

Linux® Firewalls

Fourth Edition

Hiva-Network.Com

http://www.hiva-network.com/

This page intentionally left blank

Linux® Firewalls
Enhancing Security with

nftables and Beyond

Fourth Edition

Steve Suehring

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Suehring, Steve.
 Linux firewalls : enhancing security with nftables and beyond.—Fourth edition / Steve Suehring.
 pages cm
 Earlier ed. authored by Robert L. Ziegler.
 Includes bibliographical references and index.
 ISBN 978-0-13-400002-2 (pbk. : alk. paper)—ISBN 0-13-400002-1 (pbk. : alk. paper)
 1. Computers—Access control. 2. Firewalls (Computer security) 3. Linux. 4. Operating systems
(Computers) I. Title.
 QA76.9.A25Z54 2015
 005.8—dc2

2014043643

Copyright © 2015 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River,
New Jersey 07458, or you may fax your request to (201) 236-3290.

Permission is granted to copy, distribute, and/or modify Figures 3.1 through 3.4 under the terms
of the GNU Free Documentation License, Version 1.3, or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included in Appendix D, “GNU Free Documentation License.”

ISBN-13: 978-0-13-400002-2
ISBN-10: 0-13-400002-1
Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing, January 2015

�

This book is dedicated to Jim Leu,
without whom I couldn’t have written a book on Linux.

�

Hiva-Network.Com

http://www.hiva-network.com/

This page intentionally left blank

viivii

Contents at a Glance
Contents ix

 Preface xix

 About the Author xxi

I: Packet Filtering and Basic Security Measures 1

 1 Preliminary Concepts Underlying Packet-Filtering
Firewalls 3

 2 Packet-Filtering Concepts 25

 3 iptables: The Legacy Linux Firewall Administration
Program 51

 4 nftables: The Linux Firewall Administration
Program 83

 5 Building and Installing a Standalone Firewall 95

II: Advanced Issues, Multiple Firewalls, and Perimeter
Networks 143

 6 Firewall Optimization 145

 7 Packet Forwarding 179

 8 NAT—Network Address Translation 197

 9 Debugging the Firewall Rules 211

 10 Virtual Private Networks 229

III: Beyond iptables and nftables 235

 11 Intrusion Detection and Response 237

 12 Intrusion Detection Tools 249

 13 Network Monitoring and Attack Detection 263

 14 Filesystem Integrity 295

viii viii Contents at a Glance

IV: Appendices 311

 A Security Resources 313

 B Firewall Examples and Support Scripts 315

 C Glossary 351

 D GNU Free Documentation License 363

 Index 371

ixix

Contents
Preface xix

 About the Author xxi

I: Packet Filtering and Basic Security Measures 1

 1 Preliminary Concepts Underlying Packet-Filtering
Firewalls 3

The OSI Networking Model 5

Connectionless versus Connection-Oriented
Protocols 7

Next Steps 7

The Internet Protocol 7

IP Addressing and Subnetting 8

IP Fragmentation 11

Broadcasting and Multicasting 11

ICMP 12

Transport Mechanisms 14

UDP 14

TCP 14

Don’t Forget Address Resolution Protocol 17

Hostnames and IP Addresses 18

IP Addresses and Ethernet Addresses 18

Routing: Getting a Packet from Here to There 19

Service Ports: The Door to the Programs on Your
System 19

A Typical TCP Connection: Visiting a Remote
Website 20

Summary 23

 2 Packet-Filtering Concepts 25

A Packet-Filtering Firewall 26

Choosing a Default Packet-Filtering Policy 29

Rejecting versus Denying a Packet 31

Filtering Incoming Packets 31

Remote Source Address Filtering 31

Local Destination Address Filtering 34

Hiva-Network.Com

http://www.hiva-network.com/

x x Contents

Remote Source Port Filtering 35

Local Destination Port Filtering 35

Incoming TCP Connection State Filtering 35

Probes and Scans 36

Denial-of-Service Attacks 39

Source-Routed Packets 46

Filtering Outgoing Packets 46

Local Source Address Filtering 47

Remote Destination Address Filtering 47

Local Source Port Filtering 48

Remote Destination Port Filtering 48

Outgoing TCP Connection State Filtering 48

Private versus Public Network Services 49

Protecting Nonsecure Local Services 50

Selecting Services to Run 50

Summary 50

 3 iptables: The Legacy Linux Firewall Administration
Program 51

Differences between IPFW and Netfilter Firewall
Mechanisms 51

IPFW Packet Traversal 52

Netfilter Packet Traversal 54

Basic iptables Syntax 54

iptables Features 55

NAT Table Features 58

mangle Table Features 60

iptables Syntax 61

filter Table Commands 62

filter Table Target Extensions 67

filter Table Match Extensions 68

nat Table Target Extensions 79

mangle Table Commands 81

Summary 82

 4 nftables: The Linux Firewall Administration
Program 83

Differences between iptables and nftables 83

Basic nftables Syntax 83

xixiContents xi

nftables Features 84

nftables Syntax 85

Table Syntax 85

Chain Syntax 86

Rule Syntax 87

Basic nftables Operations 91

nftables File Syntax 92

Summary 93

 5 Building and Installing a Standalone Firewall 95

The Linux Firewall Administration Programs 96

Build versus Buy: The Linux Kernel 97

Source and Destination Addressing Options 98

Initializing the Firewall 99

Symbolic Constants Used in the Firewall
Examples 100

Enabling Kernel-Monitoring Support 101

Removing Any Preexisting Rules 103

Resetting Default Policies and Stopping
the Firewall 104

Enabling the Loopback Interface 105

Defining the Default Policy 106

Using Connection State to Bypass Rule
Checking 107

Source Address Spoofing and Other Bad
Addresses 108

Protecting Services on Assigned Unprivileged Ports 112

Common Local TCP Services Assigned
to Unprivileged Ports 113

Common Local UDP Services Assigned
to Unprivileged Ports 116

Enabling Basic, Required Internet Services 117

Allowing DNS (UDP/TCP Port 53) 118

Enabling Common TCP Services 122

Email (TCP SMTP Port 25, POP Port 110,
IMAP Port 143) 123

SSH (TCP Port 22) 128

FTP (TCP Ports 21, 20) 130

Generic TCP Service 133

xii xii Contents

Enabling Common UDP Services 134

Accessing Your ISP’s DHCP Server
(UDP Ports 67, 68) 134

Accessing Remote Network Time Servers
(UDP Port 123) 136

Logging Dropped Incoming Packets 138

Logging Dropped Outgoing Packets 138

Installing the Firewall 139

Tips for Debugging the Firewall Script 139

Starting the Firewall on Boot with Red Hat
and SUSE 140

Starting the Firewall on Boot with Debian 141

Installing a Firewall with a Dynamic IP Address 141

Summary 141

II: Advanced Issues, Multiple Firewalls,
and Perimeter Networks 143

 6 Firewall Optimization 145

Rule Organization 145

Begin with Rules That Block Traffic on High
Ports 145

Use the State Module for ESTABLISHED
and RELATED Matches 146

Consider the Transport Protocol 146

Place Firewall Rules for Heavily Used Services
as Early as Possible 147

Use Traffic Flow to Determine Where to Place Rules
for Multiple Network Interfaces 147

User-Defined Chains 148

Optimized Examples 151

The Optimized iptables Script 151

Firewall Initialization 153

Installing the Chains 155

Building the User-Defined EXT-input
and EXT-output Chains 157

tcp-state-flags 165

connection-tracking 166

local-dhcp-client-query and
remote-dhcp-server-response 166

xiiixiiiContents xiii

source-address-check 167

destination-address-check 168

Logging Dropped Packets with iptables 168

The Optimized nftables Script 170

Firewall Initialization 170

Building the Rules Files 172

Logging Dropped Packets with nftables 175

What Did Optimization Buy? 176

iptables Optimization 176

nftables Optimization 177

Summary 177

 7 Packet Forwarding 179

The Limitations of a Standalone Firewall 179

Basic Gateway Firewall Setups 181

LAN Security Issues 182

Configuration Options for a Trusted Home LAN 183

LAN Access to the Gateway Firewall 184

LAN Access to Other LANs: Forwarding Local Traffic
among Multiple LANs 186

Configuration Options for a Larger or Less Trusted
LAN 188

Dividing Address Space to Create Multiple
Networks 188

Selective Internal Access by Host, Address Range,
or Port 190

Summary 195

 8 NAT—Network Address Translation 197

The Conceptual Background of NAT 197

NAT Semantics with iptables and nftables 201

Source NAT 203

Destination NAT 205

Examples of SNAT and Private LANs 206

Masquerading LAN Traffic to the Internet 206

Applying Standard NAT to LAN Traffic
to the Internet 208

Examples of DNAT, LANs, and Proxies 209

Host Forwarding 209

Summary 210

Hiva-Network.Com

http://www.hiva-network.com/

xiv xiv Contents

9 Debugging the Firewall Rules 211

General Firewall Development Tips 211

Listing the Firewall Rules 213

iptables Table Listing Example 213

nftables Table Listing Example 216

Interpreting the System Logs 217

syslog Configuration 217

Firewall Log Messages: What Do They Mean? 220

Checking for Open Ports 223

netstat -a [-n -p -A inet] 224

Checking a Process Bound to a Particular Port
with fuser 226

Nmap 227

Summary 227

 10 Virtual Private Networks 229

Overview of Virtual Private Networks 229

VPN Protocols 229

PPTP and L2TP 229

IPsec 230

Linux and VPN Products 232

Openswan/Libreswan 233

OpenVPN 233

PPTP 233

VPN and Firewalls 233

Summary 234

III: Beyond iptables and nftables 235

11 Intrusion Detection and Response 237

Detecting Intrusions 237

Symptoms Suggesting That the System Might
Be Compromised 238

System Log Indications 239

System Configuration Indications 239

Filesystem Indications 240

User Account Indications 240

Security Audit Tool Indications 241

System Performance Indications 241

xvxvContents xv

What to Do If Your System Is Compromised 241

Incident Reporting 243

Why Report an Incident? 243

What Kinds of Incidents Might You Report? 244

To Whom Do You Report an Incident? 246

What Information Do You Supply? 246

Summary 247

 12 Intrusion Detection Tools 249

Intrusion Detection Toolkit: Network Tools 249

Switches and Hubs and Why You Care 250

ARPWatch 251

Rootkit Checkers 251

Running Chkrootkit 251

What If Chkrootkit Says the Computer
Is Infected? 253

Limitations of Chkrootkit and Similar Tools 253

Using Chkrootkit Securely 254

When Should Chkrootkit Be Run? 255

Filesystem Integrity 255

Log Monitoring 256

Swatch 256

How to Not Become Compromised 257

Secure Often 257

Update Often 258

Test Often 259

Summary 261

 13 Network Monitoring and Attack Detection 263

Listening to the Ether 263

Three Valuable Tools 264

TCPDump: A Simple Overview 265

Obtaining and Installing TCPDump 266

TCPDump Options 267

TCPDump Expressions 269

Beyond the Basics with TCPDump 272

xvi xvi Contents

Using TCPDump to Capture Specific Protocols 272

Using TCPDump in the Real World 272

Attacks through the Eyes of TCPDump 280

Recording Traffic with TCPDump 284

Automated Intrusion Monitoring with Snort 286

Obtaining and Installing Snort 287

Configuring Snort 288

Testing Snort 289

Receiving Alerts 290

Final Thoughts on Snort 291

Monitoring with ARPWatch 291

Summary 293

 14 Filesystem Integrity 295

Filesystem Integrity Defined 295

Practical Filesystem Integrity 295

Installing AIDE 296

Configuring AIDE 297

Creating an AIDE Configuration File 297

A Sample AIDE Configuration File 299

Initializing the AIDE Database 300

Scheduling AIDE to Run Automatically 301

Monitoring AIDE for Bad Things 301

Cleaning Up the AIDE Database 302

Changing the Output of the AIDE Report 303

Obtaining More Verbose Output 305

Defining Macros in AIDE 306

The Types of AIDE Checks 307

Summary 310

IV: Appendices 311

A Security Resources 313

Security Information Sources 313

Reference Papers and FAQs 314

 B Firewall Examples and Support Scripts 315

iptables Firewall for a Standalone System
from Chapter 5 315

xviixviiContents xvii

nftables Firewall for a Standalone System
from Chapter 5 328

Optimized iptables Firewall from Chapter 6 332

nftables Firewall from Chapter 6 345

 C Glossary 351

 D GNU Free Documentation License 363

0. Preamble 363

1. Applicability and Definitions 363

2. Verbatim Copying 365

3. Copying in Quantity 365

4. Modifications 366

5. Combining Documents 367

6. Collections of Documents 368

7. Aggregation with Independent Works 368

8. Translation 368

9. Termination 369

10. Future Revisions of this License 369

11. Relicensing 370

 Index 371

Hiva-Network.Com

http://www.hiva-network.com/

This page intentionally left blank

Preface

Welcome to the fourth edition of Linux® Firewalls. The book looks at what it takes to
build a firewall using a computer running Linux. The material covered includes some
basics of networking, IP, and security before jumping into iptables and nftables, the
latest firewall software in Linux.

A reader of this book should be running a Linux computer, whether standalone or as
a firewall or Internet gateway. The book shows how to build a firewall for a single client
computer such as a desktop and also shows how to build a firewall behind which multiple
computers can be hosted on a local network.

The final part of the book shows aspects of computer and network security beyond
iptables and nftables. This includes intrusion detection, filesystem monitoring, and
listening to network traffic. The book is largely Linux agnostic, meaning that just about
any popular flavor of Linux will work with the material with little or no adaptation.

Acknowledgments
I’d like to thank my wife, family, and friends for their unending support. Thanks also to
Robert P.J. Day and Andrew Prowant for reviewing the manuscript.

This page intentionally left blank

About the Author

Steve Suehring is a technology architect specializing in Linux and Windows systems
and development. Steve has written several books and magazine articles on a wide range
of technologies. During his tenure as an editor at LinuxWorld magazine, Steve wrote and
edited articles and reviews on Linux security and advocacy including a feature story on
the use of Linux in Formula One auto racing.

Hiva-Network.Com

http://www.hiva-network.com/

This page intentionally left blank

Packet Filtering
and Basic Security

Measures

 1 Preliminary Concepts Underlying Packet-Filtering
Firewalls

 2 Packet-Filtering Concepts

 3 iptables: The Legacy Linux Firewall
Administration Program

 4 nftables: The Linux Firewall Administration
Program

 5 Building and Installing a Standalone Firewall

I

This page intentionally left blank

1
Preliminary Concepts

Underlying Packet-Filtering
Firewalls

A small site may have Internet access through various means such as a T1 line, a cable
modem, DSL, wireless, a PPP or ISDN connection, or any number of other means.
The computer connected directly to the Internet is a point of focus for security issues.
Whether you have one computer or a local area network (LAN) of linked computers, the
initial focus for a small site will be on the machine with the direct Internet connection.
This machine will be the firewall machine.

The term firewall has various meanings depending on its implementation and purpose.
At this opening point in the book, firewall means the Internet-connected machine. This
is where your primary security policies for Internet access will be implemented. The fire-
wall machine’s external network interface card is the connection point, or gateway, to the
Internet. The purpose of a firewall is to protect what’s on your side of this gateway from
what’s on the other side.

A simple firewall setup is sometimes called a bastion firewall because it’s the main line of
defense against attack from the outside. Many of your security measures are mounted from
this one defender of your realm. Consequently, everything possible is done to protect this
system.

Behind this line of defense is your single computer or your group of computers. The
purpose of the firewall machine might simply be to serve as the connection point to the
Internet for other machines on your LAN. You might be running local, private services
behind this firewall, such as a shared printer or shared filesystems. Or you might want
all of your computers to have access to the Internet. One of your machines might host
your private financial records. You might want to have Internet access from this machine,
but you don’t want anyone getting in. At some point, you might want to offer your own
services to the Internet. One of the machines might be hosting your own website for the
Internet. Another might function as your mail server or gateway. Your setup and goals will
determine your security policies.

The firewall’s purpose is to enforce the security policies you define. These policies
reflect the decisions you’ve made about which Internet services you want to be accessible

Hiva-Network.Com

http://www.hiva-network.com/

4 Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

to your computers, which services you want to offer the world from your computers,
which services you want to offer to specific remote users or sites, and which services and
programs you want to run locally for your own private use. Security policies are all about
access control and authenticated use of private or protected services, programs, and files on
your computers.

Home and small-business systems don’t face all the security issues of a larger corporate
site, but the basic ideas and steps are the same. There just aren’t as many factors to consider,
and security policies often are less stringent than those of a corporate site. The emphasis
is on protecting your site from unwelcome access from the Internet. A packet-filtering
firewall is one common approach to, and one piece of, network security and controlling
access to and from the outside.

Of course, having a firewall doesn’t mean you are fully protected. Security is a pro-
cess, not a piece of hardware. For example, even with a firewall in place it’s possible to
download spyware or adware or click on a maliciously crafted email, thereby opening up
the computer and thus the network to the attack. It’s just as important to have measures
in place to mitigate successful attacks as it is to spend resources on a firewall. Using best
practices inside of your network will help to lessen the chance of a successful exploit and
give your network resiliency.

Something to keep in mind is that the Internet paradigm is based on the premise of
end-to-end transparency. The networks between the two communicating machines are
intended to be invisible. In fact, if a network device somewhere along the path fails, the
idea is that traffic between the two endpoint machines will be silently rerouted.

Ideally, firewalls should be transparent. Nevertheless, they break the Internet paradigm
by introducing a single point of failure within the networks between the two endpoint
machines. Additionally, not all network applications use communication protocols that are
easily passed through a simple packet-filtering firewall. It isn’t possible to pass certain traf-
fic through a firewall without additional application support or more sophisticated firewall
technology.

Further complicating the issue has been the introduction of Network Address Transla-
tion (NAT, or “masquerading” in Linux parlance). NAT enables one computer to act on
behalf of many other computers by translating their requests and forwarding them on to
their destination. The use of NAT along with RFC 1918 private IP addresses has effec-
tively prevented a looming shortage of IPv4 addresses. The combination of NAT and
RFC 1918 address space makes the transmission of some types of network traffic difficult,
impossible, complex, or expensive.

Note
Many router devices, especially those for DSL, cable modems, and wireless, are being sold
as firewalls but are nothing more than NAT-enabled routers. They don’t perform many of
the functions of a true firewall, but they do separate internal from external. Be wary when
purchasing a router that claims to be a firewall but only provides NAT. Although some of
these products have some good features, the more advanced configurations are sometimes
not possible.

The OSI Networking Model 5

A final complication has been the proliferation of multimedia and peer-to-peer (P2P)
protocols used in both real-time communication software and popular networked games.
These protocols are antithetical to today’s firewall technology. Today, specific software solu-
tions must be built and deployed for each application protocol. The firewall architectures
for easily and economically handling these protocols are in process in the standards com-
mittees’ working groups.

It’s important to keep in mind that the combination of firewalling, DHCP, and NAT
introduces complexities that cause sites to have to compromise system security to some
extent in order to use the network services that the users want. Small businesses often
have to deploy multiple LANs and more complex network configurations to meet the
varying security needs of the individual local hosts.

Before going into the details of developing a firewall, this chapter introduces the basic
underlying concepts and mechanisms on which a packet-filtering firewall is based. These
concepts include a general frame of reference for what network communication is, how
network-based services are identified, what a packet is, and the types of messages and
information sent between computers on a network.

The OSI Networking Model
The OSI (Open System Interconnection) model represents a network framework based
on layers. Each layer in the OSI model provides distinct functionality in relation to the
other layers. The OSI model contains seven layers, as shown in Figure 1.1.

The layers are sometimes referred to by number, with the lowest layer (Physical) being
Layer 1 and the highest layer (Application) being Layer 7. If you hear someone refer to a

Figure 1.1 The seven layers of the OSI model

Application

Presentation

Session

Transport

Network

Datalink

Physical

6 Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

“Layer 3 switch,” he or she is referring to the third layer of the OSI model. As a person
interested in security and intrusion detection, you must know the layers of the OSI model
to fully understand the attack paths that could compromise your systems.

Each layer in the OSI model is important. The protocols you use every day, such as IP,
TCP, ARP, and others, reside on the various layers of the model. Each layer has its own
distinct function and role in the communication process.

The Physical layer of the OSI model is occupied by the media itself, such as the cabling
and related signaling protocols; in other words, transferring the bits. For the most part,
the Physical layer is of less concern to the network intrusion analyst beyond securing the
devices and cabling themselves. Because this book doesn’t really talk much about physical
security (how interesting are door locks?), I won’t be devoting more time to the Physical
layer of the OSI model either. Naturally, the steps you take to secure physical wires are dif-
ferent from those you would take to attempt to secure wireless devices.

The next layer above Physical is the Datalink layer. The Datalink layer transfers the
data over the given medium and is responsible for things such as detection and recovery
from errors in transmission. The Datalink layer is also the layer where physical hardware
addresses are defined, such as an Ethernet card’s Media Access Control (MAC) address.

Above the Datalink layer, the Network layer is the all-important third layer in IP
networks. This layer is responsible for the logical addressing and routing of data. IP is a
Network-layer protocol, which means that the Network layer is the layer on which IP
addresses and subnet masks are used. Routers and some switches operate at Layer 3, mov-
ing data between both logically and physically divided networks.

The fourth layer, the Transport layer, is the primary layer on which reliability can be
built. Protocols that exist at the Transport layer include TCP and UDP. The fifth layer is
the Session layer, within which sessions are built between endpoints. The sixth layer, Pre-
sentation, is primarily responsible for communication with the Application layer above
it, and it also defines such things as encryption to be used. Finally, the Application layer is
responsible for displaying data to the user or application.

Aside from the OSI model, there exists another model, the DARPA model, sometimes
called the TCP/IP reference model, which is only four layers. The OSI model has become
the traditional or de facto model on which most network discussions take place.

As data moves from an application down the layers of the OSI model, the protocol at
the next lower layer may add its own information onto the data. This data usually consists
of a header that is prepended onto the data from the next highest level, though sometimes
a trailer is added as well. This process, called encapsulation, continues until the data is trans-
mitted across the physical medium. In the case of Ethernet, the data is known as a frame
when it is transmitted. When the Ethernet frame arrives at its destination, the frame then
begins the process of moving up the layers of the OSI model, with each layer reading the
header (and possibly trailer) information from the corresponding layer of the sender. This
process is called demultiplexing.

The Internet Protocol 7

Connectionless versus Connection-Oriented Protocols
At some layers of the OSI model, protocols can be defined in terms of one of their prop-
erties, connectionless or connection oriented. This definition refers to the methods that
the protocol contains for providing such things as error control, flow control, data seg-
mentation, and data reassembly.

Think of connection-oriented protocols in terms of a telephone call. Generally there
is an acceptable protocol for making a phone call and having a conversation. The person
making the call, the initiator of the communication, opens the communication by dial-
ing a telephone number. The person (or machine, as is the ever-increasing case) at the
other end receives the request to begin a telephone conversation. The request to initiate
a telephone conversation is frequently indicated by the ringing of the telephone on the
receiver’s end. The receiver picks up the telephone and says “Hello” or some other form
of greeting. The initiator then acknowledges this greeting by responding in kind. At this
point, it’s safe to say that the conversation or call setup has been initiated. From this point
forward, the conversation ensues. During the conversation if something goes wrong such
as noise on the line, one of the parties may ask the other to repeat his or her last state-
ment. Most of the time when a call is complete, both sides will indicate that they are done
with the conversation by saying “Goodbye.” The call ends shortly thereafter.

The example just given provides a semi-reasonable picture of a connection-oriented
protocol such as TCP. There are exceptions to the rule, just as there can be exceptions or
errors with the TCP protocol. For example, sometimes the initial call fails for technologi-
cal reasons beyond the control of the caller or receiver.

On the other hand, a connectionless protocol is more akin to a postcard sent through
the mail. After the sender writes a message on the postcard and drops it into the mailbox,
the sender (presumably) loses control over that message. The sender receives no direct
acknowledgment that the postcard was ever delivered successfully. Examples of connec-
tionless protocols include UDP and IP itself.

Next Steps
From here, I’m going to jump into a more detailed look at the Internet Protocol (IP).
However, I strongly recommend that you spend some additional time learning about the
OSI model and the protocols themselves. Knowledge of the protocols and the OSI model
is vital to a security professional. I highly recommend the book TCP/IP Illustrated, Vol-
ume 1, Second Edition, by Kevin R. Fall and W. Richard Stevens as a book that is indispens-
able on any computer professional’s desk.

The Internet Protocol
The Internet Protocol is the basis on which the Internet operates. Together with protocols
at other layers, the IP layer provides communications for countless applications. IP is a
connectionless protocol providing Layer 3 routing functions.

Hiva-Network.Com

http://www.hiva-network.com/

8 Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

IP Addressing and Subnetting
As you already know, but I feel compelled to write, IP addresses for version 4 of IP (IPv4)
consist of four 8-bit numbers separated by periods, known as the “dotted quad” or “dotted
decimal” notation. For IP version 6 (IPv6), addresses are 128-bit and are shown as eight
groups of hexadecimal digits each separated by a colon. Although seemingly everyone
understands or at least has seen an IP address, it certainly seems as though fewer and fewer
understand subnetting and the subnet masks that are an important part of the IP address-
ing scheme. This section briefly looks at IP addressing and subnetting.

IPv4 addresses are divided into different classes rather than being an entirely flat address
space. The classes for IPv4 addresses are shown in Table 1.1.

In practice, only addresses in Classes A through C are for general Internet use. How-
ever, some readers may have experience with Class D addresses, frequently used for multi-
cast. Class E is the experimental and unallocated range.

Special IP Addresses
There are three major special cases of IP addresses:

 � Network address 0—As noted under Class A addresses, network address 0 is not
used as part of a routable address for IPv4. It is represented as ::/0 for IPv6. When
used as a source address, its only legal use is during initialization when a host is
attempting to have its IP address dynamically assigned by a server. When used as a
destination, only address 0.0.0.0 has meaning, and then only to the local machine
as referring to itself, or as a convention to refer to a default route.

 � Loopback network address 127—As noted under Class A addresses, network
address 127 is not used as part of a routable address. The IPv6 loopback address
is represented as 0:0:0:0:0:0:0:1 or, more typically, reduced to ::1. Loopback
addresses refer to a private network interface supported by the operating system.
The interface is used as the addressing mechanism for local network-based services.
In other words, local network clients use it to address local servers. Loopback traffic
remains entirely within the operating system. It is never passed to a physical network
interface. Typically, 127.0.0.1 is the only loopback address used for IPv4 and ::1
for IPv6, referring to the local host.

 � Broadcast addresses—Broadcast addresses are special addresses applying to all
hosts on a network. There are two major categories of broadcast addresses. Limited
broadcasts are not routed but are delivered to all hosts connected to the same
physical network segment. All the bits in both the network and the host fields of the
IP address are set to one, as 255.255.255.255. Network-directed broadcasts are
routed, being delivered to all hosts on a specified network. The IP address’s network
field specifies a network. The host field is usually all ones, as in 192.168.10.255.
Alternatively, you might sometimes see the address specified as the network address,
as in 192.168.10.0. IPv6 doesn’t use broadcast addresses in this sense but rather
uses multicasting to communicate with groups of hosts.

The Internet Protocol 9

The IPv4 header consists of a number of fields and totals 20 bytes, not including
optional option fields that can be included as part of the header. The IPv6 header is a
320-bit header. The IPv4 header is shown in Figure 1.2.

The IPv4 header begins with 4 bits indicating the version, currently version 4, fol-
lowed by 4 bits indicating the length of the header. The header itself is normally 20 bytes
plus optional options. The maximum length of the IPv4 header is 60 bytes. The next
field, Differentiated Services Code Point (DSCP), is 6 bits in length followed by 2 bits for
Explicit Congestion Notification (ECN).

The first number of an IP address indicates the class of the address. Because each num-
ber within the dotted decimal notation is 8 bits, the possible values for each number are
0 through 255. The class indicates the default number of bits devoted to the network
portion of the address versus the number of bits devoted to the host identification with a
given address. The division between the network portion of the address and the host por-
tion of the address is important because it is the basis of subnet addressing.

Aside from classes, there are three types of addresses available on the Internet: unicast,
multicast, and broadcast. Unicast addresses correspond to a single network interface on the
Internet. Multicast addresses correspond to a group of hosts that ask to be included within

Figure 1.2 The IPv4 header

Version Hdr Len TOS Total Datagram Len

Packet ID

Header Checksum

Fl Fragment Offset

ProtocolTTL

Source Address

Destination Address

(IP Options) (Padding)

Table 1.1 Internet Addresses

Class Address Range

A 0.0.0.0 to 127.255.255.255

B 128.0.0.0 to 191.255.255.255

C 192.0.0.0 to 223.255.255.255

D 224.0.0.0 to 239.255.255.255

E and unallocated 240.0.0.0 to 255.255.255.255

10 Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

that group. Broadcast addresses are used by hosts that want to send data to every host on a
given subnet.

Each class of address has a default subnet mask that indicates the division between the
network and host portions of a given address. That’s quite a mouthful, so I’ll give examples
and then there will be a quiz later. Kidding!

The default subnet masks for Classes A through C are given in Table 1.2.
You’ve undoubtedly seen and typed these numbers when configuring network settings.

As previously stated, the subnet mask indicates the division between the network and the
host portions of an IP address. The unmasked portion, known as the host portion, of the
address comprises the logical network on which a given host resides. In other words, with
a Class C subnet mask of 255.255.255.0, there can be a total of 254 hosts on the net-
work. An astute reader might notice that there are really 256 addresses but only 254 hosts.
Within a given logical IP network there are two special addresses, the network address and
the broadcast address. This is true regardless of the size of the network. In the case of the
Class C subnet example, the network address ends with .0 and the broadcast address ends
with .255.

As Table 1.2 illustrates, of the total 32 bits in an IPv4 address, a Class A subnet mask
uses 8 bits, a Class B subnet mask uses 16 bits, and a Class C subnet mask uses 24 bits.
When a network is divided along traditional address class boundaries using the default
subnet mask, it is said to be a classful network. As you might expect, there are times when
it would be beneficial to use a much smaller network. For example, two IP routers that
only need to transmit between each other would use an entire Class C network using
traditional classful subnetting. Luckily, classless subnetting is also possible.

Using classless subnetting, officially called Classless Inter Domain Routing (CIDR),
you can divide networks according to need by adding or subtracting bits from the subnet
mask. This is useful for conservation of addresses because it enables the network adminis-
trator to customize the size of the network based more on need and convenience than on
the classful boundaries. Jumping back to the example with two routers that communicate
solely with each other, using CIDR a network administrator can create a network of just
two hosts with the resulting subnet mask being 255.255.255.252.

I’ll carry that example a little further. The two routers only need to talk to each other
within this network so that they can route traffic between two different IP networks. The
network administrator assigns one router the address 192.168.0.1 and the other router
the address 192.168.0.2 and gives both a subnet mask of 255.255.255.252. Given that
subnet mask, there are two available IP addresses with which a host could be addressed.
The network address for this logical network is 192.168.0.0 and the broadcast address is

Table 1.2 Default Subnet Masks

Class Default Subnet Mask

A 255.0.0.0

B 255.255.0.0

C 255.255.255.0

The Internet Protocol 11

192.168.0.3. Using CIDR, the network administrator can now use the remainder of the
192.168.0 network, following CIDR rules, for other hosts.

You’ll frequently see subnet notation referred to with a /NN with NN being the number
of bits to be masked. For example, a Class C has 24 bits for the network portion of the
address, which means that it could be referred to as /24. A Class B would be /16 and a
Class A would be /8. Going back to the two-router example, the CIDR notation for this
address is /30 because 30 bits of the address are consumed by the subnet.

Why is subnetting important? The simple answer is that a subnet defines the larg-
est possible broadcast space for a given network. Within a given subnet a host can send a
broadcast to all other hosts in that subnet. In practice, though, broadcasts are limited more
by physical limitations than by the logical limitations presented by subnet masks. You can
connect only so many devices to a switch before you may (I repeat, may) start to see per-
formance degradation and would likely divide the network into smaller logical sections.
Without subnetting we would have a very large, flat address space, which would be much
slower than the hierarchical addressing currently used.

IP Fragmentation
There are times when an IP datagram is larger than the maximum allowed size for the
physical medium on which it will be traveling. This maximum allowed size is known as
the Maximum Transmission Unit, or MTU. If an IP datagram is larger than the MTU for
the medium, the datagram will need to be split into smaller chunks before being transmit-
ted. For Ethernet, the MTU is 1500 bytes. The process of splitting an IP datagram into
smaller pieces is called fragmentation.

Fragmentation is handled at the IP layer of the OSI model and is thus transparent to
higher-layer protocols such as TCP and UDP. As an administrator, you should care about
fragmentation insofar as it can affect application performance if one of the fragments of
a large segment gets lost. In addition, as a security administrator, you should understand
fragmentation because it has been a path for attack in the past. Realize, however, that any
intermediary router or other devices within the communication path may cause fragmen-
tation and you may not even know it.

Broadcasting and Multicasting
When a device wants to send data to other devices on the same network segment, it can
send the data to a special address known as a broadcast address to accomplish this task. On
the other hand, a multicast is sent to the devices that belong to the multicast group, some-
times called subscribers.

Imagine a large, flat network in which every computer and device is connected to the
others. In such an environment every network device sees every other network device’s
traffic. In this type of network, each device sees the traffic and determines whether it cares
about the traffic in question. In other words, it looks to see whether the data is addressed
to it or to another device. If the data is addressed to the device, it passes the data up to the
layers of the OSI model. At the interface level for Ethernet, the device looks for its MAC

Hiva-Network.Com

http://www.hiva-network.com/

12 Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

address or the hardware address associated with the network interface itself. Remember
that IP addresses are relevant only to protocols at higher layers on the OSI model.

Aside from frames addressed to the device itself, two special cases exist that might cause
an interface to accept data and pass it up to higher layers. These two special cases are mul-
ticast and broadcast. Multicast is a method for transmitting data to a subset of devices that
are said to be subscribed to that multicast.

On the other hand, broadcasts are meant to be processed by every device that receives
them. Primarily two types of broadcasts are available: directed broadcast and limited
broadcast. By far, directed broadcasts are the more common. Limited broadcasts are used
by devices attempting to configure themselves through DHCP, BOOTP, or another con-
figuration protocol. A limited broadcast is sent to the address 255.255.255.255 and
should never pass through a router. This is a key hint for anyone who controls a router or
other routing device such as a routing firewall. If you receive a packet on your external,
Internet-facing router interface addressed to 255.255.255.255, chances are that there is
a misconfigured device or, more likely, that a potential attacker is attempting to probe your
network. You may see a limited broadcast on an internal interface for a router if you have
devices that configure themselves on boot using DHCP.

Directed broadcasts are the most common form of broadcast you’ll see on any given
network. This is because broadcasts are used by the Address Resolution Protocol (ARP,
discussed later) to determine the MAC address for an IP address on a given subnet. A
directed broadcast is a broadcast that is limited by the network or subnet in which the
sending device resides. By default, when a router interface encounters a directed broad-
cast, it does not pass it along to other subnets through the router. Most routers can be
configured to allow this behavior; however, one should be careful so as not to create a
broadcast storm by forwarding broadcasts through a router. A subnet broadcast is a data
frame addressed to the broadcast address in a given subnet. This broadcast address varies
depending on the subnet mask for the given subnet. In a Class C subnet (255.255.255.0
or /24), the default broadcast address is the highest available address, thus the one end-
ing in .255. For example, in the 192.168.1.0/24 network, the broadcast address is
192.168.1.255.

ICMP
Holding a special place, some say, within the IP layer is ICMP. You’re probably familiar
with ICMP because ping uses ICMP. ICMP, or Internet Control Message Protocol,
has several uses, including being the underlying protocol for the ping command. There
are 15 functions within ICMP, each denoted by a type code. For instance, the type for an
ICMP echo request (think: ping) is 8; the reply to that request, aptly titled an echo reply,
is type 0. Within the different types there can also exist codes to specify the condition for
the given type. The types and codes for ICMP messages are shown in Table 1.3.

The type and the code of an ICMP message are contained in the ICMP header, shown
in Figure 1.3.

The Internet Protocol 13

Table 1.3 ICMP Message Types and Codes

Type Code Description

0 0 Echo Reply

3 Destination Unreachable

0 Network Unreachable

1 Host Unreachable

2 Protocol Unreachable

3 Port Unreachable

4 Fragmentation Needed and DF Set

5 Source Route Failed

6 Destination Network Unknown

7 Destination Host Unknown

8 Source Host Isolated

9 Destination Network Administratively Prohibited

10 Destination Host Administratively Prohibited

11 Network Unreachable for Type of Service

12 Host Unreachable for Type of Service

13 Communication Administratively Prohibited

14 Host Precedence Violation

15 Precedence Cutoff in Effect

4 Source Quench (deprecated)

5 Redirect

0 Network Redirect

1 Host Redirect

2 Type of Service and Network Redirect

3 Type of Service and Host Redirect

8 0 Echo Request

9 0 Router Advertisement

10 0 Router Selection

11 Time Exceeded

0 TTL (Time to Live) Exceeded in Transit

1 Fragment Reassembly Time Exceeded

12 0 Parameter Problem

13 0 Timestamp Request

14 0 Timestamp Reply

15 0 Information Request (deprecated)

16 0 Information Reply (deprecated)

17 0 Address Mask Request (deprecated)

18 0 Address Mask Reply (deprecated)

14 Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

Transport Mechanisms
Internet Protocol defines a Network-layer protocol of the OSI model. There are also
other Network-layer protocols, but I will be concentrating solely on IP because it is by far
the most popular Network-layer protocol in use today. Above the Network layer on the
OSI model is the Transport layer. As you might expect, the Transport layer has its own set
of protocols. Two of the Transport-layer protocols are of interest: UDP and TCP. This sec-
tion examines each of these protocols.

UDP
UDP, or User Datagram Protocol, is a connectionless protocol used for such services as
DNS queries, SNMP, and RADIUS. Being connectionless, UDP is akin to a “fire and for-
get” type of protocol. The client sends a UDP packet, sometimes referred to as a datagram,
and assumes that the server will receive the packet. It’s up to a higher-layer protocol to
assemble the packets in order. The UDP header, shown in Figure 1.4, is 8 bytes in length.

The UDP header begins with the source port number and the destination port num-
ber. Next up is the length of the entire packet, including data. Obviously because the
header itself is 8 bytes in length, the minimum value for this portion of the header is 8.
The final portion of the UDP header is the checksum, which includes both the header
and the data.

TCP
TCP, an abbreviation for Transmission Control Protocol, is a connection-oriented proto-
col that is frequently used with IP. Referring to TCP as connection oriented means that it
provides reliable service to the layers above it. Recall the telephone conversation analogy

Figure 1.3 The ICMP header

Sub Type Code Checksum

Message ID

(Optional ICMP Data Structure)

Message Type

Sequence Number

Figure 1.4 The UDP header

Destination Port

UDP Packet Length Checksum

Source Port

Transport Mechanisms 15

given earlier in this chapter. As in that analogy, two applications wanting to communicate
using TCP must also establish a connection (sometimes referred to as a session). The TCP
header is shown in Figure 1.5.

As you can see from Figure 1.5, the 20-byte TCP header is significantly more compli-
cated than the other protocol headers shown in this chapter. Like the UDP header, the
TCP header begins with both the source and the destination ports. The combination of
the source and destination ports along with the IP addresses of the sender and receiver
identifies the connection. The TCP header has a 32-bit sequence number and a 32-bit
acknowledgment. Remember that TCP is a connection-oriented protocol and provides
reliable service. The sequence and acknowledgment numbers are the primary (but not the
only) mechanisms used to provide that reliability. As data is passed down to the Transport
layer, TCP divides the data into what it believes to be the most appropriate size. These
pieces are known as TCP segments. As TCP sends data down the protocol stack, it creates a
sequence number that indicates the first byte of data for the given segment. On the oppo-
site end of the communication, the receiver sends an acknowledgment indicating that the
segment has been received. The sender keeps a timer running, and if an acknowledgment
isn’t received in a timely fashion, the segment will be resent.

Another mechanism for reliability that TCP provides is a checksum on both the header
and the data. If the checksum set within the header by the sender does not match the
checksum as computed by the receiver, the receiver will not send an acknowledgment. If
an acknowledgment gets lost in transit, the sender will likely send another segment with
the same sequence number. In such an event, the receiver will simply discard the repeated
segment.

A 4-bit field is used for header length, including any options provided as part of the
header. There are several individual bit flags within the TCP header: URG, ACK, PSH, RST,
SYN, FIN, NS, CWR, and ECE. A description of these flags is contained in Table 1.4.

The 16-bit Window field is used to provide a sliding window mechanism. The receiver
sets the window number to indicate the size that the receiver is ready to receive, begin-
ning with the acknowledgment number. This is a form of flow control for TCP.

Figure 1.5 The TCP header

Destination Port

Checksum

Window

Source Port

Sequence Number

Acknowledgment Number

Urgent Pointer

FlagsUnusedData
Offset

Hiva-Network.Com

http://www.hiva-network.com/

16 Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

The 16-bit urgent pointer indicates the offset from the sequence number where urgent
data ends. This enables the sender to indicate that there is data that should be handled in
an urgent manner. This pointer can be used in conjunction with the PSH flag as well.

Now that you have a feeling for the TCP header, it’s time to examine how TCP con-
nections are established and ended.

TCP Connections
Whereas UDP is a connectionless protocol, TCP is a connection-oriented protocol.
With UDP there is no concept of a connection; there is only a sender and a receiver of a
UDP datagram. With TCP, on the other hand, either side of the connection can send or
receive data, possibly doing both at the same time. This is what makes TCP a full-duplex
protocol. The process of establishing a TCP connection is sometimes called the three-way
 handshake—you’ll see why shortly.

With a connection-oriented protocol, there is a specific set of procedures that takes
place in order to establish a TCP connection. During this process, various states exist for
the TCP connection. The connection establishment procedures and their corresponding
states are detailed next.

The side of the communication wanting to initiate the connection (client) sends a TCP
segment with the SYN flag set, as well as an Initial Sequence Number (ISN) and the port
number for the connection to the other side, normally referred to as the server side of the
connection. This is frequently referred to as a SYN packet or SYN segment, and the con-
nection is said to be in the SYN_SENT state.

The server side of the connection responds with a TCP segment with the SYN flag set
as well as the ACK flag set. In addition, the server sets the ISN with a value one higher than

Table 1.4 TCP Header Flags

Flag Description

URG Indicates that the urgent pointer portion of the header should be examined.

ACK Indicates that the acknowledgment number should be examined.

PSH Indicates that the receiver should hand this data up to the next layer as soon as
possible.

RST Indicates that the connection should be reset.

SYN Initiates a connection.

NS ECN nonce concealment protection.

CWR Congestion Window Reduced to indicate that a packet with the ECE flag was set and
congestion control responded.

ECE If the SYN flag is set to 1, this flag indicates that the TCP peer is ECN capable. If
SYN is set to 0, this flag indicates that a Congestion Experienced flag was set in an
IP header.

FIN Indicates that the sender (could be either side of the connection) is done sending
data.

Don’t Forget Address Resolution Protocol 17

the ISN sent by the client. This is frequently referred to as a SYN-ACK packet or SYN-ACK
segment, and the connection is said to be in the SYN_RCVD state.

The client then acknowledges the SYN-ACK by sending another segment with the ACK
flag set and by incrementing the ISN by one. This completes the three-way handshake and
the connection is said to be in an ESTABLISHED state.

As with the protocol for connection initiation, there is also a protocol for connection
termination. The protocol for terminating a TCP connection is four steps as opposed
to the three for connection establishment. The additional step is due to the full-duplex
nature of a TCP connection insofar as either side may be sending data at any given time.

Closing a connection on one side is accomplished by that side sending a TCP segment
with the FIN flag set. Either side of the connection can send a FIN to indicate that it is
done sending data. The other side can still send data. However, in practice, after a FIN is
received, the connection termination sequence will normally begin. For this discussion I’ll
call the side wanting to terminate the connection the client side.

The termination process begins with the client sending a segment with the FIN flag
set, known as the CLOSE_WAIT state on the server side and FIN_WAIT_1 on the client side.
After the FIN is received by the server, the server sends an ACK back to the client, incre-
menting the sequence number by one. At this point the client goes into the FIN_WAIT_2
state. The server also indicates to its own higher-layer protocols that the connection is ter-
minated. Next, the server closes the connection, which causes a segment with the FIN flag
to be sent to the client, which in turn causes the server to go into a LAST_ACK state while
the client goes into a TIME_WAIT state. Finally, the client acknowledges this FIN with an
ACK and increments the sequence number by one, which causes the connection to go into
a CLOSED state. Because TCP connections can be terminated by either side, a TCP con-
nection can exist in a half-closed mode in which one end has initiated the FIN sequence
but the other side has not done so.

TCP connections can also be terminated by one end sending a segment with the reset
(RST) flag set. This tells the other side to use an abortive release method. This is as opposed to
the normal termination of a TCP connection, sometimes referred to as an orderly release.

An optional part of the TCP connection sequence is the establishment of the Maxi-
mum Segment Size (MSS). The MSS is the maximum chunk of data that the respective
end of communication is able to receive. Because the MSS is the maximum size that a
given end of the connection can receive, it’s perfectly fine to send a chunk of data smaller
than the MSS. In general, you should consider a larger MSS to be good, keeping in mind
that fragmentation should be avoided because it adds overhead (the additional bytes for
each IP and TCP header required for fragmented packets).

Don’t Forget Address Resolution Protocol
Address Resolution Protocol, or ARP, is the protocol used to link a physical device such as
a network card to an IP address. Network devices use a 48-bit address (known as a MAC
address) that is unique across all devices in a given segment. Although sometimes devices
have the same MAC address, this is quite rare within the same network segment.

18 Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

When capturing traffic in a network, you will encounter ARP packets at varying fre-
quencies as devices locate one another as they pass traffic. ARP requests are broadcast so
that all devices will see them. However, most ARP replies are unicast so that only the
requesting device will see the reply. ARP traffic is not normally passed between network
segments. Therefore, a router can be configured to provide proxy ARP service so that it
can answer for ARP requests in multiple network segments.

Hostnames and IP Addresses
People like to use words to name things, such as giving computers names like
mycomputer.mydomain.example.com. Technically, it’s not the computer that’s being
named, but the network interface in the computer. If the computer has multiple network
cards, each card will typically have a different name and address and will most likely be on
a different network in a different subdomain.

Hostname elements are separated by dots. In the case of mycomputer.mydomain
.example.com, the leftmost element, mycomputer, is the hostname. The .mydomain,
.example, and .com are elements of the domains this network card is a member of.
Network domains are hierarchical trees. What is a domain? It’s a naming convention. The
hierarchical domain tree represents the hierarchical nature of the global Domain Name
Service (DNS) database. DNS maps between the symbolic names people give to comput-
ers and networks and the numeric addresses the IP layer uses to uniquely identify network
interfaces.

DNS maps in both directions: IP address to name and name to IP address. When you
click on a URL in your web browser, the DNS database is consulted to find the unique
IP address associated with that hostname. The IP address is passed to the IP layer to use as
the destination address in the packet.

IP Addresses and Ethernet Addresses
Whereas the IP layer identifies network hosts by their 32- or 128-bit IP address, the
subnet or link layer identifies the Ethernet card by its unique 48-bit Ethernet address,
or MAC address, which the manufacturer burns into the card and can also be set by the
user. IP addresses are passed between the endpoint hosts to identify themselves. Ethernet
addresses are passed between adjacent hosts and routers.

Ordinarily, the Ethernet address could be ignored in a firewall discussion. The Layer 2
hardware Ethernet address is not visible to the Layer 3 IP level or Layer 4 Transport level.
As you’ll see in later chapters, the Linux firewall administration program has the extended
capability to access and filter on the MAC address. There are specialized uses for this
firewall functionality, but it’s important to remember that Ethernet addresses do not pass
end-to-end across the network. Ethernet addresses are passed between adjacent network
interfaces, or hosts and routers. They are not passed through a router unchanged.

Service Ports: The Door to the Programs on Your System 19

Routing: Getting a Packet from Here to There
Neither a residential site nor most businesses are likely to run routing protocols such as
RIP or OSPF. In these cases, routing tables are set up statically, by hand. There’s a hint in
there. If you’re running a routing protocol such as RIP, chances are that you don’t need to
be; you could operate a more efficient network without that unnecessary overhead. Typi-
cally, most sites have a default gateway device, which is the network that interface packets
are sent out on when the destination address’s route is unknown. The service provider
usually provides a single router address, which is the default Internet gateway for the site’s
local network.

Service Ports: The Door to the Programs
on Your System
Network-based services are programs running on a machine that other computers on
the network can access. The service ports identify the programs and individual sessions or
connections taking place. Service ports are the numeric names for the different network-
based services. They are also used as numeric identifiers for the endpoints of a particular
connection between two programs. Service port numbers range from 0 to 65535.

Server programs (that is, daemons) listen for incoming connections on a service port
assigned to them. By historical convention, major network services are assigned well-
known, or famous, port numbers in the lower range from 1 to 1023. These port number–
to–service mappings are coordinated by the Internet Assigned Numbers Authority
(IANA) as a set of universally agreed-on conventions or standards.

An advertised service is simply a service available over the Internet from its assigned
port. If your machine isn’t offering a particular service, and someone tries to connect to
the port associated with that service, nothing will happen. Someone is knocking on the
door, but no one lives there to answer. For example, HTTP is assigned to port 80 (though,
again, there’s no reason why you couldn’t run it on port 8080, 20943, or any other avail-
able port). If your machine isn’t running an HTTP-based web server and someone tries
to connect to port 80, the client program receives a connection shutdown message as an
error message from your machine indicating that the service isn’t offered.

The higher port numbers from 1024 to 65535 are called unprivileged ports. They serve
a dual purpose. For the most part, these ports are dynamically assigned to the client end
of a connection. The combination of client and server port number pairs, along with
their respective IP host addresses, and the transport protocol used, uniquely identifies the
connection.

Additionally, ports in the 1024 through 49151 range are registered with the IANA.
These ports can be used as part of the general unprivileged pool, but they are also associ-
ated with particular services such as SOCKS or X Window servers. Originally, the idea
was that services offered on the higher ports were not running with root privilege. They

Hiva-Network.Com

http://www.hiva-network.com/

20 Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

were for use by user-level, nonprivileged programs. The convention may or may not hold
in any individual case.

Service Name–to–Port Number Mappings
Linux distributions are supplied with a list of common service port numbers. The list is
found in the /etc/services file.

Each entry consists of a symbolic name for a service, the port number assigned to it, the
protocol (TCP or UDP) the service runs over, and any optional nicknames for the service.
Table 1.5 lists some common service name–to–port number mappings, taken from Red Hat
Linux.

Table 1.5 Common Service Name–to–Port Number Mappings

Port Name Port Number/Protocol Alias

ftp 21/tcp - -

ssh 22/tcp - -

smtp 25/tcp mail

domain 53/tcp nameserver

domain 53/udp nameserver

http 80/tcp www www-http

pop3 110/tcp pop-3

nntp 119/tcp readnews untp

ntp 123/udp - -

https 443/tcp - -

Note that the symbolic names associated with the port numbers vary by Linux distribution
and release. Names and aliases differ; port numbers do not.

Also note that port numbers are associated with a protocol. The IANA has attempted to
assign the same service port number to both the TCP and the UDP protocols, regardless of
whether a particular service uses both transport modes. Most services use one protocol or
the other. The Domain Name Service uses both.

A Typical TCP Connection: Visiting a Remote Website
As an illustration, a common TCP connection is going to a website through your browser
(connecting to a web server). This section illustrates the aspects of connection establish-
ment and ongoing communication that will be relevant to IP packet filtering in later
chapters.

Service Ports: The Door to the Programs on Your System 21

What happens? As shown in Figure 1.6, a web server is running on a machine some-
where, waiting for a connection request on TCP service port 80. You click on the link for
a URL in your web browser. Part of the URL is parsed into a hostname; the hostname is
translated into the web server’s IP address; and your browser is assigned an unprivileged
port (for example, TCP port 14000) for the connection. An HTTP message for the web
server is constructed. It’s encapsulated in a TCP message, wrapped in an IP packet header,
and sent out. For our purposes, the header contains the fields shown in Figure 1.6.

Additional information is included in the header that isn’t visible at the packet-filtering
level. Nevertheless, describing the sequence numbers associated with the SYN and ACK
flags helps clarify what’s happening during the three-way handshake. When the client
program sends its first connection request message, the SYN flag is accompanied by a syn-
chronization sequence number. The client is requesting a connection with the server and
passes along a sequence number it will use as the starting point to number all the rest of
the data bytes the client will send.

The packet is received at the server machine. It’s sent to service port 80. The server
is listening to port 80, so it’s notified of an incoming connection request (the SYN con-
nection synchronization request flag) from the source IP address and port socket pair
(your IP address, 14000). The server allocates a new socket on its end (web server
IP address, 80) and associates it with the client socket.

The web server responds with an acknowledgment (ACK) to the SYN message, along
with its own synchronization request (SYN), as shown in Figure 1.7. The connection is
now half open.

Two fields not visible to the packet-filtering level are included in the SYN-ACK header.
Along with the ACK flag, the server includes the client’s sequence number incremented by

Figure 1.6 A TCP client connection request

Web Browser
Port 14000

Address 192.168.10.30

Web Server
Port 80

Address 10.10.22.85

Protocol: TCP
Source Address: 192.168.10.30

Source Port: 14000
Destination Address: 10.10.22.85

Destination Port: 80 (www)
Flags: SYN (Connection Synchronization Request)

22 Chapter 1 Preliminary Concepts Underlying Packet-Filtering Firewalls

the number of contiguous data bytes received. The purpose of the acknowledgment is to
acknowledge the data the client referred to by its sequence number. The server acknowl-
edges this by incrementing the client’s sequence number, effectively saying it received the
data, and sequence number plus one is the next data byte the server expects to receive.
The client is free to throw its copy of the original SYN message away now that the server
has acknowledged receipt of it.

The server also sets the SYN flag in its first message. As with the client’s first message,
the SYN flag is accompanied by a synchronization sequence number. The server is passing
along its own starting sequence number for its half of the connection.

This first message is the only message the server will send with the SYN flag set. This
and all subsequent messages have the ACK flag set. The presence of the ACK flag in all server
messages, as compared to the lack of an ACK flag in the client’s first message, will be a criti-
cal difference when we get to the information available for constructing a firewall.

Your machine receives this message and replies with its own acknowledgment, after
which the connection is established. Figure 1.8 shows a graphic representation of this.
From here on, both the client and the server set the ACK flag. The SYN flag won’t be set
again by either program.

With each acknowledgment, the client and server programs increment their partner
process’s sequence number by the number of contiguous data bytes received, plus one,
indicating receipt of that many bytes of data, and indicating the next data byte in the
stream the program expects to receive.

As your browser receives the web page, your machine receives data messages from the
web server with packet headers, as shown in Figure 1.9.

Figure 1.7 A TCP server connection request acknowledgment

Web Browser
Port 14000

Address 192.168.10.30

Web Server
Port 80

Address 10.10.22.85

Protocol: TCP
Source Address: 10.10.22.85

Source Port: 80 (www)
Destination Address: 192.168.10.30

Destination Port: 14000
Flags: ACK (SYN Acknowledgment)

 SYN (Connection Synchronization Request)

Summary 23

Figure 1.8 TCP connection establishment

Web Browser
Port 14000

Address 192.168.10.30

Web Server
Port 80

Address 10.10.22.85

Protocol: TCP
Source Address: 192.168.10.30

Source Port: 14000
Destination Address: 10.10.22.85

Destination Port: 80 (www)
Flags: ACK (Acknowledgment)

Figure 1.9 An ongoing TCP server-to-client connection

Web Browser
Port 14000

Address 192.168.10.30

Web Server
Port 80

Address 10.10.22.85

Protocol: TCP
Source Address: 10.10.22.85

Source Port: 80 (www)
Destination Address: 192.168.10.30

Destination Port: 14000
Flags: ACK (Acknowledgment)

Summary
The simple examples in this chapter illustrate the information that IP packet-filtering
firewalls are based on. Chapter 2, “Packet-Filtering Concepts,” builds on this introduction,
describing how the ICMP, UDP, and TCP message types and service port numbers are
used to define a packet-filtering firewall.

Hiva-Network.Com

http://www.hiva-network.com/

This page intentionally left blank

2
Packet-Filtering Concepts

What is a firewall? Over the years, the term has changed in meaning. According to
RFC 2647, “Benchmarking Terminology for Firewall Performance,” a firewall is “a device
or group of devices that enforces an access control policy between networks.” This defi-
nition is very broad, purposefully so in fact. A firewall can encompass many layers of the
OSI model and may refer to a device that does packet filtering, performs packet inspec-
tion and filtering, implements a policy on an application at a higher layer, or does any of
these and more.

