24.ir

Configuring the systemd journal for
persistence
By default, the journal doesn't store log files on disk, only in memory or the
/run/log/journal directory. This is sufficient for the recent log history (with the
journal) but not for long-term log retention should you decide to go with journal only
and not with any other syslog solution.

How to do it…
Configuring journald to keep more logs than memory allows is fairly simple, as
follows:

1. Open /etc/systemd/journald.conf with your favorite text editor with root
permissions by executing the following command:

~]# vim /etc/systemd/journald.conf

2. Ensure that the line containing Storage is either remarked or set to auto or
persistent and save it, as follows:

Storage=auto

3. If you select auto, the journal directory needs to be manually created. The
following command would be useful for this:

~]# mkdir -p /var/log/journal

4. Now, restart the journal service by executing the following command:

~]# systemctl restart systemd-journald

https://technet24.ir

There's more…
There are many other options that can be set for the journal daemon.

By default, all the data stored by journald is compressed, but you could disable this
using Compress=no.

It is recommended to limit the size of the journal files by either specifying a maximum
retention age (MaxRetentionSec), a global maximum size usage (SystemMaxUse), or a
maximum size usage per file (SystemMaxFileSize).

See also
For more information about using the journal with RHEL 7, go to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-
Using_the_Journal.html.

Take a look at the man page for journald (5) for more information on what can be
configured.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-Using_the_Journal.html
https://technet24.ir

Monitoring services using journalctl
Systemd's journal has the added advantage that its controls allow you to easily narrow
down on messages generated by specific services.

How to do it…
Here are the steps you need to perform for this recipe:

1. First, display all the messages generated by your system.

This will show all the messages generated on the system; run the following
commands:

~]# journalctl
-- Logs begin at Fri 2015-06-26 23:37:30 CEST, end at Sat 2015-
07-25 00:30:01 CEST. --
Jun 26 23:37:30 rhel7.mydomain.lan systemd-journal[106]: Runtime
journal is using 8.0M (max 396.0M, leaving 594.0M of free 3.8G,
current limit 396.0M).
Jun 26 23:37:30 rhel7.mydomain.lan systemd-journal[106]: Runtime
journal is using 8.0M (max 396.0M, leaving 594.0M of free 3.8G,
current limit 396.0M).
Jun 26 23:37:30 rhel7.mydomain.lan kernel: Initializing cgroup
subsys cpuset
...
~]#

2. Now, display all system-related messages.

This command shows all the messages related to the system and not its users:

~]# journalctl –-system
-- Logs begin at Fri 2015-06-26 23:37:30 CEST, end at Sat 2015-
07-25 00:30:01 CEST. --
Jun 26 23:37:30 rhel7.mydomain.lan systemd-journal[106]: Runtime
journal is using 8.0M (max 396.0M, leaving 594.0M of free 3.8G,
current limit 396.0M).
Jun 26 23:37:30 rhel7.mydomain.lan systemd-journal[106]: Runtime
journal is using 8.0M (max 396.0M, leaving 594.0M of free 3.8G,
current limit 396.0M).
Jun 26 23:37:30 rhel7.mydomain.lan kernel: Initializing cgroup
subsys cpuset
...
~]#

3. Display all the current user messages.

This command shows all messages related to the user that you are logged on with:

~]# journalctl --user

https://technet24.ir

No journal files were found.
~]#

4. Next, display all messages generated by a particular service using the following
command line:

~]# journalctl --unit=<service>

Here's an example:

~]# journalctl --unit=sshd
-- Logs begin at Fri 2015-06-26 23:37:30 CEST, end at Sat 2015-
07-25 00:45:01 CEST. --
Jun 26 23:40:18 rhel7.mydomain.lan systemd[1]: Starting OpenSSH
server daemon...
Jun 26 23:40:18 rhel7.mydomain.lan systemd[1]: Started OpenSSH
server daemon.
Jun 26 23:40:20 rhel7.mydomain.lan sshd[817]: Server listening on
0.0.0.0 port 22.
Jun 26 23:40:20 rhel7.mydomain.lan sshd[817]: Server listening on
:: port 22.
Jun 27 11:30:08 rhel7.mydomain.lan sshd[4495]: Accepted publickey
for root from 10.0.0.2 port 42748 ssh2: RSA
cf:8a:a0:b4:4c:3d:d7:4d:93:c6:e0:fe:c0:66:e4
...
~]#

5. Now, display messages by priority.

Priorities can be specified by a keyword or number, such as debug (7), info (6),
notice (5), warning (4), err (3), crit (2), alert (1), and emerg (0). When
specifying a priority, this includes all the lower priorities as well. For example,
err implies that crit, alert, and emerg are also shown. Take a look at the
following command line:

~]# journalctl -p <priority>

Here's an example:

~]# journalctl -p err
-- Logs begin at Fri 2015-06-26 23:37:30 CEST, end at Fri 2015-
07-24 22:30:01 CEST. --
Jun 26 23:37:30 rhel7.mydomain.lan kernel: ioremap error for
0xdffff000-0xe0000000, requested 0x10, got 0x0
Jun 26 23:38:49 rhel7.mydomain.lan systemd[1]: Failed unmounting
/usr.

...
~]#

6. Next, display messages by time.

You can show all messages from the current boot through the following commands:

~]# journalctl -b
-- Logs begin at Fri 2015-06-26 23:37:30 CEST, end at Sat 2015-
07-25 00:45:01 CEST. --
Jun 26 23:37:30 rhel7.mydomain.lan systemd-journal[106]: Runtime
journal is using 8.0M (max 396.0M, leaving 594.0M of free 3.8G,
current limit 396.0M).
Jun 26 23:37:30 rhel7.mydomain.lan systemd-journal[106]: Runtime
journal is using 8.0M (max 396.0M, leaving 594.0M of free 3.8G,
current limit 396.0M).
Jun 26 23:37:30 rhel7.mydomain.lan kernel: Initializing cgroup
subsys cpuset
Jun 26 23:37:30 rhel7.mydomain.lan kernel: Initializing cgroup
subsys cpu
Jun 26 23:37:30 rhel7.mydomain.lan kernel: Initializing cgroup
subsys cpuacct
Jun 26 23:37:30 rhel7.mydomain.lan kernel: Linux version 3.10.0-
229.4.2.el7.x86_64 (gcc version 4.8.2 20140120 (Red Hat 4.8.2-
Jun 26 23:37:30 rhel7.mydomain.lan kernel: Command line:
BOOT_IMAGE=/vmlinuz-3.10.0-229.4.2.el7.x86_64
root=/dev/mapper/rhel7_system-root ro vconsole.keymap=
Jun 26 23:37:30 rhel7.mydomain.lan kernel: e820: BIOS-provided
physical RAM map:
~]#

You can even show all the messages within a specific time range by running the
following:

~]# journalctl --since="2015-07-24 08:00:00" --until="2015-07-24
09:00:00"
-- Logs begin at Fri 2015-06-26 23:37:30 CEST, end at Sat 2015-
07-25 00:45:01 CEST. --
Jul 24 08:00:01 rhel7.mydomain.lan systemd[1]: Created slice
user-48.slice.
Jul 24 08:00:01 rhel7.mydomain.lan systemd[1]: Starting Session
3331 of user apache.
J
...
Jul 24 08:45:01 rhel7.mydomain.lan systemd[1]: Starting Session
3335 of user apache.
Jul 24 08:45:01 rhel7.mydomain.lan systemd[1]: Started Session

https://technet24.ir

3335 of user apache.
Jul 24 08:45:01 rhel7.mydomain.lan CROND[22909]: (apache) CMD
(php -f /var/lib/owncloud/cron.php)
~]#

There's more…
The examples presented in this recipe can all be combined. For instance, if you want to
show all the error messages between 8:00 and 9:00 on 2015-07-24, your command
would be the following:

~]# journalctl -p err --since="2015-07-24 08:00:00" --until="2015-07-
24 09:00:00"

A lot of people tend to "follow" log files to determine what is happening, hoping to
figure out any issues. The journalctl binary is an executable one, so it is impossible
to use the traditional "following" techniques such as tail –f or using less and
pressing CTRL + F. The good folks that coded systemd and systemctl have provided
a solution to this: simply add -f or --follow as an argument to the journalctl
command.

Although most environments are used to create syslog messages to troubleshoot, the
journal does provide the added value of being able to create simple filters that allow
you to monitor their messages live.

https://technet24.ir

See also
For more information about using the journal with RHEL 7, go to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-
Using_the_Journal.html.

Take a look at the man page of journalctl (1) for more information on what can be
configured.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-Using_the_Journal.html

Configuring logrotate
The logrotate tool allows you to rotate the logs that are generated by applications and
scripts

It keeps your log directories clutter-free and minimizes disk usage when correctly
configured.

https://technet24.ir

How to do it…
The logrotate tool is installed by default, but I will include the installation
instructions here for completeness. This recipe will show you how to rotate logs for
rsyslog. We will rotate the logs everyday, add an extension based on the date,
compress them with a one-day delay, and keep them for 365 days. Perform the following
steps:

1. First, to install logrotate, perform the following command:

~]# yum install -y logrotate

2. Ensure that it's enabled through the following:

~]# systemctl restart crond

3. Open /etc/logrotate.d/syslog with your favorite editor. The contents of this
file are the following, by default:

/var/log/cron
/var/log/maillog
/var/log/messages
/var/log/secure
/var/log/spooler
{
 sharedscripts
 postrotate
 /bin/kill -HUP `cat /var/run/syslogd.pid 2> /dev/null` 2>
/dev/null || true
 endscript
}

4. Now, replace this with the following code:

/var/log/cron
/var/log/maillog
/var/log/messages
/var/log/secure
/var/log/spooler
{
 compress
 daily
 delaycompress
 dateext
 missingok
 rotate 365
 sharedscripts

 postrotate
 /bin/kill -HUP `cat /var/run/syslogd.pid 2> /dev/null` 2>
/dev/null || true
 endscript
}

5. Finally, save the file.

https://technet24.ir

How it works…
The logrotate tool is a script that is launched by cron everyday.

The directives added to the default logrotate definition are compress, daily,
delaycompress, dateext, missingok, and rotate.

The compress directive compresses old versions of the log files with gzip. This
behavior is somewhat changed by specifying delaycompress. This causes us to always
have the most recently rotated log file available uncompressed.

The daily directive makes logrotate execute the definition every day. The rotate
directive only keeps x rotated log files before deleting the oldest. In this case, we have
specified this to be 365, which means that while rotating daily, the logs are kept for 365
days.

The missingok directive makes it alright for syslog to not create a file, which,
however unlikely, is possible.

The dateext directive appends a date to the rotated file in the form of yyyymmdd
instead of a number, which is the default.

There's more…
The /etc/logrotate.conf file contains the defaults directives for all definitions. If
you don't specifically use a directive within a definition for a file, the values in this file
will be used if specified.

It would make sense to change the settings in this file so that all the definitions are
affected, but this is not practical; not all log files are made equal. The syslog service
generates a lot of messages, and it would probably clutter up your system before long.
However, yum, for instance, doesn't generate a lot of messages, and it keeps this log file
readable for much longer than your syslog files. This, by the way, is reflected in the
definition for yum.

If you want to debug your new configuration, this can be achieved by executing the
following to test just one configuration:

~# /usr/sbin/logrotate -v /etc/logrotate.d/<config file>

Alternatively, you can use the following to test everything:

~]# /usr/sbin/logrotate -v /etc/logrotate.conf

Here's an example:

~]# /usr/sbin/logrotate -v /etc/logrotate.d/syslog
reading config file /etc/logrotate.d/syslog

Handling 1 logs

rotating pattern: /var/log/cron
/var/log/maillog
/var/log/messages
/var/log/secure
/var/log/spooler
 1048576 bytes (no old logs will be kept)
empty log files are rotated, old logs are removed
considering log /var/log/cron
 log does not need rotating
considering log /var/log/maillog
 log does not need rotating
considering log /var/log/messages
 log does not need rotating
considering log /var/log/secure

https://technet24.ir

 log does not need rotating
considering log /var/log/spooler
 log does not need rotating
not running postrotate script, since no logs were rotated
~]#

See also
Take a look at the man page of logrotate (8) for more information on configuring
logrotate.

https://technet24.ir

Managing time
RHEL 7 comes preinstalled with Chrony. While everybody knows Ntpd, Chrony is a
newcomer to the game of timekeeping.

Chrony is a set of programs that maintains the time on your computer using different time
sources, such as NTP servers, your system's clock, and even custom-made
scripts/programs. It also calculates the rate at which the computer loses or gains time to
compensate while no external reference is present—for example, if your NTP server(s)
is(are) down.

Chrony is a good solution for systems which are intermittently disconnected and
reconnected to a network.

Ntpd should be considered for systems that are normally kept on permanently.

How to do it…
When talking about managing time in RHEL, it can be done through:

Chrony
Ntpd

We'll take a look at each of the methods separately.

Managing time through chrony

Ensure that chrony is installed and enabled, and perform the following steps:

1. First, install chrony through the following command:

~]# yum install -y chrony

2. Enable chrony, as follows:

~]# systemctl enable chrony
~]# systemctl start chrony

3. Now, open /etc/chrony.conf with your favorite editor and look for lines
starting with the server directive using the following commands:

server 0.rhel.pool.ntp.org iburst
server 1.rhel.pool.ntp.org iburst
server 2.rhel.pool.ntp.org iburst
server 3.rhel.pool.ntp.org iburst

4. Next, replace these lines with NTP servers that are near you and save the file:

server 0.pool.ntp.mydomain.lan iburst
server 1.pool.ntp.mydomain.lan iburst

The iburst option causes NTP to send a burst of eight packets at the next poll
instead of just one if the time master is unavailable, causing the NTP daemon to
speed up time synchronization.

5. Finally, restart chrony by executing the following command:

~]# systemctl restart chrony

Managing time through ntpd

Ensure that ntpd is installed and enabled, and perform the following steps:

https://technet24.ir

1. First, install ntpd by running the following:

~]# yum install -y ntpd

2. Enable ntpd through this command:

~]# systemctl enable ntpd

3. Open /etc/ntp.conf with your favorite editor and look for the lines starting with
the server directive. Run the following:

server 0.rhel.pool.ntp.org iburst
server 1.rhel.pool.ntp.org iburst
server 2.rhel.pool.ntp.org iburst
server 3.rhel.pool.ntp.org iburst

4. Replace these lines with the NTP servers near you and save the file:

server 0.pool.ntp.mydomain.lan iburst
server 1.pool.ntp.mydomain.lan iburst

5. Replace the contents of /etc/ntp/step-tickers with all your NTP servers, one
per line:

0.pool.ntp.mydomain.lan
1.pool.ntp.mydomain.lan

6. Now, restart ntpd by executing the following:

~]# systemctl restart ntpd

There's more…
While ntpd is the obvious choice for time synchronization, it doesn't fare well in
environments where time masters are intermittently accessible (for whatever reason). In
these environments, chronyd thrives. Also, ntpd can be quite complex to configure
correctly, whereas chronyd is a little bit simpler.

The reason for modifying /etc/ntp/step-tickers when using the ntpd file is for the
startup of the service. It uses ntpdate to synchronize time in one step before actually
starting the NTP daemon itself, which is a lot slower in synchronizing time.

To figure out whether your system is synchronized, use the following command:

For chrony, use the following command:

~]# chronyc sources

For ntpd, run the following:

~]# ntpq -p

Your output will be similar to:

remote refid st t when poll reach delay offset jitter
===
 LOCAL(0) .LOCL. 5 l 60m 64 0 0.000 0.000 0.000
*master.exam 178.32.44.208 3 u 35 128 377 0.214 -0.651 14.285

The asterisk (*) in front of an entry means that your system is synchronized to this
remote system's clock.

https://technet24.ir

See also
For more information on configuring chrony for RHEL 7, go to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-
Configuring_NTP_Using_the_chrony_Suite.html.

For more information on configuring ntpd for RHEL 7, go to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-
Configuring_NTP_Using_ntpd.html.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Configuring_NTP_Using_the_chrony_Suite.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Configuring_NTP_Using_ntpd.html

Configuring your boot environment
GRUB2 is the default boot loader for RHEL 7. By default, it doesn't use any fancy
configuration options, but it is wise to at least secure your grub boot loader.

https://technet24.ir

How to do it…
There are many advantages to having your grub and boot environment output to serial
console in an enterprise environment. Many vendors integrate virtual serial ports in
their remote control systems, as does KVM. This allows you to connect to the serial
port and easily grab whatever is displayed in a text editor.

Setting a password on the GRUB2 boot loader mitigates possible hacking attempts on
your system when you have physical access to the server or console. Perform the
following steps for this recipe:

1. First, edit /etc/sysconfig/grub with your favorite editor.
2. Now, modify the GRUB_TERMINAL_OUTPUT line to include both console and serial

access by executing the following command line:

GRUB_TERMINAL_OUTPUT="console serial"

3. Add the GRUB_SERIAL_COMMAND entry, as follows:

GRUB_SERIAL_COMMAND="serial --speed=9600 --unit=0 --word=8 --
parity=no –stop=1"

4. Now, save the file.
5. Create the /etc/grub.d/01_users file with the following contents:

cat << EOF
set superusers="root"
password root SuperSecretPassword
EOF

6. Next, update your grub configuration by running the following commands:

~]# grub2-mkconfig -o /boot/grub2/grub.cfg
Generating grub configuration file ...
Found linux image: /boot/vmlinuz-3.10.0-229.4.2.el7.x86_64
Found initrd image: /boot/initramfs-3.10.0-229.4.2.el7.x86_64.img
Found linux image: /boot/vmlinuz-3.10.0-229.1.2.el7.x86_64
Found initrd image: /boot/initramfs-3.10.0-229.1.2.el7.x86_64.img
Found linux image: /boot/vmlinuz-0-rescue-
fe045089e49942cb97db675892395bc8
Found initrd image: /boot/initramfs-0-rescue-
fe045089e49942cb97db675892395bc8.img
done
~]#

How it works…
The behavior of grub2-mkconfig is defined by the directives of the files in
/etc/grub.d. These files, based on the configuration in /etc/sysconfig/grub,
autogenerate all the menu entries in the grub.cfg file. You can modify its behavior by
adding files with bash code in this directory.

For instance, you could add a script that would add a menu entry to boot from the
CD/DVD ROM drive.

The user root, which is added to /etc/grub.d/01_users, is the only one allowed to
edit menu entries from the console, mitigating the weakness in GRUB to force rescue
mode by adding 1 or rescue at the end of the kernel line.

https://technet24.ir

There's more…
The grub2-mkconfig command is specific for BIOS-based systems. In order to do the
same on UEFI systems, modify the command as follows:

~]# grub2-mkconfig -o /boot/efi/EFI/redhat/grub.cfg

In order to access the GRUB terminal over the same serial connection, you need to
specify an additional kernel option: console=ttyS0,9600n8.

You can either modify the kernel lines in /boot/grub2/grub.cfg (or
/boot/efi/EFI/redhat/grub.cfg manually, but you do risk losing the change when
your kernel is updated), or manually regenerate the file using grub2-mkconfig.

It's best to add it to the GRUB_CMDLINE_LINUX directive in /etc/sysconfig/grub and
regenerate your grub.cfg file.

Passwords for GRUB users can be encrypted using the grub2-mkpasswd-pbkdf2
command, as follows:

~]# grub2-mkpasswd-pbkdf2
Enter password:
Reenter password:
PBKDF2 hash of your password is
grub.pbkdf2.sha512.10000.C208DD5E318B1D6477C4E51035649C197411259C214D
0B83E3E83753AD58F7676B62CDF48E31AF0E739844A5CF9A95F76AF5008AF340336DB
50ECA23906ECC13.9D20A66F0CADA12AA617B293B5BBF7AAD44423ECA513F302FEBF5
CB92A0DC54436E16D7CD6E09685323084A27462C2A981054D52F452F5C2F71FBACD2C
31AEFA
~]#

Then, you can substitute the clear text password in /etc/grub.d/01_users with the
generated hash. Here's an example:

password root
grub.pbkdf2.sha512.10000.C208DD5E318B1D6477C4E51035649C197411259C214D
0B83E3E83753AD58F7676B62CDF48E31AF0E739844A5CF9A95F76AF5008AF340336DB
50ECA23906ECC13.9D20A66F0CADA12AA617B293B5BBF7AAD44423ECA513F302FEBF5
CB92A0DC54436E16D7CD6E09685323084A27462C2A981054D52F452F5C2F71FBACD2C
31AEFA

All the entries that are automatically generated are bootable but not editable from the
console, unless you know the user and password. If you have custom menu entries and

want to protect them in a similar way, add --unrestricted to the menu entry definition
before the accolades. Here's an example:

menuentry 'My custom grub boot entry' <options> --unrestricted {

https://technet24.ir

See also
For more information about working with the GRUB2 boot loader, go to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-
Working_with_the_GRUB_2_Boot_Loader.html.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Working_with_the_GRUB_2_Boot_Loader.html

Configuring smtp
Many programs use (or can be configured to use) SMTP to send messages about their
status and so on. By default, postfix is configured to deliver all messages locally and not
respond to incoming mails. If you have an environment of multiple servers, this can
become quite tedious to log on to each server to check for new mail. This recipe will
show you how to relay messages to a central mail relay or message store that also uses
SMTP.

Postfix is installed by default on RHEL 7.

https://technet24.ir

How to do it…
In this recipe, we'll combine several options:

We'll allow the server to accept incoming mails
We'll only allow the server to relay messages from recipients in the mydomain.lan
domain
We'll forward all mails to the mailhost.mydomain.lan mailserver

To complete this recipe, perform the following steps:

1. Edit /etc/postfix/main.cf with your favorite editor.
2. Modify inet_interface to accept mails on any interface through the following

command:

inet_interface = all

3. Add the smtpd_recipient_restrictions directive to only allow incoming
mails from the mydomain.lan domain, as follows:

smtpd_recipient_restrictions =
 check_sender_access hash:/etc/postfix/sender_access,
 reject

As you can see, the last two lines are indented. The postfix considers this block
as one line instead of three separate lines.

4. Add the relayhost directive to point to mailhost.mydomain.lan, as follows:

relayhost = mailhost.mydomain.lan

5. Now, save the postfix file.
6. Create /etc/postfix/sender_access with the following contents:

mydomain.lan OK

7. Next, hash the /etc/postfix/access file using the following command:

~]# postmap /etc/postfix/access

8. Finally, restart postfix, as follows:

~]# systemctl restart postfix

There's more…
To monitor your mail queue on the system, execute the following:

~]# postqueue -p

Whenever your mail relay cannot forward mails, it stores them locally and tries to
resend them at a later time. When you restore the mailflow, you can flush the queue and
attempt delivery by executing the following:

~]# postqueue -f

The kind of setup presented in this recipe is quite simple and assumes that you don't
have malicious users on your network. There are software that allow you to mitigate
spam and viruses. Popular solutions for this are spamassassin and amavis.

https://technet24.ir

See also
For more information on using postfix with RHEL 7, go to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-email-
mta.html#s2-email-mta-postfix.

For more information on postfix, check out the postfix rpm (rpm -ql postfix) or go to
http://www.postfix.org/. This site provides good documentation and how to's for a large
number of scenarios.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-email-mta.html#s2-email-mta-postfix
http://www.postfix.org/

Chapter 5. Using SELinux
Here is an overview of the recipes presented in this chapter:

Changing file contexts
Configuring SELinux booleans
Configuring SELinux port definitions
Troubleshooting SELinux
Creating SELinux policies
Applying SELinux policies

https://technet24.ir

Introduction
SELinux is a Linux kernel module that allows supporting mandatory access control
(MAC) security policies. The Red Hat implementation of SELinux combines role-based
access control (RBAC) with type enforcement (TE). Optionally, multilevel security
(MLS) is also available but isn't widely used as it implements fewer policies than the
default Red Hat SELinux policies.

SELinux is enabled by default in RHEL 7 and supported for all software packaged by
Red Hat.

The recipes presented in this chapter will not only provide you with a solid base to
troubleshoot SELinux issues and fix them, but also a peek into how to create your own
SELinux policies.

Changing file contexts
Files and processes are labeled with a SELinux context, which contains additional
information about a SELinux user, role type, and level. This information is provided by
the SELinux kernel module to make access control decisions.

The SELinux user, a unique identity known by the SELinux policy, is authorized for a
number of roles.

SELinux roles, as we already alluded to before, are attributes of SELinux users and part
of the RBAC SELinux policy. SELinux roles are authorized for SELinux domains.

SELinux types define the type for files and domain for processes. SELinux policies
define access between types and other files and processes. By default, if there is no
specific rule in the SELinux policy, access is denied.

The SELinux level is only used when the SELinux type is set to MLS and should be
avoided altogether on anything other than servers. This set of policies doesn't cover the
same domains as defined by the default Red Hat SELinux policy. The SELinux level is
an attribute of MLS and multi-category security (MCS).

https://technet24.ir

Getting ready
All files and processes on a system are labeled to represent security-relevant
information. This information is called the SELinux context. To view the contexts of
files (and directories), execute the following:

~# ls -Z
-rw-r--r--. root root unconfined_u:object_r:admin_home_t:s0 file
~#

How to do it…
You can temporarily change the context of a file (or files) or permanently change their
context. The first option allows easy troubleshooting if you need to figure out whether
changing the context solves your problem. Persistent changes are mostly used when your
applications refer to data that is not in the standard location—for example, if your web
server serves data from /srv/www.

Temporary context changes

Temporary SELinux context changes remain until the file, or the filesystem that the file
resides on, is relabeled.

To change the SELinux user of a file, execute the following:

~# chcon --user <SELinux user> <filename>

To change the SELinux role of a file, execute the following:

~# chcon --role <SELinux role> <filename>

To change the SELinux type of a file, execute the following:

~# chcon --type <SELinux typs> <filename>

Persistent file context changes

Changing the application data location doesn't automatically modify SELinux contexts to
allow your application to access this data.

To permanently relabel files or directories, perform the following:

1. Change the SELinux user for your files or directories via this command:

~# semanage fcontext -a --seuser <SELinux user>
<filename|dirname>

2. Change the SELinux type of your files or directories by running the following:

~# semanage fcontext -a --type <SELinux type> <filename|dirname>

3. Finish with this command line by applying the directive to the
files/directories:

~# restorecon <filename|dirname>

https://technet24.ir

There's more…
To show all the available SELinux users, execute the following:

~# semanage user -l

Alternatively, you can install the setools-console package and run the following:

~# seinfo -u

https://technet24.ir

To show all the available SELinux types, install the setools-console package and run
the following:

~# seinfo -t

To show the available SELinux roles, install the setools-console package and run the
following:

~# seinfo -r

https://technet24.ir

The semanage tool doesn't have an option to include all files recursively, but there is a
solution to this. The filename or dirname you specify is actually a regular expression
filter. So, for example, if you want to recursively include all the files in /srv/www, you
could specify "/srv/www(/.*)?".

Tip

For now, there's no way to change the SELinux role using semanage. A way to get
around this is to change the SELinux user or type using semanage and then edit it, as
follows: /etc/selinux/targeted/contexts/files/file_contexts.local.

Here's a wrong SELinux context example of an AVC denial report found in the
audit.log file:

type=AVC msg=audit(1438884962.645:86): avc: denied { open } for
pid=1283 comm="httpd" path="/var/www/html/index.html" dev="dm-5"
ino=1089 scontext=system_u:system_r:httpd_t:s0
tcontext=system_u:object_r:user_home_t:s0 tclass=file

This command can be explained as follows:

Commands Description

type=AVC This is the log type

msg=audit(1438884962.645:86) This is the log entry timestamp

avc This is a repetition of the log type

denied This states whether enforcing is enabled

{ open } This is a permission that causes AVC denial

for pid=1283 This is the process ID

comm="httpd" This is the process command

path="/var/www/html/index.html" This is the path that is accessed

dev="dm-5" This blocks the device that the preceding file is located on

ino=1089 This is the inode of the preceding file

scontext=system_u:system_r:httpd_t:s0 This is the source SELinux context

tcontext=system_u:object_r:user_home_t:s0 This is the target SELinux context

tclass=file This is the target SELinux class

https://technet24.ir

See also
Refer to the man page for chcon (1) and semanage-fcontext (8) for more information.

Configuring SELinux booleans
SELinux booleans allow you to change the SELinux policy at runtime without the need
to write additional policies. This allows you to change the policy without the need for
recompilation, such as allowing services to access NFS volumes.

https://technet24.ir

How to do it…
This is the way to temporarily or permanently change SELinux booleans.

Listing SELinux booleans

For a list of all booleans and an explanation of what they do, execute the following:

~# semanage boolean -l

Now, let's try to get the value of a particular SELinux boolean. It is possible to get the
value of a single SELinux boolean without the use of additional utilities, such as grep
and/or awk. Simply execute the following:

~# getsebool <SELinux boolean>

This shows you whether or not the boolean is set. Here's an example:

~# getsebool virt_use_nfs
virt_use_nfs --> off
~#

Changing SELinux booleans

To set a boolean value to a particular one, use the following command:

~# setsebool <SELinux boolean> <on|off>

Here's an example command:

~# setsebool virt_use_nfs on

This command allows you to change the value of the boolean, but it is not persistent
across reboots. To allow persistence, add the -P option to the command line, as
follows:

~# setsebool -P virt_use_nfs on

https://technet24.ir

There's more…
If you would like a list of all the bare bones of SELinux booleans and their values,
getsebool -a is an alternative, as follows:

~# getsebool -a

Managing SELinux booleans can be rather complex as there are a lot of booleans, and
their names are not always simple to remember. For this reason, the setsebool,
getsebool, and semanage tools come with tab completion. So, whenever you type any
boolean name, you can use the tab key to complete or display the possible options.

