LINUX

e JL R Jo A RN T ks

—_— ENHANCING SECURITY WITH NFTABLES AND BEYOND

ST HEVarE SEEUAEEREE R IING G

Linux” Firewalls

Fourth Edition

Hi va- Net wor k. Cormr A

http://www.hiva-network.com/

This page intentionally left blank

Linux” Firewalls

Enhancing Security with
nftables and Beyond

Fourth Edition

Steve Suehring

vvAddison-Wesley

Upper Saddle River, NJ e Boston e Indianapolis ® San Francisco
New York e Toronto ¢ Montreal ® London e Munich e Paris ¢ Madrid
Capetown e Sydney e Tokyo e Singapore ¢ Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which

may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.
Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Suehring, Steve.

Linux firewalls : enhancing security with nftables and beyond.—Fourth edition / Steve Suehring.

pages cm

Earlier ed. authored by Robert L. Ziegler.

Includes bibliographical references and index.

ISBN 978-0-13-400002-2 (pbk. : alk. paper)—ISBN 0-13-400002-1 (pbk. : alk. paper)

1. Computers—Access control. 2. Firewalls (Computer security) 3. Linux. 4. Operating systems
(Computers) 1. Title.

QA76.9.A25754 2015

005.8—dc2

2014043643
Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River,
New Jersey 07458, or you may fax your request to (201) 236-3290.

Permission is granted to copy, distribute, and/or modify Figures 3.1 through 3.4 under the terms
of the GNU Free Documentation License, Version 1.3, or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included in Appendix D, “GNU Free Documentation License.”

ISBN-13: 978-0-13-400002-2

ISBN-10: 0-13-400002-1

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing, January 2015

2
0‘0

This book is dedicated to Jim Leu,
without whom I couldn’t have written a book on Linux.

K2
o

Hi va- Net wor k. Cormr 2

http://www.hiva-network.com/

This page intentionally left blank

Contents at a Glance

Contents ix
Preface xix

About the Author xxi

I: Packet Filtering and Basic Security Measures 1

1 Preliminary Concepts Underlying Packet-Filtering
Firewalls 3

2 Packet-Filtering Concepts 25

3 iptables: The Legacy Linux Firewall Administration
Program 51

4 nftables: The Linux Firewall Administration
Program 83

5 Building and Installing a Standalone Firewall 95
II: Advanced Issues, Multiple Firewalls, and Perimeter

Networks 143

6 Firewall Optimization 145

7 Packet Forwarding 179

8 NAT—Network Address Translation 197

9 Debugging the Firewall Rules 211

10 Virtual Private Networks 229

Ill: Beyond iptables and nftables 235
11 Intrusion Detection and Response 237
12 |Intrusion Detection Tools 249
13 Network Monitoring and Attack Detection 263

14 Filesystem Integrity 295

viii Contents at a Glance

IV: Appendices 311
A Security Resources 313
B Firewall Examples and Support Scripts 315
C Glossary 351

D GNU Free Documentation License 363

Index 371

Contents

Preface xix

About the Author xxi

I: Packet Filtering and Basic Security Measures 1

1 Preliminary Concepts Underlying Packet-Filtering
Firewalls 3
The OSI Networking Model 5

Connectionless versus Connection-Oriented
Protocols 7

Next Steps 7
The Internet Protocol 7

IP Addressing and Subnetting 8

IP Fragmentation 11

Broadcasting and Multicasting 11

ICMP 12
Transport Mechanisms 14

UDP 14

TCP 14
Don’t Forget Address Resolution Protocol 17
Hostnames and IP Addresses 18

IP Addresses and Ethernet Addresses 18
Routing: Getting a Packet from Here to There 19

Service Ports: The Door to the Programs on Your
System 19

A Typical TCP Connection: Visiting a Remote
Website 20

Summary 23

2 Packet-Filtering Concepts 25
A Packet-Filtering Firewall 26
Choosing a Default Packet-Filtering Policy 29
Rejecting versus Denying a Packet 31
Filtering Incoming Packets 31
Remote Source Address Filtering 31
Local Destination Address Filtering 34

Hi va- Net wor k. Cormr LA

http://www.hiva-network.com/

Contents

Remote Source Port Filtering 35
Local Destination Port Filtering 35
Incoming TCP Connection State Filtering 35
Probes and Scans 36
Denial-of-Service Attacks 39
Source-Routed Packets 46
Filtering Outgoing Packets 46
Local Source Address Filtering 47
Remote Destination Address Filtering 47
Local Source Port Filtering 48
Remote Destination Port Filtering 48
Outgoing TCP Connection State Filtering 48
Private versus Public Network Services 49
Protecting Nonsecure Local Services 50
Selecting Services to Run 50
Summary 50

3 iptables: The Legacy Linux Firewall Administration
Program 51

Differences between IPFW and Netfilter Firewall
Mechanisms 51

IPFW Packet Traversal 52
Netfilter Packet Traversal 54
Basic iptables Syntax 54
iptables Features 55
NAT Table Features 58
mangle Table Features 60
iptables Syntax 61
filter Table Commands 62
filter Table Target Extensions 67
filter Table Match Extensions 68
nat Table Target Extensions 79
mangle Table Commands 81
Summary 82

4 nftables: The Linux Firewall Administration
Program 83
Differences between iptables and nftables 83
Basic nftables Syntax 83

Contents Xi

nftables Features 84
nftables Syntax 85

Table Syntax 85

Chain Syntax 86

Rule Syntax 87

Basic nftables Operations 91

nftables File Syntax 92
Summary 93

5 Building and Installing a Standalone Firewall 95
The Linux Firewall Administration Programs 96
Build versus Buy: The Linux Kernel 97
Source and Destination Addressing Options 98
Initializing the Firewall 99

Symbolic Constants Used in the Firewall
Examples 100

Enabling Kernel-Monitoring Support 101
Removing Any Preexisting Rules 103

Resetting Default Policies and Stopping
the Firewall 104

Enabling the Loopback Interface 105
Defining the Default Policy 106

Using Connection State to Bypass Rule
Checking 107

Source Address Spoofing and Other Bad
Addresses 108

Protecting Services on Assigned Unprivileged Ports 112

Common Local TCP Services Assigned
to Unprivileged Ports 113

Common Local UDP Services Assigned
to Unprivileged Ports 116

Enabling Basic, Required Internet Services 117
Allowing DNS (UDP/TCP Port 53) 118
Enabling Common TCP Services 122

Email (TCP SMTP Port 25, POP Port 110,
IMAP Port 143) 123

SSH (TCP Port 22) 128
FTP (TCP Ports 21, 20) 130
Generic TCP Service 133

Xii

Contents

Enabling Common UDP Services 134

Accessing Your ISP’s DHCP Server
(UDP Ports 67, 68) 134

Accessing Remote Network Time Servers
(UDP Port 123) 136

Logging Dropped Incoming Packets 138
Logging Dropped Outgoing Packets 138
Installing the Firewall 139

Tips for Debugging the Firewall Script 139

Starting the Firewall on Boot with Red Hat
and SUSE 140

Starting the Firewall on Boot with Debian 141
Installing a Firewall with a Dynamic IP Address 141

Summary 141

II: Advanced Issues, Multiple Firewalls,
and Perimeter Networks 143

6 Firewall Optimization 145
Rule Organization 145

Begin with Rules That Block Traffic on High
Ports 145

Use the State Module for ESTABLISHED
and RELATED Matches 146

Consider the Transport Protocol 146

Place Firewall Rules for Heavily Used Services
as Early as Possible 147

Use Traffic Flow to Determine Where to Place Rules
for Multiple Network Interfaces 147

User-Defined Chains 148
Optimized Examples 151

The Optimized iptables Script 151
Firewall Initialization 153
Installing the Chains 155

Building the User-Defined EXT-input
and EXT-output Chains 157

tcp-state-flags 165
connection-tracking 166

local-dhcp-client-query and
remote-dhcp-server-response 166

Contents xiii

source-address-check 167
destination-address-check 168
Logging Dropped Packets with iptables 168
The Optimized nftables Script 170
Firewall Initialization 170
Building the Rules Files 172
Logging Dropped Packets with nftables 175
What Did Optimization Buy? 176
iptables Optimization 176
nftables Optimization 177
Summary 177

7 Packet Forwarding 179
The Limitations of a Standalone Firewall 179
Basic Gateway Firewall Setups 181
LAN Security Issues 182
Configuration Options for a Trusted Home LAN 183
LAN Access to the Gateway Firewall 184

LAN Access to Other LANs: Forwarding Local Traffic
among Multiple LANs 186

Configuration Options for a Larger or Less Trusted
LAN 188

Dividing Address Space to Create Multiple
Networks 188

Selective Internal Access by Host, Address Range,
or Port 190

Summary 195

8 NAT—Network Address Translation 197
The Conceptual Background of NAT 197
NAT Semantics with iptables and nftables 201
Source NAT 203
Destination NAT 205
Examples of SNAT and Private LANs 206
Masquerading LAN Traffic to the Internet 206

Applying Standard NAT to LAN Traffic
to the Internet 208

Examples of DNAT, LANs, and Proxies 209
Host Forwarding 209
Summary 210

Hi va- Net wor k. Cormr LA

http://www.hiva-network.com/

Xiv Contents

9 Debugging the Firewall Rules 211
General Firewall Development Tips 211
Listing the Firewall Rules 213
iptables Table Listing Example 213
nftables Table Listing Example 216
Interpreting the System Logs 217
syslog Configuration 217
Firewall Log Messages: What Do They Mean? 220
Checking for Open Ports 223
netstat -a [-n -p -A inet] 224

Checking a Process Bound to a Particular Port
with fuser 226

Nmap 227
Summary 227

10 Virtual Private Networks 229
Overview of Virtual Private Networks 229
VPN Protocols 229

PPTP and L2TP 229
IPsec 230
Linux and VPN Products 232
Openswan/Libreswan 233
OpenVPN 233
PPTP 233
VPN and Firewalls 233
Summary 234

lll: Beyond iptables and nftables 235

11 Intrusion Detection and Response 237
Detecting Intrusions 237

Symptoms Suggesting That the System Might
Be Compromised 238

System Log Indications 239

System Configuration Indications 239
Filesystem Indications 240

User Account Indications 240
Security Audit Tool Indications 241
System Performance Indications 241

Contents

What to Do If Your System Is Compromised 241
Incident Reporting 243
Why Report an Incident? 243
What Kinds of Incidents Might You Report? 244
To Whom Do You Report an Incident? 246
What Information Do You Supply? 246
Summary 247

12 |[ntrusion Detection Tools 249
Intrusion Detection Toolkit: Network Tools 249
Switches and Hubs and Why You Care 250
ARPWatch 251
Rootkit Checkers 251
Running Chkrootkit 251

What If Chkrootkit Says the Computer
Is Infected? 253

Limitations of Chkrootkit and Similar Tools 253
Using Chkrootkit Securely 254
When Should Chkrootkit Be Run? 255
Filesystem Integrity 255
Log Monitoring 256
Swatch 256
How to Not Become Compromised 257
Secure Often 257
Update Often 258
Test Often 259
Summary 261

13 Network Monitoring and Attack Detection 263
Listening to the Ether 263
Three Valuable Tools 264
TCPDump: A Simple Overview 265
Obtaining and Installing TCPDump 266
TCPDump Options 267
TCPDump Expressions 269
Beyond the Basics with TCPDump 272

XV

XVi Contents

Using TCPDump to Capture Specific Protocols 272
Using TCPDump in the Real World 272
Attacks through the Eyes of TCPDump 280
Recording Traffic with TCPDump 284

Automated Intrusion Monitoring with Snort 286
Obtaining and Installing Snort 287
Configuring Snort 288
Testing Snort 289
Receiving Alerts 290
Final Thoughts on Snort 291

Monitoring with ARPWatch 291

Summary 293

14 Filesystem Integrity 295
Filesystem Integrity Defined 295
Practical Filesystem Integrity 295
Installing AIDE 296
Configuring AIDE 297
Creating an AIDE Configuration File 297
A Sample AIDE Configuration File 299
Initializing the AIDE Database 300
Scheduling AIDE to Run Automatically 301
Monitoring AIDE for Bad Things 301
Cleaning Up the AIDE Database 302
Changing the Output of the AIDE Report 303
Obtaining More Verbose Output 305
Defining Macros in AIDE 306
The Types of AIDE Checks 307
Summary 310

IV: Appendices 311

A Security Resources 313
Security Information Sources 313
Reference Papers and FAQs 314

B Firewall Examples and Support Scripts 315

iptables Firewall for a Standalone System
from Chapter 5 315

Hi va- Net wor k. Comr

Contents

nftables Firewall for a Standalone System
from Chapter 5 328

Optimized iptables Firewall from Chapter 6 332
nftables Firewall from Chapter 6 345

C Glossary 351

D GNU Free Documentation License 363

0.
. Applicability and Definitions 363
. Verbatim Copying 365

. Copying in Quantity 365

. Modifications 366

. Combining Documents 367

© 0 N O o B W N B

Preamble 363

. Collections of Documents 368

. Aggregation with Independent Works 368
. Translation 368

. Termination 369

10. Future Revisions of this License 369
11. Relicensing 370

Index 371

Xvii

Lal/s

http://www.hiva-network.com/

This page intentionally left blank

Preface

Welcome to the fourth edition of Linux® Firewalls. The book looks at what it takes to
build a firewall using a computer running Linux. The material covered includes some
basics of networking, IP, and security before jumping into iptables and nftables, the
latest firewall software in Linux.