A nonstateful, or stateless, firewall usually performs some packet filtering based solely
on the IP layer (Layer 3) of the OSI model, though sometimes higher-layer protocols are
involved in this type of firewall. An example of this type of device might include a bor-
der router that sits at the edge of a network and implements one or more access lists to
prevent various types of malicious traffic from entering the network. Some might argue
that this type of device isn’t a firewall at all. However, it certainly appears to fit within the
RFC definition.

A border router access list might implement many different policies depending on
which interface the packet was received on. It’s typical to filter certain packets at the edge
of the network connecting to the Internet. These packets are discussed later in this chapter.

As opposed to a stateless firewall, a stateful firewall is one that keeps track of the pack-
ets previously seen within a given session and applies the access policy to packets based
on what has already been seen for the given connection. A stateful firewall implies the
basic packet-filtering capabilities of a stateless firewall as well. A stateful firewall will, for
example, keep track of the stages of the TCP three-way handshake and reject packets that
appear out of sequence for that handshake. Being connectionless, UDP is somewhat trick-
ier to handle for a stateful firewall because there’s no state to speak of. However, a stateful
firewall tracks recent UDP exchanges to ensure that a packet that has been received relates
to a recent outgoing packet.

An Application-level gateway (ALG), sometimes referred to an as an Application-layer gate-
way, is yet another form of firewall. Unlike the stateless firewall, which has knowledge of
the Network and possibly Transport layers, an ALG primarily handles Layer 7, the Applica-
tion layer of the OSI model. ALGs typically have deep knowledge of the application data

26 Chapter 2 Packet-Filtering Concepts

being passed and can thus look for any deviation from the normal traffic for the application
in question.

An ALG will typically reside between the client and the real server and will, for all
intents and purposes, mimic the behavior of the real server to the client. In effect, local
traffic never leaves the LAN, and remote traffic never enters the LAN.

ALG sometimes also refers to a module, or piece of software that assists another fire-
wall. Many firewalls come with an FTP ALG to support FTP’s port mode data channel,
where the client tells the server what local port to connect to so that it can open the data
channel. The server initiates the incoming data channel connection (whereas, usually, the
client initiates all connections). ALGs are frequently required to pass multimedia protocols
through a firewall because multimedia sessions often use multiple connections initiated
from both ends and generally use TCP and UDP together.

ALG is a proxy. Another form of proxy is a circuit-level proxy. Circuit-level proxies don’t
usually have application-specific knowledge, but they can enforce access and authoriza-
tion policies, and they serve as termination points in what would otherwise be an end-
to-end connection. SOCKS is an example of a circuit-level proxy. The proxy server acts
as a termination point for both sides of the connection, but the server doesn’t have any
application-specific knowledge.

In each of these cases, the firewall’s purpose is to enforce the access control or security
policies that you define. Security policies are essentially about access control—who is and
is not allowed to perform which actions on the servers and networks under your control.

Though not necessarily specific to a firewall, firewalls many times find themselves
performing additional tasks, some of which might include Network Address Translation
(NAT), antivirus checking, event notification, URL filtering, user authentication, and
Network-layer encryption.

This book covers the ideas behind a packet-filtering firewall, both static and dynamic,
or stateless and stateful. Each of the approaches mentioned controls which services can be
accessed and by whom. Each approach has its strengths and advantages based on the dif-
fering information available at the various OSI reference model layers.

Chapter 1, “Preliminary Concepts Underlying Packet-Filtering Firewalls,” introduced
the concepts and information a firewall is based on. This chapter introduces how this
information is used to implement firewall rules.

A Packet-Filtering Firewall
At its most basic level, a packet-filtering firewall consists of a list of acceptance and denial
rules. These rules explicitly define which packets will and will not be allowed through the
network interface. The firewall rules use the packet header fields described in Chapter 1 to
decide whether to forward a packet to its destination, to silently throw away the packet, or
to block the packet and return an error condition to the sending machine. These rules can
be based on a wide array of factors, including the source or destination IP addresses, the
source and (more commonly) destination ports, and portions of individual packets such as
the TCP header flags, the types of protocol, the MAC address, and more.

A Packet-Filtering Firewall 27

MAC address filtering is not common on Internet-connected firewalls. Using MAC
filtering, the firewall blocks or allows only certain MAC addresses. However, in all likeli-
hood you see only one MAC address, the one from the router just upstream from your
firewall. This means that every host on the Internet will appear to have the same MAC
address as far as your firewall can see. A common error among new firewall administrators
is to attempt to use MAC filtering on an Internet firewall.

Using a hybrid of the TCP/IP reference model, a packet-filtering firewall functions at
the Network and Transport layers, as shown in Figure 2.1.

The overall idea is that you need to very carefully control what passes between the
Internet and the machine that you have connected directly to the Internet. On the exter-
nal interface to the Internet, you individually filter what’s coming in from the outside and
what’s going out from the machine as exactly and explicitly as possible.

For a single-machine setup, it might be helpful to think of the network interface as an
I/O pair. The firewall independently filters what comes in and what goes out through the
interface. The input filtering and the output filtering can, and likely do, have completely
different rules. Figure 2.2 depicts processing for rules in a flowchart.

This sounds pretty powerful, and it is; but it isn’t a surefire security mechanism. It’s
only part of the story, just one layer in the multilayered approach to data security. Not
all application communication protocols lend themselves to packet filtering. This type of

Telnet Client Web Server

Application Layer

Client and server
programs

Transport Layer

TCP and UDP protocols
and service ports

Network Layer

IP packets, IP
addresses, and ICMP

messages

Datalink Layer

Ethernet frames and
MAC addresses

Firewall

TCP/UDP source and destination ports

TCP connection state flags

IP source and destination addresses

IP ICMP control codes

Network Interface Card

Physical Layer

Copper wire, fiberoptic
cable, microwave, radio

Figure 2.1 Firewall placement in the TCP/IP reference model

Hiva-Network.Com

http://www.hiva-network.com/

28 Chapter 2 Packet-Filtering Concepts

filtering is too low-level to allow fine-grained authentication and access control. These
security services must be furnished at higher levels. IP doesn’t have the capability to verify
that the sender is who he or she claims to be. The only identifying information available
at this level is the source address in the IP packet header. The source address can be modi-
fied with little difficulty. One level up, neither the Network layer nor the Transport layer
can verify that the application data is correct. Nevertheless, the packet level allows greater,
simpler control over direct port access, packet contents, and correct communication pro-
tocols than can easily or conveniently be done at higher levels.

Without packet-level filtering, higher-level filtering and proxy security measures are
either crippled or potentially ineffective. To some extent, at least, they must rely on the
correctness of the underlying communication protocol. Each layer in the security protocol
stack adds another piece that other layers can’t easily provide.

Figure 2.2 Input and output flowchart

Network interface

Match Rule 3?Incoming packet

Input chain

Match Rule 1?
Match Rule 2?

Match Rule 2?

No

Match Rule 3?

No

No

Match Rule 1?

Output chain

Outgoing packet

No

Choosing a Default Packet-Filtering Policy 29

Choosing a Default Packet-Filtering Policy
As stated earlier in this chapter, a firewall is a device to implement an access control policy.
A large part of this policy is the decision on a default firewall policy.

There are two basic approaches to a default firewall policy:

 � Deny everything by default, and explicitly allow selected packets through.
 � Accept everything by default, and explicitly deny selected packets from passing through.

Without question, the deny-everything policy is the recommended approach. This
approach makes it easier to set up a secure firewall, but each service and related protocol
transaction that you want must be enabled explicitly (see Figure 2.3). This means that you

Figure 2.3 The deny-everything-by-default policy

Yes Accept

IP packet

Firewall chain

Match Rule 1? Accept

Match Rule 2?

No

Yes

Yes

Match Rule 3?

No

Policy: DENY

No

Accept

30 Chapter 2 Packet-Filtering Concepts

must understand the communication protocol for each service you enable. The deny-
everything approach requires more work up front to enable Internet access. Some com-
mercial firewall products support only the deny-everything policy.

The accept-everything policy makes it much easier to get up and running right away,
but it forces you to anticipate every conceivable access type that you might want to dis-
able (see Figure 2.4). The danger is that you won’t anticipate a dangerous access type until
it’s too late, or you’ll later enable an insecure service without first blocking external access
to it. In the end, developing a secure accept-everything firewall is much more work, much
more difficult, almost always much less secure, and, therefore, much more error-prone.

Figure 2.4 The accept-everything-by-default policy

Yes Deny

IP packet

Firewall chain

Match Rule 1? Deny

Match Rule 2?

No

Yes

Yes

Match Rule 3?

No

Policy: ACCEPT

No

Deny

Filtering Incoming Packets 31

Rejecting versus Denying a Packet
The Netfilter firewall mechanism in iptables and nftables gives you the option of
either rejecting or dropping packets. What’s the difference? As shown in Figure 2.5, when
a packet is rejected, the packet is thrown away and an ICMP error message is returned to
the sender. When a packet is dropped, the packet is simply thrown away without any noti-
fication to the sender.

Silently dropping the packet is almost always the better choice, for three reasons. First,
sending an error response doubles the network traffic. The majority of dropped packets
are dropped because they are malevolent, not because they represent an innocent attempt
to access a service you don’t happen to offer. Second, a packet that you respond to can be
used in a denial-of-service (DoS) attack. Third, any response, even an error message, gives
the would-be attacker potentially useful information.

Filtering Incoming Packets
The input side of the external interface I/O pair, the input rule set, is the more interesting
in terms of securing your site. As mentioned earlier, you can filter based on source address,
destination address, source port, destination port, TCP status flags, and other criteria.
You’ll learn about all these pieces of information at one point or another in the following
sections.

Remote Source Address Filtering
At the packet level, the only means of identifying the IP packet’s sender is the source
address in the packet header. This fact allows for the possibility of source address spoof-
ing, in which the sender places an incorrect address rather than his or her own address in
the source field. The address might be a nonexistent address, or it might be a legitimate
address belonging to someone else. This can allow unsavory types to break into your

Figure 2.5 Rejecting versus denying a packet

Return error
to sender

Reject? Deny?

Yes

No

Yes

No

Packet

Discard

Hiva-Network.Com

http://www.hiva-network.com/

32 Chapter 2 Packet-Filtering Concepts

system by appearing as local, trusted traffic; appearing to be you while attacking other
sites; pretending to be someone else while attacking you; keeping your system bogged
down responding to nonexistent addresses; or otherwise misleading you as to the source of
incoming messages.

It’s important to remember that you usually can’t detect spoofed addresses. The address
might be legitimate and routable but might not belong to the packet’s sender. The next
section describes the spoofed addresses you can detect.

Source Address Spoofing and Illegal Addresses
There are several major classes of source addresses you should deny on your external
interface in all cases. These are incoming packets claiming to be from the following:

 � Your IP address—You will never see legal incoming packets claiming to be
from your machine. Because the source address is the only information available
and it can be modified, this is one of the forms of legitimate address spoofing you
can detect at the packet-filtering level. Incoming packets claiming to be from your
machine are spoofed. You can’t be certain whether other incoming packets are com-
ing from where they claim to be. (Note that some operating systems crash if they
receive a packet in which both the source and the destination addresses belong to
the host’s network interface.)

 � Your LAN addresses—You will rarely see legal incoming packets on the external,
Internet interface claiming to be from your LAN. It’s possible to see such packets if
the LAN has multiple access points to the Internet, but it would probably be a sign
of a misconfigured local network. In most cases, such a packet would be part of an
attempt to gain access to your site by exploiting your local trust relationships.

 � Class A, B, and C private IP addresses—These three sets of addresses in the
historical Class A, B, and C ranges are reserved for use in private LANs. They aren’t
intended for use on the Internet. As such, these addresses can be used by any site
internally without the need to purchase registered IP addresses. Your machine
should never see incoming packets from these source addresses:

 � Class A private addresses are assigned the range from 10.0.0.0 to
10.255.255.255.

 � Class B private addresses are assigned the range from 172.16.0.0 to
172.31.255.255.

 � Class C private addresses are assigned the range from 192.168.0.0 to
192.168.255.255.

 � Class D multicast IP addresses—IP addresses in the Class D range are set
aside for use as destination addresses when participating in a multicast network
broadcast, such as an audiocast or a videocast. They range from 224.0.0.0 to
239.255.255.255. Your machine should never see packets from these source
addresses.

Filtering Incoming Packets 33

 � Class E reserved IP addresses—IP addresses in the Class E range were set aside
for future and experimental use and are not assigned publicly. They range from
240.0.0.0 to 247.255.255.255. Your machine should never see packets from
these source addresses—and mostly likely won’t. (Because the entire address range is
permanently reserved up through 255.255.255.255, the Class E range can realisti-
cally be defined as 240.0.0.0 to 255.255.255.255. In fact, some sources define
the Class E address range to be exactly that.)

 � Loopback interface addresses—The loopback interface is a private network
interface used by the Linux system for local, network-based services. Rather than
sending local traffic through the network interface driver, the operating system
takes a shortcut through the loopback interface as a performance improvement. By
definition, loopback traffic is targeted for the system generating it. It doesn’t go out
on the network. The loopback address range is 127.0.0.0 to 127.255.255.255.
You’ll usually see it referred to as 127.0.0.1, localhost, or the loopback
interface, lo.

 � Malformed broadcast addresses—Broadcast addresses are special addresses
applying to all machines on a network. Address 0.0.0.0 is a special broadcast
source address. A legitimate broadcast source address will be either 0.0.0.0 or a
regular IP address. DHCP clients and servers will see incoming broadcast packets
from source address 0.0.0.0. This is the only legal use of this source address. It is
not a legitimate point-to-point, unicast source address. When seen as the source
address in a regular, point-to-point, nonbroadcast packet, the address is forged, or the
sender isn’t fully configured.

 � Class A network 0 addresses—As suggested previously, any source address in the
0.0.0.0 through 0.255.255.255 range is illegal as a unicast address.

 � Link local network addresses—DHCP clients sometimes assign themselves a
link local address when they can’t get an address from a server. These addresses range
from 169.254.0.0 to 169.254.255.255.

 � Carrier-grade NAT—There are IPs that are marked for use by Internet providers
that should never appear on a public network, the public Internet. These addresses
can, however, be used in cloud scenarios, and therefore, if your server is hosted at a
cloud provider, you may see these addresses. The carrier-grade NAT addresses range
from 100.64.0.0 to 100.127.255.255.

 � TEST-NET addresses—The address space from 192.0.2.0 to 192.0.2.255 is
reserved for test networks.

Blocking Problem Sites
Another common, but less frequently used, source address–filtering scheme is to block
all access from a selected machine or, more typically, from an entire network’s IP address
block. This is how the Internet community tends to deal with problem sites and ISPs that

34 Chapter 2 Packet-Filtering Concepts

don’t police their users. If a site develops a reputation as a bad Internet neighbor, other
sites tend to block it across the board.

On the individual level, blocking all access from selected networks is convenient when
individuals in the remote network are habitually making a nuisance of themselves. This has
historically been used as a means to fight unsolicited email, with some people going so far
as to block an entire country’s range of IP addresses.

Limiting Incoming Packets to Selected Remote Hosts
You might want to accept certain kinds of incoming packets from only specific external
sites or individuals. In these cases, the firewall rules will define either specific IP addresses
or a limited range of IP source addresses that these packets will be accepted from.

The first class of incoming packets is from remote servers responding to your requests.
Although some services, such as web or FTP services, can be expected to be coming from
anywhere, other services will legitimately be coming from only your ISP or specially
chosen trusted hosts. Examples of servers that are probably offered only through your ISP
are POP mail service, Domain Name Service (DNS) name server responses, and possible
DHCP or dynamic IP address assignments.

The second class of incoming packets is from remote clients accessing services offered
from your site. Again, although some incoming service connections, such as connections
to your web server, can be expected to be coming from anywhere, other local services will
be offered to only a few trusted remote users or friends. Examples of restricted local ser-
vices might be ssh and ping.

Local Destination Address Filtering
Filtering incoming packets based on the destination address is not much of an issue.
Under normal operation, your network interface card ignores regular packets that aren’t
addressed to it. The exception is broadcast packets, which are broadcast to all hosts on the
network.

The IPv4 address 255.255.255.255 is the general broadcast destination address. It
refers to all hosts on the immediate physical network segment, and it is called a limited
broadcast. A broadcast address can be defined more explicitly as the highest address in a
given subnet of IP addresses. For example, if your ISP’s network address is 192.168.10.0
with a 24-bit subnet mask (255.255.255.0) and your IP address is 192.168.10.30, you
would see broadcast packets addressed to 192.168.10.255 from your ISP. On the other
hand, if you have a smaller range of IP addresses, say a /30 (255.255.255.252), then you
have a total of four addresses: one network, two for hosts, and the broadcast. For example,
consider the network 10.3.7.4/30. In this network, 10.3.7.4 is the network address,
the two hosts would be 10.3.7.5 and 10.3.7.6, and the broadcast address would be
10.3.7.7. This /30 subnet configuration type is typically used between routers, though
the actual addresses themselves may vary. The only way to know what the broadcast
address will be for a given subnet is to know both an IP address within the subnet and the
subnet mask. These types of broadcasts are called directed subnet broadcasts and are delivered
to all hosts on that network.

Filtering Incoming Packets 35

Broadcast-to-destination address 0.0.0.0 is similar to the situation of point-to-point
packets claiming to be from the broadcast source address mentioned earlier, in the section
“Source Address Spoofing and Illegal Addresses.” Here, broadcast packets are directed to
source address 0.0.0.0 rather than to the destination address, 255.255.255.255. In this
case, there is little question about the packet’s intent. This is an attempt to identify your
system as a Linux machine. For historical reasons, networking code derived from BSD
UNIX returns an ICMP Type 3 error message in response to 0.0.0.0 being used as the
broadcast destination address. Other operating systems silently discard the packet. As such,
this is a good example of why dropping versus rejecting a packet makes a difference. In
this case, the error message itself is what the probe is looking for.

Remote Source Port Filtering
Incoming requests and connections from remote clients to your local servers will have a
source port in the unprivileged range. If you are hosting a web server, all incoming con-
nections to your web server should have a source port between 1024 and 65535. (That
the server port identifies the service is the intention but not the guarantee. You cannot be
certain that the server you expect is running at the port you expect.)

Incoming responses and connections from remote servers that you contacted will have
the source port that is assigned to the particular service. If you connect to a remote web-
site, all incoming messages from the remote server will have the source port set to 80 (or
whatever port the local client specified), the http service port number.

Local Destination Port Filtering
The destination port in incoming packets identifies the program or service on your
computer that the packet is intended for. As with the source port, all incoming requests
from remote clients to your services generally follow the same pattern, and all incoming
responses from remote services to your local clients follow a different pattern.

Incoming requests and connections from remote clients to your local servers will set
the destination port to the service number that you assigned to the particular service. For
example, an incoming packet destined for your local web server would normally have the
destination port set to 80, the http service port number.

Incoming responses from remote servers that you contacted will have a destination
port in the unprivileged range. If you connect to a remote website, all incoming messages
from the remote server will have a destination port between 1024 and 65535.

Incoming TCP Connection State Filtering
Incoming TCP packet acceptance rules can make use of the connection state flags associ-
ated with TCP connections. All TCP connections adhere to the same set of connection
states. These states differ between client and server because of the three-way handshake
during connection establishment. As such, the firewall can distinguish between incoming
traffic from remote clients and incoming traffic from remote servers.

Hiva-Network.Com

http://www.hiva-network.com/

36 Chapter 2 Packet-Filtering Concepts

Incoming TCP packets from remote clients will have the SYN flag set in the first packet
received as part of the three-way connection establishment handshake. The first connec-
tion request will have the SYN flag set, but not the ACK flag.

Incoming packets from remote servers will always be responses to the initial connec-
tion request initiated from your local client program. Every TCP packet received from
a remote server will have the ACK flag set. Your local client firewall rules will require all
incoming packets from remote servers to have the ACK flag set. Servers do not normally
attempt to initiate connections to client programs.

Probes and Scans
A probe is an attempt to connect to or get a response from an individual service port. A
scan is a series of probes to a set of different service ports. Scans are often automated.

Unfortunately, probes and scans are rarely innocent anymore. They are most likely the
initial information-gathering phase, looking for interesting vulnerabilities before launch-
ing an attack. Automated scan tools are widespread, and coordinated efforts by groups of
hackers are common. The security, or lack thereof, of many hosts on the Internet, along
with the proliferation of worms, viruses, and zombied machines, makes scans a constant
issue on the Internet.

General Port Scans
General port scans are indiscriminate probes across a large block of service ports, possibly
the entire range (see Figure 2.6). These scans are somewhat less frequent—or, at least, less
obvious—as more sophisticated, targeted stealth tools become available.

Targeted Port Scans
Targeted port scans look for specific vulnerabilities (see Figure 2.7). The newer, more
sophisticated tools attempt to identify the hardware, operating system, and software
versions. These tools are designed to identify targets that might be prone to a specific
vulnerability.

Common Service Port Targets
Common targets often are individually probed as well as scanned. The attacker might
be looking for a specific vulnerability, such as an insecure mail server, an unpatched web
server, or an open remote procedure call (RPC) portmap daemon.

A more extensive list of ports can be found at http://www.iana.org/assignments/port-
numbers. Only a few common ports are mentioned here, to give you the idea:

 � Incoming packets from reserved port 0 are always bogus. This port isn’t used
legitimately.

 � Probes of TCP ports 0 to 5 are a signature of the sscan program.
 � ssh (22/tcp), smtp (25/tcp), dns (53/tcp/udp), pop-3 (110/tcp), imap (143/
tcp), and snmp (161/udp), are favorite target ports. They represent some of the
most potentially vulnerable openings to a system, whether intrinsically, due to

http://www.iana.org/assignments/portnumbers
http://www.iana.org/assignments/portnumbers

Filtering Incoming Packets 37

Figure 2.6 A general port scan

Service Ports

TCP and/or UDP

1023

Up to 65,536 Probes

0

65535

General Scan

Figure 2.7 A targeted port scan

Service Ports

TCP and/or UDP

ssh (tcp 22)

smtp (tcp 25)

pop-3 (tcp 110)

sunrpc (udp 111)

imap (tcp 143)

Targeted Scan
5 Probes

38 Chapter 2 Packet-Filtering Concepts

common configuration errors, or due to known flaws in the software. Because
these services are so common, they are good examples of why you want to either
not offer them to the outside world, or very carefully offer them with controlled
outside access. NetBIOS (137-139/tcp/udp) and Server Message Block (SMB) on
Windows (445/tcp) probes are tediously common. They typically pose no threat to
a Linux system unless Samba is used on the system. The typical target is a Windows
system, in this case, but the scans are all too common.

Stealth Scans
Stealth port scans, by definition, aren’t meant to be detectable. They are based on how the
TCP protocol stack responds to unexpected packets, or packets with illegal state flag com-
binations. For example, consider an incoming packet that has the ACK flag set but has no
related connection. If the ACK were sent to a port with a listening server attached, the TCP
stack wouldn’t find a related connection and would return a TCP RST message to tell the
sender to reset the connection. If the ACK were sent to an unused port, the system would
simply return a TCP RST message as an error indication, just as the firewall might return
an ICMP error message by default.

The issue is further complicated because some firewalls test only for the SYN flag or
the ACK flag. If neither is set, or if the packet contains some other combination of flags,
the firewall implementation might pass the packet up to the TCP code. Depending on
the TCP state flag combination and the operating system receiving the packet, the system
will respond with an RST or with silence. This mechanism can be used to help identify
the operating system that the target system is running. In any of these cases, the receiving
system isn’t likely to log the event.

Inducing a target host to generate an RST packet in this manner also can be used to
map a network, determining the IP addresses of systems listening on the network. This is
especially helpful if the target system isn’t a server and its firewall has been set to silently
drop unwanted packets.

Avoiding Paranoia: Responding to Port Scans
Firewall logs normally show all kinds of failed connection attempts. Probes are the most
common thing you’ll see reported in your logs.

Are people probing your system this often? Yes, they are. Is your system compromised?
No, it isn’t. Well, not necessarily. The ports are blocked. The firewall is doing its job. These
are failed connection attempts that the firewall denied.

At what point do you personally decide to report a probe? At what point is it impor-
tant enough to take the time to report it? At what point do you say that enough is enough
and get on with your life, or should you be writing abuse@some.system each time?
There are no “right” answers. How you respond is a personal judgment call and depends
in part on the resources available to you, how sensitive the information at your site is, and
how critical the Internet connection is to your site. For obvious probes and scans, there is
no clear-cut answer. It depends on your own personality and comfort level how you per-
sonally define a serious probe, and your social conscience.

Filtering Incoming Packets 39

With that in mind, these are some workable guidelines.
The most common attempts are a combination of automated probing, mistakes, legiti-

mate attempts based on the history of the Internet, ignorance, curiosity, and misbehaving
software.

You can almost always safely ignore individual, isolated, single connection attempts to
telnet, ssh, ftp, finger, or any other port for a common service that you’re not pro-
viding. Probes and scans are a fact of life on the Internet, are all too frequent, and usually
don’t pose a risk. They are kind of like door-to-door salespeople, commercial phone calls,
wrong phone numbers, and junk postal mail. For me, at least, there isn’t enough time in
the day to respond to each one.

On the other hand, some probers are more persistent. You might decide to add firewall
rules to block them completely, or possibly even their entire IP address space.

Scans of a subset of the ports known to be potential security holes are typically the
precursor to an attack if an open port is found. More inclusive scans are usually part of a
broader scan for openings throughout a domain or subnet. Current hacking tools probe a
subset of these ports one after the other.

Occasionally, you’ll see serious hacking attempts. This is unquestionably a time to take
action. Write them. Report them. Double-check your security. Observe what they’re
doing. Block them. Block their IP address block.

Some system administrators take every occurrence seriously because, even if their
machine is secure, other people’s machines might not be. The next person might not even
have the capability of knowing that he or she is being probed. Reporting probes is the
socially responsible thing to do, for everyone’s sake.

How should you respond to port scans? If you write these people, their postmaster,
their uplink service provider network operations center (NOC), or the network address
block coordinator, try to be polite. Give them the benefit of the doubt. Overreactions are
misplaced more often than not. What might appear as a serious hacking attempt to you
is often a curious kid playing with a new program. A polite word to the abuser, root, or
postmaster can sometimes take care of the problem. More people need to be educated
about Netiquette than need their network accounts rescinded. And they might be inno-
cent of anything. Just as often, the person’s system is compromised and that person has no
idea what’s going on and will be grateful for the information.

Probes aren’t the only hostile traffic you’ll see, however. Although probes are harmless
in and of themselves, DoS attacks are not.

Denial-of-Service Attacks
DoS attacks are based on the idea of flooding your system with packets to disrupt or seri-
ously degrade your Internet connection, tying up local servers to the extent that legiti-
mate requests can’t be honored or, in the worst case, crashing your system altogether. The
two most common results are keeping the system too busy to do anything useful and
tying up critical system resources.

Hiva-Network.Com

http://www.hiva-network.com/

40 Chapter 2 Packet-Filtering Concepts

You can’t protect against DoS attacks completely. They can take as many different
forms as the attacker’s imagination allows. Anything that results in a response from your
system, anything that results in your system allocating resources (including logging of the
attack), anything that induces a remote site to stop communicating with you—all can be
used in a DoS attack.

More on Denial-of-Service Attacks
For further information on DoS attacks, see the “Denial of Service” paper available at
http://www.cert.org.

These attacks usually involve one of several classic patterns, including TCP SYN flood-
ing, ping flooding, UDP flooding, fragmentation bombs, buffer overflows, and ICMP
routing redirect bombs.

TCP SYN Flooding
A TCP SYN flood attack consumes your system resources until no more incoming TCP
connections are possible (see Figure 2.8). The attack makes use of the basic TCP three-
way handshaking protocol during connection establishment, in conjunction with IP
source address spoofing.

The attacker spoofs his or her source address as a private address and initiates a con-
nection to one of your TCP-based services. Appearing to be a client attempting to open
a TCP connection, the attacker sends you an artificially generated SYN message. Your
machine responds by sending an acknowledgment, a SYN-ACK. However, in this case, the

Figure 2.8 A TCP SYN flood

T opology
F i le E d it L o cat e V ie w H elp

Moun t
431 7437
1950 79%
/

Net work
T ra f fi c H elp

SYN

Aaargh!
I can’t take it
anymore!

http://www.cert.org

Filtering Incoming Packets 41

address that you’re replying to isn’t the attacker’s address. In fact, because the address is pri-
vate, there is no one out there to respond. The spoofed host won’t return an RST message
to tear down the half-opened connection.

The final stage of TCP connection establishment, receiving an ACK in response, will
never happen. Consequently, finite network connection resources are consumed. The
connection remains in a half-opened state until the connection attempt times out. The
attacker floods your port with connection request after connection request, faster than the
TCP timeouts release the resources. If this continues, all resources will be in use and no
more incoming connection requests can be accepted. This applies not only to the service
being probed, but to all new connections as well.

Several aids are available to Linux users. The first is source address filtering, described
previously. This filters out the most commonly used spoofed source addresses, but there is
no guarantee that the spoofed address falls within the categories you can anticipate and
filter against.

The second is to enable your kernel’s SYN cookie module, a specific retardant to the
resource starvation caused by SYN flooding. When the connection queue begins to get
full, the system starts responding to SYN requests with SYN cookies rather than SYN-ACKs,
and it frees the queue slot. Thus, the queue never fills completely. The cookie has a short
timeout; the client must respond to it within a short period before the serving host will
respond with the expected SYN-ACK. The cookie is a sequence number that is generated
based on the original sequence number in the SYN, the source and destination addresses
and ports, and a secret value. If the response to the cookie matches the result of the hash-
ing algorithm, the server is reasonably well assured that the SYN is valid.

Depending on the particular release, you may or may not need to enable the SYN
cookie protection within the kernel by using the command echo 1 > /proc/sys/net/
ipv4/tcp_syncookies. Some distributions and kernel versions require you to explicitly
configure the option into the kernel using make config, make menuconfig, or make
xconfig and then recompile and install the new kernel.

SYN Flooding and IP Spoofing
For more information on SYN flooding and IP spoofing, see CERT Advisory CA-96.21, “TCP
SYN Flooding and IP Spoofing Attacks,” at http://www.cert.org.

ping Flooding
Any message that elicits a response from your machine can be used to degrade your net-
work connection by forcing the system to spend most of its time responding. The ICMP
echo request message sent by ping is a common culprit. An attack called Smurf, and its
variants, forces a system to expend its resources processing echo replies. One method of
accomplishing this is to spoof the victim’s source address and broadcast an echo request
to an entire network of hosts. A single spoofed request message can result in hundreds or
thousands of resulting replies being sent to the victim. Another way of accomplishing a
similar result is to install trojans on compromised hosts across the Internet and time them

http://www.cert.org

42 Chapter 2 Packet-Filtering Concepts

to each send echo requests to the same host simultaneously. Finally, a simple ping flood
in which the attacker sends more echo requests and floods the data connection is another
method for a DoS, though it’s becoming less common. A typical ping flood is shown in
Figure 2.9.

Ping of Death
An older exploit called the Ping of Death involved sending very large ping packets. Vulner-
able systems could crash as a result. Linux is not vulnerable to this exploit, nor are many
other current UNIX operating systems. If your firewall is protecting older systems or per-
sonal computers, those systems could be vulnerable.

The Ping of Death exploit gives an idea of how the simplest protocols and message
interactions can be used by the creative hacker. Not all attacks are attempts to break into
your computer. Some are merely destructive. In this case, the goal is to crash the machine.
(System crashes also might be an indicator that you need to check your system for
installed trojan programs. You might have been duped into loading a trojan program, but
the program itself might require a system reboot to activate.)

ping is a very useful basic networking tool. You might not want to disable ping alto-
gether. In today’s Internet environment, conservative folks recommend disabling incoming
ping or at least severely limiting from whom you accept echo requests. Because of ping’s
history of involvement in DoS attacks, many sites no longer respond to external ping
requests from any but selected sources. This has always seemed to be an overreaction to
the relatively small threat of a DoS based on ICMP when compared to the more ubiqui-
tous and dangerous threats against applications and other protocols within the stack.

Figure 2.9 A ping flood

Topology
FileEdit LocateView Help

Mount
4 3 1 743 7
1 9 50 7 9 %
/

Network
Traffic Help Ping Echo Request

Victim's Spoo f e d
Source Address
Broadcast
Destination Address

Victim

Atta ck e r

Net w o r k

Echo Reply

Topology
FileEdit LocateView Help

Mount
4 3 1 743 7
1 9 50 7 9 %
/

Network
Traffic Help

Net w o r k

Filtering Incoming Packets 43

Dropping ping requests isn’t a solution for the victim host, however. Regardless of
how the recipient of the flood reacts to the packets, the system (or network) can still be
overwhelmed in the process of inspecting and dropping a flood of requests.

UDP Flooding
The UDP protocol is especially useful as a DoS tool. Unlike TCP, UDP is stateless.
Flow-control mechanisms aren’t included. There are no connection state flags. Datagram
sequence numbers aren’t used. No information is maintained on which packet is expected
next. There is not always a way to differentiate client traffic from server traffic based on
port numbers. Without state, there is no way to distinguish an expected incoming response
from an unsolicited packet arriving unexpectedly. It’s relatively easy to keep a system so
busy responding to incoming UDP probes that no bandwidth is left for legitimate net-
work traffic.

Because UDP services are susceptible to these types of attacks (as opposed to
 connection-oriented TCP services), many sites disable all UDP ports that aren’t absolutely
necessary. As mentioned earlier, almost all common Internet services are TCP based. The
firewall we’ll build in Chapter 5, “Building and Installing a Standalone Firewall,” carefully
limits UDP traffic to only those remote hosts providing necessary UDP services.

The classic UDP flood attack either involves two victim machines or works in the
same way the Smurf ping flood does (see Figure 2.10). A single spoofed packet from the
attacker’s UDP echo port, directed to a host’s UDP chargen port, can result in an infi-
nite loop of network traffic. The echo and chargen services are network test services.
 chargen generates an ASCII string. echo returns the data sent to the port.

Figure 2.10 A UDP flood

M ou n t
4 31 7 437 1950
7 9% /
0 2 63 1 96 3 47358
9 3% /u s

F ile E dit L ocat e V i Hwe elp

1 2 3 4 5 6 7

0

1 00

2 00

3 00

4 00

5 00

E

D

C
B

A

Network
Traffic Help

Topology
File EditLocateView Help

Mou n t
43 1 743 7
19 50 79%
/

Network
Traffic Help

Source Address : Victi m
Destination Address : Inte r media r y

Source P o r t : UDP 7 - ech o
Destination P o r t : UDP 19 - charge n

Source Address : Inte r media r y
Destination Address : Victi m
Source P o r t : UDP 7- charge n

Source Address : Victi m
Destination Address : Inte r media r y

Source P o r t : UDP 7 - ech o
Destination P o r t : UDP 19 - charge n

Hiva-Network.Com

http://www.hiva-network.com/

44 Chapter 2 Packet-Filtering Concepts

UDP Port Denial-of-Service Attacks
For a fuller description of a DoS exploit using these UDP services, see CERT Advisory
CA-96.01, “UDP Port Denial-of-Service Attack,” at http://www.cert.org.

Fragmentation Bombs
Different underlying network technologies (such as Ethernet, Asynchronous Transfer
Mode [ATM], and token ring) define different limits on the size of the Layer 2 frame. As
a packet is passed on from one router to the next along the path from the source machine
to the destination machine, network gateway routers might need to cut the packet into
smaller pieces, called fragments, before passing them on to the next network. In a legitimate
fragmentation, the first fragment contains the usual source and destination port numbers
contained in the UDP or TCP transport header. The following fragments do not.

For example, although the maximum theoretical packet length is 65,535 bytes, the
maximum Ethernet frame size (Maximum Transmission Unit, or MTU) is 1500 bytes.

When a packet is fragmented, intermediate routers do not reassemble the packet. The
packets are reassembled either at the destination host or by its adjacent router.

Because intermediate fragmentation is ultimately more costly than sending smaller,
nonfragmented packets, current systems often do MTU discovery with the target host
at the beginning of a connection. This is done by sending a packet with the Don't
 Fragment option set in the IP header options field (the only generally legitimate current
use of the IP options field). If an intermediate router must fragment the packet, it drops
the packet and returns an ICMP 3 error, fragmentation-required.

One type of fragmentation attack involves artificially constructing very small packets.
One-byte packets crash some operating systems. Current operating systems usually test for
this condition.

Another use of small fragments is constructing the initial fragment so that the UDP or
TCP source and destination ports are contained in the second fragment. (All networks’
MTU sizes are large enough to carry a standard 40-byte IP and transport header.) Packet-
filtering firewalls often allow these fragments through because the information that they
filter on is not present. This form of attack is useful to get packets through the firewall that
would not otherwise be allowed.

The Ping of Death exploit mentioned earlier is an example of using fragmentation to
carry an illegally large ICMP message. When the ping request is reconstructed, the entire
packet size is larger than 65,535 bytes, causing some systems to crash.

A classic example of a fragmentation exploit is the Teardrop attack. The method can
be used to bypass a firewall or to crash a system. The first fragment is constructed to go
to an allowed service. (Many firewalls don’t inspect fragments after the first packet.) If
it is allowed, the subsequent fragments will be passed through and reassembled by the
target host. If the first packet is dropped, the subsequent packets will pass through the
firewall, but the end host will have nothing to reconstruct and eventually will discard the
partial packet.

http://www.cert.org

Filtering Incoming Packets 45

The data offset fields in the subsequent fragments can be altered to overwrite the port
information in the first fragment to access a disallowed service. The offset also can be
altered so that offsets used in packet reassembly turn out to be negative numbers. Because
kernel byte-copy routines usually use unsigned numbers, the negative value is treated as
a very large positive number; the resulting copy trashes kernel memory and the system
crashes.

Firewall machines and machines that do NAT for other local hosts should be config-
ured to reassemble the packets before delivering them to the local target. Some of the
iptables features require the system to reassemble packets before forwarding the packet
to the destination host, and reassembly is done automatically.

Buffer Overflows
Buffer overflow exploits can’t be protected against by a filtering firewall. The exploits
fall into two main categories. The first is simply to cause a system or server to crash by
overwriting its data space or runtime stack. The second requires technical expertise and
knowledge of the hardware and system software or server version being attacked. The
purpose of the overflow is to overwrite the program’s runtime stack so that the call return
stack contains a program and a jump to it. This program usually starts up a shell with root
privilege.

Many of the current vulnerabilities in servers are a result of buffer overflows. It’s
important to install and keep up-to-date all the newest patches and software revisions.

ICMP Redirect Bombs
ICMP redirect message Type 5 tells the target system to change its in-memory routing
tables in favor of a shorter route. Redirects are sent by routers to their adjacent hosts. Their
intention is to inform the host that a shorter path is available (that is, the host and new
router are on the same network, and the new router is the router that the original would
route the packet to as its next hop).

Redirects arrive on an almost-daily basis. They rarely originate from the adjacent
router. For residential or business sites connected to an ISP, it’s very unlikely that your
adjacent router will generate a redirect message.

If your host uses static routing and honors redirect messages, it’s possible for someone
to fool your system into thinking that a remote machine is one of your local machines or
one of your ISP’s machines, or even to fool your system into forwarding all traffic to some
other remote host.

Denial-of-Service Attacks and Other System Resources
Network connectivity isn’t the only concern in DoS attacks. Here are some examples of
other areas to keep in mind while configuring your system:

 � Your filesystem can overflow if your system is forced to write enormous numbers
of messages to the error logs, or if your system is flooded with many copies of large
email messages. You might want to configure resource limits and set up a separate
partition for rapidly growing or changing filesystems.

46 Chapter 2 Packet-Filtering Concepts

Email Denial-of-Service Exploits
For a description of a DoS exploit using email, see “Email Bombing and Spamming” at
http://www.cert.org.

� System memory, process table slots, CPU cycles, and other resources can be
exhausted by repeated, rapid invocations of network services. You can do little
about this other than setting any configurable limits for each individual service,
enabling SYN cookies, and denying rather than rejecting packets sent to unsupported
service ports.

Source-Routed Packets
Source-routed packets employ a rarely used IP option that allows the originator to define
the route taken between two machines, rather than letting the intermediate routers
determine the path. As with ICMP redirects, this feature can allow someone to fool your
system into thinking that it’s talking to a local machine, an ISP machine, or some other
trusted host, or to create the necessary packet flow for a man-in-the-middle attack.

Source routing has few legitimate uses in current networks. Some routers ignore the
option. Some firewalls discard packets containing the option.

Filtering Outgoing Packets
If your environment represents a trusted environment, filtering outgoing packets might
not appear to be as critical as filtering incoming packets. Your system won’t respond to
incoming messages that the firewall doesn’t pass through. Residential sites often take this
approach. Nevertheless, even for residential sites, symmetric filtering is important, particu-
larly if the firewall protects Microsoft Windows machines. For commercial sites, outgoing
filtering is inarguably important.

If your firewall protects a LAN of Microsoft Windows systems, controlling outgoing
traffic becomes much more important. Compromised Windows machines have historically
been (and continue to be) used in coordinated DoS attacks and other outbound attacks.
For this reason especially, it’s important to filter what leaves your network.

Filtering outgoing messages also allows you to run LAN services without leaking into
the Internet, where these packets don’t belong. It’s not only a question of disallowing
external access to local LAN services. It’s also a question of not broadcasting local system
information onto the Internet. Examples of this would be if you were running a local
DHCPD, NTP, SMB, or other server for internal use. Other obnoxious services might be
broadcasting wall or syslogd messages.

A related source is some of the personal computer software, which sometimes ignores
the Internet service port protocols and reserved assignments. This is the personal com-
puter equivalent of running a program designed for LAN use on an Internet-connected
machine.

http://www.cert.org

Filtering Outgoing Packets 47

A final reason is simply to keep local traffic local that isn’t intended to leave the LAN
but that conceivably could. Keeping local traffic local is a good idea from a security stand-
point but also as a means for bandwidth conservation.

Local Source Address Filtering
Filtering outgoing packets based on the source address is easy. For a small site or a single
computer connected to the Internet, the source address is always your computer’s IP
address during normal operation. There is no reason to allow an outgoing packet to have
any other source address, and the firewall should enforce this.

For people whose IP address is dynamically assigned by their ISP, a brief exception
exists during address assignment. This exception is specific to DHCP and is the one case
in which a host broadcasts messages using 0.0.0.0 as its source address.

For people with a LAN whose firewall machine has a dynamically assigned IP address,
limiting outgoing packets to contain the source address of the firewall machine’s IP
address is mandatory. It protects you from several fairly common configuration mistakes
that appear as cases of source address spoofing or illegal source addresses to remote hosts.

If your users or their software aren’t 100% trustworthy, it’s important to ensure that
local traffic contains legitimate, local addresses only, to avoid participating in DoS attacks
using source address spoofing.

This last point is especially important. RFC 2827, “Network Ingress Filtering: Defeat-
ing Denial of Service Attacks Which Employ IP Source Address Spoofing” (updated by
RFC 3704, “Ingress Filtering for Multihomed Networks”), is a current “best practices”
document speaking to exactly this point. Ideally, every router should filter out the obvi-
ous illegal source addresses and ensure that traffic leaving the local network contains only
routable source addresses belonging to that network.

Remote Destination Address Filtering
As with incoming packets, you might want to allow certain kinds of outgoing packets to
be addressed only to specific remote networks or individual machines. In these cases, the
firewall rules will define either specific IP addresses or a limited range of IP destination
addresses to which these packets will be allowed.

The first class of outgoing packets to filter by destination address is packets destined to
remote servers that you’ve contacted. Although some packets, such as those going to web
or FTP servers, can be expected to be destined to anywhere on the Internet, other remote
services will legitimately be offered from only your ISP or specially chosen trusted hosts.
Examples of services that are probably offered only through your ISP are mail services
such as SMTP or POP3, DNS services, DHCP dynamic IP address assignment, and the
Usenet news service.

The second class of outgoing packets to filter by destination address is packets des-
tined to remote clients who are accessing a service offered from your site. Again, although
some outgoing service connections, such as responses from your local web server, can be

Hiva-Network.Com

http://www.hiva-network.com/

48 Chapter 2 Packet-Filtering Concepts

expected to be going anywhere, other local services will be offered to only a few trusted
remote sites or friends. Examples of restricted local services might be telnet, SSH, Samba-
based services, and RPC services accessed via portmap. Not only will the firewall rules
deny general incoming connections to these services, but the rules also won’t allow out-
going responses from these services to just anyone.

Local Source Port Filtering
Explicitly defining which service ports on your network can be used for outgoing con-
nections serves two purposes—one for your client programs and one for your server
programs. Specifying the source ports allowed for your outgoing connections helps ensure
that your programs are behaving correctly, and it protects other people from any local
network traffic that doesn’t belong on the Internet.

Outgoing connections from your local clients will almost always originate from an
unprivileged source port. Limiting your clients to the unprivileged ports in the firewall
rules helps protect other people from potential mistakes on your end by ensuring that
your client programs are behaving as expected.

Outgoing packets from your local server programs will always originate from their
assigned service port and will be in response to a request received. Limiting your servers
to their assigned ports at the firewall level ensures that your server programs are function-
ing correctly at the protocol level. More important, it helps protect any private, local net-
work services that you might be running from outside access. It also helps protect remote
sites from being bothered by network traffic that should remain confined to your local
systems.

Remote Destination Port Filtering
Your local client programs are designed to connect to network servers offering their ser-
vices from their assigned service ports. From this perspective, limiting your local clients to
connect only to their associated server’s service port ensures protocol correctness. Limit-
ing your client connections to specific destination ports serves a couple of other purposes
as well. First, it helps guard against local, private network client programs inadvertently
attempting to access servers on the Internet. Second, it does much to disallow outgoing
mistakes, port scans, and other mischief potentially originating from your site.

Your local server programs will almost always participate in connections originat-
ing from unprivileged ports. The firewall rules limit your servers’ outgoing traffic to only
unprivileged destination ports.

Outgoing TCP Connection State Filtering
Outgoing TCP packet acceptance rules can make use of the connection state flags associ-
ated with TCP connections, just as the incoming rules do. All TCP connections adhere to
the same set of connection states, which differs between client and server.

Private versus Public Network Services 49

Outgoing TCP packets from local clients will have the SYN flag set in the first packet
sent as part of the three-way connection establishment handshake. The initial connection
request will have the SYN flag set, but not the ACK flag. Your local client firewall rules will
allow outgoing packets with either the SYN or the ACK flag set.

Outgoing packets from local servers will always be responses to an initial connection
request initiated from a remote client program. Every packet sent from your servers will
have the ACK flag set. Your local server firewall rules will require all outgoing packets from
your servers to have the ACK flag set.

Private versus Public Network Services
One of the easiest ways to inadvertently allow uninvited intrusions is to allow outside
access to local services that are designed only for LAN use. Some services, if offered
locally, should never cross the boundary between your LAN and the Internet beyond.
Some of these services annoy your neighbors, some provide information you’d be better
off keeping to yourself, and some represent glaring security holes if they’re available out-
side your LAN.

Some of the earliest network services, the r-*-based commands in particular, were
designed for local sharing and ease of access across multiple lab machines in a trusted
environment. Some of the later services were intended for Internet access, but they were
designed at a time when the Internet was basically an extended community of academi-
cians and researchers. The Internet was a relatively open, safe place. As the Internet grew
into a global network including general public access, it developed into a completely
untrusted environment.

Lots of Linux network services are designed to provide local information about user
accounts on the system, which programs are running and which resources are in use, sys-
tem status, network status, and similar information from other machines connected over
the network. Not all of these informational services represent security holes in and of
themselves. It’s not that someone can use them directly to gain unauthorized access to
your system. It’s that they provide information about your system and user accounts that
can be useful to someone who is looking for known vulnerabilities. They might also sup-
ply information such as usernames, addresses, phone numbers, and so forth, which you
don’t want to be readily available to everyone who asks.

Some of the more dangerous network services are designed to provide LAN access to
shared filesystems and devices, such as a networked printer or fax machine.

Some services are difficult to configure correctly and some are difficult to configure
securely. Entire books are devoted to configuring some of the more complicated Linux
services. Specific service configuration is beyond the scope of this book.

Some services just don’t make sense in a home or small-office setting. Some are
intended to manage large networks, provide Internet routing service, provide large data-
base informational services, support two-way encryption and authentication, and so forth.

50 Chapter 2 Packet-Filtering Concepts

Protecting Nonsecure Local Services
The easiest way to protect yourself is to not offer the service. But what if you need one of
these services locally? Not all services can be protected adequately at the packet-filtering
level. File-sharing software, instant messaging services, and UDP-based RPC services are
notoriously difficult to secure at the packet-filtering level.

One way to safeguard your computer is to not host network services on the firewall
machine that you don’t intend for public use. If the service isn’t available, there’s nothing
for a remote client to connect to. Let firewalls be firewalls.

A packet-filtering firewall doesn’t offer complete security. Some programs require
higher-level security measures than can be provided at the packet-filtering level. Some
programs are too problematic to risk running on a firewall machine, even on a less secure
residential host.

Small sites such as those in the home often won’t have a supply of computers avail-
able to enforce access security policies by running private services on other machines.
Compromises must be made, particularly for required services that are provided solely by
Linux. Nevertheless, small sites with a LAN should not be running file-sharing or other
private LAN services on the firewall, such as Samba. The machine should not have unnec-
essary user accounts. Unneeded system software should be removed from the system. The
machine should have no function other than that of a security gateway.

Selecting Services to Run
When all is said and done, only you can decide which services you need or want. The first
step in securing your system is to decide which services and daemons you intend to run
on the firewall machine, as well as behind the firewall in the private LAN. Each service has
its own security considerations. When it comes to selecting services to run under Linux or
any other operating system, the general rule of thumb is to run only network services that
you need and understand. It’s important to understand a network service, what it does and
who it’s intended for, before you run it—especially on a machine connected directly to
the Internet.

Summary
Between this and the preceding chapter, the basics of networking and firewalls have been
laid out. The next chapter digs deeper into iptables itself.

3
iptables: The Legacy Linux

Firewall Administration Program

Chapter 2, “Packet-Filtering Concepts,” covered the background ideas and concepts
behind a packet-filtering firewall. Each built-in list of rules, sometimes called a rule chain,
has its own default policy. Each rule can apply not only to an individual chain, but also to
a specific network interface, message protocol type (such as TCP, UDP, or ICMP), and ser-
vice port or ICMP message type number. Individual acceptance, denial, and rejection rules
are defined for the INPUT chain and the OUTPUT chain, as well as for the FORWARD chain,
which you’ll learn about at the end of this chapter and in Chapter 7, “Packet Forwarding.”

This chapter covers the iptables firewall administration program used to build a Netfilter
firewall. The iptables administration program is part of the legacy firewall code in the Linux
kernel. Beginning with version 3.13 of the kernel, a new filtering mechanism was added called
nftables. The next chapter looks at nftables. This chapter focuses on the legacy iptables
administration program because it is still widely used across Linux systems. For those of you
who are familiar with or accustomed to the older ipfwadm and ipchains programs used
with the IPFW technology, iptables will look very similar to those programs. However, it is
much more feature-rich and flexible, and it is very different on subtle levels.

There is indeed a difference between iptables and Netfilter, though you’ll often
hear the terms used interchangeably. Netfilter is the Linux kernel-space program code to
implement a firewall within the Linux kernel, either compiled directly into the kernel or
included as a set of modules. On the other hand, iptables is the userland program used
for administration of the Netfilter firewall. Throughout this text, I will refer to iptables
as being inclusive of both Netfilter and iptables, unless otherwise noted.

Differences between IPFW and Netfilter
Firewall Mechanisms
Because iptables is so different from the previous ipchains, this book won’t attempt to
cover the older implementation.

The next section is written for the reader who is familiar with or is currently using
ipchains. If iptables is your first introduction to Linux firewalling, you can skip ahead
to the section “Netfilter Packet Traversal.”

Hiva-Network.Com

http://www.hiva-network.com/

52 Chapter 3 iptables: The Legacy Linux Firewall Administration Program

If you are converting from ipchains, you’ll notice several minor differences in the
iptables syntax, most notably that the input and output network interfaces are identified
separately. Other differences include:

 � iptables is highly modularized, and the individual modules must occasionally be
loaded explicitly.

 � Logging is a rule target rather than a command option.
 � Connection state tracking can be maintained. Address and Port Translation are logi-
cally separate functions from packet filtering.

 � Full Source and Destination Address Translation are implemented.
 � Masquerading is a term used to refer to a specialized form of source address NAT.
 � Port forwarding and Destination Address Translation are supported directly without
the need for third-party software support such as ipmasqadm.

Masquerading in Earlier Versions of Linux
For those of you who are new to Linux, Network Address Translation (NAT) is fully
implemented in iptables. Before this, NAT was called masquerading in Linux. A simple,
partial implementation of Source Address Translation, masquerading was used by site
owners who had a single public IP address and who wanted other hosts on their private
network to be capable of accessing the Internet. Outgoing packets from these internal
hosts had their source address masqueraded to that of the public, routable IP address.

The most important difference is in how packets are routed or forwarded through the
operating system, making for subtle differences in how the firewall rule set is constructed.

For ipchains users, understanding the differences in packet traversal that are discussed
in the next two sections is very important. iptables and ipchains look very much
alike on the surface, but they are very different in practice. It’s very easy to write syntacti-
cally correct iptables rules that have a different effect from what a similar rule would
have done in ipchains. It can be confusing. If you already know ipchains, you must
keep the differences in mind.

IPFW Packet Traversal
Under IPFW (ipfwadm and ipchains), three built-in filter chains were used. All packets
arriving on an interface were filtered against the INPUT chain. If the packet was accepted,
it was passed to the routing module. The routing function determined whether the packet
was to be delivered locally or forwarded to another outgoing interface. IPFW packet flow
is pictured in Figure 3.1.

If forwarded, the packet was filtered a second time against the FORWARD chain. If the
packet was accepted, it was passed to the OUTPUT chain.

Both locally generated outgoing packets and forwarded packets were passed to the
OUTPUT chain. If the packet was accepted, it was sent out the interface.

Differences between IPFW and Netfilter Firewall Mechanisms 53

Received and sent local (loopback) packets passed through two filters. Forwarded pack-
ets passed through three filters.

The loopback path involved two chains. As shown in Figure 3.2, each loopback packet
passed through the output filter before going “out” the loopback interface, where it was
then delivered to the loopback’s input interface. Then the input filter was applied.

Note that the loopback path demonstrates why an X Window session hangs when
starting a firewall script that either doesn’t allow loopback traffic or fails before doing so
when a deny-by-default policy is used.

In the case of response packets being demasqueraded before forwarding them on to
the LAN, the input filters were applied. Rather than passing through the routing function,
the packet was handed directly to the OUTPUT filter chain. Thus, demasqueraded incoming
packets were filtered twice. Outgoing masqueraded packets were filtered three times.

Figure 3.1 IPFW packet traversal

(Figure based on “Linux IPCHAINS-HOWTO,” by Rusty Russel, v1.0.8.)

RoutingInput
Chain

Output
Chain

Forward
Chain

Interface

Deny

Local
Processes

Deny Deny

Interface

Figure 3.2 IPFW loopback and masqueraded packet traversal

(Figure based on “Linux IPCHAINS-HOWTO,” by Rusty Russel, v1.0.8.)

Routing
Input
Chain

Output
Chain

Forward
Chain

Interface

Deny

Local
Processes

Deny Deny

Interface
(Demasqueraded)

54 Chapter 3 iptables: The Legacy Linux Firewall Administration Program

Netfilter Packet Traversal
Under Netfilter (iptables), built-in INPUT, OUTPUT, and FORWARD filter chains are used.
Incoming packets pass through the routing function, which determines whether to deliver
the packet to the local host’s INPUT chain or on to the FORWARD chain. Netfilter packet
flow is pictured in Figure 3.3.

If a locally destined packet is accepted by the INPUT chain’s rules, the packet is deliv-
ered locally. If a remotely destined packet is accepted by the FORWARD chain’s rules, the
packet is sent out the appropriate interface.

Outgoing packets from local processes are passed to the OUTPUT chain’s rules. If the
packet is accepted, it is sent out the appropriate interface. Thus, each packet is filtered once
(except for loopback packets, which are filtered twice).

Basic iptables Syntax
Firewalls built with Netfilter are built through the iptables firewall administration com-
mand. The iptables command implements the firewall policies that you create and man-
ages the behavior of the firewall. Netfilter firewalls have three individual tables: filter,
nat, and mangle. Within these tables, firewalls are built through chains, with each indi-
vidual link in the chain being an individual iptables command.