Here's an example of an AVC denial report found in the audit.log file that can be
solved by enabling a boolean:

type=AVC msg=audit(1438884483.053:48): avc: denied { open } for
pid=1270 comm="httpd" path="/nfs/www/html/index.html" dev="0:38"
ino=2717909250 scontext=system_u:system_r:httpd_t:s0
tcontext=system_u:object_r:nfs_t:s0 tclass=file

This is an example of a service (httpd in this case) accessing a file located on an NFS

share, which is disabled by default.

This can be allowed by setting the httpd_use_nfs boolean to "on".

https://technet24.ir

Configuring SELinux port definitions
SELinux also controls access to your TCP/IP ports. If your application is confined by
SELinux, it will also deny access to your ports when starting up the application.

This recipe will show you how to detect which ports are used by a particular SELinux
type and change it.

How to do it…
Let's allow the HTTP daemon to listen on the nonstandard port 82 through the following
steps:

1. First, look for the ports that are accessed by HTTP via these commands:

~# semanage port -l |grep http
http_cache_port_t tcp 8080, 8118, 8123, 10001-
10010
http_cache_port_t udp 3130
http_port_t tcp 80, 81, 443, 488, 8008,
8009, 8443, 9000
pegasus_http_port_t tcp 5988
pegasus_https_port_t tcp 5989
~#

The SELinux port assignment we're looking for is http_port_t. As you can see,
only the displayed ports (80, 81, 443, 488, 8008, 8009, 8443, and 9000) are
allowed to be used to listen on by any process that is allowed to use the
http_port_t type.

2. Add port 82 to the list of allowed ports, as follows:

~# semanage port -a -t http_port_t -p tcp 82
~#

3. Next, verify the port assignment, as follows:

~# semanage port -l |grep ^http_port_t
http_port_t tcp 82, 80, 81, 443, 488,
8008, 8009, 8443, 9000
~#

https://technet24.ir

There's more…
In this example, there is reference to the HTTP daemon as the SELinux policy governing
HTTP daemons is implemented not only for the Apache web server, but also for Nginx.
So, as long as you use the packages provided by Red Hat, the SELinux policies will be
used correctly.

Take a look at the following example of an AVC denial report found in the audit.log
file that is caused because the domain is not allowed to access a certain port:

type=AVC msg=audit(1225948455.061:294): avc: denied { name_bind } for
pid=4997 comm="httpd" src=82
scontext=unconfined_u:system_r:httpd_t:s0
tcontext=system_u:object_r:port_t:s0 tclass=tcp_socket

This AVC denial shows that the httpd daemon attempted to listen (name_bind) on port
82 but was prohibited by SELinux.

Troubleshooting SELinux
Troubleshooting SELinux is not as straightforward as it may seem as at the time of
writing this book, there is no integration with SELinux to return SELinux-related events
back to the applications. Usually, you will find that access is denied with no further
description of it in log files.

https://technet24.ir

Getting ready
Make sure that setroubleshoot-server and setools-console are installed by
executing the following command:

~# yum install -y setroubleshoot-server setools-console

If you have X server installed on your system, you can also install the GUI, as follows:

~# yum install -y setroubleshoot

Make sure that auditd, rsyslog, and setroubleshootd are installed and running
before reproducing the issue.

How to do it…
There are several ways to detect SELinux issues.

This is a classic issue where the SELinux context of a file is incorrect, causing the
application trying to access the file to fail.

In this case, the context of /var/www/html/index.html is set to
system_u:object_r:user_home_t:s0 instead of
system_u:object_r:httpd_sys_content_t:s0, causing httpd to throw a 404. Take
a look at the following command:

ls -Z /var/www/html/index.html
-rw-r--r--. apache apache system_u:object_r:user_home_t:s0
/var/www/html/index.html
~#

audit.log

Use the following command to look for denied or failed entries in the audit log:

~# egrep 'avc.*denied' /var/log/audit/audit.log
ype=AVC msg=audit(1438884962.645:86): avc: denied { open } for
pid=1283 comm="httpd" path="/var/www/html/index.html" dev="dm-5"
ino=1089 scontext=system_u:system_r:httpd_t:s0
tcontext=system_u:object_r:user_home_t:s0 tclass=file
~#

syslog

You can look for SELinux messages in /var/log/messages via the following
command:

~# grep 'SELinux is preventing' /var/log/messages
Aug 6 20:16:03 localhost setroubleshoot: SELinux is preventing
/usr/sbin/httpd from read access on the file index.html. For complete
SELinux messages., run sealert -l dc544bde-2d7e-4f3f-8826-
224d9b0c71f6
Aug 6 20:16:03 localhost python: SELinux is preventing
/usr/sbin/httpd from read access on the file index.html.
~#

ausearch

https://technet24.ir

Use the audit search tool to find SELinux errors, as follows:

~# ausearch -m avc
time->Thu Aug 6 20:16:02 2015
type=SYSCALL msg=audit(1438884962.645:86): arch=c000003e syscall=2
success=yes exit=25 a0=7f1bcfb65670 a1=80000 a2=0 a3=0 items=0
ppid=1186 pid=1283 auid=4294967295 uid=48 gid=48 euid=48 suid=48
fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=4294967295
comm="httpd" exe="/usr/sbin/httpd" subj=system_u:system_r:httpd_t:s0
key=(null)
type=AVC msg=audit(1438884962.645:86): avc: denied { open } for
pid=1283 comm="httpd" path="/var/www/html/index.html" dev="dm-5"
ino=1089 scontext=system_u:system_r:httpd_t:s0
tcontext=system_u:object_r:user_home_t:s0 tclass=file
type=AVC msg=audit(1438884962.645:86): avc: denied { read } for
pid=1283 comm="httpd" name="index.html" dev="dm-5" ino=1089
scontext=system_u:system_r:httpd_t:s0
tcontext=system_u:object_r:user_home_t:s0 tclass=file
~#

Once we restore the context of /var/www/html/index.html to its original, the file is
accessible again. Take a look at the following commands:

~# restorecon /var/www/html/index.html
~# ls -Z /var/www/html/index.html
-rw-r--r--. apache apache system_u:object_r:httpd_sys_content_t:s0
/var/www/html/index.html
~#

There's more…
It's not always easy to determine whether a file has the correct context. To view the
actual SELinux context and compare it to what it should be without modifying anything,
execute this command:

~# matchpathcon -V index.html
index.html has context system_u:object_r:user_home_t:s0, should be
system_u:object_r:httpd_sys_content_t:s0
~#

This tells you what the current context is and what it should be.

As you can see in the preceding syslog example, the output comes with the following
command:

... run sealert -l dc544bde-2d7e-4f3f-8826-224d9b0c71f6

This command provides you with a richer description of the problem:

~# sealert -l dc544bde-2d7e-4f3f-8826-224d9b0c71f6
SELinux is preventing /usr/sbin/httpd from read access on the file
index.html.

***** Plugin catchall_boolean (89.3 confidence) suggests

If you want to allow httpd to read user content
Then you must tell SELinux about this by enabling the
'httpd_read_user_content' boolean.
You can read 'None' man page for more details.
Do
setsebool -P httpd_read_user_content 1

***** Plugin catchall (11.6 confidence) suggests

If you believe that httpd should be allowed read access on the
index.html file by default.
Then you should report this as a bug.
You can generate a local policy module to allow this access.
Do
allow this access for now by executing:
grep httpd /var/log/audit/audit.log | audit2allow -M mypol
semodule -i mypol.pp

https://technet24.ir

Additional Information:
Source Context system_u:system_r:httpd_t:s0
Target Context system_u:object_r:user_home_t:s0
Target Objects index.html [file]
Source httpd
Source Path /usr/sbin/httpd
Port <Unknown>
Host localhost.localdomain
Source RPM Packages httpd-2.4.6-31.el7.rhel.x86_64
Target RPM Packages
Policy RPM selinux-policy-3.13.1-23.el7_1.7.noarch
Selinux Enabled True
Policy Type targeted
Enforcing Mode Permissive
Host Name localhost.localdomain
Platform Linux localhost.localdomain
 3.10.0-229.4.2.el7.x86_64 #1 SMP Wed
May 13
 10:06:09 UTC 2015 x86_64 x86_64
Alert Count 1
First Seen 2015-08-06 20:16:02 CEST
Last Seen 2015-08-06 20:16:02 CEST
Local ID dc544bde-2d7e-4f3f-8826-224d9b0c71f6

Raw Audit Messages
type=AVC msg=audit(1438884962.645:86): avc: denied { read } for
pid=1283 comm="httpd" name="index.html" dev="dm-5" ino=1089
scontext=system_u:system_r:httpd_t:s0
tcontext=system_u:object_r:user_home_t:s0 tclass=file

type=AVC msg=audit(1438884962.645:86): avc: denied { open } for
pid=1283 comm="httpd" path="/var/www/html/index.html" dev="dm-5"
ino=1089 scontext=system_u:system_r:httpd_t:s0
tcontext=system_u:object_r:user_home_t:s0 tclass=file

type=SYSCALL msg=audit(1438884962.645:86): arch=x86_64 syscall=open
success=yes exit=ENOTTY a0=7f1bcfb65670 a1=80000 a2=0 a3=0 items=0
ppid=1186 pid=1283 auid=4294967295 uid=48 gid=48 euid=48 suid=48
fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=4294967295
comm=httpd exe=/usr/sbin/httpd subj=system_u:system_r:httpd_t:s0 key=
(null)

Hash: httpd,httpd_t,user_home_t,file,read

~#

This will actually give you more details about the problem at hand, and it will also
make a couple of suggestions. Of course, in this case, the real solution is to restore the
SELinux context of the file.

If you have installed a graphical desktop environment, you will get a notification each
time your system encounters an "AVC denied" alert:

Clicking on the icon will present you with the following dialog:

Clicking on the Troubleshoot button will provide you with additional information and a
(or multiple) possible solution(s) for your problem, as shown in the following
screenshot:

https://technet24.ir

In this case, the first option (the one marked with a green line) is the correct solution.

Some AVC denial messages may not be logged when SELinux denies access.
Applications and libraries regularly probe for more access than is actually required to
perform their tasks. In order to not flood the audit logs with these kinds of messages, the
policy can silence the AVC denials that are without permissions using dontaudit rules.
The downside of this is that it may make troubleshooting SELinux denials more difficult.

To disable the dontaudit rules, execute the following command:

~# semanage dontaudit off

This will disable the dontaudit rules and rebuild the SELinux policy.

It is advisable to reenable the dontaudit rules when you're done troubleshooting as
this may flood your disks. You can do this by executing the following command:

~# semanage dontaudit on

To get a full list of dontaudit rules, run the following:

~# sesearch --dontaudit
Found 8361 semantic av rules:
 dontaudit user_ssh_agent_t user_ssh_agent_t : udp_socket listen ;
 dontaudit openshift_user_domain sshd_t : key view ;
 dontaudit user_seunshare_t user_seunshare_t : process setfscreate
;
 dontaudit ftpd_t selinux_config_t : dir { getattr search open } ;
 dontaudit user_seunshare_t user_seunshare_t : capability
sys_module ;
 dontaudit xguest_dbusd_t xguest_dbusd_t : udp_socket listen ;
 dontaudit tuned_t tuned_t : process setfscreate ;
...
~#

If you know the domain that you wish to check for dontaudit rules, add the -s
argument followed by the domain, as shown here:

~# sesearch --dontaudit -s httpd_t
Found 182 semantic av rules:
 dontaudit httpd_t snmpd_var_lib_t : file { ioctl read write
getattr lock open } ;
 dontaudit domain rpm_var_lib_t : file { ioctl read write getattr
lock append } ;
 dontaudit httpd_t snmpd_var_lib_t : dir { ioctl read getattr lock
search open } ;
 dontaudit domain rpm_var_lib_t : dir getattr ;
 dontaudit httpd_t snmpd_var_lib_t : lnk_file { read getattr } ;
...
~#

https://technet24.ir

See also
Take a look at the man page for ausearch (8), matchpathcon (8), and sealert (8) for more
information.

Creating SELinux policies
In some cases, you'll need to create a new SELinux policy—for instance, when
installing a piece of software from source. Although I do not recommend installing
software from source on enterprise systems, this is sometimes your only option for
company-developed software.

It is then time to create your own SELinux policy.

https://technet24.ir

Getting ready
For this recipe, you need to have policycoreutils-python installed.

How to do it…
We'll use the denied entries in the audit.log log file to build our SELinux policy with
audit2allow.

In this recipe, we'll use the same example as in the previous recipe: the SELinux context
of /var/www/html/index.html that is changed to
system_u:object_r:user_home_t:s0. Perform the following steps:

1. First, create a human readable policy for verification via the following command:

~# egrep 'avc.*denied' /var/log/audit/audit.log |audit2allow -m
example_policy

module example_policy 1.0;

require {
 type httpd_t;
 type user_home_t;
 class file { read open };
}

#============= httpd_t ==============

#!!!! This avc can be allowed using the boolean
'httpd_read_user_content'
allow httpd_t user_home_t:file { read open };
~#

2. When this policy is validated, you can create a compiled SELinux policy file, as
follows:

egrep 'avc.*denied' /var/log/audit/audit.log |audit2allow -M
example_policy
******************** IMPORTANT ***********************
To make this policy package active, execute:

semodule -i example_policy.pp
~#

https://technet24.ir

How it works…
When you generate a module package, two files are created: a type enforcement file
(.te) and a policy package file (.pp) file. The te file is the human readable policy as
generated using audit2allow -m.

The pp file is the SELinux policy module package, which will later be used to enable
the new policy.

There's more…
If you believe you have discovered a bug in an existing SELinux policy, you'll need to
produce a type enforcing and policy package file to report with Red Hat Bugzilla.

It's important to make sure that you only parse the correct AVC denial entries with
audit2allow as it may result in more access than required. It's a good idea to pipe the
AVC denial entries to a temporary file and remove what is not needed before you parse
the file with audit2allow.

If the policy you generate in this way is not exactly what you need, you can always edit
the generated te policy file, and when you're done, compile a new policy file using the
te policy file. You can do this as follows:

1. Build a binary policy module out of the policy file through this command:

~# checkmodule -M -m -o example_policy.mod example_policy.te
checkmodule: loading policy configuration from example_policy.te
checkmodule: policy configuration loaded
checkmodule: writing binary representation (version 17) to
example_policy.mod
~#

2. Create the SELinux policy module package by executing the following:

~# semodule_package -o example_policy.pp -m example_policy.mod
~#

https://technet24.ir

See also
Take a look at the man page for audit2allow(1) for more options on creating a policy

To report bugs, go to https://bugzilla.redhat.com/.

https://bugzilla.redhat.com/

Applying SELinux policies
We've learned how to create SELinux policies in the previous recipe. This recipe will
show you how to apply your newly created SELinux policies.

https://technet24.ir

Getting ready
In order to apply a policy, we need a policy package file (pp). This can be obtained by
parsing AVC denials to audit2allow or compiling your own policy package file, as
explained in the Create SELinux policies recipe.

How to do it...
Follow these steps:

1. Activate the policy (this can take quite a while, depending on the number of
policies applied to your system) by running the following command:

~# semodule -i example_policy.pp
~#

2. Next, verify that the policy is actually activated via these commands:

~# semodule -l |grep example_policy
example_policy 1.0
~#

https://technet24.ir

How it works…
When executing the semodule command, the policy file is copied to
/etc/selinux/targeted/modules/active/modules/, and the complete SELinux
policy is recompiled and applied.

Tip

Be careful when applying custom-made policies as these may allow more access than
required!

There's more…
To remove policies, execute the following command:

~# semodule -r example_policy
~#

This is particularly practical when you want to test the effect with and without the
policy.

There's also a way to upgrade the module without removing it first, which is as follows:

~# semodule -u example_policy
~#

https://technet24.ir

See also
Refer to the man page for semodule (8) for more information.

Chapter 6. Orchestrating with Ansible
In this chapter, the following recipes will be addressed:

Installing Ansible
Configuring the Ansible inventory
Creating the template for a kickstart file
Creating a playbook to deploy a new VM with kickstart
Creating a playbook to perform system configuration tasks
Troubleshooting Ansible

https://technet24.ir

Introduction
Ansible is an easy-to-use agentless system configuration management tool. It allows us
to deploy complex configurations without the hassle of a complex interface or language.

Ansible uses playbooks, which are collections of tasks to deploy configurations and
applications to multiple nodes over SSH in a controlled way. However, it doesn't stop
there.

Ansible's modules, which are used to execute tasks, are all built to be idempotent in
their execution.

The definition of Idempotence, according to Wikipedia, is as follows:

Idempotence (/?a?d?m'po?t?ns/ eye-d?m-poh-t?ns [citation needed]) is the
property of certain operations in mathematics and computer science that can be
applied multiple times without changing the result beyond the initial application.

In short, any module will detect the changes to be applied and perform them. If it doesn't
need to change anything, it will not reapply the requested changes or interfere with file
metadata.

The Ansible company also provides Tower, a paid subscription with extra features, as
an add-on to Ansible. Tower provides a graphical interface to control your Ansible
orchestration tool. However, this is out of the scope of this chapter.

Install Ansible
Ansible is not in the default RHEL 7 repositories, but in this recipe, I will show you
how to install it in several ways.

https://technet24.ir

Getting ready
Ansible needs the following packages installed:

Python v2.7 (Ansible doesn't support v3 yet)
python-httplib2

python-jinja2

python-paramiko

python-setuptools

PyYAML

So, in order to achieve this, execute the following command:

~]# yum install -y python-httplib2 python-jinja2 python-keyczar
python-paramiko python-setuptools PyYAML

As RHEL 7 and some other major distributions come preinstalled with Python (yum
requires it, as do most of the Red Hat tools), we don't have to include it in the preceding
command.

How to do it…
In this recipe, I will cover the three most used methods of installing Ansible.

Installing the latest tarball

This method is quite simple as you just download the tarball and extract it in a location
of your choosing. Perform the following steps:

1. Grab the latest tarball located at http://releases.ansible.com/ansible/ via the
following command:

~]$ curl -o /tmp/ansible-latest.tar.gz
http://releases.ansible.com/ansible/ansible-latest.tar.gz
 % Total % Received % Xferd Average Speed Time Time
Time Current
 Dload Upload Total Spent
Left Speed
100 905k 100 905k 0 0 870k 0 0:00:01 0:00:01 -
-:--:-- 870k
~]$

2. Extract the tarball to /opt, as follows:

~]# tar zxf /tmp/ansible-latest.tar.gz -C /opt/

3. Now, create a symbolic link for easy access using this command:

~]# ln -s /opt/ansible-1.9.2 /opt/ansible

4. Add the Ansible binaries and man pages to your environment's path by executing
the following:

~]# cat << EOF > /etc/profile.d/ansible.sh
Ansible-related stuff
export ANSIBLE_HOME=/opt/ansible
export PATH=\${PATH-""}:${ANSIBLE_HOME}/bin
export MANPATH=\${MANPATH-""}:${ANSIBLE_HOME}/docs/man
export PYTHONPATH=\${PYTHONPATH-""}:${ ANSIBLE_HOME}/lib
EOF
~]#

5. Next, source the Ansible PATH and MANPATH by running this command line:

~]# . /etc/profile.d/ansible.sh

6. Finally, use the following command to regenerate the man pages:

http://releases.ansible.com/ansible/
https://technet24.ir

~]# /etc/cron.daily/man-db.cron

Installing cutting edge from Git

Git makes keeping your local copy of Ansible up to date quite simple.

It automatically updates/removes files where needed. Perform the following steps:

1. Make sure git is installed using this command:

~]# yum install -y git

2. Clone the Ansible git repository to /opt, as follows:

~]# cd /opt
~]# git clone git://github.com/ansible/ansible.git --recursive

3. Add the Ansible binaries and man pages to your environment's path, through the
following command:

~]# cat << EOF > /etc/profile.d/ansible.sh
Ansible-related stuff
export ANSIBLE_HOME=/opt/ansible
export PATH=\${PATH-""}:${ANSIBLE_HOME}/bin
export MANPATH=\${MANPATH-""}:${ANSIBLE_HOME}/docs/man
export PYTHONPATH=\${PYTHONPATH-""}:${ ANSIBLE_HOME}/lib

EOF
~]#

4. Now, source the Ansible PATH and MANPATH via this command:

~]# . /etc/profile.d/ansible.sh

5. Finally, using the following line, regenerate the man pages:

~]# /etc/cron.daily/man-db.cron

Installing Ansible from the EPEL repository

Installing from a repository has the advantage that you can keep your version of Ansible
up to date along with your system. Here are the steps you need to perform:

1. Install the extra packages for the Enterprise Linux (EPEL) repository from
https://fedoraproject.org/wiki/EPEL via this command:

~]# yum install -y https://dl.fedoraproject.org/pub/epel/epel-
release-latest-7.noarch.rpm

2. Now, install Ansible using yum, as follows:

~]# yum install -y ansible

https://fedoraproject.org/wiki/EPEL
https://technet24.ir

There's more…
If you want to keep your Git clone up to date, remember that the sources tree also
contains two subtrees. You'll have to execute the following:

~]# git pull --release
~]# git submodule update --init --recursive

Configuring the Ansible inventory
The Ansible inventory is the heart of the product as it provides a lot of variables about
your environment to the deployment mechanism. These variables are known as facts
and serve Ansible to make decisions, template text-based files, and so on.

https://technet24.ir

How to do it…
There are several ways of adding information about your environment to your inventory.

The static inventory file

The static inventory is basically a mini-formatted file containing the definitions for hosts
and groups. Here's what you need to do:

1. Create /etc/ansible/hosts with the following contents:

~]# cat << EOF >> /etc/ansible/hosts
localhost ansible_connection=local
srv1.domain.tld ansible_connection=ssh ansible_ssh_user=root

[mail]
mail[01..50].domain.tld

[mail:vars]
dns_servers=['8.8.8.8', '8.8.4.4']
mail_port=25
EOF
~]#

The dynamic inventory file

The dynamic inventory file has to be an executable file, generating a JSON string
containing information about your hosts and groups. Follow these steps::

1. Create an ~/inventory.py script with the following contents:

-]# cat << EOF >> ~/inventory.py
#!/usr/bin/python -tt
-*- coding: utf-8 -*-
vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4
import json

def main():
 inventory = {
 '_meta': {
 'hostvars': {
 'localhost': {
 'ansible_connection': 'local' },
 'srv1.domain.tld': {
 'ansible_connection': 'ssh',

 'ansible_ssh_user': 'root' },
 }
 },
 'all': {
 'hosts': [
 'localhost',
 'srv1.domain.tld'] },
 'mail': {
 'hosts': [],
 'vars': {
 'dns_servers': ['8.8.8.8', '8.8.4.4'],
 'mail_port': 25} }
 }

 for x in range(1,50):
 hostname = 'mail' + ('00%d' % x)[-2:] + '.domain.tld'
 inventory['_meta']['hostvars'].update({ hostname: {} })
 inventory['mail']['hosts'].append(hostname)

 print json.dumps(inventory, sort_keys=True, indent=4,
separators=(',',': '))

if __name__ == '__main__':
 main()
~]#

2. Now, make the script executable, as follows:

~]# chmod +x ~/inventory.py

host_vars files

A host_vars file is a yml-formatted one containing extra facts, which will only be
applied to the host with the same name as the file. Simply do the following:

1. Create a host_vars file for srv1.domain.tld through this command:

~]# cat << EOF >> ~/host_vars/srv1.domain.tld.yml
ansible_connection: ssh
ansible_ssh_user: root
EOF
~]#

group_vars files

https://technet24.ir

Like host_vars, group_vars files are yml-formatted ones containing extra facts.
These will be applied to the group with the same name as the file. Perform the
following:

1. Create a group_vars file for mail via the following command:

~]# cat << EOF >> ~/group_vars/mail.yml
dns_servers: ['8.8.8.8', '8.8.4.4']
mail_port: 25
EOF
~]#

How it works…
The inventory file location is set in the Ansible configuration file—look for the line
starting with hostfile within the defaults section. This file is either a static file, or a
script returning a JSON-formatted list of hosts and groups, as shown in the preceding
recipe. Ansible automatically detects whether a file is a script and treats it this way to
import information.

There is one caveat, however: the script needs to show the JSON-formatted information
by specifying --list.

Ansible can automatically combine the inventory with the host_vars and group_vars
files if the latter two directories are in the same directory as the inventory file / script.
Take a look at the following:

/etc/ansible/hosts
/etc/ansible/host_vars
/etc/ansible/host_vars/srv1.domain.tld.yml
/etc/ansible/host_vars/...
/etc/ansible/group_vars
/etc/ansible/group_vars/mail.yml
/etc/ansible/group_vars/...

The same can be achieved by putting the host_vars and group_vars directories in the
same directory as the playbook you are executing.

Tip

The facts in host_vars and group_vars take priority over the variables returned
through the inventory.

https://technet24.ir

There's more…
Ansible already seeds the inventory with the facts that it retrieves from the host itself.
You can easily find out which facts Ansible prepares for your use by executing the
following command:

~]# ansible -m setup <hostname>

This will produce a lengthy JSON-formatted output with all the facts Ansible knows
about your destination host.

If you want even more information, on RHEL systems, you can install redhat-lsb-
core to have access to LSB-specific facts.

Enterprises tend to have databases containing information regarding all their systems for
change management. This is an excellent source for the inventory script to get its
information.

See also
If you want more detailed information about the Ansible inventory, go to
http://docs.ansible.com/ansible/intro_inventory.html.

Shameless self-promotion for a personal project and a tool to automate the inventory
calls for a mention of https://github.com/bushvin/inventoryd/.

http://docs.ansible.com/ansible/intro_inventory.html
https://github.com/bushvin/inventoryd/
https://technet24.ir

Creating a template for a kickstart file
A template is one of the core modules of Ansible. It is used to easily generate files
(for example, configuration files) based on a common set of facts. It uses the Jinja2
template engine to interpret template files.

For this recipe, we'll use a simple kickstart script that is generic enough to deploy
any host. Refer to Chapter 2, Deploying RHEL "En Masse", to find out about
kickstart files.

Getting ready
The facts that we need for this host are repo_url, root_password_hash,
ntp_servers, timezone, ipv4_address, ipv4_netmask, ipv4_gateway, and
dns_servers.

https://technet24.ir

How to do it…
Create the kickstart file in your playbook's template folder
(~/playbooks/templates/kickstart/rhel7.ks) with the following content:

install
url --url={{ repo_url }}
skipx
text
reboot
lang en_US.UTF-8
keyboard us
selinux --enforcing
firewall --enabled --ssh
rootpw –iscrypted {{ root_password_hash }}
authconfig --enableshadow --passalgo=sha512
timezone --utc --ntpservers {{ ntp_servers|join(',') }} {{ timezone
}}
zerombr
clearpart --all
bootloader --location=mbr --timeout=5
part /boot --asprimary --fstype="xfs" --size=1024 --ondisk=sda
part pv.1 --size=1 --grow --ondisk=sda
volgroup {{ hostname }}_system pv.1
logvol / --vgname={{ inventory_hostname }}_system --size=2048 --
name=root --fstype=xfs
logvol /usr --vgname={{ inventory_hostname }}_system --size=2048 --
name=usr --fstype=xfs
logvol /var --vgname={{ inventory_hostname }}_system --size=2048 --
name=var --fstype=xfs
logvol /var/log --vgname={{ inventory_hostname }}_system --size=2048
--name=varlog --fstype=xfs
logvol swap --vgname={{ inventory_hostname }}_system --recommended --
name=swap --fstype=swap
network --device=eth0 --bootproto=static --onboot=yes --activate --
ip={{ ipv4_address }} --netmask={{ ipv4_netmask }} --gateway={{
ipv4_gateway }} --nameserver={{ dns_servers|join(',') }}
%packages --excludedocs
@Core
vim-enhanced
%end

How it works…
The Jinja2 engine replaces all the variables enclosed by {{ }} with whichever facts
are available for the specified host in the inventory, resulting in a correct kickstart
file, assuming all variables have been correctly set.

https://technet24.ir

There's more…
Jinja2 can do more than just replace variables with whatever is in the inventory. It was
originally developed as a rich templating language for web pages and supports major
features such as conditions, loops, and so on.

Using Jinja, you can easily loop over a list or array within the inventory and use the
resultant variable or even dictionaries and objects. For example, consider that your host
has the following fact:

{ 'nics': [
 { 'device': 'eth0', 'ipv4': { 'address':'192.168.0.100',
'netmask':'255.255.255.0','gateway':'192.168.0.1'} },
 { 'device': 'eth1', 'ipv4': { 'address':'192.168.1.100',
'netmask':'255.255.255.0','gateway':'192.168.1.1'} }] }

This would allow you to replace the network portion of your kickstart script with the
following:

{% for nic in nics %}
network –device={{ nic.device }} --bootproto=static --onboot=yes --
activate --ip={{ nic.ipv4.address }} --netmask={{ nic.ipv4.netmask }}
--gateway={{ nic.ipv4.gateway }}
{% endfor %}

There is one consideration with provisioning new systems such as this and the
inventory: you can only use the facts that you have introduced yourself, not those that
Ansible gets from the system. This is because firstly, they don't exist yet, and secondly,
the task is executed on a different host.

See also
For more information about templating with Ansible, read the Jinja2 Template Designer
documentation at http://jinja.pocoo.org/docs/dev/templates/.

For more information on the Ansible template module, go to
http://docs.ansible.com/ansible/template_module.html.

http://jinja.pocoo.org/docs/dev/templates/
http://docs.ansible.com/ansible/template_module.html
https://technet24.ir

Creating a playbook to deploy a new VM
with kickstart
Creating playbooks for Ansible is a relatively easy task as most considerations are
handled by the modules. All modules are made as "idempotently" as possible, meaning
that a module first checks what it is supposed to do with what has been done on the
system and only then applies the changes if they are different.

Getting ready
We don't need any additional facts for this recipe.

For this to work, we need to have a web server and a location to store the kickstart
files, which will be served by the web server.

For the sake of convenience, our web server is called web.domain.tld, the location on
this web server is /var/www/html/kickstart, and this directory can be accessed
through http://web.domain.tld/kickstart.