A reader of this book should be running a Linux computer, whether standalone or as
a firewall or Internet gateway. The book shows how to build a firewall for a single client
computer such as a desktop and also shows how to build a firewall behind which multiple
computers can be hosted on a local network.

The final part of the book shows aspects of computer and network security beyond
iptables and nftables. This includes intrusion detection, filesystem monitoring, and
listening to network traffic. The book is largely Linux agnostic, meaning that just about
any popular flavor of Linux will work with the material with little or no adaptation.

Acknowledgments

I'd like to thank my wife, family, and friends for their unending support. Thanks also to
Robert P.J. Day and Andrew Prowant for reviewing the manuscript.

This page intentionally left blank

About the Author

Steve Suehring is a technology architect specializing in Linux and Windows systems
and development. Steve has written several books and magazine articles on a wide range
of technologies. During his tenure as an editor at LinuxWorld magazine, Steve wrote and
edited articles and reviews on Linux security and advocacy including a feature story on
the use of Linux in Formula One auto racing.

Hi va- Net wor k. Cormr A

http://www.hiva-network.com/

This page intentionally left blank

Packet Filtering
and Basic Security
Measures

Preliminary Concepts Underlying Packet-Filtering
Firewalls

Packet-Filtering Concepts

iptables: The Legacy Linux Firewall
Administration Program

nftables: The Linux Firewall Administration
Program

Building and Installing a Standalone Firewall

This page intentionally left blank

1

Preliminary Concepts
Underlying Packet-Filtering
Firewalls

A small site may have Internet access through various means such as a'T1 line, a cable
modem, DSL, wireless, a PPP or ISDN connection, or any number of other means.

The computer connected directly to the Internet is a point of focus for security issues.
‘Whether you have one computer or a local area network (LAN) of linked computers, the
initial focus for a small site will be on the machine with the direct Internet connection.
This machine will be the firewall machine.

The term firewall has various meanings depending on its implementation and purpose.
At this opening point in the book, firewall means the Internet-connected machine. This
is where your primary security policies for Internet access will be implemented. The fire-
wall machine’s external network interface card is the connection point, or gateway, to the
Internet. The purpose of a firewall is to protect what’s on your side of this gateway from
what’s on the other side.

A simple firewall setup is sometimes called a bastion firewall because it’s the main line of
defense against attack from the outside. Many of your security measures are mounted from
this one defender of your realm. Consequently, everything possible is done to protect this
system.

Behind this line of defense is your single computer or your group of computers. The
purpose of the firewall machine might simply be to serve as the connection point to the
Internet for other machines on your LAN.You might be running local, private services
behind this firewall, such as a shared printer or shared filesystems. Or you might want
all of your computers to have access to the Internet. One of your machines might host
your private financial records. You might want to have Internet access from this machine,
but you don’t want anyone getting in. At some point, you might want to offer your own
services to the Internet. One of the machines might be hosting your own website for the
Internet. Another might function as your mail server or gateway. Your setup and goals will
determine your security policies.

The firewall’s purpose is to enforce the security policies you define. These policies
reflect the decisions you've made about which Internet services you want to be accessible

Hi va- Net wor k. Comr

http://www.hiva-network.com/

Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

to your computers, which services you want to offer the world from your computers,
which services you want to offer to specific remote users or sites, and which services and
programs you want to run locally for your own private use. Security policies are all about
access control and authenticated use of private or protected services, programs, and files on
your computers.

Home and small-business systems don’t face all the security issues of a larger corporate
site, but the basic ideas and steps are the same. There just aren’t as many factors to consider,
and security policies often are less stringent than those of a corporate site. The emphasis
is on protecting your site from unwelcome access from the Internet. A packet-filtering
firewall is one common approach to, and one piece of, network security and controlling
access to and from the outside.

Of course, having a firewall doesn’t mean you are fully protected. Security is a pro-
cess, not a piece of hardware. For example, even with a firewall in place it’s possible to
download spyware or adware or click on a maliciously crafted email, thereby opening up
the computer and thus the network to the attack. It’s just as important to have measures
in place to mitigate successful attacks as it is to spend resources on a firewall. Using best
practices inside of your network will help to lessen the chance of a successful exploit and
give your network resiliency.

Something to keep in mind is that the Internet paradigm is based on the premise of
end-to-end transparency. The networks between the two communicating machines are
intended to be invisible. In fact, if a network device somewhere along the path fails, the
idea is that traffic between the two endpoint machines will be silently rerouted.

Ideally, firewalls should be transparent. Nevertheless, they break the Internet paradigm
by introducing a single point of failure within the networks between the two endpoint
machines. Additionally, not all network applications use communication protocols that are
easily passed through a simple packet-filtering firewall. It isn’t possible to pass certain traf-
fic through a firewall without additional application support or more sophisticated firewall
technology.

Further complicating the issue has been the introduction of Network Address Transla-
tion (NAT, or “masquerading” in Linux parlance). NAT enables one computer to act on
behalf of many other computers by translating their requests and forwarding them on to
their destination. The use of NAT along with RFC 1918 private IP addresses has effec-
tively prevented a looming shortage of IPv4 addresses. The combination of NAT and
RFC 1918 address space makes the transmission of some types of network traffic difficult,
impossible, complex, or expensive.

Note

Many router devices, especially those for DSL, cable modems, and wireless, are being sold
as firewalls but are nothing more than NAT-enabled routers. They don’t perform many of

the functions of a true firewall, but they do separate internal from external. Be wary when
purchasing a router that claims to be a firewall but only provides NAT. Although some of
these products have some good features, the more advanced configurations are sometimes
not possible.

The OSI Networking Model

A final complication has been the proliferation of multimedia and peer-to-peer (P2P)
protocols used in both real-time communication software and popular networked games.
These protocols are antithetical to today’s firewall technology. Today, specific software solu-
tions must be built and deployed for each application protocol. The firewall architectures
for easily and economically handling these protocols are in process in the standards com-
mittees’ working groups.

It’s important to keep in mind that the combination of firewalling, DHCP, and NAT
introduces complexities that cause sites to have to compromise system security to some
extent in order to use the network services that the users want. Small businesses often
have to deploy multiple LANs and more complex network configurations to meet the
varying security needs of the individual local hosts.

Before going into the details of developing a firewall, this chapter introduces the basic
underlying concepts and mechanisms on which a packet-filtering firewall is based. These
concepts include a general frame of reference for what network communication is, how
network-based services are identified, what a packet is, and the types of messages and
information sent between computers on a network.

The 0S| Networking Model

The OSI (Open System Interconnection) model represents a network framework based
on layers. Each layer in the OSI model provides distinct functionality in relation to the
other layers. The OSI model contains seven layers, as shown in Figure 1.1.

The layers are sometimes referred to by number, with the lowest layer (Physical) being
Layer 1 and the highest layer (Application) being Layer 7. If you hear someone refer to a

Application

Presentation

Session

Transport

Network

Datalink

Physical

Figure 1.1 The seven layers of the OSI model

Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

“Layer 3 switch,” he or she is referring to the third layer of the OSI model. As a person
interested in security and intrusion detection, you must know the layers of the OSI model
to fully understand the attack paths that could compromise your systems.

Each layer in the OSI model is important. The protocols you use every day, such as IP,
TCP,ARP, and others, reside on the various layers of the model. Each layer has its own
distinct function and role in the communication process.

The Physical layer of the OSI model is occupied by the media itself, such as the cabling
and related signaling protocols; in other words, transferring the bits. For the most part,
the Physical layer is of less concern to the network intrusion analyst beyond securing the
devices and cabling themselves. Because this book doesn’t really talk much about physical
security (how interesting are door locks?), I won’t be devoting more time to the Physical
layer of the OSI model either. Naturally, the steps you take to secure physical wires are dif-
ferent from those you would take to attempt to secure wireless devices.

The next layer above Physical is the Datalink layer. The Datalink layer transfers the
data over the given medium and is responsible for things such as detection and recovery
from errors in transmission. The Datalink layer is also the layer where physical hardware
addresses are defined, such as an Ethernet card’s Media Access Control (MAC) address.

Above the Datalink layer, the Network layer is the all-important third layer in IP
networks. This layer is responsible for the logical addressing and routing of data. IP is a
Network-layer protocol, which means that the Network layer is the layer on which IP
addresses and subnet masks are used. Routers and some switches operate at Layer 3, mov-
ing data between both logically and physically divided networks.

The fourth layer, the Transport layer, is the primary layer on which reliability can be
built. Protocols that exist at the Transport layer include TCP and UDP. The fifth layer is
the Session layer, within which sessions are built between endpoints. The sixth layer, Pre-
sentation, is primarily responsible for communication with the Application layer above
it, and it also defines such things as encryption to be used. Finally, the Application layer is
responsible for displaying data to the user or application.

Aside from the OSI model, there exists another model, the DARPA model, sometimes
called the TCP/IP reference model, which is only four layers. The OSI model has become
the traditional or de facto model on which most network discussions take place.

As data moves from an application down the layers of the OSI model, the protocol at
the next lower layer may add its own information onto the data. This data usually consists
of a header that is prepended onto the data from the next highest level, though sometimes
a trailer is added as well. This process, called encapsulation, continues until the data is trans-
mitted across the physical medium. In the case of Ethernet, the data is known as a frame
when it is transmitted. When the Ethernet frame arrives at its destination, the frame then
begins the process of moving up the layers of the OSI model, with each layer reading the
header (and possibly trailer) information from the corresponding layer of the sender. This
process is called demultiplexing.

The Internet Protocol 7

Connectionless versus Connection-Oriented Protocols

At some layers of the OSI model, protocols can be defined in terms of one of their prop-
erties, connectionless or connection oriented. This definition refers to the methods that
the protocol contains for providing such things as error control, flow control, data seg-
mentation, and data reassembly.

Think of connection-oriented protocols in terms of a telephone call. Generally there
is an acceptable protocol for making a phone call and having a conversation. The person
making the call, the initiator of the communication, opens the communication by dial-
ing a telephone number. The person (or machine, as is the ever-increasing case) at the
other end receives the request to begin a telephone conversation. The request to initiate
a telephone conversation is frequently indicated by the ringing of the telephone on the
receiver’s end. The receiver picks up the telephone and says “Hello” or some other form
of greeting. The initiator then acknowledges this greeting by responding in kind. At this
point, it’s safe to say that the conversation or call setup has been initiated. From this point
forward, the conversation ensues. During the conversation if something goes wrong such
as noise on the line, one of the parties may ask the other to repeat his or her last state-
ment. Most of the time when a call is complete, both sides will indicate that they are done
with the conversation by saying “Goodbye.” The call ends shortly thereafter.

The example just given provides a semi-reasonable picture of a connection-oriented
protocol such as TCP.There are exceptions to the rule, just as there can be exceptions or
errors with the TCP protocol. For example, sometimes the initial call fails for technologi-
cal reasons beyond the control of the caller or receiver.

On the other hand, a connectionless protocol is more akin to a postcard sent through
the mail. After the sender writes a message on the postcard and drops it into the mailbox,
the sender (presumably) loses control over that message. The sender receives no direct
acknowledgment that the postcard was ever delivered successfully. Examples of connec-
tionless protocols include UDP and IP itself.

Next Steps

From here, I'm going to jump into a more detailed look at the Internet Protocol (IP).
However, I strongly recommend that you spend some additional time learning about the
OSI model and the protocols themselves. Knowledge of the protocols and the OSI model
is vital to a security professional. I highly recommend the book TCP/IP Illustrated, Vol-
ume 1, Second Edition, by Kevin R. Fall and W. Richard Stevens as a book that is indispens-
able on any computer professional’s desk.