Within the default filter table there is a chain for input or data coming into the fire-
wall, a chain for output or data leaving the firewall, a chain for forwarding or data being
sent through the firewall, and other chains including chains named and configured by the
user, commonly (and appropriately) called user-defined chains. The nat and mangle tables

Figure 3.3 Netfilter packet traversal

(Figure based on “Linux 2.4 Packet Filtering HOWTO,” by Rusty Russel, v1.0.1.)

Routing Forward
Chain

Drop

Input
Chain

 Local
Processes

Output
 Chain

porDporD

iptables Features 55

have specialty chains that will be discussed later. For now, it’s sufficient to know that the
filter table is the default table for implementing a basic firewall, the nat table is used to
provide NAT and related functions, and the mangle table is used when the packet will be
altered by the firewall.

iptables commands are issued with very specific syntax. Many times, the ordering of
the options given to iptables makes the difference between a successful command and
a syntax error. The commands issued to iptables fall through, so a command that allows
certain packets that follows a command that denies those same packets will cause the data
to be dropped by the firewall.

The basic syntax for an iptables command begins with the iptables command
itself, followed by one or more options, a chain, a set of match criteria, and a target or
disposition. The layout of the command largely depends on the action to be performed.
Consider this syntax:

iptables <option> <chain> <matching criteria> <target>

In building a firewall, the option is usually -A to append a rule onto the end of the rule
set. Naturally, there are several options depending on the target and the operation being
performed. This chapter covers most of those options.

As previously stated, the chain can be an INPUT chain, an OUTPUT chain, a FORWARD
chain, or a user-defined chain. In addition, the chain might also be a specialty chain con-
tained in the nat or mangle tables.

The matching criteria in an iptables command set the conditions for the rule to be
applied. For example, the matching criteria would be used to tell iptables that all TCP
traffic destined for port 80 is allowed into the firewall.

Finally, the target sets the action to perform on a matching packet. The target can be
something as simple as DROP to silently discard the packet, or it can send the matching
packet to a user-defined chain, or it can perform any other configured action in iptables.

The following sections of this chapter show hands-on examples using iptables to
implement real-world rules for various tasks. Some of the examples include syntax and
options that haven’t yet been introduced. If you get lost, refer to this section or the
iptables man page for more information on the syntax being used.

iptables Features
iptables uses the concept of separate rule tables for different kinds of packet-processing
functionality. These rule tables are implemented as functionally separate table modules. The
three primary modules are the rule filter table, the NAT nat table, and the specialized
packet-handling mangle table. Each of these three table modules has its own associated
module extensions that are dynamically loaded when first referenced, unless you’ve built
them directly into the kernel. Other tables include raw and security, which have spe-
cialty uses.

Hiva-Network.Com

http://www.hiva-network.com/

56 Chapter 3 iptables: The Legacy Linux Firewall Administration Program

The filter table is the default table. The other tables are specified by a command-line
option. The basic filter table features include these:

 � Chain-related operations on the three built-in chains (INPUT, OUTPUT, and
 FORWARD) and on user-defined chains

 � Help
 � Target disposition (ACCEPT or DROP)
 � IP header field match operations for protocol, source and destination address, input
and output interfaces, and fragment handling

 � Match operations on the TCP, UDP, and ICMP header fields

The filter table has two kinds of feature extensions: target extensions and match
extensions. The target extensions include the REJECT packet disposition; the BALANCE,
MIRROR, TEE, IDLETIMER, AUDIT, CLASSIFY, and CLUSTERIP targets; and the CONNMARK,
TRACE, and LOG and ULOG functionalities, among others. The match extensions support
matching on the following:

 � The current connection state
 � Port lists (supported by the multiport module)
 � The hardware Ethernet MAC source address or physical device
 � The type of address, link-layer packet type, or range of IP addresses
 � Various parts of IPsec packets or the IPsec policy
 � The ICMP type
 � The length of the packet
 � The time the packet arrived
 � Every nth packet or random packets
 � The packet sender’s user, group, process, or process group ID
 � The IP header Type of Service (TOS) field (possibly set by the mangle table)
 � The TTL section of the IP header
 � The iptables mark field (set by the mangle table)
 � Rate-limited packet matching

The mangle table has two target extensions. The MARK module supports assigning a
value to the packet’s mark field that iptables maintains. The TOS module supports set-
ting the value of the TOS field in the IP header.

The nat table has target extension modules for Source and Destination Address Trans-
lation and for Port Translation. These modules support these forms of NAT:

 � SNAT—Source NAT
 � DNAT—Destination NAT

iptables Features 57

 � MASQUERADE—A specialized form of source NAT for connections that are
assigned a temporary, changeable, dynamically assigned IP address (such as a phone
dial-up connection)

 � REDIRECT—A specialized form of destination NAT that redirects the packet to
the local host, regardless of the address in the IP header’s destination field

All TCP state flags can be inspected, and filtering decisions can be made based on the
results. iptables can check for stealth scans, for example.

TCP can optionally specify the maximum segment size that the sender is willing to
accept in return. Filtering on this one, single TCP option is a very specialized case. The
TTL section of the IP header can also be matched and is a specialized case as well.

TCP connection state and ongoing UDP exchange information can be maintained,
allowing packet recognition on an ongoing basis rather than on a stateless, packet-by-
packet basis. Accepting packets recognized as being part of an established connection
allows bypassing the overhead of checking the rule list for each packet. When the initial
connection is accepted, subsequent packets can be recognized and allowed.

Generally, the TOS field is of historical interest only. The TOS field is either ignored or
used with the newer Differentiated Services (DS) definitions by intermediate routers. IP
TOS filtering has uses for local packet prioritizing—routing and forwarding among local
hosts and the local router.

Incoming packets can be filtered by the MAC source address. This has limited, special-
ized uses for local authentication because MAC addresses are passed only between adja-
cent hosts and routers.

Individual filter log messages can be prefixed with user-defined strings. Messages can
be assigned kernel logging levels as defined in the system log daemon configuration. This
allows logging to be turned on and off, and for the log output files to be defined for a
given system. In addition, there is a ULOG option that sends logging to a user-space dae-
mon, ulogd, to enable further detail to be logged about the packet.

Packet matches can be limited to an initial burst rate, after which a limit is imposed
by the number of allowed matches per second. If match limiting is enabled, the default is
that, after an initial burst of five matched packets, a rate limit of three matches per hour is
imposed. In other words, if the system were flooded with ping packets, for example, the
first five pings would match. After that, a single ping packet could be matched 20 min-
utes later, and another one could be matched 20 minutes after that, regardless of how
many echo-requests were received. The disposition of the packets, whether logged or
not, would depend on any subsequent rules regarding the packets.

The REJECT target can optionally specify which ICMP (or RST for TCP) error mes-
sage to return. The IPv4 standard requires TCP to accept either RST or ICMP as an error
indication, although RST is the default TCP behavior. iptables’ default is to return noth-
ing (DROP) or else to return an ICMP error (REJECT).

Along with REJECT, another special-purpose target is QUEUE. Its purpose is to hand off
the packet via the netlink device to a user-space program for handling. If there is no wait-
ing program, the packet is dropped.

58 Chapter 3 iptables: The Legacy Linux Firewall Administration Program

RETURN is another special-purpose target. Its purpose is to return from a user-defined
chain before rule matching on that chain has completed.

Locally generated outgoing packets can be filtered based on the user, group, process, or
process group ID of the program generating the packet. Thus, access to remote services
can be authorized at the packet-filtering level on a per-user basis. This is a specialized
option for multiuser, multipurpose hosts because firewall routers shouldn’t have normal
user accounts.

Matching can be performed on various pieces of the IPsec header, including the SPIs
(security parameter indices) of the AH (Authentication Header) and ESP (Encapsulating
Security Ppayload).

The type of packet, be it broadcast, unicast, or multicast, is another form of match. This
is done at the link layer.

A range of ports as well as a range of addresses are also valid matches with iptables.
The type of address is another valid match as well. Related to type matching is the ICMP
packet type. Recall that there are a number of valid types of ICMP packets. iptables can
match against these types.

The length of the packet is a valid match, as is the time a packet arrived. This time
matching is interesting. Using the time matches, you could configure the firewall to reject
certain traffic after business hours or allow it only during certain times of day.

A good match for auditing, a random packet match is also available with iptables.
Using this match, you can capture every nth packet and log it. This would be a method for
auditing the firewall rules without logging too much information.

NAT Table Features
There are three general forms of NAT:

 � Traditional, unidirectional outbound NAT—Used for networks using private
addresses.

 � Basic NAT—Address Translation only. Usually used to map local private source
addresses to one of a block of public addresses.

 � NAPT (Network Address and Port Translation)—Usually used to map
local private source addresses to a single public address (for example, Linux
masquerading).

 � Bidirectional NAT—Two-way Address Translation allows both outbound and
inbound connections. A use of this is bidirectional address mapping between IPv4
and IPv6 address spaces.

 � Twice NAT—Two-way Source and Destination Address Translation allows both
outbound and inbound connections. Twice NAT can be used when the source
and destination networks’ address spaces collide. This could be the result of one site
mistakenly using public addresses assigned to someone else. Twice NAT also can

iptables Features 59

be used as a convenience when a site was renumbered or assigned to a new public
address block and the site administrator didn’t want to administer the new address
assignments locally at that time.

iptables NAT supports source NAT (SNAT) and destination NAT (DNAT). The
nat table allows for modifying a packet’s source address or destination address and port. It
has three built-in chains:

 � The PREROUTING chain specifies destination changes to incoming packets before
passing the packet to the routing function (DNAT). Changes to the destination
address can be to the local host (transparent proxying, port redirection) or to a dif-
ferent host for host forwarding (ipmasqadm functionality, port forwarding in Linux
parlance) or load sharing.

 � The OUTPUT chain specifies destination changes to locally generated outgoing pack-
ets before the routing decision has been made (DNAT, REDIRECT). This is usually
done to transparently redirect an outgoing packet to a local proxy, but it can also be
used to port-forward to a different host.

 � The POSTROUTING chain specifies source changes to outgoing packets being routed
through the box (SNAT, MASQUERADE). The changes are applied after the rout-
ing decision has been made.

Masquerading in iptables
In iptables, masquerading is a specialized case of source NAT in the sense that the
masqueraded connection state is forgotten immediately if the connection is lost. It’s
intended for use with connections in which the IP address is assigned temporarily (for
example, dial-up). A user who reconnects immediately would probably be assigned a
different IP address from the previous connection. (This is often not the case with many
cable modem and ADSL service providers. Often, after a connection loss, the same IP
address is assigned upon reconnection.)

With regular SNAT, connection state is maintained for the duration of a timeout
period. If a connection were reestablished quickly enough, any current network-related
programs could continue undisturbed because the IP address hasn’t changed, and inter-
rupted TCP traffic would be retransmitted.

The distinction between MASQUERADE and SNAT is an attempt to avoid a situa-
tion that occurred in previous Linux NAT/MASQUERADE implementations. When a
dial-up connection was lost and the user reconnected immediately, the user was assigned a
new IP address. The new address couldn’t be used immediately because the old IP address
and NAT information were still in memory until the timeout period expired.

Figure 3.4 shows the NAT chains in relation to the routing function and INPUT,
 OUTPUT, and FORWARD chains.

Hiva-Network.Com

http://www.hiva-network.com/

60 Chapter 3 iptables: The Legacy Linux Firewall Administration Program

Note that, for outgoing packets, the routing function is implied between the local pro-
cess and the OUTPUT chain. Static routing is used to determine which interface the packet
will go out on, before the OUTPUT chain’s filter rules are applied.

mangle Table Features
The mangle table allows marking, or associating a Netfilter-maintained value with the
packet, as well as making changes to the packet before sending the packet on to its desti-
nation. The mangle table has five built-in chains:

 � The PREROUTING chain specifies changes to incoming packets as they arrive at an
interface, before any routing or local delivery decision has been made.

 � The INPUT chain specifies changes to packets as they are processed, but after the
PREROUTING chain is traversed.

 � The POSTROUTING chain specifies changes to packets as they are exiting the firewall,
after the OUTPUT chain is traversed.

 � The FORWARD chain specifies changes to packets that are forwarded through the
firewall.

 � The OUTPUT chain specifies changes to locally generated outgoing packets.

For the TOS field, the local Linux router can be configured to honor the TOS flags set
by the mangle table or as set by the local hosts.

Little information is available about packet marking in the iptables documentation,
beyond that it’s used by the Linux Quality of Service (QoS) implementation and that it’s
intended as a communication flag between iptables modules.

Figure 3.4 NAT packet traversal

(Figure based on “Linux 2.4 Packet Filtering HOWTO,” v1.0.1,
and “Linux 2.4 NAT HOWTO,” v1.0.1.)

Routing Forward
Chain

Drop

Input
Chain

Local
Processes

Output
Chain

porDporD

Destination
NAT

Pre-routing

Source
NAT

Post-routing

iptables Syntax 61

The preceding sections provided an overview of the features available in iptables and
the general structure and functionality of the individual table modules. The following sec-
tions present the syntax used to invoke these features.

iptables Syntax
As presented earlier, iptables uses the concept of separate rule tables for different
packet-processing functionality. Nondefault tables are specified by a command-line option.
Three primary tables are available, with others such as security and raw serving a spe-
cialized purpose. The three primary tables are:

 � filter—The filter table is the default table. It contains the actual firewall filter-
ing rules. The built-in chains include these:

 � INPUT

 � OUTPUT

 � FORWARD

 � nat—The nat table contains the rules for Source and Destination Address and Port
Translation. These rules are functionally distinct from the firewall filter rules. The
built-in chains include these:

 � PREROUTING—DNAT/REDIRECT
 � OUTPUT—DNAT/REDIRECT
 � POSTROUTING—SNAT/MASQUERADE

 � mangle—The mangle table contains rules for setting specialized packet-routing
flags. These flags are then inspected later by rules in the filter table. The built-in
chains include these:

 � PREROUTING—Routed packets
 � INPUT—Packets arriving at the firewall but after the PREROUTING chain
 � FORWARD—Changes packets being routed through the firewall
 � POSTROUTING—Changes packets just before they leave the firewall, after the
 OUTPUT chain

 � OUTPUT—Locally generated packets

Syntax Format Conventions
The conventions used to present command-line syntax options are fairly standard in the
computer world. For those of you who are new to Linux or to computer documentation in
general, Table 3.1 shows the conventions used in the upcoming syntax descriptions.

62 Chapter 3 iptables: The Legacy Linux Firewall Administration Program

filter Table Commands
The filter table commands are provided by the ip_tables module. The functionality
is enabled by loading the module, which is done automatically with the first invocation of
the iptables command, or it could be compiled into the kernel itself, which means you
don’t need to worry about modules being loaded at all.

filter Table Operations on Entire Chains
Table 3.2 shows the iptables operations on entire chains.

The -h help command is obviously not an operation on a chain, nor is
--modprobe=<command>, but I didn’t know where else to list the commands.

The list command takes additional options, as shown in Table 3.3.

filter Table Operations on a Rule
The most frequently used commands to create or delete rules within a chain are shown in
Table 3.4.

Basic filter Table Match Operations
The basic filter match operations supported in the default iptables filter table are
listed in Table 3.5.

Table 3.1 Conventions Representing Command-Line Syntax Options

Element Description

| A bar or pipe symbol separates alternative syntax options. For
example, most of the iptables commands have both a short and
a long form, such as -L and --list, and so they would be listed
as alternative options because you would use one or the other of
-L or --list.

<value> Angle brackets indicate a user-supplied value, such as a string or
numeric value.

[] Square brackets indicate that the enclosed command, option, or
value is optional. For example, most match operators can take a
negation operator, !, which matches anything other than the value
specified in the match. The negation operator is usually placed
between the match operator and the value to be matched.

<value>:<value> A colon indicates a range of values. The two values define the
minimum and maximum values within the range. Because ranges
themselves are optional, the convention is more often presented
as <value>[:<value>].

iptables Syntax 63

Table 3.2 iptables Operations on Entire Chains

Option Description

-N | --new-chain <chain> Creates a user-defined chain.

-F | --flush [<chain>] Flushes the chain, or all chains if none is
specified.

-X | --delete-chain [<chain>] Deletes the user-defined chain, or all chains if
none is specified.

-P | --policy <chain> <policy> Defines the default policy for one of the built-in
chains, INPUT, OUTPUT, or FORWARD. The
policy is either ACCEPT or DROP.

-L | --list [<chain>] Lists the rules in the chain, or all chains if
none is specified.

-S | --list-rules [<chain>] Prints the rules in the specified chain in
iptables save format.

-Z | --zero Resets the packet and byte counters
associated with each chain.

-h | <some command> -h Lists the iptables commands and options,
or if preceded by an iptables command, lists
the syntax and options for that command.

--modprobe=<command> Use <command> to load the necessary
module(s) when adding or inserting a rule into
a chain.

-E | --rename-chain <old chain> Renames the user-defined chain <old
chain> to the user-defined chain <new
chain>.

Table 3.3 Options to the list Chain Command

Option Description

-L -n | --numeric Lists the IP addresses and port numbers numerically, rather than
by name

-L -v | --verbose Lists additional information about each rule, such as the byte
and packet counters, rule options, and relevant network interface

-L -x | --exact Lists the exact values of the counter, rather than the rounded-off
values

-L --line-numbers Lists the rule’s position within its chain

Hiva-Network.Com

http://www.hiva-network.com/

64 Chapter 3 iptables: The Legacy Linux Firewall Administration Program

Table 3.4 Chain Commands on Individual Rules

Command Description

-A | --append <chain> <rule specification> Appends a rule to the end of a
chain

-I | --insert <chain> [<rule number>]
<rule specification>

Inserts a rule at the beginning of
the chain

-R | --replace <chain> <rule number>
<rule specification>

Replaces a rule in the chain

-D | --delete <chain> <rule number>
| <rule specification>

Deletes the rule at position
<rule number> within a chain
or the rule matching the specified
rule

-C | --check <chain> <rule specification> Examines the chain to see if a
rule matches the specification

Table 3.5 filter Table Rule Operations

Option Description

-i | --in-interface [!] [<interface>] For incoming packets on either the
INPUT or the FORWARD chains, or their
user-defined subchains, specifies the
interface name that the rule applies
to. If no interface is specified, all
interfaces are implied.

-o | --out-interface [!] [<interface>] For outgoing packets on either the
OUTPUT or the FORWARD chains, or
their user-defined subchains, specifies
the interface name that the rule
applies to. If no interface is specified,
all interfaces are implied.

-p | --protocol [!] [<protocol>] Specifies the IP protocol that the rule
applies to. The built-in protocols are
tcp, udp, icmp, and all. The protocol
value can be either the name or the
numeric value, as listed in /etc/
protocols.

-s | --source | --src [!]
<address>[</mask>]

Specifies the host or network source
address in the IP header.

-d | --destination | --dst [!]
<address>[</mask>]

Specifies the host or network
destination address in the IP header.

iptables Syntax 65

Rule Targets Are Optional
If the packet matches a rule that doesn’t have a target disposition, the packet counters are
updated, but list traversal continues.

tcp filter Table Match Operations
TCP header match options are listed in Table 3.6. You can also see these options by adding
the -h flag after the -p tcp option, as in iptables -p tcp -h.

Table 3.5 filter Table Rule Operations (Continued)

Option Description

-j | --jump <target> Specifies the target disposition for
the packet if it matches the rule. The
default targets include the built-in
targets, an extension, or a user-defined
chain.

-g | --goto <chain> Specifies that processing should
continue in the specified chain but
doesn’t send processing back (like the
jump option does).

-m | --match <match> Uses an extension to test for a match.

[!] -f | --fragment Specifies second and additional
fragmented packets. The negated
version of this specifies unfragmented
packets.

-c | --set-counters <packets> <bytes> Initializes the packet and byte counters.

Table 3.6 tcp filter Table Match Operations

-p tcp Option Description

--source-port | --sport [[!]
<port>[:<port>]]

This command specifies the source
ports.

--destination-port | --dport
<port>[:<port>]

This command specifies the destination
[!] ports.

--tcp-flags [!] <mask> [,<mask>]
<set>[,<set>]

This command tests the bits in the
mask list, out of which the following bits
must be set in order to match.

[!] -syn The SYN flag must be set as an initial
connection request.

--tcp-option [!] <number> The only legal tcp option is the
maximum packet size that the sending
host is willing to accept.

66 Chapter 3 iptables: The Legacy Linux Firewall Administration Program

udp filter Table Match Operations
UDP header match options are listed in Table 3.7. You can also see these options by add-
ing the -h flag after the -p udp option, as in iptables -p udp -h.

icmp filter Table Match Operation
The ICMP header match option is listed in Table 3.8.

The major supported ICMP type names and numeric values are the following:

 � echo-reply (0)
 � destination-unreachable (3)

 � network-unreachable

 � host-unreachable

 � protocol-unreachable

 � port-unreachable

 � fragmentation-needed

 � network-unknown

 � host-unknown

 � network-prohibited

 � host-prohibited

 � source-quench (4)

 � redirect (5)

 � echo-request (8)

 � time-exceeded (10)

 � parameter-problem (11)

Table 3.7 udp filter Table Match Operations

-p udp Option Description

--source-port | --sport [!] <port>[:<port>] Specifies the source
ports

--destination-port | --dport [!] <port>[:<port>] Specifies the destination
ports

Table 3.8 icmp filter Table Match Operation

Option Description

--icmp-type [!] <type> Specifies the ICMP type name or number. The
ICMP type is used in place of a source port.

iptables Syntax 67

Additional ICMP and ICMP6 Support
iptables supports a number of additional, less common or router-specific ICMP message
types and subtypes and can also work with IPv6 ICMP packets through the icmp6 extension.
To see the entire list, use the following iptables help commands:

iptables -p icmp -h
iptables -p ipv6-icmp -h

filter Table Target Extensions
The filter table target extensions include logging functionality and the capability to
reject a packet rather than dropping it.

Table 3.9 lists the options available to the LOG target. Table 3.10 lists the single option
available to the REJECT target. As with other options, you can add the -h flag after the
-j <TARGET> to see more options, like so: iptables -j <TARGET> -h.

The ULOG Table Target Extension
Related to the LOG target is the ULOG target, which sends the log message to a user-space
program for logging. Behind the scenes for ULOG, the packet gets multicast by the kernel

Table 3.9 LOG Target Extension

-j LOG Option Description

--log-level <syslog level> Log level is either the numeric or the
symbolic login priority, as listed in /usr/
include/sys/syslog.h. These are the
same log levels used in /etc/syslog.
conf. The levels are emerg (0), alert
(1), crit (2), err (3), warn (4),
notice (5), info (6), memerg (0),
alert (1), crit (2), err (3), warn
(4), notice (5), info (6), and
debug (7).

--log-prefix <"descriptive string"> The prefix is a quoted string that will be
printed at the start of the log message for
the rule.

--log-ip-options This command includes any IP header
options in the log output.

--log-tcp-sequence This command includes the TCP packet’s
sequence number in the log output.

--log-tcp-option This command includes any TCP header
options in the log output.

--log-uid This command includes the user ID that
generated the packet in the log output.

Hiva-Network.Com

http://www.hiva-network.com/

68 Chapter 3 iptables: The Legacy Linux Firewall Administration Program

through a netlink socket of your choosing (the default is socket 1). The user-space dae-
mon would then read the message from the socket and do with it what it pleases. The
ULOG target is typically used to provide more extensive logging than is possible with the
standard LOG target.

As with the LOG target, processing continues after matches on a ULOG targeted rule. The
ULOG target has four configuration options, as described in Table 3.11.

filter Table Match Extensions
The filter table match extensions provide access to the fields in the TCP, UDP, and
ICMP headers, as well as the match features available in iptables, such as maintaining
connection state, port lists, access to the hardware MAC source address, and access to the
IP TOS field.

Table 3.10 REJECT Target Extension

-j REJECT Option Description

--reject-with <ICMP type 3> By default, a rejected packet results in an ICMP
Type 3 icmp-port-unreachable message
being returned to the sender. Other Type 3 error
messages can be returned instead, including icmp-
net-unreachable, icmp-host-unreachable,
icmp-proto-unreachable, icmp-net-
prohibited, and icmp-host-prohibited.

--reject-with tcp-reset Incoming TCP packets can be rejected with the more
standard TCP RST message, rather than an ICMP
error message.

Table 3.11 ULOG Target Extension

Option Description

--ulog-nlgroup <group> Defines the netlink group that will receive the packet.
The default group is 1.

--ulog-prefix <prefix> Messages will be prefixed by this value, up to
32 characters in length.

--ulog-cprange <size> The size in bytes to send to the netlink socket. The
default is 0, which sends the entire packet.

--ulog-qthreshold <size> The size in packets to queue within the kernel. The
default is 1, which means that one packet is sent per
message to the netlink socket.

iptables Syntax 69

Match Syntax
The match extensions require the -m or --match command to load the module, followed
by any relevant match options.

multiport filter Table Match Extension
multiport port lists can include up to 15 ports per list. Whitespace isn’t allowed. There
can be no blank spaces between the commas and the port values. Port ranges cannot
be interspersed in the list. Also, the -m multiport command must exactly follow the
-p <protocol> specifier.

Table 3.12 lists the options available to the multiport match extension.
The multiport syntax can be a bit tricky. Some examples and cautions are included

here. The following rule blocks incoming packets arriving on interface eth0 destined for
the UDP ports associated with NetBIOS and SMB, common ports that are exploited on
Microsoft Windows computers and targets for worms:

iptables -A INPUT -i eth0 -p udp\
 -m multiport --destination-port 135,136,137,138,139 -j DROP

The next rule blocks outgoing connection requests sent through the eth0 interface to
high ports associated with the TCP services NFS, SOCKS, and squid:

iptables -A OUTPUT -o eth0 -p tcp\
 -m multiport --destination-port 2049,1080,3128 --syn -j REJECT

What is important to note in this example is that the multiport command must
exactly follow the protocol specification. A syntax error would have resulted if the --syn
were placed between the -p tcp and the -m multiport.

To show a similar example of --syn placement, the following is correct:

iptables -A INPUT -i <interface> -p tcp \
 -m multiport --source-port 80,443 ! --syn -j ACCEPT

However, this causes a syntax error:

iptables -A INPUT -i <interface> -p tcp ! --syn \
 -m multiport --source-port 80,443 -j ACCEPT

Table 3.12 multiport Match Extension

m | --match multiport Option Description

--source-port <port>[,<port>] Specifies the source port(s).

--destination-port <port>[,<port>] Specifies the destination port(s).

--port <port>[,<port>] Source and destination ports are equal,
and they match a port in the list.

70 Chapter 3 iptables: The Legacy Linux Firewall Administration Program

Furthermore, the placement of source and destination parameters is not obvious. The
following two variations are correct:

iptables -A INPUT -i <interface> -p tcp -m multiport \
 --source-port 80,443 \
 ! --syn -d $IPADDR --dport 1024:65535 -j ACCEPT

and

iptables -A INPUT -i <interface> -p tcp -m multiport \
 --source-port 80,443 \
 -d $IPADDR ! --syn --dport 1024:65535 -j ACCEPT

However, this causes a syntax error:

iptables -A INPUT -i <interface> -p tcp -m multiport \
 --source-port 80,443 \
 -d $IPADDR --dport 1024:65535 ! --syn -j ACCEPT

This module has some surprising syntax side effects. Either of the two preceding cor-
rect rules produces a syntax error if the reference to the SYN flag is removed:

iptables -A INPUT -i <interface> -p tcp -m multiport \
 --source-port 80,443 \
 -d $IPADDR --dport 1024:65535 -j ACCEPT

The following pair of rules, however, does not:

iptables -A OUTPUT -o <interface> \
 -p tcp -m multiport --destination-port 80,443 \
 ! --syn -s $IPADDR --sport 1024:65535 -j ACCEPT

iptables -A OUTPUT -o <interface> \
 -p tcp -m multiport --destination-port 80,443 \
 --syn -s $IPADDR --sport 1024:65535 -j ACCEPT

Note that the --destination-port argument to the multiport module is not the
same as the --destination-port or --dport argument to the module that performs
matching for the -p tcp arguments.

limit filter Table Match Extension
Rate-limited matching is useful for choking back the number of log messages that would
be generated during a flood of logged packets.

Table 3.13 lists the options available to the limit match extension.
The burst rate defines the number of initial matches to be accepted. The default value

is five matches. When the limit has been reached, further matches are limited to the rate
limit. The default limit is three matches per hour. Optional time frame specifiers include
/second, /minute, /hour, and /day.

In other words, by default, when the initial burst rate of five matches is reached within
the time limit, at most three more packets will match over the next hour, one every
20 minutes, regardless of how many packets are received. If a match doesn’t occur within
the rate limit, the burst is recharged by one.

iptables Syntax 71

It’s easier to demonstrate rate-limited matching than it is to describe it in words. The
following rule will limit logging of incoming ping message matches to one per second
when an initial five echo-requests are received within a given second:

iptables -A INPUT -i eth0 \
 -p icmp --icmp-type echo-request \
 -m limit --limit 1/second -j LOG

It’s also possible to do rate-limited packet acceptance. The following two rules, in com-
bination, will limit acceptance of incoming ping messages to one per second when an
initial five echo-requests are received within a given second:

iptables -A INPUT -i eth0 \
 -p icmp --icmp-type echo-request \
 -m limit --limit 1/second -j ACCEPT

iptables -A INPUT -i eth0 \
 -p icmp --icmp-type echo-request -j DROP

The next rule limits the number of log messages generated in response to dropped
ICMP redirect messages. When an initial five messages have been logged within a
20-minute time frame, at most three more log messages will be generated over the next
hour, one every 20 minutes:

iptables -A INPUT -i eth0 \
 -p icmp --icmp-type redirect \
 -m limit -j LOG

The assumption in the final example is that the packet and any additional unmatched
redirect packets are silently dropped by the default DROP policy for the INPUT chain.

state filter Table Match Extension
Static filters look at traffic on a packet-by-packet basis alone. Each packet’s particular com-
bination of source and destination addresses and ports, the transport protocol, and the cur-
rent TCP state flag combination is examined without reference to any ongoing context.
ICMP messages are treated as unrelated, out-of-band IP Layer 3 events.

The state extension provides additional monitoring and recording technology to
augment the stateless, static packet-filter technology. State information is recorded when
a TCP connection or UDP exchange is initiated. Subsequent packets are examined not

Table 3.13 limit Match Extension

-m | --match limit Option Description

--limit <rate> Maximum number of packets to match within the given
time frame

--limit-burst <number> Maximum number of initial packets to match before
 applying the limit

Hiva-Network.Com

http://www.hiva-network.com/

72 Chapter 3 iptables: The Legacy Linux Firewall Administration Program

only based on the static tuple information, but also within the context of the ongoing
exchange. In other words, some of the contextual knowledge usually associated with
the upper TCP Transport layer, or the UDP Application layer, is brought down to the
filter layer.

After the exchange is initiated and accepted, subsequent packets are identified as part
of the established exchange. Associated ICMP messages are identified as being related to a
particular exchange.

Note
In computer terminology, a collection of values or attributes that together uniquely identify
an event or object is called a tuple. A UDP or TCP packet is uniquely identified by the tuple
combination of its protocol, UDP or TCP, the source and destination addresses, and the
source and destination ports.

For session monitoring, the advantages of maintaining state information are less obvi-
ous for TCP because TCP maintains state information by definition. For UDP, the imme-
diate advantage is the capability to distinguish responses from other datagrams. In the case
of an outgoing DNS request, which represents a new UDP exchange, the concept of an
established session allows an incoming UDP response datagram from the host and port the
original message was sent to, within a certain time-limited window. Incoming UDP data-
grams from other hosts or ports are not allowed. They are not part of the established state
for this particular exchange. When applied to TCP and UDP, ICMP error messages are
accepted if the error message is related to the particular session.

In considering packet flow performance and firewall complexity, the advantages are
more obvious for TCP flows. Flows are primarily a firewall performance and optimization
technology. The main goal of flows is to allow bypassing the firewall inspection path for a
packet. Much faster TCP packet handling is obtained in some cases because the remain-
ing firewall filters can be skipped if the TCP packet is immediately recognized as part of
an allowed, ongoing connection. For TCP connections, flow state can be a major win in
terms of filtering performance. Also, standard TCP application protocol rules can be col-
lapsed into a single initial allow rule. The number of filter rules is reduced (theoretically,
but not necessarily in practice, as you’ll see later in the book).

The main disadvantage is that maintaining a state table requires more memory than
standard firewall rules alone. Routers with 70,000 simultaneous connections, for example,
would require tremendous amounts of memory to maintain state table entries for each
connection. State maintenance is often done in hardware for performance reasons, where
associative table lookups can be done simultaneously or in parallel. Whether implemented
in hardware or software, state engines must be capable of reverting a packet to the tradi-
tional path if memory isn’t available for the state table entry.

Also, table creation, lookup, and teardown take time in software. The additional process-
ing overhead is a loss in many cases. State maintenance is a win for ongoing exchanges
such as an FTP transfer or a UDP streaming multimedia session. Both types of data flow

iptables Syntax 73

represent potentially large numbers of packets (and filter rule match tests). State mainte-
nance is not a firewall performance win for a simple DNS or NTP client/server exchange,
however. State buildup and teardown can easily require as much processing—and more
memory—than simply traversing the filter rules for these packets.

The advantages are also questionable for firewalls that filter primarily web traffic. Web
client/server exchanges tend to be brief and ephemeral.

Telnet and SSH sessions are in a gray area. On heavily trafficked routers with many
such sessions, the state maintenance overhead may be a win by bypassing the firewall
inspection. For fairly quiescent sessions, however, it’s likely that the connection state entry
will time out and be thrown away. The state table entry will be re-created when the next
packet comes along, after it has passed the traditional firewall rules.

Table 3.14 lists the option available to the state match extension.
TCP connection state and ongoing UDP exchange information can be maintained,

allowing network exchanges to be filtered as NEW, ESTABLISHED, RELATED, or INVALID:

 � NEW is equivalent to the initial TCP SYN request, or to the first UDP packet.
 � ESTABLISHED refers to the ongoing TCP ACK messages after the connection is initi-
ated, to subsequent UDP datagrams exchanged between the same hosts and ports,
and to ICMP echo-reply messages sent in response to a previous echo-request.

 � RELATED currently refers only to ICMP error messages. FTP secondary connections
are managed by the additional FTP connection tracking support module. With the
addition of that module, the meaning of RELATED is extended to include the sec-
ondary FTP connection.

 � An example of an INVALID packet is an incoming ICMP error message that wasn’t
a response to a current session, or an echo-reply that wasn’t a response to a previ-
ous echo-request.

Ideally, using the ESTABLISHED match allows the firewall rule pair for a service to be
collapsed into a single rule that allows the first request packet. For example, using the
ESTABLISHED match, a web client rule requires allowing only the initial outgoing SYN
request. A DNS client request requires only the rule allowing the initial UDP outgoing
request packet.

Table 3.14 state Match Extension

-m | --match state Option Description

--state <state>[,<state>] Matches if the connection state is one in the
list. Legal values are NEW, ESTABLISHED,
RELATED, and INVALID.

74 Chapter 3 iptables: The Legacy Linux Firewall Administration Program

With a deny-by-default input policy, connection tracking can be used (theoretically) to
replace all protocol-specific filters with two general rules that allow incoming and out-
going packets that are part of an established connection, or packets related to the connec-
tion. Application-specific rules are required for the initial packet alone.

Although such a firewall setup might very well work for a small or residential site in
most cases, it is unlikely to perform adequately for a larger site or a firewall that handles
many connections simultaneously. The reason goes back to the case of state table entry
timeouts, in which a state entry for a quiescent connection is replaced because of table size
and memory constraints. The next packet that would have been accepted by the deleted
state entry requires a rule to allow the packet, and the state table entry must be rebuilt.

A simple example of this is a rule pair for a local DNS server operating as a cache-and-
forward name server. A DNS forwarding name server uses server-to-server communica-
tion. DNS traffic is exchanged between source and destination ports 53 on both hosts.
The UDP client/server relationship can be made explicit. The following rules explicitly
allow outgoing (NEW) requests, incoming (ESTABLISHED) responses, and any (RELATED)
ICMP error messages:

iptables -A INPUT -m state \
 --state ESTABLISHED,RELATED -j ACCEPT

iptables -A OUTPUT --out-interface <interface> -p udp \
 -s $IPADDR --source-port 53 -d $NAME_SERVER --destination-port 53 \
 -m state --state NEW,RELATED -j ACCEPT

DNS uses a simple query-and-response protocol. But what about an application that
can maintain an ongoing connection for extended periods, such as an FTP control ses-
sion or a telnet or SSH session? If the state table entry is cleared out prematurely for some
reason, future packets won’t have a state entry to be matched against to be identified as
part of an ESTABLISHED exchange.

The following rules for an SSH connection allow for that possibility:

iptables -A INPUT -m state \
 --state ESTABLISHED,RELATED -j ACCEPT

iptables -A OUTPUT -m state \
 --state ESTABLISHED,RELATED -j ACCEPT

iptables -A OUTPUT --out-interface <interface> -p tcp \
 -s $IPADDR --source-port $UNPRIVPORTS \
 -d $REMOTE_SSH_SERVER --destination-port 22 \
 -m state --state NEW, -j ACCEPT

iptables -A OUTPUT --out-interface <interface> -p tcp ! --syn \
 -s $IPADDR --source-port $UNPRIVPORTS \
 -d $REMOTE_SSH_SERVER --destination-port 22 \
 -j ACCEPT

iptables Syntax 75

iptables -A INPUT --in-interface <interface> -p tcp ! --syn \
 -s $REMOTE_SSH_SERVER --source-port 22 \
 -d $IPADDR --destination-port $UNPRIVPORTS \
 -j ACCEPT

mac filter Table Match Extension
Table 3.15 lists the option available to the mac match extension.

Remember that MAC addresses do not cross router borders (or network segments).
Also remember that only source addresses can be specified. The mac extension can be used
only on an in-interface, such as the INPUT, PREROUTING, and FORWARD chains.

The following rule allows incoming SSH connections from a single local host:

iptables -A INPUT -i <local interface> -p tcp \
 -m mac --mac-source xx:xx:xx:xx:xx:xx \
 --source-port 1024:65535 \
 -d <IPADDR> --dport 22 -j ACCEPT

owner filter Table Match Extension
Table 3.16 lists the options available to the owner match extension.

The match refers to the packet’s creator. The extension can be used on the OUTPUT
chain only.

These match options don’t make much sense on a firewall router; they make more
sense on an end host.

So, let’s say that you have a firewall gateway with a monitor, perhaps, but no keyboard.
Administration is done from a local, multiuser host. A single user account is allowed to log

Table 3.15 mac Match Extension

-m | --match mac Option Description

--mac-source [!] <address> Matches the Layer 2 Ethernet hardware source
address, specified as xx:xx:xx:xx:xx:xx:,
in the incoming Ethernet frame

Table 3.16 owner Match Extension

-m | --match owner Option Description

--uid-owner <userid> Matches on the creator’s UID

--gid-owner <groupid> Matches on the creator’s GID

--pid-owner <processid> Matches on the creator’s PID

--sid-owner <sessionid> Matches on the creator’s SID or PPID

--cmd-owner <name> Matches on a packet created by a process with command
name <name>

Hiva-Network.Com

http://www.hiva-network.com/

76 Chapter 3 iptables: The Legacy Linux Firewall Administration Program

in to the firewall from this host. On the multiuser host, administrative access to the firewall
could be locally filtered as shown here:

iptables -A OUTPUT -o eth0 -p tcp \
 -s <IPADDR> --sport 1024:65535 \
 -d <fw IPADDR> --dport 22 \
 -m owner --uid-owner <admin userid> \
 --gid-owner <admin groupid> -j ACCEPT

mark filter Table Match Extension
Table 3.17 lists the option available to the mark match extension.

The mark value and the mask are unsigned long values. If a mask is specified, the value
and the mask are ANDed together.

In the example, assume that an incoming telnet client packet between a specific source
and destination had been marked previously:

iptables -A FORWARD -i eth0 -o eth1 -p tcp \
 -s <some src address> --sport 1024:65535 \
 -d <some destination address> --dport 23 \
 -m mark --mark 0x00010070 \
 -j ACCEPT

The mark value being tested for here was set at some earlier point in the packet pro-
cessing. The mark value is a flag indicating that this packet is to be handled differently
from other packets.

tos filter Table Match Extension
Table 3.18 lists the option available to the tos match extension.

The tos value can be one of either the string or numeric values:

 � minimize-delay, 16, 0x10

 � maximize-throughput, 8, 0x08

 � maximize-reliability, 4, 0x04

 � minimize-cost, 2, 0x02

 � normal-service, 0, 0x00

Table 3.17 mark Match Extension

-m | --match mark Option Description

--mark <value>[/<mask>] Matches packets having the Netfilter-assigned mark value

Table 3.18 tos Match Extension

-m | --match tos Option Description

--tos <value> Matches on the IP TOS setting

iptables Syntax 77

The TOS field has been redefined as the Differentiated Services (DS) field for use by
the Differentiated Services Code Point (DSCP).

For more information on Differentiated Services, see these sources:

 � RFC 2474, “Definition of the Differentiated Services Field (DS Field) in the IPv4
and IPv6 Headers”

 � RFC 2475, “An Architecture for Differentiated Services”
 � RFC 2990, “Next Steps for the IP QoS Architecture”
 � RFC 3168, “The Addition of Explicit Congestion Notification (ECN) to IP”
 � RFC 3260, “New Terminology and Clarifications for Diffserv”

unclean filter Table Match Extension
The specific packet validity checks performed by the unclean module are not docu-
mented. The module is considered to be experimental.

The following line shows the unclean module syntax. The module takes no
arguments:

-m | --match unclean

The unclean extension might be “blessed” by the time this book is published. In the
meantime, the module lends itself to an example of the LOG options:

iptables -A INPUT -p ! tcp -m unclean \
 -j LOG --log-prefix "UNCLEAN packet: " \
 --log-ip-options

iptables -A INPUT -p tcp -m unclean \
 -j LOG --log-prefix "UNCLEAN TCP: " \
 --log-ip-options \
 --log-tcp-sequence --log-tcp-options

iptables -A INPUT -m unclean -j DROP

addrtype filter Table Match Extension
The addrtype match extension is used to match packets based on the type of address
used, such as unicast, broadcast, and multicast. The types of addresses include those listed in
Table 3.19.

Two commands are used with the addrtype match, as listed in Table 3.20.

iprange filter Table Match
Sometimes defining a range of IP addresses using CIDR notation is insufficient for your
needs. For example, if you need to limit a certain range of IPs that don’t fall on a subnet
boundary or cross that boundary by only a couple of addresses, the iprange match type
will do the job.

78 Chapter 3 iptables: The Legacy Linux Firewall Administration Program

Using the iprange match, you specify an arbitrary range of IP addresses for the match
to take effect. The iprange match can also be negated. Table 3.21 lists the commands for
the iprange match.

length filter Table Match
The length filter table match examines the length of the packet. If the packet’s length
matches the value given or optionally falls within the range given, the rule is invoked.
Table 3.22 lists the one and only command related to the length match.

Table 3.19 Address Types Used with the addrtype Match

Name Description

ANYCAST An anycast packet

BLACKHOLE A blackhole address

BROADCAST A broadcast address

LOCAL A local address

MULTICAST A multicast address

PROHIBIT A prohibited address

UNICAST A unicast address

UNREACHABLE An unreachable address

UNSPEC An unspecified address

Table 3.21 iprange Match Commands

Command Description

[!] --src-range <ip address-ip address> Specifies (or negates) the range of IP
addresses to match. The range is given
with a single hyphen and no spaces.

[!] --dst-range <ip address-ip address> Specifies (or negates) the range of IP
addresses to match. The range is given
with a single hyphen and no spaces.

Table 3.20 addrtype Match Commands

Option Description

--src-type <type> Matches for addresses with a source of type <type>

--dst-type <type> Matches for addresses with a destination of type <type>

iptables Syntax 79

nat Table Target Extensions
As mentioned earlier, iptables supports four general kinds of NAT: source NAT
(SNAT); destination NAT (DNAT); masquerading (MASQUERADE), which is a special-
ized case of the SNAT implementation; and local port direction (REDIRECT) to the
local host. As part of the nat table, each of these targets is available when a rule specifies
the nat table by using the -t nat table specifier.

SNAT nat Table Target Extension
Network Address and Port Translation (NAPT) is the kind of NAT people are most com-
monly familiar with. As shown in Figure 3.5, Source Address Translation is done after the
routing decision is made. SNAT is a legal target only in the POSTROUTING chain. Because
SNAT is applied immediately before the packet is sent out, only an outgoing interface can
be specified.

Some documents refer to this form of source NAT (the most common form) as
NAPT, to acknowledge the port number modification. The other form of traditional,
unidirectional NAT is basic NAT, which doesn’t touch the source port. That form is used
when you are translating between the private LAN and a pool of public addresses.

Table 3.22 length Match Command

Command Description

--length <length>[:<length>] Matches a packet of <length> or within the
range <length:length>

Figure 3.5 NAT packet traversal

Routing Forward
Chain

Drop

Input
Chain

Local
Processes

Output
Chain

Drop Drop

Destination
NAT

Pre-routing

Source
NAT

Post-routing

Hiva-Network.Com

http://www.hiva-network.com/

80 Chapter 3 iptables: The Legacy Linux Firewall Administration Program

NAPT is used when you have a single public address. The source port is changed to a
free port on the firewall/NAT machine because it’s translating for any number of internal
computers, and the port that the internal machine is using might already be in use by the
NAT machine. When the responses come back, the port is all that the NAT machine has
to determine that the packet is really meant for an internal computer rather than itself and
then to determine which internal computer the packet is meant for.

The general syntax for SNAT is as follows:

iptables -t nat -A POSTROUTING --out-interface <interface> ... \
 -j SNAT --to-source <address>[-<address>][:<port>-<port>]

The source address can be mapped to a range of possible IP addresses, if more than one
is available.

The source port can be mapped to a specific range of source ports on the router.

MASQUERADE nat Table Target Extension
Source Address Translation has been implemented in two different ways in iptables,
as SNAT and as MASQUERADE. The difference is that the MASQUERADE target
extension is intended for use with connections on interfaces with dynamically assigned IP
addresses, particularly in the case in which the connection is temporary and the IP address
assignment is likely to be different at each new connection. As discussed previously, in the
section “NAT Table Features,” MASQUERADE can be useful for dynamic IP or mobile
connections in particular.

Because masquerading is a specialized case of SNAT, it is likewise a legal target only
in the POSTROUTING chain, and the rule can refer to the outgoing interface only. Unlike
the more generalized SNAT, MASQUERADE does not take an argument specifying the
source address to apply to the packet. The IP address of the outgoing interface is used
automatically.

The general syntax for MASQUERADE is as follows:

iptables -t nat -A POSTROUTING --out-interface <interface> ... \
 -j MASQUERADE [--to-ports <port>[-<port>]]

The source port can be mapped to a specific range of source ports on the router.

DNAT nat Table Target Extension
Destination Address and Port Translation is a highly specialized form of NAT. A residen-
tial or small business site is most likely to find this feature useful if its public IP address is
dynamically assigned or if the site has a single IP address, and the site administrator wants
to forward incoming connections to internal servers that aren’t publicly visible. In other
words, the DNAT features can be used to replace the previously required third-party port-
forwarding software, such as ipmasqadm.

Referring back to Figure 3.5, Destination Address and Port Translation is done before
the routing decision is made. DNAT is a legal target in the PREROUTING and OUTPUT
chains. On the PREROUTING chain, DNAT can be a target when the incoming interface
is specified. On the OUTPUT chain, DNAT can be a target when the outgoing interface is
specified.

iptables Syntax 81

The general syntax for DNAT is as follows:

iptables -t nat -A PREROUTING --in-interface <interface> ... \
 -j DNAT --to-destination <address>[-<address>][:<port>-<port>]
iptables -t nat -A OUTPUT --out-interface <interface> ... \
 -j DNAT --to-destination <address>[-<address>][:<port>-<port>]

The destination address can be mapped to a range of possible IP addresses, if more than
one is available.

The destination port can be mapped to a specific range of alternative ports on the
destination host.

REDIRECT nat Table Target Extension
Port redirection is a specialized case of DNAT. The packet is redirected to a port on the
local host. Incoming packets that would otherwise be forwarded on are redirected to the
incoming interface’s INPUT chain. Outgoing packets generated by the local host are redi-
rected to a port on the local host’s loopback interface.

REDIRECT is simply an alias, a convenience, for the specialized case of redirecting a
packet to this host. It offers no additional functional value. DNAT could just as easily be
used to cause the same effect.

REDIRECT is likewise a legal target only in the PREROUTING and OUTPUT chains. On the
PREROUTING chain, REDIRECT can be a target when the incoming interface is specified. On
the OUTPUT chain, REDIRECT can be a target when the outgoing interface is specified.

The general syntax for REDIRECT is as follows:

iptables -t nat -A PREROUTING --in-interface <interface> ... \
 -j REDIRECT [--to-ports <port>[-<port>]]
iptables -t nat -A OUTPUT --out-interface <interface> ... \
 -j REDIRECT [--to-ports <port>[-<port>]]

The destination port can be mapped to a different port or to a specific range of alter-
native ports on the local host.

mangle Table Commands
The mangle table targets and extensions apply to the OUTPUT and PREROUTING chains.
Remember, the filter table is implied by default. To use the mangle table features, you
must specify the mangle table with the -t mangle directive.

mark mangle Table Target Extension
Table 3.23 lists the target extensions available to the mangle table.

Table 3.23 mangle Target Extensions

-t mangle Option Description

-j MARK --set-mark <value> Sets the value of the Netfilter mark value for this packet

-j TOS --set-tos <value> Sets the TOS value in the IP header

82 Chapter 3 iptables: The Legacy Linux Firewall Administration Program

There are two mangle table target extensions: MARK and TOS. MARK contains the func-
tionality to set the unsigned long mark value for the packet maintained by the iptables
mangle table.

An example of usage follows:

iptables -t mangle -A PREROUTING --in-interface eth0 -p tcp \
 -s <some src address> --sport 1024:65535 \
 -d <some destination address> --dport 23 \
 -j MARK --set-mark 0x00010070

TOS contains the functionality to set the TOS bits in the IP header. An example of usage
follows:

iptables -t mangle -A OUTPUT ... -j TOS --set-tos <tos>

The possible tos values are the same values available in the filter table’s TOS match
extension module.

Summary
This chapter covered many features available in iptables—certainly, the features most
commonly used. I’ve tried to give a general sense of the differences between Netfilter and
IPFW, if for no other reason than to give you a “heads up” for the implementation differ-
ences that will appear in the following chapters. The modular implementation divisions of
three separate major tables—filter, mangle, and nat—were presented. Within each of
these major divisions, features were further broken down into modules that provide target
extensions and modules that provide match extensions.

Chapter 5, “Building and Installing a Standalone Firewall,” goes through a simple,
standalone firewall example. Basic antispoofing, denial of service, and other fundamental
rules are presented. The purpose of the chapter isn’t to present a general firewall for people
to cut and paste for practical use, as much as to demonstrate the syntax presented in this
chapter in a functional way. The next chapter, Chapter 4, “nftables: The Linux Firewall
Administration Program,” introduces the new Netfilter Tables system that will serve as
a replacement for iptables. Later chapters cover more specifics such as user-defined
chains, firewall optimization, LAN, NAT, and multihomed hosts.

4
nftables: The Linux Firewall

Administration Program

Chapter 3, “iptables: The Legacy Linux Firewall Administration Program,” examined
iptables, the longtime administration program for Linux firewalls. The syntax and many
of the options within iptables were covered there. This chapter examines the new Net-
filter Tables (nftables) program. The nftables program became available as part of the
mainline Linux kernel beginning with version 3.13.

Differences between iptables and nftables
Within the kernel, nftables represents a significant departure from the iptables system
of filtering. nftables replaces the functionality in not only iptables but also ip6tables
for IPv6, arptables for ARP filtering, and ebtables for Ethernet bridge filtering. The
syntax of commands for nftables and iptables is different, with nftables enabling
the use of additional scripting capabilities. The administration program for nftables is
called nft, and it’s from that command that firewalls are built.

Unlike iptables, nftables does not include any built-in tables. It’s up to the admin-
istrator to determine which tables are needed and to add those tables followed by the
rules for processing. The remainder of this chapter looks at the syntax of nftables and its
usage to create a firewall.

Basic nftables Syntax
The nft command provides the administrative program that is used to build a firewall.
The basic syntax of an nftables command begins with the nft program itself, fol-
lowed by a command and subcommand and various arguments and expressions. Here’s an
example:

nft <command> <subcommand> <chain> <rule definition>

The typical commands are

 � add

 � list

Hiva-Network.Com

http://www.hiva-network.com/

84 Chapter 4 nftables: The Linux Firewall Administration Program

 � insert

 � delete

 � flush

Typical subcommands are

 � table

 � chain

 � rule

nftables Features
nftables includes some higher-level programming language–like capabilities such as the
ability to define variables and include external files. nftables can also be used for filter-
ing and processing of various address families. These address families include

 � ip—IPv4 addresses
 � ip6—IPv6 addresses
 � inet—Both IPv4 and IPv6 addresses
 � arp—Address Resolution Protocol (ARP) addresses
 � bridge—Processing for bridged packets

When not specified, the default address family is IP. The capability to process different
families means that nftables is intended to replace other filtering mechanisms such as
ebtables and arptables.

The overall processing architecture for nftables is to determine the address family to
which the rule will apply. nftables then uses one or more tables, which contain one or
more chains, which in turn contain the processing rules. Processing rules for nftables
are made up of expressions such as the address, interface, ports, or other data contained in
the packet currently being processed and statements such as drop, queue, and continue.

Tip
Tables contain chains; chains contain rules.

Certain address families contain hooks that enable nftables to get access to packets as
they traverse the network stack in Linux. This means that you can perform an operation
on a packet prior to it being passed for routing or after it’s been processed. For the ip, ip6,
and inet families the following hooks apply:

 � prerouting—Packets that have just arrived and haven’t yet been routed or pro-
cessed by other parts of nftables.

 � input—Incoming packets that have been received and sent through the prerout-
ing hook.

nftables Syntax 85

 � forward—If the packet will be sent to a different device, it will be available
through the forward hook.

 � output—Packets outbound from processes on the local system.
 � postrouting—Just prior to leaving the system, the postrouting hook makes the
packet available for further processing.

The ARP address family uses only the input and output hooks.

nftables Syntax
The nft command itself has a few options that are available from the command line and
not directly related to defining filtering rules. These command-line options include:

 � --debug <level, [level]>—Add debugging at <level> such as scanner,
parser, eval, netlink, mnl, segtree, proto-ctx, or all.

 � -h | --help—Show basic help.
 � -v | --version—Show the version number of nft.
 � -n | --numeric—Display address and port information using numbers rather
than performing name resolution.

 � -a | --handle—Display rule handles.
 � -I | --includepath <directory>—Add <directory> to the search path for
included files.

 � -f | --file <filename>—Include the contents of <filename>.
 � -i | --interactive—Read input from the command line.

As previously stated, there are no predefined tables in nftables. As such, it’s up to you
to define the tables that you want to use in an nftables system. The commands available
to define a given rule depend on whether you’re working with a table, chain, or rule.

Table Syntax
There are four commands available when working with a table:

 � add—Add a table.
 � delete—Delete a table.
 � list—Display all of the chains and rules for a table.
 � flush—Clear all chains and rules in a table.

You can list which tables are available with the following command (run as root):

nft list tables

Remember, there are no default tables for nftables as there were for iptables.
Therefore, the list tables command can return nothing if no tables have been defined.

86 Chapter 4 nftables: The Linux Firewall Administration Program

This would be the expected behavior if you just set up nftables and haven’t yet defined a
firewall with it. You can define a table that will hold normal firewall chains and rules like so:

nft add table filter

Once the firewall table has been added, the list tables command will return the
table name:

table filter

Further information about the table can be gleaned with this command:

nft list table filter

Doing so will show information about the table, including any chains defined in the
table:

table ip filter{
}

As the example shows, the filter table uses the IP family and is currently empty.
The table in this example is called filter, but it could be named anything, such as

firewall, instead. However, the common usage and the one shown in the nftables
documentation and examples is to call this table filter as shown here.

When listing rules, adding the -a option to show handle numbers is quite helpful. The
handle can be used to modify or delete a rule rather easily. This usage will be demon-
strated later in this chapter when rules are added to the firewall.