We also need a KVM host (refer to Chapter 1, Working with KVM Guests, on how to set
up a KVM server). In this case, we'll call our KVM server kvm.domain.tld.

https://technet24.ir

How to do it…
Let's create the playbook that will provision new systems via the following steps:

1. Create a ~/playbooks/provisioning.yml playbook with the following contents:

- name: Provision new machines
 hosts: all
 gather_facts: no
 tasks:
 - name: Publish kickstart template as new file to webserver
 action: template src=templates/kickstart/rhel7.ks
dest=/var/www/html/kickstart/{{ inventory_hostname }}.ks
 owner=apache group=apache mode=0644
 seuser=system_u serole=object_r
setype=httpd_sys_content_t selevel=s0
 delegate_to: web.domain.tld

 - name: Create new isolinux file to contain reference to the
kickstart file
 action: template src=templates/isolinux/isolinux.cfg.el7
dest=/root/iso/isolinux/isolinux.cfg
 delegate_to: kvm.domain.tld

 - name: Create new iso boot media
 action: shell cd /root/iso; mkisofs -o /tmp/{{
inventory_hostname }}.iso -b isolinux/isolinux.bin -c
isolinux/boot.cat -no-emul-boot -boot-load-size 4 -boot-info-
table -J -r .
 delegate_to: kvm.domain.tld

 - name: Create disk for the new kvm guest
 action: virsh vol-create-as --pool localfs-vm --name {{
hostname }}-vda.qcows2 --format qcows2 --capacity 15G
 delegate_to: kvm.domain.tld

 - name: Create new vm on KVM
 action: shell virt-install --hvm --name {{ inventory_hostname
}} --ram 2048 --vcpus 2 --os-type linux --boot
hd,cdrom,network,menu=on --controller type=scsi,model=virtio-scsi
--disk device=cdrom,path=/tmp/{{ inventory_hostname
}}.iso,readonly=on,bus=scsi --disk device=disk,vol=localfs-vm/{{
inventory_hostname }}-vda.qcows2,cache=none,bus=scsi --network
network=bridge-eth0,model=virtio --graphics vnc --graphics spice
--noautoconsole --memballoon virtio
 delegate_to: kvm.domain.tld

2. You'll also need to create the template for the

~/templates/isolinux/isolinux.cfg.el7 file; you can do this by executing
the following:

default vesamenu.c32
timeout 600
display boot.msg
menu clear
menu background splash.png
menu title Red Hat Enterprise Linux 7.0
menu vshift 8
menu rows 18
menu margin 8
menu helpmsgrow 15
menu tabmsgrow 13
menu color sel 0 #ffffffff #00000000 none
menu color title 0 #ffcc000000 #00000000 none
menu color tabmsg 0 #84cc0000 #00000000 none
menu color hotsel 0 #84cc0000 #00000000 none
menu color hotkey 0 #ffffffff #00000000 none
menu color cmdmark 0 #84b8ffff #00000000 none
menu color cmdline 0 #ffffffff #00000000 none
label linux
 menu label ^Install Red Hat Enterprise Linux 7.0
 kernel vmlinuz
 append initrd=initrd.img ks=http://web.domain.tld/kickstart/{{
inventory_hostname }}.ks text

label local
 menu label Boot from ^local drive
 localboot 0xffff

menu end

3. Now, use the following command to execute the playbook:

~]# ansible-playbook --limit newhost ~/playbooks/provisioning.yml

PLAY [Provision new machines] ********************************

TASK: [Publish kickstart template as new file to webserver] **
changed: [newhost -> web.domain.tld]

TASK: [Create new isolinux file to contain reference to the
kickstart file] ***
changed: [newhost -> kvm.domain.tld]

TASK: [Create new iso boot media] ****************************
changed: [newhost -> kvm.domain.tld]

https://technet24.ir

TASK: [Create disk for the new kvm guest] ********************
changed: [newhost -> kvm.domain.tld]

TASK: [Create new vm on KVM] *********************************
changed: [newhost -> kvm.domain.tld]

PLAY RECAP ***
newhost : ok=5 changed=5 unreachable=0 failed=0
~]#

How it works…
The playbook starts off with a name describing the playbook, as does each task.
Personally, I think naming your playbooks and tasks is a good idea as it will allow you
to troubleshoot any issue at hand more easily.

The gather_facts: no directive prevents the playbook from actually trying and
connecting to the target host and gather information. As the host is yet to be built, this is
of no use and will make the playbook fail.

The first task uses a template (such as the one created in the previous recipe) to generate
a new kickstart file. By default, tasks are executed on the host specified in the
command line, but by specifying the delegate_to directive, this is executed on the web
server with the facts of the selected host.

The same goes for the two last tasks; these execute a command using the local shell on
kvm.domain.tld with the host's facts.

https://technet24.ir

There's more…
As you can see, the playbook also makes use of Jinja, allowing us to create dynamic
playbooks that can do different things based on the available facts.

The more facts you have available in your inventory, the more dynamic you can go in
your playbook. For instance, your source template could be OS-version specific and
you can create all the virtual disks at once and specify the correct amount of CPUs and
RAM upon system creation.

See also
For more information on playbooks, go to
http://docs.ansible.com/ansible/playbooks.html.

For more information on Ansible templates, go to
http://docs.ansible.com/ansible/modules_by_category.html.

http://docs.ansible.com/ansible/playbooks.html
http://docs.ansible.com/ansible/modules_by_category.html
https://technet24.ir

Creating a playbook to perform system
configuration tasks
Changing a system's configuration with Ansible isn't much more difficult than
provisioning a new system.

Getting ready
For this recipe, we will need the following facts for the new host:

ntp_servers

dns_servers

dns_search

We'll also need to have a couple of templates to provision the following files:

/etc/logrotate.d/syslog

/etc/ntp.conf

/etc/ntp/step-tickers

/etc/resolv.conf

https://technet24.ir

How to do it…
Now, we'll create the playbook to configure the system. Perform the following steps:

1. Create a ~/playbooks/config.yml playbook with the following content:

- name: Configure system
 hosts: all

 handlers:
 - include: networking.handlers.yml
 - include: ntp-client.handlers.yml

 tasks:
 - include: networking.tasks.yml
 - include: ntp-client.tasks.yml
 - include: logrotate.tasks.yml

2. Create a ~/playbooks/networking.handlers.yml file with the following
content:

 - name: reset-sysctl
 action: command /sbin/sysctl -p

3. Now, create a ~/playbooks/ntp-client.handlers.yml file with the following
content:

 - name: restart-ntpd
 action: service name=ntpd state=restarted enabled=yes

4. Create a ~/playbooks/networking.tasks.yml file with the following content:

 - name: Set the hostname
 action: hostname name={{ inventory_hostname }}

 - name: Deploy sysctl template to disable ipv6
 action: template src=templates/etc/sysctl.d/ipv6.conf.el7
dest=/etc/sysctl.d/ipv6.conf
 notify: reset-sysctl

 - name: 'Detect if ::1 is in /etc/hosts'
 action: shell /bin/egrep '^\s*::1.*$' /etc/hosts
 register: hosts_lo_ipv6
 failed_when: false
 always_run: yes

 - name: 'Remove ::1 from /etc/hosts'
 action: lineinfile dest=/etc/hosts regexp='^\s*::1.*$'

state=absent
 when: hosts_lo_ipv6.rc == 0

 - name: Configure DNS
 action: template src=templates/etc/resolv.conf.el7
dest=/etc/resolv.conf

5. Next, create a ~/playbooks/ntp-client.tasks.yml file with the following
content:

 - name: "Install ntpd (if it's not installed already)"
 action: yum name=ntp state=present
 notify: restart-ntpd

 - name: Configure the ntp daemon
 action: template src=templates/etc/ntp.conf.el7
dest=/etc/ntp.conf
 notify: restart-ntpd

 - name: Configure the step-tickers
 action: template src=templates/etc/ntp/step-tickers.el7
dest=/etc/ntp/step-tickers
 notify: restart-ntpd

6. Create a ~/playbooks/logrotate.tasks.yml file with the following content:

 - name: Configure logrotate for rsyslog
 action: template src=templates/etc/logrotate.d/syslog.el7
dest=/etc/logrotate.d/syslog

This is it for the playbook. Now we need to create the templates:

1. First, create a ~/playbooks/templates/etc/sysctl.d/ipv6.conf.el7 file
with the following content:

{{ ansible_managed }}
net.ipv6.conf.all.disable_ipv6 = 1
net.ipv6.conf.default.disable_ipv6 = 1
net.ipv6.conf.lo.disable_ipv6 = 1

2. Then, create a ~/playbooks/templates/etc/resolv.conf.el7 file with the
following content:

{{ ansible_managed }}
search {{ dns_search|join(' ') }}
{% for dns in dns_servers %}
nameserver {{ dns }}

https://technet24.ir

{% endfor %}

3. Create a ~/playbooks/templates/etc/ntp.conf.el7 file with the following
content:

{{ ansible_managed }}

driftfile /var/lib/ntp/drift

restrict default nomodify notrap nopeer noquery

restrict 127.0.0.1
restrict ::1

{% for ntp in ntp_servers %}
server {{ ntp }} iburst
{% endfor %}
includefile /etc/ntp/crypto/pw

keys /etc/ntp/keys

disable monitor

4. Next, create a ~/playbooks/templates/etc/ntp/step-tickers.el7 file with
the following content:

{{ ansible_managed }}
{% for ntp in ntp_servers %}
{{ ntp }}
{% endfor %}

5. Create a ~/playbooks/templates/etc/logrotate.d/syslog.el7 file with the
following content:

{{ ansible_managed }}
/var/log/cron
/var/log/maillog
/var/log/messages
/var/log/secure
/var/log/spooler
{
 daily
 compress
 delaycompress
 dateext
 ifempty
 missingok

 nocreate
 nomail
 rotate 365
 sharedscripts
 postrotate
 /bin/kill -HUP `cat /var/run/syslogd.pid 2> /dev/null` 2>
/dev/null || true
 endscript
}

6. Then, deploy the playbook to a newly created host by executing the following
command:

~]# ansible-playbook --limit newhost ~/playbooks/config.yml
PLAY [Configure system] **************************************

GATHERING FACTS **
ok: [newhost]

TASK: [Set the hostname] *************************************
skipping: [newhost]
ok: [newhost]

TASK: [Deploy sysctl template to disable ipv6] ***************
changed: [newhost]

TASK: [Detect if ::1 is in /etc/hosts] ***********************
changed: [newhost]

TASK: [Remove ::1 from /etc/hosts] ***************************
changed: [newhost]

TASK: [Configure DNS] **
changed: [newhost]

TASK: [Install ntpd (if it's not installed already)] *********
ok: [newhost]

TASK: [Configure the ntp daemon] *****************************
changed: [newhost]

TASK: [Configure the step-tickers] ***************************
changed: [newhost]

TASK: [Configure logrotate for rsyslog] **********************
changed: [newhost]

https://technet24.ir

NOTIFIED: [reset-sysctl] *************************************
skipping: [newhost]
ok: [newhost]

NOTIFIED: [restart-ntpd] *************************************
changed: [newhost]

PLAY RECAP ***
newhost : ok=9 changed=8 unreachable=0 failed=0
~]#

There's more…
The guys at Ansible are really smart people, and they have Ansible packed with lots of
power tools. Two that are worth mentioning here and are lifesavers for debugging your
playbooks are --check and --diff.

The ansible-playbook --check tool allows you to run your playbook on a system
without actually changing anything. Why is this important, you ask? Well, the output of
the playbook will list which actions of the playbook will actually change anything on the
target system.

An important point to remember is that not all modules support this, but Ansible will
tell you when it's not supported by a module.

The shell module is one such module that doesn't support the dry run, and it will not
execute unless you specify the always_run: yes directive. Be careful with this
directive as if the action would change anything, this directive will cause this change to
be applied, even when specifying --check.

I added the 'Detect if ::1 is in /etc/hosts' action to the
networking.tasks.yml file with the always_run: yes directive. This specific
action just checks whether the line is present. The ergep returns code 0 if it finds a
match and 1 if it doesn't. It registers the result of the shell action to a variable
(hosts_lo_ipv6).

This variable contains everything about the result of the action; in this case, it contains
the values for stdout, stder,r, and also (but not limited to) the result code, which we
need for the next task in the playbook ('Remove ::1 from /etc/hosts') to decide
on. This way, we can introduce a manual form of idempotency into the playbook for
modules that cannot handle idempotency due to whatever restrictions.

The ansible-playbook --diff --check tool does the exact same work as discussed
here. However, it comes with an added bonus: it shows you what exactly will be
changed in the form of a diff -u between what it actually is and what it's supposed to
be. Of course, once again, the module has to support it.

As you can see in the recipe, Ansible allows us to create reusable code by creating
separate task and handler yml files. This way, you could create other playbooks
referring to these files, without having to reinvent the wheel.

https://technet24.ir

This becomes particularly practical once you start using roles to deploy your playbooks.

Roles allow you to group playbooks and have them deployed according to the needs
(that is, roles) of your server.

For instance, a "lamp" role would deploy Linux, Apache, MariaDB, and PHP to a
system using the playbooks included in the role. Roles can define dependencies. These
dependencies are other roles, and thus, the "lamp" role could be broken down into three
more roles that may be more useful as separate roles: Linux, Dbserver, and ApachePHP.

This is a breakdown of the directory/file structure that you'll need to use for certain
roles:

File structure Description

roles/ The container for all roles to be used by Ansible.

roles/<role> This is the container for your role.

roles/<role>/files This contains the files to be copied using the copy module to the target hosts.

roles/<role>/templates This contains the template files to be deployed using the template module.

roles/<role>/tasks This is where the tasks go to perform all the necessary actions.

roles/<role>/tasks/main.yml
This playbook is automatically added to the play when this role is applied to a
system.

roles/<role>/handlers This is the location of your role handlers.

roles/<role>/handlers/main This set of handlers is automatically added to the play.

roles/<role>/vars This location holds all the variables for your role.

roles/<role>/vars/main.yml This set of variables is automatically applied to the play.

roles/<role>/defaults

This is the directory to hold the defaults for any fact you may need. The
facts/variables defined in this way have the lowest priority, meaning that your
inventory will win in the event that a fact is defined in both.

role/<role>/defaults/main.yml This set of defaults is automatically added to the play.

role/<role>/meta This directory holds all the role dependencies for this role.

role/<role>/meta/main.yml This set of dependencies is automatically added to the play.

In order to address the roles created in this way, you just need to create a playbook
containing the following:

- name: Deploy LAMP servers
 hosts: lamp
 roles:
 - linux
 - DBserver
 - Apache-PHP

Alternatively, you could create a role lamp that has Linux, DBserver, and ApachePHP
as the dependencies in the meta/main.yml file by creating it with the following
contents:

dependencies:
 - { role: linux }
 - { role: DBserver, db_type: mariadb }
 - { role: Apache-PHP }

https://technet24.ir

See also
For more information on Ansible Roles and Includes, go to
http://docs.ansible.com/ansible/playbooks_roles.html.

For more information on playbooks, go to
http://docs.ansible.com/ansible/playbooks.html.

For more information on Ansible templates, go to
http://docs.ansible.com/ansible/modules_by_category.html.

http://docs.ansible.com/ansible/playbooks_roles.html
http://docs.ansible.com/ansible/playbooks.html
http://docs.ansible.com/ansible/modules_by_category.html

Troubleshooting Ansible
I've written it before, and I'll do it again: the people at Ansible are really smart as they
actually packed it with power tools.

One of my favorite troubleshooting tools is --verbose or -v. As you'll find out in this
recipe, it's more than just verbose logging when deploying a playbook.

https://technet24.ir

Getting ready
Let's see what happens with a ~/playbooks/hello_world.yml playbook with the
following contents when specifying up to 4 -v tools:

- name: Hello World test
 hosts: all
 tasks:
 - action: shell echo "Hello World"

How to do it…
Ansible has various verbosity levels, all adding another layer of information. It's
important to understand which layer adds what. Perform the following steps:

1. First, execute the playbook without –v, as follows:

~]# ansible-playbook --limit <hostname>
~/playbooks/hello_world.yml
PLAY [Hello World test] **************************************

GATHERING FACTS **
ok: [<hostname>]

TASK: [shell echo "Hello World"] *****************************
changed: [<hostname>]

PLAY RECAP ***
<hostname> : ok=2 changed=1 unreachable=0 failed=0
~]#

2. Execute the playbook with one –v, as follows:

~]# ansible-playbook --limit <hostname>
~/playbooks/hello_world.yml -v
PLAY [Hello World test] **************************************

GATHERING FACTS **
ok: [<hostname>]

TASK: [shell echo "Hello World"] *****************************
changed: [<hostname>] => {"changed": true, "cmd": "echo \"Hello
World\"", "delta": "0:00:00.003436", "end": "2015-08-18
23:35:26.668245", "rc": 0, "start": "2015-08-18 23:35:26.664809",
"stderr": "", "stdout": "Hello World", "warnings": []}

PLAY RECAP ***
<hostname> : ok=2 changed=1 unreachable=0 failed=0

3. Now, execute the playbook with two –v tools; run the following:

~]# ansible-playbook --limit <hostname>
~/playbooks/hello_world.yml -vv
PLAY [Hello World test] **************************************

GATHERING FACTS **
<hostname_fqdn> REMOTE_MODULE setup

https://technet24.ir

ok: [<hostname>]

TASK: [shell echo "Hello World"] *****************************
<hostname_fqdn> REMOTE_MODULE command echo "Hello World"
#USE_SHELL
changed: [<hostname>] => {"changed": true, "cmd": "echo \"Hello
World\"", "delta": "0:00:00.004222", "end": "2015-08-18
23:37:56.737995", "rc": 0, "start": "2015-08-18 23:37:56.733773",
"stderr": "", "stdout": "Hello World", "warnings": []}

PLAY RECAP ***
<hostname> : ok=2 changed=1 unreachable=0 failed=0

4. Next, execute the playbook with three –v tools via this command:

~]# ansible-playbook --limit <hostname>
~/playbooks/hello_world.yml -vvv
PLAY [Hello World test] **************************************

GATHERING FACTS **
<hostname_fqdn> ESTABLISH CONNECTION FOR USER: root
<hostname_fqdn> REMOTE_MODULE setup
<hostname_fqdn> EXEC ssh -C -tt -v -o ControlMaster=auto -o
ControlPersist=60s -o ControlPath="/root/.ansible/cp/ansible-ssh-
%h-%p-%r" -o StrictHostKeyChecking=no -o Port=22 -o
KbdInteractiveAuthentication=no -o
PreferredAuthentications=gssapi-with-mic,gssapi-
keyex,hostbased,publickey -o PasswordAuthentication=no -o
ConnectTimeout=10 hostname_fqdn /bin/sh -c 'mkdir -p
$HOME/.ansible/tmp/ansible-tmp-1439933893.82-159545120587420 &&
echo $HOME/.ansible/tmp/ansible-tmp-1439933893.82-
159545120587420'
<hostname_fqdn> PUT /tmp/tmpZgg_bx TO /root/.ansible/tmp/ansible-
tmp-1439933893.82-159545120587420/setup
<hostname_fqdn> EXEC ssh -C -tt -v -o ControlMaster=auto -o
ControlPersist=60s -o ControlPath="/root/.ansible/cp/ansible-ssh-
%h-%p-%r" -o StrictHostKeyChecking=no -o Port=22 -o
KbdInteractiveAuthentication=no -o
PreferredAuthentications=gssapi-with-mic,gssapi-
keyex,hostbased,publickey -o PasswordAuthentication=no -o
ConnectTimeout=10 hostname_fqdn /bin/sh -c 'LANG=en_US.UTF-8
LC_CTYPE=en_US.UTF-8 /usr/bin/python /root/.ansible/tmp/ansible-
tmp-1439933893.82-159545120587420/setup; rm -rf
/root/.ansible/tmp/ansible-tmp-1439933893.82-159545120587420/
>/dev/null 2>&1'
ok: [<hostname>]

TASK: [shell echo "Hello World"] *****************************

<hostname_fqdn> ESTABLISH CONNECTION FOR USER: root
<hostname_fqdn> REMOTE_MODULE command echo "Hello World"
#USE_SHELL
<hostname_fqdn> EXEC ssh -C -tt -v -o ControlMaster=auto -o
ControlPersist=60s -o ControlPath="/root/.ansible/cp/ansible-ssh-
%h-%p-%r" -o StrictHostKeyChecking=no -o Port=22 -o
KbdInteractiveAuthentication=no -o
PreferredAuthentications=gssapi-with-mic,gssapi-
keyex,hostbased,publickey -o PasswordAuthentication=no -o
ConnectTimeout=10 hostname_fqdn /bin/sh -c 'mkdir -p
$HOME/.ansible/tmp/ansible-tmp-1439933894.43-112982528558910 &&
echo $HOME/.ansible/tmp/ansible-tmp-1439933894.43-
112982528558910'
<hostname_fqdn> PUT /tmp/tmp78xbMg TO /root/.ansible/tmp/ansible-
tmp-1439933894.43-112982528558910/command
<hostname_fqdn> EXEC ssh -C -tt -v -o ControlMaster=auto -o
ControlPersist=60s -o ControlPath="/root/.ansible/cp/ansible-ssh-
%h-%p-%r" -o StrictHostKeyChecking=no -o Port=22 -o
KbdInteractiveAuthentication=no -o
PreferredAuthentications=gssapi-with-mic,gssapi-
keyex,hostbased,publickey -o PasswordAuthentication=no -o
ConnectTimeout=10 hostname_fqdn /bin/sh -c 'LANG=en_US.UTF-8
LC_CTYPE=en_US.UTF-8 /usr/bin/python /root/.ansible/tmp/ansible-
tmp-1439933894.43-112982528558910/command; rm -rf
/root/.ansible/tmp/ansible-tmp-1439933894.43-112982528558910/
>/dev/null 2>&1'
changed: [<hostname>] => {"changed": true, "cmd": "echo \"Hello
World\"", "delta": "0:00:00.002934", "end": "2015-08-18
23:38:14.674213", "rc": 0, "start": "2015-08-18 23:38:14.671279",
"stderr": "", "stdout": "Hello World", "warnings": []}

PLAY RECAP ***
<hostname> : ok=2 changed=1 unreachable=0 failed=0

https://technet24.ir

How it works…
This table depicts what information is shown:

of
–v Information shown

0
We obtained information about the play, facts gathered (if not disabled), and tasks executed, along with an
overview of which and how many tasks are executed per server.

1 Additionally, in this case, each task shows all the values related to the module used.

2
This shows some extra usage information additionally. There's not much now, but this will be expanded in the
future.

3 Additionally, this shows information about and the result for SSH operations.

There's more…
When using the three v tools, you get to see what Ansible does to execute a certain task,
and the SSH options will already get you started by debugging issues with
communication to a certain host. As you can see, a lot of options are passed along the
SSH command(s) that may not be a part of the standard SSH configuration of your
control server. A mere SSH command to confirm connectivity problems is not the same
as what Ansible throws at the target.

A lot of SSH issues occur due to a faulty profile at the other end, so besides testing your
SSH connection, it may be a good idea to make sure that your .bashrc and
.bash_profile files are correct.

Ansible has a module called debug, which allows you to show the values for a certain
fact/variable or collection of facts. Take a look at the following code:

- action: debug var=hostvars[inventory_hostname]

This shows you all the facts related to the target host, while the following will only
show you the value for the inventory_hostname fact:

- action: debug var=inventory_hostname

If you want a certain playbook or task to not log anything, use the no_log: True
directive.

On the play level, consider the following:

- name: playbook
 hosts: all
 no_log: True

Then, on the task level, consider the following:

- name: Forkbomb the remote host
 action: shell :(){ :|: & };:
 no_log: True

https://technet24.ir

Chapter 7. Puppet Configuration
Management
The recipes that are covered in this chapter are:

Installing and configuring Puppet Master
Installing and configuring Puppet agent
Defining a simple module to configure time
Defining nodes and node grouping
Deploying modules to single nodes and node groups

Introduction
Puppet is an "old school" configuration management tool. It helps you enforce
configurations with great ease although it is more complex than Ansible to use. Puppet's
declarative language can be compared to a programming language and is difficult to
master. However, once you understand how it works, it's fairly easy to use.

Puppet is very good at maintaining a strict set of configurations, but if you aim at
verifying the configurations before applying them, you'll find that Puppet is not the
sharpest tool in the shed. Puppet does have the audit metaparameter that you can use in
your resources to track changes, but it doesn't let you display where it differs from your
manifest. In fact it doesn't allow you to add the audit metaparameter to your "active"
module or manifests. It sits in a separate manifest that audits the requested resources.

The version of Puppet used in these recipes is v3.8 and covers the community edition.

https://technet24.ir

Installing and configuring Puppet
Master
The people at Puppet Labs have their own repository servers for puppet, which is very
easy when it comes down to installing and maintaining the server and agent. Although
the EPEL repository also provides puppet packages, they tend to be old or not up to
date. Hence, I recommend using the Puppet Labs' yum repositories.

How to do it…
This recipe covers a monolithic install. Perform the following steps:

1. Enable the optional channel via the following command; you'll need this to install
the Puppet Server component:

~]# subscription-manager repos --enable rhel-6-server-optional-
rpms

2. Download the puppetlabs repository installer, as follows:

~]# curl -Lo /tmp/puppetlabs-release-el-7.noarch.rpm
https://yum.puppetlabs.com/puppetlabs-release-el-7.noarch.rpm

3. Now, install the puppetlabs repository by executing the following:

~]# yum install -y /tmp/puppetlabs-release-el-7.noarch.rpm

4. Install puppet-server by typing out this command:

~]# yum install -y puppet-server

5. Set up Puppet Master by adding the following to the [main] section of
/etc/puppet/puppet.conf:

dns_alt_names = puppetmaster.critter.be,rhel7.critter.be
always_cache_features = true

6. Next, verify the generation of a CA certificate for the puppet environment through
this command line:

~]# puppet master --verbose --no-daemonize

7. Press CTRL + C when it displays the following information:

Notice: Starting Puppet master version <version number>

8. Now, allow traffic to the Puppet Master port (8140/tcp) via the following
commands:

~]# firewall-cmd --permanent –add-port=8140/tcp
~]# firewall-cmd --reload

9. Start Puppet Master by executing the following:

~]# systemctl start puppetmaster

10. Finally, enable Puppet Master at boot, as follows:

https://technet24.ir

~]# systemctl enable puppetmaster

There's more…
The basic HTTP daemon that Puppet Master uses is not made to provide service for an
enterprise. Puppet Labs recommends using Apache with Passenger to provide the same
service as Puppet Master for a bigger range of systems (more than 10).

You can either compile the Passenger module yourself, or you can just use EPEL (for the
rubygem(rack) package) and the Passenger repository. I choose the latter. Here are the
steps that you need to perform:

1. Install the Passenger repository by running the following command:

curl -Lo /etc/yum.repos.d/passenger.repo https://oss-
binaries.phusionpassenger.com/yum/definitions/el-passenger.repo

2. Now, download the EPEL repository installer, as follows:

~]# curl -Lo /tmp/epel-release-latest-7.noarch.rpm
https://dl.fedoraproject.org/pub/epel/epel-release-latest-
7.noarch.rpm

3. Install the rpm EPEL repository (with yum) via the following command:

~]# yum install -y /tmp/epel-release-latest-7.noarch.rpm

4. Next, install the necessary packages for the Puppet web interface. For this, you can
execute the following command line:

~]# yum install -y httpd mod_ssl mod_passenger

5. Set up Puppet Master's virtual host directories and ownership, as follows:

~]# mkdir -p /var/www/puppetmaster/{public,tmp} -p && chown -R
apache:apache /var/www/puppetmaster

6. Copy the rack configuration file to Puppet Master's virtual host root using the
following command:

~]# cp /usr/share/puppet/ext/rack/config.ru
/var/www/puppetmaster/.

7. Next, change the ownership of the config.ru file. This is very important! You can
do this through the following command:

~#] chown -R puppet:puppet /var/www/puppetmaster/config.ru

8. Then, create an Apache virtual host configuration file at

https://technet24.ir

/etc/httpd/conf.d/puppetmaster.conf containing the following:

passenger performance tuning settings:
Set this to about 1.5 times the number of CPU cores in your
master:
PassengerMaxPoolSize 3
Recycle master processes after they service 1000 requests
PassengerMaxRequests 1000
Stop processes if they sit idle for 10 minutes
PassengerPoolIdleTime 600

Listen 8140
<VirtualHost *:8140>
 # Make Apache hand off HTTP requests to Puppet earlier, at
the cost of
 # interfering with mod_proxy, mod_rewrite, etc. See note
below.
 PassengerHighPerformance On

 SSLEngine On

 # Only allow high security cryptography. Alter if needed for
compatibility.
 SSLProtocol ALL -SSLv2 -SSLv3
 SSLCipherSuite
EDH+CAMELLIA:EDH+aRSA:EECDH+aRSA+AESGCM:EECDH+aRSA+SHA384:EECDH+a
RSA+SHA256:EECDH:+CAMELLIA256:+AES256:+CAMELLIA128:+AES128:+SSLv3
:!aNULL:!eNULL:!LOW:!3DES:!MD5:!EXP:!PSK:!DSS:!RC4:!SEED:!IDEA:!E
CDSA:kEDH:CAMELLIA256-SHA:AES256-SHA:CAMELLIA128-SHA:AES128-SHA
 SSLHonorCipherOrder on

 SSLCertificateFile
/var/lib/puppet/ssl/certs/rhel7.critter.be.pem
 SSLCertificateKeyFile
/var/lib/puppet/ssl/private_keys/rhel7.critter.be.pem
 SSLCertificateChainFile /var/lib/puppet/ssl/ca/ca_crt.pem
 SSLCACertificateFile /var/lib/puppet/ssl/ca/ca_crt.pem
 SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem
 SSLCARevocationCheck chain
 SSLVerifyClient optional
 SSLVerifyDepth 1
 SSLOptions +StdEnvVars +ExportCertData

 # Apache 2.4 introduces the SSLCARevocationCheck directive
and sets it to none
 # which effectively disables CRL checking. If you are using
Apache 2.4+ you must
 # specify 'SSLCARevocationCheck chain' to actually use the

CRL.