The Internet Protocol

The Internet Protocol is the basis on which the Internet operates. Together with protocols
at other layers, the IP layer provides communications for countless applications. IP is a
connectionless protocol providing Layer 3 routing functions.

Hi va- Net wor k. Cormr A

http://www.hiva-network.com/

Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

IP Addressing and Subnetting

As you already know, but I feel compelled to write, IP addresses for version 4 of IP (IPv4)
consist of four 8-bit numbers separated by periods, known as the “dotted quad” or “dotted
decimal” notation. For IP version 6 (IPv6), addresses are 128-bit and are shown as eight
groups of hexadecimal digits each separated by a colon. Although seemingly everyone
understands or at least has seen an IP address, it certainly seems as though fewer and fewer
understand subnetting and the subnet masks that are an important part of the IP address-
ing scheme. This section briefly looks at IP addressing and subnetting.

IPv4 addresses are divided into different classes rather than being an entirely flat address
space. The classes for IPv4 addresses are shown in Table 1.1.

In practice, only addresses in Classes A through C are for general Internet use. How-
ever, some readers may have experience with Class D addresses, frequently used for multi-
cast. Class E is the experimental and unallocated range.

Special IP Addresses
There are three major special cases of IP addresses:

= Network address 0—As noted under Class A addresses, network address 0 is not
used as part of a routable address for IPv4. It is represented as : : /0 for IPv6. When
used as a source address, its only legal use is during initialization when a host is
attempting to have its IP address dynamically assigned by a server. When used as a
destination, only address 0.0.0.0 has meaning, and then only to the local machine
as referring to itself, or as a convention to refer to a default route.

= Loopback network address 127—As noted under Class A addresses, network
address 127 is not used as part of a routable address. The IPv6 loopback address
is represented as 0:0:0:0:0:0:0:1 or, more typically, reduced to : : 1. Loopback
addresses refer to a private network interface supported by the operating system.
The interface is used as the addressing mechanism for local network-based services.
In other words, local network clients use it to address local servers. Loopback traffic
remains entirely within the operating system. It is never passed to a physical network
interface. Typically, 127.0.0.1 is the only loopback address used for IPv4 and : : 1
for IPv6, referring to the local host.

®m Broadcast addresses—Broadcast addresses are special addresses applying to all
hosts on a network. There are two major categories of broadcast addresses. Limited
broadcasts are not routed but are delivered to all hosts connected to the same
physical network segment. All the bits in both the network and the host fields of the
IP address are set to one, as 255.255.255.255. Network-directed broadcasts are
routed, being delivered to all hosts on a specified network. The IP address’s network
field specifies a network. The host field is usually all ones, asin 192.168.10.255.
Alternatively, you might sometimes see the address specified as the network address,
asin 192.168.10.0. IPv6 doesn’t use broadcast addresses in this sense but rather
uses multicasting to communicate with groups of hosts.

The Internet Protocol

Table 1.1 Internet Addresses

Class Address Range

A 0.0.0.0t0127.255.255.255
B 128.0.0.0to0 191.255.255.255
C 192.0.0.0to0 223.255.255.255
D 224.0.0.0t0239.255.255.255
E and unallocated 240.0.0.0to0 255.255.255.255

The IPv4 header consists of a number of fields and totals 20 bytes, not including
optional option fields that can be included as part of the header. The IPv6 header is a
320-bit header. The IPv4 header is shown in Figure 1.2.

The IPv4 header begins with 4 bits indicating the version, currently version 4, fol-
lowed by 4 bits indicating the length of the header. The header itself is normally 20 bytes
plus optional options. The maximum length of the IPv4 header is 60 bytes. The next
field, Differentiated Services Code Point (DSCP), is 6 bits in length followed by 2 bits for
Explicit Congestion Notification (ECN).

The first number of an IP address indicates the class of the address. Because each num-
ber within the dotted decimal notation is 8 bits, the possible values for each number are
0 through 255.The class indicates the default number of bits devoted to the network
portion of the address versus the number of bits devoted to the host identification with a
given address. The division between the network portion of the address and the host por-
tion of the address is important because it is the basis of subnet addressing.

Aside from classes, there are three types of addresses available on the Internet: unicast,
multicast, and broadcast. Unicast addresses correspond to a single network interface on the
Internet. Multicast addresses correspond to a group of hosts that ask to be included within

Version | Hdr Len TOS Total Datagram Len
Packet ID Fl Fragment Offset
TTL Protocol Header Checksum

Source Address

Destination Address

(IP Options) (Padding)

Figure 1.2 The IPv4 header

10

Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

Table 1.2 Default Subnet Masks

Class Default Subnet Mask
A 255.0.0.0

B 255.255.0.0

C 255.255.255.0

that group. Broadcast addresses are used by hosts that want to send data to every host on a
given subnet.

Each class of address has a default subnet mask that indicates the division between the
network and host portions of a given address. That’s quite a mouthful, so I'll give examples
and then there will be a quiz later. Kidding!

The default subnet masks for Classes A through C are given in Table 1.2.

You’ve undoubtedly seen and typed these numbers when configuring network settings.
As previously stated, the subnet mask indicates the division between the network and the
host portions of an IP address. The unmasked portion, known as the host portion, of the
address comprises the logical network on which a given host resides. In other words, with
a Class C subnet mask of 255.255.255.0, there can be a total of 254 hosts on the net-
work. An astute reader might notice that there are really 256 addresses but only 254 hosts.
Within a given logical IP network there are two special addresses, the network address and
the broadcast address. This is true regardless of the size of the network. In the case of the
Class C subnet example, the network address ends with .0 and the broadcast address ends
with .255.

As Table 1.2 illustrates, of the total 32 bits in an IPv4 address, a Class A subnet mask
uses 8 bits, a Class B subnet mask uses 16 bits, and a Class C subnet mask uses 24 bits.
When a network is divided along traditional address class boundaries using the default
subnet mask, it is said to be a classful network. As you might expect, there are times when
it would be beneficial to use a much smaller network. For example, two IP routers that
only need to transmit between each other would use an entire Class C network using
traditional classful subnetting. Luckily, classless subnetting is also possible.

Using classless subnetting, officially called Classless Inter Domain Routing (CIDR),
you can divide networks according to need by adding or subtracting bits from the subnet
mask. This is useful for conservation of addresses because it enables the network adminis-
trator to customize the size of the network based more on need and convenience than on
the classful boundaries. Jumping back to the example with two routers that communicate
solely with each other, using CIDR a network administrator can create a network of just
two hosts with the resulting subnet mask being 255.255.255.252.

I'll carry that example a little further. The two routers only need to talk to each other
within this network so that they can route traffic between two difterent IP networks. The
network administrator assigns one router the address 192.168.0.1 and the other router
the address 192.168.0.2 and gives both a subnet mask of 255.255.255.252. Given that
subnet mask, there are two available IP addresses with which a host could be addressed.
The network address for this logical network is 192.168.0.0 and the broadcast address is

The Internet Protocol 11

192.168.0.3. Using CIDR, the network administrator can now use the remainder of the
192.168.0 network, following CIDR rules, for other hosts.

You'll frequently see subnet notation referred to with a /NN with NV being the number
of bits to be masked. For example, a Class C has 24 bits for the network portion of the
address, which means that it could be referred to as /24.A Class B would be /16 and a
Class A would be /8. Going back to the two-router example, the CIDR notation for this
address 1s /30 because 30 bits of the address are consumed by the subnet.

Why is subnetting important? The simple answer is that a subnet defines the larg-
est possible broadcast space for a given network. Within a given subnet a host can send a
broadcast to all other hosts in that subnet. In practice, though, broadcasts are limited more
by physical limitations than by the logical limitations presented by subnet masks.You can
connect only so many devices to a switch before you may (I repeat, may) start to see per-
formance degradation and would likely divide the network into smaller logical sections.
Without subnetting we would have a very large, flat address space, which would be much
slower than the hierarchical addressing currently used.

IP Fragmentation

There are times when an IP datagram is larger than the maximum allowed size for the
physical medium on which it will be traveling. This maximum allowed size is known as
the Maximum Transmission Unit, or MTU. If an IP datagram is larger than the MTU for
the medium, the datagram will need to be split into smaller chunks before being transmit-
ted. For Ethernet, the MTU is 1500 bytes. The process of splitting an IP datagram into
smaller pieces is called fragmentation.

Fragmentation is handled at the IP layer of the OSI model and is thus transparent to
higher-layer protocols such as TCP and UDP. As an administrator, you should care about
fragmentation insofar as it can affect application performance if one of the fragments of
a large segment gets lost. In addition, as a security administrator, you should understand
fragmentation because it has been a path for attack in the past. Realize, however, that any
intermediary router or other devices within the communication path may cause fragmen-
tation and you may not even know it.

Broadcasting and Multicasting

‘When a device wants to send data to other devices on the same network segment, it can
send the data to a special address known as a broadcast address to accomplish this task. On
the other hand, a multicast is sent to the devices that belong to the multicast group, some-
times called subscribers.

Imagine a large, flat network in which every computer and device is connected to the
others. In such an environment every network device sees every other network device’s
traffic. In this type of network, each device sees the traffic and determines whether it cares
about the traffic in question. In other words, it looks to see whether the data is addressed
to it or to another device. If the data is addressed to the device, it passes the data up to the
layers of the OSI model. At the interface level for Ethernet, the device looks for its MAC

Hi va- Net wor k. Cormr A

http://www.hiva-network.com/

12

Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

address or the hardware address associated with the network interface itself. Remember
that IP addresses are relevant only to protocols at higher layers on the OSI model.

Aside from frames addressed to the device itself, two special cases exist that might cause
an interface to accept data and pass it up to higher layers. These two special cases are mul-
ticast and broadcast. Multicast is a method for transmitting data to a subset of devices that
are said to be subscribed to that multicast.

On the other hand, broadcasts are meant to be processed by every device that receives
them. Primarily two types of broadcasts are available: directed broadcast and limited
broadcast. By far, directed broadcasts are the more common. Limited broadcasts are used
by devices attempting to configure themselves through DHCP, BOOTP, or another con-
figuration protocol. A limited broadcast is sent to the address 255.255.255.255 and
should never pass through a router. This is a key hint for anyone who controls a router or
other routing device such as a routing firewall. If you receive a packet on your external,
Internet-facing router interface addressed to 255.255.255.255, chances are that there is
a misconfigured device or, more likely, that a potential attacker is attempting to probe your
network.You may see a limited broadcast on an internal interface for a router if you have
devices that configure themselves on boot using DHCP.

Directed broadcasts are the most common form of broadcast you'll see on any given
network. This is because broadcasts are used by the Address Resolution Protocol (ARP,
discussed later) to determine the MAC address for an IP address on a given subnet. A
directed broadcast is a broadcast that is limited by the network or subnet in which the
sending device resides. By default, when a router interface encounters a directed broad-
cast, it does not pass it along to other subnets through the router. Most routers can be
configured to allow this behavior; however, one should be careful so as not to create a
broadcast storm by forwarding broadcasts through a router. A subnet broadcast is a data
frame addressed to the broadcast address in a given subnet. This broadcast address varies
depending on the subnet mask for the given subnet. In a Class C subnet (255.255.255.0
or /24), the default broadcast address is the highest available address, thus the one end-
ing in .255. For example, in the 192.168.1.0/24 network, the broadcast address is
192.168.1.255.

ICMP

Holding a special place, some say, within the IP layer is ICMP. You're probably familiar
with ICMP because ping uses ICMP. ICMP, or Internet Control Message Protocol,
has several uses, including being the underlying protocol for the ping command. There
are 15 functions within ICMP, each denoted by a type code. For instance, the type for an
ICMP echo request (think: ping) is 8; the reply to that request, aptly titled an echo reply,
is type 0. Within the different types there can also exist codes to specify the condition for
the given type. The types and codes for ICMP messages are shown in Table 1.3.

The type and the code of an ICMP message are contained in the ICMP header, shown
in Figure 1.3.