When listing firewall rules, nftables will perform address and port resolution. This
behavior is modified with the -n option. Two -n options can be added in order to prevent
both address and port resolution, as in the following:

nft list table filter -nn

Chain Syntax
When operating on a chain, there are six commands available:

 � add—Add a chain to a table.
 � create—Create a chain within a table unless a chain with the same name already
exists.

 � delete—Delete a chain.
 � flush—Clear all rules in a chain.
 � list—Display all rules in a chain.
 � rename—Change the name of a chain.

When adding a chain, the hook, discussed previously, can be defined. Additionally, an
optional priority can be added to the chain definition.

There are three base chain types that can contain rules and also have the previously
described hooks connected to them. The chain type and hook type need to be defined

nftables Syntax 87

during chain creation and are vital to the chain operation in a normal firewall scenario. If
the chain type and hook type aren’t defined, packets will not be routed to the chain.

The three base chain types are:

 � filter—Used for packet filtering
 � route—Used for packet routing
 � nat—Used for Network Address Translation (NAT)

Other chains can be added and used to group similar rules. As packets traverse a base
chain, processing can be routed toward one or more of the user-defined chains for addi-
tional processing.

When adding a chain, the table within which the chain will be defined must be speci-
fied. For example, this command adds an input chain to the filter table (defined in the
previous section):

nft add chain filter input { type filter hook input priority 0 \; }

The command states that a chain called input will be added to the table called fil-
ter. The type of chain will be a filter base chain and it will be attached to the input hook
with a priority of 0. When this command is entered from the command line, a single space
followed by a semicolon needs to be added between the braces. When this command is
used within a native nft script, the space and backslash can be omitted.

Adding an output chain looks similar, just swapping input for output where
appropriate:

nft add chain filter output { type filter hook output priority 0 \; }

Rule Syntax
Rules are where the action of filtering takes place. There are three commands when
working with rules:

 � add—Add a rule.
 � insert—Prepend a rule on the chain, either at the beginning or at the location
specified.

 � delete—Delete a rule.

Within rules you specify the matching criteria for a given rule and a verdict or deci-
sion on what should happen to a packet matching that rule. nftables and the rules cre-
ated therein use various statements and expressions to create the definition.

nftables statements are similar to the statements for iptables and usually affect how
the packet will be processed, either stopping processing, sending processing to another
chain, or simply logging the packet. Statements and verdicts include the following:

 � accept—Accept the packet and stop processing.
 � continue—Continue processing the packet.

Hiva-Network.Com

http://www.hiva-network.com/

88 Chapter 4 nftables: The Linux Firewall Administration Program

 � drop—Stop processing and silently drop the packet.
 � goto—Send processing to the specified chain but don’t return to the calling chain.
 � jump—Send processing to the specified chain and return to the calling chain when
done or when a return statement is executed.

 � limit—Process the packet according to the rule if the limit of matching received
packets has been reached.

 � log—Log the packet and continue processing.
 � queue—Stop processing and send the packet to the user-space process.
 � reject—Stop processing and reject the packet.
 � return—Send processing back to the calling chain.

nftables expressions can be specific to an address family or type of packet being
processed. nftables uses payload expressions and meta expressions. Payload expressions
are those that are gathered from packet information. For instance, there are certain header
expressions such as sport and dport (source port and destination port, respectively) that
apply to TCP and UDP packets and don’t make sense at the IPv4 and IPv6 layer since
those layers don’t use ports. Meta expressions can be used for rules that apply broadly or
are tied to common packet or interface properties.

Table 4.1 describes the available meta expressions.
Connection tracking (sometimes called conntrack) expressions work with the metadata

from the packet to provide information for further rule processing. Conntrack expressions
are included with the keyword ct followed by one of these options:

 � daddr

 � direction

 � expiration

 � helper

 � l3proto

 � mark

 � protocol

 � proto-src

 � proto-dst

 � saddr

 � state

 � status

The state expression is an important one in firewall usage. Normal packet inspec-
tion and rule processing are stateless, meaning that the processing knows nothing
about the packet previously processed. Each packet is inspected according to its unique

nftables Syntax 89

characteristics of source and destination addresses, ports, and other criteria. The state
expression, listed below, enables information about the packet to be recorded so that the
processing rule will have context about the ongoing exchange of related traffic.

 � new—A new packet arriving at the firewall, a TCP packet with the SYN flag set, for
example

 � established—A packet that’s part of a connection that’s already being processed
or tracked

 � invalid—A packet that doesn’t conform to protocol rules
 � related—A packet that’s related to a connection for a protocol that doesn’t use
other means to track its state, such as ICMP or passive FTP

 � untracked—An administrative state used for bypassing connection tracking, typi-
cally used in special cases only

In practice, the new, related, and established states are used frequently, and the
invalid state is used where appropriate. For example, following is a rule to allow estab-
lished and related SSH connections. Allowing related connections is important in case the
state memory is flushed, thereby negating any established connection states.

nft add rule filter input tcp dport 22 ct state established,related accept

The section titled “state filter Table Match Extension” in Chapter 3, “iptables:
The Legacy Linux Firewall Administration Program,” discussed the state mechanism in
detail.

Table 4.1 Meta Expressions in nftables

Expression Description

iif Index of the interface that received the packet

iifname Name of the interface on which the packet was received

iiftype Type of interface on which the packet was received

length Length of the packet in bytes

mark The packet mark

oif Index of the interface that will output the packet

oifname Name of the interface on which the packet will be sent

oiftype Type of interface on which the packet will be sent

priority The TC packet priority

protocol The EtherType protocol

rtclassid Routing realm for the packet

skgid Group identifier of the originating socket

skuid User identifier of the originating socket

90 Chapter 4 nftables: The Linux Firewall Administration Program

Payload expressions are used to build rules that match certain specific criteria and are
closely related to the type of packet being processed.

Table 4.2 describes the expressions for IPv4 headers.
Table 4.3 describes the expressions for IPv6 headers.
Table 4.4 describes the expressions for TCP headers.
UDP is generally a simpler protocol, and as such there are fewer expressions for UDP

headers, as described in Table 4.5.
Table 4.6 shows the header expressions available for ARP.

Table 4.2 Payload Expressions for IPv4

Expression Description

checksum Checksum of the IP header

daddr Destination IP address

frag-off Fragmentation offset

hdrlength Length of the IP header, including options

id IP identifier

length Total length of the packet

protocol Protocol in use at the layer above IP

saddr Source IP address

tos Type of Service value

ttl Time to Live value

version IP header version, which will always be 4 for IPv4 expressions

Table 4.3 IPv6 Header Expressions

Expression Description

daddr Destination IP address

flowlabel Flow label

hoplimit Hop limit

length Length of the payload

nexthdr Nexthdr protocol

priority Priority value

saddr Source IP address

version IP header version, which will always be 6 for IPv6 expressions

nftables Syntax 91

Basic nftables Operations
When adding a rule, the table and chain are specified along with the matching criteria. For
example, adding a rule to accept SSH connections from a specific host would look like the
following. This rule is being added to the previously created input chain of the filter table:

nft add filter input tcp dport 22 accept

The various statements such as accept, drop, reject, log, and others (listed earlier in
this section) were called extensions in iptables. Many of the same options and modes of

Table 4.4 TCP Header Expressions

Expression Description

ackseq Acknowledgment number

checksum Checksum of the packet

doff Data offset

dport Port to which the packet is destined

flags TCP flags

sequence Sequence number

sport Port from which the packet originated

urgptr Urgent pointer value

window TCP window value

Table 4.5 UDP Header Expressions

Expression Description

checksum Checksum of the packet

dport Port to which the packet is destined

length Total length of the packet

sport Port from which the packet originated

Table 4.6 ARP Header Expressions

Expression Description

hlen Hardware address length

htype ARP hardware type

op Operation

plen Protocol address length

ptype EtherType

Hiva-Network.Com

http://www.hiva-network.com/

92 Chapter 4 nftables: The Linux Firewall Administration Program

operation that worked for those extensions also now work with nftables. For example,
to log incoming connections, the log statement is used. This statement can be combined
with connection tracking such that only new connections to port 22 are logged. Further,
a limit can be added so that the logging mechanism isn’t overwhelmed.

Logging in nftables requires the nfnetlink_log or the xt_LOG kernel modules or
kernel support. Additionally, you need to enable logging by echoing "ipt_LOG" to the
nf_log proc entry:

echo "ipt_LOG" > /proc/sys/net/netfilter/nf_log/2

The final nftables command to log new SSH connections (rate limited) looks like
this:

nft add filter input tcp dport 22 ct state new limit rate 3/second log

The meta expressions, such as those that select the incoming or outgoing interface, are
used as further selectors within a rule. For example, to log new connections arriving at the
eth0 interface, the command looks like this:

nft add filter input iif eth0 ct state new limit rate 10/minute log

Chapter 3 contains syntax rules and options for the various expressions.

nftables File Syntax
One of the best features of nftables is the capability to read external files containing
nftables rules. These files enable saved rule sets to be imported and used without need-
ing to create long and complex shell scripts. That said, a shell script is still helpful as the
main container for the firewall rule files, importing them at the right time.

Files are imported with the -f option to nftables. For example, this file creates a
basic filtering firewall that logs new SSH packets (rate limited):

table filter {
 chain input {
 type filter hook input priority 0;
 tcp dport 22 ct state new limit rate 3/second log prefix "NEW

�packet: "
 }

 chain output {
 type filter hook input priority 0;
 }
}

Assuming the file was saved with the name firewall.nft, it could be loaded with the
following command:

nft -f firewall.nft

Summary 93

Summary
nftables is similar to iptables insofar as the rules and options typically translate well
when building a firewall. nftables utilizes tables, which contain chains, which in turn
contain rules. The rules tell nftables what to do with the packet being processed. Like
iptables, nftables can accept, drop, reject, log, and perform similar actions on a packet.
nftables can also include state-based processing. nftables replaces arptables,
iptables, and ebtables.

Because many of the rules and much of the operation of nftables are similar to
iptables, you can use Chapter 3 as a reference for those expressions that weren’t covered
explicitly in this chapter.

This page intentionally left blank

5
Building and Installing a

Standalone Firewall

Chapter 2, “Packet-Filtering Concepts,” covered the background ideas and concepts
behind a packet-filtering firewall. Each firewall rule chain has its own default policy. Each
rule not only applies to an individual INPUT or OUTPUT chain but also can apply to a spe-
cific network interface, message protocol type (such as TCP, UDP, or ICMP), and service
port number. Individual acceptance, denial, and rejection rules are defined for the INPUT
chain and the OUTPUT chain, as well as for the FORWARD chain, which you’ll learn about
in Chapter 7, “Packet Forwarding.” This chapter pulls together those ideas to demonstrate
how to build a simple, single-system firewall for your site.

The firewall that you’ll build in this chapter is based on a deny-everything-by-default
policy. All network traffic is blocked by default. Services are individually enabled as excep-
tions to the policy.

After the single-system firewall is built, Chapter 7 and Chapter 8, “NAT—Network
Address Translation,” demonstrate how to extend the standalone firewall to a dual-homed
firewall. A multihomed firewall has at least two network interfaces. It insulates an internal
LAN from direct communication with the Internet. It protects your internal LAN by
applying packet-filtering rules at the two forwarding interfaces and, with the addition of
Network Address Translation (NAT), by acting as a proxying gateway between the LAN
and the Internet. NAT is not a proxy service, in the sense that it does not provide an
intermediate termination point for the connection. NAT is proxylike in the sense that the
local hosts are hidden from the public Internet.

The single-system and dual-homed firewalls are the least secure forms of firewall archi-
tectures. If the firewall host were compromised, any local machines would be open to
attack. As a standalone firewall, it’s an all-or-nothing proposition. A single-homed host is
found most often in a demilitarized zone (DMZ) hosting a public Internet service or in a
residential setting.

In the case of the single-system home or small-business setting, the assumption is that
the majority of users have a single computer or device connected to the Internet or a
single firewall machine protecting a small, private LAN. The assumption is that these sites
simply don’t have the resources to extend the model to an architecture with additional
levels of firewalls.

Hiva-Network.Com

http://www.hiva-network.com/

96 Chapter 5 Building and Installing a Standalone Firewall

The term least secure does not necessarily imply an insecure firewall, however. These
firewalls are less secure than more complicated architectures involving multiple machines.
Security is a compromise between available resources and diminishing returns on the
next dollar spent. Chapter 7 introduces alternative configurations that allow for additional
internal security protecting more complicated LAN and server configurations than a
single-system firewall can.

The Linux Firewall Administration Programs
This book is based on the 3.14 Linux kernel series. Most current distributions of Linux
come supplied with the Netfilter firewall mechanism introduced in Chapter 3,
“iptables: The Legacy Linux Firewall Administration Program.” This mechanism is usu-
ally referred to as iptables, its administration program’s name. Older Linux distributions
used the earlier IPFW mechanism. That firewall mechanism is usually referred to as
ipfwadm or ipchains, the earlier version’s administration program names. As distribu-
tions are updated to kernels later than 3.13, the new Netfilter firewall mechanism,
nftables or nft (as its administration program is called) will likely be included.

As a firewall administration program, iptables creates the individual packet-filtering
rules for the INPUT and OUTPUT chains composing the firewall. nftables does not create
default tables, chains, or rules, so tables to filter packets containing chains that are con-
nected to the INPUT and OUTPUT hooks must be created manually.

One of the most important aspects of defining firewall rules is the order in which the
rules are defined. Generally, packet-filtering rules are stored in a kernel filter table or
tables, within INPUT, OUTPUT, or FORWARD chains, in the order in which they are defined.
Individual rules are inserted at the beginning of the chain or are appended to the end of
the chain. All rules are appended in the examples in this chapter (with one exception at
the end of the chapter). The order in which you define the rules is the order in which
they’ll be added to the kernel tables and, thereby, the order in which the rules will be
compared against each packet.

As each externally originating packet arrives at the network interface, its header fields
are compared against each rule in the interface’s INPUT chain until a match is found.
Conversely, as each locally generated packet is sent out, its header fields are compared
against each rule in the interface’s OUTPUT chain until a match is found. In either direc-
tion, when a match is found, the comparison stops and the rule’s packet disposition is
applied: ACCEPT, DROP, or, optionally, REJECT. If the packet doesn’t match any rule on the
chain, the default policy for that chain is applied. The bottom line is that the first match-
ing rule wins.

The numeric service port numbers, rather than their symbolic names, as listed in
/etc/services, are used in all the filter examples in this chapter. iptables and
nftables support the symbolic service port names. The examples in this chapter use
the numeric values because the symbolic names are not consistent across Linux distribu-
tions—or even from one release to the next. You could use the symbolic names for clar-
ity in your own rules, but remember that your firewall could break with the next system

The Linux Firewall Administration Programs 97

upgrade. I’ve found it much more reliable to use the port numbers themselves. The last
thing you want in a firewall is ambiguity, which is just what is introduced by using names
instead of numbers for ports.

Most Linux distributions implement iptables as a set of loadable program modules.
Most or all of the modules are dynamically and automatically loaded on first use. If you
choose to build your own kernel, which I nearly always do, and which you’ll need to do
if your distribution doesn’t yet have nftables support, you’ll need to compile in support
for Netfilter, either as modules or directly into the kernel.

When working with iptables, the iptables command must be invoked once for
each individual firewall rule you define. This is initially done from a shell script. This chap-
ter will create and use a script called rc.firewall for a firewall. The location in which
this script should be placed is dependent on the flavor of Linux where the script will
be used. On most systems, including Red Hat/CentOS/Fedora and Debian, the correct
location would be within/etc/init.d/.. In cases in which shell semantics differ, the
examples are written in Bourne (sh) or Bourne Again (bash) shell semantics.

The iptables shell script sets a number of variables. Chief among these is the loca-
tion of the iptables command itself. It’s important to set this in a variable so that it is
explicitly located. There’s no excuse for ambiguity with a firewall script. The variable used
to represent the iptables command in this chapter is $IPT. If you see $IPT, it is a sub-
stitute for the iptables command. You could just as easily execute the commands from
the shell by typing iptables instead of $IPT. However, for use in a script (which is the
intention in this chapter), setting this variable is a good idea.

The script should begin with the “shebang” line invoking the shell as the interpreter
for the script. In other words, put this as the first line of the script:

#!/bin/sh

The examples are not optimized. They are spelled out for clarity. Firewall optimization
and user-defined chains are discussed separately in Chapter 6, “Firewall Optimization.”

The nftables firewall script begins as a shell script but also includes various direct
nftables rules as separate and included files. These files will be called out when used
later in this chapter.

The remainder of the chapter looks at building a firewall and shows examples of both
iptables and nftables usage for each item.

Build versus Buy: The Linux Kernel
There is great debate over whether it is advisable to compile a custom kernel or stick with
the “stock” kernel that comes with a given Linux distribution. The debate also includes
whether it is inherently better to compile a monolithic kernel (in which everything is
compiled into the kernel) or use a modular kernel. As with any debate, there are pros and
cons to each method. On the one hand there are those who always (or almost always)
build their own kernel, sometimes called “rolling their own.” On the other hand, there are
those who rarely or never roll their own kernel. There are those who always build mono-
lithic kernels and others who use modular kernels.

98 Chapter 5 Building and Installing a Standalone Firewall

Building a custom kernel has a few advantages. First is the capability to compile in only
the exact drivers and options necessary for the computer to run. This is great for a server
such as a firewall because the hardware rarely, if ever, changes. Another advantage to com-
piling a custom kernel, if you choose a monolithic kernel, is the capability to completely
prevent some types of attacks against the computer. Although attacks against monolithic
kernels are possible, they are less common than attacks against modular kernels. Further,
when you roll your own kernel, you’re not confined to the kernel version used by the
distribution. This enables you to use the latest and greatest kernel, which may include bug
fixes for your hardware. Finally, with a custom kernel you can apply additional security
enhancements to the kernel itself.

Building a custom kernel is not without its own set of pitfalls. After you roll your own
kernel, you can no longer use the distribution’s kernel updates. Actually, you can revert
to the distribution’s kernel and use the updates, but it’s likely that the distribution uses an
earlier version of the kernel that may reintroduce bugs that were fixed in your custom
version. Using a stock kernel also makes it easier to obtain support from the vendor for
kernel issues.

As alluded to earlier, I nearly always roll my own kernel for production server
machines. The situations in which direct support is an absolute requirement are the only
exceptions. These are few and far between. I believe the capability to customize the kernel
to the computer and add greater security through additional patches far outweighs the
need to use official kernel updates from the distribution.

Source and Destination Addressing Options
A packet’s source address and destination address can both be specified in a firewall
rule. Only packets with that specific source and/or destination address match the rule.
Addresses may be a specific IP address, a fully qualified hostname, a network (domain)
name or address, a limited range of addresses, or all-inclusive.

IP Addresses Expressed as Symbolic Names
Remote hosts and networks may be specified as fully qualified hostnames or network
names. Using a hostname is especially convenient for firewall rules that apply to an
individual remote host. This is particularly true for hosts whose IP address can change
or that invisibly represent multiple IP addresses, as ISP mail servers sometimes do. In
general, however, remote addresses are better expressed in dotted quad notation because
of the possibility of DNS hostname spoofing.

Symbolic hostnames can’t be resolved until DNS traffic is enabled in the firewall rules. If
hostnames are used in the firewall rules, those rules must follow the rules enabling DNS
traffic, unless /etc/hosts contains entries for the hostnames.

Furthermore, some distributions use a boot environment that installs the firewall rules
before starting the network or any other services, including BIND. If symbolic host and
network names are used in the firewall script, those names must have entries in
/etc/hosts to be resolved.

Initializing the Firewall 99

Both iptables and nftables allow addresses to be suffixed with a bit mask specifier.
The mask’s value can range from 0 through 32, indicating the number of bits to mask. As
discussed in Chapter 1, “Preliminary Concepts Underlying Packet-Filtering Firewalls,” bits
are counted from the left, or most significant, bit. This mask specifier indicates how many
of the leading bits in the address must exactly match the IP address specified.

A mask of 32, /32, means that all the bits must match. The address must exactly match
what you’ve defined in the rule. Specifying an address as 192.168.10.30 is the same as
specifying the address as 192.168.10.30/32. The /32 mask is implied by default; you
don’t need to specify it.

An example using masking is to allow connections to a particular service to be made
only between your machine and your ISP’s server machines. Let’s say that your ISP uses
addresses in the range of 192.168.24.0 through 192.168.27.255 for its server address
space. In this case, the address/mask pair would be 192.168.24/22. As shown in Fig-
ure 5.1, the first 22 bits of all addresses in this range are identical, so any address matching
on the first 22 bits will match. Effectively, you are saying that you will allow connections
to the service only when offered from machines in the address range 192.168.24.0
through 192.168.27.255.

A mask of 0, /0, means that no bits in the address are required to match. In other
words, because no bits need to match, using /0 is the same as not specifying an address.
Any unicast address matches. iptables has a built-in alias for 0.0.0.0/0, any/0. Note
that any/0, whether implied or stated, does not include broadcast addresses.

Initializing the Firewall
A firewall is implemented as a series of packet-filtering rules defined by options given on
the iptables or nftables command line.

The rule invocations should be made from an executable shell script, not directly from
the command line. You should invoke the complete firewall shell script. Do not attempt
to invoke specific rules from the command line because this could cause your firewall to
accept or drop packets inappropriately. When the chains are initialized and the default
drop policy is enabled, all network services are blocked until acceptance filters are defined
to allow the individual service.

Decimal Binary

31 24 16 8 0Bit 21 10

Figure 5.1 The matching first 22 bits in the masked IP address
range 192.168.24.0/22

Hiva-Network.Com

http://www.hiva-network.com/

100 Chapter 5 Building and Installing a Standalone Firewall

Ideally, you should execute the shell script from the console. Only the brave execute
the firewall shell script from either a remote machine or an X Window xterm session. Not
only is remote network traffic blocked, but access to the local loopback interface used by
X Windows is blocked until access to the interface is explicitly reenabled. Ideally, X Win-
dows should not be running or even installed on a firewall. It is a typical example of soft-
ware that is not necessary and has been used as a means to exploit servers in the past.

As someone who manages Linux computers that are geographically hundreds to thou-
sands of miles away, I can activate a firewall script only from a remote location. In these
instances, it’s advisable to do two things. First, change the default policy to ACCEPT for
the first or first few executions of the firewall script. Do this to debug the syntax of the
script itself, not the rules. After the script is syntactically correct, change that policy back
to DROP.

A second and just as important tip for working with firewall scripts from remote loca-
tions is to create a cron job to stop the firewall at some point in the near future. Doing
so will effectively allow you to enable the firewall and perform some testing but will also
enable you to get back into the computer if you lock yourself out through misplaced
(or missing) rules. For example, when debugging a firewall script, I’ll create a cron entry
to disable the firewall every 2 minutes. I can then safely run the firewall script and find
out whether I’ve locked out my SSH session. If indeed I have locked myself out, I merely
wait a few minutes for the firewall script to run and shut the firewall down, giving me the
opportunity to fix the script and try again.

Furthermore, remember that firewall filters are applied in the order in which you’ve
defined them. The rules are appended to the end of their chain in the order in which you
define them. The first matching rule wins. Because of this, firewall rules must be defined
in the proper order from most specific to more general rules.

Firewall initialization is used to cover a lot of ground, including defining global con-
stants used in the shell script, enabling kernel support services (when necessary), clearing
out any existing rules in the firewall chains, defining default policies for the INPUT and
OUTPUT chains, reenabling the loopback interface for normal system operation, denying
access from any specific hosts or networks you’ve decided to block, and defining some
basic rules to protect against bad addresses and to protect certain services running on
unprivileged ports.

Symbolic Constants Used in the Firewall Examples
A firewall shell script is easiest to read and maintain if symbolic constants are used for
recurring names and addresses. The following constants either are used throughout
the examples in this chapter or are universal constants defined in the networking stan-
dards. This example also includes the “shebang” interpreter line from above as a friendly
reminder:

#!/bin/sh
INTERNET="eth0" # Internet-connected interface
LOOPBACK_INTERFACE="lo" # However your system names it
IPADDR="my.ip.address" # Your IP address

Initializing the Firewall 101

MY_ISP="my.isp.address.range" # ISP server & NOC address range
SUBNET_BASE="my.subnet.network" # Your subnet's network address
SUBNET_BROADCAST="my.subnet.bcast" # Your subnet's broadcast address
LOOPBACK="127.0.0.0/8" # Reserved loopback address range
CLASS_A="10.0.0.0/8" # Class A private networks
CLASS_B="172.16.0.0/12" # Class B private networks
CLASS_C="192.168.0.0/16" # Class C private networks
CLASS_D_MULTICAST="224.0.0.0/4" # Class D multicast addresses
CLASS_E_RESERVED_NET="240.0.0.0/5" # Class E reserved addresses
BROADCAST_SRC="0.0.0.0" # Broadcast source address
BROADCAST_DEST="255.255.255.255" # Broadcast destination address
PRIVPORTS="0:1023" # Well-known, privileged port range
UNPRIVPORTS="1024:65535" # Unprivileged port range

nftables and iptables define port ranges differently. Therefore, the port range
variables need to be defined differently for each. For an iptables firewall, the following
declaration works:

PRIVPORTS="0:1023" # Well-known, privileged port range
UNPRIVPORTS="1024:65535" # Unprivileged port range

However, for nftables, the colon needs to be changed to a dash, as shown here:

PRIVPORTS="0-1023" # Well-known, privileged port range
UNPRIVPORTS="1024-65535" # Unprivileged port range

Constants not listed here are defined in the context of the specific rules they are used
with. One additional constant is needed for iptables or nftables. If you’ll be using
iptables, define the following:

IPT="/sbin/iptables" # Location of iptables on your system

If you’ll be using nftables, define the following:

NFT="/usr/local/sbin/nft" # Location of nft on your system

Enabling Kernel-Monitoring Support
Operating system support for various types of packet checking often overlaps with what
the firewall can test for. When in doubt, aim for redundancy or defense in depth.

From the commands shown in the following lines, icmp_echo_ignore_broadcasts
instructs the kernel to drop ICMP echo-request messages directed to broadcast or multicast
addresses. (Another facility, icmp_echo_ignore_all, drops any incoming echo-request
message. It should be noted that ISPs often rely on ping to help diagnose local network
problems, and DHCP sometimes relies on echo-request to avoid address collision.)

Enable broadcast echo Protection
echo "1" > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts

Source routing is rarely used legitimately today. Firewalls commonly drop all source-
routed packets. This command disables source-routed packets:

Disable Source Routed Packets
echo "0" > /proc/sys/net/ipv4/conf/all/accept_source_route

102 Chapter 5 Building and Installing a Standalone Firewall

TCP SYN cookies are a mechanism to attempt speedier detection of and recovery from
SYN floods. This command enables SYN cookies:

Enable TCP SYN Cookie Protection
echo 1 > /proc/sys/net/ipv4/tcp_syncookies

ICMP redirect messages are sent to hosts by their adjacent routers. Their purpose is
to inform the host that a shorter path is available. That is, the host and both routers are on
the same network, and the new router is the router to which the original would send the
packet as its next hop.

Routers generate redirect messages for hosts; hosts do not. Hosts are required to
honor redirects and add the new gateway to their route cache, except in the cases
indicated in RFC 1122, “Requirements for Internet Hosts—Communication Layers,”
Section 3.2.2.2: “A Redirect message SHOULD be silently discarded if the new gateway
address it specifies is not on the same connected (sub-) net through which the Redirect
arrived [INTRO:2, Appendix A], or if the source of the Redirect is not the current first-
hop gateway for the specified destination (see Section 3.3.1).” These commands disable
redirects:

Disable ICMP Redirect Acceptance
echo "0" > /proc/sys/net/ipv4/conf/all/accept_redirects
Don't send Redirect Messages
echo "0" > /proc/sys/net/ipv4/conf/all/send_redirects

rp_filter attempts to implement source address validation as described in RFC
1812, “Requirements for IP Version 4 Routers,” Section 5.3.8. In short, packets are silently
dropped if their source address is such that the host’s forwarding table would not route
a packet with that destination address out the same interface on which the packet was
received. According to RFC 1812, if implemented, routers should enable this feature by
default. This form of address validation is often not enabled on routers, so these commands
disable it:

Drop Spoofed Packets coming in on an interface, which, if replied to,
would result in the reply going out a different interface.
for f in /proc/sys/net/ipv4/conf/*/rp_filter; do
 echo "1" > $f
done

log_martians logs packets received with impossible addresses, as defined in RFC
1812, Section 5.3.7. Impossible source addresses include multicast or broadcast addresses,
addresses in the 0 and 127 networks, and the Class E reserved space. Impossible destina-
tion addresses include address 0.0.0.0, host 0 on any network, any host on the 127 net-
work, and Class E addresses.

Currently, the Linux network code checks for the previously mentioned addresses. It
does not check for private class addresses (nor could it do so without knowledge of the
network a given interface was connected to). log_martians does not affect packet valid-
ity checking; it merely affects logging, which is set here:

Log packets with impossible addresses.
echo "1" > /proc/sys/net/ipv4/conf/all/log_martians

Initializing the Firewall 103

Removing Any Preexisting Rules
The first thing to do when defining a set of filtering rules is to remove any existing rules
from their chains. Otherwise, any new rules that you define will be added to the end of
existing rules. Packets could easily match a preexisting rule before reaching the point in
the chain that you are defining.

Removal is called flushing the chain.
For iptables the following command flushes all rules from all chains at once:

Remove any existing rules from all chains
$IPT --flush

Specific tables can then be flushed using the -t <table> option:

$IPT -t nat --flush
$IPT -t mangle --flush

For nftables, the table name needs to be specified, and doing so will flush the rules
from all chains within the table:

nft flush table <tablename>

If you’re using the community-standard naming convention, you’ll have a filter table
and possibly a nat table which can be flushed with the following commands:

nft flush table filter
nft flush table nat

Other user-defined tables need to be flushed as needed by your specific firewall imple-
mentation. For nftables, this loop can be used to flush all chains in all tables:

for i in '$NFT list tables | awk '{print $2}''
do
 echo "Flushing ${i}"
 $NFT flush table ${i}
done

A better method is to delete not only the rules but also the chains and then the tables
themselves. This is accomplished with two for loops through the nftables shell script:

for i in '$NFT list tables | awk '{print $2}''
do
 echo "Flushing ${i}"
 $NFT flush table ${i}
 for j in '$NFT list table ${i} | grep chain | awk '{print $2}''
 do
 echo "...Deleting chain ${j} from table ${i}"
 $NFT delete chain ${i} ${j}
 done
 echo "Deleting ${i}"
 $NFT delete table ${i}
done

Flushing the chains does not affect the default policy state currently in effect.

Hiva-Network.Com

http://www.hiva-network.com/

104 Chapter 5 Building and Installing a Standalone Firewall

For iptables, the next step would be to delete any user-defined chains. They can be
deleted with the following commands:

$IPT -X
$IPT -t nat -X
$IPT -t mangle -X

With nftables, all tables and chains are user defined, so the same syntax doesn’t really apply.
In either case, flushing the chains does not affect the default policy state currently in effect.

At this point, you have a basic script that defines some variables and clears out tables
and chains, if any have been defined.

Resetting Default Policies and Stopping the Firewall
So far, the firewall has set some defaults that can be used regardless of the state of the Net-
filter firewall. Before setting the default policies to DROP, I’ll first reset the default policies
to ACCEPT. This is useful for stopping the firewall completely, as you’ll see shortly. These
lines set the default policy:

Reset the default policy
$IPT --policy INPUT ACCEPT
$IPT --policy OUTPUT ACCEPT
$IPT --policy FORWARD ACCEPT
$IPT -t nat --policy PREROUTING ACCEPT
$IPT -t nat --policy OUTPUT ACCEPT
$IPT -t nat --policy POSTROUTING ACCEPT
$IPT -t mangle --policy PREROUTING ACCEPT
$IPT -t mangle --policy OUTPUT ACCEPT

With nftables there is no default policy for a chain in the same sense that there is
for iptables, and the chains and tables have already been deleted. The effect of this is to
set the policy to ACCEPT since there’s no firewall running. Therefore, there’s nothing to be
done for nftables here.

Here’s a final addition to what I deem to be the beginning of the firewall script,
namely, the code to enable the firewall to be stopped easily. With this code placed below
the previous code, when you call the script with an argument of "stop", the script will
flush, clear, and reset the default policies and the firewall will effectively stop:

if ["$1" = "stop"]
then
echo "Firewall completely stopped! WARNING: THIS HOST HAS NO FIREWALL RUNNING."
exit 0
fi

Prior to further configuration of nftables, the base tables need to be re-created. This
can be accomplished using an nftables rules file which I’ll call setup-tables. The
contents of the setup-tables rules file are:

table filter {
 chain input {
 type filter hook input priority 0;
 }

Initializing the Firewall 105

 chain output {
 type filter hook output priority 0;
 }
}

This file is then loaded with the following command. This command should be added
to the firewall script after the conditional to stop the firewall:

$NFT -f setup-tables

Enabling the Loopback Interface
You need to enable unrestricted loopback traffic. This enables you to run any local net-
work-based services that you choose—or that the system depends on—without having to
worry about getting all the firewall rules specified.

Local services rely on the loopback network interface. After the system boots, the sys-
tem’s default policy is to accept all packets. Flushing any preexisting chains has no effect.
However, if the firewall is being reinitialized and had previously used a deny-by-default
policy, the drop policy would still be in effect. Without any acceptance firewall rules, the
loopback interface would still be inaccessible.

Because the loopback interface is a local, internal interface, the firewall can allow loop-
back traffic immediately. Here are the commands for the iptables script:

Unlimited traffic on the loopback interface
$IPT -A INPUT -i lo -j ACCEPT
$IPT -A OUTPUT -o lo -j ACCEPT

For nftables, the commands look like those shown after this text. The commands
can be added to the main rc.firewall script that you’re creating or can be added to
a localhost-policy rules file. Adding the rules to a separate localhost-policy file
looks like the following. The file assumes that the rules contained in the setup-tables
file (shown earlier) have already been added to the firewall. If the setup-tables rules file
hasn’t been added, no processing will be done.

The localhost-policy file contains the following:

table filter {
 chain input {
 iifname lo accept
}
 chain output {
 oifname lo accept
}

This file is then loaded by adding the following command to rc.firewall:

$NFT -f localhost-policy

Alternatively, if you’ll be adding it to the rc.firewall script, the following two lines
will do the job:

$NFT add rule filter input iifname lo accept
$NFT add rule filter output oifname lo accept

106 Chapter 5 Building and Installing a Standalone Firewall

Defining the Default Policy
By default, you want the firewall to drop everything. The two available options for the
built-in chains in iptables are ACCEPT and DROP. REJECT is not a legal policy in
iptables for a chain but can be used as a target, as you’ve seen before. User-defined
chains and nftables chains cannot be assigned default policies.

Using a default policy of DROP, unless a rule is defined to either explicitly allow or
reject a matching packet, packets are silently dropped. What you more likely want is
to silently drop unwanted incoming packets, but to reject outgoing packets and return
an ICMP error message to the local sender. The difference for the end user is that, for
example, if someone at a remote site attempts to connect to your web server, that per-
son’s browser hangs until his or her system returns a TCP timeout condition. There is no
indication whether your site or your web server exists. On the other hand, if you attempt
to connect to a remote web server, your browser receives an immediate error condition
indicating that the operation isn’t allowed:

Set the default policy to drop
$IPT --policy INPUT DROP
$IPT --policy OUTPUT DROP
$IPT --policy FORWARD DROP

As stated earlier, there are no default policies for a chain in nftables. A default can be
set at the end of the given chain for nftables.

It’s important to note that at this point, all network traffic other than local loopback traffic
is blocked. If you’re working on this firewall over the network, your connection will no longer
be active and you may lock yourself out of the computer on which the firewall is being built.

Default Policy Rules and the First Matching Rule Wins
Within iptables, the default policies appear to be exceptions to the first-matching-rule-
wins scenario. The default policy commands are not position dependent. They aren’t rules,
per se. A chain’s default policy is applied after a packet has been compared to each rule on
the chain without a match. This is notably different for nftables where the first matching
rule always wins and there is no default policy.

For iptables the default policies are defined first in the script to define the default packet
disposition before any rules to the contrary are defined. If the policy commands were
executed at the end of the script, and if the firewall script contained a syntax error causing
it to exit prematurely, the default accept-everything policy could be in effect. If a packet
didn’t match a rule (and rules are usually accept rules in a deny-everything-by-default
firewall), the packet would fall off the end of the chain and be accepted by default. The
firewall rules would not be accomplishing anything useful.

For nftables a drop rule for incoming traffic can be added to the end of the chain and a
reject rule can be added to the end of the OUTPUT filter chain. This will have the same overall
effect as the iptables default policies. But it’s important to note that these rules should
be added at the end of the firewall script and only after other rules to allow traffic have been
created above them. Otherwise all traffic will be dropped or rejected from the computer where
the firewall is running, including possibly your SSH session for configuring the firewall!

Initializing the Firewall 107

Using Connection State to Bypass Rule Checking
Specifying the state match for previously initiated and accepted exchanges enables you to
bypass the firewall tests for the ongoing exchange. The initial client request remains con-
trolled by the service’s specific filters, however.

Notice that both the INPUT and the OUTPUT filters are necessary to bypass the rules
in both directions. A connection isn’t treated as a two-way exchange by the state module,
and a symmetric dynamic rule is not generated.

Because the state module can require more RAM than older Linux firewall machines
have, the iptables examples developed in this chapter typically provide the rules for both
alternatives, with and without the state module. The nftables rules assume the use of the
connection state module since nftables would typically run from newer computers.

Including Both Static and Dynamic iptables Rules
Resource limits in terms of scalability and state table timeouts can require that both the static
and the dynamic rules be used. The top limit is a selling point with large commercial firewalls.

The scalability issue comes up in large firewalls designed to handle 50,000–100,000
simultaneous connections—that’s a lot of state. System resources run out at some point,
and connection tracking can’t be done. Either the new connection has to be dropped or the
software has to fall back to stateless mode.

There’s also the issue of timeouts. Connection state isn’t kept forever. Slow and quiescent
connections can have their state information easily cleaned out to make room for other,
more active connections. When a packet comes along later, the state information has to
be rebuilt. In the meantime, the packet flow has to fall back to stateless mode while the
transport stack looks up the connection information and informs the state module that the
packet is indeed part of an established exchange:

$IPT -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
 $IPT -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
 # Using the state module alone, INVALID will break protocols that use
 # bi-directional connections or multiple connections or exchanges,
 # unless an ALG is provided for the protocol.

 $IPT -A INPUT -m state --state INVALID -j LOG \
 --log-prefix "INVALID input: "
 $IPT -A INPUT -m state --state INVALID -j DROP

 $IPT -A OUTPUT -m state --state INVALID -j LOG \
 --log-prefix "INVALID output: "
 $IPT -A OUTPUT -m state --state INVALID -j DROP

For nftables, the following rules are added to the firewall script:

$NFT add rule filter input ct state established,related accept
$NFT add rule filter input ct state invalid log prefix \"INVALID input: \" limit
�rate 3/second drop
$NFT add rule filter output ct state established,related accept
$NFT add rule filter output ct state invalid log prefix \"INVALID output: \"
�limit rate 3/second drop

Hiva-Network.Com

http://www.hiva-network.com/

108 Chapter 5 Building and Installing a Standalone Firewall

Source Address Spoofing and Other Bad Addresses
This section establishes some INPUT chain filters based on source and destination
addresses. These addresses will never be seen in a legitimate incoming packet from the
Internet.

At the packet-filtering level, one of the few cases of source address spoofing that you
can identify with certainty as a forgery is your own IP address. This rule drops incoming
packets claiming to be from you:

Refuse spoofed packets pretending to be from
the external interface's IP address
$IPT -A INPUT -i $INTERNET -s $IPADDR -j DROP

The rule is similar for nftables because it takes advantage of the variables defined
within the shell script rather than through native nftables rules:

$NFT add rule filter input iif $INTERNET ip saddr $IPADDR

There is no need to block outgoing packets destined to yourself. They won’t return,
claiming to be from you and appearing to be spoofed. Remember, if you send packets to
your own external interface, those packets arrive on the loopback interface’s input queue,
not on the external interface’s input queue. Packets containing your address as the source
address never arrive on the external interface, even if you send packets to the external
interface.

Firewall Logging
The -j LOG target enables logging for packets matching the rule. When a packet matches
the rule, the event is logged in /var/log/messages, or wherever you’ve defined
messages of the specified priority to be logged.

As explained in Chapter 1 and Chapter 2, private IP addresses are set aside in each
of the Class A, B, and C address ranges for use in private LANs. They are not intended
for use on the Internet. Routers are not supposed to route packets with private source
addresses. Nevertheless, some routers do forward packets containing private source
addresses in error.

Additionally, if someone on your ISP’s subnet (that is, on your side of the router that
you share) is leaking packets with private IP addresses, you’ll see them even if the router
doesn’t forward them. Machines on your own LAN could also leak private addresses if
your NAT or proxy configuration is set up incorrectly.

The next three sets of rules disallow incoming packets containing source addresses
from any of the Class A, B, or C private network addresses. None of these packets should
be seen on a public network:

Refuse packets claiming to be from a Class A private network
$IPT -A INPUT -i $INTERNET -s $CLASS_A -j DROP

Initializing the Firewall 109

Refuse packets claiming to be from a Class B private network
$IPT -A INPUT -i $INTERNET -s $CLASS_B -j DROP

Refuse packets claiming to be from a Class C private network
$IPT -A INPUT -i $INTERNET -s $CLASS_C -j DROP

The next rule disallows packets with a source address in the loopback network:

Refuse packets claiming to be from the loopback interface
$IPT -A INPUT -i $INTERNET -s $LOOPBACK -j DROP

The nft equivalent looks similar:

$NFT add rule filter input iif $INTERNET ip saddr $CLASS_A drop
$NFT add rule filter input iif $INTERNET ip saddr $CLASS_B drop
$NFT add rule filter input iif $INTERNET ip saddr $CLASS_C drop
$NFT add rule filter input iif $INTERNET ip saddr $LOOPBACK drop

Because loopback addresses are assigned to an internal, local software interface, any
packet claiming to be from such an address is intentionally forged.

As with addresses set aside for use in private LANs, routers are not supposed to forward
packets originating from the loopback address range. A router cannot forward a packet
with a loopback destination address.

The next two rules primarily serve to log matching packets. The firewall’s default pol-
icy is to deny everything. As such, broadcast addresses are dropped by default and must be
explicitly enabled if they are wanted:

Refuse malformed broadcast packets
$IPT -A INPUT -i $INTERNET -s $BROADCAST_DEST -j LOG
$IPT -A INPUT -i $INTERNET -s $BROADCAST_DEST -j DROP

$IPT -A INPUT -i $INTERNET -d $BROADCAST_SRC -j LOG
$IPT -A INPUT -i $INTERNET -d $BROADCAST_SRC -j DROP

The first pair of rules logs and denies any packet claiming to come from
255.255.255.255, the address reserved as the broadcast destination address. A packet will
never legitimately originate from address 255.255.255.255.

The second pair of rules logs and denies any packet directed to destination address
0.0.0.0, the address reserved as a broadcast source address. Such a packet is not a mistake;
it is a specific probe intended to identify a UNIX machine running network software
derived from BSD. Because most UNIX operating system network code is derived from
BSD, this probe is effectively intended to identify machines running UNIX.

The nftables equivalent looks similar; note how both the logging and drop state-
ments appear in the same rule with nftables:

$NFT add rule filter input iif $INTERNET ip saddr $BROADCAST_DEST log limit
�rate 3/second drop
$NFT add rule filter input iif $INTERNET ip saddr $BROADCAST_SRC log limit
�rate 3/second drop

110 Chapter 5 Building and Installing a Standalone Firewall

Clarification of the Meaning of IP Address 0.0.0.0
Address 0.0.0.0 is reserved for use as a broadcast source address. The
Netfilter convention of specifying a match on any address, any /0, 0.0.0.0/0, or
0.0.0.0/0.0.0.0, doesn’t match the broadcast source address. The reason is that a
broadcast packet has a bit set in the Layer 2 frame header indicating that it’s a broadcast
packet destined for all interfaces on the network, rather than a point-to-point, unicast
packet destined for a particular destination. Broadcast packets are handled differently from
nonbroadcast packets. There is no legitimate nonbroadcast IP address 0.0.0.0.

The next two rules block two forms of directed broadcasts:

Refuse directed broadcasts
Used to map networks and in Denial of Service attacks
$IPT -A INPUT -i $INTERNET -d $SUBNET_BASE -j DROP
$IPT -A INPUT -i $INTERNET -d $SUBNET_BROADCAST -j DROP

The nftables rules look like this:

$NFT add rule filter input iif $INTERNET ip daddr $SUBNET_BASE drop
$NFT add rule filter input iif $INTERNET ip daddr $SUBNET_BROADCAST drop

With the deny-by-default policy and the firewall rules explicitly accepting packets
based in part by matching on destination address, neither of these directed broadcast mes-
sages will be accepted by the firewall. These rules become more critical in larger setups in
which the LAN uses real-world addresses.

With the use of variable-length network prefixes, a site’s network and host fields may
or may not fall on a byte boundary. For the sake of simplicity, the SUBNET_BASE is your
network address, such as 192.168.1.0. The SUBNET_BROADCAST is your network’s broad-
cast address, as in 192.168.1.255.

Just as with directed broadcast messages, limited broadcasts, confined to your local net-
work segment, are likewise not accepted with the deny-by-default policy and the firewall
rules explicitly accepting packets based in part by matching on destination address. Again,
the following rule becomes more critical in larger setups in which the LAN uses real-
world addresses:

Refuse limited broadcasts
$IPT -A INPUT -i $INTERNET -d $BROADCAST_DEST -j DROP

The nftables rule looks like this:

$NFT add rule filter input iif $INTERNET ip daddr $BROADCAST_DEST drop

It should be noted that an exception must be made in later chapters for DHCP clients.
Broadcast source and destination addresses are used between the DHCP client and server
ports initially.

Multicast addresses are legal only as destination addresses. The next rule drops spoofed
multicast network packets:

Initializing the Firewall 111

Refuse Class D multicast addresses
Illegal as a source address
$IPT -A INPUT -i $INTERNET -s $CLASS_D_MULTICAST -j DROP

Here’s the nftables rule for the same:

$NFT add rule filter input iif $INTERNET ip saddr $CLASS_D_MULTICAST drop

Legitimate multicast packets are always UDP packets. As such, multicast messages are
sent point-to-point, just as any other UDP message is. The difference between unicast
and multicast packets is the class of destination address used (and the protocol flag car-
ried in the Ethernet header). The next rule denies multicast packets carrying a non-UDP
protocol:

$IPT -A INPUT -i $INTERNET ! -p udp -d $CLASS_D_MULTICAST -j DROP

The nftables version of this command looks like this:

$NFT add rule filter input iif $INTERNET ip daddr $CLASS_D_MULTICAST ip protocol
�!= udp drop

Multicast functionality is a configurable option when you compile the kernel, and your
network interface card can be initialized to recognize multicast addresses. The functional-
ity is enabled by default in the default kernel from many newer distributions of Linux. You
might want to enable these addresses if you subscribe to a network conferencing service
that provides multicast audio and video broadcasts. (Multicast is also sometimes used on
the local network for global resource discovery, such as with DHCP or routing.)

You won’t generally see multicast destination addresses unless you’ve registered yourself
as a recipient. Multicast packets are sent to multiple, but specific, targets by prior arrange-
ment. I have seen multicast packets sent out from machines on my ISP’s local subnet, how-
ever. The default policy drops multicast packets, even if you have registered as a recipient.
You have to define a rule to accept the multicast address. The next rule allows incoming
multicast packets for the sake of completeness:

$IPT -A INPUT -i $INTERNET -p udp -d $CLASS_D_MULTICAST -j ACCEPT

And here’s the nftables version:

$NFT add rule filter input iif $INTERNET ip daddr $CLASS_D_MULTICAST ip protocol
�udp accept

Multicast registration and routing is a complicated process managed by its own IP layer
control protocol, the Internet Group Management Protocol (IGMP, protocol 2). For more
information on multicast communication, refer to the “Multicast over TCP/IP HOWTO”
at http://www.tldp.org/HOWTO/Multicast-HOWTO.html. Additional resources include
RFC 1458, “Requirements for Multicast Protocols”; RFC 1112, “Host Extensions for IP
Multicasting” (updated by RFC 2236, “Internet Group Management Protocol Version 2”);
and RFC 2588, “IP Multicast and Firewalls.”

Class D IP addresses range from 224.0.0.0 to 239.255.255.255. The CLASS_D_
MULTICAST constant, 224.0.0.0/4, is defined to match on the first 4 bits of the address.

Hiva-Network.Com

http://www.tldp.org/HOWTO/Multicast-HOWTO.html
http://www.hiva-network.com/

112 Chapter 5 Building and Installing a Standalone Firewall

As shown in Figure 5.2, in binary, the decimal values 224 (11100000B) to
239 (11101111B) are identical through the first 4 bits (1110B).

The next rule in this section drops packets claiming to be from a Class E reserved
network:

Refuse Class E reserved IP addresses
$IPT -A INPUT -i $INTERNET -s $CLASS_E_RESERVED_NET -j DROP

The nftables equivalent is

$NFT add rule filter input iif $INTERNET ip saddr $CLASS_E_RESERVED_NET drop

Class E IP addresses range from 240.0.0.0 to 247.255.255.255. The
CLASS_E_RESERVED_NET constant, 240.0.0.0/5, is defined to match on the first 5 bits
of the address. As shown in Figure 5.3, in binary, the decimal values 240 (11110000B) to
247 (11110111B) are identical through the first 5 bits (11110B).

The IANA ultimately manages the allocation and registration of the world’s IP address
space. For more information on IP address assignments, see http://www.iana.org/
assignments/ipv4-address-space/ipv4-address-space.xhtml. Some blocks of addresses are
defined as reserved by the IANA. These addresses should not appear on the public Internet.

Protecting Services on Assigned
Unprivileged Ports
Services intended for local or private use, in particular, often run on unprivileged
ports. For TCP-based services, a connection attempt to one of these services can be

Figure 5.2 The matching first 4 bits in the masked Class D multicast
address range

Figure 5.3 The matching first 5 bits in the masked Class E reserved
address range 240.0.0.0/5

http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
http://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml

Protecting Services on Assigned Unprivileged Ports 113

distinguished from an ongoing connection with a client using one of these unprivileged
ports through the state of the SYN and ACK bits. Blocking connection requests is sufficient.
UDP-based services must simply be blocked unless the state module is used.

You should block incoming connection attempts to these ports for your own protec-
tion. You want to block outgoing connection attempts to protect yourself and others from
mistakes on your end and to log potential internal security problems. It’s safer to block
these ports across the board and route related traffic on an exceptional, case-by-case basis.

Official Service Port Number Assignments
Port numbers are assigned and registered by the IANA. The information was originally
maintained as RFC 1700, “Assigned Numbers.” That RFC is now obsolete. The official
information is dynamically maintained by the IANA at http://www.iana.org/assignments/
port-numbers.

What kinds of mistakes might you need protection from? The worst mistake is offering
dangerous services to the world, whether inadvertently or intentionally. A common mistake
is running local network services that leak out to the Internet and bother other people.
Another is allowing questionable outgoing traffic, such as port scans, whether this traffic is
generated by accident or intentionally is sent out by someone on your machine. A deny-
everything-by-default firewall policy protects you from many mistakes of these types.

The Problem with Port Scans
Port scans are not harmful in themselves. They’re generated by network analysis tools. The
problem with port scans today is that they are usually generated by people with less-than-
honorable intentions. They are “analyzing” your network, not their own. Unfortunately, this
leaves the merely curious looking guilty as well.

A deny-everything-by-default firewall policy enables you to run many private services
behind the firewall without undue risk. These services must explicitly be allowed through
the firewall to be accessible to remote hosts. This generalization is only an approximation
of reality, however. Although TCP services on privileged ports are reasonably safe from all
but a skilled and determined hacker, UDP services are inherently less secure, and some
services are assigned to run on unprivileged ports. RPC services, usually run over UDP,
are even more problematic. RPC-based services are bound to some port, often an unpriv-
ileged port. The portmap daemon maps between the RPC service number and the actual
port number. A port scan can show where these RPC-based services are bound without
going through the portmap daemon. Luckily, the use of portmap is becoming less and
less common, so this isn’t as much of a concern as it was a number of years ago.

Common Local TCP Services Assigned to Unprivileged Ports
Some services, usually LAN services, are offered through an officially registered, well-
known unprivileged port. Additionally, some services, such as FTP and IRC, use more

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

114 Chapter 5 Building and Installing a Standalone Firewall

complex communication protocols that don’t lend themselves well to packet filtering. The
rules described in the following sections disallow local or remote client programs from
initiating a connection to one of these ports.

FTP is a good example of how the deny-by-default policy isn’t always enough to
cover all the possible cases. The FTP protocol is covered later in this chapter. For now, the
important idea is that FTP allows connections between two unprivileged ports. Because
some services listen on registered unprivileged ports, and because the incoming connec-
tion request to these services is originating from an unprivileged client port, the rules
allowing FTP can inadvertently allow incoming connections to these other local services
as well. This situation is also an example of how firewall rules are logically hierarchical
and order dependent. The rules explicitly protecting a private, local service running on an
unprivileged port must precede the FTP rules allowing access to the entire unprivileged
port range.

As a result, some of these rules appear to be redundant and will be redundant for some
people. For other people running other services, the following rules are necessary to pro-
tect private services running on local unprivileged ports.

Disallowing Connections to Common TCP Unprivileged Server Ports
Connections to remote X Window servers should be made over SSH, which automati-
cally supports X Window connections. By specifying the --syn flag, indicating the SYN
bit, only connection establishment to the server port is blocked. Other connections initi-
ated using the port as a client port are not affected.

X Window port assignment begins at port 6000 with the first running server. If addi-
tional servers are run, each is assigned to the next incremental port. As a small site, you’ll
probably run a single X server, so your server will listen only on port 6000. Port 6063 is
typically the highest assigned port, allowing 64 separate X Window managers running on
a single machine, although ranges up to 6255 and 6999 are also seen sometimes:

XWINDOW_PORTS="6000:6063" # (TCP) X Window

The first rule ensures that no outgoing connection attempts to remote X Window
managers are made from your machine:

X Window connection establishment
$IPT -A OUTPUT -o $INTERNET -p tcp --syn \
 --destination-port $XWINDOW_PORTS -j REJECT

The syntax for port ranges is different for nftables, and therefore the XWINDOW_
PORTS variable needs to be defined accordingly:

XWINDOW_PORTS="6000-6063"
$NFT add rule filter output oif $INTERNET ct state new tcp dport $XWINDOW_PORTS
�reject

Protecting Services on Assigned Unprivileged Ports 115

The next rule blocks incoming connection attempts to your X Window manager.
Local connections are not affected because local connections are made over the loopback
interface:

X Window: incoming connection attempt
$IPT -A INPUT -i $INTERNET -p tcp --syn \
 --destination-port $XWINDOW_PORTS -j DROP

Here’s the nftables entry:

$NFT add rule filter input iif $INTERNET ct state new tcp dport $XWINDOW_PORTS
�drop

The remaining TCP-based services can be blocked with a single rule by use of the
multiport match extension for iptables. Blocking incoming connections isn’t neces-
sary if the machine isn’t running the service, but it’s safer in the long run, in case you later
decide to run the service locally.

Network File System (NFS) usually binds to UDP port 2049 but can use TCP. You
shouldn’t be running NFS on a firewall machine, but if you are, external access is denied.

Connections to Open Window managers should not be allowed. Linux is not distributed
with the Open Window manager. Incoming connections to port 2000 don’t need to be blocked.
(This will not be the case later, when the firewall’s FORWARD rules are protecting other local hosts.)

squid is a web cache and proxy server. squid uses port 3128 by default but can be
configured to use a different port.