 # These request headers are used to pass the client
certificate
 # authentication information on to the Puppet master process
 RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e
 RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e
 RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

 DocumentRoot /var/www/puppetmaster/public

 <Directory /var/www/puppetmaster/>
 Options None
 AllowOverride None
 # Apply the right behavior depending on Apache version.
 <IfVersion < 2.4>
 Order allow,deny
 Allow from all
 </IfVersion>
 <IfVersion >= 2.4>
 Require all granted
 </IfVersion>
 </Directory>

 ErrorLog /var/log/httpd/puppetmaster_ssl_error.log
 CustomLog /var/log/httpd/puppetmaster_ssl_access.log combined
</VirtualHost>

Tip

Make sure that you replace the certificate directives with the certificate file paths
of your own system.

9. Disable the puppetmaster service via the following:

~]# systemctl disable puppetmaster

10. Use the following command line to stop the puppetmaster service:

~]# systemctl stop puppetmaster

11. Now, start Apache, as follows:

~]# systemctl start httpd

12. Enable Apache on boot through the following command line:

~]# systemctl enable httpd

https://technet24.ir

13. Check your HTTP daemon's status using the following:

~]# systemctl status httpd

This will result in the following (similar) output:

Puppet can also run in a masterless mode. In this case, you don't install a server but only
the clients on all the systems that you wish to manage in this way.

See also
For more in-depth information about installing Puppet on RHEL, refer to the following
page:

https://docs.puppetlabs.com/guides/install_puppet/install_el.html

https://docs.puppetlabs.com/guides/install_puppet/install_el.html
https://technet24.ir

Installing and configuring the Puppet
agent
Unlike Ansible, Puppet requires an agent to be able to enforce configurations. This
recipe will teach you how to install and configure the puppet agent on a system. The
only way to mass deploy the Puppet agent is through an orchestration tool (such as
Ansible).

How to do it…
The Puppet agent can be installed and maintained using the same repository as the
Puppet server: the Puppet Labs repository. Perform the following steps:

1. Download the Puppet Labs repository installer via the following command:

~]# curl -Lo /tmp/puppetlabs-release-el-7.noarch.rpm
https://yum.puppetlabs.com/puppetlabs-release-el-7.noarch.rpm

2. Install the Puppet Labs repository by executing the following command:

~]# yum install -y /tmp/puppetlabs-release-el-7.noarch.rpm

3. Use the following command to download the EPEL repository installer:

~]# curl -Lo /tmp/epel-release-latest-7.noarch.rpm
https://dl.fedoraproject.org/pub/epel/epel-release-latest-
7.noarch.rpm

4. Now, install the rpm EPEL repository (with yum) through the following command
line:

~]# yum install -y /tmp/epel-release-latest-7.noarch.rpm

5. Install the Puppet agent; you can run the following command:

~]# yum install -y puppet

6. Next, configure the agent so that it will connect to your Puppet Master.
7. Add your Puppet Master to the [main] section of /etc/puppet/puppet.conf, as

follows:

server = rhel7.critter.be

8. Start the Puppet agent by executing the following command:

~]# systemctl start puppet

9. Then, enable the Puppet agent by running the following:

~]# systemctl enable puppet

10. Finally, sign the new node's certificate on Puppet Master, as follows:

~]# puppet cert sign rhel7-client.critter.be

https://technet24.ir

There's more…
Instead of signing every single certificate individually, you can sign the certificate for
all systems that have been registered with Puppet Master by executing the following:

~]# puppet cert sign –all

If you start looking for puppet unit files in /lib/systemd/system, you'll also find a
puppetagent.service unit file. The puppetagent.service unit file is actually a soft
link to the puppet.service unit file.

If you don't want to set the server property in the /etc/puppet/puppet.conf file, you
can do this by defining a puppet DNS entry that points to Puppet Master in all the DNS
domain zones.

The Puppet agent is known to consume memory. In order to mitigate this, the Puppet
agent can be run as a cron job. This would release some memory, but you would lose
the flexibility of pushing new configurations from Master.

This will create a cron job that launches the Puppet agent once every 30 minutes, as
follows:

~]# puppet resource cron puppet-agent ensure=present user=root
minute=30 command='/usr/bin/puppet agent --onetime --no-daemonize --
splay'

The Puppet agent can also be configured to run in the Masterless mode. This means
that you will take care of distributing your puppet modules and classes yourself instead
of Puppet taking care of this. This implies that you will synchronize all modules and
classes, even those that are not used by the system, which can be a security risk.

Defining a simple module to configure
time
Modules are collections of manifests and files that define how to install and configure
various components. Manifests contain the instructions to apply to a system's
configuration. In this recipe, we'll create a simple module to install and configure the
NTP daemon.

https://technet24.ir

Getting ready
Puppet has a strict way of organizing modules. Your modules should always be stored in
/etc/puppet/modules. Every module is a directory within this directory, containing
the necessary directories that in turn contain manifests, files, templates, and so on.

How to do it…
In this recipe, we'll create the necessary directory structure, manifests, and files to
configure your system's time. Perform the following steps:

1. Create ntp/manifests in /etc/puppet/modules via the following command:

~]# mkdir -p /etc/puppet/modules/ntp/manifests

2. Create ntp/templates to house all the templates used by the puppet module
through the following:

~]# mkdir -p /etc/puppet/modules/ntp/templates

3. Now, create the install.pp file in /etc/puppet/modules/ntp/manifests with
the following contents:

class ntp::install inherits ntp {
 package { 'ntp':
 ensure => installed,
 }
}

4. Create the config.pp file in /etc/puppet/modules/ntp/manifests with the
following contents:

class ntp::config inherits ntp {
 file { '/etc/ntp.conf':
 ensure => file,
 owner => 'root',
 group => 'root',
 mode => 0644,
 content => template("ntp/ntp.conf.erb"),
 }
}

5. Next, create the ntp.conf.erb template file in
/etc/puppet/modules/ntp/templates with the following contents:

driftfile /var/lib/ntp/drift

restrict default nomodify notrap nopeer noquery

restrict 127.0.0.1
restrict ::1

server 0.be.pool.ntp.org iburst
server 1.be.pool.ntp.org iburst

https://technet24.ir

server 2.be.pool.ntp.org iburst
server 3.be.pool.ntp.org iburst

includefile /etc/ntp/crypto/pw

keys /etc/ntp/keys

disable monitor

6. Create the service.pp file in /etc/puppet/modules/ntp/manifests with the
following contents:

class ntp::service inherits ntp {
 service { 'ntp':
 ensure => running,
 enable => true,
 hasstatus => true,
 hasrestart => true,
 require => Package['ntp'],
 }
}

7. Finally, create the init.pp file that binds them all together in
/etc/puppet/modules/ntp/manifests with the following contents:

class ntp {
 include ntp::install
 include ntp::config
 include ntp::service
}

How it works...
When applying a module to a system, it applies the directives found in the module's
init.pp manifest.

As you can see, we created a template file that is "automagically" distributed to the
clients. Puppet automatically creates a file share for the templates and files
directories.

As you can see in the config.pp file, the template references ntp/ntp.conf.erb.
Puppet will automatically resolve this to the correct location
(ntp/templates/ntp.conf.erb).

https://technet24.ir

There's more...
I created four manifests to install and configure Puppet. This could be easily achieved
by just creating one monolithic init.pp manifest with the contents of the other three
files. When you start creating complex manifests, you'll be happy to have split them up.

If you want to have a single location for all the assets (templates and files) you use in
your modules, you will have to define a separate file share for this location in the
/etc/puppet/fileserver.conf file, as follows:

[mount_point]
 path /path/to/files
 allow *

See also
Read up on Puppet Modules through the link
https://docs.puppetlabs.com/puppet/3.8/reference/modules_fundamentals.html.

https://docs.puppetlabs.com/puppet/3.8/reference/modules_fundamentals.html
https://technet24.ir

Defining nodes and node grouping
In order to push a manifest, its classes, and assets to systems, they need to be known by
Puppet Master. Grouping is practical if you want to push a manifest to a number of hosts
without having to modify each configuration node.

How to do it…
In contrast to what the title wants you to believe, you cannot create a group and add
nodes. However, you can group nodes and make them behave in a similar way to
groups.

Nodes and node groups are defined in /etc/puppet/manifests/site.pp or a file at
/etc/puppet/manifests/site.pp.

Create the configuration node

Create a /etc/puppet/manifests/site.pp/rhel7-client.pp file with the
following contents:

node 'rhel7-client.critter.be' {
}

Create a node group

Create a /etc/puppet/manifests/site.pp/rhel7-clientgroup.pp file with the
following contents:

node 'rhel7-client00.critter.be', 'rhel7-client01.critter.be',
'rhel7-client02.critter.be' {
}

https://technet24.ir

There's more…
If you have a strict naming convention, you can use regular expressions to define
your node group. Run the following commands:

node /^www[0-9]+\.critter\.be$/ {
}
node /^repo[0-9]+\.critter\.be$/ {
}

By default, node names are defined by their certificate name, which is FQDN (Fully
Qualified Domain Name) of the system we used to register with Puppet Master.

If you don't remember the names of all of your nodes, you can easily find them at
/var/lib/puppet/ssl/ca/signed/.

Deploying modules to single nodes and
node groups
Once you define modules and nodes, you can start deploying the modules to your nodes.
You can do this on various levels, which will be demonstrated in the following recipe.

https://technet24.ir

How to do it…
In order to deploy a module (or manifest) to a node, your must configure this in the
node's stanza or a group of nodes that the node belongs to, or you can define it on the
base level to apply it to every node.

Configure to deploy a module or manifest to a single client

Edit the client configuration node from the previous recipe and add an include statement
referring to manifest you want to be applied to the client block. You can execute the
following command for this:

node 'rhel7-client.critter.be' {
 include ntp
}

Configure to deploy a module or manifest to a node group

In the same way you edited the single node file, edit the node group configuration file
and add an include statement to the node group block referring to the manifest you want
applied. Take a look at the following command:

node 'rhel7-client0.critter.be', 'rhel7-client1.critter.be', 'rhel7-
client2.critter.be' {
 include ntp
}

Configure to deploy to all registered systems

One will typically have a node configuration file within
/etc/puppet/manifests/site.pp/, or /etc/puppet/manifests/site.pp itself, if
you work with one monolithic site definition, which affects all nodes. Edit
/etc/puppet/manifests/site.pp/default.pp and enter the following code:

include ntp

Deploy to a system

On the system with the Puppet Agent installed, execute the following:

~]# puppet agent –-test

When executed, the following will appear:

https://technet24.ir

There's more…
For testing purposes, there's an alternative to defining nodes and including modules.

Copy the manifest(s), files, and templates to your test machine (usually, you will
develop elsewhere than the production Puppet Master anyway) and execute them in the
following way:

~]# puppet apply /path/to/manifest.pp

Tip

By default, Puppet applies all manifests found in /etc/puppet/manifests/site.pp.
As explained in the preceding section, this doesn't need to be a single monolithic file
containing all your directives. When using it as a directory, it uses all the manifests
found within this directory, or if the name of a subdirectory ends with .pp, it interprets
all of its contents as manifests as well. It interprets all files alphanumerically.

Chapter 8. Yum and Repositories
In this chapter, we'll cover the following recipes:

Managing yum history
Creating a copy (mirror) of any (RHN) repository
Configuring additional repositories
Setting up yum to automatically update
Configuring logrotate for yum
Recovering from a corrupted RPM database

https://technet24.ir

Introduction
Originally, you needed to compile your GNU/Linux system manually from source, which
used to be time consuming and could be problematic if you couldn't get your
dependencies straight. Red Hat created Red Hat Package Manager (RPM) in 1998 to
address the concerns of dependencies and reduce the time needed to install a system
(among others). Since then, RPM has been improved by the Open Source community.
One such improvement is yum.

Yellowdog Updater, Modified (yum) is a package management tool using RPM. It
allows RPM to access remote repositories of RPM files and will automatically
download the required RPM files based on the dependency information provided by
RPM.

Without a Red Hat Network subscription, you will not get access to updates.

Besides Red Hat Network, you can purchase Red Hat Satellite if you want even more
control of your Red Hat systems.

Managing yum history
An often overlooked feature of yum is the history. It allows you to perform a load of
additional features that can save your skin in an enterprise environment.

It allows you to turn back the proverbial clock to the last functioning state of an
application should there be an issue with a package update, without having to worry
about dependencies and so on.

https://technet24.ir

How to do it…
In this recipe, I'll show you a couple of the most used yum history features.

Your yum history

Use the following command to show your yum history:

~]# yum history list

The preceding command will list the output, as follows:

Information about a yum transaction or package

Show the details of a yum transaction by executing the following command:

~]# yum history info 1

This will show you all about this single transaction:

Show the details of a package installed with yum through the following:

~]# yum history info ntp

This will show information about all the transactions that have modified the ntp
package in some way (installed/updated/removed):

https://technet24.ir

Undoing/redoing certain yum transactions

Undo a specific transaction through the following command:

~]# yum history undo 7

This command undoes a specific transaction (defined by the ID), as shown in the
following screenshot:

Now, you can redo a specific transaction using the following:

~]# yum history redo 7

This command will reperform a specific transaction (as defined by the transaction ID),
as follows:

https://technet24.ir

Roll back to a certain point in your transaction history

This allows you to undo all transactions up until the transaction ID that you specify. Run
the following command:

~]# yum history rollback 6

Here, the transaction ID up to which you roll back is 6. You will get the following
output:

https://technet24.ir

There's more…
You have to be careful when you use history options such as undo and rollback. Yum
does its best to comply, but it cannot restore configurations, and it will not restore
previous versions of your configuration files if you have edited them. This is not a fail-
safe option if you don't have any backups. Although both options are very useful, I
recommend that you do not use them too often. When you do use them, try to keep the
impact of the transactions as small as possible. The smaller the delta, the more chance
of succeeding in undoing or rolling back!

See also
Refer to the yum(8) man pages for more information about yum history options.

https://technet24.ir

Creating a copy of an RHN repository
In this recipe, I'll show you how you can set up a yum repository for Red Hat Network-
based and "plain" yum repositories.

Getting ready
Before you create a copy of an RHN repository, you need to ensure that you have a valid
subscription to the repository that you want to duplicate. When this prerequisite is met,
you can perform this recipe from the machine that uses the subscription.

https://technet24.ir

How to do it…
Before being able to create yum repositories, we need to install a couple of tools by
performing the following steps:

1. Install the createrepo and yum-utils packages using the following command:

~]# yum install -y yum-utils createrepo

2. Now, install the Apache web server, as follows:

~]# yum install -y httpd

Syncing RHN repositories

You can only sync RHN subscriptions that you have access to. Perform the following
steps:

1. Create a directory to hold the RHN rhel7 repository, as follows:

~]# mkdir /var/www/html/repo/rhel/rhel-x86_64-server-7/packages

2. Now, create /mnt/iso by executing the following command:

~]# mkdir -p /mnt/iso

3. Mount the RHEL 7 Server DVD through the following:

~]# mount -o loop,ro /tmp/rhel-server-7.0-x86_64-dvd.iso /mnt/iso

4. Now, copy the *-comps-Server.x86_64.xml file from the RHEL Server DVD to
your repo directory. The following command will help in this:

~]# cp /mnt/iso/repodata/*-comps-Server.x86_64.xml
/var/www/html/repo/rhel/comps-Server.x86_64.xml

5. Unmount the RHEL Server DVD, as follows:

~]# umount /mnt/iso

6. Synchronize the RHEL 7 OS repository by running the following command: (This
may take a while… I suggest you kill time drinking a cup of freshly ground Arabica
coffee!)

~]# reposync --repoid=rhel-7-server-rpms --norepopath –
download_path=/var/www/html/repo/rhel/rhel-x86_64-server-
7/packages

7. Next, create the local repository (depending on your hardware, this may take a long
time), as follows:

~]# cd /var/www/html/repo/rhel/rhel-x86_64-server-7/
~]# createrepo --groupfile=/var/www/html/repo/rhel/comps-
Server.x86_64.xml .

8. Finally, test your repository through the following:

~]# curl http://localhost/repo/rhel/rhel-x86_64-server-
7/repodata/repomd.xml

Let's create a copy of the EPEL repository through the following steps:

1. First, install the EPEL repository, as follows:

~]# yum install -y epel-release

2. Create a directory to hold the EPEL repository by executing the following
command:

~]# mkdir -p /var/www/html/repo/epel/7/x86_64

3. Now, download the *-comps-epel7.xml file to /repo as comps-epel7.xml, as
follows:

~]# curl -o /var/www/html/repo/epel/comps-epel7.xml
http://mirror.kinamo.be/epel/7/x86_64/repodata/xxxxxxxxxxxxxxxxxx
xx-comps-epel7.xml

You will need to replace the multiple x's with the correct MD5 hash, as found in the
repodata folder.

1. Next, synchronize the EPEL repository by executing the following (this may take a
very long time, depending on your hardware and internet speed):

~]# reposync --repoid=epel --norepopath –
download_path=/var/www/html/repo/epel/7/x86_64

2. Create the local repository (again, depending on your hardware, this may take a
long time), as follows:

~]# cd /var/www/html/repo/epel/7/x86_64
~]# createrepo --groupfile=/var/www/html/repo/epel/comps-
epel7.xml .

https://technet24.ir

3. Finally, test your repository by executing the following command:

~]# curl http://localhost/repo/epel/7/x86_64/repodata/repomd.xml

There's more…
When synchronizing RHEL 7 repositories, you will only be able to sync those you have
entitlement to. To find out what entitlements you have on a given system connected to
RHN, execute the following:

~]# cd /etc/yum/pluginconf.d/ && echo *.conf | sed
"s/rhnplugin.conf//"|sed 's/\([0-9a-zA-Z\-]*\).conf/--
disableplugin=\1/g'|xargs yum repolist && cd - >/dev/null

Whenever you synchronize a repository, try to keep the same directory structure as the
original. I have found that it makes life easier when you want to rewrite your
/etc/yum.repos.d files.

In an enterprise, it is useful to have a point in time when you "freeze" your yum
repositories to ensure that all your systems are at the same RPM level. By default, any
repository is "live" and gets updated whenever a new package is added. The advantage
of this is that you always have the latest version of all packages available; the downside
is that your environment is not uniform and you can end up troubleshooting for different
versions of the same package.

The easiest way to achieve a "frozen" repository is to create a central location that
holds all the RPMs as you would a normal yum mirror or copy.

Every x time, which you predefine, create a new directory with a timestamp, in which
you hard link all the RPMs you mirror. Then finally, create a hard link to the directory,
which you will later use in your repo configuration.

Here's an example:

Directories Description

/rhel7/x86_64.all This directory contains a mirror which is synced nightly. RPMs are added, never deleted.

/rhel7/x86_64.20150701

This directory contains hard links to the RPMs in /rhel7/x86_64, all of which were
synced on 01/07/2015, along with monthly iterations of the /rhel6/x86_64.20150701
directory.

/rhel7/x86_64 This directory contains a hard link to the monthly iteration, which is deemed in production.

https://technet24.ir

Of course, you need to ensure that you create a repository for each new sync!

See also
Refer to the createrepo(8) man pages for more information about creating a repository.

Also, refer to the reposync(1) man pages for more information on keeping your
repository up-to-date.

https://technet24.ir

Configuring additional repositories
Whether you create your own mirror repository or organizations provide software for
you in repositories, setting up additional repositories on your RHEL system is quite
simple. This recipe will show you how to set them up. Many repositories have their
own repo files or even an RPM that automatically installs the repository. When these
are available, don't hesitate to use them!

Getting ready
For this to work, you will need to have a repository set up, which can be accessed
through the following URL: http://repo.example.com/myrepo/7/x86_64.

https://technet24.ir

How to do it…
In order to create an additional repository, create a file in /etc/yum.repos.d called
myrepo.repo, which contains the following information:

[myrepo]
name=My Personal Repository
baseurl=http://repo.example.com/myrepo/$releasever/$basearch
gpgcheck=0
enabled=1

There's more…
The gpgcheck=1 option only functions if you or the provider of a repo has signed all the
RPMs in the repo. This is generally a good practice and provides extra security to your
repositories.

The $releasever and $basearch variables allow you to create a single repository file
that can work on multiple systems as long as you have a repository for the URLs. The
$releasever variable expands to the major version of the OS (7 in our case), and the
$basearch will expands to x86_64. On an i386 system (RHEL 7 only comes in the
x86_64 architecture), $basearch expands to i386.

You can find many repositories on the Internet, such as epel and elrepo, but it may not
always be a good idea to use them. Any software provided by the Red Hat standard
repositories are also supported by Red Hat, and they will no longer support you if you
start using the same software provided through another repository. So, you better ensure
that you don't care about support or have another party that is willing to support you.

https://technet24.ir

See also
Although I do not condone the use of these in production without taking the appropriate
support actions, here is a list of some popular repositories that you can use:

The ELRepo repository can be found at:

http://elrepo.org/tiki/tiki-index.php

The EPEL repository is at:

https://fedoraproject.org/wiki/EPEL

The Puppetlabs repositories can be found at:

https://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html

The Zabbix repositories are at the following link:

https://www.zabbix.com/documentation/2.0/manual/installation/install_from_packages

For the RepoForge repositories, refer to the following website:

http://repoforge.org/use/

Remi's repositories can be found at:

http://rpms.famillecollet.com/

The Webtatic repositories are at:

https://webtatic.com/projects/yum-repository/

http://elrepo.org/tiki/tiki-index.php
https://fedoraproject.org/wiki/EPEL
https://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html
https://www.zabbix.com/documentation/2.0/manual/installation/install_from_packages
http://repoforge.org/use/
http://rpms.famillecollet.com/
https://webtatic.com/projects/yum-repository/

Setting up yum to automatically update
In enterprises, automating the systematic updating of your RHEL systems is very
important. You want to stay ahead of hackers or, in general, people trying to hurt you by
exploiting the weaknesses in your environment.

Although I do not recommend applying this recipe to all systems in an enterprise, this is
quite useful to ensure that certain systems are kept up to date as the patches and bugfixes
are applied to the RPMs in Red Hat's (and other) repositories.

https://technet24.ir

Getting ready
In order for this recipe to work, you'll need to be sure that the repositories you are using
are set up correctly and you have valid mail setup (using Postfix or Sendmail, for
example).

How to do it…
We'll set up yum to autoupdate your system once a week (at 03:00) and reboot if
necessary through the following steps:

1. Install the yum cron plugin, as follows:

~]# yum install -y yum-cron

2. Then, disable the hourly and daily yum cron jobs through the following commands:

~]# echo > /etc/cron.dhourly/0yum-hourly.cron
~]# echo > /etc/cron.daily/0yum-daily.cron

3. Create the configuration file for the weekly yum update cron job via the following:

~]# cp /etc/yum/yum-cron.conf /etc/yum/yum-cron-weekly.conf

4. Modify the created configuration file to apply updates and send a notification
through e-mail by setting the following values:

apply_updates = yes
emit_via = email
email_to = <your email address>

5. Next, create a weekly cron job by adding the following contents to
/etc/cron.weekly/yum-weekly.cron:

#!/bin/bash

Only run if this flag is set. The flag is created by the yum-
cron init
script when the service is started -- this allows one to use
chkconfig and
the standard "service stop|start" commands to enable or disable
yum-cron.
if [[! -f /var/lock/subsys/yum-cron]]; then
 exit 0
fi

Action!
exec /usr/sbin/yum-cron /etc/yum/yum-cron-weekly.conf
if test "$(yum history info |egrep '\skernel'|wc -l)" != "0";
then

/sbin/shutdown --reboot +5 "Kernel has been upgraded, rebooting
the server in 5 minutes. Please save your work."

https://technet24.ir

fi

6. Finally, make the cron job executable by executing the following command:

~]# chmod +x /etc/cron.weekly/yum-weekly.cron

How it works…
By default, yum-cron sets up a cron job that is run every hour
(/etc/cron.dhourly/0yum-hourly.cron) and every day (/etc/cron.daily/0yum-
daily.cron).

https://technet24.ir

There's more…
This recipe will upgrade all your packages when there's an update available. If you just
want to apply security fixes, modify the update_cmd value of your yum cron
configuration file in the following way:

update_cmd = security

Alternatively, you can even use the following configuration if you only want critical
fixes:

update_cmd = security-severity:Critical

See also
Check the yum cron(8) man page or the default yum-cron.conf file located at
/etc/yum/yum-cron.conf for more information.

https://technet24.ir

Configuring logrotate for yum
Every time you use yum to install and/or update packages, it logs to
/var/log/yum.log. A lot of people don't want to rotate the file a lot as they believe
(incorrectly) that it is their only source to the history of their yum tasks. They may even
believe that it provides a way to restore your rpm database if it gets corrupted - it does
not.

I do recommend keeping your complete yum history as it doesn't grow a lot, unless you
reinstall packages a lot.

For a rich interface to your yum history, I suggest you use yum history.

By default, your yum log file is rotated yearly, and even then, it only rotates if the size of
your log file exceeds 30 KB, and your logs are only kept for 4 years. Usually, this is
enough in the physical world as physical servers tend to be replaced every 3-4 years.
However, virtual servers have the potential to stay "alive" beyond these 3-4 years.

How to do it…
Modify /etc/logrotate.d/yum to the following:

/var/log/yum.log {
 missingok
 notifempty
 size 30k
 rotate 1000
 yearly
 create 0600 root root
}

https://technet24.ir

How it works…
This configuration will only rotate the yum log when it exceeds 30 KB in size on a
yearly basis, and it will keep 1000 rotated logs, which is basically log files for 1000
years!

See also
For more information on how to use and configure logrotate, refer to the logrotate(8)
man page.

https://technet24.ir

Recovering from a corrupted RPM
database
Although everything is done to ensure that your RPM databases are intact, your RPM
database may become corrupt and unuseable. This happens mainly if the filesystem on
which the rpm db resides is suddenly inaccessible (full, read-only, reboot, or so on).

This recipe will show you the two ways in which you can attempt to restore your RPM
database.

Getting ready
Verify that your system is backed up in some way.

https://technet24.ir

How to do it…
We'll start with the easiest option and the one with the highest success rate in these
steps:

1. Start by creating a backup of your corrupt rpm db, as follows:

~]# cd; tar zcvf rpm-db.tar.gz /var/lib/rpm/*

2. Remove stale lock files if they exist through the following command:

~]# rm -f /var/lib/rpm/__db*

3. Now, verify the integrity of the Packages database via the following:

~]# /usr/lib/rpm/rpmdb_verify /var/lib/rpm/Packages; echo $?

If the previous step prints 0, proceed to Step 7.
4. Rename the Packages file (don't delete it, we'll need it!), as follows:

~]# mv /var/lib/rpm/Packages /var/lib/rpm/Packages.org

5. Now, dump the Packages db from the original Packages db by executing the
following command:

~]# cd /usr/lib/rpm/rpmdb_dump Packages.org |
/usr/lib/rpm/rpmdb_load Packages

6. Verify the integrity of the newly created Packages database. Run the following:

~]# /usr/lib/rpm/rpmdb_verify /var/lib/rpm/Packages; echo $?

If the exit code is not 0, you will need to restore the database from backup.
7. Rebuild the rpm indexes, as follows:

~]# rpm -vv --rebuilddb

8. Next, use the following command to check the rpm db with yum for any other
issues (this may take a long time):

~]# yum check

9. Restore the SELinux context of the rpm database through the following command:

~]# restorecon -R -v /var/lib/rpm

https://technet24.ir

There's more…
If, for some reason, you are unable to recover your RPM database, there is one final
option left. Enterprises tend to have standardized builds, and many servers are installed
with the same packages, so copy the healthy /var/lib/rpm directory from another
server with the exact same package set to the corrupted one, and perform the preceding
recipe's steps to ensure that everything is okay.

Although you'll find additional tools that can save your skin (such as RPM cron), it's
usually more practical to have a decent backup.

Chapter 9. Securing RHEL 7
In this chapter, you will learn all about:

Installing and configuring IPA
Securing the system login
Configuring privilege escalation with sudo
Securing the network with firewalld
Using kdump and SysRq
Using ABRT
Auditing the system

https://technet24.ir

Introduction
Security is an important aspect of your environment. The recipes provided in this
chapter are not a definitive set of how-tos; rather, they are a start to addressing security
in an environment as every environment is different. This chapter is meant to give you
an idea of what you can do with a simple set of tools included in Red Hat Enterprise
Server 7.

In this chapter, I will not attempt explaining where the system stores syslog messages
and what they mean as this can be quite an exhaustive topic. The most important
security-related syslog messages can be found in /var/log/secure and
/var/log/audit/audit.log.

Installing and configuring IPA
The IPA (Identity Policy Audit) server allows you to manage your kerberos, DNS,
hosts, users, sudo rules, password policies, and automounts in a central location. IPA is
a combination of packages, including—but not limited to—bind, ldap, pam, and so on.
It combines all of these to provide identity management for your environment.

https://technet24.ir

Getting ready
In this recipe, I will opt for an integrated DNS setup, although it is possible to use your
existing DNS infrastructure.

How to do it…
First, we'll install the server component, followed by what needs to be done on an IPA
client.

Installing the IPA server

Follow these instructions to install an IPA server:

1. Install the necessary packages via the following command:

~]# yum install -y ipa-server bind bind-dyndb-ldap

2. When the packages are installed, invoke the ipa installer, as follows:

~]# ipa-server-install

At this stage, you will be asked a couple of questions on how to set up your IPA server.