Table 1.3 ICMP Message Types and Codes

Type

Code

Description

0
3

10
11

12
13
14
15
16
17
18

0

o < o Ul W N P O

11
12
13
14
15

o O O W N B o

O O O O O o o +r o

Echo Reply

Destination Unreachable

Network Unreachable

Host Unreachable

Protocol Unreachable

Port Unreachable

Fragmentation Needed and DF Set
Source Route Failed

Destination Network Unknown
Destination Host Unknown

Source Host Isolated

Destination Network Administratively Prohibited
Destination Host Administratively Prohibited
Network Unreachable for Type of Service
Host Unreachable for Type of Service
Communication Administratively Prohibited
Host Precedence Violation

Precedence Cutoff in Effect

Source Quench (deprecated)

Redirect

Network Redirect

Host Redirect

Type of Service and Network Redirect
Type of Service and Host Redirect

Echo Request

Router Advertisement

Router Selection

Time Exceeded

TTL (Time to Live) Exceeded in Transit
Fragment Reassembly Time Exceeded
Parameter Problem

Timestamp Request

Timestamp Reply

Information Request (deprecated)
Information Reply (deprecated)

Address Mask Request (deprecated)
Address Mask Reply (deprecated)

The Internet Protocol

13

14

Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

Message Type Sub Type Code Checksum

Message ID Sequence Number

(Optional ICMP Data Structure)

Figure 1.3 The ICMP header

Transport Mechanisms

Internet Protocol defines a Network-layer protocol of the OSI model. There are also
other Network-layer protocols, but I will be concentrating solely on IP because it is by far
the most popular Network-layer protocol in use today. Above the Network layer on the
OSI model is the Transport layer. As you might expect, the Transport layer has its own set
of protocols. Two of the Transport-layer protocols are of interest: UDP and TCP. This sec-
tion examines each of these protocols.

UDP

UDP, or User Datagram Protocol, is a connectionless protocol used for such services as
DNS queries, SNMP, and RADIUS. Being connectionless, UDP is akin to a “fire and for-
get” type of protocol. The client sends a UDP packet, sometimes referred to as a datagram,
and assumes that the server will receive the packet. It’s up to a higher-layer protocol to
assemble the packets in order. The UDP header, shown in Figure 1.4, is 8 bytes in length.

The UDP header begins with the source port number and the destination port num-
ber. Next up is the length of the entire packet, including data. Obviously because the
header itself is 8 bytes in length, the minimum value for this portion of the header is 8.
The final portion of the UDP header is the checksum, which includes both the header
and the data.

TCP

TCP, an abbreviation for Transmission Control Protocol, is a connection-oriented proto-
col that is frequently used with IP. Referring to TCP as connection oriented means that it
provides reliable service to the layers above it. Recall the telephone conversation analogy

Source Port Destination Port

UDP Packet Length Checksum

Figure 1.4 The UDP header

Transport Mechanisms 15

Source Port Destination Port

Sequence Number

Acknowledgment Number

(g)f?stgt Unused Flags Window

Checksum Urgent Pointer

Figure 1.5 The TCP header

given earlier in this chapter. As in that analogy, two applications wanting to communicate
using TCP must also establish a connection (sometimes referred to as a session). The TCP
header is shown in Figure 1.5.

As you can see from Figure 1.5, the 20-byte TCP header is significantly more compli-
cated than the other protocol headers shown in this chapter. Like the UDP header, the
TCP header begins with both the source and the destination ports. The combination of
the source and destination ports along with the IP addresses of the sender and receiver
identifies the connection. The TCP header has a 32-bit sequence number and a 32-bit
acknowledgment. Remember that TCP is a connection-oriented protocol and provides
reliable service. The sequence and acknowledgment numbers are the primary (but not the
only) mechanisms used to provide that reliability. As data is passed down to the Transport
layer, TCP divides the data into what it believes to be the most appropriate size. These
pieces are known as TCP segments. As TCP sends data down the protocol stack, it creates a
sequence number that indicates the first byte of data for the given segment. On the oppo-
site end of the communication, the receiver sends an acknowledgment indicating that the
segment has been received. The sender keeps a timer running, and if an acknowledgment
isn’t received in a timely fashion, the segment will be resent.

Another mechanism for reliability that TCP provides is a checksum on both the header
and the data. If the checksum set within the header by the sender does not match the
checksum as computed by the receiver, the receiver will not send an acknowledgment. If
an acknowledgment gets lost in transit, the sender will likely send another segment with
the same sequence number. In such an event, the receiver will simply discard the repeated
segment.

A 4-bit field is used for header length, including any options provided as part of the
header. There are several individual bit flags within the TCP header: URG, ACK, PSH, RST,
SYN, FIN, NS, CWR, and ECE. A description of these flags is contained in Table 1.4.

The 16-bit Window field is used to provide a sliding window mechanism. The receiver
sets the window number to indicate the size that the receiver is ready to receive, begin-
ning with the acknowledgment number. This is a form of flow control for TCP.

Hi va- Net wor k. Cormr A

http://www.hiva-network.com/

Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

Table 1.4 TCP Header Flags

Flag Description

URG Indicates that the urgent pointer portion of the header should be examined.

ACK Indicates that the acknowledgment number should be examined.

PSH Indicates that the receiver should hand this data up to the next layer as soon as
possible.

RST Indicates that the connection should be reset.

SYN Initiates a connection.

NS ECN nonce concealment protection.

CWR Congestion Window Reduced to indicate that a packet with the ECE flag was set and
congestion control responded.

ECE If the SYN flag is set to 1, this flag indicates that the TCP peer is ECN capable. If
SYN is set to 0, this flag indicates that a Congestion Experienced flag was set in an
IP header.

FIN Indicates that the sender (could be either side of the connection) is done sending
data.

The 16-bit urgent pointer indicates the offset from the sequence number where urgent
data ends. This enables the sender to indicate that there is data that should be handled in
an urgent manner. This pointer can be used in conjunction with the psH flag as well.

Now that you have a feeling for the TCP header, it’s time to examine how TCP con-
nections are established and ended.

TCP Connections

Whereas UDP is a connectionless protocol, TCP is a connection-oriented protocol.
With UDP there is no concept of a connection; there is only a sender and a receiver of a
UDP datagram. With TCP, on the other hand, either side of the connection can send or
receive data, possibly doing both at the same time. This is what makes TCP a full-duplex
protocol. The process of establishing a TCP connection is sometimes called the three-way
handshake—you’ll see why shortly.

With a connection-oriented protocol, there is a specific set of procedures that takes
place in order to establish a TCP connection. During this process, various states exist for
the TCP connection. The connection establishment procedures and their corresponding
states are detailed next.

The side of the communication wanting to initiate the connection (client) sends a TCP
segment with the SYN flag set, as well as an Initial Sequence Number (ISN) and the port
number for the connection to the other side, normally referred to as the server side of the
connection. This is frequently referred to as a SYN packet or SYN segment, and the con-
nection is said to be in the SYN_SENT state.

The server side of the connection responds with a TCP segment with the SYN flag set
as well as the ACK flag set. In addition, the server sets the ISN with a value one higher than

Don’t Forget Address Resolution Protocol 17

the ISN sent by the client. This is frequently referred to as a SYN-ACK packet or SYN-ACK
segment, and the connection is said to be in the SYN_RCVD state.

The client then acknowledges the SYN-ACK by sending another segment with the ACk
flag set and by incrementing the ISN by one. This completes the three-way handshake and
the connection is said to be in an ESTABLISHED state.

As with the protocol for connection initiation, there is also a protocol for connection
termination. The protocol for terminating a TCP connection is four steps as opposed
to the three for connection establishment. The additional step is due to the full-duplex
nature of a TCP connection insofar as either side may be sending data at any given time.

Closing a connection on one side is accomplished by that side sending a TCP segment
with the FIN flag set. Either side of the connection can send a FIN to indicate that it is
done sending data. The other side can still send data. However, in practice, after a FIN is
received, the connection termination sequence will normally begin. For this discussion I'll
call the side wanting to terminate the connection the client side.

The termination process begins with the client sending a segment with the FIN flag
set, known as the CLOSE_WAIT state on the server side and FIN_WAIT_1 on the client side.
After the FIN is received by the server, the server sends an ACK back to the client, incre-
menting the sequence number by one. At this point the client goes into the FIN_WAIT 2
state. The server also indicates to its own higher-layer protocols that the connection is ter-
minated. Next, the server closes the connection, which causes a segment with the FIN flag
to be sent to the client, which in turn causes the server to go into a LAST_ACK state while
the client goes into a TIME_WAIT state. Finally, the client acknowledges this FIN with an
ACK and increments the sequence number by one, which causes the connection to go into
a CLOSED state. Because TCP connections can be terminated by either side,a TCP con-
nection can exist in a half-closed mode in which one end has initiated the FIN sequence
but the other side has not done so.

TCP connections can also be terminated by one end sending a segment with the reset
(rsT) flag set. This tells the other side to use an abortive release method. This is as opposed to
the normal termination of a TCP connection, sometimes referred to as an orderly release.

An optional part of the TCP connection sequence is the establishment of the Maxi-
mum Segment Size (MSS).The MSS is the maximum chunk of data that the respective
end of communication is able to receive. Because the MSS is the maximum size that a
given end of the connection can receive, it’s perfectly fine to send a chunk of data smaller
than the MSS. In general, you should consider a larger MSS to be good, keeping in mind
that fragmentation should be avoided because it adds overhead (the additional bytes for
each IP and TCP header required for fragmented packets).

Don’t Forget Address Resolution Protocol

Address Resolution Protocol, or ARP, is the protocol used to link a physical device such as
a network card to an IP address. Network devices use a 48-bit address (known as a MAC
address) that is unique across all devices in a given segment. Although sometimes devices
have the same MAC address, this is quite rare within the same network segment.

18

Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

‘When capturing traffic in a network, you will encounter ARP packets at varying fre-
quencies as devices locate one another as they pass traftic. ARP requests are broadcast so
that all devices will see them. However, most ARP replies are unicast so that only the
requesting device will see the reply. ARP traffic is not normally passed between network
segments. Therefore, a router can be configured to provide proxy ARP service so that it
can answer for ARP requests in multiple network segments.

Hostnames and IP Addresses

People like to use words to name things, such as giving computers names like
mycomputer.mydomain.example.com. Technically, it’s not the computer that’s being
named, but the network interface in the computer. If the computer has multiple network
cards, each card will typically have a different name and address and will most likely be on
a difterent network in a different subdomain.

Hostname elements are separated by dots. In the case of mycomputer.mydomain
.example. com, the leftmost element, mycomputer, is the hostname.The .mydomain,
.example, and .com are elements of the domains this network card is a member of.
Network domains are hierarchical trees. What is a domain? It’s a naming convention. The
hierarchical domain tree represents the hierarchical nature of the global Domain Name
Service (DNS) database. DNS maps between the symbolic names people give to comput-
ers and networks and the numeric addresses the IP layer uses to uniquely identify network
interfaces.

DNS maps in both directions: IP address to name and name to IP address. When you
click on a URL in your web browser, the DNS database 1s consulted to find the unique
IP address associated with that hostname. The IP address is passed to the IP layer to use as
the destination address in the packet.

IP Addresses and Ethernet Addresses

Whereas the IP layer identifies network hosts by their 32- or 128-bit IP address, the
subnet or link layer identifies the Ethernet card by its unique 48-bit Ethernet address,
or MAC address, which the manufacturer burns into the card and can also be set by the
user. IP addresses are passed between the endpoint hosts to identify themselves. Ethernet
addresses are passed between adjacent hosts and routers.

Ordinarily, the Ethernet address could be ignored in a firewall discussion. The Layer 2
hardware Ethernet address is not visible to the Layer 3 IP level or Layer 4 Transport level.
As you’ll see in later chapters, the Linux firewall administration program has the extended
capability to access and filter on the MAC address. There are specialized uses for this
firewall functionality, but it’s important to remember that Ethernet addresses do not pass
end-to-end across the network. Ethernet addresses are passed between adjacent network
interfaces, or hosts and routers. They are not passed through a router unchanged.

Service Ports: The Door to the Programs on Your System 19

Routing: Getting a Packet from Here to There

Neither a residential site nor most businesses are likely to run routing protocols such as
RIP or OSPE In these cases, routing tables are set up statically, by hand. There’s a hint in
there. If you’re running a routing protocol such as RIP, chances are that you don’t need to
be; you could operate a more efficient network without that unnecessary overhead. Typi-
cally, most sites have a default gateway device, which is the network that interface packets
are sent out on when the destination address’s route is unknown. The service provider
usually provides a single router address, which is the default Internet gateway for the site’s
local network.

Service Ports: The Door to the Programs
on Your System

Network-based services are programs running on a machine that other computers on
the network can access. The service ports identify the programs and individual sessions or
connections taking place. Service ports are the numeric names for the different network-
based services. They are also used as numeric identifiers for the endpoints of a particular
connection between two programs. Service port numbers range from 0 to 65535.