The following rule blocks local clients from initiating a connection request to a remote
NFS server, Open Window manager, SOCKS proxy server, or squid web cache server:

NFS_PORT="2049" # (TCP) NFS
SOCKS_PORT="1080" # (TCP) socks
OPENWINDOWS_PORT="2000" # (TCP) OpenWindows
SQUID_PORT="3128" # (TCP) squid
Establishing a connection over TCP to NFS, OpenWindows, SOCKS or squid

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -m multiport --destination-port \
 $NFS_PORT,$OPENWINDOWS_PORT,$SOCKS_PORT,$SQUID_PORT \
 --syn -j REJECT

$IPT -A INPUT -i $INTERNET -p tcp \
 -m multiport --destination-port \
 $NFS_PORT,$OPENWINDOWS_PORT,$SOCKS_PORT,$SQUID_PORT \
 --syn -j DROP

For nftables, the same variables can be used and placed into rules that look like this:

$NFT add rule filter output oif $INTERNET \
tcp dport \
{$NFS_PORT,$SOCKS_PORT,$OPENWINDOWS_PORT,$SQUID_PORT} \
ct state new reject
$NFT add rule filter input iif $INTERNET \
tcp dport \
{$NFS_PORT,$SOCKS_PORT,$OPENWINDOWS_PORT,$SQUID_PORT} \
ct state new drop

Hiva-Network.Com

http://www.hiva-network.com/

116 Chapter 5 Building and Installing a Standalone Firewall

Common Local UDP Services Assigned to Unprivileged Ports
TCP protocol rules can be handled more precisely than UDP protocol rules because of
TCP’s connection establishment protocol. As a datagram service, UDP doesn’t have a con-
nection state associated with it. Unless the state module is used, access to UDP services
should simply be blocked. Explicit exceptions are made to accommodate DNS and any
of the few other UDP-based Internet services you might use. Fortunately, the common
UDP Internet services are often the type used between a client and a specific server. The
filtering rules can often allow exchanges with one specific remote host.

NFS is the main UNIX UDP service to be concerned with and also is one of the most
frequently exploited. NFS runs on unprivileged port 2049. Unlike the previous TCP-
based services, NFS is primarily a UDP-based service. It can be configured to run as a
TCP-based service, but usually it isn’t.

Associated with NFS is the RPC lock daemon, lockd, for NFS. lockd runs on UDP
port 4045:

NFS_PORT="2049" # NFS
LOCKD_PORT="4045" # RPC lockd for NFS

NFS and lockd
$IPT -A OUTPUT -o $INTERNET -p udp \
 -m multiport --destination-port $NFS_PORT,$LOCKD_PORT \
 -j REJECT

 $IPT -A INPUT -i $INTERNET -p udp \
 -m multiport --destination-port $NFS_PORT,$LOCKD_PORT \
 -j DROP

The nftables rules look like this:

$NFT add rule filter output oif $INTERNET udp dport \
{$NFS_PORT,$LOCKD_PORT} reject
$NFT add rule filter input iif $INTERNET udp dport \
{$NFS_PORT,$LOCKD_PORT} drop

The TCP and UDP Service Protocol Tables
The remainder of this chapter is devoted to defining rules to allow access to specific
services. Client/server communication, for both TCP- and UDP-based services, involves
some kind of two-way communication using a protocol specific to the service. As such,
access rules are always represented as an I/O pair. The client program makes a query,
and the server sends a response. Rules for a given service are categorized as client rules
or server rules. The client category represents the communication required for your local
clients to access remote servers. The server category represents the communication
required for remote clients to access the services hosted from your machines.

The application messages are encapsulated in either TCP or UDP transport protocol
messages. Because each service uses an application protocol specific to itself, the
particular characteristics of the TCP or UDP exchange are, to some extent, unique to the
given service.

Enabling Basic, Required Internet Services 117

The exchange between client and server is explicitly described by the firewall rules. Part
of the purpose of firewall rules is to ensure protocol integrity at the packet level. Firewall
rules, expressed in iptables or nftables syntax, are not especially human readable,
however. In each of the following sections, the service protocol at the packet-filtering level
is presented as a table of state information, followed by the iptables and nftables
rules expressing those states.

Each row in the table lists a packet type involved in the service exchange. A firewall rule is
defined for each individual packet type. The table is divided into columns:

 � Description contains a brief description of whether the packet is originating from the
client or the server, and the packet’s purpose.

 � Protocol is the transport protocol in use, TCP or UDP, or the IP protocol’s control
messages, ICMP.

 � Remote Address is the legal address, or range of addresses, that the packet can
contain in the remote address field.

 � Remote Port is the legal port, or range of ports, that the packet can contain in the
remote port field.

 � In/Out describes the packet’s direction—that is, whether it is coming into the
system from a remote location or whether it is going out from the system to a remote
location.

 � Local Address is the legal address, or range of addresses, that the packet can
contain in the local address field.

 � Local Port is the legal port, or range of ports, that the packet can contain in the local
port field.

 � TCP protocol packets contain a final column, TCP Flag, defining the legal SYN-ACK
states that the packet may have.

Finally, in the few instances when the service protocol involves ICMP messages, notice
that the IP Network-layer ICMP packets are not associated with the concept of a source
or destination port, as is the case for Transport-layer TCP or UDP packets. Instead, ICMP
packets use the concept of a control or status message type. ICMP messages are not
sent to programs bound to particular service ports. Instead, ICMP messages are sent
from one computer to another. (The ICMP packet contains a copy of at least some of the
original packet that resulted in the error message. The receiving host identifies the process
that the error refers to by examining the packet carried in the ICMP packet’s data area.)
Consequently, the few ICMP packet entries presented in the tables use the source port
column to contain the message type. For incoming ICMP packets, the source port column
is the Remote Port column. For outgoing ICMP packets, the source port column is the Local
Port column.

Enabling Basic, Required Internet Services
Only one service is truly required: the Domain Name Service (DNS). DNS translates
between hostnames and their associated IP addresses. You generally can’t locate a remote
host without DNS unless the host is defined locally.

118 Chapter 5 Building and Installing a Standalone Firewall

Allowing DNS (UDP/TCP Port 53)
DNS uses a communication protocol that relies on both UDP and TCP. Connection
modes include regular client-to-server connections, peer-to-peer traffic between forward-
ing servers and full servers, and primary and secondary name server connections.

Query lookup requests are normally done over UDP, both for client-to-server lookups
and for peer-to-peer server lookups. The UDP communication can fail for a lookup if
the information being returned is too large to fit in a single UDP DNS packet. The server
sets a flag bit in the DNS message header indicating that the data is truncated. In this case,
the protocol allows for a retry over TCP. Figure 5.4 shows the relationship between UDP
and TCP during a DNS lookup. In practice, TCP isn’t normally needed for queries. TCP
is conventionally used for administrative zone transfers between primary and secondary
name servers.

Zone transfers are the transfer of a name server’s complete information about a net-
work, or the piece (zone) of a network, that the server is authoritative for (that is, the
official server). The authoritative name server is referred to as the primary name server.
Secondary, or backup, name servers can periodically request zone transfers from their pri-
mary to keep their DNS caches up-to-date.

Figure 5.4 DNS client-to-server lookup

DNS Client
Port 14000

UDP Lookup Request

UDP Server Response

TCP Server Response

UDP Lookup Request

TCP Lookup Request

UDP Truncated Server Response

DNS Server
Port 53

Time

Enabling Basic, Required Internet Services 119

For example, one of your ISP’s name servers is the primary, authoritative server for the
ISP’s address space. ISPs often have multiple DNS servers to balance the load, as well as for
backup redundancy. The other name servers are secondary name servers, refreshing their
information from the master copy on the primary server.

Zone transfers require careful access control between the primary and the secondary
servers. A small system isn’t likely to be an authoritative name server for a public domain’s
name space, nor is it likely to be a public backup server for that information. Larger sites
could easily host both primary and secondary servers. Care must be taken that zone trans-
fers are allowed only between these hosts. Numerous attacks have been successful because
the attacker was able to grab a copy of an entire DNS zone and learn about the network
topology in order to direct the attack at the most valuable assets.

Table 5.1 lists the complete DNS protocol the firewall rules account for.

Table 5.1 DNS Protocol

Description Protocol
Remote
Address Remote Port In/Out

Local
Address Local Port

TCP
Flag

Local client query UDP NAMESERVER 53 Out IPADDR 1024:65535 —

Remote server
response UDP NAMESERVER 53 In IPADDR 1024:65535 —

Local client query TCP NAMESERVER 53 Out IPADDR 1024:65535 Any

Remote server
response TCP NAMESERVER 53 In IPADDR 1024:65535 ACK

Local server
query UDP NAMESERVER 53 Out IPADDR 53 —

Remote server
response UDP NAMESERVER 53 In IPADDR 53 —

Local zone
transfer request TCP Primary 53 Out IPADDR 1024:65535 Any

Remote zone
transfer request TCP Primary 53 In IPADDR 1024:65535 ACK

Remote client
query UDP DNS client 1024:65535 In IPADDR 53 —

Local server
response UDP DNS client 1024:65535 Out IPADDR 53 —

Remote client
query TCP DNS client 1024:65535 In IPADDR 53 Any

Local server
response UDP DNS client 53 Out IPADDR 53 —

Remote zone
transfer request TCP Secondary 1024:65535 In IPADDR 53 Any

Local zone
transfer response TCP Secondary 1024:65535 Out IPADDR 53 ACK

Hiva-Network.Com

http://www.hiva-network.com/

120 Chapter 5 Building and Installing a Standalone Firewall

Allowing DNS Lookups as a Client
The DNS resolver client isn’t a specific program. The client is incorporated into the net-
work library code used by network programs. When a hostname requires a lookup, the
resolver requests the lookup from a DNS server. Most computers are configured only as
a DNS client. The server runs on a remote machine. For a home user, the name server is
usually a machine owned by your ISP.

As a client, the assumption is that your machine is not running a local DNS server; if
it is, you should ensure that you need to actually run the name server. There’s no need to
run extra services! Each client lookup goes through the resolver and is then sent to one
of the remote name servers configured in /etc/resolv.conf. In general, it’s better to
install the client rules even if a local server is used. You’ll avoid some confusing problems
that could otherwise crop up at some point.

These rules must be installed in the firewall tables before any other rules can success-
fully specify a remote host by name, rather than by IP address, unless the remote host has
an entry in the local /etc/hosts file.

DNS sends a lookup request as a UDP datagram:

NAMESERVER ="my.name.server" # (TCP/UDP) DNS
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p udp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $NAMESERVER --dport 53 \
 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p udp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $NAMESERVER --dport 53 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p udp \
 -s $NAMESERVER --sport 53 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

The nftables rules look like this:

$NFT add rule filter output oif $INTERNET ip saddr $IPADDR udp sport $UNPRIVPORTS
�ip daddr $NAMESERVER udp dport 53 ct state new accept
$NFT add rule filter input iif $INTERNET ip daddr $IPADDR udp dport $UNPRIVPORTS
�ip saddr $NAMESERVER udp sport 53 accept

If an error occurs because the returned data is too large to fit in a UDP datagram, the
DNS client retries using a TCP connection.

The next two rules are included for the rare occasion when the lookup response won’t
fit in a DNS UDP datagram. They won’t be used in normal, day-to-day operations. You
could run your system without problems for months on end without the TCP rules.
Unfortunately, every so often your DNS lookups hang without these rules. More typi-
cally, these rules are used by a secondary name server requesting a zone transfer from its
primary name server:

Enabling Basic, Required Internet Services 121

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $NAMESERVER --dport 53 \
 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $NAMESERVER --dport 53 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 -s $NAMESERVER --sport 53 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

The nftables rules look like this:

$NFT add rule filter output oif $INTERNET ip saddr $IPADDR tcp sport $UNPRIVPORTS
�ip daddr $NAMESERVER tcp dport 53 ct state new accept
$NFT add rule filter input iif $INTERNET ip daddr $IPADDR tcp dport $UNPRIVPORTS
�ip saddr $NAMESERVER tcp sport 53 tcp flags != syn accept

Allowing Your DNS Lookups as a Forwarding Server
Configuring a local forwarding name server can be a big performance gain. As shown in
Figure 5.5, when BIND is configured as a caching and forwarding name server, it func-
tions both as a local server and as a client to a remote DNS server. The difference between
a direct client-to-server exchange and a forwarded server-to-server exchange is in the
source and destination ports used. Instead of initiating an exchange from an unprivileged
port, BIND initiates the exchange from its own DNS port 53. (The query source port is
now configurable. In newer versions of BIND, the local server makes its request from an
unprivileged port, by default.) A second difference is that forwarding server lookups of this
type are always done over UDP. (If the response is too large to fit in a UDP DNS packet,
the local server must revert to standard client/server behavior to initiate the TCP request.)

DNS BIND Port Usage
Historically, DNS servers used UDP port 53 as their source port when talking to other
servers. This distinguished client traffic from server-initiated traffic because the client
always uses a high, unprivileged port as its source. Later versions of BIND allow the server-
to-server source port to be configurable and use the unprivileged ports by default. All
examples in this book assume that BIND has been configured to use UDP port 53, rather
than an unprivileged port, for server-to-server queries.

Local client requests are sent to the local DNS server. The first time, BIND won’t have
the lookup information, so it forwards the request to a remote name server. BIND caches
the returned information and passes it on to the client. The next time the same informa-
tion is requested, BIND finds it in its local cache (according to the record’s time to live
[TTL]) and doesn’t do a remote request.

122 Chapter 5 Building and Installing a Standalone Firewall

If the lookup fails because of UDP packet size, the server will fall back to a TCP
client-mode lookup. If the lookup fails because the remote server doesn’t have the infor-
mation, the local server will query the root cache server. Because of this, the client rules
would need to allow DNS traffic to any server, rather than to the specific servers listed in
the local configuration.

The alternative is to configure BIND not only as a forwarding server, but also as a slave
to the remote servers specified in the BIND configuration file, named.conf. As a slave,
the general client UDP rules aren’t required.

Enabling Common TCP Services
It’s likely that no one will want to enable all the services listed in this section, but most
everyone will want to enable some subset of them. These are the services most often used
over the Internet today. As such, this section is more of a reference section than anything
else. This section provides rules for the following:

Figure 5.5 A DNS forwarding server lookup

UDP Lookup Request

UDP Server Response

DNS Client
Port 14000

Remote DNS Server
Port 53

Local Forwarding DNS Server
Port 53

UDP Lookup Request

Cache Miss
UDP Lookup Request

UDP Server Response
Cache the Response

Cache Hit
UDP Server Response

Time

Enabling Common TCP Services 123

 � Email
 � SSH
 � FTP
 � Generic TCP service

Many other services are available that aren’t covered here. Some of them are used on
specialized servers, some are used by large businesses and organizations, and some are
designed for use in local, private networks. Additional LAN and DMZ services are cov-
ered in Chapter 7.

Email (TCP SMTP Port 25, POP Port 110, IMAP Port 143)
Email is a service that almost everyone wants. How mail is set up depends on your ISP,
your connection type, and your own choices. Email is sent across the network using the
SMTP protocol assigned to TCP service port 25. Email is commonly received locally
through one of three different protocols—SMTP, POP, or IMAP—depending on the
services your ISP provides and on your local configuration.

SMTP is the general mail delivery protocol. Mail is delivered to the destination host
machine, as defined most commonly by the MX record in the DNS for the given domain.
The endpoint mail server determines whether the mail is deliverable (addressed to a valid
user account on the machine) and then delivers it to the user’s local mailbox.

POP and IMAP are mail retrieval services. POP runs on TCP port 110. IMAP runs on
TCP port 143. Today’s POP and IMAP protocols are typically run over a secure sockets
layer (SSL) for encryption. POP/S and IMAP/S run on port 995 and 993 respectively.
ISPs commonly make incoming mail available to their customers using one or both of
these two services. Both services are usually authenticated by username and password. As
far as mail retrieval is concerned, the difference between SMTP and POP or IMAP is that
SMTP receives incoming mail and queues it in the user’s local mailbox. POP and IMAP
retrieve mail into the user’s local mail program from the user’s ISP, where the mail had
been queued remotely in the user’s SMTP mailbox at the ISP. Table 5.2 lists the complete
client/server connection protocols for SMTP, POP, and IMAP. SMTP also uses specialized
delivery mechanisms that your local network might use, such as ETRN, that effectively
transfer all mail for a given domain for local processing.

Sending Mail over SMTP (TCP Port 25)
Mail is sent over SMTP. But whose SMTP server do you use to collect your mail and send
it onward? ISPs offer SMTP mail service to their customers. The ISP’s mail server acts as
the mail gateway. It knows how to collect your mail, find the recipient host, and relay the
mail. With UNIX, you can host your own local mail server, if you want. Your server will
be responsible for routing the mail to its destination.

Hiva-Network.Com

http://www.hiva-network.com/

124 Chapter 5 Building and Installing a Standalone Firewall

Relaying Outgoing Mail through an External (ISP) Gateway SMTP Server
When you relay outgoing mail through an external mail gateway server, your client mail
program sends all outgoing mail to your ISP’s mail server. Your ISP acts as your mail gate-
way to the rest of the world. Your system doesn’t need to know how to locate your mail
destinations or the routes to them. The ISP mail gateway serves as your relay.

The following two rules enable you to relay mail through your ISP’s SMTP gateway:

SMTP_GATEWAY="my.isp.server" # External mail server or relay
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $SMTP_GATEWAY --dport 25 -m state --state NEW -j ACCEPT
fi

Table 5.2 SMTP, POP, and IMAP Mail Protocols

Description Protocol
Remote
Address Remote Port In/Out

Local
Address Local Port

TCP
Flag

Send outgoing
mail TCP ANYWHERE 25 Out IPADDR 1024:65535 Any

Remote server
response TCP ANYWHERE 25 In IPADDR 1024:65535 ACK

Receive incoming
mail TCP ANYWHERE 1024:65535 In IPADDR 25 Any

Local server
response TCP ANYWHERE 1024:65536 Out IPADDR 25 ACK

Local client query TCP POP SERVER 110 or 995 Out IPADDR 1024:65535 Any

Remote server
response TCP POP SERVER 110 or 995 In IPADDR 1024:65535 ACK

Remote client
query TCP POP CLIENT 1024:65535 In IPADDR 110 or 995 Any

Local server
response TCP POP CLIENT 1024:65535 Out IPADDR 110 or 995 ACK

Local client query TCP IMAP SERVER 143 or 993 Out IPADDR 1024:65535 Any

Remote server
response TCP IMAP SERVER 143 or 993 In IPADDR 1024:65535 ACK

Remote client
query TCP IMAP CLIENT 1024:65535 In IPADDR 143 or 993 Any

Local server
response TCP IMAP CLIENT 1024:65535 Out IPADDR 143 or 993 ACK

Enabling Common TCP Services 125

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $SMTP_GATEWAY --dport 25 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 -s $SMTP_GATEWAY --sport 25 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

The nftables commands look like this:

$NFT add rule filter output oif $INTERNET ip daddr $SMTP_GATEWAY tcp dport 25 ip
�saddr $IPADDR tcp sport $UNPRIVPORTS accept
$NFT add rule filter input iif $INTERNET ip saddr $SMTP_GATEWAY tcp sport 25 ip
�daddr $IPADDR tcp dport $UNPRIVPORTS tcp flags != syn accept

Sending Mail to Any External Mail Server
Alternatively, you can bypass your ISP’s mail server and host your own. Your local server is
responsible for collecting your outgoing mail, doing the DNS lookup on the destination
hostname, and sending the mail to its destination. Your client mail program points to your
local SMTP server rather than to the ISP’s server.

The following two rules enable you to send mail directly to the remote destinations:

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport 25 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport 25 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 --sport 25 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

The nftables commands look like this:

$NFT add rule filter output oif $INTERNET ip saddr $IPADDR tcp sport $UNPRIVPORTS
�tcp dport 25 accept
$NFT add rule filter input iif $INTERNET ip daddr $IPADDR tcp sport 25 tcp dport
�$UNPRIVPORTS tcp flags != syn accept

Receiving Mail
How you receive mail depends on your situation. If you run your own local mail server,
you can collect incoming mail directly on your Linux machine. If you retrieve your mail
from your ISP account, you may or may not retrieve mail as a POP or IMAP client,
depending on how you’ve configured your ISP email account, and depending on the mail
delivery services the ISP offers.

126 Chapter 5 Building and Installing a Standalone Firewall

Receiving Mail as a Local SMTP Server (TCP Port 25)
If you want to receive mail sent directly to your local machines from anywhere in the
world, you need to run Sendmail, Gmail, or some other mail server program. These are
the local server rules:

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A INPUT -i $INTERNET -p tcp \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport 25 \
 -m state --state NEW -j ACCEPT
fi

$IPT -A INPUT -i $INTERNET -p tcp \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport 25 -j ACCEPT

$IPT -A OUTPUT -o $INTERNET -p tcp ! --syn \
 -s $IPADDR --sport 25 \
 --dport $UNPRIVPORTS -j ACCEPT

The commands for the nftables script look like this:

$NFT add rule filter input iif $INTERNET tcp sport $UNPRIVPORTS ip daddr $IPADDR
�tcp dport 25 accept
$NFT add rule filter output oif $INTERNET tcp sport 25 ip saddr $IPADDR tcp dport
�$UNPRIVPORTS tcp flags != syn accept

Alternatively, if you’d rather keep your local email account relatively private and use
your work or ISP email account as your public address, you can configure your work and
ISP mail accounts to forward mail to your local server. In this case, you could replace the
previous single rule pair, accepting connections from anywhere, with separate, specific
rules for each mail forwarder.

Retrieving Mail as a POP Client (TCP Port 110 or 995)
Connecting to a POP server is a very common means of retrieving mail from a remote
ISP or work account. If your ISP uses a POP server for customer mail retrieval, you need
to allow outgoing client-to-server connections.

The server’s address will be a specific hostname or address rather than the global,
implied ANYWHERE specifier. POP accounts are user accounts associated with a specific
user and password:

POP_SERVER="my.isp.pop.server" # External pop server, if any
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $POP_SERVER --dport 110 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $POP_SERVER --dport 110 -j ACCEPT

Enabling Common TCP Services 127

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 -s $POP_SERVER --sport 110 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

The commands for nftables look like the following; substitute 110 in place of 995 if
your mail server uses regular POP without SSL:

$NFT add rule filter output oif $INTERNET ip saddr $IPADDR ip daddr $POP_SERVER
�tcp sport $UNPRIVPORTS tcp dport 995 accept
$NFT add rule filter input iif $INTERNET ip saddr $POP_SERVER tcp sport 110 ip
�daddr $IPADDR tcp dport $UNPRIVPORTS tcp flags != syn accept

Receiving Mail as an IMAP Client (TCP Port 143 or 993)
Connecting to an IMAP server is another common means of retrieving mail from a
remote ISP or work account. If your ISP uses an IMAP server for customer mail retrieval,
you need to allow outgoing client-to-server connections.

The server’s address will be a specific hostname or address rather than the global,
implied $ANYWHERE specifier. IMAP accounts are user accounts associated with a specific
user and password:

IMAP_SERVER="my.isp.imap.server" # External imap server, if any
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $IMAP_SERVER --dport 143 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $IMAP_SERVER --dport 143 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 -s $IMAP_SERVER --sport 143 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

The nftables rules look like the following; substitute 143 in place of 993 if your
IMAP server doesn’t use SSL:

$NFT add rule filter output oif $INTERNET ip saddr $IPADDR tcp sport $UNPRIVPORTS
�ip daddr $IMAP_SERVER tcp dport 993 accept
$NFT add rule filter input iif $INTERNET ip saddr $IMAP_SERVER tcp sport 995 ip
�daddr $IPADDR tcp dport $UNPRIVPORTS tcp flags != syn accept

Hosting a Mail Server for Remote Clients
Hosting public POP or IMAP services is unusual for a small system. You might do this if
you offer remote mail services to a few friends, for example, or if their ISP mail service
is temporarily unavailable. In any case, it’s important to limit the clients your system will
accept connections from, both on the packet-filtering level and on the server configura-
tion level.

Hiva-Network.Com

http://www.hiva-network.com/

128 Chapter 5 Building and Installing a Standalone Firewall

Hosting a POP Server for Remote Clients
POP servers are one of the most common and successful points of entry for hacking exploits.
Firewall rules can offer some amount of protection, in many cases. Of course, you would limit
access at the server configuration level as well. As always, and perhaps particularly so with mail
server software, it is crucial to keep up-to-date with security updates for the software.

If you use a local system as a central mail server and run a local POP3 server to provide
mail access to local machines on a LAN, you don’t need the server rules in this example.
Incoming connections from the Internet should be dropped. If you do need to host POP
service for a limited number of remote individuals, the next two rules allow incoming con-
nections to your POP server. Connections are limited to your specific clients’ IP addresses:

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A INPUT -i $INTERNET -p tcp \
 -s <my.pop.clients> --sport $UNPRIVPORTS \
 -d $IPADDR --dport 110 \
 -m state --state NEW -j ACCEPT
fi

$IPT -A INPUT -i $INTERNET -p tcp \
 -s <my.pop.clients> --sport $UNPRIVPORTS \
 -d $IPADDR --dport 110 -j ACCEPT

$IPT -A OUTPUT -o $INTERNET -p tcp ! --syn \
 -s $IPADDR --sport 110 \
 -d <my.pop.clients> --dport $UNPRIVPORTS -j ACCEPT

The nftables rules look like this:

nft add rule filter input iif $INTERNET ip saddr <POP_CLIENTS> tcp sport
�$UNPRIVPORTS ip daddr $IPADDR tcp dport 995 accept
$NFT add rule filter output oif $INTERNET ip saddr $IPADDR tcp sport 995 ip daddr
�<POP_CLIENTS> tcp dport $UNPRIVPORTS tcp flags != syn accept

If your site were an ISP, you could use network address masking to limit which source
addresses you would accept POP connection requests from:

POP_CLIENTS="192.168.24.0/24"

If yours is a residential site with a handful of remote POP clients, the client addresses
would need to be stated explicitly, with a separate rule pair for each client address.

Hosting an IMAP Server for Remote Clients
IMAP servers are one of the most common and successful points of entry for hacking exploits.
Firewall rules can offer some amount of protection, in many cases. Of course, you would limit
access at the server configuration level as well. As always, and perhaps particularly so with mail
server software, it is crucial to keep up-to-date with security updates for the software.

SSH (TCP Port 22)
With the expiration of the RSA patent in the year 2000, OpenSSH, secure shell, is
included in Linux distributions. It is also freely available from software sites on the

Enabling Common TCP Services 129

Internet. SSH is considered far preferable to using telnet for remote login access because
both ends of the connection use authentication keys for both hosts and users, and because
data is encrypted. Additionally, SSH is more than a remote login service. It can automati-
cally direct X Window connections between remote sites, and FTP and other TCP-based
connections can be directed over the more secure SSH connection. Provided that the
other end of the connection allows SSH connections, it’s possible to route all TCP con-
nections through the firewall using SSH. As such, SSH is something of a poor man’s vir-
tual private network (VPN).

The ports used by SSH are highly configurable. By default, connections are initiated
between a client’s unprivileged port and the server’s assigned service port 22. The SSH cli-
ent uses the unprivileged ports exclusively. The rules in this example apply to the default
SSH port usage:

SSH_PORTS="1024:65535" # RSA authentication

or

SSH_PORTS="1020:65535" # Rhost authentication

The client and server rules here allow access to and from anywhere. In practice, you
would limit the external addresses to a select subset, particularly because both ends of the
connection must be configured to recognize each individual user account for authentica-
tion. Table 5.3 lists the complete client/server connection protocol for the SSH service.

Table 5.3 SSH Protocol

Description Protocol
Remote
Address Remote Port In/Out

Local
Address Local Port

TCP
Flag

Local client
request TCP ANYWHERE 22 Out IPADDR 1024:65535 Any

Remote server
response TCP ANYWHERE 22 In IPADDR 1024:65535 ACK

Local client
request TCP ANYWHERE 22 Out IPADDR 513:1023 Any

Remote server
response TCP ANYWHERE 22 In IPADDR 513:1023 ACK

Remote client
request TCP SSH clients 1024:65535 In IPADDR 22 Any

Local server
response TCP SSH clients 1024:65535 Out IPADDR 22 ACK

Remote client
request TCP SSH clients 513:1023 In IPADDR 22 Any

Local server
response TCP SSH clients 513:1023 Out IPADDR 22 ACK

130 Chapter 5 Building and Installing a Standalone Firewall

Allowing Client Access to Remote SSH Servers
These rules allow you to connect to remote sites using SSH:

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $SSH_PORTS \
 --dport 22 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $SSH_PORTS \
 --dport 22 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 --sport 22 \
 -d $IPADDR --dport $SSH_PORTS -j ACCEPT

The nftables rules look like the following:

$NFT add rule filter output oif $INTERNET ip saddr $IPADDR tcp sport $SSH_PORTS
�tcp dport 22 accept
$NFT add rule filter input iif $INTERNET tcp sport 22 ip daddr $IPADDR tcp dport
�$SSH_PORTS tcp flags != syn accept

Allowing Remote Client Access to Your Local SSH Server
These rules allow incoming connections to your SSH server:

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A INPUT -i $INTERNET -p tcp \
 --sport $SSH_PORTS \
 -d $IPADDR --dport 22 \
 -m state --state NEW -j ACCEPT
fi

$IPT -A INPUT -i $INTERNET -p tcp \
 --sport $SSH_PORTS \
 -d $IPADDR --dport 22 -j ACCEPT

$IPT -A OUTPUT -o $INTERNET -p tcp ! --syn \
 -s $IPADDR --sport 22 \
 --dport $SSH_PORTS -j ACCEPT

The nftables rules look like the following:

$NFT add rule filter input iif $INTERNET tcp sport $SSH_PORTS ip daddr $IPADDR
�tcp dport 22 accept
$NFT add rule filter output oif $INTERNET ip saddr $IPADDR tcp sport 22 tcp dport
�$SSH_PORTS tcp flags != syn accept

FTP (TCP Ports 21, 20)
FTP remains one of the most common means of transferring files between two net-
worked machines. Web-based browser interfaces to FTP have become common as well.
Like telnet, FTP sends both authentication credentials and data communication in plain

Enabling Common TCP Services 131

text over the network. Therefore, FTP is also considered to be an inherently insecure pro-
tocol. SFTP and SCP offer improvements to FTP in this regard.

FTP is used as the classic example of a protocol that isn’t firewall or NAT friendly.
Traditional client/server applications that communicate over TCP all work the same way.
The client initiates the request to connect to the server.

Table 5.4 lists the complete client/server connection protocol for the FTP service.

Table 5.4 FTP Protocol

Description Protocol
Remote
Address Remote Port In/Out

Local
Address Local Port

TCP
Flag

Local client query TCP ANYWHERE 21 Out IPADDR 1024:65535 Any

Remote server
response TCP ANYWHERE 21 In IPADDR 1024:65535 ACK

Remote server
port data channel
request TCP ANYWHERE 20 In IPADDR 1024:65535 Any

Local client port
data channel
response TCP ANYWHERE 20 Out IPADDR 1024:65535 ACK

Local client
passive data
channel request TCP ANYWHERE 1024:65535 Out IPADDR 1024:65535 Any

Remote server
passive data
channel response TCP ANYWHERE 1024:65535 In IPADDR 1024:65535 ACK

Remote client
request TCP ANYWHERE 1024:65535 In IPADDR 21 Any

Local server
response TCP ANYWHERE 1024:65535 Out IPADDR 21 ACK

Local server port
data channel
response TCP ANYWHERE 1024:65535 Out IPADDR 20 Any

Remote client
port data channel
response TCP ANYWHERE 1024:65535 In IPADDR 20 ACK

Remote client
passive data
channel request TCP ANYWHERE 1024:65535 In IPADDR 1024:65535 Any

Local server
passive data
channel response TCP ANYWHERE 1024:65535 Out IPADDR 1024:65535 ACK

Hiva-Network.Com

http://www.hiva-network.com/

132 Chapter 5 Building and Installing a Standalone Firewall

FTP deviates from this standard TCP, client/server communication model. FTP relies
on two separate connections, one for the control or command stream, and one for passing
the data files and other information, such as directory listings. The control stream is car-
ried over a traditional TCP connection. The client binds to a high, unprivileged port and
sends a connection request to the FTP server, which is bound to port 21. This connection
is used to pass commands.

In terms of the second data stream connection, FTP has two alternative modes for
exchanging data between a client and a server: port mode and passive mode. Port mode is
the original, default mechanism. The client tells the server which secondary, unprivileged
port it will listen on. The server initiates the data connection from port 20 to the unprivi-
leged port the client specified.

This is the deviation from the standard client/server model. The server is initiating the
secondary connection back to the client. This is why FTP is a protocol that requires ALG
support for both the firewall and NAT. The firewall must account for an incoming con-
nection from port 20 to a local unprivileged port. NAT must account for the destination
address used for the secondary data stream connection. (The client has no knowledge that
its network traffic is being NATed. The port and address it sent the server were its local,
pre-NATed port and address.)

Passive mode is similar to the traditional client/server model in that the client initiates
the secondary connection for the data stream. Again, the client initiates the connection
from a high, unprivileged port. The server isn’t bound to port 20 for the data connection,
however. Instead, the server has told the client which high, unprivileged port the client
should address the connection request to. The data stream is carried between unprivileged
ports on both the client and the server.

In terms of traditional packet filtering, the firewall must allow TCP traffic between all
unprivileged ports. Connection state tracking and ALG support allow the firewall to asso-
ciate the secondary connection with a particular FTP control stream. NAT isn’t an issue
on the client side because the client is initiating both connections.

Allowing Outgoing Client Access to Remote FTP Servers
It’s almost a given that most sites will want FTP client access to remote file repositories.
Most people will want to enable outgoing client connections to a remote server.

Outgoing FTP Requests over the Control Channel
The next two rules allow an outgoing control connection to a remote FTP server:

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport 21 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport 21 -j ACCEPT

Enabling Common TCP Services 133

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 --sport 21 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

The nftables rules look like this:

$NFT add rule filter output oif $INTERNET ip saddr $IPADDR tcp sport $UNPRIVPORTS
�tcp dport 21 accept
$NFT add rule filter input iif $INTERNET ip daddr $IPADDR tcp sport 21 tcp dport
�$UNPRIVPORTS accept

Port-Mode FTP Data Channels
The next two rules allow the standard data channel connection, in which the remote
server calls back to establish the data connection from server port 20 to a client-specified
unprivileged port:

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A INPUT -i $INTERNET -p tcp \
 --sport 20 \
 -d $IPADDR --dport $UNPRIVPORTS \
 -m state --state NEW -j ACCEPT
fi

$IPT -A INPUT -i $INTERNET -p tcp \
 --sport 20 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

$IPT -A OUTPUT -o $INTERNET -p tcp ! --syn \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport 20 -j ACCEPT

This unusual callback behavior, with the remote server establishing the secondary
connection with your client, is part of what makes FTP difficult to secure at the packet-
filtering level. Rules for nftables assume the use of the ct state module and therefore
aren’t needed.

Generic TCP Service
Most of the rules shown in this section are similar to each other. Rather than trying to
provide rules for every type of TCP-based service, it’s more useful to simply learn a gen-
eral way to add a rule as needed for whatever service you need to provide.

The following generic rules apply to any TCP service to which you need to make a
connection. Substitute the destination service port for <YOUR PORT HERE>:

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport <YOUR PORT HERE> -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport <YOUR PORT HERE> -j ACCEPT

134 Chapter 5 Building and Installing a Standalone Firewall

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 --sport <YOUR PORT HERE> \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

The nft rules look like this:

$NFT add rule filter output oif $INTERNET ip saddr $IPADDR tcp sport $UNPRIVPORTS
�tcp dport <YOUR PORT HERE> accept
$NFT add rule filter input iif $INTERNET tcp sport <YOUR PORT HERE> ip daddr
�$IPADDR tcp dport $UNPRIVPORTS accept

The following rules apply to enabling an incoming TCP connection on whatever port
is necessary for the given service:

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A INPUT -i $INTERNET -p tcp \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport <YOUR PORT HERE> \
 -m state --state NEW -j ACCEPT
fi

$IPT -A INPUT -i $INTERNET -p tcp \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport <YOUR PORT HERE> -j ACCEPT

$IPT -A OUTPUT -o $INTERNET -p tcp ! --syn \
 -s $IPADDR \
 --dport $UNPRIVPORTS -j ACCEPT

The rules for nftables are as follows:

nft add rule filter input iif $INTERNET tcp sport $UNPRIVPORTS ip daddr $IPADDR
�tcp dport <YOUR PORT HERE> accept
nft add rule filter output oif $INTERNET ip saddr $IPADDR tcp sport <YOUR PORT
�HERE> tcp dport $UNPRIVPORTS accept

Enabling Common UDP Services
The stateless UDP protocol is inherently less secure than the connection-based TCP pro-
tocol. Because of this, many security-conscious sites completely disable, or else limit as
much as possible, all access to UDP services. Obviously, UDP-based DNS exchanges are
necessary, but the remote name servers can be explicitly specified in the firewall rules. As
such, this section provides rules for only two services:

 � Dynamic Host Configuration Protocol (DHCP)
 � Network Time Protocol (NTP)

Accessing Your ISP’s DHCP Server (UDP Ports 67, 68)
DHCP exchanges, if any, between your site and your ISP’s server will necessarily be local
client–to–remote server exchanges. Most often, DHCP clients receive temporary, or semi-
permanent, dynamically allocated IP addresses from a central server that manages the ISP’s

Enabling Common UDP Services 135

customer IP address space. The server also typically provides your local host with other
configuration information, such as the network subnet mask; the network MTU; the
default, first-hop router addresses; the domain name; and the default TTL.

If you have a dynamically allocated IP address from your ISP, you need to run a DHCP
client daemon on your machine.

Table 5.5 lists the DHCP message type descriptions, as quoted from RFC 2131,
“Dynamic Host Configuration Protocol.”

In essence, when the DHCP client initializes, it broadcasts a DHCPDISCOVER query to
discover whether any DHCP servers are available. Any servers receiving the query may
respond with a DHCPOFFER message indicating their willingness to function as server to
this client; they include the configuration parameters that they have to offer. The cli-
ent broadcasts a DHCPREQUEST message to accept one of the servers and to inform any
remaining servers that it has chosen to decline their offers. The chosen server responds
with a broadcast DHCPACK message, indicating confirmation of the parameters that it
originally offered. Address assignment is complete at this point. Periodically, the client
sends the server a DHCPREQUEST message requesting a renewal on the IP address lease.
If the lease is renewed, the server responds with a unicast DHCPACK message. Otherwise,
the client falls back to the initialization process. Table 5.6 lists the complete client/server
exchange protocol for the DHCP service.

Table 5.5 DHCP Message Types

DHCP Message Description

DHCPDISCOVER Client broadcast to locate available servers

DHCPOFFER Server to client in response to DHCPDISCOVER with offer of
configuration parameters

DHCPREQUEST Client message to servers either (a) requesting offered parameters
from one server and implicitly declining offers from all others; (b)
confirming correctness of previously allocated address after, for
example, system reboot; or (c) extending the lease on a particular
network address

DHCPACK Server to client with configuration parameters, including committed
network address

DHCPNAK Server to client indicating that client’s notion of network address is
incorrect (for example, client has moved to new subnet) or client’s
lease has expired

DHCPDECLINE Client to server indicating that network address is already in use

DHCPRELEASE Client to server relinquishing network address and canceling remaining
lease

DHCPINFORM Client to server, asking only for local configuration parameters; client
already has externally configured address

Hiva-Network.Com

http://www.hiva-network.com/

136 Chapter 5 Building and Installing a Standalone Firewall

The DHCP protocol is far more complicated than this brief summary, but the sum-
mary describes the essentials of the typical client and server exchange.

The following firewall rules allow communication between your DHCP client and a
remote server:

Initialization or rebinding: No lease or Lease time expired.
$IPT -A OUTPUT -o $INTERNET -p udp \
 -s $BROADCAST_SRC --sport 67:68 \
 -d $BROADCAST_DEST --dport 67:68 -j ACCEPT

Incoming DHCPOFFER from available DHCP servers

$IPT -A INPUT -i $INTERNET -p udp \
 --sport 67:68 \
 --dport 67:68 -j ACCEPT

The nftables rules look like this:

$NFT add rule filter output oif $INTERNET ip saddr $BROADCAST_SRC udp sport 67-68
�ip daddr $BROADCAST_DEST udp dport 67-68 accept
$NFT add rule filter input iif $INTERNET udp sport 67-68 udp dport 67-68 accept

Notice that DHCP traffic cannot be completely limited to your DHCP server. During
initialization sequences, when your client doesn’t yet have an assigned IP address or even
the server’s IP address, packets are broadcast rather than sent point-to-point. At the Layer 2
level, the packets may be addressed to your network card’s hardware address.

Accessing Remote Network Time Servers (UDP Port 123)
Network time services such as NTP allow access to one or more public Internet time
providers. This is useful to maintain an accurate system clock, particularly if your internal

Table 5.6 DHCP Protocol

Description Protocol Remote Address
Remote
Port In/Out Local Address

Local
Port

DHCPDISCOVER;
DHCPREQUEST UDP 255.255.255.255 67 Out 0.0.0.0 68

DHCPOFFER UDP 0.0.0.0 67 In 255.255.255.255 68

DHCPOFFER UDP DHCP SERVER 67 In 255.255.255.255 68

DHCPREQUEST;
DHCPDECLINE UDP DHCP SERVER 67 Out 0.0.0.0 68

DHCPACK;
DHCPNACK UDP DHCP SERVER 67 In ISP/NETMASK 68

DHCPACK UDP DHCP SERVER 67 In IPADDR 68

DHCPREQUEST;
DHCPRELEASE UDP DHCP SERVER 67 Out IPADDR 68

Enabling Common UDP Services 137

clock tends to drift, and to establish the correct time and date at bootup or after a power
loss. A small-system user should use the service only as an Internet client. Few small sites
have a satellite link to Greenwich, England; a radio link to an atomic clock; or an atomic
clock of their own lying around.

ntpd is the server daemon. In addition to providing time service to clients, ntpd uses a
peer-to-peer relationship among servers. Few small sites require the extra precision ntpd
provides. ntpdate is the client program and uses a client-to-server relationship. The cli-
ent program is all that a small site will need. Table 5.7 lists only the client/server exchange
protocol for the NTP service. There is rarely, if ever, a reason to run ntpd itself because
that’s the server component. If you must run the NTP server (as opposed to the client), do
so in a chroot environment.

The ntpd startup script that is run at boot time uses ntpdate to query a series of pub-
lic time service providers. The ntpd daemon is started after the server’s reply. These hosts
would be individually specified in a series of firewall rules:

TIME_SERVER="my.time.server" # External time server, if any

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p udp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $TIME_SERVER --dport 123 \
 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p udp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $TIME_SERVER --dport 123 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p udp \
 -s $TIME_SERVER --sport 123 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

The nftables script rules are:

$NFT add rule filter output oif $INTERNET ip saddr $IPADDR udp sport $UNPRIVPORTS
�ip daddr $TIME_SERVER udp dport 123 accept
$NFT add rule filter input iif $INTERNET ip saddr $TIME_SERVER udp sport 123 ip
�daddr $IPADDR udp dport $UNPRIVPORTS accept

Table 5.7 NTP Protocol

Description Protocol
Remote
Address

Remote
Port In/Out

Local
Address Local Port

Local client
query UDP TIMESERVER 123 Out IPADDR 1024:65535

Remote server
response UDP TIMESERVER 123 In IPADDR 1024:65535

138 Chapter 5 Building and Installing a Standalone Firewall

Note that the previous rules are written for a standard client/server UDP communica-
tion. Depending on your particular client and server software, it’s possible that one or both
of them will use the NTP server-to-server communication model, with both the client
and the server using UDP port 123.

Logging Dropped Incoming Packets
Any packet matching a rule can be logged by using the -j LOG target for iptables or
log statement for nftables. Logging a packet has no effect on the packet’s disposition,
however. The packet must match an accept or drop rule. Some of the rules presented pre-
viously had logging enabled, before matching the packet a second time to drop it. Some
of the IP address spoofing rules are examples.

Rules can be defined for the explicit purpose of logging certain kinds of packets. Most
typically, packets of interest are suspicious packets indicating some sort of probe or scan.
Because all packets are denied by default, if logging is desired for certain packet types,
explicit rules must be defined before the packet falls off the end of the chain and the
default policy takes effect. Essentially, out of all the denied packets, you might be interested
in logging some of them, using rate-limited logging for some, and silently dropping others.

Which packets are logged is an individual matter. Some people want to log all dropped
packets. For other people, logging all dropped packets could soon overflow their system
logs. Some people, secure in the knowledge that the packets are dropped, don’t care about
them and don’t want to know about them. Other people are interested in the obvious
port scans or in some particular packet type.

Because of the first-matching-rule-wins behavior, you could log all dropped incom-
ing packets with a single rule. The assumption here is that all packet-matching acceptance
rules have been tested, and the packet is about to drop off the end of the chain and be
thrown away:

$IPT -A INPUT -i $INTERNET -j LOG

Or for nftables:

$NFT add rule filter input iif $INTERNET log

Logging Dropped Outgoing Packets
Logging outgoing traffic blocked by the firewall rules is necessary for debugging the fire-
wall rules and to be alerted to local software problems.

All traffic about to be dropped by the default policy could be logged:

$IPT -A OUTPUT -o $INTERNET -j LOG

For nftables:

$NFT add rule filter output oif $INTERNET log

Installing the Firewall 139

Installing the Firewall
This section assumes that the firewall script is called rc.firewall. There’s no reason that
the script couldn’t be called simply fwscript or something else either. In fact, on Debian
systems the standard is closer to the single name, fwscript, rather than a name prefixed
with an rc. as is the case on Red Hat. This section covers the commands as if the script
was installed in either /etc/rc.d/ for a Red Hat or SUSE system or /etc/init.d/ for
a Debian system.

As a shell script, initial installation is simple. The script should be owned by root. On
Red Hat and SUSE:

chown root.root /etc/rc.d/rc.firewall

On Debian:

chown root.root /etc/init.d/rc.firewall

The script should be writable and executable by root alone. Ideally, the general user
should not have read access. On Red Hat and SUSE:

chmod u=rwx /etc/rc.d/rc.firewall

On Debian:

chmod u=rwx /etc/init.d/rc.firewall

To initialize the firewall at any time, execute the script from the command line. There
is no need to reboot:

/etc/rc.d/rc.firewall start

Technically, the start argument isn’t required there, but it’s a good habit anyway—
again, I’d rather err on the side of completeness than have ambiguity with a firewall. The
script includes a stop action that flushes the firewall entirely. Therefore, if you want to
stop the firewall, call the same command with the stop argument:

/etc/rc.d/rc.firewall stop

Be forewarned: If you stop the firewall in this way, you are running with no protection.
The attorneys tell me that I should tell you, “Always leave the firewall enabled!”

On Debian, change the path for the command to /etc/init.d. Start the firewall:

/etc/init.d/rc.firewall start

Stop the firewall on Debian:

/etc/init.d/rc.firewall stop

Tips for Debugging the Firewall Script
When you’re debugging a new firewall script through an SSH or other remote con-
nection, it’s quite possible that you might lock yourself out of the system. Granted, this
isn’t a concern when you’re installing the firewall from the console, but as someone who

Hiva-Network.Com

http://www.hiva-network.com/

140 Chapter 5 Building and Installing a Standalone Firewall

manages remote Linux servers, I find that access to the console is rarely possible. Therefore,
a method is necessary for stopping the firewall automatically after it gets started, just in
case the firewall locks out my connection. Cron to the rescue.

Using a cron entry, you can stop the firewall by running the script with a stop argu-
ment at some predefined interval. I find that every 2 minutes works well during initial
debugging. If you’d like to use this method, set a cron entry with the following command
as root (on Debian):

crontab -e
*/2 * * * * /etc/init.d/rc.firewall stop

On Red Hat and SUSE:

crontab -e
*/2 * * * * /etc/rc.d/rc.firewall stop

With this cron entry in place, you can start the firewall and have it stop every 2 min-
utes. Using such a mechanism is somewhat of a trade-off though, because you have to do
your initial debugging before the clock hits a minute divisible by two! Additionally, it’s up
to you to remember to remove this cron entry when you’ve debugged the firewall. If you
forget to remove this entry, the firewall will stop and you’ll be running with no firewall
again!

Starting the Firewall on Boot with Red Hat and SUSE
On Red Hat and SUSE, the simplest way to initialize the firewall is to edit /etc/rc.d/
rc.local and add the following line to the end of the file:

/etc/rc.d/rc.firewall start

After the firewall rules are debugged and stable, Red Hat Linux provides a more stan-
dard way to start and stop the firewall. If you chose iptables while using one of the
runlevel managers, the default runlevel directory contains a link to /etc/rc.d/init.d/
iptables. As with the other startup scripts in this directory, the system will start and stop
the firewall automatically when booting or changing runlevels.

One additional step is required to use the standard runlevel system, however. You must
first manually install the firewall rules:

/etc/rc.d/rc.firewall

Then execute the command

/etc/init.d/iptables save

The rules will be saved in a file, /etc/sysconfig/iptables. After this, the startup
script will find this file and load the saved rules automatically.

A word of caution is in order about saving and loading the firewall rules using this
method. The iptables save and load features are not fully debugged at this point.
If your particular firewall configuration results in a syntax error when saving or loading

Summary 141

the rules, you must continue using some other startup mechanism, such as executing the
firewall script from /etc/rc.d/rc.local.

Starting the Firewall on Boot with Debian
As with many other things, configuring the firewall script to start on boot is simpler on
Debian than on other distributions. You can make the firewall start and stop on boot
with the update-rc.d command. Run update-rc.d with the firewall script in /etc/
init.d, and set your current directory to /etc/init.d/ as well:

cd /etc/init.d
update-rc.d rc.firewall defaults

See the man page for update-rc.d for more information on its usage beyond that
shown here.

Other aspects of the firewall script depend on whether you have a registered, static IP
address or a dynamic, DHCP-assigned IP address. The firewall script as presented in this
chapter is set up for a site with a statically assigned, permanent IP address.

Installing a Firewall with a Dynamic IP Address
If you have a dynamically assigned IP address, the standard firewall installation method
won’t work without modification. The firewall rules would be installed before the net-
work interfaces are brought up, before the system is assigned an IP address, and possibly
before being assigned a default gateway router or name servers.

The firewall script itself needs the IPADDR and NAMESERVER values defined. Both the
DHCP server and the local /etc/resolv.conf file can define up to three name serv-
ers. Also, any given site may or may not know the addresses of their name servers, default
gateway router, or DHCP server ahead of time. Furthermore, it’s not uncommon for your
network mask, subnet, and broadcast addresses to change over time as the ISP renumbers
its network. Some ISPs assign a different IP address on a frequent basis, with the result that
your IP address can change numerous times during the course of an ongoing connection.

Your site must provide some means of dynamically updating the installed firewall rules
as these changes occur. Appendix B, “Firewall Examples and Support Scripts,” provides
sample scripts designed to handle these changes automatically.

The firewall script could read these shell variables directly from the environment or
could read them from a file. In any case, the variables would not be hard-coded into the
firewall script, as they are in the example in this chapter.

Summary
This chapter led you through the processes involved in developing a standalone firewall
using iptables and nftables. The deny-by-default policy was established. Some com-
monly used attack vectors were fixed at the beginning of the script, including source

142 Chapter 5 Building and Installing a Standalone Firewall

address spoofing, protecting services running on unprivileged ports, and DNS. Examples
of rules for popular network services were shown. Finally, the issues involved in firewall
installation were described, both for sites with a static IP address and for sites with a
dynamically assigned IP address.

Chapter 6 uses the standalone firewall as the basis for building an optimized firewall.
Chapter 7 uses it as the basis for a more complicated firewall architecture. A screened
subnet architecture using two firewalls separating a DMZ perimeter network is described
in Chapter 7. A small business could easily have the need and the resources for this more
elaborate configuration. Chapter 8 uses the standalone firewall as the basis for its examples
but does not build on this example directly.

Advanced Issues,
Multiple Firewalls,

and Perimeter
Networks

 6 Firewall Optimization

 7 Packet Forwarding

 8 NAT—Network Address Translation

 9 Debugging the Firewall Rules

 10 Virtual Private Networks

II

Hiva-Network.Com

http://www.hiva-network.com/

This page intentionally left blank

6
Firewall Optimization

Chapter 5, “Building and Installing a Standalone Firewall,” used both the iptables
and nftables firewall administration programs to build a simple, single-system, custom-
designed firewall. This chapter introduces firewall optimization. Optimization can be divided
into three major categories: rule organization, use of the state module, and user-defined
chains. The example in the preceding chapter was shown both with and without the use of
the state module. This chapter focuses on rule organization and user-defined chains.

Rule Organization
Little optimization can be done using only the INPUT, OUTPUT, and FORWARD chains.
Chain traversal is top to bottom, one rule at a time, until the packet matches a rule. The
rules on a chain must be ordered hierarchically, from most general to most specific.

There is no hard-and-fast formula for rule organization. The two main underlying
factors are which services are hosted on the machine and the machine’s primary purpose,
noting especially the services with the heaviest traffic on the machine. The requirements
of a dedicated firewall and packet forwarder are very different from those of a bastion
firewall protecting a dedicated web or mail server. Likewise, a site administrator is likely
to place different performance priorities on a firewalled machine that serves primarily as a
workstation than on a firewall that serves as both a residential gateway and a Linux server
for a home.

The third underlying factor to consider when preparing to organize rules for firewall
optimization is the available network bandwidth, the speed of the Internet connection.
Optimization isn’t likely to buy much, if anything, for a site with a residential-speed Inter-
net connection. Even for a heavily accessed website, the machine’s CPU isn’t likely to
break a sweat. The bottleneck is the Internet connection itself.

Begin with Rules That Block Traffic on High Ports
As the examples in Chapter 5 demonstrated, the bulk of the rules are antispoofing rules, or
rules blocking traffic on specific high ports (such as NFS or X Windows). These types of
rules must come before the rules allowing traffic to specific services. Obviously, the FTP
data channel rules must come near the end of the rule list, even though you’d want the
rules to be near the top of the list because FTP transfers tend to be large.

146 Chapter 6 Firewall Optimization

Use the State Module for ESTABLISHED and RELATED Matches
Using the state module’s ESTABLISHED and RELATED matches essentially allows for mov-
ing all rules for ongoing exchanges to the head of the chains, as well as eliminating the
need for specific rules for the server half of a connection. In fact, bypassing filter matching
for ongoing, recognized, previously accepted exchanges is one of the two primary pur-
poses of the state module.

The state module’s second primary purpose is to serve a firewall-filtering function.
Connection state tracking allows the firewall to associate packets with ongoing exchanges.
This is particularly useful for connectionless, stateless UDP exchanges.

Consider the Transport Protocol
The transport protocol that the service runs over is another factor. In a static firewall, the
overhead of testing every single incoming packet against all the spoofing rules is a big loss.

TCP Services: Bypass the Spoofing Rules
Even without the state module, for TCP-based services, the rule for the remote server half
of a connection can bypass the spoofing rules. The TCP layer will drop incoming spoofed
packets with the ACK bit set because the packet won’t match any of the TCP layer’s estab-
lished connection states.

The remote client half of a rule pair must follow the spoofing rules, however, because
the typical client rule covers both the initial connection request and the ongoing traffic
from the client. If the SYN and ACK flags are tested for individually, the rules testing for the
ACK flag in packets arriving from remote clients can bypass the spoofing tests. The spoof-
ing tests must apply to only the initial SYN request.

Use of the state module also allows the rule for the remote client’s incoming connec-
tion request, the initial SYN packet, to be logically separate from the rule for the client’s
subsequent ACK packets. Only the initial connection request, the initial NEW packet, needs
to be tested against the spoofing rules.

UDP Services: Place Incoming Packet Rules after Spoofing Rules
Without the state module, for UDP-based services the rule for incoming packets must
always follow the spoofing rules. The concept of client and server is maintained at the
application level, assuming that it’s maintained at all. At the firewall and UDP levels, with-
out connection state, there is no indication of initiator and responder, other than the ser-
vice port or unprivileged port used.

DNS is an example of a connectionless UDP service. Without connection state, there
isn’t a mapping between the destination address where the client sent a query and the
source address in an incoming response packet. One of the reasons DNS cache poisoning
is possible is that DNS server implementations do not check whether an incoming packet
was a legitimate response from the server previously queried or whether the packet was
sent from some other address. Furthermore, some implementations do not even ensure

Rule Organization 147

that a client made a request. An incoming, unrequested rogue packet could be used to
update the local DNS cache even without an initial query having been made.

TCP versus UDP Services: Place UDP Rules after TCP Rules
Overall, UDP rules should be placed later in the firewall chains, after any TCP rules. This
is because most Internet services run over TCP, and connectionless UDP services are typi-
cally simple, single-packet, query-and-response services. Testing the single or UDP packet
or a handful of them against the preceding rules for ongoing TCP connections doesn’t
add noticeable drag to a UDP query and response. Multiconnection session protocols are
not firewall friendly to begin with. Such services cannot pass through a firewall or NAT
without specific ALG support.

ICMP Services: Place Their Rules Late in the Rule Chain
ICMP is another protocol whose firewall rules can be placed late in the rule chain. ICMP
packets are small control and status messages. As such, they are sent relatively infrequently.
Legitimate ICMP packets usually consist of a single, nonfragmented packet. With the
exception of echo-request, ICMP packets are almost always sent as a control or status
message in response to an exceptional outgoing packet of some kind.