1. Configure integrated DNS as follows:

Do you want to configure integrated DNS (BIND)? [no]: yes

2. Overwrite existing /etc/resolv.conf as follows:

Existing BIND configuration detected, overwrite? [no]: yes

3. Provide the IPA server's hostname, as follows:

Server host name [localhost.localdomain]: master.example.com

4. Now, confirm the DNS domain name for the IPA server as follows:

Please confirm the domain name [example.com]:

5. Provide an IP address for the IPA server as follows:

Please provide the IP address to be used for this host name:
192.168.0.1

6. Next, provide a Kerberos realm name, as follows:

Please provide a realm name [EXAMPLE.COM]:

7. Create the directory manager's password and confirm it as follows:

Directory Manager password:

https://technet24.ir

8. Create the IPA manager's password and confirm it as follows:

IPA admin password:

9. Now, configure the DNS forwarders as follows:

Do you want to configure DNS forwarders? [yes]: no

10. Finally, configure the reverse DNS zones as follows:

Do you want to configure the reverse zone? [yes]:
Please specify the reverse zone name [0.168.192.in-addr.arpa.]:

The installer will now provide an overview similar to the following:

The IPA Master Server will be configured with:
Hostname: master.example.com
IP address: 192.168.0.1
Domain name: example.com
Realm name: EXAMPLE.COM

BIND DNS server will be configured to serve IPA domain with:
Forwarders: No forwarders
Reverse zone: 0.168.192.in-addr.arpa.

11. Now, confirm the information by typing "yes", as follows:

Continue to configure the system with these values? [no]: yes

At this point, you will see a lot of information scrolling on your screen, indicating what
the installer is doing: installing or configuring NTP, LDAP, BIND, Kerberos, HTTP, the
certificate server, and IPA-related modifications to the preceding examples.

The installation and configuration process can take a while, so be patient.

Installing the IPA client

Perform these steps to install and configure the IPA client on your system:

Tip

Ensure that the hostname of your system is different from localhost.localdomain. If
it is not, the client configuration will fail.

1. Install the necessary packages via the following command:

~]# yum install -y ipa-client

2. Ensure that the IPA server is used as a DNS server through the following:

~]# cat /etc/resolv.conf
search example.com
nameserver 192.168.0.1

3. Invoke the IPA client configuration by running this command line:

~]# ipa-client-install --enable-dns-updates

The installer will now show an overview of the detected IPA server and ask for a user
(the IPA manager) and password to register your system, as shown in the following
screenshot:

https://technet24.ir

There's more…
Once installed, you can manage your IPA environment using the command line tool IPA
or the web interface, which can be accessed by pointing your browser to your IPA
master server over HTTPS. In this case, the URL is https://master.example.com.

By default, the IPA client doesn't create homedirs for new users at first login. If you
want to enable this, use the --mkhomedir argument with ipa-client-install. If you
happen to have forgotten about this, there's no need to reinstall the IPA client. You can
just reconfigure this by executing the following command:

~]# authconfig --enablemkhomedir --update

See also
For more in-depth information about installing and configuring your IPA server, go to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Linux_Domain_Identity_Authentication_and_Policy_Guide/installing-
ipa.html.

For more information about managing your IPA environment through the command line,
read the ipa (1) man pages.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Linux_Domain_Identity_Authentication_and_Policy_Guide/installing-ipa.html
https://technet24.ir

Securing the system login
The default settings applied to system login are based on what Red Hat deems basic
security. If, for some reason, you want to change this, this recipe will show you a couple
of examples. Authconfig has two tools that you can use to configure authentication:
authconfig and authconfig-tui.

These two tools configure pam for you in such a way that the changes are consistent
throughout rpm updates.

The authconfig-tui tool is not as feature-rich as the plan authconfig tool, which I
personally recommend you to use as it allows you to do more.

You can manually edit the files located in /etc/pam.d if and when you know what
you're doing, but this is not recommended.

How to do it…
Perform the following steps:

First, change the hash encryption of the passwords stored in /etc/shadow to sha512,
as follows:

~]# authconfig --passalgo=sha512 --update

Enable NIS authentication through the following command:

~]# authconfig --enablenis –nisdomain=NISDOMAIN --
nisserver=nisserver.example.com --update

Now, set the minimum length requirement for passwords to 16 via the following:

~]# authconfig --passminlen=16 --update

The user requires at least one lowercase letter in the password; you can set this
requirement by running the following:

~]# authconfig --enablereqlower --update

Also, the user requires at least one uppercase letter in the password, for which you can
run the following:

~]# authconfig --enablerequpper --update

Now, the user requires at least one number in the password. Execute the following
command for this:

~]# authconfig --enablereqdigit --update

Finally, the user requires at least one nonalphanumeric character in the password, which
you can set using the following command:

~]# authconfig --enablereqother --update

https://technet24.ir

How it works…
authconfig and authconfig-tui are wrapper scripts that modify a variety of files,
including, but not limited to, /etc/nsswitch.conf, /etc/pam.d/*, /etc/sssd.conf,
/etc/openldap/ldap.conf, and /etc/sysconfig/network.

The advantage of the tool is that it uses the correct syntax, which can sometimes be a
little tricky, especially for the files in /etc/pam.d.

There's more…
One of the interesting features of this tool is the backup and restore functions. In case
you do not use any centralized identification and authentication infrastructure, such as
IPA, you can use this to make a backup of a correctly configured machine and distribute
this through whichever means you wish to use.

To back up your authconf configuration, execute the following:

~]# authconfig --savebackup=/tmp/auth.conf

This will create a /tmp/auth.conf directory, which contains all the files modified by
authconfig.

Copy this directory over to another server and restore the configuration by executing the
following:

~]# authconfig –-restorebackup=/tmp/auth.conf

All of the security changes you apply through authconfig can also be managed through
IPA.

https://technet24.ir

See also
For information about and more configuration options, take a look at the authconfig (8)
man pages.

You can also find more information on Red Hat's page on authentication at
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System-
Level_Authentication_Guide/Configuring_Authentication.html.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System-Level_Authentication_Guide/Configuring_Authentication.html

Configuring privilege escalation with
sudo
Sudo allows users to run applications and scripts with the security privileges of another
user.

https://technet24.ir

Getting ready
Before allowing someone to elevate their security context for a specific application or
script, you need to figure out which user or group you wish to elevate from and to,
which applications/scripts you use, and on which systems to run them.

The default syntax for a sudo entry is the following:

who where = (as_whom) what

How to do it…
These simple five steps will guide you through setting up privilege escalation:

1. Create a new sudoers definition file in /etc/sudoers.d/ called clustering
through the following command:

~]# visudo -f /etc/sudoers.d/clustering

2. Create a command alias for the most-used clustering tools called CLUSTERING by
executing the following:

Cmnd_Alias CLUSTERING = /sbin/ccs, /sbin/clustat, /sbin/clusvcadm

3. Now, create a host alias group for all the clusters called CLUSTERS, as follows:

Host_Alias CLUSTERS = cluster1, cluster2

4. Next, create a user alias for all cluster admins called CLUSTERADMINS by executing
the following:

User_Alias CLUSTERADMINS = spalpatine, dvader, okenobi, qjinn

5. Now, let's create a sudo rule that allows the users from CLUSTERADMINS to execute
commands from CLUSTERING on all servers within the CLUSTERS group, as
follows:

CLUSTERADMINS CLUSTERS = (root) CLUSTERING

https://technet24.ir

There's more…
To edit the sudoers file, you can either use a text editor and edit /etc/sudoers, the
visudo tool, which automatically checks your syntax when exiting.

It's always a good idea to leave the original /etc/sudoers file alone and modify the
files located in /etc/sudoers.d/. This allows the sudo rpm to update the sudoers file
should it be necessary.

See also
For more information about sudo, take a look at the sudoers (5) man page.

https://technet24.ir

Secure the network with firewalld
firewalld is a set of scripts and a daemon that manage netfilter on your RHEL
system. It aims at creating a simple command-line interface to manage the firewall on
your systems.

How to do it…
By default, firewalld is included in the "core" rpm group, but it may not be installed
for some reason (that you left it out of your kickstart would be one!). Perform the
following steps:

1. Install firewalld via the following command line:

~]# yum install -y firewalld

2. Now, enable firewalld through the following:

~]# systemctl enable firewalld

3. Finally, ensure that firewalld is started by executing the following command line:

~]# systemctl restart firewalld

Showing the currently allowed services and ports on your system

List all the allowed services using the following command:

~]# firewall-cmd –list-services

You can see the output as follows, where all the allowed services are listed:

Now, show the tcp/udp ports that are allowed by your firewall using the following
command:

~]# firewall-cmd --list-ports

Here's what the output should look like:

https://technet24.ir

Allowing incoming requests for NFS (v4)

Perform the following steps to allow NFSv4 traffic on your system:

1. First, allow nfs traffic via this command:

~]# firewall-cmd --add-service nfs –-permanent
success
~]#

2. Then, reload the configuration as follows:

~]# firewall-cmd --reload
success
~]#

3. Now, check the newly applied rule by executing the following command line:

~]# firewall-cmd –-list-services
nfs
~]#

Allowing incoming requests on an arbitrary port

Perform the following steps to allow incoming traffic on port 1234 over both tcp and
udp:

1. First, allow traffic on port 1234 over tcp and udp by running the following:

~]# firewall-cmd --add-port 1234/tcp --permanent
success
~]# firewall-cmd --add-port 1234/udp --permanent
success
~]#

2. Reload the configuration by executing the following command:

~]# firewall-cmd –-reload
success
~]#

3. Check the newly applied rule via the following:

~]# firewall-cmd –-list-ports
1234/tcp 1234/udp
~]#

https://technet24.ir

There's more…
firewalld comes with a set of predefined port configurations, such as HTTP and
HTTPS. You can find all such definitions in /lib/firewalld/services. When
creating your own port definitions or modifying the existing ones, you should create new
port definition files in /etc/firewalld/services.

When creating new "rules" by adding ports, services, and so on, you need to add the --
permanent option, or your changes would be lost upon the rebooting of the system or
the reloading of the firewalld policy.

See also
For more information on configuring your firewall, check the man pages for firewall-
cmd(1).

https://technet24.ir

Using kdump and SysRq
The kdump mechanism is a Linux kernel feature, which allows you to create dumps if
your kernel crashes. It produces an exact copy of the memory, which can be analyzed for
the root cause of the crash.

SysRq is a feature supported by the Linux kernel, which allows you to send key
combinations to it even when your system becomes unresponsive.

How to do it…
First, we'll set up kdump and SysRq, and afterwards, I'll show you how to use it to
debug a dump.

Installing and configuring kdump and SysRq

Let's take a look at how this is installed and configured:

1. Install the necessary packages for kdump by executing the following command:

~]# yum install -y kexec-tools

2. Ensure that crashkernel=auto is present in the GRUB_CMDLINE_LINUX variable
declaration in the /etc/sysconfig/grub file using this command:

GRUB_CMDLINE_LINUX="rd.lvm.lv=system/usr rd.lvm.lv=system/swap
vconsole.keymap=us rd.lvm.lv=system/root
vconsole.font=latarcyrheb-sun16 crashkernel=auto"

3. Start kdump by running the following:

~]# systemctl start kdump

4. Now, enable kdump to start at boot, as follows:

~]# sysctl enable kdump

5. Configure SysRq to accept all commands via the following commands:

~]# echo "kernel.sysrq = 1" >> /etc/sysctl.d/sysrq.conf
~]# systemctl -q -p /etc/sysctl.d/sysrq.conf

6. Regenerate your intramfs (initial RAM file system) to contain the necessary
information for kdump by executing the following command:

~]# dracut --force

7. Finally, reboot through the following command:

~]# reboot

Using kdump tools to analyze the dump

Although you'll find most of the information you're looking for in the vmcode-
dmesg.txt file, it can be useful sometimes to look into the bits and bytes of the vmcore
dump, even if it is just to know what the people at Red Hat do when they ask you to send

https://technet24.ir

you a vmcore dump. Perform the following steps:

1. Install the necessary tools to debug the vmcore dump via the following command:

~]# yum install -y --enablerepo=*debuginfo crash kernel-
debuginfo

2. Locate your vmcore by executing the following:

~]# find /var/crash -name 'vmcore'
/var/crash/127.0.0.1-2015.10.31-12:03:06/vmcore

Note

If you don't have a core dump, you can trigger this yourself by executing the
following:

~]# echo c > /proc/sysrq-trigger

3. Use crash to analyze the contents, as follows:

~]# crash /var/crash/127.0.0.1-2015.10.31-12:03:06/vmcore
/usr/lib/debug/lib/modules/<kernel>/vmlinux

Here, <kernel> must be the same kernel as the one that the dump was created for:

4. Display the kernel message buffer (this can also be found in the vmcore-
dmesg.txt dump file) by running the following command:

crash> log

Here's what the output should look like:

https://technet24.ir

5. Display the kernel stack trace through the following:

crash> bt

Here's what the output should look like:

6. Now, show the processes at the time of the core dump, as follows:

crash> ps

Here's what the output should look like:

There's more…
The default kdump configuration uses /var/crash to dump its memory on. This MUST
be on the root filesystem. Some systems are configured with a separate filesystem for
/var, so you need to change the location in /etc/kdump.conf or use a different target
type, such as raw, nfs, and so on. If your crash directory is located on a nonroot
filesystem, the kdump service will fail!

Although the crash utility can provide a lot of details about the crash, usually you're set
with the contents of the vmcore-dmesg.txt file, which resides in the same directory as
the vmcore file. So, I suggest that you parse this file before digging into the bits and
bytes of the memory dump.

SysRq, as stated before, allows you to control your system even if it is in a state that
doesn't allow you to do anything at all. However, it does require you to have access to
the system's console.

By default, kdump creates a dump and reboots your system. In the event that this doesn't
happen and you don't want to push the power button on your (virtual) system, SysRq
allows you to send commands through the console to your kernel.

The key combination needed to send the information differs a little from architecture to
architecture. Take a look at the following table for reference:

Architecture Key combination

x86 <Alt><SysRq><command key>

Sparc <Alt><Stop><command key>

Serial console (PC style only)
This sends a BREAK and, within 5 seconds, the command key.

Sending BREAK twice is interpreted as a normal BREAK.

PowerPC <Alt><Print Screen>(or <F13>)<command key>

So, on an x86 system, you would attempt to sync your disks before rebooting it by
executing the following commands:

https://technet24.ir

<Alt><SysRq><s>
<Alt><SysRq>

Alternatively, if you still have access to your terminal, you can do the same by sending
characters to /proc/sysrq-trigger, as follows:

~]# echo s > /proc/sysrq-trigger
~]# echo b > /proc/sysrq-trigger

The following key commands are available:

Command
key Function

b
This immediately reboots your system. It does not sync or unmount disks. This can result in data
corruption!

c
This performs a system crash by a NULL pointer dereference. A crashdump is taken if kdump is
configured.

d This shows all the locks held.

e This sends a SIGTERM signal to all your processes, except for init.

f This calls oom_kill to kill any process hogging the memory.

g This is used by the kernel debugger (kgdb).

h This shows help. (Memorize this option!)

i This sends a SIGKILL signal to all your processes, except for init.

j This freezes your filesystems with the FIFREEZE ioctl.

k

This kills all the programs on the current virtual console.

It enables a secure login from the console as this kills all malware attempting to grab your keyboard
input, for example.

l This shows a stack trace for all active CPUs.

m This dumps the current memory info to your console.

n You can use this to make real-time tasks niceable.

o This shuts down your system and turns it off (if configured and supported).

p This dumps the current registers and flags to your console

q
This will dump a list of all armed hrtimers (except for timer_list timers) per CPU together with
detailed information about all clockevent devices.

r This turns off your keyboard's raw mode and sets it to XLATE.

s This attempts to sync all your mounted filesystems, committing unwritten data to them.

t This dumps a list of current tasks and their information to your console.

u This attempts to remount all your filesystems as read-only volumes.

v This causes the ETM buffer to dump (this is ARM-specific).

w This dumps all the tasks that are in an uninterruptable (blocked) state.

x This is used by xmon on ppc/powerpc platforms. This shows the global PMU registers on SPARC64.

y This shows global CPU registers (this is SPARC64-specific).

z This dumps the ftrace buffer.

0 - 9 This sets the console's log level, controlling which messages will be printed. The higher the number, the
more the output.

https://technet24.ir

See also…
For more information about SysRq and systemd, refer to the following page:
https://github.com/systemdaemon/systemd/blob/master/src/linux/Documentation/sysrq.txt

Red Hat has a complete crash dump guide at
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Kernel_Crash_Dump_Guide/index.html.

https://github.com/systemdaemon/systemd/blob/master/src/linux/Documentation/sysrq.txt
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Kernel_Crash_Dump_Guide/index.html

Using ABRT
ABRT (Automatic Bug Reporting Tool), is a set of tools that help users detect and
analyze application crashes.

https://technet24.ir

How to do it…
First, we'll install the necessary packages and then take a look at how to use these tools.

Installing and configuring abrtd

Let's install abrt and get it running:

1. Install the abrt daemon and tools via the following command line:

~]# yum install -y abrt-cli

2. Now, enable and start the abrt daemon through these commands:

~]# systemctl enable abrtd
~]# systemctl restart abrtdThere's more...

Using abrt-cli

List all detected segmentation faults by executing the following command:

~]# abtr-cli list

Here's what the output should look like:

The displayed location contains all the information about the segmentation fault. You
can use this to analyze what went wrong, and if you need help from Red Hat, you can
use abrt-cli report to report to Red Hat Support.

There's more…
When your RHEL 7 system is registered with a satellite, all bugs will automatically be
reported to the satellite system.

You can install additional plugins to automatically report bugs in the following ways:

to Bugzilla (libreport-plugin-bugzilla)
via ftp upload (libreport-plugin-reportuploader)
to Red Hat Support (libreport-plugin-rhtsupport)
to an abrt server (libreport-plugin-ureport)

Besides the basic bug reporting, you can also create automatic bug reports for Java by
installing the abrt-java-connector package.

https://technet24.ir

See also
For more information on how to use the abrt tool, refer to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-abrt.html.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-abrt.html

Auditing the system
The Linux audit system allows you to track security-related information about your
systems. It allows you to watch security events, filesystem access, network access,
commands run by users, and system calls.

https://technet24.ir

How to do it…
By default, audit is installed as part of the core packages. So, there's no need to install
this.

Configuring a centralized syslog server to accept audit logs

Perform these steps to set up the syslog server:

1. On the syslog server, create a /etc/rsyslog.d/audit_server.conf file
containing the following:

Receive syslog audit messages via TCP over port 65514
$ModLoad imtcp
$InputTCPServerRun 65514
$AllowedSender TCP, 127.0.0.1, 192.168.1.0/24
$template HostAudit, "/var/log/audit/%$YEAR%%$MONTH%%$DAY%-
%HOSTNAME%/audit.log"
$template auditFormat, "%msg%\n" local6.* ?HostAudit;auditFormat

2. On the syslog server, restart rsyslog, as follows:

~]# systemctl restart rsyslog

3. On the client, create a /etc/rsyslog.d/audit_client.conf file containing the
following:

$ModLoad imfile
$InputFileName /var/log/audit/audit.log
$InputFileTag tag_audit_log:
$InputFileStateFile audit_log
$InputFileFacility local6
$InputFileSeverity info
$InputRunFileMonitor local6.* @@logserver.example.com:65514

4. Next, on the client, restart rsyslog, as follows:

~]# systemctl restart syslog

Some audit rules

You can use the following command to log activity on /etc/resolv.conf:

~]# auditctl -w /etc/resolv.conf -p w -k resolv_changes

You can execute the following commands to log all the commands executed by root:

~]# echo "session required pam_tty_audit.so disable=* enable=root"
>> /etc/pam.d/system-auth-ac
~]# echo "session required pam_tty_audit.so disable=* enable=root"
>> /etc/pam.d/password-auth-ac

Showing audit logs for the preceding rules

You can search for the audit events that have changed /etc/resolv.conf using the
preceding rule by executing the following command:

~]# ausearch -k resolv_changes

Here's what the output should look like:

To check all the commands executed by root today, you can run the following:

~]# aureport --tty -ts today

Here's what the output should look like:

https://technet24.ir

See also
For more in-depth information about audit, refer to
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/chap-system_auditing.html.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/chap-system_auditing.html
https://technet24.ir

Chapter 10. Monitoring and
Performance Tuning
In this chapter, I'll explore the following topics:

Tuning your system's performance
Setting up PCP – Performance Co-Pilot
Monitoring basic system performance
Monitoring CPU performance
Monitoring RAM performance
Monitoring storage performance
Monitoring network performance

Introduction
Monitoring your infrastructure is an important aspect of your environment as it teaches
you much about its behavior. It will tell you where your bottlenecks are and where room
for improvement is. In this chapter, we will monitor performance and not create triggers
when certain metrics exceed specific values.

https://technet24.ir

Tuning your system's performance
Companies buy the best hardware their money can get, and they want to use everything
optimally. However, it's not just the hardware that makes your applications run faster.
Your OS will also behave differently under specific circumstances.

Tuned is a set of tools and a daemon that tunes your system's settings automatically
depending on its usage. It periodically collects data from its components through
plugins, which it uses to change system settings according to the current usage.

How to do it…
In this recipe, we'll ask tuned which profile to use and apply it through the following
steps:

1. First, run the following command to install the required packages:

~]# yum install -y tuned

2. Enable and start tuned by executing the following commands:

~]# systemctl enable tuned
~]# systemctl restart tuned

3. Have tuned guess the profile to be used via the following:

~]# tuned-adm recommend
virtual-guest

4. Finally, apply the recommended profile to tuned, as follows:

~]# tuned-adm profile virtual-guest

https://technet24.ir

There's more…
You can find the system's tuned profiles used in /lib/tuned/. When you create your
own, create them in /etc/tuned in the same way as they are organized in /lib/tuned.
I do not recommend creating new profiles in /etc/tuned with the same name as in
/lib/tuned, but if you do, the one in the /etc/tuned directory will be used. It is
better to create a new one with a different name, including the one you want to modify,
and then make the necessary changes in your new profile.

Every profile has a directory, which contains a set of files controlling the behavior of
your system. If you explore the tuned.conf files in these directories, you will see that
these files define the exact settings that other tools (such as cpufreq) need to be
configured on and that some profiles include other profiles. For instance, if you create a
profile for, say, a laptop that is a little better on the battery by applying the powersave
CPU governor, you could create a new file located at
/etc/tuned/laptop/tuned.conf containing the following:

#
laptop tuned configuration
#

[main]
include=desktop

[cpu]
replace=1
governor=powersave

When you know the bottlenecks of your systems, you can find out how to mitigate them
by configuring your system in a specific way. Tuned can come in handy to create and
apply profiles based on the performance monitoring of your components.

See also
For more information about tuning your system, refer to the Red Hat Performance Tuning
guide at https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html.

Check out the man pages of tuned (8), tuned-adm (8), tuned-main.conf (5), and
tuned.conf (5) for more information.

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Performance_Tuning_Guide/index.html
https://technet24.ir

Setting up PCP – Performance Co-Pilot
Over the years, a lot of tools have been created to troubleshoot performance issues on
your systems, such as top, sar, iotop, iostat, iftop, vmstat, dstat, and others.
However, none of these integrate with each other, some are extensions to others, and so
on.

PCP seems to have a couple of things right: it monitors just about every aspect of your
system, it allows the centralized storage of (important) performance data, and it allows
you to use not only live data, but also saved data among others.

How to do it…
In this recipe, we'll look at both the "default" setup and "collector" configuration, which
allows you to pull in all the performance data you want.

The default installation

This is the basic setup of PCP:

1. Let's install the necessary packages; run the following command:

~]# yum install -y pcp

2. Now, enable and start the necessary daemons, as follows:

~]# systemctl enable pmcd
~]# systemctl enable pmlogger
~]# systemctl start pmcd
~]# systemctl start pmlogger

3. If you want to have the system monitored by a central collector, execute the
following:

~]# firewall-cmd --add-service pmcd --permanent

The central collector

Each host that is to act as a collector requires additional configuration. Here's how you
can do this:

1. Add a line per system to collect data from /etc/pcp/pmlogger/control, as
follows:

<hostname> n n PCP_LOG_DIR/pmlogger/<hostname> -r -T24h10m -c
config.<hostname>

Here, <hostname> is the FDQN to this host. Take a look at the following example:

guest.example.com n n PCP_LOG_DIR/pmlogger/guest.example.com -r -
T24h10m -c config.guest.example.com

2. After adding a host in this way, you need to restart the pmlogger daemon. Execute
the following command line:

~]# systemctl restart pmlogger

https://technet24.ir

There's more…
By default, PCP logs information every 60 seconds. If you want to increase this and
want to gather performance statistics every 30 seconds, you need to change the line
starting with LOCALHOSTNAME and add -t 30s at the end.

Modifying the statistics you gather is a bit more difficult. You can find the configuration
for pmlogger in /var/lib/pcp/config/pmlogconf/. Every file in this directory
contains information about which pointers to gather. The syntax is not very hard to
understand, but it is complex to explain. The pmlogconf (1) man page contains
everything you need to know.

If you want to visualize the data on a host, you need to install pcp-gui, as follows:

~]# yum install -y pcp-gui dejavu-sans-fonts

This package comes with a tool called pmchart, which allows you to create graphics
with the data collected by PCP. The fonts are needed to properly display the characters.

See also
For more information about PCP and its components, refer to their online manuals,
which you can find at http://www.pcp.io/documentation.html.

http://www.pcp.io/documentation.html
https://technet24.ir

Monitoring basic system performance
We need to keep an eye out on global system values. The ones that are particularly of
interest are the following:

kernel.all.pswitch

kernel.all.nprocs

kernel.all.load

How to do it…
I'll show you a way to display both text-based and graphical output. Here are the steps:

1. Display live data for the metrics with a 1-second interval for the
guest.example.com host by executing the following command:

~]# pmdumptext -H -t 1 -i -l kernel.all.pswitch kernel.all.nprocs
kernel.all.load -h guest.example.com

2. Create a configuration file for pmchart to display live data called system.conf
with the following contents:

#kmchart
version 1

chart style plot antialiasing off

plot color #ffff00 metric kernel.all.pswitch
chart style plot antialiasing off
 plot color #ffff00 metric kernel.all.nprocs
chart style plot antialiasing off
 plot color #ffff00 metric kernel.all.load instance "1
minute"
 plot color #ff924a metric kernel.all.load instance "5
minute"
 plot color #ff0000 metric kernel.all.load instance "15
minute"

3. Next, use pmchart to plot a live chart for guest.example.com via the following
command:

https://technet24.ir

~]# pmchart -h guest.example.com -c system.conf

There's more…
The preceding examples are based on "live" data; however, you're not limited to live
data. You could increase the interval of pmlogger in order to get more data about a
troublesome system and then take a look at the generated data afterwards. With other
tools, you'd have to use additional tools through cronjob and so on, while PCP allows
you to do both.

Here's how you can do this:

1. Show the the data of guest.example.com for November 1, 2015 between 15:30
and 16:30 with a 5-minute interval via the following command:

~]# pmdumptext -H -t 5m -i -l -S @15:30 -T @16:30
kernel.all.pswitch kernel.all.nprocs kernel.all.load -a
/var/log/pcp/pmlogger/guest.example.com/20151101

2. You can do the same with pmchart, as follows:

~]# pmchart -a /var/log/pcp/pmlogger/guest.example.com/20151101 -
c system.conf -S @15:30 -T @16:30 -W -o output.png

https://technet24.ir

Monitoring CPU performance
This recipe will show you how to visualize using pmchart and command-line tools to
monitor your CPU's performance. We will have a look at the following metrics:

kernel.all.cpu.wait.total

kernel.all.cpu.irq.hard

kernel.all.cpu.irq.soft

kernel.all.cpu.steal

kernel.all.cpu.sys

kernel.all.cpu.user

kernel.all.cpu.nice

kernel.all.cpu.idle

https://technet24.ir

How to do it…
This will show you how to create the text and graphical representation of performance
data. Perform the following steps:

1. Display live data for the preceding metrics with a 1-second interval for the host,
localhost. Execute the following command:

~]# pmdumptext -H -t 1 -i -l kernel.all.cpu.wait.total
kernel.all.cpu.irq.hard kernel.all.cpu.irq.soft
kernel.all.cpu.steal kernel.all.cpu.sys kernel.all.cpu.user
kernel.all.cpu.nice kernel.all.cpu.idle -h localhost

2. Create a configuration file for pmchart to display live data called
cpu_stack.conf with the following contents:

#kmchart
version 1

chart style stacking antialiasing off
 plot color #aaaa7f metric kernel.all.cpu.wait.total

plot color #008000 metric kernel.all.cpu.irq.hard
 plot color #ee82ee metric kernel.all.cpu.irq.soft
 plot color #666666 metric kernel.all.cpu.steal
 plot color #aa00ff metric kernel.all.cpu.user

 plot color #aaff00 metric kernel.all.cpu.sys
 plot color #aa5500 metric kernel.all.cpu.nice
 plot color #0000ff metric kernel.all.cpu.idle

You will notice that I don't use all the metrics in the graph as some of the metrics
are combined with one another.

3. Use pmchart to plot a live chart for guest.example.com, as follows:

~]# pmchart -h guest.example.com -c cpu_stack.conf

https://technet24.ir

Monitoring RAM performance
To monitor RAM performance, I am only interested in a couple of metrics, not all the
memory-related ones. Take a look at this list:

mem.util.used

mem.util.free

mem.util.bufmem

mem.util.cached

swap.free

swap.used

swap.pagesin

swap.pagesout

How to do it…
This recipe will explain you how to create text-based and graphical outputs:

1. First, display live data for the preceding metrics through this command:

~]# pmdumptext -H -t 1 -i -l mem.util.used mem.util.free
mem.util.bufmem mem.util.cached swap.free swap.used swap.pagesin
swap.pagesout -h guest.example.com

2. Create a configuration file for pmchart to display live data called memory.conf
with the following contents:

#kmchart
version 1

chart style stacking
 plot color #ffff00 metric mem.util.used
 plot color #ee82ee metric mem.util.free
chart style stacking
 plot color #ffff00 metric swap.used
 plot color #0000ff metric swap.free
chart style plot antialiasing off
 plot color #19ff00 metric swap.pagesin
 plot color #ff0004 metric swap.pagesout

3. Now, use pmchart to plot a live chart for guest.example.com by executing the
following command line:

~]# pmchart -h guest.example.com -c memory.conf

https://technet24.ir

I haven't included the buffer and cached memory in this graph as it's part of the memory-
used metric.