Server programs (that is, daemons) listen for incoming connections on a service port
assigned to them. By historical convention, major network services are assigned well-
known, or famous, port numbers in the lower range from 1 to 1023.These port number—
to—service mappings are coordinated by the Internet Assigned Numbers Authority
(IANA) as a set of universally agreed-on conventions or standards.

An advertised service is simply a service available over the Internet from its assigned
port. If your machine isn'’t offering a particular service, and someone tries to connect to
the port associated with that service, nothing will happen. Someone is knocking on the
door, but no one lives there to answer. For example, HT TP is assigned to port 80 (though,
again, there’s no reason why you couldn’t run it on port 8080, 20943, or any other avail-
able port). If your machine isn’t running an HTTP-based web server and someone tries
to connect to port 80, the client program receives a connection shutdown message as an
error message from your machine indicating that the service isn’t offered.

The higher port numbers from 1024 to 65535 are called unprivileged ports. They serve
a dual purpose. For the most part, these ports are dynamically assigned to the client end
of a connection. The combination of client and server port number pairs, along with
their respective IP host addresses, and the transport protocol used, uniquely identifies the
connection.

Additionally, ports in the 1024 through 49151 range are registered with the IANA.
These ports can be used as part of the general unprivileged pool, but they are also associ-
ated with particular services such as SOCKS or X Window servers. Originally, the idea
was that services offered on the higher ports were not running with root privilege. They

Hi va- Net wor k. Cormr A

http://www.hiva-network.com/

20 Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

were for use by user-level, nonprivileged programs. The convention may or may not hold
in any individual case.

Service Name-to-Port Number Mappings
Linux distributions are supplied with a list of common service port numbers. The list is
found in the /etc/services file.

Each entry consists of a symbolic name for a service, the port number assigned to it, the
protocol (TCP or UDP) the service runs over, and any optional nicknames for the service.
Table 1.5 lists some common service name-to—port number mappings, taken from Red Hat
Linux.

Table 1.5 Common Service Name-to-Port Number Mappings

Port Name Port Number/Protocol Alias

ftp 21/tcp --

ssh 22/tcp --

smtp 25/tcp mail

domain 53/tcp nameserver
domain 53/udp nameserver
http 80/tcp www www-http
pop3 110/tcp pop-3

nntp 119/tcp readnews untp
ntp 123/udp --

https 443 /tcp --

Note that the symbolic names associated with the port numbers vary by Linux distribution
and release. Names and aliases differ; port numbers do not.

Also note that port numbers are associated with a protocol. The IANA has attempted to
assign the same service port number to both the TCP and the UDP protocols, regardless of
whether a particular service uses both transport modes. Most services use one protocol or
the other. The Domain Name Service uses both.

A Typical TCP Connection: Visiting a Remote Website

As an illustration, a common TCP connection is going to a website through your browser
(connecting to a web server). This section illustrates the aspects of connection establish-
ment and ongoing communication that will be relevant to IP packet filtering in later
chapters.

Service Ports: The Door to the Programs on Your System

‘What happens? As shown in Figure 1.6, a web server is running on a machine some-
where, waiting for a connection request on TCP service port 80.You click on the link for
a URL in your web browser. Part of the URL is parsed into a hostname; the hostname is
translated into the web server’s IP address; and your browser is assigned an unprivileged
port (for example, TCP port 14000) for the connection. An HTTP message for the web
server is constructed. It’s encapsulated in a TCP message, wrapped in an IP packet header,
and sent out. For our purposes, the header contains the fields shown in Figure 1.6.

Additional information is included in the header that isn’t visible at the packet-filtering
level. Nevertheless, describing the sequence numbers associated with the SYN and ACk
flags helps clarify what’s happening during the three-way handshake. When the client
program sends its first connection request message, the SYN flag is accompanied by a syn-
chronization sequence number. The client is requesting a connection with the server and
passes along a sequence number it will use as the starting point to number all the rest of
the data bytes the client will send.

The packet is received at the server machine. It’s sent to service port 80.The server
is listening to port 80, so it’s notified of an incoming connection request (the SYN con-
nection synchronization request flag) from the source IP address and port socket pair
(your IP address, 14000).The server allocates a new socket on its end (web server
IP address, 80) and associates it with the client socket.

The web server responds with an acknowledgment (ACK) to the SYN message, along
with its own synchronization request (SYN), as shown in Figure 1.7.The connection is
now half open.

Two fields not visible to the packet-filtering level are included in the SYN-ACK header.
Along with the ACK flag, the server includes the client’s sequence number incremented by

=

= g
Web Browser Web Server
Port 14000 > Port 80

Address 192.168.10.30 Address 10.10.22.85

Protocol: TCP
Source Address: 192.168.10.30
Source Port: 14000
Destination Address: 10.10.22.85
Destination Port: 80 (www)
Flags: SYN (Connection Synchronization Request)

Figure 1.6 A TCP client connection request

21

22

Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

Web Browser Web Server
Port 14000 Port 80
Address 192.168.10.30 Address 10.10.22.85

A

Protocol: TCP
Source Address: 10.10.22.85
Source Port: 80 (www)
Destination Address: 192.168.10.30
Destination Port: 14000
Flags: ACK (SYN Acknowledgment)
SYN (Connection Synchronization Request)

Figure 1.7 A TCP server connection request acknowledgment

the number of contiguous data bytes received. The purpose of the acknowledgment is to
acknowledge the data the client referred to by its sequence number. The server acknowl-
edges this by incrementing the client’s sequence number, effectively saying it received the
data, and sequence number plus one is the next data byte the server expects to receive.
The client is free to throw its copy of the original SYN message away now that the server
has acknowledged receipt of it.

The server also sets the sSYN flag in its first message. As with the client’s first message,
the SYN flag is accompanied by a synchronization sequence number. The server is passing
along its own starting sequence number for its half of the connection.

This first message is the only message the server will send with the syN flag set. This
and all subsequent messages have the ACK flag set. The presence of the ACK flag in all server
messages, as compared to the lack of an ACK flag in the client’s first message, will be a criti-
cal difference when we get to the information available for constructing a firewall.

Your machine receives this message and replies with its own acknowledgment, after
which the connection is established. Figure 1.8 shows a graphic representation of this.
From here on, both the client and the server set the ACK flag. The sYN flag won't be set
again by either program.

With each acknowledgment, the client and server programs increment their partner
process’s sequence number by the number of contiguous data bytes received, plus one,
indicating receipt of that many bytes of data, and indicating the next data byte in the
stream the program expects to receive.

As your browser receives the web page, your machine receives data messages from the
web server with packet headers, as shown in Figure 1.9.

Summary 23

Web Browser Web Server
Port 14000 > Port 80
Address 192.168.10.30 Address 10.10.22.85

Protocol: TCP
Source Address: 192.168.10.30
Source Port: 14000
Destination Address: 10.10.22.85
Destination Port: 80 (www)
Flags: ACK (Acknowledgment)

Figure 1.8 TCP connection establishment

= o
Web Browser Web Server
Port 14000 < Port 80

T
Address 192.168.10.30 l Address 10.10.22.85
I
1
1

Protocol: TCP
Source Address: 10.10.22.85
Source Port: 80 (www)
Destination Address: 192.168.10.30
Destination Port: 14000
Flags: ACK (Acknowledgment)

Figure 1.9 An ongoing TCP server-to-client connection

Summary

The simple examples in this chapter illustrate the information that IP packet-filtering
firewalls are based on. Chapter 2, “Packet-Filtering Concepts,” builds on this introduction,
describing how the ICMP, UDP, and TCP message types and service port numbers are
used to define a packet-filtering firewall.

Hi va- Net wor k. Cormr A

http://www.hiva-network.com/

This page intentionally left blank

2

Packet-Filtering Concepts

What is a firewall? Over the years, the term has changed in meaning. According to
RFC 2647, “Benchmarking Terminology for Firewall Performance,” a firewall is “a device
or group of devices that enforces an access control policy between networks.” This defi-
nition is very broad, purposefully so in fact. A firewall can encompass many layers of the
OSI model and may refer to a device that does packet filtering, performs packet inspec-
tion and filtering, implements a policy on an application at a higher layer, or does any of
these and more.

A nonstateful, or stateless, firewall usually performs some packet filtering based solely
on the IP layer (Layer 3) of the OSI model, though sometimes higher-layer protocols are
involved in this type of firewall. An example of this type of device might include a bor-
der router that sits at the edge of a network and implements one or more access lists to
prevent various types of malicious traffic from entering the network. Some might argue
that this type of device isn’t a firewall at all. However, it certainly appears to fit within the
RFC definition.

A border router access list might implement many different policies depending on
which interface the packet was received on. It’s typical to filter certain packets at the edge
of the network connecting to the Internet. These packets are discussed later in this chapter.

As opposed to a stateless firewall, a stateful firewall is one that keeps track of the pack-
ets previously seen within a given session and applies the access policy to packets based
on what has already been seen for the given connection. A stateful firewall implies the
basic packet-filtering capabilities of a stateless firewall as well. A stateful firewall will, for
example, keep track of the stages of the TCP three-way handshake and reject packets that
appear out of sequence for that handshake. Being connectionless, UDP is somewhat trick-
ier to handle for a stateful firewall because there’s no state to speak of. However, a stateful
firewall tracks recent UDP exchanges to ensure that a packet that has been received relates
to a recent outgoing packet.

An Application-level gateway (ALG), sometimes referred to an as an Application-layer gate-
way, is yet another form of firewall. Unlike the stateless firewall, which has knowledge of
the Network and possibly Transport layers, an ALG primarily handles Layer 7, the Applica-
tion layer of the OSI model. ALGs typically have deep knowledge of the application data

26

Chapter 2 Packet-Filtering Concepts

being passed and can thus look for any deviation from the normal traffic for the application
in question.

An ALG will typically reside between the client and the real server and will, for all
intents and purposes, mimic the behavior of the real server to the client. In effect, local
traffic never leaves the LAN, and remote traffic never enters the LAN.

ALG sometimes also refers to a module, or piece of software that assists another fire-
wall. Many firewalls come with an FTP ALG to support FTP’s port mode data channel,
where the client tells the server what local port to connect to so that it can open the data
channel. The server initiates the incoming data channel connection (whereas, usually, the
client initiates all connections). ALGs are frequently required to pass multimedia protocols
through a firewall because multimedia sessions often use multiple connections initiated
from both ends and generally use TCP and UDP together.

ALG is a proxy. Another form of proxy is a circuit-level proxy. Circuit-level proxies don’t
usually have application-specific knowledge, but they can enforce access and authoriza-
tion policies, and they serve as termination points in what would otherwise be an end-
to-end connection. SOCKS is an example of a circuit-level proxy. The proxy server acts
as a termination point for both sides of the connection, but the server doesn’t have any
application-specific knowledge.

In each of these cases, the firewall’s purpose is to enforce the access control or security
policies that you define. Security policies are essentially about access control—who is and
is not allowed to perform which actions on the servers and networks under your control.

Though not necessarily specific to a firewall, firewalls many times find themselves
performing additional tasks, some of which might include Network Address Translation
(NAT), antivirus checking, event notification, URL filtering, user authentication, and
Network-layer encryption.

This book covers the ideas behind a packet-filtering firewall, both static and dynamic,
or stateless and stateful. Each of the approaches mentioned controls which services can be
accessed and by whom. Each approach has its strengths and advantages based on the dif-
fering information available at the various OSI reference model layers.

Chapter 1,“Preliminary Concepts Underlying Packet-Filtering Firewalls,” introduced
the concepts and information a firewall is based on. This chapter introduces how this
information is used to implement firewall rules.

A Packet-Filtering Firewall

At its most basic level, a packet-filtering firewall consists of a list of acceptance and denial
rules. These rules explicitly define which packets will and will not be allowed through the
network interface. The firewall rules use the packet header fields described in Chapter 1 to
decide whether to forward a packet to its destination, to silently throw away the packet, or
to block the packet and return an error condition to the sending machine. These rules can
be based on a wide array of factors, including the source or destination IP addresses, the
source and (more commonly) destination ports, and portions of individual packets such as
the TCP header flags, the types of protocol, the MAC address, and more.