Place Firewall Rules for Heavily Used Services
as Early as Possible
Generally, there are no hard-and-fast rules for firewall rule placement in a list. Rules for
heavily used services, such as the HTTP-related rules for a dedicated web server, should
be placed as early as possible. Rules for applications that involve high, ongoing packet
counts also should be placed as early as possible. However, as mentioned earlier, the data
stream protocols for applications such as FTP require the rules to be placed near the end
of the chain, after any other application rules, unless a specific helper is used for those
protocols.

Use Traffic Flow to Determine Where to Place Rules
for Multiple Network Interfaces
If the host has multiple network interfaces, rules specific to a given interface should be
placed with regard to which interfaces will have the heaviest traffic flow. Rules for those
interfaces should precede rules for other interfaces. Interface considerations are probably
of little interest to a residential site, but they can have a major impact on throughput for a
commercial site.

As a case in point, this issue came up several years ago with a small ISP that had built
a firewall based on the ipfwadm and ipchains examples on the previous author Bob
Ziegler’s website. As shown in Figure 6.1 and Figure 6.2, the path that packets take through
the operating system is very different between IPFW and Netfilter. Unlike Netfilter and
iptables, with ipchains, packets passing between network interfaces are passed from the

Hiva-Network.Com

http://www.hiva-network.com/

148 Chapter 6 Firewall Optimization

INPUT chain to the FORWARD chain to the OUTPUT chain. The examples on the website were
intended as examples for people at home. The input and output rules for the LAN were the
last rules in the scripts. The rules specific to the local Linux host came first. The ISP’s firewall
was primarily functioning as a router or gateway. Through experimentation, the ISP found
that moving the I/O rules for the LAN interface to the beginning of the INPUT and OUT-
PUT chains resulted in more than a megabit-per-second increase in throughput.

User-Defined Chains
For iptables the filter table has three permanent, built-in chains: INPUT, OUTPUT, and
FORWARD. iptables enables you to define chains of your own, called user-defined chains.
In nftables all tables are user defined but in practical terms the filter table is still used.

Interface Interface(Demasqueraded)

Input
Chain

Deny

Routing

Local
Processes

Forward
Chain

Deny

Output
Chain

Deny

Figure 6.1 IPFW loopback and masqueraded packet traversal

Figure 6.2 Netfilter packet traversal

Input
Chain

Drop

Routing

Local
Processes

Forward
Chain

Drop

Output
Chain

Drop

User-Defined Chains 149

User-defined chains are treated as rule targets—that is, based on the set of matches
specified in a rule, the target can branch off or jump to a user-defined chain. Rather
than the packet being accepted or dropped, control is passed to the user-defined chain to
perform more specific match tests relative to packets matching the branch rule. After the
user-defined chain is traversed, control returns to the calling chain, and matching con-
tinues from the next rule in the calling chain unless the user-defined chain matched and
took action on the packet.

Figure 6.3 shows the standard, top-down rule traversal using the built-in chains.
User-defined chains are useful in optimizing the rule set and therefore are often used.

They allow the rules to be organized into categorical trees. Rather than relying on the
straight-through, top-down checkoff list type of matching inherent in the standard chain
traversal, packet match tests can be selectively narrowed down based on the characteristics
of the packet. Figure 6.4 shows initial packet flow. After initial tests common to all incoming
packets are performed, packet matching branches off based on the destination address in the
packet.

Branching is based on destination address in this example. Source address matching is
done later in relation to specific applications, such as remote DNS or mail servers. In most
cases, the remote address will be “anywhere.” Matching on destination address at this point
distinguishes among unicast packets targeted to this machine, broadcast packets, multicast
packets, and (depending on whether it’s the INPUT or FORWARD chain) packets targeted to
internal hosts.

Figure 6.5 details the user-defined chain for the protocol rules for packets specifi-
cally addressed to this host. As shown, user-defined chains can jump to other user-defined
chains containing even more specific tests.

Figure 6.3 Standard chain traversal

INPUT Chain

Rule 1

Rule 2

Rule 3

Rule 4

DROP Policy

No

(Next Rule)

Match?

Yes

Accept Drop

150 Chapter 6 Firewall Optimization

This list summarizes the characteristics of user-defined chains from Chapter 3,
“iptables: The Legacy Linux Firewall Administration Program”:

 � User-defined chains are created with the -N or --new-chain operation.
 � User-defined chain names can be up to 30 characters in length.
 � User-defined chain names can contain hyphens (-) but not underscores (_).
 � User-defined chains are accessed as rule targets.
 � User-defined chains do not have default policies.

Figure 6.4 User-defined chains based on destination address

Input
Chain

Loopback

Accept Accept

Established
State

Drop

Host
Source
Address

Host
Destination

Address
Multicast Broadcast

Broadcast RulesMulticast RulesProtocol Rules

Figure 6.5 User-defined chains based on protocol

Protocol Rules

Spoof?

Yes

Drop

No

ICMP Rules

UDP Rules

TCP Rules

Bad Flags?

No

Yes Drop

Optimized Examples 151

 � User-defined chains can call other user-defined chains.
 � If the packet doesn’t match a rule on the user-defined chain, control returns to the
next rule in the calling chain.

 � The user-defined chain can be exited early, with control returning to the next rule
in the calling chain, via use of the RETURN target.

 � User-defined chains are deleted with the -X or --delete-chain operation.
 � A chain must be empty before it can be deleted.
 � A chain cannot have any references to it from other chains to be deleted.
 � A chain is emptied specifically by name, or all existing chains are emptied if no
chain is specified, with the -F or --flush operation.

The next section takes advantage of user-defined chains and the concepts presented in
the section on rule organization to optimize the single-system firewall presented in Chap-
ter 5.

Optimized Examples
The following shows optimized examples of the firewalls built in Chapter 5. The first
example is for the iptables-based firewall. If you’re using nftables, you can safely skip
this section and go to the nftables script example instead.

The Optimized iptables Script
One new variable is declared, USER_CHAINS, which contains the names of all the user-
defined chains used in the script. The chains are listed here:

 � tcp-state-flags—Contains the rules to check for invalid TCP state flag
combinations.

 � connection-tracking—Contains the rules to check for state-related matches,
INVALID, ESTABLISHED, and RELATED.

 � source-address-check—Contains the rules to check for illegal source addresses.
 � destination-address-check—Contains the rules to check for illegal destination
addresses.

 � EXT-input—Contains the interface-specific user-defined chains for the INPUT
chain. In this example, the host has one interface connected to the Internet.

 � EXT-output—Contains the interface-specific user-defined chains for the OUTPUT
chain. In this example, the host has one interface connected to the Internet.

 � local-dns-server-query—Contains the rules for outgoing queries from either
the local DNS server or local clients.

 � remote-dns-server-response—Contains the rules for incoming responses from
a remote DNS server.

Hiva-Network.Com

http://www.hiva-network.com/

152 Chapter 6 Firewall Optimization

 � local-tcp-client-request—Contains the rules for outgoing TCP connection
requests and locally generated client traffic to remote servers.

 � remote-tcp-server-response—Contains the rules for incoming responses from
remote TCP servers.

 � remote-tcp-client-request—Contains the rules for incoming TCP connection
requests and remotely generated client traffic to local servers.

 � local-tcp-server-response—Contains the rules for outgoing responses to
remote clients.

 � local-udp-client-request—Contains the rules for outgoing UDP client traffic
to remote servers.

 � remote-udp-server-response—Contains the rules for incoming responses from
remote UDP servers.

 � EXT-icmp-out—Contains the rules for outgoing ICMP packets.
 � EXT-icmp-in—Contains the rules for incoming ICMP packets.
 � EXT-log-in—Contains the logging rules for incoming packets before dropping
them by the default INPUT policy.

 � EXT-log-out—Contains the logging rules for outgoing packets before dropping
them by the default OUTPUT policy.

 � log-tcp-state—Contains the logging rules for TCP packets with illegal state flag
combinations before dropping them.

 � remote-dhcp-server-response—Contains the rules for incoming packets from
this host’s DHCP server.

 � local-dhcp-client-query—Contains the rules for outgoing DHCP client
packets.

Some interface-specific chains are prefaced with EXT to differentiate them from any
user-defined chains containing rules for any LAN interfaces. This firewall example assumes
that there is only one interface, the external interface. The point is to suggest that different
rules and security policies could be defined on a per-interface basis.

The actual declaration in the firewall shell script would be as shown here:

USER_CHAINS="EXT-input EXT-output \
 tcp-state-flags connection-tracking \
 source-address-check destination-address-check \
 local-dns-server-query remote-dns-server-response \
 local-tcp-client-request remote-tcp-server-response \
 remote-tcp-client-request local-tcp-server-response \
 local-udp-client-request remote-udp-server-response \
 local-dhcp-client-query remote-dhcp-server-response \
 EXT-icmp-out EXT-icmp-in \
 EXT-log-in EXT-log-out \
 log-tcp-state"

Optimized Examples 153

Firewall Initialization
The firewall script starts out identically to the example in Chapter 5. Recall that a number
of shell variables were set, including one called $IPT to define the location of the
iptables firewall administration command:

#!/bin/sh

IPT="/sbin/iptables" # Location of iptables on your system
INTERNET="eth0" # Internet-connected interface
LOOPBACK_INTERFACE="lo" # However your system names it
IPADDR="my.ip.address" # Your IP address
MY_ISP="my.isp.address.range" # ISP server & NOC address range
SUBNET_BASE="my.subnet.network" # Your subnet's network address
SUBNET_BROADCAST="my.subnet.bcast" # Your subnet's broadcast address
LOOPBACK="127.0.0.0/8" # Reserved loopback address range
CLASS_A="10.0.0.0/8" # Class A private networks
CLASS_B="172.16.0.0/12" # Class B private networks
CLASS_C="192.168.0.0/16" # Class C private networks
CLASS_D_MULTICAST="224.0.0.0/4" # Class D multicast addresses
CLASS_E_RESERVED_NET="240.0.0.0/5" # Class E reserved addresses
BROADCAST_SRC="0.0.0.0" # Broadcast source address
BROADCAST_DEST="255.255.255.255" # Broadcast destination address
PRIVPORTS="0:1023" # Well-known, privileged port range
UNPRIVPORTS="1024:65535" # Unprivileged port range

A number of kernel parameters were also set; refer to Chapter 5 for an explanation of
these parameters:

Enable broadcast echo Protection
echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts
Disable Source Routed Packets
for f in /proc/sys/net/ipv4/conf/*/accept_source_route; do
 echo 0 > $f
done
Enable TCP SYN Cookie Protection
echo 1 > /proc/sys/net/ipv4/tcp_syncookies
Disable ICMP Redirect Acceptance
for f in /proc/sys/net/ipv4/conf/*/accept_redirects; do
 echo 0 > $f
done

Don't send Redirect Messages
for f in /proc/sys/net/ipv4/conf/*/send_redirects; do
 echo 0 > $f
done
Drop Spoofed Packets coming in on an interface, which, if replied to,
would result in the reply going out a different interface.
for f in /proc/sys/net/ipv4/conf/*/rp_filter; do
 echo 1 > $f
done
Log packets with impossible addresses.
for f in /proc/sys/net/ipv4/conf/*/log_martians; do
 echo 1 > $f
done

154 Chapter 6 Firewall Optimization

The built-in chains and any preexisting user-defined chains are emptied:

Remove any existing rules from all chains
$IPT --flush
$IPT -t nat --flush
$IPT -t mangle --flush

The next step would be to delete the user-defined chains. They can be deleted with
the following commands:

$IPT -X
$IPT -t nat -X
$IPT -t mangle -X

The default policy is first set to ACCEPT for all built-in chains:

Reset the default policy
$IPT --policy INPUT ACCEPT
$IPT --policy OUTPUT ACCEPT
$IPT --policy FORWARD ACCEPT
$IPT -t nat --policy PREROUTING ACCEPT
$IPT -t nat --policy OUTPUT ACCEPT
$IPT -t nat --policy POSTROUTING ACCEPT
$IPT -t mangle --policy PREROUTING ACCEPT
$IPT -t mangle --policy OUTPUT ACCEPT

Here is the final code for the beginning of the firewall script, namely, the code to
enable the firewall to be stopped easily. With this code placed below the preceding code,
when you call the script with an argument of stop the script will flush, clear, and reset
the default policies, and the firewall will effectively stop.

if ["$1" = "stop"]
then
echo "Firewall completely stopped! WARNING: THIS HOST HAS NO FIREWALL RUNNING."
exit 0
fi

Now reset the real default policy to DROP:

$IPT --policy INPUT DROP
$IPT --policy OUTPUT DROP
$IPT --policy FORWARD DROP

Traffic through the loopback interface is enabled:

Unlimited traffic on the loopback interface
$IPT -A INPUT -i lo -j ACCEPT
$IPT -A OUTPUT -o lo -j ACCEPT

Now the script starts differing from the example in Chapter 5.
The user-defined chains can now be created. Their names were included in the single

shell variable, USER_CHAINS, for just this purpose:

Create the user-defined chains
for i in $USER_CHAINS; do
 $IPT -N $i
done

Optimized Examples 155

Installing the Chains
Unfortunately, the function call–like nature of building and installing the chains doesn’t
lend itself to a serial, step-by-step explanation without the capability to show different
places in the script simultaneously, side by side.

The idea is to place the rules on the user-defined chains and then to install those chains
on the built-in INPUT, OUTPUT, and FORWARD chains. If the script contains an error and
exits while building the user-defined chains, the built-in chains will contain no rules, the
default DROP policy will be in effect, and, presumably, the loopback traffic will be enabled.

So, this first installation section is actually placed at the end of the firewall script. The
first step is to check for illegal TCP state flag combinations:

If TCP: Check for common stealth scan TCP state patterns
$IPT -A INPUT -p tcp -j tcp-state-flags
$IPT -A OUTPUT -p tcp -j tcp-state-flags

Notice that the same chain can be referenced from more than one calling chain. The
rules on the user-defined chains needn’t be duplicated for the INPUT and OUTPUT chains.
Now when the packet processing reaches this point, the processing will “jump” to the
user-defined tcp-state-flags chain. When the processing is complete within that
chain, the processing will be passed back here and continue on, unless a final disposition
for the packet was found in the user-defined chain.

If the state module is being used, the next step is to bypass the firewall altogether if the
packet is part of an ongoing, previously accepted exchange:

if ["$CONNECTION_TRACKING" = "1"]; then
 # Bypass the firewall filters for established exchanges
 $IPT -A INPUT -j connection-tracking
 $IPT -A OUTPUT -j connection-tracking
fi

If the machine is a DHCP client, a provision must be made for the broadcast messages
sent between the client and the server during initialization. A provision must also be made
to accept the broadcast source address, 0.0.0.0. The source and destination address-
checking tests would drop the initial DHCP traffic:

if ["$DHCP_CLIENT" = "1"]; then
 $IPT -A INPUT -i $INTERNET -p udp \
 --sport 67 --dport 68 -j remote-dhcp-server-response
 $IPT -A OUTPUT -o $INTERNET -p udp \
 --sport 68 --dport 67 -j local-dhcp-client-query
fi

Now jump to the user-defined chain to drop incoming packets that are using this
host’s IP address as their source address. Then test for other illegal source and destination
addresses:

Test for illegal source and destination addresses in incoming packets
$IPT -A INPUT ! -p tcp -j source-address-check
$IPT -A INPUT -p tcp --syn -j source-address-check
$IPT -A INPUT -j destination-address-check

Hiva-Network.Com

http://www.hiva-network.com/

156 Chapter 6 Firewall Optimization

Test for illegal destination addresses in outgoing packets
$IPT -A OUTPUT -j destination-address-check

Locally generated outgoing packets don’t need their source address checked because
the firewall rules explicitly require this host’s IP address in the source field. Destination
address checking is performed on outgoing packets, however.

At this point, regular incoming packets addressed to this host’s IP address can be
handed off to the main section of the firewall. Any incoming packet that doesn’t match a
rule on the EXT-input chain will return here to be logged and dropped:

Begin standard firewall tests for packets addressed to this host
$IPT -A INPUT -i $INTERNET -d $IPADDR -j EXT-input

A final set of tests on destination address is necessary. Broadcast and multicast packets
are not addressed to this host’s unicast IP address. They are addressed to a broadcast or
multicast address.

As mentioned in Chapter 5, multicast packets won’t be received unless you register to
receive packets addressed to a particular multicast address. If you want to receive multicast
packets, you must either accept all of them or add a rule specific to the particular address
and port used for any given session. The following code enables you to choose whether to
drop or accept the traffic:

Multicast traffic
$IPT -A INPUT -i $INTERNET -p udp -d $CLASS_D_MULTICAST -j [DROP | ACCEPT]
$IPT -A OUTPUT -o $INTERNET -p udp -s $IPADDR -d $CLASS_D_MULTICAST \
 -j [DROP | ACCEPT]

At this point, regular outgoing packets from this host can be handed off to the main
section of the firewall. Any outgoing packet that doesn’t match a rule on the EXT-output
chain will return here to be logged and dropped:

Begin standard firewall tests for packets sent from this host.
Source address spoofing by this host is not allowed due to the
test on source address in this rule.
$IPT -A OUTPUT -o $INTERNET -s $IPADDR -j EXT-output

Any broadcast messages are implicitly ignored by the last input and output rules.
Depending on the nature of the public or external network that the machine is directly
connected to, broadcasts could be very common on the local subnet. You probably don’t
want to log such messages, even with rate-limited logging.

Finally, any remaining packets are dropped by the default policy. Any logging would be
done at this point:

Log anything of interest that fell through,
before the default policy drops the packet.
$IPT -A INPUT -j EXT-log-in
$IPT -A OUTPUT -j EXT-log-out

This marks the end of the firewall and is the last reference to the INPUT and OUTPUT
chains.

Optimized Examples 157

Building the User-Defined EXT-input and EXT-output Chains
This section describes the construction of the user-defined chains that were jumped to in
the preceding section. At the top level, rules are built on the general EXT-input and
EXT-output chains. These rules are jumps to more specific sets of matches contained in
the dedicated user-defined chains you’ve created.

Note that the EXT-input and EXT-output layer is not necessary. The following rules and
jumps could just as easily have been associated with the built-in INPUT and OUTPUT chains.

Using these chains has one advantage, however. Because the jumps to these chains are
dependent on the source or destination address, you know at this point that the incoming
packet is addressed to this host and has a source address believed to be legitimate. The out-
going packet is addressed from this host and has a destination address believed to be legiti-
mate. Also, if the state module is in use, the packet is either the first packet in an exchange
or a new, unrelated ICMP packet.

In summary, the EXT-input and EXT-output chains will be used to select traffic by
protocol and by direction, in terms of client or server. Each rule will provide the branch
point to the firewall rules specific to that protocol and packet characteristics. The matches
performed by the EXT-input and EXT-output rules are the heart of the optimization
available with user-defined chains.

DNS Traffic
The rules to identify DNS traffic come first. Until the DNS rules are installed, your net-
work software won’t be capable of locating services and hosts out on the Internet unless
you use the IP address.

The first pair of rules match on queries from the local cache and forward name server,
if you have one, and responses from the remote DNS server. The local server is configured
as a slave to the remote, primary server, so the local server will fail if the lookup doesn’t
succeed. This configuration is less common for a small office/home office:

$IPT -A EXT-output -p udp --sport 53 --dport 53 \
 -j local-dns-server-query

$IPT -A EXT-input -p udp --sport 53 --dport 53 \
 -j remote-dns-server-response

The next pair of rules match on standard DNS client lookup requests over TCP, when
the server’s response is too large to fit in a UDP DNS packet. These rules would be used
by both a forwarding name server and a standard client:

$IPT -A EXT-output -p tcp \
 --sport $UNPRIVPORTS --dport 53 \
 -j local-dns-server-query

$IPT A EXT-input -p tcp ! --syn \
 --sport 53 --dport $UNPRIVPORTS \
 -j remote-dns-server-response

What follows are the user-defined chains containing the actual ACCEPT and DROP rules.

158 Chapter 6 Firewall Optimization

local-dns-server-query and remote-dns-server-response
These two user-defined chains, local-dns-server-query and remote-dns-
server-response, perform the final determination on the packet.

The local-dns-server-query chain selects the outgoing request packets based on
the remote server’s destination address. For this chain, you must define the name servers
you’d like to use:

NAMESERVER_1="your.name.server"
NAMESERVER_2="your.secondary.nameserver"
NAMESERVER_3="your.tertiary.nameserver"

DNS Forwarding Name Server or client requests
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A local-dns-server-query \
 -d $NAMESERVER_1 \
 -m state --state NEW -j ACCEPT

 $IPT -A local-dns-server-query \
 -d $NAMESERVER_2 \
 -m state --state NEW -j ACCEPT

 $IPT -A local-dns-server-query \
 -d $NAMESERVER_3 \
 -m state --state NEW -j ACCEPT
fi

$IPT -A local-dns-server-query \
 -d $NAMESERVER_1 -j ACCEPT

$IPT -A local-dns-server-query \
 -d $NAMESERVER_2 -j ACCEPT

$IPT -A local-dns-server-query \
 -d $NAMESERVER_3 -j ACCEPT

The remote-dns-server-response chain selects the incoming response packets
based on the remote server’s source address:

DNS server responses to local requests
$IPT -A remote-dns-server-response \
 -s $NAMESERVER_1 -j ACCEPT

$IPT -A remote-dns-server-response \
 -s $NAMESERVER_2 -j ACCEPT

$IPT -A remote-dns-server-response \
 -s $NAMESERVER_3 -j ACCEPT

Notice that the final rules select on only the remote server’s IP address. The calling
rules on the EXT-input and EXT-output chains already have matched on the UDP or
TCP header fields. Those match tests don’t need to be performed again.

Optimized Examples 159

local-dns-client-request and remote-dns-server-response
These two user-defined chains, local-dns-client-request and remote-dns-
server-response, perform the final determination on packets exchanged between local
TCP clients and remote servers.

The local-dns-client-request chain selects the outgoing request packets based
on the remote server’s destination address and port. The remote-dns-server-response
chain selects the incoming response packets based on the remote server’s source address
and port.

Local Client Traffic over TCP
The next pair of rules match on standard, local client traffic to remote servers over TCP:

$IPT -A EXT-output -p tcp \
 --sport $UNPRIVPORTS \
 -j local-tcp-client-request

$IPT -A EXT-input -p tcp ! --syn \
 --dport $UNPRIVPORTS \
 -j remote-tcp-server-response

Remember that these rules normally are not tested when the state module is used,
with the exception of the first outgoing SYN request.

The specific reference to the TCP protocol is required in the following rules, even
though the protocol field was matched on by the calling rule, because the source or des-
tination port is specified. This is a syntactic requirement of iptables. Also note that you
need to define the source and destination hosts within these rules, as indicated by the
<selected host> and other such calls. In addition, if you use these rules, be sure to
define variables for the ones you choose, such as POP_SERVER, MAIL_SERVER, NEWS_SERVER,
and so on. The following code enables TCP traffic from local clients:

Local TCP client output and remote server input chains

SSH client
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A local-tcp-client-request -p tcp \
 -d <selected host> --dport 22 \
 -m state --state NEW \
 -j ACCEPT
fi

$IPT -A local-tcp-client-request -p tcp \
 -d <selected host> --dport 22 \
 -j ACCEPT

$IPT -A remote-tcp-server-response -p tcp ! --syn \
 -s <selected host> --sport 22 \
 -j ACCEPT

Hiva-Network.Com

http://www.hiva-network.com/

160 Chapter 6 Firewall Optimization

Client rules for HTTP, HTTPS and FTP control requests
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A local-tcp-client-request -p tcp \
 -m multiport --destination-port 80,443,21 \
 --syn -m state --state NEW \
 -j ACCEPT
fi
$IPT -A local-tcp-client-request -p tcp \
 -m multiport --destination-port 80,443,21 \
 -j ACCEPT

$IPT -A remote-tcp-server-response -p tcp \
 -m multiport --source-port 80,443,21 ! --syn \
 -j ACCEPT

POP client
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A local-tcp-client-request -p tcp \
 -d $POP_SERVER --dport 110 \
 -m state --state NEW \
 -j ACCEPT
fi

$IPT -A local-tcp-client-request -p tcp \
 -d $POP_SERVER --dport 110 \
 -j ACCEPT

$IPT -A remote-tcp-server-response -p tcp ! --syn \
 -s $POP_SERVER --sport 110 \
 -j ACCEPT

SMTP mail client
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A local-tcp-client-request -p tcp \
 -d $MAIL_SERVER --dport 25 \
 -m state --state NEW \
 -j ACCEPT
fi

$IPT -A local-tcp-client-request -p tcp \
 -d $MAIL_SERVER --dport 25 \
 -j ACCEPT

$IPT -A remote-tcp-server-response -p tcp ! --syn \
 -s $MAIL_SERVER --sport 25 \
 -j ACCEPT

Usenet news client
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A local-tcp-client-request -p tcp \
 -d $NEWS_SERVER --dport 119 \
 -m state --state NEW \
 -j ACCEPT
fi
$IPT -A local-tcp-client-request -p tcp \
 -d $NEWS_SERVER --dport 119 \
 -j ACCEPT

Optimized Examples 161

$IPT -A remote-tcp-server-response -p tcp ! --syn \
 -s $NEWS_SERVER --sport 119 \
 -j ACCEPT

FTP client - passive mode data channel connection
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A local-tcp-client-request -p tcp \
 --dport $UNPRIVPORTS \
 -m state --state NEW \
 -j ACCEPT
fi

$IPT -A local-tcp-client-request -p tcp \
 --dport $UNPRIVPORTS -j ACCEPT

$IPT -A remote-tcp-server-response -p tcp ! --syn \
 --sport $UNPRIVPORTS -j ACCEPT

Local Server Traffic over TCP
The next pair of rules match on standard, local server traffic to remote clients over TCP.
These would be applicable only if you’re actually offering services to remote hosts:

$IPT -A EXT-input -p tcp \
 --sport $UNPRIVPORTS \
 -j remote-tcp-client-request

$IPT -A EXT-output -p tcp ! --syn \
 --dport $UNPRIVPORTS \
 -j local-tcp-server-response

The next pair of rules handle incoming data channel connections from remote FTP
servers when using port mode:

Kludge for incoming FTP data channel connections
from remote servers using port mode.
The state modules treat this connection as RELATED
if the ip_conntrack_ftp module is loaded.

$IPT -A EXT-input -p tcp \
 --sport 20 --dport $UNPRIVPORTS \
 -j ACCEPT

$IPT -A EXT-output -p tcp ! --syn \
 --sport $UNPRIVPORTS --dport 20 \
 -j ACCEPT

remote-tcp-client-request and local-tcp-server-response
These two user-defined chains, remote-tcp-client-request and local-tcp-
server-response, perform the final determination on packets exchanged between
remote TCP clients and local servers.

The remote-tcp-client-request chain selects the incoming request packets based
on the remote client’s source address and port. The local-tcp-server-response chain

162 Chapter 6 Firewall Optimization

selects the outgoing response packets based on the remote client’s destination address
and port:

Remote TCP client input and local server output chains

SSH server
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A remote-tcp-client-request -p tcp \
 -s <selected host> --destination-port 22 \
 -m state --state NEW \
 -j ACCEPT
fi

$IPT -A remote-tcp-client-request -p tcp \
 -s <selected host> --destination-port 22 \
 -j ACCEPT

$IPT -A local-tcp-server-response -p tcp ! --syn \
 --source-port 22 -d <selected host> \
 -j ACCEPT

AUTH identd server
$IPT -A remote-tcp-client-request -p tcp \
 --destination-port 113 \
 -j REJECT --reject-with tcp-reset

Local Client Traffic over UDP
The next pair of rules match on standard, local client traffic to remote servers over UDP:

Local UDP client, remote server
$IPT -A EXT-output -p udp \
 --sport $UNPRIVPORTS \
 -j local-udp-client-request

$IPT -A EXT-input -p udp \
 --dport $UNPRIVPORTS \
 -j remote-udp-server-response

Bypassing Source Address Checking without Using the State Module
If you aren’t using the state module, most TCP rules could still be placed before the source
address spoofing rules. TCP maintains connection state information itself. Only the first
incoming connection request, the first SYN packet, requires source address checking. You
can do this by reorganizing the rules and splitting the rule for incoming client traffic into two
tests, one for the initial SYN flag and one for all subsequent ACK flags.

Using the rules for a local web server as an example, the first rule would follow the
spoofing rules:

if [“$CONNECTION_TRACKING” = “1”]; then
 $IPT -A remote-tcp-client-request -p tcp \
 --destination-port 80 \
 -m state --state NEW \
 -j ACCEPT

Optimized Examples 163

else
 $IPT -A remote-tcp-client-request -p tcp --syn \
 --destination-port 80 \
 -j ACCEPT
fi

The next two rules would precede the spoofing rules:

$IPT -A INPUT -p tcp ! --syn \
 --source-port $UNPRIVPORTS \
 -d $IPADDR --destination-port 80 \
 -j ACCEPT

$IPT -A OUTPUT -p tcp ! --syn \
 -s $IPADDR --source-port 80 \
 --destination-port $UNPRIVPORTS \
 -j ACCEPT

local-udp-client-request and remote-udp-server-response
These two user-defined chains, local-udp-client-request and remote-udp-
server-response, perform the final determination on packets exchanged between local
UDP clients and remote servers.

The local-udp-client-request chain selects the outgoing request packets based
on the remote server’s destination address and port. The remote-udp-server-response
chain selects the incoming response packets based on the remote server’s source address
and port. Be sure to define the TIME_SERVER variable before implementing this rule:

NTP time client
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A local-udp-client-request -p udp \
 -d $TIME_SERVER --dport 123 \
 -m state --state NEW \
 -j ACCEPT
fi

$IPT -A local-udp-client-request -p udp \
 -d $TIME_SERVER --dport 123 \
 -j ACCEPT

$IPT -A remote-udp-server-response -p udp \
 -s $TIME_SERVER --sport 123 \
 -j ACCEPT

ICMP Traffic
Finally, the last pair of rules match on incoming and outgoing ICMP traffic:

ICMP traffic
$IPT -A EXT-input -p icmp -j EXT-icmp-in

$IPT -A EXT-output -p icmp -j EXT-icmp-out

Hiva-Network.Com

http://www.hiva-network.com/

164 Chapter 6 Firewall Optimization

EXT-icmp-in and EXT-icmp-out
These two user-defined chains, EXT-icmp-in and EXT-icmp-out, perform the final
determination on ICMP packets exchanged between the local host and remote machines.

The EXT-icmp-in chain selects the incoming ICMP packets based on the message
type. The EXT-icmp-out chain selects the outgoing ICMP packets based on the message
type:

Log and drop initial ICMP fragments
$IPT -A EXT-icmp-in --fragment -j LOG \
 --log-prefix "Fragmented incoming ICMP: "

$IPT -A EXT-icmp-in --fragment -j DROP

$IPT -A EXT-icmp-out --fragment -j LOG \
 --log-prefix "Fragmented outgoing ICMP: "

$IPT -A EXT-icmp-out --fragment -j DROP

Outgoing ping
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A EXT-icmp-out -p icmp \
 --icmp-type echo-request \
 -m state --state NEW \
 -j ACCEPT
fi

$IPT -A EXT-icmp-out -p icmp \
 --icmp-type echo-request -j ACCEPT

$IPT -A EXT-icmp-in -p icmp \
 --icmp-type echo-reply -j ACCEPT

Incoming ping

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A EXT-icmp-in -p icmp \
 -s $MY_ISP \
 --icmp-type echo-request \
 -m state --state NEW \
 -j ACCEPT
fi

$IPT -A EXT-icmp-in -p icmp \
 --icmp-type echo-request \
 -s $MY_ISP -j ACCEPT

$IPT -A EXT-icmp-out -p icmp \
 --icmp-type echo-reply \
 -d $MY_ISP -j ACCEPT

Destination Unreachable Type 3
$IPT -A EXT-icmp-out -p icmp \
 --icmp-type fragmentation-needed -j ACCEPT

Optimized Examples 165

$IPT -A EXT-icmp-in -p icmp \
 --icmp-type destination-unreachable -j ACCEPT

Parameter Problem
$IPT -A EXT-icmp-out -p icmp \
 --icmp-type parameter-problem -j ACCEPT

$IPT -A EXT-icmp-in -p icmp \
 --icmp-type parameter-problem -j ACCEPT

Time Exceeded
$IPT -A EXT-icmp-in -p icmp \
 --icmp-type time-exceeded -j ACCEPT

Source Quench
$IPT -A EXT-icmp-out -p icmp \
 --icmp-type source-quench -j ACCEPT

$IPT -A EXT-icmp-in -p icmp \
 --icmp-type source-quench -j ACCEPT

tcp-state-flags
The tcp-state-flags chain is the very first user-defined chain you will attach to both
the built-in INPUT and OUTPUT chains. The tests match on TCP state flag combinations
that are artificially crafted and often are used in stealth scans:

All of the bits are cleared
$IPT -A tcp-state-flags -p tcp --tcp-flags ALL NONE -j log-tcp-state

SYN and FIN are both set
$IPT -A tcp-state-flags -p tcp --tcp-flags SYN,FIN SYN,FIN -j log-tcp-state

SYN and RST are both set
$IPT -A tcp-state-flags -p tcp --tcp-flags SYN,RST SYN,RST -j log-tcp-state

FIN and RST are both set
$IPT -A tcp-state-flags -p tcp --tcp-flags FIN,RST FIN,RST -j log-tcp-state

FIN is the only bit set, without the expected accompanying ACK
$IPT -A tcp-state-flags -p tcp --tcp-flags ACK,FIN FIN -j log-tcp-state

PSH is the only bit set, without the expected accompanying ACK
$IPT -A tcp-state-flags -p tcp --tcp-flags ACK,PSH PSH -j log-tcp-state

URG is the only bit set, without the expected accompanying ACK
$IPT -A tcp-state-flags -p tcp --tcp-flags ACK,URG URG -j log-tcp-state

log-tcp-state
The log-tcp-state chain is used for two reasons. First, the log message is prefixed with
a specific explanatory message, and because this is a crafted packet, any IP or TCP options
are reported. Second, the matching packet is dropped immediately. The two generalized

166 Chapter 6 Firewall Optimization

logging chains that come up later are written under the assumption that the logged pack-
ets will be dropped by the default policy immediately upon return from the chains:

$IPT -A log-tcp-state -p tcp -j LOG \
 --log-prefix "Illegal TCP state: " \
 --log-ip-options --log-tcp-options

$IPT -A log-tcp-state -j DROP

connection-tracking
The connection-tracking chain is the second user-defined chain you will attach to
both the built-in INPUT and OUTPUT chains. Matching packets bypass the firewall rules
and are accepted immediately:

if ["$CONNECTION_TRACKING" = "1"]; then
 # Bypass the firewall filters for established exchanges
 $IPT -A connection-tracking -m state \
 --state ESTABLISHED,RELATED \
 -j ACCEPT

 $IPT -A connection-tracking -m state --state INVALID \
 -j LOG --log-prefix "INVALID packet: "
 $IPT -A connection-tracking -m state --state INVALID -j DROP
fi

local-dhcp-client-query and
remote-dhcp-server-response
The local-dhcp-client-query and remote-dhcp-server-response chains con-
tain the rules required of a DHCP client. Placement of these rules in the chain hierarchy
is important in relation to any spoofing or generalized broadcast rules. Furthermore, the
host will not configure its IP address until after receiving the DHCPACK commitment mes-
sage from the server. The destination address that the server uses in the DHCPACK message
depends on the particular server implementation. If you want to use this rule, you’ll need
to set DHCP_CLIENT to 1 and also define the DHCP_SERVER variable:

Some broadcast packets are explicitly ignored by the firewall.
Others are dropped by the default policy.
DHCP tests must precede broadcast-related rules, as DHCP relies
on broadcast traffic initially.

if ["$DHCP_CLIENT" = "1"]; then
 DHCP_SERVER="my.dhcp.server"

 # Initialization or rebinding: No lease or Lease time expired.

 $IPT -A local-dhcp-client-query \
 -s $BROADCAST_SRC \
 -d $BROADCAST_DEST -j ACCEPT

 # Incoming DHCPOFFER from available DHCP servers

Optimized Examples 167

 $IPT -A remote-dhcp-server-response \
 -s $BROADCAST_SRC \
 -d $BROADCAST_DEST -j ACCEPT

 # Fall back to initialization
 # The client knows its server, but has either lost its lease,
 # or else needs to reconfirm the IP address after rebooting.

 $IPT -A local-dhcp-client-query \
 -s $BROADCAST_SRC \
 -d $DHCP_SERVER -j ACCEPT

 $IPT -A remote-dhcp-server-response \
 -s $DHCP_SERVER \
 -d $BROADCAST_DEST -j ACCEPT

 # As a result of the above, we're supposed to change our IP
 # address with this message, which is addressed to our new
 # address before the dhcp client has received the update.
 # Depending on the server implementation, the destination address
 # can be the new IP address, the subnet address, or the limited
 # broadcast address.

 # If the network subnet address is used as the destination,
 # the next rule must allow incoming packets destined to the
 # subnet address, and the rule must precede any general rules
 # that block such incoming broadcast packets.

 $IPT -A remote-dhcp-server-response \
 -s $DHCP_SERVER -j ACCEPT

 # Lease renewal

 $IPT -A local-dhcp-client-query \
 -s $IPADDR \
 -d $DHCP_SERVER -j ACCEPT

fi

source-address-check
The source-address-check chain tests for identifiably illegal source addresses. The
chain is attached to the INPUT chain alone. The firewall rules guarantee that packets gen-
erated by this host contain your IP address as their source address. Notice that these rules
would need some adjustment if the host has more than one network interface or if a
private LAN is using private class IP addresses.

A DHCP client needs to handle DHCP-related broadcast traffic before performing
these tests:

Drop packets pretending to be originating from the receiving interface
$IPT -A source-address-check -s $IPADDR -j DROP

Refuse packets claiming to be from private networks

Hiva-Network.Com

http://www.hiva-network.com/

168 Chapter 6 Firewall Optimization

$IPT -A source-address-check -s $CLASS_A -j DROP
$IPT -A source-address-check -s $CLASS_B -j DROP
$IPT -A source-address-check -s $CLASS_C -j DROP
$IPT -A source-address-check -s $CLASS_D_MULTICAST -j DROP
$IPT -A source-address-check -s $CLASS_E_RESERVED_NET -j DROP
$IPT -A source-address-check -s $LOOPBACK -j DROP

$IPT -A source-address-check -s 0.0.0.0/8 -j DROP
$IPT -A source-address-check -s 169.254.0.0/16 -j DROP
$IPT -A source-address-check -s 192.0.2.0/24 -j DROP

destination-address-check
The destination-address-check chain tests for broadcast packets, misused multicast
addresses, and well-known unprivileged service ports. The chain is attached to both the
INPUT and OUTPUT chains. A DHCP client needs to handle DHCP-related broadcast traf-
fic before performing these tests:

Block directed broadcasts from the Internet

$IPT -A destination-address-check $BROADCAST_DEST -j DROP
$IPT -A destination-address-check -d $SUBNET_BASE -j DROP
$IPT -A destination-address-check -d $SUBNET_BROADCAST -j DROP
$IPT -A destination-address-check ! -p udp \
 -d $CLASS_D_MULTICAST -j DROP

Avoid ports subject to protocol and system administration problems

TCP unprivileged ports
Deny connection requests to NFS, SOCKS, and X Window ports
$IPT -A destination-address-check -p tcp -m multiport \
 --destination-port
$NFS_PORT,$OPENWINDOWS_PORT,$SOCKS_PORT,$SQUID_PORT \
 --syn -j DROP

$IPT -A destination-address-check -p tcp --syn \
 --destination-port $XWINDOW_PORTS -j DROP

UDP unprivileged ports
Deny connection requests to NFS and lockd ports
$IPT -A destination-address-check -p udp -m multiport \
 --destination-port $NFS_PORT,$LOCKD_PORT -j DROP

Logging Dropped Packets with iptables
The EXT-log-in and EXT-log-out chains contain the rules that log packets immediately
before the packets fall off the end of their respective chains and are dropped by the default
policy. Almost all outgoing packets to be dropped are logged because they indicate either
a problem in the firewall rules or an unknown (or unauthorized) service attempting to
contact the outside world:

Optimized Examples 169

ICMP rules

$IPT -A EXT-log-in -p icmp \
 ! --icmp-type echo-request -m limit -j LOG

TCP rules

$IPT -A EXT-log-in -p tcp \
 --dport 0:19 -j LOG

Skip ftp, telnet, ssh
$IPT -A EXT-log-in -p tcp \
 --dport 24 -j LOG

Skip smtp
$IPT -A EXT-log-in -p tcp \
 --dport 26:78 -j LOG

Skip finger, www
$IPT -A EXT-log-in -p tcp \
 --dport 81:109 -j LOG

Skip pop-3, sunrpc
$IPT -A EXT-log-in -p tcp \
 --dport 112:136 -j LOG

Skip NetBIOS
$IPT -A EXT-log-in -p tcp \
 --dport 140:142 -j LOG

Skip imap
$IPT -A EXT-log-in -p tcp \
 --dport 144:442 -j LOG

Skip secure_web/SSL
$IPT -A EXT-log-in -p tcp \
 --dport 444:65535 -j LOG

#UDP rules

$IPT -A EXT-log-in -p udp \
 --dport 0:110 -j LOG

Skip sunrpc
$IPT -A EXT-log-in -p udp \
 --dport 112:160 -j LOG

Skip snmp
$IPT -A EXT-log-in -p udp \
 --dport 163:634 -j LOG

Skip NFS mountd
$IPT -A EXT-log-in -p udp \
 --dport 636:5631 -j LOG

170 Chapter 6 Firewall Optimization

Skip pcAnywhere
$IPT -A EXT-log-in -p udp \
 --dport 5633:31336 -j LOG

Skip traceroute's default ports
$IPT -A EXT-log-in -p udp \
 --sport $TRACEROUTE_SRC \
 --dport $TRACEROUTE_DEST -j LOG

Skip the rest
$IPT -A EXT-log-in -p udp \
 --dport 33434:65535 -j LOG

Outgoing Packets

Don't log rejected outgoing ICMP destination-unreachable packets
$IPT -A EXT-log-out -p icmp \
 --icmp-type destination-unreachable -j DROP

$IPT -A EXT-log-out -j LOG

The Optimized nftables Script
The nftables script takes advantage of additional external rules files in nftables syntax:

� nft-vars—Contains variables related to the script, defined in nftables format
rather than shell format

� setup-tables—Contains the main filter and nat table architecture, including
INPUT and OUTPUT chains

� localhost-policy—Contains rules for localhost traffic
� connectionstate-policy—Sets the connection state policies
� invalid-policy—Sets policies related to invalid traffic
� dns-policy—Contains policies related to DNS lookups
� tcp-client-policy—Contains rules related to outbound client connections
� tcp-server-policy—Contains rules related inbound connections if the com-

puter acts as a server
� icmp-policy—Contains rules related ICMP requests
� log-policy—Contains rules related to logging
� default-policy—Contains the final default policy rules for the firewall

Firewall Initialization
The firewall script starts out by defining the location of the nftables firewall administra-
tion command:

#!/bin/sh

NFT="/usr/local/sbin/nft" # Location of nft on your system

Optimized Examples 171

A number of kernel parameters were also set; refer to Chapter 5 for an explanation of
these parameters:

Enable broadcast echo Protection
echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts
Disable Source Routed Packets
for f in /proc/sys/net/ipv4/conf/*/accept_source_route; do
 echo 0 > $f
done
Enable TCP SYN Cookie Protection
echo 1 > /proc/sys/net/ipv4/tcp_syncookies
Disable ICMP Redirect Acceptance
for f in /proc/sys/net/ipv4/conf/*/accept_redirects; do
 echo 0 > $f
done

Don't send Redirect Messages
for f in /proc/sys/net/ipv4/conf/*/send_redirects; do
 echo 0 > $f
done
Drop Spoofed Packets coming in on an interface, which, if replied to,
would result in the reply going out a different interface.
for f in /proc/sys/net/ipv4/conf/*/rp_filter; do
 echo 1 > $f
done
Log packets with impossible addresses.
for f in /proc/sys/net/ipv4/conf/*/log_martians; do
 echo 1 > $f
done

The first part of the script resets and deletes existing chains, as shown in Chapter 5:

for i in '$NFT list tables | awk '{print $2}''
do
 echo "Flushing ${i}"
 $NFT flush table ${i}
 for j in '$NFT list table ${i} | grep chain | awk '{print $2}''
 do
 echo "...Deleting chain ${j} from table ${i}"
 $NFT delete chain ${i} ${j}
 done
 echo "Deleting ${i}"
 $NFT delete table ${i}
done

Here is the final code for the beginning of the firewall script, namely, the code to
enable the firewall to be stopped easily. With this code placed below the preceding code,
when you call the script with an argument of "stop" the script will flush, clear, and reset
the default policies, and the firewall will effectively stop.

if ["$1" = "stop"]
then
echo "Firewall completely stopped! WARNING: THIS HOST HAS NO FIREWALL RUNNING."
exit 0
fi

Hiva-Network.Com

http://www.hiva-network.com/

172 Chapter 6 Firewall Optimization

Now the tables are re-created:

$NFT -f setup-tables
$NFT -f localhost-policy
$NFT -f connectionstate-policy

Building the Rules Files
The following sections show the files containing nftables rules for the various compo-
nents of the firewall. The rules files use nftables-defined variables which are included
within each rules file and housed in a file called nft-vars. The nft-vars file will grow
as rules are added. To begin with, the nft-vars file contains the following:

define int_loopback = lo
define int_internet = eth0
define ip_external = <your external ip>
define subnet_external = <your external subnet>
define net_loopback = 127.0.0.0/8
define net_class_a = 10.0.0.0/8
define net_class_b = 172.16.0.0/16
define net_class_c = 192.168.0.0/16
define net_class_d = 224.0.0.0/4
define net_class_e = 240.0.0.0/5
define broadcast_src = 0.0.0.0
define broadcast_dest = 255.255.255.255
define ports_priv = 0-1023
define ports_unpriv = 1024-65535

Creating the Tables
The setup-tables rules create the filter and nat tables, create INPUT and OUTPUT
chains for each, and hook those chains into their respective hooks within nftables so
that the chains receive packets. The setup-tables rules are:

include "nft-vars"
table filter {
 chain input {
 type filter hook input priority 0;
 }
 chain output {
 type filter hook output priority 0;
 }
}

Enabling Localhost Traffic
Enabling localhost communication takes place in the localhost-policy rules file. Note
the use of an nftables-defined variable ($int_loopback) in this example:

include "nft-vars"
table filter {
 chain input {
 iifname $int_loopback accept
 }
 chain output {
 oifname $int_loopback accept
 }
}

Optimized Examples 173

Enabling Connection State
Connection state tracking comes within the connectionstate-policy rules file:

include "nft-vars"
table filter {
 chain input {
 ct state established,related accept
 ct state invalid log prefix "INVALID input: " limit rate 3/second

�drop
 }
 chain output {
 ct state established,related accept
 ct state invalid log prefix "INVALID output: " limit rate 3/

�second drop
 }
}

Dropping Invalid Traffic
The rules to drop invalid traffic are contained in a rules file called invalid-policy:

include "nft-vars"
table filter {
 chain input {
 iif $int_internet ip saddr $ip_external drop
 iif $int_internet ip saddr $net_class_a drop
 iif $int_internet ip saddr $net_class_b drop
 iif $int_internet ip saddr $net_class_c drop
 iif $int_internet ip protocol udp ip daddr $net_class_d accept
 iif $int_internet ip saddr $net_class_e drop
 iif $int_internet ip saddr $net_loopback drop
 iif $int_internet ip daddr $subnet_external drop
 }
}

Enabling DNS Traffic
The rules to identify DNS traffic come first. Until the DNS rules are installed, your net-
work software won’t be capable of locating services and hosts out on the Internet unless
you use the IP address.

For these rules, three new variables are added to the nft-vars file:

define nameserver_1 = <your nameserver ip>
define nameserver_2 = <second nameserver ip>
define nameserver_3 = <third nameserver ip, if necessary>

The file dns-policy is created to hold the following rules and then loaded in the
main rc.firewall script with the command nft -f dns-policy:

include "nft-vars"
table filter {
 chain input {
 ip daddr { $nameserver_1,$nameserver_2,$nameserver_3 } udp sport

�53 udp dport 53 accept
 ip daddr { $nameserver_1,$nameserver_2,$nameserver_3 } tcp sport

�53 tcp dport $ports_unpriv accept

174 Chapter 6 Firewall Optimization

 ip daddr { $nameserver_1,$nameserver_2,$nameserver_3 } udp sport
�53 udp dport $ports_unpriv accept

 }
 chain output {
 ip daddr { $nameserver_1,$nameserver_2,$nameserver_3 } udp sport

�53 udp dport 53 accept
 ip daddr { $nameserver_1,$nameserver_2,$nameserver_3 } tcp sport

�$ports_unpriv tcp dport 53 accept
 ip daddr { $nameserver_1,$nameserver_2,$nameserver_3 } udp sport

�$ports_unpriv udp dport 53 accept
 }
}

The first rule in the INPUT and OUTPUT chains matches on queries from the local
cache and forward name server, if you have one, and responses from the remote DNS
server. The local server is configured as a slave to the remote, primary server, so the local
server will fail if the lookup doesn’t succeed. This configuration is less common for a small
office/home office.

The next rules in each of the INPUT and OUTPUT chains match on standard DNS client
lookup requests over TCP, when the server’s response is too large to fit in a UDP DNS
packet. These rules would be used by both a forwarding name server and a standard client.

Local Client Traffic over TCP
Connecting from your computer to the Internet over TCP can be accomplished by add-
ing specific output rules for the servers and services to which you want to connect. As
before, the rules shown for this purpose assume the use of the state tracking module. If
state tracking isn’t enabled, a mirror rule needs to be added to the INPUT chain to enable
the traffic coming back in for a given connection.

The rules require the addition of a server_smtp variable to the nft-vars program:

define server_smtp = <your SMTP server>

The rules go into a file called tcp-client-policy which is then loaded into the
rc.firewall program with the command

nft -f tcp-client-policy

Here are the rules for tcp-client-policy:

include "nft-vars"
table filter {
 chain input {
 }
 chain output {
 tcp dport {21,22,80,110,143,993,995,443} tcp sport $ports_unpriv

�accept
 ip daddr $server_smtp tcp dport 25 tcp sport $ports_unpriv accept
 }
}

Optimized Examples 175

Local Server Traffic over TCP
Enabling services from your local server to allow clients to connect to you is accomplished
by adding specific rules to the INPUT chain. Ideally, you could limit the connections to
known clients and then add a rule for the source address (ip saddr <your client
ip>), but in the real world that’s typically not possible.

The following file is loaded in the rc.firewall script with

nft -f tcp-server-policy

The rules file called tcp-server-policy contains the following to enable connec-
tions to port 22 (SSH) on the local server from any client:

include "nft-vars"
table filter {
 chain input {
 ip daddr $ip_external tcp sport $ports_unpriv tcp dport {22} accept
 }
 chain output {
 }
}

ICMP Traffic
Finally, the last pair of rules match on incoming and outgoing ICMP traffic. These rules
are loaded into a file called icmp-policy:

include "nft-vars"
table filter {
 chain input {
 icmp type { echo-reply,destination-unreachable,parameter-

�problem,source-quench,time-exceeded} accept
 }
 chain output {
 icmp type { echo-request,parameter-problem,source-quench} accept
 }
}

The file is then added to the main rc.firewall script with the command

nft -f icmp-policy

Logging Dropped Packets with nftables
The final rules for the firewall log packets that haven’t been handled by other, previously
loaded rules. Almost all outgoing packets to be dropped are logged because they indicate
either a problem in the firewall rules or an unknown (or unauthorized) service attempting
to contact the outside world.

The file is called log-policy and contains the following rules. Load the file just prior
to the default policy with the command

nft -f log-policy

Hiva-Network.Com

http://www.hiva-network.com/

176 Chapter 6 Firewall Optimization

Here are the rules:

include "nft-vars"
table filter {
 chain input {
 log prefix "INPUT packet dropped: " limit rate 3/second
 }
 chain output {
 log prefix "OUTPUT packet dropped: " limit rate 3/second
 }
}

What Did Optimization Buy?
The goal of optimization is to get the packet through the filter processing as quickly as
possible, with as few unnecessary tests as possible. Ideally, you want the packets flowing
through at line speed.

In terms of the firewall itself, three factors affect performance: the number of rules
installed in the kernel; the chain traversal length, or the number of rules that any given
packet is tested against before it matches; and the total number of match tests performed
on the packet. Also, when it comes to using the state module, remember that the trade-off
is speed versus memory.

Note that some of the variations in the tables are artifacts of how the sample scripts in
Chapter 5 and this chapter are organized, as well as some differences in the TCP state flag
and source address checks between the two examples.

iptables Optimization
For iptables, the optimized versions have more rules than their straight-through coun-
terparts! Even more surprising, the connection-tracking versions have more rules than the
classic, stateless versions! Didn’t we already conclude that use of the state match module
reduces the number of rules by eliminating individual ACCEPT rules for server responses
to client requests? Yes and no. . . . The absolute number of rules increases, because the static
rules must remain present to account for any cases in which a state table entry has timed
out or been replaced due to a resource shortage. The number of input rules traversed can
drop dramatically.

Using user-defined chains results in a few more rules as well. The additional rules per-
form the intermediate packet selection and branching. There’s a small amount of overhead
in the top-level branching decisions. The overhead isn’t significant, and even the small
amount of apparent overhead is deceiving. The number of rules traversed isn’t as critical a
performance metric as the number of individual header field match tests performed.

Optimization with user-defined chains can significantly reduce the number of rules
that a response packet must be tested against before reaching its final matching rule. What
isn’t obvious here is that the straight-through rule set includes a set amount of overhead
because of the antispoofing rules. Because the example firewalls were client centered, the

Summary 177

straight-through server traversal lengths are much longer than the client lengths as a result
of the address checking done on the incoming packets.

Using the state module and thereby bypassing the firewall for established traffic dramat-
ically reduces list traversal length for established connections. The increase in the number
of rules traversed for new connections is the result of the duplicate rules, the connection-
tracking rules, and their static counterparts.

Even with the state module, the initial packet always takes the static path. So the gain
that the classic optimized version shows over the straight-through version still applies to
the first packet.

Finally, the benefits of both optimization and connection state tracking are obvious!
The categorization being performed by the user-defined chains dramatically reduces
the actual number of tests that a packet is tested against in a classic packet-filtering fire-
wall. Use of the state modules reduces the number of tests even further by skipping the
rules altogether. Furthermore, the data channel connection is matched immediately as a
RELATED connection.

What is perhaps least obvious, unless you’ve read the kernel firewall code, is that the
real performance issue isn’t the number of rules traversed, per se, but the number of com-
parison tests performed. Each unmatched traversed rule represents at least one comparison
(for example, is the incoming packet an ICMP packet or a TCP packet, or is it arriving on
the loopback interface or some other specific interface?). User-defined chains allow the
comparisons to be partitioned by branching off into dedicated chains at critical compari-
son decision points.

nftables Optimization
For the nftables script, much of the processing was moved to native nftables rules
files which were then loaded by the shell script. The benefit of this optimization is that it
brings the rules closer to where they’re processed without having to run a shell command
for each and every individual rule.

The rules are also divided logically into multiple policy files, each containing rules
for similar traffic. This enables easier maintenance and can be condensed or expanded as
needed depending on your particular situation.

Summary
Chapter 5 introduced iptables and nftables by walking through the steps of building
a simple firewall for a standalone system. This chapter discussed the ideas behind firewall
optimization and then built user-defined chains to optimize the firewall example from
Chapter 5. Finally, the effects of optimization were examined, as were the effects of using
the state module.

This page intentionally left blank

7
Packet Forwarding

This chapter covers some of the basic issues underlying LAN security, the forwarding
of gateway firewalls, and perimeter networks. Security policies are defined relative to the
site’s level of security needs, the importance or value of the data being protected, and the
cost of lost data or privacy. This chapter opens by reviewing the firewalls presented in
earlier chapters and then discusses issues that the site’s policy maker must address when
choosing server placement and determining security policies.

You may need Network Address Translation (NAT) to access the Internet from internal
machines. NAT is not discussed until Chapter 8, “NAT—Network Address Translation.”
This chapter focuses on forwarding alone.

For readers familiar with ipchains or ipfwadm, forwarding and NAT were combined
syntactically. Both functions were specified by a single forward rule. These logically distinct
functions are clearly distinct in iptables and nftables. In fact, the two functions are
handled by separate tables with separate chains. NAT is applied separately at a different
point in the packet’s traversal path through the system. This chapter focuses on the
iptables services available in the filter table and in its extensions and the forward
features of nftables. Chapter 8 looks at the services related to NAT.