Monitoring storage performance
In this recipe, we'll look at the following metrics:

disk.all.read

disk.all.write

disk.all.read_bytes

disk.all.write_bytes

https://technet24.ir

How to do it…
Let's create a text and graphical representation of the performance data through the
following steps:

1. Display live data for the preceding metrics; you can use the following command
for this:

~]# pmdumptext -H -t 1 -i -l disk.all.read disk.all.write
disk.all.read_bytes disk.all.write_bytes -h guest.example.com

2. Next, create a configuration file for pmchart to display live data called
disk.conf with the following contents:

#kmchart
version 1

chart style stacking
 plot color #ffff00 metric mem.util.used
 plot color #ee82ee metric mem.util.free

chart style stacking

plot color #ffff00 metric swap.used
 plot color #0000ff metric swap.free
chart style plot antialiasing off
 plot color #19ff00 metric swap.pagesin
 plot color #ff0004 metric swap.pagesout

3. Now, use pmchart to plot a live chart for guest.example.com, as follows:

~]# pmchart -h guest.example.com -c memory.conf

https://technet24.ir

Monitoring network performance
In this recipe, we'll look at the following network metrics:

network.interface.collisions

network.interface.in.bytes

network.interface.in.packets

network.interface.in.errors

network.interface.in.drops

network.interface.out.bytes

network.interface.out.packets

network.interface.out.errors

network.interface.out.drops

How to do it…
Now, one last time, we'll look at how we can create a text and graphical representation
of data. Perform the following steps:

1. Display live data for the preceding metrics; run the following command:

~]# pmdumptext -H -t 1 -i -l network.interface.collisions
network.interface.in.bytes network.interface.in.packets
network.interface.in.errors network.interface.in.drops
network.interface.out.bytes network.interface.out.packets
network.interface.out.errors network.interface.out.drops -h
guest.example.com

2. Create a configuration file for pmchart to display live data called network.conf
with the following contents:

#kmchart
version 1

chart style plot antialiasing off
 plot color #ff0000 metric network.interface.collisions
instance "eth0"
chart style plot antialiasing off
 plot color #00ff00 metric network.interface.in.bytes
instance "eth0"
 plot color #ff0000 metric network.interface.out.bytes
instance "eth0"
chart style plot antialiasing off

plot color #00ff00 metric network.interface.in.packets instance
"eth0"
 plot color #ff0000 metric network.interface.out.packets

https://technet24.ir

instance "eth0"
chart style plot antialiasing off
 plot color #00ff00 metric network.interface.in.errors
instance "eth0"
 plot color #ff0000 metric network.interface.out.errors
instance "eth0"
chart style plot antialiasing off
 plot color #00ff00 metric network.interface.in.drops
instance "eth0"
 plot color #ff0000 metric network.interface.out.drops
instance "eth0"

3. Next, use pmchart to plot a live chart for guest.example.com via this command
line:

~]# pmchart -h guest.example.com -c network.conf

https://technet24.ir

Bibliography
This course is a blend of different projects and texts all packaged up keeping your
journey in mind. It includes the content from the following Packt products:

Ubuntu Server Cookbook by Uday Sawant
CentOS 7 Linux Server Cookbook- Second Edition by Oliver Pelz and Jonathan
Hobson
Red Hat Enterprise Linux Server Cookbook by William Leemans

Index
A

ABRT
using / Using ABRT

abrt
reference link / See also

abrt-cli
using / Using abrt-cli

abrtd
installing / Installing and configuring abrtd
configuring / Installing and configuring abrtd

access agents / Delivering the mail with Dovecot
access rights

assigning / Adding users and assigning access rights, How to do it…, How it
works…

Access Vector Cache (AVC) / How it works...
Active Directory (AD) support / How it works…
additional repositories

configuring / Configuring additional repositories, There's more…
references / See also

Ampache
URL / See also
used, for streaming music / Streaming music with Ampache

Ampache Server
installing / Installing the Ampache server, How to do it…, There's more…

Ansible
about / Introduction
installing / Install Ansible
latest tarball, installing / Installing the latest tarball
URL / Installing the latest tarball
installing, from GIT / Installing cutting edge from Git
installing, from Enterprise Linux (EPEL) repository / Installing Ansible from
the EPEL repository
file structure / There's more…
troubleshooting / Troubleshooting Ansible, How to do it…, How it works…,
There's more…

https://technet24.ir

Ansible inventory
configuring / Configuring the Ansible inventory, How it works…, There's
more…
static inventory file / The static inventory file
dynamic inventory file / The dynamic inventory file
host_vars file / host_vars files
group_vars file / group_vars files
reference link / See also

Ansible template module
URL / See also

Apache
about / Introduction
benchmarking / Benchmarking and performance tuning of Apache, How to do
it…
performance tuning / Benchmarking and performance tuning of Apache, How
to do it…
installing / Installing Apache and serving web pages, How to do it..., How it
works...
securing / Securing Apache, How to do it...

Apache Bench (ab)
about / Benchmarking and performance tuning of Apache

Apache files
protecting / Protecting your Apache files, How it works...

Apache web server
installing / Installing and configuring the Apache web server
configuring / How to do it…
working / How it works…
about / There's more…
HTTP version 2 support / HTTP version 2 support

API access
enabling, for remote streaming / Enabling API access for remote streaming,
How to do it…, How it works…

arbitrary port
incoming requests, allowing on / Allowing incoming requests on an arbitrary
port

audit
reference link / See also

audit.log file

commands / There's more…
denied or failed entries, searching / audit.log

audit logs
displaying, for preceding rules / Showing audit logs for the preceding rules

audit rules
about / Some audit rules

ausearch tool
using / ausearch

authconfig-tui tool
about / Securing the system login, How it works…

authconfig tool
about / Securing the system login, How it works…

authentication methods
trust / How it works...
reject / How it works...
md5 / How it works...
peer and ident / How it works...

authentication page, RedHat
reference link / See also

authoritative-only DNS server
about / Setting up an authoritative-only DNS server
setting up / Setting up an authoritative-only DNS server, How to do it...
working / How it works..., There's more...

automatic installation, of CentOS 7
performing, kickstart file used / Installing CentOS 7 using a kickstart file,
How to do it..., How it works...

https://technet24.ir

B
background services

knowing / Knowing and managing your background services, Getting ready,
How it works...
managing / Knowing and managing your background services, Getting ready,
How it works...
troubleshooting / Troubleshooting background services, Getting ready, How it
works...

backups
setting up / Setting backups, How it works…

bare repository
about / How it works…

batch mode
user account, creating / Creating user accounts in batch mode, How it
works…

Bazaar
URL / There's more…

benchmarking, with Sysbench
URL / See also

Berkeley Internet Name Domain (BIND) / How it works...
Bidirectional-streams Over Synchronous HTTP (BOSH)

about / Getting ready
binary large object (blob)

about / How it works…
block device / How it works...
boot environment

configuring / How to do it…, How it works…, There's more…
bridge

creating / Creating a bridge
creating, nmcli used / Creating a bridge using nmcli
creating, nmtui used / Creating a bridge using nmtui
creating, kickstart used / Creating a bridge with kickstart

brute force attacks
securing against / Securing against brute force attacks, How to do it…, How it
works…
reference / There's more…

Btrfs / Formatting and mounting a filesystem

Bugzilla
URL / See also

bulk data
exporting / Importing and exporting bulk data, How to do it…
importing / Importing and exporting bulk data, How to do it…

https://technet24.ir

C
C10k problem

about / Introduction
caching-only nameserver

installing / Installing and configuring a caching-only nameserver
configuring / Installing and configuring a caching-only nameserver

caching-only Unbound DNS server
configuring / Configuring a caching-only Unbound DNS server

cadaver WebDAV command-line client / How it works…
cAdvisor / How it works…
Candy

URL / See also
catalog

creating / Uploading contents and creating catalogs, How to do it…
CentOS

downloading / Downloading CentOS and confirming the checksum on
Windows or OS X, Getting ready, How to do it..., How it works…
URL / How to do it...
reference link / There's more...

CentOS 7 installation
language settings, changing / Speaking the right language, Getting ready, How
it works..., There's more…

CentOS boot loader
re-installing / Re-install the CentOS boot loader

CentOS installation
preparing, graphical installer used / Performing an installation of CentOS
using the graphical installer, How to do it..., How it works…

centralized syslog server
configuring, to accept audit logs / Configuring a centralized syslog server to
accept audit logs

centralized version control systems (CVCS)
about / Introduction

Certificate Signing Request (CSR)
generating / There's more…

/ How to do it...
certification authority (CA) / How it works...
CGI

implementing, with Perl / Implementing CGI with Perl and Ruby, How to do
it...
implementing, with Ruby / Implementing CGI with Perl and Ruby, How to do
it...

chat server
with Node.js / Chat server with Node.js, How to do it…, How it works…

checksum
confirming, on Windows / Downloading CentOS and confirming the checksum
on Windows or OS X, Getting ready, How to do it..., How it works…
confirming, on OS X / Downloading CentOS and confirming the checksum on
Windows or OS X, Getting ready, How to do it..., How it works…

chrony
used, for managing time / Managing time through chrony
reference link / See also

chrony suite
used, for synchronizing system clock / Synchronizing the system clock with
NTP and the chrony suite, How to do it..., How it works..., There's more...

Cloud 9 IDE
URL / See also

Cobbler
URL / See also

command line interface (CLI)
about / Installing GitLab, your own Git hosting

commands, for network connectivity
lspci / There's more…
Lsmod / There's more…
ip link / There's more…
ip addr / There's more…
ip route / There's more…
tracepath/traceroute / There's more…
iptables / There's more…
dig / There's more…
ethtool / There's more…
route / There's more…
telnet / There's more…
Nmap / There's more…
netstat / There's more…
ifup / There's more…

https://technet24.ir

ifdown / There's more…
Common Internet File System (CIFS) protocol / Installing the Samba server
common tasks

automating, with Git hooks / Automating common tasks with Git hooks,
Getting ready, How to do it…, How it works…

configuration node
creating / Create the configuration node

container
about / Introduction
running / Downloading an image and running a container, How to do it...,
How it works...
starting / Stopping and starting a container
stopping / Stopping and starting a container
attaching / Attaching and interacting with your container
interacting with / Attaching and interacting with your container

containerd / How it works…
container networking model (CNM) / How it works…
contents

uploading / Uploading contents and creating catalogs, How to do it…
Coordinated Universal Time (UTC) / There's more...
corrupted RPM database

recovering / Recovering from a corrupted RPM database, How to do it…,
There's more…

CPU
monitoring / Monitoring the CPU, How to do it…, How it works…
references / See also

cpufreq
about / There's more…

CPU performance
monitoring / Monitoring CPU performance, How to do it…

CPUs
adding, on fly to guest / Adding CPUs on the fly, Getting ready
adding, on KVM host / On the KVM host, perform the following steps:
adding, on KVM guest / On the KVM guest, perform the following:

CPU utilization
defining / How it works…

crash dump guide, Red Hat
reference link / See also…

cron
used, for scheduling tasks / Scheduling tasks with cron, How to do it..., How
it works...

CUPS
printing with / Printing with CUPS, Getting ready, How to do it..., How it
works..., There's more...
about / Printing with CUPS

CUPS server
network printer, adding to / How to add a network printer to the CUPS server
local printer, adding to / How to share a local printer to the CUPS server

custom boot ISO
used, for system deployment / Deploying a system using a custom boot ISO
file, How to do it…, How it works…

https://technet24.ir

D
data

storing, MySQL used / Storing and retrieving data with MySQL, How to do
it…, How it works…
retrieving, MySQL used / Storing and retrieving data with MySQL, How to do
it…, How it works…
storing, MongoDB used / Storing and retrieving data with MongoDB, How to
do it…, How it works…, There’s more…
retrieving, MongoDB used / Storing and retrieving data with MongoDB, How
to do it…, How it works…, See also

data backups
maintaining / Maintaining backups and taking snapshots, How to do it..., How
it works...

database
managing / Installing a PostgreSQL server and managing a database, How to
do it..., How it works..., There's more...

Database Management System (DBMS) / How to do it...
Data Definition Language (DDL) / How it works…
Data Manipulation Language (DML) / How it works…
dd

reference link / How to do it...
debootstrap

about / There's more…
delivery agent / How it works...
DHCP

about / Installing the DHCP server, Running a DHCP server
manual allocation / Installing the DHCP server
dynamic allocation / Installing the DHCP server

DHCP server
installing / Installing the DHCP server, Getting ready, How to do it…
IP reservation / There's more…
manual allocation / There's more…
running / Running a DHCP server, How to do it..., How it works...

Diffie Hellman parameters / How to do it…
Directory Information Tree (DIT)

about / Introduction
Disabled mode / There's more...

Discretionary Access Control (DAC) / Installing and configuring important
SELinux tools
disk quotas

using / Using disk quotas
limiting system, setting up / Using disk quotas
user quotas, enabling / Enabling user and group quotas
group quotas, enabling / Enabling user and group quotas
project (directory) quotas, enabling / Enabling project (directory) quotas,
How it works...
working / How it works..., There's more...

disks
adding, on fly / Adding disks on the fly, How it works…
moving, to another storage / Moving disks to another storage, How to do it…,
How it works…

DNS
about / Installing the DNS server

DNS configuration guide, on Ubuntu server guide
reference / See also

DNS resolvers
configuring / Configuring your DNS resolvers
setting up, nmcli used / Setting your DNS resolvers using nmcli
setting up, nmtui used / Setting your DNS resolvers using nmtui

DNS server
installing / Installing the DNS server, How to do it…
caching-only Unbound DNS server, configuring / Configuring a caching-only
Unbound DNS server
forwarding only DNS server, configuring / Configuring a forwarding only
DNS server, How it works..., There's more...
authoritative-only DNS server, configuring / Setting up an authoritative-only
DNS server, Getting ready, How to do it..., How it works..., There's more...
secondary (slave) DNS server, building / Building a secondary (slave) DNS
server
primary DNS server changes, making / Changes to the primary DNS server
secondary DNS server changes, making / Changes to the secondary DNS
server(s), How it works...

Docker
installing / Installing Docker, How to do it…, Installing and configuring
Docker, Getting ready, How it works...

https://technet24.ir

Hackpad, using with / Using Hackpad with Docker
configuring / Installing and configuring Docker, Getting ready, How it
works...
URL / How it works...

Docker containers
starting / Starting and managing Docker containers, How to do it…, How it
works…
managing / Starting and managing Docker containers, How to do it…, How it
works…
monitoring / Monitoring Docker containers, How it works…
securing / Securing Docker containers, How to do it…

Dockerfile
images, creating with / Creating images with a Dockerfile, Getting ready,
How to do it…, How it works…, There's more…
about / Creating images with a Dockerfile

Dockerfiles
images, creating from / Creating your own images from Dockerfiles and
uploading to Docker Hub, How to do it...

Docker Hub
URL / How it works..., Getting ready
images, uploading to / Creating your own images from Dockerfiles and
uploading to Docker Hub, Uploading your image to the Docker Hub

Docker network
used, for deploying WordPress / Deploying WordPress using a Docker
network, How to do it…

Docker registry server
setting up / Steps to be done on our Docker registry server (192.168.1.100)

Docker volumes
about / Understanding Docker volumes, Getting ready, How to do it…, How
it works…

domain
populating / Populating the domain, How to do it..., How it works…

domain-wide mail service
configuring, with Postfix / Configuring a domain-wide mail service with
Postfix, Getting ready, How to do it..., How it works..., There's more...
e-mail’s appearing domain name, modifying / Changing an e-mail's appearing
domain name
TLS- (SSL-) encryption, used for SMTP communication / Using TLS- (SSL)

encryption for SMTP communication
BIND, configuring for new mailserver / Configure BIND to use your new
mailserver

domain name servers (DNS) / How it works...
Domain Name System (DNS) / Setting your hostname and resolving the network
domains

about / Introduction
Dovecot

used, for enabling IMAP and POP3 / Enabling IMAP and POP3 with Dovecot,
How to do it…, How it works…
URL / See also
used, for delivering mail / Delivering the mail with Dovecot, Getting ready,
How to do it..., How it works..., There's more...
e-mail software, setting up / Setting up e-mail software

dump
analyzing, kdump tools used / Using kdump tools to analyze the dump, There's
more…

dynamic contents
serving, with PHP / Serving dynamic contents with PHP, How to do it…,
How it works…
support, for scripting languages / There's more…

dynamic inventory file
about / The dynamic inventory file

https://technet24.ir

E
e-mails

sending, Postfix used / Sending e-mails with Postfix, How to do it…, How it
works…
accounts, adding / Adding e-mail accounts, How to do it…, How it works…,
There's more…

Ejabberd
about / Introduction
installing / Installing Ejabberd, How to do it…, How it works…
URL / See also
references / See also

Ejabberd docs, LDAP section
URL / See also

Ejabberd installation
configuring / Configuring the Ejabberd installation, Getting ready, How to do
it…, How it works…

Ejabberd users
authenticating, with LDAP / Authenticating Ejabberd users with LDAP, How
to do it…, How it works…

ELRepo
about / There's more...
reference link / There's more...

Enforcing mode / There's more...
Enhanced mode / There's more...
Enterprise Linux (EPEL) repository

Ansible, installing / Installing Ansible from the EPEL repository
URL / Installing Ansible from the EPEL repository

Etherpad
URL / See also

event driven approach
about / Introduction

existing firewalld service (ssh)
changing / To change an existing firewalld service (ssh)

Ext4 / Formatting and mounting a filesystem
Extensible Messaging and Presence Protocol (XMPP)

about / Introduction
extensions

URL / How it works...

https://technet24.ir

F
fail2ban

installing / Installing and configuring fail2ban, How it works...
configuring / Installing and configuring fail2ban, How it works...

Fetchmail
about / Using Fetchmail
using / Getting ready, How to do it..., How it works...
configuring, with Gmail account / Configuring Fetchmail with gmail.com and
outlook.com e-mail accounts
configuring, with Outlook account / Configuring Fetchmail with gmail.com
and outlook.com e-mail accounts
automating / Automating Fetchmail

file
navigating, with less controls / Navigating text files with less, How to do it...

file amount (inodes) / How it works...
file contexts

modifying / Changing file contexts
modifying, temporarily / Temporary context changes
modifying, permanently / Persistent file context changes

file permissions
managing / Managing file permissions, How to do it…, How it works…

file revisions
storing, with Git commit / Storing file revisions with Git commit, How to do
it…, How it works…

files
synchronizing, Rsync used / Synchronizing files with Rsync, How to do it…,
How it works…, See also
synchronizing / Synchronizing files and doing more with rsync, How it
works...

file sharing
WebDAV, using for / Using WebDAV for file sharing, Getting ready, How to
do it…, How it works…

file size (blocks) / How it works...
filesystem

accessing / Accessing the filesystem
formatting / Formatting and mounting a filesystem, How to do it..., How it
works…

mounting / Formatting and mounting a filesystem, How to do it..., How it
works…
maintaining / Maintaining a filesystem, How it works..., There's more...
capacity, extending / Extending the capacity of the filesystem, How to do it...,
How it works...

filesystems formatting / Formatting and mounting a filesystem
File Transfer Protocol (FTP) server / Installing the secure FTP server
file transfers

troubleshooting / Troubleshooting users and file transfers, How it works...
firewall

about / Working with a firewall
working with / Getting ready, How to do it..., How it works..., There's more...

firewalld
about / Secure the network with firewalld
network, securing with / Secure the network with firewalld
working / There's more…

firewalld service
creating / To create your own new service, How it works..., There's more...

firewalld service definitions
creating / Forging the firewall rules by example

first container
deploying, with LXD / Deploying your first container with LXD, How to do
it…, How it works…, There's more…

ForceCommand / How it works...
forwarding only DNS server

configuring / Configuring a forwarding only DNS server, How it works...,
There's more...

forward proxy
about / Hiding behind the proxy with squid

FQDN (Fully Qualified Domain Name) / There's more…
free hosting

URL / See also
Frequently Asked Questions (FAQ) / Getting ready
FTP

securing, with FTPS / Using secure alternatives to FTP
securing, with SFTPS / Using secure alternatives to FTP

FTP service
installing / Installing and configuring the FTP service, Getting ready, How to

https://technet24.ir

do it..., How it works..., There's more...
configuring / Installing and configuring the FTP service, Getting ready, How
to do it..., How it works..., There's more...
customizing / Customizing the FTP service, How to do it..., How it works...

full JID
about / How to do it…

Fully Qualified Domain Name (FQDN) / How to do it..., Getting ready

G
GID (group ID) / How it works…
Git

installing / Installing Git, How to do it…, How it works…
URL / See also

GIT
used, for versioning of config files / Taking control with GIT and Subversion,
How to do it..., How it works, There's more...
Ansible, installing from / Installing cutting edge from Git

Git CLI
local repository, creating with / Creating a local repository with Git CLI,
How to do it…

Git clone
URL / See also

Git commit
file revisions, storing with / Storing file revisions with Git commit, How to
do it…, How it works…

Git Hooks
references / See also

GitHub
about / There's more…

Git init
URL / See also

Gitlab
installing / Installing GitLab, your own Git hosting, How to do it…, There's
more…
repository, creating with / Creating a repository with GitLab, Getting ready,
How to do it…

Gitlab server
users, adding to / Adding users to the GitLab server, How to do it…

Git merge
URL / See also

Git pull
updates, receiving with / Receiving updates with Git pull, How to do it…,
How it works…
URL / See also

gitweb documentation

https://technet24.ir

URL / There's more…
Gmail account

URL / How it works..., Configuring Fetchmail with gmail.com and
outlook.com e-mail accounts
used, for configuring Fetchmail / Configuring Fetchmail with gmail.com and
outlook.com e-mail accounts

graphical installer
used, for preparing CentOS installation / Performing an installation of CentOS
using the graphical installer, How to do it..., How it works…

Graphical User Interfaces (GUI) / How it works...
graphing tools

references / Graphing tools
group

creating / Creating a group, How it works…
members, adding / Adding group members, How it works…

group chat
enabling / Enabling group chat, How to do it…, There's more…

groups
managing / Managing users and their groups, How to do it..., How it works...

group_vars file
about / group_vars files

GRUB2
about / Getting started and customising the boot loader, Configuring your boot
environment
URL / See also

GRUB2 boot loader
customizing / Getting started and customising the boot loader, How to do it...

guests
building / Building guests, How it works…, There's more…
creating / Create a guest
deleting / Deleting a guest

H
H2load

about / There's more…
Hackpad

insalling / Installing Hackpad, a collaborative document editor, How to do
it…, How it works…
using, with Docker / Using Hackpad with Docker
using with Docker, URL / See also
repo, URL / See also

HAProxy
load balancing, with / Discussing load balancing with HAProxy, How to do
it…, How it works…
load balancing algorithms / How it works…
about / HAProxy and Varnish

help command / Introduction
hostname

setting / Setting your hostname and resolving the network, How to do it...,
How it works...

host_vars file
about / host_vars files

HTTP
about / Securing web traffic with HTTPS
netinstall, running over / Running a netinstall over HTTP, How to do it...,
How it works...

httpd
used, for publishing kickstart file / Publishing your kickstart file using httpd,
How to do it…, There's more…

httpd.conf
configuring / Configuring httpd.conf to provide better security

Httperf
about / There's more…

HTTPS
about / Securing web traffic with HTTPS
web traffic, securing with / Getting ready, How to do it…, How it works…
setting up, with Secure Sockets Layer (SSL) / Setting up HTTPS with Secure
Sockets Layer (SSL), How to do it..., There's more...

HTTPs communication

https://technet24.ir

enabling, on Nginx / Setting HTTPs on Nginx, How to do it…, How it
works…

I
Idempotence

about / Introduction
Ifconfig

about / How it works…
image

downloading / Downloading an image and running a container, How to do
it..., How it works...

images
creating, with Dockerfile / Creating images with a Dockerfile, How to do
it…, How it works…, There's more…
creating, from Dockerfiles / Creating your own images from Dockerfiles and
uploading to Docker Hub, How to do it...
uploading, to Docker Hub / Creating your own images from Dockerfiles and
uploading to Docker Hub, Uploading your image to the Docker Hub

IMAP and POP3
enabling, Dovecot used / Enabling IMAP and POP3 with Dovecot, Getting
ready, How it works…

incoming requests
allowing, for NFS (v4) / Allowing incoming requests for NFS (v4)
allowing, on arbitrary port / Allowing incoming requests on an arbitrary port

InnoDB storage engine
URL / See also

InnoDB table compression
URL / See also

installation
fail2ban / Installing and configuring fail2ban, How to do it..., How it works...
caching-only nameserver / Installing and configuring a caching-only
nameserver
MariaDB database server / Installing a MariaDB database server, Getting
ready, How it works...
PostgreSQL server / Installing a PostgreSQL server and managing a database,
How to do it..., How it works..., There's more...
phpMyAdmin / Installing phpMyAdmin and phpPgAdmin, Installing and
configuring phpMyAdmin
phpPgAdmin / Installing phpMyAdmin and phpPgAdmin, Installing and
configuring phpPgAdmin, How it works...

https://technet24.ir

Nagios Core / Installing and configuring Nagios Core
integrated nameserver solution

about / Creating an integrated nameserver solution, How to do it...
creating / Creating an integrated nameserver solution, How it works, There's
more...

internal hostname / There's more...
Internet Protocol (IP)

about / Running a DHCP server
intramfs (initial RAM file system) / Installing and configuring kdump and SysRq
IPA

installing / Installing and configuring IPA, Getting ready
configuring / Installing and configuring IPA, Getting ready

IPA client
installing / Installing the IPA client

IPA server
installing / Installing the IPA server
reference link / See also

IPv4 configuration
setting, nmcli used / Setting your IPv4 configuration using nmcli
setting, nmtui used / Setting your IPv4 configuration using nmtui

IPv4 settings
configuring / Configuring IPv4 settings

ISC-DHCP
about / How it works…

J
Jinja2 Template Designer

URL / See also
journalctl

used, for monitoring services / Monitoring services using journalctl, How to
do it…, There's more…
reference link / See also

journald
used, for tracking system resources / Tracking system resources with journald,
How to do it..., How it works...
configuring / Configuring journald to make it persistent, How it works...

https://technet24.ir

K
kdump

using / Using kdump and SysRq
configuring / Installing and configuring kdump and SysRq
installing / Installing and configuring kdump and SysRq

kdump tools
used, for analyzing dump / Using kdump tools to analyze the dump, There's
more…

kernel debugger (kgdb) / There's more…
kernel parameters

reference / See also
kickstart

VLAN connection, creating with / Creating the VLAN connection with
kickstart
reference link / See also
used, for creating teamed interface / Creating the teamed interface with
kickstart
about / kickstart
used, for creating bridge / Creating a bridge with kickstart

kickstart, team interfaces
reference link / See also

kickstart file
used, for automatic installation of CentOS 7 / Installing CentOS 7 using a
kickstart file, How to do it..., How it works...
about / Creating a kickstart file
creating / Creating a kickstart file, Getting ready, How to do it…, How it
works…
references / See also
publishing, httpd used / Publishing your kickstart file using httpd, How to do
it…, There's more…
template, creating / Creating a template for a kickstart file, How it works…,
There's more…
playbook, creating for VM / Creating a playbook to deploy a new VM with
kickstart, How to do it…, How it works…
URL / Getting ready

KVM
installing / Installing and configuring a KVM

configuring / Installing and configuring a KVM
manual installation / Manual installation
kickstart installation / Kickstart installation
graphical setup / Graphical setup during the system's setup

https://technet24.ir

L
labels / How it works...
LAMP stack

installing / Installing the LAMP stack
language settings, CentOS 7 installation

changing / Speaking the right language, How to do it..., How it works...,
There's more…

Launchpad
URL / See also

Layer two tunneling protocol (L2TP) / Securing remote access with OpenVPN
LDAP

Ubuntu server logins, defining with / Ubuntu server logins with LDAP, How
to do it…
Ejabberd users, authenticating with / Authenticating Ejabberd users with
LDAP, How to do it…, How it works…

LDAP client authentication
URL / See also

less controls
used, for navigating through file / Navigating text files with less, How to do
it...

libcontainer / Installing Docker
libstrophe

about / Creating web client with Strophe.js
libvirt

about / Introduction
URL / Introduction, See also
storage backend pools, URL / See also
networking, URL / See also

Lightweight Directory access Protocol (LDAP)
about / Introduction

limits.conf
used, for setting resource limits / Setting resource limits with limits.conf,
How it works…

Linux home server Samba guide
URL / See also

Linux kernel
priming / Priming the kernel, How to do it..., How it works...