A Packet-Filtering Firewall 27

MAC address filtering is not common on Internet-connected firewalls. Using MAC
filtering, the firewall blocks or allows only certain MAC addresses. However, in all likeli-
hood you see only one MAC address, the one from the router just upstream from your
firewall. This means that every host on the Internet will appear to have the same MAC
address as far as your firewall can see. A common error among new firewall administrators
is to attempt to use MAC filtering on an Internet firewall.

Using a hybrid of the TCP/IP reference model, a packet-filtering firewall functions at
the Network and Transport layers, as shown in Figure 2.1.

The overall idea is that you need to very carefully control what passes between the
Internet and the machine that you have connected directly to the Internet. On the exter-
nal interface to the Internet, you individually filter what’s coming in from the outside and
what’s going out from the machine as exactly and explicitly as possible.

For a single-machine setup, it might be helpful to think of the network interface as an
1/O pair. The firewall independently filters what comes in and what goes out through the
interface. The input filtering and the output filtering can, and likely do, have completely
different rules. Figure 2.2 depicts processing for rules in a flowchart.

This sounds pretty powerful, and it is; but it isn’t a surefire security mechanism. It’s
only part of the story, just one layer in the multilayered approach to data security. Not
all application communication protocols lend themselves to packet filtering. This type of

= g
Application Layer
Client and server
programs Telnet Client Web Server

Transport Layer

TCP and UDP protocols [~=~~~~7
and service ports

Firewall
TCP/UDP source and destination ports
TCP connection state flags
IP source and destination addresses
IP ICMP control codes

Network Layer

IP packets, IP
addresses, and ICMP [~=~——~~"
messages

Datalink Layer

Ethernet framesand [~—~—----- Network Interface Card
MAC addresses

Physical Layer

Copper wire, fiberoptic
cable, microwave, radio

Figure 2.1 Firewall placement in the TCP/IP reference model

Hi va- Net wor k. Cormr A

http://www.hiva-network.com/

28 Chapter 2 Packet-Filtering Concepts

Network interface

A
v
Incoming packet Match Rule 3?7
Y
Input chain 0
¥ T
Match Rule 1?
Match Rule 2?7

N

Match Rule 27
Match Rule 1?
A
@ Output chain
A
Match Rule 3? Outgoing packet

!

Figure 2.2 Input and output flowchart

filtering is too low-level to allow fine-grained authentication and access control. These
security services must be furnished at higher levels. IP doesn’t have the capability to verify
that the sender is who he or she claims to be. The only identifying information available
at this level is the source address in the IP packet header. The source address can be modi-
fied with little difficulty. One level up, neither the Network layer nor the Transport layer
can verify that the application data is correct. Nevertheless, the packet level allows greater,
simpler control over direct port access, packet contents, and correct communication pro-
tocols than can easily or conveniently be done at higher levels.

Without packet-level filtering, higher-level filtering and proxy security measures are
either crippled or potentially ineffective. To some extent, at least, they must rely on the
correctness of the underlying communication protocol. Each layer in the security protocol
stack adds another piece that other layers can’t easily provide.

Choosing a Default Packet-Filtering Policy

Choosing a Default Packet-Filtering Policy

As stated earlier in this chapter, a firewall is a device to implement an access control policy.
A large part of this policy is the decision on a default firewall policy.
There are two basic approaches to a default firewall policy:

= Deny everything by default, and explicitly allow selected packets through.
= Accept everything by default, and explicitly deny selected packets from passing through.
Without question, the deny-everything policy is the recommended approach. This

approach makes it easier to set up a secure firewall, but each service and related protocol
transaction that you want must be enabled explicitly (see Figure 2.3). This means that you

IP packet

Y

Firewall chain

Y
Match Rule 1? —> Accept
Match Rule 2? —> Accept

&

Match Rule 3? —> Accept

Policy: DENY

Figure 2.3 The deny-everything-by-default policy

29

30

Chapter 2 Packet-Filtering Concepts

must understand the communication protocol for each service you enable. The deny-
everything approach requires more work up front to enable Internet access. Some com-
mercial firewall products support only the deny-everything policy.

The accept-everything policy makes it much easier to get up and running right away,
but it forces you to anticipate every conceivable access type that you might want to dis-
able (see Figure 2.4). The danger is that you won't anticipate a dangerous access type until
it’s too late, or you’ll later enable an insecure service without first blocking external access
to it. In the end, developing a secure accept-everything firewall is much more work, much
more difficult, almost always much less secure, and, therefore, much more error-prone.

IP packet

Y

Firewall chain

A\
Match Rule 1? —> Deny
Match Rule 2? —> Deny

©

Match Rule 3? —> Deny

Policy: ACCEPT

Figure 2.4 The accept-everything-by-default policy

Filtering Incoming Packets 31

1

Return error

to sender Discard
Yes Yes
Y
<€— Packet
No No

Figure 2.5 Rejecting versus denying a packet

Rejecting versus Denying a Packet

The Netfilter firewall mechanism in iptables and nftables gives you the option of
either rejecting or dropping packets. What’s the difference? As shown in Figure 2.5, when
a packet is rejected, the packet is thrown away and an ICMP error message is returned to
the sender. When a packet is dropped, the packet is simply thrown away without any noti-
fication to the sender.

Silently dropping the packet is almost always the better choice, for three reasons. First,
sending an error response doubles the network traffic. The majority of dropped packets
are dropped because they are malevolent, not because they represent an innocent attempt
to access a service you don’t happen to offer. Second, a packet that you respond to can be
used in a denial-of=service (DoS) attack.Third, any response, even an error message, gives
the would-be attacker potentially useful information.

Filtering Incoming Packets

The input side of the external interface I/O pair, the input rule set, is the more interesting
in terms of securing your site. As mentioned earlier, you can filter based on source address,
destination address, source port, destination port, TCP status flags, and other criteria.
You’ll learn about all these pieces of information at one point or another in the following
sections.

Remote Source Address Filtering

At the packet level, the only means of identifying the IP packet’s sender is the source
address in the packet header. This fact allows for the possibility of source address spoof-
ing, in which the sender places an incorrect address rather than his or her own address in
the source field. The address might be a nonexistent address, or it might be a legitimate
address belonging to someone else. This can allow unsavory types to break into your

Hi va- Net wor k. Cormr A

http://www.hiva-network.com/

Chapter 2 Packet-Filtering Concepts

system by appearing as local, trusted traffic; appearing to be you while attacking other
sites; pretending to be someone else while attacking you; keeping your system bogged
down responding to nonexistent addresses; or otherwise misleading you as to the source of
incoming messages.

It’s important to remember that you usually can’t detect spoofed addresses. The address
might be legitimate and routable but might not belong to the packet’s sender. The next
section describes the spoofed addresses you can detect.

Source Address Spoofing and lllegal Addresses
There are several major classes of source addresses you should deny on your external
interface in all cases. These are incoming packets claiming to be from the following:

® Your IP address—You will never see legal incoming packets claiming to be
from your machine. Because the source address is the only information available
and it can be modified, this is one of the forms of legitimate address spoofing you
can detect at the packet-filtering level. Incoming packets claiming to be from your
machine are spoofed.You can’t be certain whether other incoming packets are com-
ing from where they claim to be. (Note that some operating systems crash if they
receive a packet in which both the source and the destination addresses belong to
the host’s network interface.)

= Your LAN addresses—You will rarely see legal incoming packets on the external,
Internet interface claiming to be from your LAN. It’s possible to see such packets if
the LAN has multiple access points to the Internet, but it would probably be a sign
of a misconfigured local network. In most cases, such a packet would be part of an
attempt to gain access to your site by exploiting your local trust relationships.

m Class A, B, and C private IP addresses—These three sets of addresses in the
historical Class A, B, and C ranges are reserved for use in private LANs. They aren’t
intended for use on the Internet. As such, these addresses can be used by any site
internally without the need to purchase registered IP addresses. Your machine
should never see incoming packets from these source addresses:

= Class A private addresses are assigned the range from 10.0.0.0 to
10.255.255.255.

= Class B private addresses are assigned the range from 172.16.0.0 to
172.31.255.255.

= Class C private addresses are assigned the range from 192.168.0.0 to
192.168.255.255.

= Class D multicast IP addresses—IP addresses in the Class D range are set
aside for use as destination addresses when participating in a multicast network
broadcast, such as an audiocast or a videocast. They range from 224.0.0.0 to
239.255.255.255.Your machine should never see packets from these source
addresses.

Filtering Incoming Packets

= Class E reserved IP addresses—IP addresses in the Class E range were set aside
for future and experimental use and are not assigned publicly. They range from
240.0.0.0 to 247.255.255.255.Your machine should never see packets from
these source addresses—and mostly likely won'’t. (Because the entire address range is
permanently reserved up through 255.255.255.255, the Class E range can realisti-
cally be defined as 240.0.0.0 to 255.255.255.255. In fact, some sources define
the Class E address range to be exactly that.)

= Loopback interface addresses—The loopback interface is a private network
interface used by the Linux system for local, network-based services. Rather than
sending local traffic through the network interface driver, the operating system
takes a shortcut through the loopback interface as a performance improvement. By
definition, loopback traffic is targeted for the system generating it. It doesn’t go out
on the network. The loopback address range is 127.0.0.0 to 127.255.255.255.
You’ll usually see it referred to as 127.0.0.1, localhost, or the loopback
interface, lo.

= Malformed broadcast addresses—Broadcast addresses are special addresses
applying to all machines on a network. Address 0.0.0.0 is a special broadcast
source address. A legitimate broadcast source address will be either 0.0.0.0 ora
regular IP address. DHCP clients and servers will see incoming broadcast packets
from source address 0.0.0.0.This is the only legal use of this source address. It is
not a legitimate point-to-point, unicast source address. When seen as the source
address in a regular, point-to-point, nonbroadcast packet, the address is forged, or the
sender isn't fully configured.

= Class A network 0 addresses—As suggested previously, any source address in the
0.0.0.0 through 0.255.255.255 range is illegal as a unicast address.

= Link local network addresses—DHCP clients sometimes assign themselves a
link local address when they can’t get an address from a server. These addresses range
from 169.254.0.0 to 169.254.255.255.

® Carrier-grade NAT—There are IPs that are marked for use by Internet providers
that should never appear on a public network, the public Internet. These addresses
can, however, be used in cloud scenarios, and therefore, if your server is hosted at a
cloud provider, you may see these addresses. The carrier-grade NAT addresses range
from 100.64.0.0 to 100.127.255.255.

= TEST-NET addresses—The address space from 192.0.2.0 to 192.0.2.255 is
reserved for test networks.

Blocking Problem Sites

Another common, but less frequently used, source address—filtering scheme is to block

all access from a selected machine or, more typically, from an entire network’s IP address
block. This is how the Internet community tends to deal with problem sites and ISPs that

33

34

Chapter 2 Packet-Filtering Concepts

don’t police their users. If a site develops a reputation as a bad Internet neighbor, other
sites tend to block it across the board.

On the individual level, blocking all access from selected networks is convenient when
individuals in the remote network are habitually making a nuisance of themselves. This has
historically been used as a means to fight unsolicited email, with some people going so far
as to block an entire country’s range of IP addresses.

Limiting Incoming Packets to Selected Remote Hosts

You might want to accept certain kinds of incoming packets from only specific external
sites or individuals. In these cases, the firewall rules will define either specific IP addresses
or a limited range of IP source addresses that these packets will be accepted from.

The first class of incoming packets is from remote servers responding to your requests.
Although some services, such as web or FTP services, can be expected to be coming from
anywhere, other services will legitimately be coming from only your ISP or specially
chosen trusted hosts. Examples of servers that are probably offered only through your ISP
are POP mail service, Domain Name Service (DNS) name server responses, and possible
DHCP or dynamic IP address assignments.

The second class of incoming packets is from remote clients accessing services offered
from your site. Again, although some incoming service connections, such as connections
to your web server, can be expected to be coming from anywhere, other local services will
be offered to only a few trusted remote users or friends. Examples of restricted local ser-
vices might be ssh and ping.

Local Destination Address Filtering

Filtering incoming packets based on the destination address is not much of an issue.
Under normal operation, your network interface card ignores regular packets that aren’t
addressed to it. The exception is broadcast packets, which are broadcast to all hosts on the
network.