The Limitations of a Standalone Firewall
The single-system firewall presented in Chapter 5, “Building and Installing a Standalone
Firewall,” is a basic bastion firewall, using only basic chains in the filter table. When the
firewall is a packet-filtering router that has a network interface connected to the Inter-
net and another connected to your LAN (referred to as a dual-homed system), the firewall
applies rules to decide whether to forward or block packets crossing between the two
interfaces. In this case, the packet-filtering firewall is a static router with traffic-screening
rules enforcing local policies concerning which packets are allowed through the network
interfaces.

As pointed out in Chapter 3, “iptables: The Legacy Linux Firewall Administration
Program,” Netfilter handles forwarded packets quite differently from the previous IPFW
mechanism. Forwarded packets are inspected by the FORWARD chain alone. The INPUT and
OUTPUT rules don’t apply. Network traffic related to the local firewall host and network
traffic related to the LAN have completely different sets of rules and rule chains.

Hiva-Network.Com

http://www.hiva-network.com/

180 Chapter 7 Packet Forwarding

Rules on the FORWARD chain can specify both the incoming and the outgoing inter-
face. For a dual-homed host setup with a LAN, the firewall rules applied to the incoming
and outgoing network interfaces represent an I/O pair—one rule for arriving packets
and a reverse rule for departing packets. The rules are directional. The two interfaces are
handled as a unit.

Traffic is not routed directly between the Internet and the LAN automatically. Packets
to be forwarded won’t flow without a rule pair to accept the traffic. The filtering rules
applied to the two interfaces act as a firewall and static router between the two networks.

The firewall configuration presented in Chapter 5 is typically adequate for an indi-
vidual home system with a single network interface.

As a standalone gateway firewall protecting a LAN, if the firewall machine is ever
compromised, it’s all over. Even if the firewall’s local interfaces have completely different
policies from those for forwarded traffic, if the system has been compromised, it won’t be
long before the interloper has gained root access. At that point, if not before, the inter-
nal systems are wide open as well. Chances are, a home LAN will never have to face this
situation if the services offered to the Internet are chosen carefully and a stringent firewall
policy is enforced. Still, a standalone gateway firewall represents a single point of failure. It’s
an all-or-nothing situation.

Many larger organizations and corporations rely on a single firewall setup, and many
others use one of two other architectures: a screened-host architecture with no direct
routing, or a screened-subnet architecture with proxy services, along with a perimeter
DMZ network created either between or alongside the external firewall, separated from
the private LAN. Public servers in the DMZ network have their own specialized, bastion
firewalls as well. This means that these sites have a lot more computers at their disposal—
and a staff to manage them.

DMZ: A Perimeter Network by Any Other Name
A perimeter network between two firewalls is called a demilitarized zone (DMZ). The purpose
of a DMZ is to establish a protected space from which to run public servers (or services)
and to isolate that space from the rest of the private LAN. If a server in the DMZ is
compromised, that server remains isolated from the LAN; the gateway firewalls and bastion
firewalls running on the other DMZ servers offer protection against the compromised
server.

In addition to the single-system, standalone firewall, the firewall presented in Chapter 5
can be expanded to form the basis for a dual-homed gateway firewall protecting the host,
which offers one or a few public services. A home LAN is often protected by a single-
gateway firewall that both filters forwarded traffic and offers public services.

What options are available for a dual-homed system that can’t afford the risk of a
single-gateway firewall or the cost of many computers and a staff to manage them? Fortu-
nately, a dual-homed firewall and LAN offer stronger security when the system is config-
ured carefully. The question is this: Is the extra effort of maintaining the firewall worth the
increased security in a trusted environment?

Basic Gateway Firewall Setups 181

Basic Gateway Firewall Setups
Two basic gateway firewall setups are used here. As shown in Figure 7.1, the gateway has
two network interfaces: one connected to the Internet and one connected to the DMZ.
Public Internet services are offered from machines in the DMZ network. The gateway
firewall offers no services. A second firewall, a choke firewall, is also connected to the
DMZ network, separating the internal, private networks from the quasi-public server
machines in the perimeter network. Private machines are protected behind the choke
firewall on the internal LAN. Additionally, each of the server machines in the DMZ runs a
specialized firewall of its own. If the gateway firewall or one of the servers fails, the public
server machines in the DMZ continue to run their individual firewalls. The choke firewall
protects the internal LAN from a compromised gateway or from any other compromised
machine in the perimeter network. Traffic between the LAN and the Internet passes
through both firewalls and crosses the perimeter network.

In the second setup, the gateway has three network interfaces: one connected to the
Internet, one connected to the DMZ, and one connected to the private LAN. As shown
in Figure 7.2, traffic between the LAN and the Internet, and traffic between the DMZ
and the Internet, share nothing except the gateway’s external network interface.

An advantage of this configuration over the first is that neither the LAN nor the DMZ
shares the traffic load of both networks. Another advantage is that it’s easier to define rules
that refer to all LAN or DMZ traffic specifically, as opposed to traffic related to the other
network. Another advantage is that a single-gateway host is less expensive than two sepa-
rate firewall devices.

The disadvantage of this configuration over the first is that the gateway becomes a
single point of failure for both networks. Also, the firewall rules in the single host include

Figure 7.1 A DMZ between a dual-homed gateway and a choke firewall

Internet

Firewall

Web Server

DNS Server

Mail Server

Firewall

PC Mac Linux Printer

182 Chapter 7 Packet Forwarding

all the complexity related to both the DMZ and the LAN. This complexity can become
confusing when you’re developing firewall rules by hand.

A common third alternative is to add a filtering router that separates LAN and DMZ
traffic. DMZ servers run their own bastion firewalls. There may or may not be a general-
ized firewall between the router and the DMZ. As shown in Figure 7.3, the gateway fire-
wall is separate from the router and protects the LAN. The filtering router performs some
of the basic filtering for both the LAN and the DMZ. The gateway firewall doesn’t need
to provide this basic filtering, and it effectively functions similarly to the choke firewall in
the first setup.

LAN Security Issues
Security issues are largely dependent on the size of the LAN, its architecture, and what
it’s used for. The services and architecture are also influenced by the public IP addressing
available to the site. Perhaps even more basic than that is the type of Internet connection
the site has: dial-up, DSL, wireless, cable, satellite, ISDN, leased line, or any of the other

Figure 7.2 A tri-homed firewall separating a LAN and a DMZ

Internet

Network Interface

Firewall

Local Host Services

Firewall

LAN
Interface

DMZ
Interface

Firewall Web Server

DNS Server

Mail Server

PC

Printer

Mac

Linux

Figure 7.3 A filtering router in front of LAN and DMZ firewalls

Inte r ne t

Filte r ing Route r

Fir e w al l Fir e w al l

W eb Se r v e r

DNS Se r v e r

Mail Se r v e r

PC

P r inte r

Mac

Li n u x

Configuration Options for a Trusted Home LAN 183

types of Internet connections. Following are some questions you should consider when
creating a security policy for your site.

Is a public IP address dynamically and temporarily assigned via DHCP or IPCP? Does
the site have a single permanently assigned public IP address or a block of them?

Are services offered to the Internet? Are these services hosted on the firewall machine,
or are they hosted on internal machines? For example, you might offer email service from
the gateway firewall machine but serve a website from an internal machine in the DMZ.
When services are hosted from internal machines, you want to place those machines on
a perimeter network and apply completely different packet-filtering and access policies
to them. If services are offered from internal machines, is this fact visible to the outside,
or are the services proxied or transparently forwarded via NAT so that they appear to be
available from the firewall machine?

How much information do you want to make publicly available about the machines on
your LAN? Do you intend to host local DNS services? Are local DNS database contents
available to the Internet?

Can people log in to your machines from the Internet? How many and which local
machines are accessible to them? Do all user accounts have the same access rights? Will
incoming connections be proxied for additional access control?

Are all internal machines equally accessible to local users and from all local machines?
Are external services equally accessible from all internal machines? For example, if you use
a screened-host firewall architecture, users must log in to the firewall machine directly to
have access to the Internet. No routing would be done at all.

Are private LAN services running behind the firewall? For example, is NFS used inter-
nally, or Samba, or a networked printer? Do you need to keep any of these services from
leaking information or broadcast traffic to the Internet, such as SNMP, DHCP, or ntpd?
Maintaining such services behind the secondary choke firewall ensures complete isolation
of these services from the Internet.

Related to services designed for LAN use are questions about local versus external
access to services designed for Internet use. Will you offer FTP internally but not exter-
nally, or will you possibly offer different kinds of FTP services to both? Will you run a
private web server or configure different parts of the same site to be available to local users
as opposed to remote users? Will you run a local mail server to send mail but use a dif-
ferent mechanism to retrieve incoming mail from the Internet (that is, will your mail be
delivered directly to your machine’s user accounts, or will you explicitly retrieve mail from
an ISP)?

Configuration Options for a Trusted Home LAN
You must consider two kinds of internal network traffic. The first kind is local access to
the gateway firewall, through the internal interface, as shown in Figure 7.4. The second is
local access to the Internet, through the gateway machine’s external interface.

Presumably, most small systems have no reason to filter packets between the firewall
and the local network in general. However, because most home-based sites are assigned a

Hiva-Network.Com

http://www.hiva-network.com/

184 Chapter 7 Packet Forwarding

single IP address, one exception arises: NAT. Presumably, the only internal filtering-related
action you must take will be to enable your own form of source address spoofing by
applying NAT packets moving between your internal machines and the Internet. Most of
the emphasis is on filtering packets between the firewall and the Internet.

How Trustworthy Are “Trusted Home LANs”?
Although small-business and residential sites often like to view their networks as “trusted,”
this is often not the case. The problem isn’t the local users, but rather the high incidence
rate of compromise among these systems.

LAN Access to the Gateway Firewall
In a home environment, chances are good that you’ll want to enable unrestricted access
between the LAN machines and the gateway firewall. (Some parents have reason to
disagree.)

The assumption in this section is that any public services are hosted on the firewall.
LAN hosts are purely client machines. The LAN is allowed to initiate connections to the
firewall, but the firewall is not allowed to initiate connections to the LAN. There will be

Figure 7.4 LAN traffic to the firewall machine and to the Internet

Internet

PC Mac Linux

NAT

DNS
Server

Mail
Server

External Network Interface

Internal Network Interface

SSH
Server

FTP
Server

Web
Server

DNS
Server

Mail
Server

Web
Proxy

PC Mac Linux

Configuration Options for a Trusted Home LAN 185

exceptions to this rule of thumb. You might want the firewall host to have access to a local,
networked printer, for example. (A business site would never make this choice. The fire-
wall would be as protected against problems originating in the LAN as it is from problems
originating on the public Internet.)

Starting with the firewall developed in Chapter 5 as the basis, additional constants
are needed in the firewall example to refer to the internal interface connecting to the
LAN. This example defines the internal network interface as eth1; the LAN is defined as
including Class C addresses ranging from 192.168.1.0 to 192.168.1.255; an external
interface, the one facing the outside world, is defined as eth0:

LAN_INTERFACE="eth1"
EXTERNAL_INTERFACE="eth0"
LAN_ADDRESSES="192.168.1.0/24"

Allowing unrestricted access across the interfaces is a simple matter of allowing all
protocols and all ports by default. Notice that the LAN can initiate new connections to
remote servers, but new incoming connections from remote sites are not accepted. These
are the iptables rules:

$IPT -A FORWARD -i $LAN_INTERFACE -o $EXTERNAL_INTERFACE \
 -p tcp -s $LAN_ADDRESSES --sport $UNPRIVPORTS \
 -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

$IPT -A FORWARD -i $EXTERNAL_INTERFACE -o $LAN_INTERFACE \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

Here are similar nftables rules:

$NFT add rule filter forward iif $LAN_INTERFACE oif $EXTERNAL_INTERFACE \
 ip protocol tcp ip saddr $LAN_ADDRESSES tcp sport $UNPRIVPORTS \
 ct state new,established,related accept
$NFT add rule filter forward iif $EXTERNAL_INTERFACE oif $LAN_INTERFACE ct state
�established,related accept

Notice also that these two rules forward traffic. They do not affect local traffic between
the LAN and the firewall itself. To access services on the firewall host, local INPUT and
OUTPUT rules are needed as well:

$IPT -A INPUT -i $LAN_INTERFACE \
 -p tcp -s $LAN_ADDRESSES --sport $UNPRIVPORTS \
 -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

$IPT -A OUTPUT -o $LAN_INTERFACE \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

The nftables rules are:

$NFT add rule filter input iif $LAN_INTERFACE \
 ip protocol tcp ip saddr $LAN_ADDRESSES \
 tcp sport $UNPRIVPORTS ct state new,established,related accept
$NFT add rule filter output oif $LAN_INTERFACE ct state established,related
�accept

186 Chapter 7 Packet Forwarding

Both the forwarding and the internal interface rules could be as service specific as the
external interface rules in Chapter 5. In today’s world, the internal interface and forward-
ing rules should be that specific. The rules in this section merely lay the groundwork,
introducing the forwarding rules themselves.

LAN Access to Other LANs: Forwarding Local Traffic among
Multiple LANs
If the machines on your LAN, or on multiple LANs, require routing among themselves,
you need to allow access among the machines for the service ports that they require,
unless they have alternative internal connection paths. In the former case, any local rout-
ing done between LANs would be done by the firewall.

The assumption in this section is that there is a gateway firewall with two network
interfaces, a DMZ server network, an internal choke firewall with two network inter-
faces, and the LAN private network. This is the setup shown earlier in Figure 7.1. Traffic
between the LAN and the Internet crosses through the DMZ network between the choke
and gateway firewalls. This setup is common in smaller sites.

This example renames the internal network interface on the gateway as DMZ_INTERFACE.
Another constant is needed for the firewall. The DMZ is defined as including Class C pri-
vate addresses ranging from 192.168.3.0 to 192.168.3.255:

DMZ_INTERFACE="eth1"
DMZ_ADDRESSES="192.168.3.0/24"

The following first two rules allow local access to the gateway firewall host from the
LAN. In practice, the LAN would not be allowed access to all ports on the firewall. The
second two rules allow the firewall itself to access specific services offered in the DMZ on
a server-by-server basis. Again, a firewall in a larger setting would have little or no reason
to access services hosted in the DMZ. In most cases, the firewall host wouldn’t offer any
services to the DMZ at all. In larger sites, it’s probable that the firewall wouldn’t offer any
services to the LAN either:

$IPT -A INPUT -i $DMZ_INTERFACE -s $LAN_ADDRESSES -d $GATEWAY \
 -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

$IPT -A OUTPUT -o $DMZ_INTERFACE -s $GATEWAY -d $LAN_ADDRESSES \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

$IPT -A OUTPUT -o $DMZ_INTERFACE -s $GATEWAY -d $DMZ_ADDRESSES \
 -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

$IPT -A INPUT -i $DMZ_INTERFACE -s $DMZ_ADDRESSES -d $GATEWAY \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

The corresponding nftables rules are:

$NFT add rule filter input iif $DMZ_INTERFACE ip saddr $LAN_ADDRESSES ip daddr
�$GATEWAY ct state new,established,related accept
$NFT add rule filter output oif $DMZ_INTERFACE ip saddr $GATEWAY ip daddr
�$LAN_ADDRESSES ct state established,related accept

Configuration Options for a Trusted Home LAN 187

$NFT add rule filter output oif $DMZ_INTERFACE ip saddr $GATEWAY ip daddr
�$DMZ_ADDRESSES ct state new,established,related accept
$NFT add rule filter input iif $DMZ_INTERFACE ip saddr $DMZ_ADDRESSES ip daddr
�$GATEWAY ct state established,related accept

The next rules forward traffic between the internal networks and the Internet. The
DMZ and LAN traffic is handled separately. The DMZ traffic represents incoming con-
nection requests from the Internet. The LAN traffic represents outgoing connection
requests to the Internet. Again, in practice the DMZ rules would be very specific by server
address and service:

$IPT -A FORWARD -i $EXTERNAL_INTERFACE -o $DMZ_INTERFACE \
 -d $DMZ_ADDRESSES \
 -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

$IPT -A FORWARD -i $DMZ_INTERFACE -o $EXTERNAL_INTERFACE \
 -s $DMZ_ADDRESSES \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

$IPT -A FORWARD -i $DMZ_INTERFACE -o $EXTERNAL_INTERFACE \
 -s $LAN_ADDRESSES \
 -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

$IPT -A FORWARD -i $EXTERNAL_INTERFACE -o $DMZ_INTERFACE \
 -d $LAN_ADDRESSES \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

The nftables rules are:

$NFT add rule filter forward iif $EXTERNAL_INTERFACE oif $DMZ_INTERFACE ip daddr
�$DMZ_ADDRESSES ct state new,established,related accept
$NFT add rule filter forward iif $DMZ_INTERFACE oif $EXTERNAL_INTERFACE ip saddr
�$DMZ_ADDRESSES ct state established,related accept
$NFT add rule filter forward iif $DMZ_INTERFACE oif $EXTERNAL_INTERFACE ip saddr
�$LAN_ADDRESSES ct state new,established,related accept
$NFT add rule filter forward iif $EXTERNAL_INTERFACE oif $DMZ_INTERFACE ip daddr
�$LAN_ADDRESSES ct state established,related accept

Note that the preceding forwarding rules for the DMZ are not complete. Servers in
the DMZ sometimes initiate outgoing connections as well, such as connection requests
from a web proxy server or a mail gateway server.

On the choke firewall, the following rules forward traffic between the LAN and DMZ
networks. Notice that the LAN can initiate new connections, but new incoming con-
nections from either the DMZ or the Internet to the LAN are not accepted. Again, in
practice, the LAN would be given more controlled access to the DMZ as well as to the
gateway firewall, assuming that the gateway provided any services:

$IPT -A FORWARD -i $LAN_INTERFACE -o $DMZ_INTERFACE \
 -s $LAN_ADDRESSES \
 -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

$IPT -A FORWARD -i $DMZ_INTERFACE -o $LAN_INTERFACE \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

Hiva-Network.Com

http://www.hiva-network.com/

188 Chapter 7 Packet Forwarding

The nftables rules are:

$NFT add rule filter forward iif $LAN_INTERFACE oif $DMZ_INTERFACE ip saddr
�$LAN_ADDRESSES ct state new,established,related accept
$NFT add rule filter forward iif $DMZ_INTERFACE oif $LAN_INTERFACE ct state
�established,related accept

Configuration Options for a Larger or Less
Trusted LAN
A business or an organization, and many home sites, would use more elaborate, specific
mechanisms than the simple, generic forwarding firewall rules presented in the preceding
two sections for a trusted home LAN. In less trusted environments, firewall machines are
protected from internal users as strongly as from external users.

Port-specific firewall rules are defined for the internal interfaces as well as for the
external interfaces. Internal rules might be a mirror image of the rules for the external
interfaces, or the rules might be more inclusive. What is allowed through the choke fire-
wall machine’s internal network interface depends on the types of systems running on the
LAN and the types of local services running in the DMZ, as well as which Internet ser-
vices are accessible to the LAN according to local security policies.

For example, you might want to block local broadcast messages from reaching the gate-
way firewall. If not all your users are completely trusted, you might want to restrict what
passes into the choke firewall from internal machines as strongly as what comes in from
the Internet. Additionally, you should keep the number of user accounts to a bare mini-
mum on the firewall machine. Ideally, a firewall has no user accounts, with the exception
of a single unprivileged administrative account.

A home-based business might have a single IP address, requiring LAN Network
Address Translation. However, businesses often lease several publicly registered IP addresses
or an entire network address block. Public addresses are usually assigned to a business’s
public servers. With public IP addresses, outgoing connections are forwarded and incom-
ing connections are routed normally. A local subnet can be defined to create a local,
public DMZ.

Dividing Address Space to Create Multiple Networks
IP addresses are divided into two pieces: a network address and a host address within that
network. As stated in Chapter 1, “Preliminary Concepts Underlying Packet-Filtering Fire-
walls,” Class A, B, and C addresses are something of an artifact, but they remain the easiest
addresses to use as examples because their network and host fields fall on byte boundaries.
Class A, B, and C network addresses are defined by their first 8, 16, and 24 bits, respec-
tively. Within each address class, the remaining bits define the host part of the IP address.
This is shown visually in Table 7.1.

Subnetting is a local extension to the network address part of the local IP addresses. A
local network mask is defined as one that treats some of the most significant host address

Configuration Options for a Larger or Less Trusted LAN 189

bits as if they were part of the network address. These additional network address bits serve
to define multiple networks locally. Remote sites are not aware of local subnets. They see
the address range as normal Class A, B, or C addresses.

For example, let’s take the Class C private address block 192.168.1.0. The base
address, known as the network address, is 192.168.1.0 for this example. The network
mask for this example is 255.255.255.0, exactly matching the first 24 bits, the network
address, of the 192.168.1.0/24 network.

This network can be divided into two local networks by defining the first 25 bits,
rather than the first 24 bits, as the network portion of the address. In current parlance, we
say that the local network has a prefix length of 25 rather than 24. The most significant bit
of the host address field is now treated as part of the network address field. The host field
now contains 7 bits rather than 8. The network mask becomes 255.255.255.128, or /25
in CIDR notation. Two subnetworks are defined: 192.168.1.0, addressing hosts from
1 to 126, and 192.168.1.128, addressing hosts from 129 to 254. Each subnet loses two
host addresses because each subnet uses the lowest host address, 0 or 128, as the network
address and uses the highest host address, 127 or 255, as the broadcast address. Table 7.2
shows this in tabular form.

Subnetworks 192.168.1.0 and 192.168.1.128 can be assigned to two separate
internal network interface cards. Each subnet consists of two independent networks, each
containing up to 126 hosts.

Table 7.1 Network and Host Fields in an IP Address

Class A Class B Class C

Leading network bits 0 10 110

Network field 1 byte 2 bytes 3 bytes

Host field 3 bytes 2 bytes 1 byte

Network prefix /8 /16 /24

Address range 1–126 128–191 192–223

Network mask 255.0.0.0 255.255.0.0 255.255.255.0

Table 7.2 Class C Network 192.168.1.0 Subnetted into Two Subnets

Subnet Number None 0 1

Network address 192.168.1.0 192.168.1.0 192.168.1.128

Network mask 255.255.255.0 255.255.255.128 255.255.255.128

First host address 192.168.1.1 192.168.1.1 192.168.1.129

Last host address 192.168.1.254 192.168.1.126 192.168.1.254

Broadcast address 192.168.1.255 192.168.1.127 192.168.1.255

Total hosts 254 126 126

190 Chapter 7 Packet Forwarding

Subnetting allows for the creation of multiple internal networks, each containing dif-
ferent classes of client or server machines and each with its own independent routing.
Different firewall policies can then be applied to the networks.

Of course, this example showed the network being divided into two portions. The
network can in fact be divided into many parts in order to create a number of smaller
networks. It’s quite common to see a network with a subnet mask of 255.255.255.252
or /30 used between routers at two locations. Table 7.3 takes the process one step further
and shows the same network divided into four subnets.

Selective Internal Access by Host, Address Range, or Port
Traffic through a firewall machine’s internal interface can be selectively limited, just as
traffic through the external interface is. For example, on a firewall for a small, residential
site, rather than letting everything through on the internal interface, traffic could be lim-
ited to DNS, SMTP, POP, and HTTP. In this case, let’s say that a firewall machine provides
these services for the LAN. Local machines are not allowed any other access to outside
services. In this case, forwarding isn’t done.

Point of Interest
In this example, local hosts are limited to specific services: DNS, SMTP, POP, and HTTP.
Because POP is a local mail retrieval service in this case, and because DNS, SMTP, and
HTTP are proxied services, no direct Internet access is being made by LAN clients. In each
case, the local clients are connecting to local servers. POP is a local LAN service. The three
other servers establish remote connections on the client’s behalf.

This example would be used only by a small, likely residential, site. Placing the mail
gateway and POP services on the firewall host can require the host to have user accounts.
It is not necessary that these accounts be login accounts, however.

Table 7.3 Class C Network 192.168.1.0 Subnetted into Four Subnets

Subnet
Number 0 1 2 3

Network
address 192.168.1.0 192.168.1.64 192.168.1.128 192.18.1.192

Network
mask 255.255.255.192 255.255.255.192 255.255.255.192 255.255.255.192

First host
address 192.168.1.1 192.168.1.65 192.168.1.129 192.168.1.193

Last host
address 192.168.1.62 192.168.1.126 192.168.1.190 192.168.1.254

Broadcast
address 192.168.1.63 192.168.1.127 192.168.1.191 192.168.1.255

Total
hosts 62 62 62 62

Configuration Options for a Larger or Less Trusted LAN 191

Configuration Options for an Internal LAN
The following example considers a firewall machine with an internal interface connected
to a LAN. Constants for the internal interface are as shown here:

LAN_INTERFACE="eth1" # Internal interface to the LAN
LAN_GATEWAY="192.168.1.1" # Firewall machine's internal
 # Interface address
LAN_ADDRESSES="192.168.1.0/24" # Range of addresses used on the LAN

LAN machines point to the firewall machine’s internal interface as their name server:

Generic gateway response rule
$IPT -A OUTPUT -o $LAN_INTERFACE \
 -s $LAN_GATEWAY \
 -d $LAN_ADDRESSES --dport $UNPRIVPORTS \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

Service-specific LAN request rules

$IPT -A INPUT -i $LAN_INTERFACE -p udp \
 -s $LAN_ADDRESSES --sport $UNPRIVPORTS \
 -d $LAN_GATEWAY --dport 53 \
 -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

$IPT -A INPUT -i $LAN_INTERFACE -p tcp \
 -s $LAN_ADDRESSES --sport $UNPRIVPORTS \
 -d $LAN_GATEWAY --dport 53 \
 -state --state NEW,ESTABLISHED,RELATED -j ACCEPT

The matching nftables rules are:

$NFT add rule filter output oif $LAN_INTERFACE \
 ip saddr $LAN_GATEWAY ip daddr $LAN_ADDRESSES \
 tcp dport $UNPRIVPORTS ct state established,related accept

$NFT add rule filter input iif $LAN_INTERFACE \
 ip protocol udp ip saddr $LAN_ADDRESSES \
 udp sport $UNPRIVPORTS ip daddr $LAN_GATEWAY \
 udp dport 53 ct state new,established,related accept

$NFT add rule filter input iif $LAN_INTERFACE \
 ip protocol tcp ip saddr $LAN_ADDRESSES \
 tcp sport $UNPRIVPORTS ip daddr $LAN_GATEWAY \
 tcp dport 53 ct state new,established,related accept

LAN machines also point to the firewall as their SMTP and POP server:

Sending mail - SMTP

$IPT -A INPUT -i $LAN_INTERFACE -p tcp \
 -s $LAN_ADDRESSES --sport $UNPRIVPORTS \
 -d $GATEWAY --dport 25 \
 -state --state NEW,ESTABLISHED,RELATED -j ACCEPT

Receiving Mail - POP

$IPT -A INPUT -i $LAN_INTERFACE -p tcp \
 -s $LAN_ADDRESSES --sport $UNPRIVPORTS \
 -d $GATEWAY --dport 110 \
 -state --state NEW,ESTABLISHED,RELATED -j ACCEPT

Hiva-Network.Com

http://www.hiva-network.com/

192 Chapter 7 Packet Forwarding

Finally, a local web caching proxy server is running on the firewall machine on port
8080. Internal machines point to the web server on the firewall as their proxy, and the
web server forwards any outgoing requests on their behalf, along with caching any pages
retrieved from the Internet. All connections to the proxy are via port 8080. Secure web
and FTP access to remote sites is initiated by the proxy server:

$IPT -A INPUT -i $LAN_INTERFACE -p tcp \
 -s $LAN_ADDRESSES --sport $UNPRIVPORTS \
 -d $GATEWAY --dport 8080 \
 -state --state NEW,ESTABLISHED,RELATED -j ACCEPT

Here’s the nftables rule; notice how all of the destination ports (for SMTP, POP, and
proxy) are handled in one rule:

$NFT add rule filter input iif $LAN_INTERFACE \
 tcp dport { 25,995,8080 } ip saddr $LAN_ADDRESSES \
 tcp sport $UNPRIVPORTS ip daddr $GATEWAY \
 ct state new,established,related accept

Remember that the web server will use the FTP passive-mode protocol to retrieve
data from remote FTP sites. The firewall’s external interface will need input and output
rules to access remote FTP, HTTP, and HTTPS service ports. The gateway host must also
have rules for the external interface to account for email and local DNS queries to remote
hosts.

Configuration Options for Multiple LANs
Adding a second internal LAN allows this example to be developed further. The next
example can be better secured than the preceding example. As shown in Figure 7.5, the
DNS, SMTP, POP, and HTTP services are offered from server machines in a second LAN
rather than from the firewall machine. The second LAN may or may not serve as a public
DMZ. It’s equally possible that the second LAN represents an internal service LAN, and
its services are not offered to the Internet (although, in that case, the firewall could be
required to at least be a mail gateway, depending on the local firewall configuration). In
either case, firewall hosts do not typically host services. In this example, traffic is routed
between the two LANs by the internal interfaces on the firewall machine.

The following variables are used to define the LAN, network interfaces, and server
machines in this example:

CLIENT_LAN_INTERFACE="eth1" # Internal interface to the LAN
SERVER_LAN_INTERFACE="eth2" # Internal interface to the LAN
CLIENT_ADDRESSES="192.168.1.0/24" # Range of addresses used on the client LAN
SERVER_ADDRESSES="192.168.3.0/24" # Range of addresses used on the server LAN
DNS_SERVER="192.168.3.2" # LAN DNS server

The first rule covers all server responses back to clients in the client LAN:

$IPT -A FORWARD -i $SERVER_LAN_INTERFACE -o $CLIENT_LAN_INTERFACE \
 -s $SERVER_ADDRESSES -d $CLIENT_ADDRESSES \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

Configuration Options for a Larger or Less Trusted LAN 193

The second rule covers all ongoing connection traffic from the LAN clients to the
local servers in the server LAN:

$IPT -A FORWARD -i $CLIENT_LAN_INTERFACE -o $SERVER_LAN_INTERFACE \
 -s $CLIENT_ADDRESSES -d $SERVER_ADDRESSES \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

The third rule covers all remote server responses back to client requests from the local
servers in the server LAN:

$IPT -A FORWARD -i $EXTERNAL_INTERFACE -o $SERVER_LAN_INTERFACE \
 -d $SERVER_ADDRESSES \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

The fourth rule covers all local server responses back to client requests from the remote
hosts on the Internet:

$IPT -A FORWARD -i $SERVER_LAN_INTERFACE -o $EXTERNAL_INTERFACE \
 -s $SERVER_ADDRESSES \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

Figure 7.5 Separating clients and servers in multiple LANs

Inte r ne t

HUB

PC

Mac

Li n u x

Bastion Fir e wall Ma c hin e

Client LAN HUB

192.168.3.3
 Mail Se r v e r
AUTH Se r v e r
POP Se r v e r

Se r ver LA N Hub Hub

Exte r nal Net w o r k Inter f ace

Eth1 : 192.168.1. 1 Eth2 : 192.168.3. 1

PC

Mac

Li n u x

192.168.3.2
 DNS Se r v e r

192.168.3.4
 W eb Se r v e r

194 Chapter 7 Packet Forwarding

These four rules are expressed in nftables syntax as follows:

$NFT add rule filter forward iif $SERVER_LAN_INTERFACE oif $CLIENT_LAN_INTERFACE \
 ip saddr $SERVER_ADDRESSES ip daddr $CLIENT_ADDRESSES \
 ct state established,related accept

$NFT add rule filter forward iif $CLIENT_LAN_INTERFACE oif $SERVER_LAN_INTERFACE \
 ip saddr $CLIENT_ADDRESSES ip daddr $SERVER_ADDRESSES \
 ct state established,related accept

$NFT add rule filter forward iif $EXTERNAL_INTERFACE oif $SERVER_LAN_INTERFACE \
 ip daddr $SERVER_ADDRESSES \
 ct state established,related accept

$NFT add rule filter forward iif $SERVER_LAN_INTERFACE oif $EXTERNAL_INTERFACE \
 ip saddr $SERVER_ADDRESSES \
 ct state established,related accept

Local machines use the DNS server in the SERVER_LAN as their name server. Just as
with the rules between the firewall’s internal interface and external interface, server access
rules are defined for the client LAN’s interface. Client access rules are defined for the
server LAN’s interface:

$IPT -A FORWARD -i $CLIENT_LAN_INTERFACE -o $SERVER_LAN_INTERFACE -p udp \
 -s $CLIENT_ADDRESSES --sport $UNPRIVPORTS \
 -d $DNS_SERVER --dport 53 \
 -m state --state NEW -j ACCEPT

$IPT -A FORWARD -i $CLIENT_LAN_INTERFACE -o $SERVER_LAN_INTERFACE -p tcp \
 -s $CLIENT_ADDRESSES --sport $UNPRIVPORTS \
 -d $DNS_SERVER --dport 53 \
 -m state --state NEW -j ACCEPT

Here are the nftables rules:

$NFT add rule filter forward iif $CLIENT_LAN_INTERFACE oif $SERVER_LAN_INTERFACE \
 ip saddr $CLIENT_ADDRESSES ip daddr $DNS_SERVER \
 udp dport 53 udp sport $UNPRIVPORTS \
 ct state new accept

$NFT add rule filter forward iif $CLIENT_LAN_INTERFACE oif $SERVER_LAN_INTERFACE \
 ip saddr $CLIENT_ADDRESSES ip daddr $DNS_SERVER \
 tcp dport 53 tcp sport $UNPRIVPORTS \
 ct state new accept

The DNS server on the second LAN needs to get its information from an external
source. If the local server were a cache-and-forward server to an external server, forward-
ing unresolved lookups to the external server, the firewall’s forwarding rules for its internal
server LAN interface and external Internet interface would be these:

$IPT -A FORWARD -i $SERVER_LAN_INTERFACE -o $EXTERNAL_INTERFACE -p udp \
 -s $DNS_SERVER --sport 53 \
 -d $NAME_SERVER_1 --dport 53 \
 -m state --state NEW -j ACCEPT

Summary 195

$IPT -A FORWARD -i $SERVER_LAN_INTERFACE -o $EXTERNAL_INTERFACE -p udp \
 -s $DNS_SERVER --sport $UNPRIVPORTS \
 -d $NAME_SERVER_1 --dport 53 \
 -m state --state NEW -j ACCEPT

$IPT -A FORWARD -i $SERVER_LAN_INTERFACE -o $EXTERNAL_INTERFACE -p tcp \
 -s $DNS_SERVER --sport $UNPRIVPORTS \
 -d $NAME_SERVER_1 --dport 53 \
 -m state --state NEW -j ACCEPT

These are the nftables rules, condensing the UDP rules into a single rule:

$NFT add rule filter forward iif $SERVER_LAN_INTERFACE oif $EXTERNAL_INTERFACE \
 udp sport { 53,$UNPRIVPORTS } udp dport 53 \
 ip saddr $DNS_SERVER ip daddr $NAME_SERVER \
 ct state new accept

$NFT add rule filter forward iif $SERVER_LAN_INTERFACE oif $EXTERNAL_INTERFACE \
 tcp sport $UNPRIVPORTS tcp dport 53 \
 ip daddr $NAME_SERVER ip saddr $DNS_SERVER \
 ct state new accept

Summary
This chapter covered some of the firewall options available when you’re protecting a LAN.
Security policies are defined relative to the site’s level of security needs, the importance of
the data being protected, and the cost of lost data or privacy. Starting with the bastion fire-
wall developed in Chapter 5 as the basis, LAN and firewall setup options were discussed in
increasingly complex configurations.

Hiva-Network.Com

http://www.hiva-network.com/

This page intentionally left blank

8
NAT—Network Address

Translation

Network Address Translation is a technology to substitute one source or destination
address in the IP header with another address. Traditionally, it’s an IP address translation
technology to map packets between two different addressing realms. NAT’s most common
use is to map outgoing connections between a privately addressed local network and the
publicly addressable Internet. In fact, that was what it was originally proposed to do, pri-
marily in conjunction with the then newly defined private class address spaces; both were
attempts to alleviate the IPv4 address space shortage.

This chapter introduces the concept of NAT and tells what the various types of NAT
are typically used for.

The Conceptual Background of NAT
NAT was first presented in 1994 in RFC 1631, “The IP Network Address Translator
(NAT),” which was later replaced by RFC 3022, “Traditional IP Network Address Transla-
tor (Traditional NAT).” NAT was proposed as a possible short-term, temporary solution
(to be used until IPv6 was deployed) to the growing shortage of public IP addresses. NAT
also was seen as a possible solution to the growing demands on routers that handled non-
contiguous address blocks. It was thought that NAT might possibly reduce or eliminate
the need for CIDR, which, in turn, was prompting address reallocations and changes to
router software and network configurations. NAT was also seen as a means to avoid the
cost and overhead of local network renumbering when the address spaces were reallocated,
or when a site changed service providers and was assigned a new public address block.

NAT was seen not only as a short-term solution, but also as a solution that conceivably
could cause more problems than it solved. With the exception of FTP, most problematic
application protocols were thought to be legacy protocols that would gradually fall into
disuse. It was assumed that, in the face of NAT, network application developers would
naturally become more mindful of end-to-end considerations, would be careful not to
embed address information in new applications’ data, and would avoid diverging from the
standard client/server model.

198 Chapter 8 NAT—Network Address Translation

Just the opposite turned out to be the case. IPv6 has yet to be deployed, giving NAT
permanent, long-term status. Use of NAT became almost universal as Internet access
became more available to the general public and available IPv4 addresses became ever
more scarce. The standard application protocols of the time and the common standard
protocols still in use today—including DNS, HTTP, SMTP, POP, and NNTP—work just
fine with NAT, and all NAT implementations provide special support for FTP.

NAT’s success at transparent translation is a result of the standard client/server connec-
tion characteristics of these common protocols. The exceptions didn’t turn out to be a few
legacy and oddball applications, however. Internet applications have become increasingly
interactive. Newer applications sometimes don’t have a clear client/server relationship.
Sometimes a single server coordinates communication among multiple users, who may
also initiate communication among themselves, independent of the server. Multiple servers
can operate in conjunction with distributed services running across multiple NAT address
domains, or with services that are provided by different kinds of servers operating coop-
eratively. Certain legacy multimedia and other multistreaming and two-way, multicon-
nection sessions can initiate connections in both directions, may have many simultaneous
connections per session, and may rely on both TCP and UDP simultaneously. The client
isn’t always a stationary, permanently addressable entity, as with dynamic client location in
terms of mobile devices and telecommuting employees. Some services rely on end-to-end
packet and data integrity, as do the IPsec encryption and authentication protocols.

These network applications do not work with NAT transparently. Specific
Application- layer gateway (ALG) support for each application must be provided for NAT
to be capable of translating these packets correctly. In the case of encryption, end-to-end
Transport-layer security protocols using encryption and authentication methods don’t
work, period.

Regardless of the difficulties associated with NAT, its usefulness ensures that it’s here
to stay for the duration of IPv4. In the meantime, firewall folks are looking at alterna-
tive ways of firewalling to solve the problems that the newer protocols introduce, both in
terms of NAT and in terms of packet filtering itself.

We need alternative firewalling methods because firewalling itself has problems when
implemented with current technology. NAT isn’t the only problem. Multimedia and the
cost and overhead of Application-level gateways are gradually forcing the issue. Some of
these protocols simply cannot be filtered with current firewall (and NAT) approaches.

Three general categories of NAT exist, as described in RFC 2663, “IP Network
Address Translator (NAT) Terminology and Considerations”:

 � Traditional, outbound, unidirectional NAT is used for networks with private address
space. Outgoing sessions can be initiated from the private LAN to remote Internet
hosts. Incoming sessions cannot be initiated from remote hosts to local hosts in the
privately addressed LAN.

Traditional NAT is divided into two general subtypes, although the two subtypes
can overlap in practice:

The Conceptual Background of NAT 199

 � Basic NAT performs address translation only. It is usually used to map local pri-
vate source addresses to one from a pool of public addresses. For the duration
of all sessions initiated by a particular local host, there is a one-to-one mapping
between a particular public and private address pair.

 � Network Address and Port Translation (NAPT) performs address translation but
also replaces the local LAN host’s source port with a source port on the NAT
device. It is usually used to map local private source addresses to a single pub-
lic address (as in Linux masquerading). Because the NAT device has a single IP
address to map all outgoing private LAN connections to, the private and public
source port pair is used to associate a particular connection with a particular pri-
vate host address and a particular connection from that host.

 � Bidirectional NAT performs two-way address translation, allowing both outbound
and inbound connections. There is a one-to-one mapping between a public address
and a private address. Effectively, the public address is a public alias for the local
host’s private address. This allows remote hosts to address the private host by the
public address associated with it. The NAT device translates the public destination
address in the incoming packet to the private address that the local host is actually
assigned.

One use of this is bidirectional address mapping between IPv4 and IPv6 address
spaces. Although both addresses are routable within their own address spaces, IPv6
addresses are not routable within the IPv4 address space. A host in the IPv4 address
space cannot directly reference a host in the IPv6 address space. Likewise, a host
in the IPv6 space cannot directly reference a host in the IPv4 space. It is the IPv6
host’s address that is being translated back and forth between the two addressing
realms.

Another use for bidirectional NAT that is more relevant to Linux users is to forward
connections between the Internet and privately addressed local servers when the
site offers public services from a LAN but has a single public IP address.

 � Twice NAT performs two-way source and destination address translation, but both
the source and destination addresses are translated in both directions. Twice NAT is
used when the source and destination networks’ address spaces collide. This could be
because one site mistakenly used public addresses assigned to someone else. Twice
NAT can be used as a convenience when a site is renumbered or assigned to a new
public address block but the owner doesn’t want to administer the new address
assignments immediately.

The advantages of NAT include these:

 � Packets containing standard application protocol data are transparently translated
between networks.

 � Standard client/server services “just work” with NAT.

Hiva-Network.Com

http://www.hiva-network.com/

200 Chapter 8 NAT—Network Address Translation

 � NAT alleviates the problems caused by the growing shortage of available IP
addresses by sharing one public address or a small block of public addresses among
an entire local network.

 � NAT reduces the need for both local and public IP address renumbering.
 � NAT reduces the need to deploy and administer more complicated routing schemes
within larger local networks.

 � In NAT’s most common form in conjunction with private IP addresses, unwanted
incoming traffic isn’t passed along because the local machines aren’t addressable.

 � In one of NAT’s other forms, it’s used to allow virtual servers, in which a server
farm appears to be a single, addressable server for load balancing.

The disadvantages of NAT include these:

 � NAT introduces single points of failure within the network by maintaining critical
state within the network itself.

 � Maintaining critical state on the NAT device breaks the Internet paradigm in that
packets can no longer be automatically rerouted around failed NAT routers.

 � NAT breaks the Internet paradigm of end-to-end transparency by modifying packet
contents en route.

 � As a result of modifying addressing information, application-specific NAT support
is required for any application that embeds local addresses or ports in the application
payload.

 � As a result of modifying addressing information for applications that embed local
addresses or ports in the application payload, incoming packets destined to a NAT
host must be defragmented before forwarding.

 � NAT increases resource and performance requirements for NAT devices, which
otherwise would be dedicated to fast datagram forwarding. NAT represents not only
the overhead of defragmentation, packet inspection, and packet modification, but
also the overhead of state maintenance, state timeouts, and state garbage collection.

 � Because of state maintenance within the network and the associated resource
requirements, NAT devices are not infinitely scalable. Additionally, without compli-
cated sharing techniques, hosts cannot use multiple peer NAT devices, an aspect of
the single point of failure.

 � Bidirectional, multistream protocols require application-specific NAT support to
forward incoming secondary streams to the proper local host. (Note that these pro-
tocols generally require ALG support for firewalling as well.)

 � NAT can break the capability to run multiple instances of the same local network
client application in connection with the same remote server. This problem tends
to occur with network games and IRC, where the session has associated incoming
streams.

NAT Semantics with iptables and nftables 201

 � NAT cannot be used with transport-mode IPsec for end-to-end security for a few
reasons:

 � End-to-end Transport-layer security techniques are not possible because the
techniques rely on end-to-end integrity of the packet header contents for
authentication.

 � End-to-end Transport-layer security techniques are not possible because the tech-
niques rely on end-to-end integrity of the packet’s data payload, which also relies
on packet header integrity.

 � End-to-end Transport-layer security techniques are not possible because data
encryption renders the packet’s contents unavailable for inspection. NAT modifi-
cations are not possible to change embedded address and port information.

 � Security trust relationships must be extended into the network from the endpoint
hosts, possibly to a point outside the local site altogether. IPsec and most VPN
technologies must be extended to the NAT device (in other words, IPsec tun-
nel mode). Again, the NAT device becomes a single point of failure because the
NAT device must terminate the VPN and establish a new link as a proxy to the
destination.

NAT Semantics with iptables and nftables
Both iptables and nftables provide full NAT functionality, including both source
(SNAT) and destination (DNAT) address mapping. The term full NAT isn’t a formal term;
I’m referring to the capability to perform both source and destination NAT, to specify
one or a range of translation addresses, to perform port translation, and to perform port
remapping.

A partial implementation of NAPT, known as “masquerading” among Linux users,
was provided in earlier Linux releases. It was used to map all local, private addresses to the
single public IP address of the site’s single public network interface.

NAT and forwarding were often spoken of as two components of the same thing
because masquerading was specified as part of the FORWARD rule’s semantics. Blurring the
concepts was irrelevant functionally. Now it’s very important to keep the distinction in
mind. Forwarding and NAT are two distinct functions and technologies.

Forwarding is routing traffic between networks. Forwarding routes traffic between net-
work interfaces as is. Connections can be forwarded in either direction.

Masquerading sits on top of forwarding as a separate kernel service. Traffic is masquer-
aded in both directions, but not symmetrically. Masquerading is unidirectional. Only
outgoing connections can be initiated. As traffic from local machines passes through
the firewall to a remote location, the internal machine’s IP address and source port are
replaced with the address of the firewall machine’s external network interface and a free
source port on the interface. The process is reversed for incoming responses. Before the
packet is forwarded to the internal machine, the firewall’s destination IP address and port

202 Chapter 8 NAT—Network Address Translation

are replaced with the real IP address and port of the internal machine participating in the
connection. The firewall machine’s port determines whether incoming traffic, all of which
is addressed to the firewall machine, is destined to the firewall machine itself or to a par-
ticular local host.

The semantics of forwarding and NAT are separated in iptables. The function of
forwarding the packet is done in the filter table using the FORWARD chain. The func-
tion of applying NAT to the packet is done in the nat table, using one of the nat table’s
 POSTROUTING, PREROUTING, or OUTPUT chains:

 � Forwarding is a routing function. The FORWARD chain is part of the filter table.
 � NAT is a translation function that is specified in the nat table. NAT takes
place either before or after the routing function. The nat table’s POSTROUTING,
 PREROUTING, and OUTPUT chains are part of the nat table. Source NAT is applied
on the POSTROUTING chain after a packet has passed through the routing function.
Source NAT is also applied on the OUTPUT chain for locally generated, outgoing
packets. (The filter table OUTPUT chain and the nat table OUTPUT chain are two
separate, unrelated chains.) Destination NAT is applied on the PREROUTING chain
before passing the packet to the routing function.

Which Destination Address Is Seen Where?
Destination NAT is applied on the nat table’s PREROUTING chain, before the routing
decision is made. Rules on the PREROUTING chain must match on the original destination
address in the packet’s IP header. Rules on the filter table’s INPUT or FORWARD chain
must match on the modified, NATed address in the same packet header. Likewise, if that
same packet were to also have source NAT applied after the routing decision is made,
and if the destination address were important to match on, the rule on the nat table’s
POSTROUTING chain would match on the modified destination address.

Source NAT is applied on the nat table’s POSTROUTING chain, after the routing decision
is made. Rules on any chain match on the original source address. The source address is
modified immediately before sending the packet on to the next hop or destination host. The
modified source address isn’t seen on the host applying the source NAT.

None of these distinctions between forwarding and NAT was an apparent issue with
ipfwadm and ipchains. The forwarding rule pair wasn’t necessary when masquerad-
ing. Two-way forwarding and NAT were implied by a single rule. The incoming local
interface was implied by the source address. The translated source address was taken from
the outgoing public interface specification. Reverse translation for response packets was
implied without an explicit rule.

NAT Semantics with iptables and nftables 203

Don’t Go Overboard Using NAT Syntax
The rest of this chapter presents the nat table syntax. Another word of caution is called for
when looking at the complete NAT syntax. The following sections describe the simpler, more
general syntax used with NAT, which is what will be used most commonly. The average site
won’t have a use for the specialized features available in the nat table.

Both SNAT and DNAT rules can specify the protocol, source and destination addresses,
source and destination ports, and state flags, in addition to the translated address and
ports. When this is done, the nat table rules look very much like filter table rules. It’s
very easy to confuse NAT rules with firewall rules, especially for people who are used to
ipchains syntax. Actual filtering is done in the FORWARD chain.

You could mirror the match fields between the FORWARD rules and the NAT rules; the two
sets of rules could look nearly identical. For large rule sets, it would quickly become an
error-prone, administrative nightmare and would accomplish very little.

Remember that iptables forwarding and NAT are two completely separate functions. The
actual firewall filtering is done by the rules in the filter table. For most people, it’s best
to keep the nat table rules simple.

Source NAT
Two forms of source NAT exist in the iptables nat table, specified as two distinct
targets, SNAT and MASQUERADE. SNAT is standard source address translation.
 MASQUERADE is a specialized form of source NAT for use in environments in which
an arbitrary, dynamically assigned IP address is assigned on a temporary, connection-by-
connection basis. As of this writing, there is masquerading support in nftables.

Both targets are used on the iptables nat table’s POSTROUTING chain. Source address
modifications are applied after the routing decision has been made to choose the proper
outgoing interface. Thus, SNAT rules are associated with an outgoing interface, not with
an incoming interface.

Because nftables doesn’t include any default tables, the nat table must be configured
before any of the examples in this chapter will work. To do so, you can add a nat table to
the setup-tables rules file that was developed in previous chapters. The end result looks
like this:

table filter {
 chain input {
 type filter hook input priority 0;
 }
 chain output {
 type filter hook output priority 0;
 }
 chain forward {
 type filter hook forward priority 0;
 }
}

Hiva-Network.Com

http://www.hiva-network.com/

204 Chapter 8 NAT—Network Address Translation

table nat {
 chain prerouting {
 type nat hook prerouting priority 0;
 }
 chain postrouting {
 type nat hook postrouting priority 0;
 }
 chain output {
 type nat hook output priority 0;
 }
}

This file, saved as setup-tables, can be loaded with the command

nft -f setup-tables

Standard SNAT
This is the general syntax for SNAT:

iptables -t nat -A POSTROUTING -o <outgoing interface> ... \
 -j SNAT --to-source <address>[-<address>][:port-port]

For nftables the general syntax is

add rule nat postrouting oif <outgoing interface> \
 snat <address>[:port-port]

The address is the source address to substitute for the original source address in the
packet, presumably the address of the outgoing interface. Source NAT is what NAT is tra-
ditionally used for, to allow outgoing connections. Specifying a single translation address
performs NAPT, allowing all local, privately addressed hosts to share your site’s single,
public IP address.

Optionally, a range of source addresses can be specified. Sites that have a block of public
addresses would use this range. Outgoing connections from local hosts would be assigned
one of the available addresses, with the public address being associated with a particular
local host’s IP address.

MASQUERADE Source NAT
The general syntax for MASQUERADE for iptables is as follows:

iptables -t nat -A POSTROUTING -o <outgoing interface> ... \
 -j MASQUERADE [--to-ports <port>[-port]]

MASQUERADE doesn’t have an option to specify a particular source address to use on the
NAT device. The source address used is the address of the outgoing interface.

The optional port specification is one source port or a range of source ports to choose
from on the NAT device’s outgoing interface.

As with SNAT, the ellipsis represents any other packet selectors that are specified. For
example, MASQUERADE could be applied to only a select local host.

NAT Semantics with iptables and nftables 205

Destination NAT
Two forms of destination NAT exist in the iptables nat table, specified as two dis-
tinct targets: DNAT and REDIRECT. DNAT is standard destination address translation.
 REDIRECT is a specialized form of destination NAT that redirects packets to the NAT
device’s input or loopback interface. There is no redirect target for nftables.

The two iptables targets can be used on either of the iptables nat table’s
 PREROUTING or OUTPUT chains. Destination address modifications are applied before the
routing decision is made to choose the proper interface. Thus, on the PREROUTING chain,
DNAT and REDIRECT rules are associated with an incoming interface for packets
that are to be forwarded through the device or that are addressed to this host’s incoming
interface. On the OUTPUT chain, DNAT and REDIRECT rules refer to locally generated,
outgoing packets from the NAT host itself.

Standard DNAT
The general syntax for DNAT is as shown here:

iptables -t nat -A PREROUTING -i <incoming interface> ... \
 -j DNAT --to-destination <address>[-<address>][:port-port]

and

iptables -t nat -A OUTPUT -o <outgoing interface> ... \
 -j DNAT --to-destination <address>[-<address>][:port-port]

The nftables syntax is

nft add rule nat prerouting iif <incoming interface> \
 dnat <destination address>[:port-port]

and

nft add rule nat output oif <outgoing interface> \
 dnat <destination address>[:port-port]

The address is the destination address to substitute for the original destination address
in the packet, presumably the address of a local server.

Optionally, a range of destination addresses can be specified. Sites that have a pool of
public, peer servers would use this range. Incoming connections from remote sites would
be assigned to one of the servers. These addresses could be public addresses assigned to
the internal machines. For example, a pool of peer servers appears to be a single server
to remote hosts. Alternatively, the addresses could be private addresses, and the servers
wouldn’t be directly visible or addressable from the Internet. In the latter case, the site
probably doesn’t have public addresses to assign to the servers. Remote hosts attempt to
connect to the service on the NAT host. The NAT host forwards the connections trans-
parently to the privately addressed internal server.

The final port specification is another option. The port specifies the destination port, or
port range, on the target host’s incoming interface that the packet should be sent to.

206 Chapter 8 NAT—Network Address Translation

The ellipsis represents any other packet selectors that are specified. For example, DNAT
could be applied to redirect incoming connections from a specific remote host to an
internal host. Another use might be to redirect incoming connections to a particular ser-
vice port to the actual server running in the local network.

REDIRECT Destination NAT
The general syntax for REDIRECT is shown here:

iptables -t nat -A PREROUTING -i <incoming interface> ... \
 -j REDIRECT [--to-ports <port[-port]>

and

iptables -t nat -A OUTPUT -o <outgoing interface> ... \
 -j REDIRECT [--to-ports <port[-port]>

Remember, REDIRECT redirects the packet to this host, which is the host performing
the redirect.

Packets arriving on the incoming interface are presumably addressed to some other
local host. Another alternative could be that the packet is targeted to a particular local
service port, and the packet is redirected to a different port on the host transparently.

Locally generated packets, destined for somewhere else, are redirected back to the
loopback interface on this host. Again, a packet targeted to a specific remote service might
be redirected back to the local machine, perhaps to a caching proxy, for example.

Optionally, a different destination port or port range can be specified. If no port is
specified, the packet is delivered to the destination port that the sender defined in the
packet.

The ellipsis represents any other packet selectors that are specified. For example,
 REDIRECT could be applied to redirect incoming connections to a specific service to a
server, logger, authenticator, or some kind of inspection software on the local host. The
packet could be sent on from this host after some kind of inspection function was per-
formed. Another use might be to redirect outgoing connections to a particular service
back to a server or an intermediate service on this host.

Examples of SNAT and Private LANs
Source NAT is by far the most common form of NAT. Using NAT to give outgoing
Internet access to local, privately addressed hosts was the original purpose of NAT. The
following sections provide some simple, real-world examples of using the nat table’s
MASQUERADE and SNAT targets.

Masquerading LAN Traffic to the Internet
The MASQUERADE version of source NAT is intended for people with dial-up
accounts who get a different IP address assigned at each connection. It also is used by
people with always on connections but whose ISP assigns them a different IP address on a
regular basis. This version applies only to iptables.

Examples of SNAT and Private LANs 207

The simplest example is a PPP connection. These sites often use a single rule to mas-
querade all outgoing connections from the LAN:

iptables -t nat -A POSTROUTING -o ppp0 -j MASQUERADE

Masquerading—and NAT in general—is set up with the first packet. With masquerad-
ing, a single nat rule can be sufficient. The NAT and connection state tracking take care
of the incoming packets. The FORWARD rule pair is necessary, though, as in this example:

iptables -A FORWARD -o ppp0 \
 -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

iptables -A FORWARD -o <LAN interface> \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

In this simple type of setup, the incoming interface doesn’t need to be specified.
FORWARD rules refer to traffic crossing between interfaces. If the host has a single network
interface and a single ppp interface, anything forwarded out one interface must necessarily
originate from the other interface. Anything accepted by the FORWARD rules in the filter
table during routing will be masqueraded by the POSTROUTING rule in the nat table.