Linux performance analysis
URL / See also

load balancing
with HAProxy / Discussing load balancing with HAProxy, How to do it…,
How it works…
with Nginx / Load balancing with Nginx, How to do it…, How it works…,
There's more…

load balancing algorithms
Round-robin / How it works…
leastconn / How it works…
source / How it works…

load sharing backup methods, for teams
active-backup / There's more…
broadcast / There's more…
LACP / There's more…
loadbalance / There's more…
round-robin / There's more…

local printer
sharing, to CUPS server / How to share a local printer to the CUPS server

local repository
creating, with Git CLI / Creating a local repository with Git CLI, How to do
it…

logical volume (lv) / How it works...
Logical Volume Manager (LVM) / How it works…, Extending the capacity of the
filesystem
logrotate

configuring / Configuring logrotate, How to do it…, How it works…, See
also
configuring, for yum / Configuring logrotate for yum

loop device / How it works...
LXC

about / Installing LXD, the Linux container daemon
LXD

about / Installing LXD, the Linux container daemon
installing / Getting ready, How to do it…, How it works…, There's more…
networking with / Networking with LXD, How to do it…, How it works…,
There's more…

LXD containers

https://technet24.ir

managing / Managing LXD containers, How to do it…
advance options / Managing LXD containers – advanced options
dealing / How to do it…
resource limits, setting / Setting resource limits on LXD containers, How to
do it…, How it works…

LXD GUI
reference / There's more…

M
mail

delivering, with Dovecot / Delivering the mail with Dovecot, How to do it...,
How it works...

mailbox formats
URL / See also

Mail eXchanger (MX) / How it works..., Configure BIND to use your new
mailserver
mail filtering

with spam-assassin / Mail filtering with spam-assassin, How to do it…, How
it works…

mail server
troubleshooting / Troubleshooting the mail server, How to do it…

Mail Transport Agent (MTA) / Configuring a domain-wide mail service with
Postfix
Mandatory Access Control (MAC) / Installing and configuring important SELinux
tools
mandatory access control (MAC)

about / Introduction
manifest

deploying, to single client / Configure to deploy a module or manifest to a
single client
deploying, to node group / Configure to deploy a module or manifest to a node
group

MariaDB database server
installing / Installing a MariaDB database server, Getting ready, How it
works...
managing / Managing a MariaDB database, Getting ready, How to do it...,
How it works..., There's more...
permission, reviewing / Reviewing and revoking permissions or dropping a
user
permission, revoking / Reviewing and revoking permissions or dropping a
user
user, dropping / Reviewing and revoking permissions or dropping a user
remote access, allowing / Allowing remote access to a MariaDB server, How
to do it..., How it works...

Mattermost

https://technet24.ir

installing / Installing Mattermost – a self-hosted slack alternative, How to do
it…, How it works…
URL / Installing Mattermost – a self-hosted slack alternative, How to do it…
features, URL / See also
web-hooks, URL / See also
Source Code on Github, URL / See also

Mattermost Dockerfile
URL / See also

md5sum.exe
reference link / How to do it...

memory
monitoring / Monitoring memory and swap, How to do it…, How it works…

messages
customizing / Customizing your system banners and messages, How it
works..., There's more...

minimal install
enhancing / How to do it..., How it works...

Mnesia
about / How to do it…

module
deploying, to single client / Configure to deploy a module or manifest to a
single client
deploying, to node group / Configure to deploy a module or manifest to a node
group
deploying, to registered systems / Configure to deploy to all registered
systems
deploying, to system / Deploy to a system

modules
deploying, to single nodes / Deploying modules to single nodes and node
groups
deploying, to node groups / Deploying modules to single nodes and node
groups

MongoDB
installing / Installing MongoDB
installing, URL / See also
used, for storing data / Storing and retrieving data with MongoDB, How to do
it…, How it works…
used, for retrieving data / Storing and retrieving data with MongoDB, How to

do it…, How it works…, There’s more…
MongoDB query documents

URL / See also
mounting formatting / Formatting and mounting a filesystem
msdos / How it works...
multi-processing modules (MPM)

about / Introduction
multilevel security (MLS)

about / Introduction
multiple websites

hosting, with virtual domain / Hosting multiple websites with a virtual
domain, How to do it…, How it works…

Multi User Chat (MUC)
about / Enabling group chat

music
streaming, Ampache used / Streaming music with Ampache

MySQL
about / Introduction
used, for installing relational database / Installing relational databases with
MySQL, How to do it…, How it works…
installation, securing / Securing MySQL installation
used, for storing data / Storing and retrieving data with MySQL, How to do
it…, How it works…
used, for retrieving data / Storing and retrieving data with MySQL, How to do
it…, How it works…
web access, installing / Installing web access for MySQL, How to do it…,
How it works…
performance, optimizing / Optimizing MySQL performance – queries, How to
do it…, How it works…
sharding / Sharding MySQL
performance tuning / Optimizing MySQL performance – configuration, How
to do it…, How it works…, There’s more…
table compression / MySQL table compression
troubleshooting / Troubleshooting MySQL, How to do it…

MySQL backup methods
URL / See also

MySQL binary log
URL / See also

https://technet24.ir

MySQL docs
URL / See also

MySQL load data infile syntax
URL / See also

MySQL optimization guide
URL / See also

MySQL query execution plan
URL / See also

MySQL replicas
creating, for scaling / Creating MySQL replicas for scaling and high
availability
creating, for high availability / Creating MySQL replicas for scaling and high
availability

MySQL replicas
creating, for scaling / How to do it…, How it works…
creating, for high availability / How to do it…, How it works…, See also

MySQL select-into syntax
URL / See also

MySQL test database
URL / See also

MySQL tuner script
URL / See also

Mysql user account management
URL / See also

N
Nagios Core

installing / Installing and configuring Nagios Core, How to do it..., How it
works...
configuring / Installing and configuring Nagios Core, How to do it..., How it
works...
URL / How it works...

Nagios Remote Plugin Executor (NRPE)
setting up, on remote client hosts / Setting up NRPE on remote client hosts

name based hosting
implementing / Implementing name-based hosting, Getting ready, How to do
it..., How it works...

NamedVirtualHost / How it works…
netfilter / Securing a network with uncomplicated firewall, Working with a
firewall
netinstall

running, over HTTP / Running a netinstall over HTTP, How to do it..., How it
works...

network
connecting, with static IP / Connecting to a network with a static IP, How to
do it…, How it works…
temporary IP assignment / There's more…
IPv6 configuration / IPv6 configuration
securing, with uncomplicated firewall / Securing a network with
uncomplicated firewall, How to do it…
monitoring / Monitoring the network, How to do it…, How it works…
resolving / Setting your hostname and resolving the network, How to do it...,
How it works..., There's more...
securing, with firewalld / Secure the network with firewalld

Network Address Translation (NAT) / Networking with LXD
network bridges, kickstart

reference link / See also
network bridges, nmcli

reference link / See also
network bridges, nmtui

reference link / See also
network configuration, at Ubuntu server guide

https://technet24.ir

reference / See also
network connectivity

troubleshooting / Troubleshooting network connectivity, How to do it…
Network File System (NFS)

about / Installing the Network File System
installing / Installing the Network File System, How to do it…, There's
more…

networking
about / Introduction

networking team daemon
reference link / See also

network performance
monitoring / Monitoring network performance, How to do it…

network printer
adding, to CUPS server / How to add a network printer to the CUPS server

Network Time Protocol (NTP)
about / Being on time with NTP, Synchronizing the system clock with NTP
and the chrony suite
used, for synchronizing system clock / Synchronizing the system clock with
NTP and the chrony suite, How to do it..., How it works..., There's more...
URL / How to do it...

NFS
URL / See also
installing / Installing and configuring NFS
configuring / Installing and configuring NFS
working with / Getting ready, How to do it..., How it works...

NFS (v4)
incoming requests, allowing for / Allowing incoming requests for NFS (v4)

NFS exports options
URL / See also

NFS server
configuring / Installing and configuring the NFS server
installing / Installing and configuring the NFS server
export share, creating / Creating an export share, How it works...

Nginx
installing, with PHP_FPM / Installing Nginx with PHP_FPM, How to do it…,
How it works…, There's more…
setting, as reverse proxy / Setting Nginx as a reverse proxy, How to do it…,

How it works…, There's more…
load balancing with / Load balancing with Nginx, How to do it…, How it
works…, There's more…
HTTPs, setting / Setting HTTPs on Nginx, How to do it…, How it works…

nmcli
VLAN connection, creating with / Creating the VLAN connection with nmcli
used, for creating teamed interface / Creating the teamed interface using nmcli
about / nmcli
used, for creating bridge / Creating a bridge using nmcli
used, for setting IPv4 configuration / Setting your IPv4 configuration using
nmcli
used, for setting up DNS resolvers / Setting your DNS resolvers using nmcli
used, for configuring static network routes / Configuring static network routes
using nmcli

nmcli, team interfaces
reference link / See also

nmtui
VLAN connection, creating with / Creating the VLAN connection with nmtui
used, for creating teamed interface / Creating the teamed interface using nmtui
about / nmtui
used, for creating bridge / Creating a bridge using nmtui
used, for setting IPv4 configuration / Setting your IPv4 configuration using
nmtui
used, for setting up DNS resolvers / Setting your DNS resolvers using nmtui
used, for configuring static network routes / Configuring network routes using
nmtui

nmtui, team interfaces
reference link / See also

Node.js
chat server, defining with / Chat server with Node.js, How to do it…, How it
works…
references / See also

node group
creating / Create a node group

node grouping
defining / Defining nodes and node grouping, How to do it…

node groups
modules, deploying to / Deploying modules to single nodes and node groups

https://technet24.ir

nodes
defining / Defining nodes and node grouping, How to do it…

NoSQL
about / Introduction

Not Found error / How to do it…
ntpd

used, for managing time / Managing time through ntpd
reference link / See also

ntpdate
about / Being on time with NTP

O
on-the-fly transcoding

setting / Setting on-the-fly transcoding, How to do it…
OpenLDAP

installing / Installing OpenLDAP, How to do it…
references / See also

OpenLDAP admin guide
URL / Introduction

OpenVPN
remote acess, securing with / Securing remote access with OpenVPN, How to
do it…, How it works…
VPN client, configuring / There's more…

Organizational Unit (OU)
about / How to do it…

OS X
checksum, confirming on / Downloading CentOS and confirming the checksum
on Windows or OS X, Getting ready, How to do it..., How it works…
USB installation media, creating on / Creating USB installation media on
Windows or OS X, How to do it..., How it works...

Outlook account
URL / Configuring Fetchmail with gmail.com and outlook.com e-mail
accounts
used, for configuring Fetchmail / Configuring Fetchmail with gmail.com and
outlook.com e-mail accounts

OwnCloud
installing / Installing OwnCloud, self-hosted cloud storage, How to do it…,
How it works…
repositories, URL / See also
admin manual, URL / See also

https://technet24.ir

P
package management

about / Introduction
packages

searching, YUM used / Using YUM to search for packages, How it works...
installing, YUM used / Using YUM to install packages, How to do it..., How
it works...
removing, YUM used / Using YUM to remove packages, How to do it..., How
it works...

Parallel NFS
URL / See also

partition table / How it works...
password authentication

about / How it works…
password less sudo

setting / Setting password less sudo
Percona

configuration wizard / Percona configuration wizard
Percona XtraBackup

URL / See also
Perfkit

about / There's more…
performance benchmarks

setting / Setting performance benchmarks, Getting ready, How to do it…
graphing tools / Graphing tools

Performance Co-Pilot (PCP)
setting up / Setting up PCP – Performance Co-Pilot
installation / The default installation
central collector / The central collector
URL / See also

performance tuning
Samba server / Performance tuning the Samba server, How it works…

Perl
CGI, implementing with / Implementing CGI with Perl and Ruby, How to do
it...

Perl CGI script
creating / Creating your first Perl CGI script

Permissive mode / There's more...
personal file sharing

tools / Tools for personal file sharing
PHP

dynamic contents, serving with / Getting ready, How to do it…, How it
works…
settings / PHP settings
upgrading, under Ubuntu 14 / Upgrading PHP under Ubuntu 14
installing / Installing, configuring, and testing PHP, How to do it..., How to do
it...
configuring / Installing, configuring, and testing PHP, How to do it..., How to
do it...
testing / Installing, configuring, and testing PHP, How to do it..., How to do
it...

phpLDAPadmin
installing / Installing phpLDAPadmin, How to do it…
references / How to do it…, There's more…

phpMyAdmin
URL / See also
installing / Installing phpMyAdmin and phpPgAdmin

phpPgAdmin
installing / Installing phpMyAdmin and phpPgAdmin, Installing and
configuring phpMyAdmin, Installing and configuring phpPgAdmin, How it
works...
configuring / Installing and configuring phpMyAdmin, Installing and
configuring phpPgAdmin, How it works...

PHP_FPM
Nginx, installing with / Installing Nginx with PHP_FPM, How to do it…,
How it works…, There's more…

physical volume (pv) / How it works...
playbook

creating, for deploying VM with kickstart / Creating a playbook to deploy a
new VM with kickstart, How to do it…, How it works…
reference link / See also, See also
creating, for system configuration tasks / Creating a playbook to perform
system configuration tasks, How to do it…, There's more…

Pluggable Authentication Modules (PAM) / How it works...
Point-to-Point Tunneling Protocol (PPTP) / Securing remote access with OpenVPN

https://technet24.ir

Pointer Resource Record (PTR) / How it works...
policies / How it works...

working with / Working with policies, How it works..., There's more...
port definitions

configuring, with SELinux / Configuring SELinux port definitions, There's
more…

ports
displaying, on system / Showing the currently allowed services and ports on
your system

Postfix
used, for sending e-mails / Sending e-mails with Postfix, How to do it…,
How it works…
URL / See also
lookup table types, URL / See also
used, for configuring domain-wide mail service / Configuring a domain-wide
mail service with Postfix, How to do it..., How it works..., There's more...
working with / Working with Postfix, How it works...
mailx, connecting to remote MTA / Connecting mailx to a remote MTA
local mails, reading from mailbox / Reading your local mails from the
mailbox

postfix
references / See also

PostgreSQL server
installing / Installing a PostgreSQL server and managing a database, How to
do it..., There's more...
remote access, configuring / Configuring remote access to PostgreSQL, How
to do it..., How it works...

Preboot eXecution Environment (PXE)
used, for system deployment / Deploying a system using PXE, How to do it…,
There's more…

print server
about / Printing with CUPS

private Docker registry
setting up / Setting up and working with a private Docker registry, How to do
it...
working with / Setting up and working with a private Docker registry, How to
do it...

privilege escalation

configuring, with sudo / Configuring privilege escalation with sudo, There's
more…

process ID (pid)
about / How it works…

proxy
about / Hiding behind the proxy with squid

public hostname / There's more...
public key authentication

setting up / Setting up public key authentication, How it works…
public key cryptography (PKI) / How it works...
publishing directories

building / Enabling system users and building publishing directories, How to
do it..., How it works...

Puppet agent
installing / Installing and configuring the Puppet agent, How to do it…,
There's more…
configuring / Installing and configuring the Puppet agent, How to do it…,
There's more…

Puppet installation, on RHEL
reference link / See also

Puppet Master
installing / Installing and configuring Puppet Master, How to do it…, There's
more…
configuring / Installing and configuring Puppet Master, How to do it…,
There's more…

Puppet Modules
reference link / See also

https://technet24.ir

R
RAM

adding, on fly / Adding RAM on the fly, How to do it…
RAM performance

monitoring / Monitoring RAM performance, How to do it…
Red Hat

performance tuning, URL / See also
Red Hat Package Manager (RPM)

about / How it works..., Introduction
relational database

installing, MySQL used / Installing relational databases with MySQL, How to
do it…, How it works…

remote access
securing, with OpenVPN / Securing remote access with OpenVPN, How to do
it…, How it works…
locking / Locking down remote access and hardening SSH, Getting ready,
How to do it..., How it works...
to MariaDB server, allowing / Allowing remote access to a MariaDB server,
How to do it..., How it works...
to PostgreSQL, configuring / Configuring remote access to PostgreSQL, How
to do it..., How it works...

remote client hosts
Nagios Remote Plugin Executor (NRPE), setting up / Setting up NRPE on
remote client hosts, How it works...

remote server
repository, synchronizing with / Synchronizing the repository with a remote
server, How to do it…, There's more…

remote servers
Ubuntu / How it works…
Ubuntu-daily / How it works…
images / How it works…

remote streaming
API access, enabling / Enabling API access for remote streaming, How to do
it…, How it works…

remote system metrics
monitoring / Monitoring important remote system metrics, How to do it...,
How it works...

repository
synchronizing, with remote server / Synchronizing the repository with a
remote server, How to do it…, There's more…
Github pages / GitHub pages
creating, with Gitlab / Creating a repository with GitLab, Getting ready, How
to do it…

repository clones
creating / Creating repository clones, How it works…

requirements, for Gitlab installation
URL / See also

rescue mode
system, troubleshooting in / Troubleshooting the system in rescue mode,
Getting ready
reaching / Reaching rescue mode

resource limits
setting, limits.conf used / Setting resource limits with limits.conf, How it
works…

resources
sharing, with Samba / Securely sharing resources with Samba, How to do it...,
How it works..., There's more...
configuring / Configuring resources, Creating storage pools, How it works…,
There's more…
virtual network, creating / Creating a virtual network
networks, removing / Removing networks

reverse proxy
about / Hiding behind the proxy with squid

RHEL 7
support limits, URL / See also

RHN repository
copy, creating / Getting ready
syncing / Syncing RHN repositories, There's more…

role-based access control (RBAC)
about / Introduction

root / Changing an e-mail's appearing domain name
root privileges

getting, sudo used / Getting root privileges with sudo, Getting ready, There's
more…

RPM package manager

https://technet24.ir

working with / Working with the RPM package manager, How it works...
rsync

using / Synchronizing files and doing more with rsync, How it works...
Rsync

used, for synchronizing files / Synchronizing files with Rsync, How to do
it…, How it works…, There's more…

Ruby
CGI, implementing with / Implementing CGI with Perl and Ruby, How to do
it...

Ruby CGI script
creating / Creating your first Ruby CGI script, How it works..., There's
more...

runc / How it works…
runlevels

setting / The systemd service and setting runlevels, How to do it…, There's
more…
versus systemd targets / There's more…

runners
reference link / See also

S
SAAS (Software as a Service) product / Introduction
Samba

URL / There's more…
about / Securely sharing resources with Samba
resources, sharing with / Securely sharing resources with Samba, How to do
it..., How it works..., There's more...

Samba and LDAP integration
URL / There's more…

Samba server
installing / Installing the Samba server, Getting ready, How to do it…, How it
works…
users, adding / Adding users to the Samba server, How to do it…, How it
works…
performance tuning / Performance tuning the Samba server, How it works…
troubleshooting / Troubleshooting the Samba server, How to do it…
network connectivity, checking / Checking network connectivity
Samba service, checking / Checking the Samba service
Samba logs, checking / Checking Samba logs
Samba configuration, checking / Checking Samba configuration

sar (System Activity Reporter)
about / How to do it…

Sarg
about / Sarg – tool to analyze squid logs
used, for analyzing squid logs / Sarg – tool to analyze squid logs

second-level domain (SLD) / How it works...
secondary (slave) DNS server

building / How to do it...
primary DNS server changes, making / Changes to the primary DNS server
working / How it works...

secure FTP server
installing / Installing the secure FTP server, How it works…, There's more…

Secure Shell (SSH) / Locking down remote access and hardening SSH
Secure Socket Layer (SSL) protocol / Securing web traffic with HTTPS
Secure Sockets Layer (SSL) / Generating self-signed certificates

HTTPS, setting up with / Setting up HTTPS with Secure Sockets Layer (SSL),
How to do it..., How it works..., There's more...

https://technet24.ir

security
about / Introduction

self-signed certificates
generating / Generating self-signed certificates, How to do it..., How it
works..., There's more...

SELinux
about / Introduction, Introduction
troubleshooting / Troubleshooting SELinux, How it works..., Troubleshooting
SELinux, How to do it…, There's more…, See also
users, displaying / There's more…
types, displaying / There's more…
roles, displaying / There's more…
port definitions, configuring / Configuring SELinux port definitions, There's
more…
audit log, troubleshooting / audit.log
troubleshooting, with syslog command / syslog
troubleshooting, with ausearch tool / ausearch

SELinux booleans
about / Configuring SELinux booleans
configuring / Configuring SELinux booleans
listing / Listing SELinux booleans, There's more…
modifying / Changing SELinux booleans

SELinux policy
creating / Creating SELinux policies, How to do it…, See also
applying / Applying SELinux policies, How it works…
removing / There's more…

SELinux security contexts
working with / Working with SELinux security contexts, How to do it..., How
it works...

SELinux tools
installing / Installing and configuring important SELinux tools, Getting ready,
How it works..., There's more...
configuring / Installing and configuring important SELinux tools, Getting
ready, How it works..., There's more...

ServerAlias / How it works…
server infrastructure

monitoring / Monitoring important server infrastructure, How to do it..., How
it works...

Server Message Block (SMB) / Installing the Samba server
ServerName / How it works…
services

monitoring, journalctl used / Monitoring services using journalctl, How to do
it…, There's more…
displaying, on system / Showing the currently allowed services and ports on
your system

service status
Loaded / There's more…
Active / There's more…
Main PID / There's more…
Status / There's more…
Process / There's more…
Cgroup / There's more…

SFTP / There's more…
simple module

defining, for configuring time / Defining a simple module to configure time,
How to do it…, How it works...

single nodes
modules, deploying to / Deploying modules to single nodes and node groups

smtp
configuring / Configuring smtp, How to do it…, There's more…

snapshots
capturing / Maintaining backups and taking snapshots, How to do it..., How it
works...

spam-assassin
used, for mail filtering / Mail filtering with spam-assassin, How to do it…,
How it works…

squid
about / Hiding behind the proxy with squid
used, for hiding behind proxy / How to do it…, How it works…
access control list / Access control list
cache refresh rules, setting / Set cache refresh rules

squid guard
about / Squid guard

squid logs
analyzing, with Sarg / Sarg – tool to analyze squid logs

SSH

https://technet24.ir

hardening / Locking down remote access and hardening SSH, Getting ready,
How it works..., There's more...
server port number, changing / Changing the SSH port number of your server
user access, limiting / Limiting SSH access by user or group
group access, limiting / Limiting SSH access by user or group

SSH - SFTP
used, for securing FTP / Using secure alternatives to FTP
used, for securing vsftpd server / Securing your vsftpd server using SSH –
SFTP, How it works...

SSH authentication
working / Working of SSH authentication
SSH connections, troubleshooting / Troubleshooting SSH connections
SSH tools, for Windows platform / SSH tools for the Windows platform
about / See also

SSH connections
troubleshooting / Troubleshooting SSH connections

SSH keys
URL / See also

SSH tools
for Windows platform / SSH tools for the Windows platform

SSL-FTPS
used, for securing FTP / Using secure alternatives to FTP
used, for securing vsftpd server / Securing your vsftpd server with SSL–FTPS

standalone time server
setting up, for internal network / Being on time with NTP, How to do it…,
How it works…

Standard Input (STDIN) / How it works...
Start of Authority (SOA) / How to do it..., How it works...
static inventory file

about / The static inventory file
static IP

for connecting to network / Connecting to a network with a static IP, How to
do it…, How it works…

static network connection
building / Building a static network connection, How to do it..., How it
works...

static network routes
configuring / Configuring static network routes

configuring, nmcli used / Configuring static network routes using nmcli
configuring, nmtui used / Configuring network routes using nmtui

storage
monitoring / Monitoring storage, Getting ready, How to do it…

storage performance
monitoring / Monitoring storage performance, How to do it…

storage pools
about / Configuring resources
creating / Creating storage pools
querying / Querying storage pools
removing / Removing storage pools
local storage pools / Local storage pools
network storage pools / Networked or shared storage pools
shared storage pools / Networked or shared storage pools

stratum
about / Being on time with NTP

Strophe.js
web client, creating with / Creating web client with Strophe.js, How to do
it…, How it works…
references / See also

Strophe.js MUC plugin
URL / See also

Strophe.js site
URL / Getting ready

Structured Query Language (SQL)
about / Storing and retrieving data with MySQL

su (substitute user) command / How it works...
subversion

used, for versioning of config files / Taking control with GIT and Subversion,
How it works, There's more...

sudo
used, for getting root privileges / Getting root privileges with sudo, Getting
ready, There's more…
password less sudo, setting / Setting password less sudo
uses / Other uses of sudo
privilege escalation, configuring with / Configuring privilege escalation with
sudo, There's more…

sudo (superuser do) command

https://technet24.ir

about / Becoming a superuser
testing / How to do it..., How it works...

supermin
about / There's more…

supervisord / There's more…
Swap

monitoring / Monitoring memory and swap, How to do it…, How it works…
Swiss Army Knife SMTP (swaks) / How to do it...
Sysbench

about / Setting performance benchmarks
Sysbench documentation

URL / See also
Sysbench GitHub repo

URL / See also
Sysbench logs

URL / Graphing tools
Sysbench tests

URL / See also
Sysdig / There's more…
syslog command

using / syslog
SysRq

using / Using kdump and SysRq
installing / Installing and configuring kdump and SysRq
configuring / Installing and configuring kdump and SysRq
reference link / See also…

system
troubleshooting, in rescue mode / Troubleshooting the system in rescue mode,
Getting ready
updating / How to do it..., How it works...
updating, YUM used / Using YUM to update the system, How to do it..., How
it works...
ports, displaying on / Showing the currently allowed services and ports on
your system
services, displaying on / Showing the currently allowed services and ports on
your system
auditing / Auditing the system

system banners

customizing / Customizing your system banners and messages, How it
works..., There's more...

system clock
synchronizing, with chrony suite / Synchronizing the system clock with NTP
and the chrony suite, How to do it..., How it works..., There's more...
synchronizing, with NTP / Synchronizing the system clock with NTP and the
chrony suite, How to do it..., How it works..., There's more...

system configuration tasks
performing, with playbook / Creating a playbook to perform system
configuration tasks, How to do it…, There's more…

systemd
URL / Introduction
reference link / See also…

system deployment
with Preboot eXecution Environment (PXE) / Deploying a system using PXE,
How to do it…, There's more…
with custom boot ISO / Deploying a system using a custom boot ISO file,
How to do it…, How it works…

systemd journal
configuring, for persistence / Configuring the systemd journal for persistence,
There's more…
reference link / See also

systemd service
about / The systemd service and setting runlevels, How to do it…, There's
more…
starting / Starting and stopping systemd services, How to do it…, There's
more…
stopping / Starting and stopping systemd services, How to do it…, There's
more…
reference link / See also

systemd targets
versus runlevels / There's more…
reference link / See also

system login
securing / Securing the system login, How it works…

system performance
tuning / Tuning your system's performance, How to do it…, There's more…
monitoring / Monitoring basic system performance, How to do it…, There's

https://technet24.ir

more…
system resources

tracking, with journald / Tracking system resources with journald, How to do
it..., How it works...

system users
enabling / Enabling system users and building publishing directories, How to
do it..., How it works...

T
table maintenance statements

URL / See also
tasks

scheduling, with cron / Scheduling tasks with cron, How to do it..., How it
works...

TCP stack
tuning / Tuning the TCP stack, How to do it…, How it works…

teamed interface
creating / Getting ready
creating, nmcli used / Creating the teamed interface using nmcli
creating, nmtui used / Creating the teamed interface using nmtui
creating, kickstart used / Creating the teamed interface with kickstart

template
creating / Creating a template for a kickstart file, How it works…, There's
more…

third-party repository
using / Using a third-party repository, How it works...

time
managing / Managing time
managing, through chrony / Managing time through chrony
managing, through ntpd / Managing time through ntpd

top-level domain name (TLD) / How it works...
Transmission Control Protocol and Internet Protocol (TCP/IP)

about / Tuning the TCP stack
Transport Layer Security (TLS) protocol / Securing web traffic with HTTPS
troubleshooting, web server

about / Troubleshooting the web server
web server not accessible / Web server not accessible
virtual host not accessible / Virtual host not accessible
forbidden errors / Access denied or forbidden errors
access denied / Access denied or forbidden errors
Apache downloads .php files / Apache downloads .php files

type enforcement (TE) / How it works...
about / Introduction

https://technet24.ir

U
Ubuntu

installation, URL / See also
Ubuntu security best practices

about / Discussing Ubuntu security best practices, How to do it…, How it
works…

Ubuntu server guide
URL / See also, See also

UFW community page
reference / See also

UID (user ID) / How it works…
unbound / How it works...
Unbound DNS Security Extensions (DNSSEC) / How it works...
Uncomplicated Firewall (UFW)

about / Securing a network with uncomplicated firewall
unneeded httpd modules

removing / Removing unneeded httpd modules
USB installation media

creating, on Windows / Creating USB installation media on Windows or OS
X, How to do it..., How it works...
creating, on OS X / Creating USB installation media on Windows or OS X,
How to do it..., How it works...

user account
creating / Creating a user account, How to do it…, How it works…, There's
more…, Creating users and connecting with the XMPP client, How to do it…,
How it works…, There's more…, See also
creating, in batch mode / Creating user accounts in batch mode, How it
works…
deleting / Deleting a user account, How it works…
securing / Securing user accounts, How to do it...
connecting, with XMPP client / Creating users and connecting with the XMPP
client, How to do it…, There's more…

user accounts
removing / Removing user accounts
resource limits, setting / Setting resource limits

useradd command / See also
usermod command

URL / See also
users

adding / Adding users and assigning access rights, How to do it…, How it
works…
adding, to Samba server / Adding users to the Samba server, How to do it…,
How it works…
adding, to Gitlab server / Adding users to the GitLab server, How to do it…
managing / Managing users and their groups, How to do it..., How it works...
troubleshooting / Troubleshooting users and file transfers, How it works...

https://technet24.ir

V
Varnish

about / HAProxy and Varnish
very secure FTP daemon (vsftpd) / Installing and configuring the FTP service
Vim

about / Introduction to Vim
working with / How to do it...

Vimbadmin package / Web console for virtual mailbox administration
virsh interface / Introduction
virt-install command / How it works…
virtio support

URL / How it works…
virtual block device

creating / Creating a virtual block device, Getting ready, How it works...
virtual domain

multiple websites, hosting with / Getting ready, How to do it…, How it
works…

virtual FTP users
about / Working with virtual FTP users
working with / How to do it..., How it works...