The IPv4 address 255.255.255.255 is the general broadcast destination address. It
refers to all hosts on the immediate physical network segment, and it is called a limited
broadcast. A broadcast address can be defined more explicitly as the highest address in a
given subnet of IP addresses. For example, if your ISP’s network address is 192.168.10.0
with a 24-bit subnet mask (255.255.255.0) and your IP address is 192.168.10.30, you
would see broadcast packets addressed to 192.168.10.255 from your ISP. On the other
hand, if you have a smaller range of IP addresses, say a /30 (255.255.255.252), then you
have a total of four addresses: one network, two for hosts, and the broadcast. For example,
consider the network 10.3.7.4/30.In this network, 10.3.7.4 is the network address,
the two hosts would be 10.3.7.5 and 10.3.7.6, and the broadcast address would be
10.3.7.7.This /30 subnet configuration type is typically used between routers, though
the actual addresses themselves may vary. The only way to know what the broadcast
address will be for a given subnet is to know both an IP address within the subnet and the
subnet mask. These types of broadcasts are called directed subnet broadcasts and are delivered
to all hosts on that network.

Filtering Incoming Packets 35

Broadcast-to-destination address 0.0.0.0 is similar to the situation of point-to-point
packets claiming to be from the broadcast source address mentioned earlier, in the section
“Source Address Spoofing and Illegal Addresses.” Here, broadcast packets are directed to
source address 0.0.0.0 rather than to the destination address, 255.255.255.255. In this
case, there 1s little question about the packet’s intent. This is an attempt to identify your
system as a Linux machine. For historical reasons, networking code derived from BSD
UNIX returns an ICMP Type 3 error message in response to 0.0.0.0 being used as the
broadcast destination address. Other operating systems silently discard the packet. As such,
this 1s a good example of why dropping versus rejecting a packet makes a difference. In
this case, the error message itself is what the probe is looking for.

Remote Source Port Filtering

Incoming requests and connections from remote clients to your local servers will have a
source port in the unprivileged range. If you are hosting a web server, all incoming con-
nections to your web server should have a source port between 1024 and 65535. (That
the server port identifies the service is the intention but not the guarantee.You cannot be
certain that the server you expect is running at the port you expect.)

Incoming responses and connections from remote servers that you contacted will have
the source port that is assigned to the particular service. If you connect to a remote web-
site, all incoming messages from the remote server will have the source port set to 80 (or
whatever port the local client specified), the http service port number.

Local Destination Port Filtering

The destination port in incoming packets identifies the program or service on your
computer that the packet is intended for. As with the source port, all incoming requests
from remote clients to your services generally follow the same pattern, and all incoming
responses from remote services to your local clients follow a difterent pattern.

Incoming requests and connections from remote clients to your local servers will set
the destination port to the service number that you assigned to the particular service. For
example, an incoming packet destined for your local web server would normally have the
destination port set to 80, the http service port number.

Incoming responses from remote servers that you contacted will have a destination
port in the unprivileged range. If you connect to a remote website, all incoming messages
from the remote server will have a destination port between 1024 and 65535.

Incoming TCP Connection State Filtering

Incoming TCP packet acceptance rules can make use of the connection state flags associ-
ated with TCP connections. Al TCP connections adhere to the same set of connection
states. These states differ between client and server because of the three-way handshake
during connection establishment. As such, the firewall can distinguish between incoming
traffic from remote clients and incoming traffic from remote servers.

Hi va- Net wor k. Cormr A

http://www.hiva-network.com/

36

Chapter 2 Packet-Filtering Concepts

Incoming TCP packets from remote clients will have the sYN flag set in the first packet
received as part of the three-way connection establishment handshake. The first connec-
tion request will have the sYN flag set, but not the ACK flag.

Incoming packets from remote servers will always be responses to the initial connec-
tion request initiated from your local client program. Every TCP packet received from
a remote server will have the ACK flag set. Your local client firewall rules will require all
incoming packets from remote servers to have the ACK flag set. Servers do not normally
attempt to initiate connections to client programs.

Probes and Scans

A probe 1s an attempt to connect to or get a response from an individual service port. A
scan 1s a series of probes to a set of different service ports. Scans are often automated.

Unfortunately, probes and scans are rarely innocent anymore. They are most likely the
initial information-gathering phase, looking for interesting vulnerabilities before launch-
ing an attack. Automated scan tools are widespread, and coordinated efforts by groups of
hackers are common. The security, or lack thereof, of many hosts on the Internet, along
with the proliferation of worms, viruses, and zombied machines, makes scans a constant
issue on the Internet.

General Port Scans

General port scans are indiscriminate probes across a large block of service ports, possibly
the entire range (see Figure 2.6). These scans are somewhat less frequent—or, at least, less
obvious—as more sophisticated, targeted stealth tools become available.

Targeted Port Scans

Targeted port scans look for specific vulnerabilities (see Figure 2.7). The newer, more
sophisticated tools attempt to identify the hardware, operating system, and software
versions. These tools are designed to identify targets that might be prone to a specific
vulnerability.

Common Service Port Targets
Common targets often are individually probed as well as scanned. The attacker might
be looking for a specific vulnerability, such as an insecure mail server, an unpatched web
server, or an open remote procedure call (RPC) portmap daemon.

A more extensive list of ports can be found at http://www.lana.org/assignments/port-
numbers. Only a few common ports are mentioned here, to give you the idea:

® [ncoming packets from reserved port 0 are always bogus. This port isn’t used
legitimately.
= Probes of TCP ports 0 to 5 are a signature of the sscan program.

® ssh (22/tcp), smtp (25/tcp), dns (53/tcp/udp), pop-3 (110/tcp), imap (143/
tcp), and snmp (161/udp), are favorite target ports. They represent some of the
most potentially vulnerable openings to a system, whether intrinsically, due to

http://www.iana.org/assignments/portnumbers
http://www.iana.org/assignments/portnumbers

Filtering Incoming Packets

=

29

—1

° o

Service Ports
TCP and/or UDP

1023

General Scan

Up to 65,536 Probes 65535

Figure 2.6 A general port scan

oo

Service Ports
TCP and/or UDP

—> ssh (tcp 22)

—> smtp (tcp 25)

pop-3 (tcp 110)

sunrpc (udp 111)

/= =

2 L5 imap (tcp 143)
Targeted Scan

5 Probes

Figure 2.7 A targeted port scan

37

38

Chapter 2 Packet-Filtering Concepts

common configuration errors, or due to known flaws in the software. Because

these services are so common, they are good examples of why you want to either
not offer them to the outside world, or very carefully offer them with controlled
outside access. NetBIOS (137-139/tcp/udp) and Server Message Block (SMB) on
‘Windows (445/tcp) probes are tediously common. They typically pose no threat to
a Linux system unless Samba is used on the system. The typical target is a Windows
system, in this case, but the scans are all too common.

Stealth Scans

Stealth port scans, by definition, aren’t meant to be detectable. They are based on how the
TCP protocol stack responds to unexpected packets, or packets with illegal state flag com-
binations. For example, consider an incoming packet that has the Ack flag set but has no
related connection. If the ACK were sent to a port with a listening server attached, the TCP
stack wouldn’t find a related connection and would return a TCP RST message to tell the
sender to reset the connection. If the ACK were sent to an unused port, the system would
simply return a TCP RST message as an error indication, just as the firewall might return
an ICMP error message by default.

The issue is further complicated because some firewalls test only for the SYN flag or
the ACK flag. If neither is set, or if the packet contains some other combination of flags,
the firewall implementation might pass the packet up to the TCP code. Depending on
the TCP state flag combination and the operating system receiving the packet, the system
will respond with an RST or with silence. This mechanism can be used to help identify
the operating system that the target system is running. In any of these cases, the receiving
system isn’t likely to log the event.

Inducing a target host to generate an RST packet in this manner also can be used to
map a network, determining the IP addresses of systems listening on the network. This is
especially helpful if the target system isn’t a server and its firewall has been set to silently
drop unwanted packets.

Avoiding Paranoia: Responding to Port Scans
Firewall logs normally show all kinds of failed connection attempts. Probes are the most
common thing you’ll see reported in your logs.

Are people probing your system this often? Yes, they are. Is your system compromised?
No, it 1sn’t. Well, not necessarily. The ports are blocked. The firewall is doing its job. These
are failed connection attempts that the firewall denied.

At what point do you personally decide to report a probe? At what point is it impor-
tant enough to take the time to report it? At what point do you say that enough is enough
and get on with your life, or should you be writing abuse@some. system each time?
There are no “right” answers. How you respond is a personal judgment call and depends
in part on the resources available to you, how sensitive the information at your site is, and
how critical the Internet connection is to your site. For obvious probes and scans, there is
no clear-cut answer. It depends on your own personality and comfort level how you per-
sonally define a serious probe, and your social conscience.

Filtering Incoming Packets 39

With that in mind, these are some workable guidelines.

The most common attempts are a combination of automated probing, mistakes, legiti-
mate attempts based on the history of the Internet, ignorance, curiosity, and misbehaving
software.

You can almost always safely ignore individual, isolated, single connection attempts to
telnet, ssh, £tp, finger, or any other port for a common service that you’re not pro-
viding. Probes and scans are a fact of life on the Internet, are all too frequent, and usually
don’t pose a risk. They are kind of like door-to-door salespeople, commercial phone calls,
wrong phone numbers, and junk postal mail. For me, at least, there isn’t enough time in
the day to respond to each one.

On the other hand, some probers are more persistent. You might decide to add firewall
rules to block them completely, or possibly even their entire IP address space.

Scans of a subset of the ports known to be potential security holes are typically the
precursor to an attack if an open port is found. More inclusive scans are usually part of a
broader scan for openings throughout a domain or subnet. Current hacking tools probe a
subset of these ports one after the other.

Occasionally, you’ll see serious hacking attempts. This is unquestionably a time to take
action. Write them. Report them. Double-check your security. Observe what they’re
doing. Block them. Block their IP address block.

Some system administrators take every occurrence seriously because, even if their
machine is secure, other people’s machines might not be. The next person might not even
have the capability of knowing that he or she is being probed. Reporting probes is the
socially responsible thing to do, for everyone’ sake.

How should you respond to port scans? If you write these people, their postmaster,
their uplink service provider network operations center (NOC), or the network address
block coordinator, try to be polite. Give them the benefit of the doubt. Overreactions are
misplaced more often than not. What might appear as a serious hacking attempt to you
is often a curious kid playing with a new program. A polite word to the abuser, root, or
postmaster can sometimes take care of the problem. More people need to be educated
about Netiquette than need their network accounts rescinded. And they might be inno-
cent of anything. Just as often, the person’s system is compromised and that person has no
idea what’s going on and will be grateful for the information.

Probes aren’t the only hostile traffic you’ll see, however. Although probes are harmless
in and of themselves, DoS attacks are not.

Denial-of-Service Attacks

DoS attacks are based on the idea of flooding your system with packets to disrupt or seri-
ously degrade your Internet connection, tying up local servers to the extent that legiti-
mate requests can’t be honored or, in the worst case, crashing your system altogether. The
two most common results are keeping the system too busy to do anything useful and
tying up critical system resources.

Hi va- Net wor k. Cormr A

http://www.hiva-network.com/

40

Chapter 2 Packet-Filtering Concepts

You can’t protect against DoS attacks completely. They can take as many different
forms as the attacker’s imagination allows. Anything that results in a response from your
system, anything that results in your system allocating resources (including logging of the
attack), anything that induces a remote site to stop communicating with you—all can be
used in a DoS attack.

More on Denial-of-Service Attacks

For further information on DoS attacks, see the “Denial of Service” paper available at
http://www.cert.org.

These attacks usually involve one of several classic patterns, including TCP syN flood-
ing, ping flooding, UDP flooding, fragmentation bombs, bufter overflows, and ICMP
routing redirect bombs.

TCP SYN Flooding

ATCP syn flood attack consumes your system resources until no more incoming TCP
connections are possible (see Figure 2.8). The attack makes use of the basic TCP three-
way handshaking protocol during connection establishment, in conjunction with IP
source address spoofing.

The attacker spoofs his or her source address as a private address and initiates a con-
nection to one of your TCP-based services. Appearing to be a client attempting to open
aTCP connection, the attacker sends you an artificially generated SYN message. Your
machine responds by sending an acknowledgment, a SYN-ACK. However, in this case, the

YT
anargh'

\\
| can’t take it
anymore!
~_ A f/,

SYN

VVVVVVVVVVVYYVYY

Figure 2.8 A TCP sy flood

http://www.cert.org

Filtering Incoming Packets

address that you're replying to isn’t the attacker’s address. In fact, because the address is pri-
vate, there is no one out there to respond. The spoofed host won’t return an RST message
to tear down the half~opened connection.