Virtual Host file
about / How to do it…

virtual machine (VM) / Installing and configuring Docker
VLAN connection

creating, with nmcli / Creating the VLAN connection with nmcli
creating, with nmtui / Creating the VLAN connection with nmtui
creating, with kickstart / Creating the VLAN connection with kickstart

VLAN interface
creating / Creating a VLAN interface

VM
playbook, creating / Creating a playbook to deploy a new VM with kickstart,
How to do it…, How it works…

VM metadata
backing up / Backing up your VM metadata, How it works…

VMs
moving / Moving VMs, Getting ready, How it works…
live native migration, over default network / Live native migration over the

default network
live native migration, over dedicated network / Live native migration over a
dedicated network
guest migration, URL / See also

VNC
on Stack Overflow, URL / See also

VNC (Virtual Network Computing)
about / Installing the VNC server, How to do it…, How it works…

VNC Server
insalling / Installing the VNC server, How to do it…, How it works…

volume group (vg) / How it works...
vsftpd server

securing, with SSL-FTPS / Securing your vsftpd server with SSL–FTPS
securing, with SSH - SFTP / Securing your vsftpd server using SSH – SFTP

https://technet24.ir

W
web access

installing, MySQL used / Installing web access for MySQL, How to do it…,
How it works…

web client
creating, with Strophe.js / Creating web client with Strophe.js, How to do
it…, How it works…

Web console
for virtual mailbox administration / Web console for virtual mailbox
administration

WebDAV
using, for file sharing / Using WebDAV for file sharing, Getting ready, How to
do it…, How it works…

web pages
serving / Installing Apache and serving web pages, How to do it..., How it
works...

web server
about / Introduction
securing / Securing the web server, How to do it…, How it works…
troubleshooting / Troubleshooting the web server

web traffic
securing, with HTTPS / Securing web traffic with HTTPS, How to do it…,
How it works…

Windows
checksum, confirming on / Downloading CentOS and confirming the checksum
on Windows or OS X, Getting ready, How to do it..., How it works…
USB installation media, creating on / Creating USB installation media on
Windows or OS X, How to do it..., How it works...

Windows Internetworking Name Server (WINS) / How it works...
WinSCP / There's more…
WordPress

deploying, Docker network used / Deploying WordPress using a Docker
network, How to do it…, How it works…

WordPress blog / Installing Docker
World Wide Web (WWW)

about / How it works...
/ Installing a MariaDB database server

Wrk
about / There's more…

https://technet24.ir

X
XFS / Formatting and mounting a filesystem
XML files

URL / See also
XMPP client tools

URL / See also
XMPP extensions

URL / See also

Y
Yellowdog Updater Modified (YUM) / How it works...
YUM

used, for updating system / Using YUM to update the system, How to do it...,
How it works...
used, for searching packages / Using YUM to search for packages, How it
works...
used, for installing packages / Using YUM to install packages, How to do it...,
How it works...
used, for removing packages / Using YUM to remove packages, How to do
it..., How it works...
optimizing / Keeping YUM clean and tidy, How it works..., There's more...

yum
about / Introduction
updating, automatically / Setting up yum to automatically update, How it
works…
logrotate, configuring / Configuring logrotate for yum

yum history
managing / Managing yum history
displaying / Your yum history
yum transaction, obtaining / Information about a yum transaction or package
yum transaction, undoing / Undoing/redoing certain yum transactions
yum transaction, redoing / Undoing/redoing certain yum transactions
rolling back / Roll back to a certain point in your transaction history, There's
more…

YUM priorities
knowing / Knowing your priorities, How it works...

YUM repository
creating / Creating a YUM repository, How to do it..., How it works...

https://technet24.ir

Z
Zimbra collaboration server

installing / Installing the Zimbra mail server, How to do it…, How it works…

	Linux: Powerful Server Administration
	Linux: Powerful Server Administration
	Credits
	Preface
	What this learning path covers
	What you need for this learning path
	Who this learning path is for
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Module 1
	1. Managing Users and Groups
	Introduction
	Creating a user account
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating user accounts in batch mode
	Getting ready
	How to do it...
	How it works…
	Creating a group
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Adding group members
	Getting ready
	How to do it…
	How it works…
	There's more…
	Deleting a user account
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	Managing file permissions
	Getting ready
	How to do it…
	How it works…
	There's more…
	Getting root privileges with sudo
	Getting ready
	How to do it...
	How it works…
	There's more…
	Setting password less sudo
	Other uses of sudo
	See also
	Setting resource limits with limits.conf
	Getting ready
	How to do it...
	How it works…
	There's more…
	Setting up public key authentication
	Getting ready
	How to do it...
	How it works…
	Working of SSH authentication
	There's more…
	Troubleshooting SSH connections
	SSH tools for the Windows platform
	See also
	Securing user accounts
	How to do it...
	How it works…
	2. Networking
	Introduction
	Connecting to a network with a static IP
	Getting ready
	How to do it…
	How it works…
	There's more…
	IPv6 configuration
	See also
	Installing the DHCP server
	Getting ready
	How to do it…
	How it works…
	There's more…
	Installing the DNS server
	Getting ready
	How to do it…
	How it works…
	See also
	Hiding behind the proxy with squid
	Getting ready
	How to do it…
	How it works…
	There's more…
	Access control list
	Set cache refresh rules
	Sarg – tool to analyze squid logs
	Squid guard
	See also
	Being on time with NTP
	How to do it…
	How it works…
	There's more…
	See also
	Discussing load balancing with HAProxy
	Getting ready
	How to do it…
	How it works…
	There's more …
	See also
	Tuning the TCP stack
	Getting ready…
	How to do it…
	How it works…
	See also
	Troubleshooting network connectivity
	Getting ready
	How to do it…
	There's more…
	Securing remote access with OpenVPN
	Getting ready…
	How to do it…
	How it works…
	There's more…
	Securing a network with uncomplicated firewall
	Getting ready
	How to do it…
	There's more…
	See also
	Securing against brute force attacks
	Getting ready
	How to do it…
	How it works…
	There's more…
	Discussing Ubuntu security best practices
	Getting ready
	How to do it…
	How it works…
	See also
	3. Working with Web Servers
	Introduction
	Installing and configuring the Apache web server
	Getting ready
	How to do it…
	How it works…
	There's more…
	HTTP version 2 support
	See also
	Serving dynamic contents with PHP
	Getting ready
	How to do it…
	How it works…
	PHP settings
	There's more…
	Installing the LAMP stack
	Upgrading PHP under Ubuntu 14
	Hosting multiple websites with a virtual domain
	Getting ready
	How to do it…
	How it works…
	See also
	Securing web traffic with HTTPS
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Installing Nginx with PHP_FPM
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Setting Nginx as a reverse proxy
	Getting ready
	How to do it…
	How it works…
	There's more…
	HAProxy and Varnish
	See also
	Load balancing with Nginx
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Setting HTTPs on Nginx
	Getting ready
	How to do it…
	How it works…
	See also
	Benchmarking and performance tuning of Apache
	Getting ready
	How to do it…
	There's more…
	See also
	Securing the web server
	Getting ready
	How to do it…
	How it works…
	See also
	Troubleshooting the web server
	Getting ready
	How to do it…
	Web server not accessible
	Virtual host not accessible
	Access denied or forbidden errors
	Apache downloads .php files
	4. Working with Mail Servers
	Introduction
	Sending e-mails with Postfix
	Getting ready
	How to do it…
	How it works…
	See also
	Enabling IMAP and POP3 with Dovecot
	Getting ready
	How to do it…
	How it works…
	See also
	Adding e-mail accounts
	Getting ready
	How to do it…
	How it works…
	There's more…
	Web console for virtual mailbox administration
	See also
	Mail filtering with spam-assassin
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Troubleshooting the mail server
	Getting ready
	How to do it…
	See also
	Installing the Zimbra mail server
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	5. Handling Databases
	Introduction
	Installing relational databases with MySQL
	Getting ready
	How to do it…
	How it works…
	There’s more…
	Securing MySQL installation
	See also
	Storing and retrieving data with MySQL
	Getting ready
	How to do it…
	How it works…
	Importing and exporting bulk data
	How to do it…
	See also
	Adding users and assigning access rights
	Getting ready
	How to do it…
	How it works…
	There’s more…
	Removing user accounts
	Setting resource limits
	See also
	Installing web access for MySQL
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also
	Setting backups
	Getting ready
	How to do it…
	How it works…
	See also
	Optimizing MySQL performance – queries
	Getting ready
	How to do it…
	How it works…
	There’s more…
	Sharding MySQL
	See also
	Optimizing MySQL performance – configuration
	Getting ready
	How to do it…
	How it works…
	There’s more…
	Percona configuration wizard
	MySQL table compression
	See also
	Creating MySQL replicas for scaling and high availability
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also
	Troubleshooting MySQL
	Getting ready
	How to do it…
	See also
	Installing MongoDB
	Getting ready
	How to do it…
	How it works…
	See also
	Storing and retrieving data with MongoDB
	Getting ready
	How to do it…
	How it works…
	There’s more…
	See also
	6. Network Storage
	Introduction
	Installing the Samba server
	Getting ready
	How to do it…
	How it works…
	There's more…
	Tools for personal file sharing
	See also
	Adding users to the Samba server
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Installing the secure FTP server
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Synchronizing files with Rsync
	How to do it…
	How it works…
	There's more…
	See also
	Performance tuning the Samba server
	Getting ready
	How to do it…
	How it works…
	Troubleshooting the Samba server
	How to do it…
	Checking network connectivity
	Checking the Samba service
	Checking Samba logs
	Checking Samba configuration
	See also
	Installing the Network File System
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	7. Cloud Computing
	Introduction
	Creating virtual machine with KVM
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Managing virtual machines with virsh
	Getting ready
	How to do it…
	How it works…
	There's more…
	Easy cloud images with uvtool
	See also
	Setting up your own cloud with OpenStack
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Adding a cloud image to OpenStack
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Launching a virtual instance with OpenStack
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Installing Juju a service orchestration framework
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Managing services with Juju
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	8. Working with Containers
	Introduction
	Installing LXD, the Linux container daemon
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Deploying your first container with LXD
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Managing LXD containers
	Getting ready…
	How to do it…
	There's more…
	See also
	Managing LXD containers – advanced options
	How to do it…
	How it works…
	Setting resource limits on LXD containers
	How to do it…
	How it works…
	There's more…
	See also
	Networking with LXD
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Installing Docker
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Starting and managing Docker containers
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating images with a Dockerfile
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Understanding Docker volumes
	Getting ready
	How to do it…
	How it works…
	See also
	Deploying WordPress using a Docker network
	How to do it…
	How it works…
	There's more…
	See also
	Monitoring Docker containers
	How to do it…
	How it works…
	There's more…
	See also
	Securing Docker containers
	How to do it…
	See also
	9. Streaming with Ampache
	Introduction
	Installing the Ampache server
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Uploading contents and creating catalogs
	Getting ready
	How to do it…
	How it works…
	Setting on-the-fly transcoding
	Getting ready
	How to do it…
	Enabling API access for remote streaming
	Getting ready
	How to do it…
	How it works…
	Streaming music with Ampache
	Getting ready
	How to do it…
	10. Communication Server with XMPP
	Introduction
	Installing Ejabberd
	Getting ready
	How to do it…
	How it works…
	See also
	Creating users and connecting with the XMPP client
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Configuring the Ejabberd installation
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating web client with Strophe.js
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Enabling group chat
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Chat server with Node.js
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	11. Git Hosting
	Introduction
	Installing Git
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating a local repository with Git CLI
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Storing file revisions with Git commit
	Getting ready
	How to do it…
	How it works…
	There's more…
	Synchronizing the repository with a remote server
	Getting ready
	How to do it…
	How it works…
	There's more…
	GitHub pages
	See also
	Receiving updates with Git pull
	Getting ready
	How to do it…
	How it works…
	See also
	Creating repository clones
	Getting ready
	How to do it…
	How it works…
	See also
	Installing GitLab, your own Git hosting
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Adding users to the GitLab server
	Getting ready
	How to do it…
	Creating a repository with GitLab
	Getting ready
	How to do it…
	Automating common tasks with Git hooks
	Getting ready
	How to do it…
	How it works…
	See also
	12. Collaboration Tools
	Introduction
	Installing the VNC server
	Getting ready
	How to do it…
	How it works…
	See also
	Installing Hackpad, a collaborative document editor
	Getting ready
	How to do it…
	How it works…
	There's more
	Using Hackpad with Docker
	See also
	Installing Mattermost – a self-hosted slack alternative
	Getting ready
	How to do it…
	How it works…
	There's more …
	See also
	Installing OwnCloud, self-hosted cloud storage
	Getting ready
	How to do it…
	How it works…
	See also
	13. Performance Monitoring
	Introduction
	Monitoring the CPU
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Monitoring memory and swap
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Monitoring the network
	Getting ready
	How to do it…
	How it works…
	There's more…
	Monitoring storage
	Getting ready
	How to do it…
	Setting performance benchmarks
	Getting ready
	How to do it…
	There's more…
	Graphing tools
	More options
	See also
	14. Centralized Authentication Service
	Introduction
	Installing OpenLDAP
	Getting ready
	How to do it…
	How it works…
	See also
	Installing phpLDAPadmin
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Ubuntu server logins with LDAP
	Getting ready
	How to do it…
	How it works…
	See also
	Authenticating Ejabberd users with LDAP
	Getting ready
	How to do it…
	How it works…
	See also
	2. Module 2
	1. Installing CentOS
	Introduction
	Downloading CentOS and confirming the checksum on Windows or OS X
	Getting ready
	How to do it...
	How it works…
	Creating USB installation media on Windows or OS X
	Getting ready
	How to do it...
	How it works...
	Performing an installation of CentOS using the graphical installer
	Getting ready
	How to do it...
	How it works…
	Running a netinstall over HTTP
	Getting ready
	How to do it...
	How it works...
	Installing CentOS 7 using a kickstart file
	Getting ready
	How to do it...
	How it works...
	Getting started and customising the boot loader
	Getting ready
	How to do it...
	How it works...
	Troubleshooting the system in rescue mode
	Getting ready
	How to do it...
	Reaching rescue mode
	Accessing the filesystem
	Accessing the filesystem
	Re-install the CentOS boot loader
	How it works...
	Updating the installation and enhancing the minimal install with additional administration and development tools
	Getting ready
	How to do it...
	How it works...
	2. Configuring the System
	Introduction
	Navigating text files with less
	Getting ready
	How to do it...
	How it works...
	Introduction to Vim
	Getting ready
	How to do it...
	How it works...
	Speaking the right language
	Getting ready
	How to do it...
	How it works...
	There's more…
	Synchronizing the system clock with NTP and the chrony suite
	Getting ready
	How to do it...
	How it works...
	There's more...
	Setting your hostname and resolving the network
	Getting ready
	How to do it...
	How it works...
	There's more...
	Building a static network connection
	Getting ready
	How to do it...
	How it works...
	Becoming a superuser
	Getting ready
	How to do it...
	How it works...
	Customizing your system banners and messages
	Getting ready
	How to do it...
	How it works...
	There's more...
	Priming the kernel
	Getting ready
	How to do it...
	How it works...
	There's more...
	3. Managing the System
	Introduction
	Knowing and managing your background services
	Getting ready
	How to do it...
	How it works...
	There's more...
	Troubleshooting background services
	Getting ready
	How to do it...
	How it works...
	Tracking system resources with journald
	Getting ready
	How to do it...
	How it works...
	Configuring journald to make it persistent
	Getting ready
	How to do it...
	How it works...
	Managing users and their groups
	Getting ready
	How to do it...
	How it works...
	Scheduling tasks with cron
	Getting ready
	How to do it...
	How it works...
	There's more...
	Synchronizing files and doing more with rsync
	Getting ready
	How to do it...
	How it works...
	Maintaining backups and taking snapshots
	Getting ready
	How to do it...
	How it works...
	Monitoring important server infrastructure
	Getting ready
	How to do it...
	How it works...
	Taking control with GIT and Subversion
	Getting ready
	How to do it...
	How it works
	There's more...
	4. Managing Packages with YUM
	Introduction
	Using YUM to update the system
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using YUM to search for packages
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using YUM to install packages
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using YUM to remove packages
	Getting ready
	How to do it...
	How it works...
	Keeping YUM clean and tidy
	Getting ready
	How to do it...
	How it works...
	There's more...
	Knowing your priorities
	Getting ready
	How to do it...
	How it works...
	Using a third-party repository
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating a YUM repository
	Getting ready
	How to do it...
	How it works...
	There's more...
	Working with the RPM package manager
	Getting ready
	How to do it...
	How it works...
	There's more...
	5. Administering the Filesystem
	Introduction
	Creating a virtual block device
	Getting ready
	How to do it...
	How it works...
	There's more...
	Formatting and mounting a filesystem
	Getting ready
	How to do it...
	How it works…
	There's more...
	Using disk quotas
	Getting ready
	How to do it...
	Enabling user and group quotas
	Enabling project (directory) quotas
	How it works...
	There's more...
	Maintaining a filesystem
	Getting ready
	How to do it...
	How it works...
	There's more...
	Extending the capacity of the filesystem
	Getting ready
	How to do it...
	How it works...
	6. Providing Security
	Introduction
	Locking down remote access and hardening SSH
	Getting ready
	How to do it...
	How it works...
	There's more...
	Changing the SSH port number of your server
	Limiting SSH access by user or group
	Installing and configuring fail2ban
	Getting ready
	How to do it...
	How it works...
	Working with a firewall
	Getting ready
	How to do it...
	How it works...
	There's more...
	Forging the firewall rules by example
	Getting ready
	How to do it...
	To change an existing firewalld service (ssh)
	To create your own new service
	How it works...
	There's more...
	Generating self-signed certificates
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using secure alternatives to FTP
	Getting ready
	How to do it...
	Securing your vsftpd server with SSL–FTPS
	Securing your vsftpd server using SSH – SFTP
	How it works...
	There's more...
	7. Building a Network
	Introduction
	Printing with CUPS
	Getting ready
	How to do it...
	How it works...
	There's more...
	How to add a network printer to the CUPS server
	How to share a local printer to the CUPS server
	Running a DHCP server
	Getting ready
	How to do it...
	How it works...
	There's more...
	Using WebDAV for file sharing
	Getting ready
	How to do it…
	How it works…
	Installing and configuring NFS
	Getting ready
	How to do it...
	Installing and configuring the NFS server
	Creating an export share
	How it works...
	Working with NFS
	Getting ready
	How to do it...
	How it works...
	Securely sharing resources with Samba
	Getting ready
	How to do it...
	How it works...
	There's more...
	8. Working with FTP
	Introduction
	Installing and configuring the FTP service
	Getting ready
	How to do it...
	How it works...
	There's more...
	Working with virtual FTP users
	Getting ready
	How to do it...
	How it works...
	Customizing the FTP service
	Getting ready
	How to do it...
	How it works...
	Troubleshooting users and file transfers
	Getting ready
	How to do it...
	How it works...
	9. Working with Domains
	Introduction
	Installing and configuring a caching-only nameserver
	Getting ready
	How to do it...
	Configuring a caching-only Unbound DNS server
	Configuring a forwarding only DNS server
	How it works...
	There's more...
	Setting up an authoritative-only DNS server
	Getting ready
	How to do it...
	How it works...
	There's more...
	Creating an integrated nameserver solution
	Getting ready
	How to do it...
	How it works
	There's more...
	Populating the domain
	Getting ready
	How to do it...
	How it works…
	Building a secondary (slave) DNS server
	Getting ready
	How to do it...
	Changes to the primary DNS server
	Changes to the secondary DNS server(s)
	How it works...
	10. Working with Databases
	Introduction
	Installing a MariaDB database server
	Getting ready
	How to do it...
	How it works...
	Managing a MariaDB database
	Getting ready
	How to do it...
	How it works...
	There's more...
	Reviewing and revoking permissions or dropping a user
	Allowing remote access to a MariaDB server
	Getting ready
	How to do it...
	How it works...
	Installing a PostgreSQL server and managing a database
	Getting ready
	How to do it...
	How it works...
	There's more...
	Configuring remote access to PostgreSQL
	Getting ready
	How to do it...
	How it works...
	Installing phpMyAdmin and phpPgAdmin
	Getting ready
	How to do it...
	Installing and configuring phpMyAdmin
	Installing and configuring phpPgAdmin
	How it works...
	11. Providing Mail Services
	Introduction
	Configuring a domain-wide mail service with Postfix
	Getting ready
	How to do it...
	How it works...
	There's more...
	Changing an e-mail's appearing domain name
	Using TLS- (SSL) encryption for SMTP communication
	Configure BIND to use your new mailserver
	Working with Postfix
	How to do it...
	Connecting mailx to a remote MTA
	Reading your local mails from the mailbox
	How it works...
	Delivering the mail with Dovecot
	Getting ready
	How to do it...
	How it works...
	There's more...
	Setting up e-mail software
	Using Fetchmail
	Getting ready
	How to do it...
	How it works...
	There's more...
	Configuring Fetchmail with gmail.com and outlook.com e-mail accounts
	Automating Fetchmail
	12. Providing Web Services
	Introduction
	Installing Apache and serving web pages
	Getting ready
	How to do it...
	How it works...
	Enabling system users and building publishing directories
	Getting ready
	How to do it...
	How it works...
	Implementing name-based hosting
	Getting ready
	How to do it...
	How it works...
	Implementing CGI with Perl and Ruby
	Getting ready
	How to do it...
	Creating your first Perl CGI script
	Creating your first Ruby CGI script
	How it works...
	There's more...
	Installing, configuring, and testing PHP
	Getting ready
	How to do it...
	How to do it...
	Securing Apache
	Getting ready
	How to do it...
	Configuring httpd.conf to provide better security
	Removing unneeded httpd modules
	Protecting your Apache files
	How it works...
	Setting up HTTPS with Secure Sockets Layer (SSL)
	Getting ready
	How to do it...
	How it works...
	There's more...
	13. Operating System-Level Virtualization
	Introduction
	Installing and configuring Docker
	Getting ready
	How to do it...
	How it works...
	Downloading an image and running a container
	Getting ready
	How to do it...
	How it works...
	There's more...
	Stopping and starting a container
	Attaching and interacting with your container
	Creating your own images from Dockerfiles and uploading to Docker Hub
	Getting ready
	How to do it...
	Uploading your image to the Docker Hub
	How it works...
	Setting up and working with a private Docker registry
	Getting ready
	How to do it...
	Steps to be done on our Docker registry server (192.168.1.100)
	Steps to be done on every client needing access to our registry
	How it works...
	14. Working with SELinux
	Introduction
	Installing and configuring important SELinux tools
	Getting ready
	How to do it...
	How it works...
	There's more...
	Working with SELinux security contexts
	Getting ready
	How to do it...
	How it works...
	Working with policies
	Getting ready
	How to do it...
	How it works...
	There's more...
	Troubleshooting SELinux
	Getting ready
	How to do it...
	How it works...
	15. Monitoring IT Infrastructure
	Introduction
	Installing and configuring Nagios Core
	Getting ready
	How to do it...
	How it works...
	Setting up NRPE on remote client hosts
	Getting ready
	How to do it...
	How it works...
	Monitoring important remote system metrics
	Getting ready
	How to do it...
	How it works...
	3. Module 3
	1. Working with KVM Guests
	Introduction
	Installing and configuring a KVM
	Getting ready
	How to do it…
	Manual installation
	Kickstart installation
	Graphical setup during the system's setup
	See also
	Configuring resources
	Getting ready
	How to do it…
	Creating storage pools
	Querying storage pools
	Removing storage pools
	Creating a virtual network
	Removing networks
	How it works…
	There's more…
	Local storage pools
	Networked or shared storage pools
	See also
	Building guests
	Getting ready
	How to do it…
	Create a guest
	Deleting a guest
	How it works…
	There's more…
	See also
	Adding CPUs on the fly
	Getting ready
	How to do it…
	On the KVM host, perform the following steps:
	On the KVM guest, perform the following:
	Adding RAM on the fly
	Getting ready
	How to do it…
	Adding disks on the fly
	Getting ready
	How to do it…
	How it works…
	There's more…
	Moving disks to another storage
	Getting ready
	How to do it…
	How it works…
	There's more…
	Moving VMs
	Getting ready
	How to do it…
	Live native migration over the default network
	Live native migration over a dedicated network
	How it works…
	There's more…
	See also
	Backing up your VM metadata
	How to do it…
	How it works…
	See also
	2. Deploying RHEL "En Masse"
	Introduction
	Creating a kickstart file
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Publishing your kickstart file using httpd
	How to do it…
	There's more…
	See also
	Deploying a system using PXE
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Deploying a system using a custom boot ISO file
	How to do it…
	How it works…
	3. Configuring Your Network
	Introduction
	Creating a VLAN interface
	Getting ready
	How to do it…
	Creating the VLAN connection with nmcli
	Creating the VLAN connection with nmtui
	Creating the VLAN connection with kickstart
	There's more…
	See also
	Creating a teamed interface
	Getting ready
	How to do it…
	Creating the teamed interface using nmcli
	Creating the teamed interface using nmtui
	Creating the teamed interface with kickstart
	There's more…
	nmcli
	nmtui
	kickstart
	See also
	Creating a bridge
	Getting ready
	How to do it…
	Creating a bridge using nmcli
	Creating a bridge using nmtui
	Creating a bridge with kickstart
	There's more…
	See also
	Configuring IPv4 settings
	How to do it…
	Setting your IPv4 configuration using nmcli
	Setting your IPv4 configuration using nmtui
	There's more…
	Configuring your DNS resolvers
	How to do it…
	Setting your DNS resolvers using nmcli
	Setting your DNS resolvers using nmtui
	There's more…
	Configuring static network routes
	How to do it…
	Configuring static network routes using nmcli
	Configuring network routes using nmtui
	4. Configuring Your New System
	Introduction
	The systemd service and setting runlevels
	How to do it…
	There's more…
	See also
	Starting and stopping systemd services
	How to do it…
	There's more…
	See also
	Configuring the systemd journal for persistence
	How to do it…
	There's more…
	See also
	Monitoring services using journalctl
	How to do it…
	There's more…
	See also
	Configuring logrotate
	How to do it…
	How it works…
	There's more…
	See also
	Managing time
	How to do it…
	Managing time through chrony
	Managing time through ntpd
	There's more…
	See also
	Configuring your boot environment
	How to do it…
	How it works…
	There's more…
	See also
	Configuring smtp
	How to do it…
	There's more…
	See also
	5. Using SELinux
	Introduction
	Changing file contexts
	Getting ready
	How to do it…
	Temporary context changes
	Persistent file context changes
	There's more…
	See also
	Configuring SELinux booleans
	How to do it…
	Listing SELinux booleans
	Changing SELinux booleans
	There's more…
	Configuring SELinux port definitions
	How to do it…
	There's more…
	Troubleshooting SELinux
	Getting ready
	How to do it…
	audit.log
	syslog
	ausearch
	There's more…
	See also
	Creating SELinux policies
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Applying SELinux policies
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also
	6. Orchestrating with Ansible
	Introduction
	Install Ansible
	Getting ready
	How to do it…
	Installing the latest tarball
	Installing cutting edge from Git
	Installing Ansible from the EPEL repository
	There's more…
	Configuring the Ansible inventory
	How to do it…
	The static inventory file
	The dynamic inventory file
	host_vars files
	group_vars files
	How it works…
	There's more…
	See also
	Creating a template for a kickstart file
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating a playbook to deploy a new VM with kickstart
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Creating a playbook to perform system configuration tasks
	Getting ready
	How to do it…
	There's more…
	See also
	Troubleshooting Ansible
	Getting ready
	How to do it…
	How it works…
	There's more…
	7. Puppet Configuration Management
	Introduction
	Installing and configuring Puppet Master
	How to do it…
	There's more…
	See also
	Installing and configuring the Puppet agent
	How to do it…
	There's more…
	Defining a simple module to configure time
	Getting ready
	How to do it…
	How it works...
	There's more...
	See also
	Defining nodes and node grouping
	How to do it…
	Create the configuration node
	Create a node group
	There's more…
	Deploying modules to single nodes and node groups
	How to do it…
	Configure to deploy a module or manifest to a single client
	Configure to deploy a module or manifest to a node group
	Configure to deploy to all registered systems
	Deploy to a system
	There's more…
	8. Yum and Repositories
	Introduction
	Managing yum history
	How to do it…
	Your yum history
	Information about a yum transaction or package
	Undoing/redoing certain yum transactions
	Roll back to a certain point in your transaction history
	There's more…
	See also
	Creating a copy of an RHN repository
	Getting ready
	How to do it…
	Syncing RHN repositories
	There's more…
	See also
	Configuring additional repositories
	Getting ready
	How to do it…
	There's more…
	See also
	Setting up yum to automatically update
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also
	Configuring logrotate for yum
	How to do it…
	How it works…
	See also
	Recovering from a corrupted RPM database
	Getting ready
	How to do it…
	There's more…
	9. Securing RHEL 7
	Introduction
	Installing and configuring IPA
	Getting ready
	How to do it…
	Installing the IPA server
	Installing the IPA client
	There's more…
	See also
	Securing the system login
	How to do it…
	How it works…
	There's more…
	See also
	Configuring privilege escalation with sudo
	Getting ready
	How to do it…
	There's more…
	See also
	Secure the network with firewalld
	How to do it…
	Showing the currently allowed services and ports on your system
	Allowing incoming requests for NFS (v4)
	Allowing incoming requests on an arbitrary port
	There's more…
	See also
	Using kdump and SysRq
	How to do it…
	Installing and configuring kdump and SysRq
	Using kdump tools to analyze the dump
	There's more…
	See also…
	Using ABRT
	How to do it…
	Installing and configuring abrtd
	Using abrt-cli
	There's more…
	See also
	Auditing the system
	How to do it…
	Configuring a centralized syslog server to accept audit logs
	Some audit rules
	Showing audit logs for the preceding rules
	See also
	10. Monitoring and Performance Tuning
	Introduction
	Tuning your system's performance
	How to do it…
	There's more…
	See also
	Setting up PCP – Performance Co-Pilot
	How to do it…
	The default installation
	The central collector
	There's more…
	See also
	Monitoring basic system performance
	How to do it…
	There's more…
	Monitoring CPU performance
	How to do it…
	Monitoring RAM performance
	How to do it…
	Monitoring storage performance
	How to do it…
	Monitoring network performance
	How to do it…
	Bibliography
	Index