The final stage of TCP connection establishment, receiving an ACK in response, will
never happen. Consequently, finite network connection resources are consumed. The
connection remains in a half-opened state until the connection attempt times out. The
attacker floods your port with connection request after connection request, faster than the
TCP timeouts release the resources. If this continues, all resources will be in use and no
more incoming connection requests can be accepted. This applies not only to the service
being probed, but to all new connections as well.

Several aids are available to Linux users. The first is source address filtering, described
previously. This filters out the most commonly used spoofed source addresses, but there is
no guarantee that the spoofed address falls within the categories you can anticipate and
filter against.

The second is to enable your kernel’s SYN cookie module, a specific retardant to the
resource starvation caused by SYN flooding. When the connection queue begins to get
full, the system starts responding to SYN requests with SYN cookies rather than SYN-ACKs,
and it frees the queue slot. Thus, the queue never fills completely. The cookie has a short
timeout; the client must respond to it within a short period before the serving host will
respond with the expected SYN-ACK. The cookie is a sequence number that is generated
based on the original sequence number in the SYN, the source and destination addresses
and ports, and a secret value. If the response to the cookie matches the result of the hash-
ing algorithm, the server is reasonably well assured that the sYN is valid.

Depending on the particular release, you may or may not need to enable the SYN
cookie protection within the kernel by using the command echo 1 > /proc/sys/net/
ipv4/tecp_syncookies. Some distributions and kernel versions require you to explicitly
configure the option into the kernel using make config, make menuconfig, or make
xconfig and then recompile and install the new kernel.

SYN Flooding and IP Spoofing
For more information on SYN flooding and IP spoofing, see CERT Advisory CA-96.21, “TCP
SYN Flooding and IP Spoofing Attacks,” at http://www.cert.org.

ping Flooding

Any message that elicits a response from your machine can be used to degrade your net-
work connection by forcing the system to spend most of its time responding. The ICMP
echo request message sent by ping is a common culprit. An attack called Smurf, and its
variants, forces a system to expend its resources processing echo replies. One method of
accomplishing this is to spoof the victim’s source address and broadcast an echo request
to an entire network of hosts. A single spoofed request message can result in hundreds or
thousands of resulting replies being sent to the victim. Another way of accomplishing a
similar result is to install trojans on compromised hosts across the Internet and time them

41

http://www.cert.org

42

Chapter 2 Packet-Filtering Concepts

to each send echo requests to the same host simultaneously. Finally, a simple ping flood
in which the attacker sends more echo requests and floods the data connection is another
method for a DoS, though it’s becoming less common. A typical ping flood is shown in
Figure 2.9.

Ping of Death

An older exploit called the Ping of Death involved sending very large ping packets.Vulner-
able systems could crash as a result. Linux is not vulnerable to this exploit, nor are many
other current UNIX operating systems. If your firewall is protecting older systems or per-
sonal computers, those systems could be vulnerable.

The Ping of Death exploit gives an idea of how the simplest protocols and message
interactions can be used by the creative hacker. Not all attacks are attempts to break into
your computer. Some are merely destructive. In this case, the goal is to crash the machine.
(System crashes also might be an indicator that you need to check your system for
installed trojan programs.You might have been duped into loading a trojan program, but
the program itself might require a system reboot to activate.)

ping is a very useful basic networking tool. You might not want to disable ping alto-
gether. In today’s Internet environment, conservative folks recommend disabling incoming
ping or at least severely limiting from whom you accept echo requests. Because of ping’s
history of involvement in DoS attacks, many sites no longer respond to external ping
requests from any but selected sources. This has always seemed to be an overreaction to
the relatively small threat of a DoS based on ICMP when compared to the more ubiqui-
tous and dangerous threats against applications and other protocols within the stack.

(" Network

\

i'ﬂ Ping Echo Request o
N >)
== Victim's Spoofed
Attacker

Source Address
Broadcast
Destination Address

Echo Reply

S
A R =
Victim

Figure 2.9 A ping flood

Filtering Incoming Packets 43

Dropping ping requests isn’t a solution for the victim host, however. R egardless of
how the recipient of the flood reacts to the packets, the system (or network) can still be
overwhelmed in the process of inspecting and dropping a flood of requests.

UDP Flooding

The UDP protocol is especially useful as a DoS tool. Unlike TCP, UDP is stateless.
Flow-control mechanisms aren’t included. There are no connection state flags. Datagram
sequence numbers aren’t used. No information is maintained on which packet is expected
next. There is not always a way to differentiate client traffic from server traffic based on
port numbers. Without state, there is no way to distinguish an expected incoming response
from an unsolicited packet arriving unexpectedly. It’s relatively easy to keep a system so
busy responding to incoming UDP probes that no bandwidth is left for legitimate net-
work traffic.

Because UDP services are susceptible to these types of attacks (as opposed to
connection-oriented TCP services), many sites disable all UDP ports that aren’t absolutely
necessary. As mentioned earlier, almost all common Internet services are TCP based. The
firewall we’ll build in Chapter 5, “Building and Installing a Standalone Firewall,” carefully
limits UDP traffic to only those remote hosts providing necessary UDP services.

The classic UDP flood attack either involves two victim machines or works in the
same way the Smurf ping flood does (see Figure 2.10). A single spoofed packet from the
attacker’s UDP echo port, directed to a host’s UDP chargen port, can result in an infi-
nite loop of network traffic. The echo and chargen services are network test services.
chargen generates an ASCII string. echo returns the data sent to the port.

Source Address: Intermediary
Destination Address: Victim
Source Port: UDP 7- chargen

J - »

4> ._._
=
=

—>

| |

- <7
= —
== «—
— PRGN] 1
NN — e

Source Address: Victim

Destination Address: Intermediary
Source Port: UDP 7 - echo
Destination Port: UDP 19 - chargen

Source Address: Victim
Destination Address: Intermediary

Source Port: UDP 7 - echo
Destination Port: UDP 19 - chargen

Figure 2.120 A UDP flood

Hi va- Net wor k. Comr 2

http://www.hiva-network.com/

44

Chapter 2 Packet-Filtering Concepts

UDP Port Denial-of-Service Attacks
For a fuller description of a DoS exploit using these UDP services, see CERT Advisory
CA-96.01, “UDP Port Denial-of-Service Attack,” at http://www.cert.org.

Fragmentation Bombs

Difterent underlying network technologies (such as Ethernet, Asynchronous Transfer
Mode [ATM], and token ring) define different limits on the size of the Layer 2 frame. As

a packet is passed on from one router to the next along the path from the source machine
to the destination machine, network gateway routers might need to cut the packet into
smaller pieces, called fragments, before passing them on to the next network. In a legitimate
fragmentation, the first fragment contains the usual source and destination port numbers
contained in the UDP or TCP transport header. The following fragments do not.

For example, although the maximum theoretical packet length is 65,535 bytes, the
maximum Ethernet frame size (Maximum Transmission Unit, or MTU) is 1500 bytes.

When a packet is fragmented, intermediate routers do not reassemble the packet. The
packets are reassembled either at the destination host or by its adjacent router.

Because intermediate fragmentation is ultimately more costly than sending smaller,
nonfragmented packets, current systems often do MTU discovery with the target host
at the beginning of a connection. This is done by sending a packet with the Don't
Fragment option set in the IP header options field (the only generally legitimate current
use of the IP options field). If an intermediate router must fragment the packet, it drops
the packet and returns an ICMP 3 error, fragmentation-required.

One type of fragmentation attack involves artificially constructing very small packets.
One-byte packets crash some operating systems. Current operating systems usually test for
this condition.

Another use of small fragments is constructing the initial fragment so that the UDP or
TCP source and destination ports are contained in the second fragment. (All networks’
MTU sizes are large enough to carry a standard 40-byte IP and transport header.) Packet-
filtering firewalls often allow these fragments through because the information that they
filter on is not present. This form of attack is useful to get packets through the firewall that
would not otherwise be allowed.

The Ping of Death exploit mentioned earlier is an example of using fragmentation to
carry an illegally large ICMP message. When the ping request is reconstructed, the entire
packet size is larger than 65,535 bytes, causing some systems to crash.

A classic example of a fragmentation exploit is the Teardrop attack. The method can
be used to bypass a firewall or to crash a system. The first fragment is constructed to go
to an allowed service. (Many firewalls don’t inspect fragments after the first packet.) If
it is allowed, the subsequent fragments will be passed through and reassembled by the
target host. If the first packet is dropped, the subsequent packets will pass through the
firewall, but the end host will have nothing to reconstruct and eventually will discard the
partial packet.

http://www.cert.org

Filtering Incoming Packets

The data offset fields in the subsequent fragments can be altered to overwrite the port
information in the first fragment to access a disallowed service. The offset also can be
altered so that offsets used in packet reassembly turn out to be negative numbers. Because
kernel byte-copy routines usually use unsigned numbers, the negative value is treated as
a very large positive number; the resulting copy trashes kernel memory and the system
crashes.

Firewall machines and machines that do NAT for other local hosts should be config-
ured to reassemble the packets before delivering them to the local target. Some of the
iptables features require the system to reassemble packets before forwarding the packet
to the destination host, and reassembly 1s done automatically.

Buffer Overflows
Buffer overflow exploits can’t be protected against by a filtering firewall. The exploits
fall into two main categories. The first is simply to cause a system or server to crash by
overwriting its data space or runtime stack. The second requires technical expertise and
knowledge of the hardware and system software or server version being attacked. The
purpose of the overflow is to overwrite the program’s runtime stack so that the call return
stack contains a program and a jump to it. This program usually starts up a shell with root
privilege.

Many of the current vulnerabilities in servers are a result of buffer overflows. It’s
important to install and keep up-to-date all the newest patches and software revisions.

ICMP Redirect Bombs

ICMP redirect message Type 5 tells the target system to change its in-memory routing
tables in favor of a shorter route. Redirects are sent by routers to their adjacent hosts. Their
intention is to inform the host that a shorter path is available (that is, the host and new
router are on the same network, and the new router is the router that the original would
route the packet to as its next hop).

Redirects arrive on an almost-daily basis. They rarely originate from the adjacent
router. For residential or business sites connected to an ISP, it’s very unlikely that your
adjacent router will generate a redirect message.

If your host uses static routing and honors redirect messages, it’s possible for someone
to fool your system into thinking that a remote machine is one of your local machines or
one of your ISP’ machines, or even to fool your system into forwarding all traffic to some
other remote host.

Denial-of-Service Attacks and Other System Resources
Network connectivity isn’t the only concern in DoS attacks. Here are some examples of
other areas to keep in mind while configuring your system:

® Your filesystem can overflow if your system is forced to write enormous numbers
of messages to the error logs, or if your system is flooded with many copies of large
email messages.You might want to configure resource limits and set up a separate
partition for rapidly growing or changing filesystems.

45

46

Chapter 2 Packet-Filtering Concepts

Email Denial-of-Service Exploits
For a description of a DoS exploit using email, see “Email Bombing and Spamming” at
http://www.cert.org.

= System memory, process table slots, CPU cycles, and other resources can be
exhausted by repeated, rapid invocations of network services.You can do little
about this other than setting any configurable limits for each individual service,
enabling SYN cookies, and denying rather than rejecting packets sent to unsupported
service ports.

Source-Routed Packets

Source-routed packets employ a rarely used IP option that allows the originator to define
the route taken between two machines, rather than letting the intermediate routers
determine the path. As with ICMP redirects, this feature can allow someone to fool your
system into thinking that it’s talking to a local machine, an ISP machine, or some other
trusted host, or to create the necessary packet flow for a man-in-the-middle attack.

Source routing has few legitimate uses in current networks. Some routers ignore the
option. Some firewalls discard packets containing the option.

Filtering Outgoing Packets

If your environment represents a trusted environment, filtering outgoing packets might
not appear to be as critical as filtering incoming packets. Your system won't respond to
incoming messages that the firewall doesn’t pass through. Residential sites often take this
approach. Nevertheless, even for residential sites, symmetric filtering is important, particu-
larly if the firewall protects Microsoft Windows machines. For commercial sites, outgoing
filtering is inarguably important.

If your firewall protects a LAN of Microsoft Windows systems, controlling outgoing
traffic becomes much more important. Compromised Windows machines have historically
been (and continue to be) used in coordinated DoS attacks and other outbound attacks.
For this reason especially, it’s important to filter what leaves your network.

Filtering outgoing messages also allows you to run LAN services without leaking into
the Internet, where these packets don’t belong. It’s not only a question of disallowing
external access to local LAN services. It’s also a question of not broadcasting local system
information onto the Internet. Examples of this would be if you were running a local
DHCPD, NTP, SMB, or other