Even with short-term phone connections, the single FORWARD rule allowing outgoing
NEW connections should be broken out into rules for specific services. Depending on the
networked devices in the LAN and how they operate, you most likely want to limit what
LAN traffic gets forwarded.

Here’s an example of a single FORWARD rule pair:

iptables -A FORWARD -i <LAN interface> -o ppp0 \
 -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

iptables -A FORWARD -i -ppp0 -o <LAN interface> \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

In this example, the single FORWARD rule pair is broken out into several more specific
rules allowing only DNS queries and standard web access. Other LAN traffic isn’t for-
warded, as shown by these commands:

iptables -A FORWARD -i -ppp0 -o <LAN interface> \
 -m state --state ESTABLISHED,RELATED -j ACCEPT
iptables -A FORWARD -o ppp0 \
 -m state --state RELATED,ESTABLISHED -j ACCEPT

iptables -A FORWARD -o ppp0 -p udp \
 --sport 1024:65535 -d <name server> --dport 53 \
 -m state --state NEW -j ACCEPT

iptables -A FORWARD -o ppp0 -p tcp \
 --sport 1024:65535 -d <name server> --dport 53 \
 -m state --state NEW -j ACCEPT

iptables -A FORWARD -o ppp0 -p tcp \
 -s <local host> --sport 1024:65535 --dport 80 \
 -m state --state NEW -j ACCEPT

Hiva-Network.Com

http://www.hiva-network.com/

208 Chapter 8 NAT—Network Address Translation

The single MASQUERADE rule on the nat table’s POSTROUTING chain remains
unchanged. All forwarded traffic is masqueraded. (Locally generated traffic going out the
ppp0 interface is not masqueraded because the traffic is identified with the interface’s IP
address, by definition.) The FORWARD rules in the filter table are limiting what traffic is
forwarded and, therefore, what traffic is seen at the POSTROUTING chain.

Applying Standard NAT to LAN Traffic to the Internet
Assuming that that same site had a dynamically assigned but semipermanent IP address or
that it has a permanently assigned IP address, the more general SNAT version of source
NAT would be used. Just as in the masquerading example, small residential sites often
forward and NAT all outgoing LAN traffic:

iptables -t nat -A POSTROUTING -o <external interface> \
 -j SNAT \
 --to-source <external address>

For nftables, a single rule is all that’s necessary:

nft add rule nat postrouting ip saddr <source addresses> \
 oif <external interface> snat <external address>

As with masquerading, a single SNAT rule can be sufficient. The NAT and connection
state tracking take care of the incoming packets. For iptables, the FORWARD rule pair is
necessary, however, as in the following example:

iptables -A FORWARD -o <external interface>\
 -m state --state NEW,ESTABLISHED,RELATED -j ACCEPT

iptables -A FORWARD -o <LAN interface> \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

In the case of small sites with 24x7 connections, it’s especially important to be selective
about what traffic gets forwarded. The single FORWARD rule allowing outgoing new con-
nections isn’t sufficient. Trojans and viruses are common. The newer networked devices
can tend to be somewhat promiscuous about what they do over the network. There’s a
good chance that Microsoft Windows machines and devices such as networked printers
are generating far more traffic than you realize. Also, much of that local traffic is broad-
cast. It’s a good idea to avoid the risk of forwarding broadcast traffic. Routers are no lon-
ger supposed to forward directed broadcast traffic by default, but many still do. (Limited
broadcasts don’t cross network boundaries without a relay agent to duplicate the packet
and pass it on. Most devices use limited broadcasts.) A final reason is the case of attaching
work laptops to the home network. Many employers don’t want offsite laptops to have
Internet access without VPN or the protection of their corporate firewalls and antivirus
software.

Examples of DNAT, LANs, and Proxies 209

Examples of DNAT, LANs, and Proxies
For the residential and small-business site, destination NAT was probably the most wel-
come addition to Linux NAT when it was added to iptables.

Host Forwarding
DNAT provides the host-forwarding capability that, until now, was available only through
third-party solutions. For small sites with a single public IP address, DNAT allows incom-
ing connections to local services to be transparently forwarded to a server running in a
DMZ. Public services aren’t required to run on the firewall machine.

With a single IP address, remote sites send client requests to the firewall machine. The
firewall is the only local host that’s visible to the Internet. The service (for example, a web
or mail server) itself is hosted internally in a private network. For packets arriving on that
service’s port, the firewall changes the destination address to that of the local server’s net-
work interface and forwards the packet to the private machine. The reverse is done for
server responses. For packets from the server, the firewall changes the source address to
that of its own external interface and forwards the packet on to the remote client.

The most common example is forwarding incoming HTTP connections to a local web
server:

iptables -t nat -A PREROUTING -i <public interface> -p tcp \
 --sport 1024:65535 -d <public address> --dport 80 \
 -j DNAT --to-destination <local web server>

The nftables rule looks like this:

nft add rule nat prerouting iif <public interface> \
 tcp sport 1024-65535 ip daddr <public address> \
 tcp dport 80 dnat <local web server>

The tricky part is the question of what address is seen on each chain. Destination NAT
was applied before the packet reached the FORWARD chain. So the rule on the FORWARD
chain must refer to the internal server’s private IP address rather than to the firewall’s
public address:

iptables -A FORWARD -i <public interface> -o <DMZ interface> -p tcp \
 --sport 1024:65535 -d <local web server> --dport 80 \
 -m state --state NEW -j ACCEPT

For iptables the rule looks like this:

nft add rule filter forward iif <public interface> \
 oif <DMZ interface> tcp sport 1024-65535 \
 tcp dport 80 ip daddr <local web server> \
 ct state new accept

210 Chapter 8 NAT—Network Address Translation

Connection tracking and NAT automatically reverse the translation for packets
returning from the server. Because the initial connection request was accepted, a generic
FORWARD rule suffices to forward the return traffic from the local server to the Internet:

iptables -A FORWARD -i <DMZ interface> -o <public interface> \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

The nftables version looks like this:

nft add rule filter forward iif <DMZ interface> \
 oif <public interface> \
 ct state established,related accept

Of course, don’t forget that ongoing traffic from the client must be forwarded as well
because the convention used in this book has been to separate individual service rules
specifying the NEW state from a single rule for all ESTABLISHED or RELATED traffic:

iptables -A FORWARD -i <public interface> -o <DMZ interface> \
 -m state --state ESTABLISHED,RELATED -j ACCEPT

For nftables:

nft add rule filter forward iif <public interface> \
 oif <DMZ interface> \
 ct state established,related accept

Summary
This chapter covered Network Address Translation. Initially, three basic types of NAT were
described. NAT’s original purpose, what it is used for today, and its advantages and disad-
vantages were discussed as well.

In iptables, NAT features are accessed through the nat table and that table’s chains
rather than through the filter table and the FORWARD chain. The implications of packet
flow through the operating system, and the differences between what address rules match
against on the FORWARD chain versus on the nat chains, were discussed.

iptables implements both source NAT and destination NAT. Source NAT is divided
into two subcategories, SNAT and MASQUERADE. SNAT is regular source address
translation. MASQUERADE is a specialized implementation of source NAT. It removes
any NAT table state as soon as a connection is dropped.

Destination NAT is also divided into two subcategories, DNAT and REDIRECT.
DNAT is regular destination address translation. REDIRECT is special case of destination
address translation. It is an alias for redirecting packets to the local host, regardless of the
packet’s original destination.

Finally, a series of real-world, practical examples of NAT were presented.

9
Debugging the Firewall Rules

So now the firewall is set up, installed, and activated. But nothing works! You’re locked
out. Who knows what’s going on? Now what? Where do you even begin?

Firewall rules are notoriously difficult to get right. If you’re developing by hand, bugs
will invariably crop up. Even if you produce a firewall script with an automatic firewall-
generation tool, your script undoubtedly will require customized tweaking eventually.

This chapter introduces additional reporting features of the iptables and nftables
tools and other system tools. The information is invaluable when debugging your firewall
rules. This chapter explains what the information can tell you about your firewall.

General Firewall Development Tips
Tracking down a problem in the firewall is detailed and painstaking. There are no short-
cuts to debugging the rules when something goes wrong. In general, the following tips
can make the process a bit easier:

 � Always execute the rules from a complete test script, like the one I’ve shown how to
build throughout this book. Be sure that the script flushes all existing rules, removes
any existing user-defined chains, and resets the default policies first. Otherwise, you
can’t be sure which rules are in effect or in which order.

 � Don’t execute new rules from the command line. Especially don’t execute the
default policy rules from the command line. You’ll be cut off immediately if you’re
logged in using X Windows or remotely from another system, including a system on
the LAN.

 � Execute the test script from the console if you can. Working in X Windows at
the console might be more convenient, but the danger remains of losing access to
X Windows locally. Be prepared for the possibility of needing to switch over to a
virtual console to regain control. If you must use a remote machine to test the fire-
wall script, use cron to automatically stop the firewall in case you get locked out. Be
sure to remove the cron job before going live with the firewall, though.

 � Remember that flushing the rule chains does not affect the default policy currently
in effect.

 � With a deny-by-default policy, always enable the loopback interface immediately.

Hiva-Network.Com

http://www.hiva-network.com/

212 Chapter 9 Debugging the Firewall Rules

 � When feasible, work on one service at a time. Add rules one at a time, or as input
and output rule pairs if you aren’t using the state module. Test as you go. This makes
it much easier to isolate problem areas in the rules right away. Liberal use of the
echo command within the firewall script can help to narrow down the location of
rules that are problematic within the script.

 � The first matching rule wins. Order is important. Use the list commands as you
go to get a feel for how the rules are ordered. Trace an imaginary packet through
the list.

 � If the script appears to hang, chances are good that a rule is referencing a symbolic
hostname rather than an IP address before the DNS rules have been enabled. Any
rule using a hostname instead of an address must come after the DNS rules, unless
the host has an entry in the /etc/hosts file.

 � The filter table is implied by default for iptables but not for nftables.
 � Most match modules require you to reference the module by name with
the -m option before specifying the module’s feature syntax, as in -m state
--state NEW.

 � When a service doesn’t work, log all dropped packets going in both directions, as
well as all relevant accepted packets. Do the log entries in /var/log/messages or
/var/log/kern.log show anything being dropped when you try the service? If
they do, you can adjust your firewall rules to allow the packets. If not, the problem
must be elsewhere.

 � If you have Internet access from the firewall machine but not from the LAN,
double-check that IP forwarding is enabled by running cat /proc/sys/net/
ipv4/ip_forward. The value 1 should be reported. IP forwarding can be per-
manently configured by hand in /etc/sysctl.conf or in the firewall script
itself. The first configuration method takes effect when the network is restarted.
If IP forwarding wasn’t enabled, you can enable it immediately by typing the fol-
lowing line as root or by including it in the firewall script and reexecuting the
script:
echo "1" > /proc/sys/net/ipv4/ip_forward

 � If a service works on the LAN but not externally, turn on logging for accepted
packets on the internal interface. Use the service very briefly to see which ports,
addresses, flags, and so forth are in use in both directions. You won’t want to log
accepted packets for any length of time, or you’ll have hundreds or thousands of log
entries in /var/log/messages.

 � If a service doesn’t work at all, temporarily insert input and output rules at the
beginning of the firewall script to accept everything in both directions and log all
traffic. Is the service available now? If so, check the log entries in
/var/log/messages to see which ports are in use.

Listing the Firewall Rules 213

Listing the Firewall Rules
It’s a good idea to list the rules you’ve defined, to double-check that they are installed
and are in the order you expect. The -L command lists the actual rules for a given chain
as they exist in the internal kernel table. Rules are listed in the order in which they are
matched against a packet.

The basic format of the iptables list command is as follows (run as root):

iptables [-v -n] -L [chain]

or

iptables [-t <table>] [-v -n] -L [chain]

The first format refers to the default filter table. If a specific chain isn’t specified, the
command lists all rules on the three built-in filter table chains, plus any user-defined chains.

The second format is needed to list the rules on the nat or mangle table.
Adding the -v option is useful to see the interface to which the rule applies. Adding

the -n option is useful if the firewall rules refer to remote or illegal addresses, to avoid the
lengthy name resolution time for those addresses. Remember that if a chain is specified, it
must follow the -L command. Also note that -L is a command and -v and -n are options.
They cannot be combined as in -Lvn.

Unlike using iptables to define actual rules, using iptables to list existing rules can
be done from the command line. The output goes to your terminal or can be redirected
into a file.

The syntax for nftables looks like this:

nft list [chain|table] <tablename> [chain] <name> [-a -n -n]

The name of the table is always required with any list command, but when requesting a
chain list you don’t need to use the table keyword. The astute reader will recognize that there
are no default table names for nftables. The list tables command shows all tables:

nft list tables

The -a option adds the handle number to the listing, which can be helpful for insert-
ing or deleting individual rules. The first -n option prevents the IP-to-DNS name transla-
tion. Adding a second -n prevents the port-to-service name lookup as well.

iptables Table Listing Example
The basic format of the iptables table list command to list all rules on all filter table
chains is this:

iptables -vn -L INPUT
iptables -vn -L OUTPUT
iptables -vn -L FORWARD

or

iptables -vn -L

214 Chapter 9 Debugging the Firewall Rules

Notice that the preceding list commands show only the rules in the filter table
chains.

The next three sections use seven sample rules on the INPUT chain to illustrate the
differences among the various listing format options available to you with the fil-
ter table and to explain what the output fields mean. Using the different listing format
options, the same seven sample rules are listed with varying degrees of detail and read-
ability. The listing format options and fields are the same for the INPUT, OUTPUT, and
FORWARD chains.

iptables -L INPUT
Here is an abbreviated list of seven rules from an INPUT chain using the default listing
options:

> iptables -L INPUT

1 INPUT (policy DROP)
2 target prot opt source destination
3 ACCEPT all -- anywhere anywhere
4 LOG icmp -f anywhere anywhere \
 LOG level warning prefix 'Fragmented ICMP: '
5 DROP tcp -- anywhere anywhere \
 tcp flags:FIN,SYN,RST,PSH,ACK,URG/NONE
6 ACCEPT all -- anywhere anywhere \
 state RELATED,ESTABLISHED
7 ACCEPT udp -- 192.168.1.0/25 my.host.domain \
 udp spts:1024:65535 dpt:domain state NEW
8 REJECT tcp -- anywhere my.host.domain2 \
 tcp dpt:auth reject-with icmp-port-unreachable
9 ACCEPT tcp -- 192.168.1.0/25 my.host.domain \
 multiport dports http,https tcp spts:1024:65535 \
 flags:SYN,RST,ACK/SYN state NEW

Line Numbers in Listings
The line numbers in the listings throughout this chapter are not part of the output; they are
simply reference markers. Numbers can be generated by adding the --line-numbers
option to the command. The “line numbers” generated are the rules’ positions within the
chain.

Line 1 identifies the listing as being for the INPUT chain. The INPUT chain’s default
policy is DROP.

Line 2 contains these column headings:

 � target refers to the target disposition of a packet matching the rule ACCEPT, DROP,
LOG, or REJECT.

 � prot is an abbreviation for protocol, which can be all, tcp, udp, or icmp, as well as
a value from /etc/protocols.

 � opt stands for fragmentation options, which would have been set with either the -f
or the ! -f option. A ! in the first space indicates the ! -f option, which means

Listing the Firewall Rules 215

to match either unfragmented packets or the first fragment in a series. An f in the
second space indicates the -f option, which means to match the second and subse-
quent fragments.

 � source is the source address in the IP packet header.
 � destination is the destination address in the IP packet header.

Line 3 illustrates how the simple -L list command, without qualifying arguments, lacks
some important detail. The rule appears to accept all incoming packets—tcp, udp, and
icmp—from anywhere. The missing detail, in this case, is the interface, lo. This is the rule
accepting all input on the loopback interface.

Line 4 is a rule to log any (second and subsequent) fragmented ICMP packets. The
default logging level for syslog is warn. The LOG rule has an associated --log-prefix
string defined for it.

Line 5 is a rule that drops TCP packets without any state flags set.
Line 6 is a rule that accepts any incoming packet that is part of an ESTABLISHED con-

nection, or a packet RELATED to such a connection (that is, an associated ICMP error or
FTP data connection).

Line 7 is a rule that accepts incoming UDP DNS requests from hosts in the local net-
work, 192.168.1.0/25. Notice that the network is divided into two subnets, so the hosts
could range from 192.168.1.1 to 192.168.1.126.

Line 8 is a rule that rejects incoming TCP auth requests or queries to the local
identd server. The ICMP Type 3 error message returned contains the default
 port-unreachable code. It isn’t evident in the listing that the machine has two network
interfaces. Requests are rejected from the “external” network, domain2.

Line 9 accepts incoming TCP connection requests from the local LAN for standard
HTTP web connections and HTTPS web connections. A destination port list was defined
with the multiport match option.

iptables -n -L INPUT
The -n option reports all fields as numeric values rather than symbolic names. This option
can save time if your rules use a lot of specific IP addresses that otherwise would require
DNS lookups before being listed. Additionally, a port range is more informative if it is
listed as 23:79 rather than as telnet:finger.

Using the same seven sample rules from the INPUT chain, the following shows what
the listing output looks like using the -n numeric option:

> iptables -n -L INPUT

1 INPUT (policy DROP)
2 target prot opt source destination
3 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
4 LOG icmp -f 0.0.0.0/0 0.0.0.0/0 \
 LOG flags 0 level 4 prefix 'Fragmented ICMP: '
5 DROP tcp -- 0.0.0.0/0 0.0.0.0/0 \
 tcp flags:0x023F/0x020

Hiva-Network.Com

http://www.hiva-network.com/

216 Chapter 9 Debugging the Firewall Rules

6 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 \
 state RELATED,ESTABLISHED
7 ACCEPT udp -- 192.168.1.0/25 192.168.1.2 \
 udp spts:1024:65535 dpt:53 state NEW
8 REJECT tcp -- 0.0.0.0/0 192.168.1.254 \
 tcp dpt:113 reject-with icmp-port-unreachable
9 ACCEPT tcp -- 192.168.1.0/25 192.168.1.2 \
 multiport dports 80,443 tcp spts:1024:65535 flags:0x0216/0x022 state NEW

iptables -v -L INPUT
The -v option produces more verbose output, including the interface name. Reporting
the interface name is especially helpful when the machine has more than one network
interface.

Using the same seven sample rules from the INPUT chain, the following shows what
the listing output looks like using the -v verbose option:

> iptables -v -L INPUT

1 INPUT (policy DROP 0 packets, 0 bytes)
2 pkts bytes target prot opt in out source \
 destination
3 32 3416 ACCEPT all -- lo any anywhere \
 anywhere
4 0 0 LOG icmp -f any any anywhere \
 anywhere LOG level warning prefix 'Fragmented ICMP: '
5 0 0 DROP tcp -- any any anywhere \
 anywhere tcp flags:FIN,SYN,RST,PSH,ACK,URG/NONE
6 94 6586 ACCEPT all -- any any anywhere \
 anywhere state RELATED,ESTABLISHED
7 1 65 ACCEPT udp -- eth0 any 192.168.1.0/25 \
 my.host.domain udp spts:1024:65535 dpt:domain state NEW
8 0 0 REJECT tcp -- eth1 any anywhere \
 my.host.domain2 tcp dpt:auth reject-with icmp-port-unreachable
9 1 48 ACCEPT tcp -- eth0 any 192.168.1.0/25 \
 my.host.domain multiport dports http,https tcp spts:1024:65535 \
 flags:SYN,RST,ACK/SYN state NEW

nftables Table Listing Example
The basic format that I typically use when listing nftables rules for the filter table is

nft list table filter -a

This assumes that the filter table has been defined. You can use the list tables
command to find all tables if the filter table isn’t the name of the table for which you
need the listing. Here’s an abbreviated list of rules for the INPUT chain of the filter
table, as an example:

1 table ip filter {
2 chain input {
3 type filter hook input priority 0;
4 iifname "lo" accept # handle 5
5 ct state established,related accept # handle 8

Interpreting the System Logs 217

6 ct state invalid log prefix "INVALID input: " limit rate 3/second
�drop # handle 11

7 iif eth0 ip saddr 255.255.255.255 drop # handle 18
8 log # handle 19
9 drop # handle 20
10 }
11 }

Line 1 shows the name of the table.
Line 2 shows the name of the chain.
Line 3 shows the type of table, the hook, and its priority.
Line 4 shows a rule using the localhost interface (lo) with a verdict or disposition of

accept. The parts following the # indicate the handle number (5 in this case) for access-
ing this rule directly.

Line 5 shows a connection state rule matching established or related packets with a
disposition of accept and its handle, 8.

Line 6 shows a rule for connection state of invalid which will be logged with a
prefix of "INVALID input:". The logging will be rate limited to 3 per second and the
packet will ultimately be dropped. This rule’s handle is 11.

Line 7 expresses a rule for packets arriving on eth0 with a source address of
255.255.255.255 which will be dropped. The handle is 18.

Line 8 shows a rule to log all packets that haven’t yet been filtered or processed by a
preceding rule. This rule’s handle is 19.

Line 9 shows the final disposition of any packets that make it this far without encoun-
tering a matching rule. Their fate is to be dropped. The rule handle is 20.

Lines 10 and 11 show the closing braces from the rule definition.
As you can see by the rule output, you could copy this output or redirect the output to

a file and immediately re-create the existing rules.

Interpreting the System Logs
syslogd and its sibling rsyslogd are the service daemons that log system events. On
a typical system, the main system log file is /var/log/messages. Many programs use
syslog’s standard logging services. Other programs, such as the Apache web server, main-
tain their own separate log files.

syslog Configuration
Not all log messages are equally important—or even interesting. This is where
/etc/syslog.conf comes in. The configuration file /etc/syslog.conf enables
you to tailor the log output to meet your own needs.

Messages are categorized by the subsystem that produces them. In the man pages, these
categories are called facilities (see Table 9.1).

218 Chapter 9 Debugging the Firewall Rules

Within any given facility category, log messages are divided into priority types. The
priorities, in increasing order of importance, are listed in Table 9.2.

An entry in syslog.conf specifies a logging facility, its priority, and where to write
the messages. Not obvious is that the priority is inclusive. It’s taken to mean all messages
at that priority and higher. If you specify messages at the error priority, for example, all
messages at priority error and higher are included—crit, alert, and emerg.

Logs can be written to devices, such as the console, as well as to files and remote machines.

Tips about Log Files in /var/log
syslogd doesn’t create files. It only writes to existing files. If a log file doesn’t exist, you
can create it with the touch command and then make sure that it is owned by root. For
security purposes, log files are often not readable by general users. The security log file,
/var/log/secure, in particular, is readable by root alone.

Table 9.1 syslog Log Facility Categories

Facility Message Category

auth or security Security/authorization

authpriv Private security/authorization

cron cron daemon messages

daemon System daemon-generated messages

ftp FTP server messages

kern Kernel messages

lpr Printer subsystem

mail Mail subsystem

news Network news subsystem

syslog syslogd-generated messages

user User program–generated messages

uucp UUCP subsystem

Table 9.2 syslog Log Message Priorities

Priority Message Type

debug Debug messages

info Informational status messages

notice Normal but important conditions

warning or warn Warning messages

err or error Error messages

crit Critical conditions

alert Immediate attention required

emerg or panic System is unusable

Interpreting the System Logs 219

These two entries write all kernel messages to both the console and
/var/log/messages. Messages can be duplicated to multiple destinations:

kern.* /dev/console
kern.* /var/log/messages

This entry writes panic messages to all default locations, including
/var/log/messages, the console, and all user terminal sessions:

*.emerg *

The next two entries write authentication information related to root privilege
and connections to /var/log/secure, and user authorization information to
/var/log/auth. With the priority defined at the info level, debug messages won’t
be written:

authpriv.info /var/log/secure
auth.info /var/log/auth

The next two entries write general daemon information to /var/log/daemon, and
mail traffic information to /var/log/maillog:

daemon.notice /var/log/daemon
mail.info /var/log/maillog

Daemon messages at the debug and info priorities and mail messages at the debug
priority are not logged (author’s preference). named, crond, and systematic mail checking
produce uninteresting informational messages on a regular basis.

The final entry logs all message categories of priority info or higher to
/var/log/messages, with the exception of auth, authpriv, daemon, and mail. In this
case, the latter four message facilities are set to none because their messages are directed to
their own dedicated log files:

*.info;auth,authpriv,daemon,mail.none /var/log/messages

More Information about syslog Configuration
For a more complete description of syslog configuration options and sample
configurations, see the man pages for syslog.conf(5) and sysklogd(8).

syslogd can be configured to write the system logs to a remote machine. A site that
uses a networked server configuration similar to the example in Chapter 7, “Packet For-
warding,” with services offered from internal machines in the DMZ, might want to keep
a remote copy of the system logs. Maintaining a remote copy offers two advantages: First,
log files are consolidated on a single machine, making it easier for a system administrator
to monitor the logs. Second, the information is protected if one of the server machines is
ever compromised.

Chapter 11, “Intrusion Detection and Response,” discusses the importance of system
logs during recovery if a system is ever compromised. One of the first things an attacker
does after successfully gaining root access to a compromised machine is to either erase

Hiva-Network.Com

http://www.hiva-network.com/

220 Chapter 9 Debugging the Firewall Rules

the system logs or install trojan programs that won’t log his or her activities. The system
log files are either gone or untrustworthy at exactly the time you need them most. Main-
taining a remote copy of the logs helps protect this information, at least until the hacker
replaces the daemons writing the log file information.

To log system information remotely, both the local logging configuration and the
remote logging configuration require slight modifications.

On the remote machine collecting the system logs, add the -r option to the syslogd
invocation. The -r option tells syslogd to listen on the UDP port 514 for incoming log
information from remote systems.

On the local machine producing the system logs, edit syslogd’s configuration file, /
etc/syslog.conf, and add lines specifying what log facilities and priorities you want
written to a remote host. For example, the following copies all log information to
hostname:

. @hostname

syslogd output is sent over UDP. Both the source and the destination ports are 514.
The client firewall rule would be as follows:

iptables -A OUTPUT -o <out-interface> -p udp \
 -s <this host> --sport 514 \
 -d <log host> --dport 514 -j ACCEPT

Firewall Log Messages: What Do They Mean?
To generate firewall logs, the kernel must be compiled with firewall logging enabled. By
default, individually matched packets are logged as kern.warn (priority 4) messages. Most
of the IP packet header fields are reported when a packet matches a rule with the LOG
target. Firewall log messages are written to /var/log/messages by default. The follow-
ing analysis applies to both nftables and iptables.

You could duplicate the firewall log messages to a different file by creating a new log
file and adding a line to /etc/syslog.conf:

kern.warn /var/log/fwlog

As a TCP example, this rule denying access to the portmap/sunrpc TCP port 111
would produce the following message in /var/log/messages:

iptables -A INPUT -i $EXTERNAL_INTERFACE -p tcp \
 --dport 111 -j LOG --log-prefix "DROP portmap: "

iptables -A INPUT -i $EXTERNAL_INTERFACE -p tcp \
 --dport 111 -j DROP

nft add rule filter input iif $EXTERNAL_INTERFACE tcp dport 111 log prefix "DROP
�portmap: " drop

 (1) (2) (3) (4) (5) (6) (7)
Jun 19 15:24:16 firewall kernel: DROP portmap: IN=eth0 OUT=

Interpreting the System Logs 221

 (8)
 MAC=00:a0:cc:40:9b:a8:00:a0:cc:d4:a7:81:08:00

 (9) (10) (11)
 SRC=192.168.1.4 DST=192.168.1.2 LEN=60

 (12) (13) (14) (15) (16)
 TOS=0x00 PREC=0x00 TTL=64 ID=57743 DF

 (17) (18) (19) (20)
 PROTO=TCP SPT=33926 DPT=111 WINDOW=5840

 (21) (22) (23)
 RES=0x00 SYN URGP=0

The log message fields are numbered for the purposes of discussion:

 � Field 1 is the date, Jun 19.
 � Field 2 is the time the log was written, 15:24:16.
 � Field 3 is the computer’s hostname, firewall.
 � Field 4 is the log facility generating the message, kernel.
 � Field 5 is the log-prefix string defined in the LOG rule.
 � Field 6 is the incoming network interface that the input rule is attached to, eth0.
 � Field 7 is the outgoing interface, which has no value in a rule on the INPUT chain.
 � Field 8 is the MAC address of the interface that the packet is arriving on, followed
by eight pairs of garbage hexadecimal digits.

 � Field 9 is the packet’s source address, 192.168.1.4.
 � Field 10 is the packet’s destination address, 192.168.1.2.
 � Field 11 is the IP packet’s total length in bytes, LEN=60, including both the packet
header and its data.

 � Field 12 is the type of service (TOS) field’s 3 service bits, plus a reserved trailing bit,
TOS=0x00.

 � Field 13 is the TOS field’s top 3 precedence bits, PREC=0x00.
 � Field 14 is the packet’s time to live (TTL) field, TTL=64. Time to live is the maxi-
mum number of hops (that is, routers visited) remaining before the packet expires.

 � Field 15 is the packet’s datagram ID, ID=57743. The datagram ID is either the
packet ID or the segment to which this TCP fragment belongs.

 � Field 16 is the fragment flags field, indicating that the Don’t Fragment (DF) bit is set.
 � Field 17 is the message protocol type contained in the packet, PROTO=TCP. Field
values include 6 (TCP), 17 (UDP), 1 (ICMP/<code>), and PROTO=<number> for
other protocol types.

 � Field 18 is the packet’s source port, 33926.

222 Chapter 9 Debugging the Firewall Rules

 � Field 19 is the packet’s destination port, 111.
 � Field 20 is the sender’s window size, WINDOW=5840, which indicates the amount of
data that it is willing to accept and buffer from this host at this time.

 � Field 21 reports the reserved field in the TCP header. All 4 bits must be 0.
 � Field 22 is the TCP state field. In this case, the SYN flag is set.
 � Field 23 is the urgent pointer, which indicates the amount of data considered to be
urgent. The field is 0 because the URG flag isn’t set.

When interpreting the log message, the most interesting fields are these:

Jun 19 15:24:16 DROP portmap: IN=eth0 SRC=192.168.1.4 DST=192.168.1.2
PROTO=TCP SPT=33926 DPT=111 SYN

This says that the dropped packet is a TCP packet coming in on the eth0 interface
from an unprivileged port at 192.168.1.4. It was a TCP connection request targeted
to this machine’s (192.168.1.2) port 111, the sunrpc/portmap port. (This can be a
common message because portmap historically is one of the most commonly targeted
services.)

As a UDP example, this rule denying access to the portmap/sunrpc UDP port 111
would produce the following message in /var/log/messages:

iptables -A INPUT -i $EXTERNAL_INTERFACE -p udp \
 --dport 111 -j LOG --log-prefix "DROP portmap: "

iptables -A INPUT -i $EXTERNAL_INTERFACE -p udp \
 --dport 111 -j DROP

nft add rule filter input iif $EXTERNAL_INTERFACE udp dport 111 log prefix "DROP
�portmap: " drop

 (1) (2) (3) (4) (5) (6) (7)
Jun 19 15:24:16 firewall kernel: DROP portmap: IN=eth0 OUT=

 (8)
 MAC=00:a0:cc:40:9b:a8:00:a0:cc:d4:a7:81:08:00

 (9) (10) (11)
 SRC=192.168.1.4 DST=192.168.1.2 LEN=28

 (12) (13) (14) (15)
 TOS=0x00 PREC=0x00 TTL=40 ID=50655

 (16) (17) (18) (19)
 PROTO=UDP SPT=33926 DPT=111 LEN=8

The log message fields are numbered for the purposes of discussion:

 � Field 1 is the date, Jun 19.
 � Field 2 is the time the log was written, 15:24:16.
 � Field 3 is the computer’s hostname, firewall.

Checking for Open Ports 223

 � Field 4 is the log facility generating the message, kernel.
 � Field 5 is the log-prefix string defined in the LOG rule.
 � Field 6 is the incoming network interface to which the input rule is attached, eth0.
 � Field 7 is the outgoing interface, which has no value in a rule on the INPUT chain.
 � Field 8 is the MAC address of the interface that the packet is arriving on, followed
by eight pairs of garbage hexadecimal digits.

 � Field 9 is the packet’s source address, 192.168.1.4.
 � Field 10 is the packet’s destination address, 192.168.1.2.
 � Field 11 is the IP packet’s total length in bytes, LEN=28, including both the packet
header and its data.

 � Field 12 is the TOS field’s 3 service bits, plus a reserved trailing bit, TOS=0x00.
 � Field 13 is the TOS field’s top 3 precedence bits, PREC=0x00.
 � Field 14 is the packet’s TTL field, TTL=40. Time to live is the maximum number of
hops (that is, routers visited) remaining before the packet expires.

 � Field 15 is the packet’s datagram ID, ID=50655.
 � Field 16 is the message protocol type contained in the packet, PROTO=UDP. Field
values include 6 (TCP), 17 (UDP), 1 (ICMP/<code>), and PROTO=<number> for
other protocol types.

 � Field 17 is the packet’s source port, 33926.
 � Field 18 is the packet’s destination port, 111.
 � Field 19 is length of the UDP packet, including both the header and data, LEN=8.

When interpreting the log message, the most interesting fields are these:

Jun 19 15:24:16 DROP portmap: IN=eth0 SRC=192.168.1.4 DST=192.168.1.2
PROTO=UDP SPT=33926 DPT=111

This says that the dropped packet is a UDP packet coming in on the eth0 interface
from an unprivileged port at 192.168.1.4. It was a UDP exchange targeted to this
machine’s (192.168.1.2) port 111, the sunrpc/portmap port. (This can be a common
message because portmap historically is one of the most commonly targeted services.)

Checking for Open Ports
Listing your firewall rules with iptables -L is the main tool available for checking
for open ports. Open ports are defined to be open by your ACCEPT rules. Beyond the
 iptables -L command, other tools such as netstat are helpful for finding out what
ports are listening on the firewall.

netstat has several uses. In the next section, we’ll use it to check for active ports so
that we can double-check that the TCP and UDP ports in use are the ports that the fire-
wall rules are accounting for.

Hiva-Network.Com

http://www.hiva-network.com/

224 Chapter 9 Debugging the Firewall Rules

Just because netstat reports the port as listening or open doesn’t mean that it’s acces-
sible through the firewall rules. Following this, a third-party port-scanning tool, Nmap,
is introduced. These tools should be used from an external location to test exactly which
ports are listening on the firewall. netstat is a good indicator of services that are running
on the machine. Remember, if the service isn’t absolutely necessary, you should disable it
and consider removing it entirely, especially from a firewall. Let firewalls be firewalls—they
shouldn’t run extra services.

netstat -a [-n -p -A inet]
netstat reports various network status information. Quite a few command-line options
are documented to select what information netstat reports. The following options are
useful for identifying open ports, reporting whether they are in active use and by whom,
and reporting which programs and which specific processes are listening on the ports:

 � -a lists all ports that either are in active use or are being listened to by local servers.
 � -n displays the hostnames and port identifiers in numeric format. Without the -n
option, the hostnames and port identifiers are displayed as symbolic names, as much
as will fit in 80 columns. Using -n avoids a potentially long wait while remote host-
names are looked up. Not using -n produces a more readable listing.

 � -p lists the name of the program listening on the socket. You must be logged in as
root to use the -p option.

 � -A inet specifies the address family reported. The listing includes the ports in use
as they are associated with your network interface cards. Local address family socket
connections aren’t reported, including local network-based connections in use by
programs (such as any X Window program you might have running).

Types of Sockets—TCP/IP and Linux
Sockets were introduced in BSD 4.3 UNIX in 1986, and the concepts have largely been
adopted by Linux. Two main socket types were the Internet domain, AF_INET, and the
UNIX domain, AF_UNIX, sockets. AF_INET is the TCP/IP socket used across a network.
AF_UNIX is a socket type local to the kernel. The UNIX domain socket type is used for
interprocess communication on the same computer; it is more efficient than using TCP/IP
for local sockets. Nothing goes out on the network.

The following netstat output is limited to the INET domain sockets. The listing
reports all ports being listened to by network services, including the program name and
the specific process ID of the listening program:

> netstat -a -p -A inet

1 Active Internet connections (servers and established)
2 Proto Recv-Q Send-Q Local Address Foreign Address State PID/
 Program name

Checking for Open Ports 225

3 tcp 0 143 internal:ssh netserver:62360 ESTABLISHED
 15392/sshd
4 tcp 0 0 *:smtp *:* LISTEN
 3674/sendmail: acce
5 tcp 0 0 my.host.domain:www *:* LISTEN 638/httpd
6 tcp 0 0 internal:domain *:* LISTEN 588/named
7 tcp 0 0 localhost:domain *:* LISTEN 588/named
8 tcp 0 0 *:pop-3 *:* LISTEN 574/xinetd
9 udp 0 0 *:domain *:* 588/named
10 udp 0 0 internal:domain *:* 588/named
11 udp 0 0 localhost:domain *:* 588/named

Line 1 identifies the listing as including local servers and active Internet connections.
This selection was indicated with the -A inet option to netstat.

Line 2 contains these column headings:

 � Proto refers to the transport protocol the service runs over, TCP or UDP.
 � Recv-Q is the number of bytes received from the remote host but not yet delivered
to the local program.

 � Send-Q is the number of bytes sent from the local program that haven’t been
acknowledged by the remote host yet.

 � Local Address is the local socket, network interface, and service port pair.
 � Foreign Address is the remote socket, remote network interface, and service
port pair.

 � State is the local socket’s connection state for sockets using the TCP protocol,
either ESTABLISHED connection or LISTENing for a connection request, as well as a
number of intermediate connection establishment and shutdown states.

 � PID/Program name is the process ID (PID) and program name that owns the local
socket.

Line 3 shows that an SSH connection is established over the internal LAN network
interface from a machine known as netserver. The netstat command was typed from
this connection.

Line 4 is a sendmail listening for incoming mail on the SMTP port associated with all
network interfaces, including the external interface connected to the Internet, the internal
LAN interface, and the loopback, localhost interface.

Line 5 shows that a local web server is listening for connections on the external inter-
face to the Internet.

Line 6 shows that the name server is listening on the internal LAN interface for DNS
lookup connection requests from local machines over TCP.

Line 7 shows that the name server is listening on the loopback interface for DNS
lookup connection requests from clients on this machine over TCP.

Line 8 shows that xinetd is listening for connections on the POP port associated with
all interfaces on behalf of popd. (xinetd is listening on all interfaces for incoming POP
connections. If a connection request arrives, xinetd starts a popd server to service the

226 Chapter 9 Debugging the Firewall Rules

request.) The firewall and higher-level security mechanisms at the tcp_wrappers level
and the popd configuration level limit incoming connections to the LAN machines.

Line 9 shows that the name server is listening on all interfaces for DNS server-to-
server communications and is accepting local lookup requests over UDP.

Line 10 shows that the name server is listening on the internal LAN network interface
for DNS server-to-server communications and lookup requests over UDP.

Line 11 shows that the name server is listening on the loopback interface for DNS
lookup requests from local clients on this machine over UDP.

netstat Output Reporting Conventions
In netstat output, the local and foreign (that is, remote) addresses are listed as
<address:port>. Under the Local Address column, the address is the name or IP
address of one of your network interface cards. When the address is listed as *, it means
that the server is listening on all network interfaces rather than on just a single interface.
The port is either the symbolic or the numeric service port identifier that the server is
using. Under the Foreign Address column, the address is the name or IP address of the
remote client currently participating in a connection. The *.* is printed when the port is
idle or for the default daemon. The port is the remote client’s port on its end.

Idle servers listening over the TCP protocol are reported as listening for a connection
request. Idle servers listening over the UDP protocol are reported as blank. UDP has no
state—the netstat output is simply making a distinction between stateful TCP and state-
less UDP.

Checking a Process Bound to a Particular Port with fuser
The fuser command identifies which processes are using a particular file, filesystem, or
network port. netstat -a -A inet will report a port number rather than a service
name if the port doesn’t have an entry in /etc/services. fuser can be useful to deter-
mine which program is bound to that port.

The general fuser command format to identify which program is bound to a given
port is as follows:

fuser -n tcp|udp -v <port number>[,<remote address>[,<remote port>]

For example,

> fuser -n tcp -v 515

produces the following output:

 USER PID ACCESS COMMAND
515/tcp root 718 f.... lpd

The -v option produces the USER, ACCESS, and COMMAND fields. Without the -v
option, the port/protocol and PID would be reported. You would need to use ps to iden-
tify the program assigned that process ID.

Summary 227

The access field codes refer to the type of access that the file or filesystem is being
accessed by the process as. The f indicates that the object is open.

The next section describes Nmap.

Nmap
Nmap is a much more powerful network security auditing tool that includes many of the
newer stealth scanning techniques in use today. You should check your system security
with Nmap; it’s a given that other people will. Nmap is available at http://www.insecure
.org/nmap/. You should use Nmap from a host outside of your firewall to check that the
firewall isn’t listening on unexpected ports.

The following sample Nmap output reports the state of all TCP and UDP ports.
Because the verbose option isn’t used, Nmap reports only the ports that are open and
that have servers listening on them. Nmap output includes the scanned hostname, IP
address, port, open or closed state, transport protocol in use on that port, and symbolic ser-
vice port name from /etc/services. Because choke is an internal host, additional ssh
and ftp ports are open for internal LAN access:

> nmap -sT router

Starting nmap V. 2.54BETA7 (www.insecure.org/nmap/)
Interesting ports on choke.private.lan (192.168.1.2):
(The 3100 ports scanned but not shown below are in state: filtered)
Port State Service
21/tcp open ftp
22/tcp open ssh
53/tcp open domain
80/tcp open http
443/tcp open https

Nmap run completed -- 1 IP address (1 host up) scanned in 236 seconds

Summary
This chapter introduced the iptables rule-listing mechanism, Linux port and network
daemon information available via netstat, and a third-party tool available for verifying
that the firewall rules are installed and working as you expect.

This chapter emphasized the firewall rules and the ports they protect. Chapter 10,
“Virtual Private Networks,” shifts the focus away from firewalls and into the broader topic
of network and system security.

Hiva-Network.Com

http://www.insecure.org/nmap/
http://www.insecure.org/nmap/
http://www.hiva-network.com/

This page intentionally left blank

10
Virtual Private Networks

Contributed by Carl B. Constantine

The use of virtual private networks, or VPNs, is fast becoming the preferred method for
accessing remote and private networks by home users and business users alike. This chap-
ter discusses VPNs, providing both some background on VPNs themselves and insight on
how you might implement a VPN using Linux.

Overview of Virtual Private Networks
VPN systems are designed to connect two or more devices or networks securely over
a public network such as the Internet. A VPN is so named because it is virtual, using
an already existing infrastructure; it is private, having the data encapsulated through a
secure protocol; and it is a network, because it connects two or more devices or networks
together. VPNs are popular today because they provide a better value proposition than
setting up individual leased connections between locations, especially for road warriors
or other short-lived connections. VPNs can also provide seamless operation. After initial
configuration is done, the networks connected with a VPN can operate as if they were
one network.

VPN Protocols
Most VPN systems use one of three main protocols: Point-to-Point Tunneling Protocol
(PPTP), Layer 2 Tunneling Protocol (L2TP), or IP Security (IPsec). This section looks at
all three.

PPTP and L2TP
Point-to-Point Tunneling Protocol was originally designed and developed by a consor-
tium of companies to encapsulate non-TCP/IP protocols such as IPX over the Internet
using Generic Routing Encapsulation (GRE). Security in the protocol was added later.
Layer 2 Tunneling Protocol (L2TP) is widely considered to be the successor to PPTP for
most environments.

230 Chapter 10 Virtual Private Networks

Generic Routing Encapsulation
Many protocols are currently available that are designed to encapsulate or hide one
protocol in another, normally IP. GRE is designed to be more generic (hence the name)
than these other protocols. As such, however, it may not fit the need of specifically
encapsulating protocol X over protocol Y; instead, it is designed to be a simple, general-
purpose encapsulation protocol that reduces the overhead of providing encapsulation.
RFC 2784, “Generic Routing Encapsulation (GRE),” describes GRE in detail.

PPTP and L2TP are very popular in many corporate environments, particularly those
that are Windows-centric. There are both PPTP and L2TP clients for Windows, Linux,
OS X, and major mobile platforms as well.

IPsec
IPsec was designed with security in mind and is considered the de facto standard for
secure private communication across public networks such as the Internet. As mentioned
previously, IPsec has been included in IPv6 and can also be used in the current IPv4
standard.

IPsec provides data integrity, authentication, and confidentiality. All IPsec services are
at the IP layer and provide protection for IP and upper-layer protocols. These services
are provided by two traffic security protocols, the Authentication Header (AH) and the
Encapsulating Security Payload (ESP). IPsec uses a cryptographic key-management system
through the Internet Key Exchange (IKE) protocol and a managed Security Association
(SA) connection system.

IPsec offers many advantages compared to other secure network access methods. One
of the biggest advantages is that IPsec can work in the background without the user even
knowing what’s happening.

Authentication Header
Normal IP packets consist of a header and a payload. The header contains both source and
destination IP addresses that are required for routing. The payload consists of information
that may be confidential. Headers can be spoofed or altered using a man-in-the-middle
type of attack. The AH actually signs the outbound packet digitally, verifying the identity
of source and destination addresses and the integrity of the payload data.

AH provides only authentication, not encryption, and can be configured in one of two
ways: in transport mode or in tunnel mode. Transport mode really applies only to the host
implementation and provides protection for the upper-level protocols as well as selected
IP header fields. Using transport mode, the AH is inserted after the IP header and before
the upper-layer protocol (TCP, UDP, ICMP, and so forth), or before other IPsec headers
that may already have been inserted.

The AH in tunnel mode protects the entire IP packet, including the entire inner IP
header. As in transport mode, the AH is inserted after the outer IP header of the packet.

VPN Protocols 231

The AH is inserted after the IP header. In IPv4 implementations, the IP header con-
tains the protocol number 51 (AH). The AH is shown in Figure 10.1.

All fields in AH format must always be present and are included in the Integrity Check
Value (ICV) computation.

Encapsulating Security Payload
Using ESP guarantees the integrity and confidentiality of the data in the original message
by means of a secure encryption of either the original payload by itself or the combina-
tion of the headers and payload of the original packet.

ESP can be used in transport mode or tunnel mode, like AH, to provide encryption
and authentication. Transport mode is applicable only to host implementations. It provides
protection for the upper-layer protocols, but not for the IP header. For tunnel mode, the
ESP is inserted after the IP header and before any upper-layer protocol such as TCP and
UDP, or before any other IPsec headers that may already be inserted. In the current IPv4
implementation of TCP/IP, the ESP is placed after the IP header but before the upper-
layer protocol. This makes ESP compatible with non-IPsec-aware hardware.

ESP’s tunnel mode may be used in either hosts or security gateways. You must use ESP
in tunnel mode if you deploy a security gateway. In tunnel mode, the inner IP header car-
ries the proper source and destination addresses, whereas the outer IP header may contain
distinct IP addresses such as addresses of security gateways. ESP protects the entire packet
in tunnel mode, including the inner IP header. The position of the ESP packet is similar to
that of transport mode.

ESP can use a wide variety of encryption algorithms for security services.

Transport and Tunnel Modes
In transport mode, the IPsec gateway is the destination of the protected packets—a
machine acts as its own gateway. In tunnel mode, an IPsec gateway provides protection for
packets to and from other systems.

The ESP is inserted after the IP header. In IPv4 implementations, the IP header con-
tains the protocol number 50 (ESP). Figure 10.2 shows an example of an ESP.

Figure 10.1 The AH header format

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

Next Header Payload Len RESERVED

Security Parameters Index (SPI)

Sequence Number Field

Authentication Data (variable)

Hiva-Network.Com

http://www.hiva-network.com/

232 Chapter 10 Virtual Private Networks

Internet Key Exchange
The Internet Key Exchange, or IKE, is an important part of an IPsec VPN. IKE itself is a
hybrid protocol and allows for negotiation and authentication of keyed material for secu-
rity associations in a protected manner.

Security Associations
To have secure traffic, there must be two security associations—one for each direction.
The security association is essentially a one-way channel negotiated by the higher-level
IPsec system and used by the lower level.

A security association is defined by three things:

 � The destination IP address
 � The protocol (AH or ESP)
 � The security parameter index (SPI)

An SA can be used in transport mode or tunnel mode. A transport-mode SA is a secu-
rity association between two hosts. A tunnel-mode SA is a security association applied to
an IP tunnel. If either end of an SA is a security gateway, the SA is a tunnel-mode security
association. Security association between two security gateways is always the tunnel-mode
SA, just like an SA between a host and a security gateway.

Linux and VPN Products
Linux has a number of robust VPN solutions, with IPsec support being available from the
Linux 2.6 kernel series and onward. This section looks at some of the Linux VPN software.

Figure 10.2 The ESP format

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

Security Parameters Index (SPI)

Sequence Number

Payload Data* (Variable)

Padding (0-255 Bytes)

Pad Length Next Header

Authentication Data (Variable)

Authentication
Coverage

Confirmation
Coverage*

* If included in the Payload field, cryptographic synchronization
 data, e.g., an Initialization Vector, usually is not encrypted,
 although it often is referred to as being part of the ciphertext.

VPN and Firewalls 233

Openswan/Libreswan
Openswan and its fork Libreswan are open-source implementations of VPN software that
work very well with Linux. Openswan and/or Libreswan are included with many Linux
distributions, including Fedora, Debian, Ubuntu, and Red Hat. Openswan/Libreswan are
among the easier Linux implementations of VPN software to set up. More information
can be found at http://www.openswan.org/ and https://libreswan.org.

OpenVPN
OpenVPN is a popular VPN implementation for Linux, with software also available for
Windows and OS X. OpenVPN uses static key and TLS authentication and has a variety
of options for running a server and client-to-client VPN scenarios as well.

PPTP
PPTP support is typically provided by the PPTP daemon, pptpd. Configuring pptpd is
fairly straightforward but suffers from a lack of overall power by itself when compared to
other Linux VPN server solutions such as OpenVPN.

VPN and Firewalls
A VPN can be placed in front of a firewall, be placed behind a firewall, or be part of a
firewall implementation. Placing the VPN in front of a firewall is not very common. It is
more common to use a firewall/VPN combo or to put the VPN behind the firewall itself.

Combining a VPN system and a firewall is one of the more flexible solutions. It
requires less hardware but also creates a single point of failure. A more robust solution is to
have a VPN behind the firewall or as part of a DMZ configuration.

If your firewall also performs NAT, you may run into some troubles with some VPN
configurations. In particular, your firewall must be set up to route packets based on the
protocol (GRE, AH, ESP) instead of on the port alone.

A NAT/firewall is typically incompatible with the AH protocol regardless of the mode
(transport or tunnel). IPsec VPNs using AH digitally sign the outbound packet, both
data payload and headers, with a hash value appended to the packet. AH doesn’t encrypt
the packet contents (data payload). If a NAT/firewall is between the IPsec endpoints, it
rewrites either the source address or the destination address with one of its own (depend-
ing on the NAT setup). The VPN at the receiving end tries to verify the integrity of
the inbound packet by computing its own hash value and complains that the hash value
appended to the packet doesn’t match. The VPN, unaware of the NAT/firewall in the
middle, thinks that the packet has been altered.

You can use IPsec with ESP in tunnel mode with authentication. ESP in tunnel
mode encapsulates the entire original packet (including headers) in a new IP packet.
The new packet’s source address is the outbound address of the sending VPN gateway,

http://www.openswan.org/
https://libreswan.org

234 Chapter 10 Virtual Private Networks

and its destination address is the inbound address of the VPN at the receiving end. When
using ESP in tunnel mode with authentication, the packet contents are encrypted. The
encrypted contents (the original packet), not the new headers, are signed with a hash
value appended to the packet.

Integrity checks are performed over the combination of the original header plus the
original payload. If you’re using ESP in tunnel mode with authentication, these are not
changed by the NAT/firewall.

A NAT/firewall may interfere with IPsec (both AH and ESP) if it prevents the two
VPN gateways from successfully negotiating security associations using ISAKMP/IKE
with X.509 certificates. If the two VPN gateways exchange signed certificates that bind
each gateway’s identity to its IP address, NAT address rewriting will cause the IKE nego-
tiation to fail.

It is for this reason that combination VPN and firewall configurations are becoming so
popular. Rules to manage this situation can be set up and maintained easily.

Summary
Virtual private networks are popular because they leverage existing infrastructure to pro-
vide a seamless network experience to end users. Numerous implementations of VPNs
are available, taking advantage of the different protocols available for creating VPNs. As
you would expect, Linux has several options available, Openswan and OpenVPN among
others.

Some problems exist when connecting VPNs through NAT-enabled firewalls. This is
because IPsec creates a digital signature based on the IP header, which is altered during
the NAT process.

Beyond iptables
and nftables

 11 Intrusion Detection and Response

 12 Intrusion Detection Tools

 13 Network Monitoring and Attack Detection

 14 Filesystem Integrity

III

Hiva-Network.Com

http://www.hiva-network.com/

This page intentionally left blank

11
Intrusion Detection

and Response

You’ve now built a firewall with Linux using iptables or nftables. The layered secu-
rity approach includes both network- and host-based security. Where the firewall provides
security for both the network and the hosts, there are also steps that must be taken on the
firewall machine itself, as well as on the hosts within the network. Whether it takes the
form of filesystem integrity checking, virus/rootkit scanning, or monitoring the network
for suspicious activity, these processes help ensure that your data remains safe.

This chapter is about host and network security and intrusion detection. The goal of
the chapter is to provide a high-level overview of some of the concepts so that you can do
further research into the specific areas of interest. The chapter widens the scope beyond
that of the firewall machine to include the security of the network, as well as suggestions
for individual computers within the network.

Detecting Intrusions
How do you know when you’ve been attacked successfully? Administrators and intrusion
analysts have posed that question for a long time. The methods used for detecting suc-
cessful attacks used to be more art than science. Luckily, various tools are now available to
make intrusion detection much more science than art.

With that said, the primary tool for intrusion detection still remains a human who can
gather data from a number of sources and make an intelligent, educated decision about
the meaning of the data. The current tools are sophisticated and can perform some of this
correlation themselves, but the true worth of an intrusion analyst is proven in the ability
to assess the situation and present likely causes and effects.

Many times, an attack is detected when a service outage is reported. In this way, it’s
important to actively monitor your services using a package such as Nagios. By actively
monitoring as many services as possible, you can quickly spot an anomaly that warrants
further investigation.

If you run a web server, rather than monitoring merely whether the server is listening
(usually on TCP port 80) you should monitor specific text on one or more web pages. If you

238 Chapter 11 Intrusion Detection and Response

monitor only the state of the server and whether it’s listening, you won’t catch a defacement
of the website. In essence, you should monitor the behavior of the specific services to ensure
that they are running as expected rather than making sure that they are merely running.

It’s also important to monitor resources such as disk space, memory usage, and load
average. Monitoring these resources can indicate if a process has run away and is consum-
ing too many resources (as might be the case with a poorly written exploit). Additionally,
monitoring disk space is another useful task. If you normally consume 25% of the disk
and suddenly the disk usage jumps to 85%, you’ll want to investigate to see whether an
attacker is using the server as a drop point for files.

Basic service monitoring, performed as much as you can, as often as you can, will help
provide an early warning of anomalies. Monitoring services will also help improve the
reliability of the services, all security considerations aside. Monitoring should not, how-
ever, replace intrusion detection tools such as Snort or Suricata, nor should it replace a
good security policy implemented through an in-depth strategy.

After an anomaly has been noted, whether through normal service monitoring or
through another means, it’s up to you to investigate the anomaly. Your investigation should
conform to the security policy you have in place. One of the first responses would likely
be to determine whether an intrusion has actually taken place. There could be many
reasons why the load average just spiked or why the disk usage has increased, so you
shouldn’t assume that an attack has happened merely because of an outage alert.

Determining the root cause of a service outage is a difficult task that usually ends in a
service being restarted or some similar routine procedure being performed to clear up the
outage. However, it’s important to look for underlying causes of such outages to ensure that
an attack isn’t under way or that an attack hasn’t already occurred. It is in this area, event
correlation, where a human is most necessary. For example, did the disk partition just run out
of space because an attacker is using the space or because the log files filled up the partition?

Symptoms Suggesting That the System
Might Be Compromised
Often, successful attackers will try to hide their tracks, and therefore simple service moni-
toring won’t be of assistance. The attackers might be far more skillful at hiding their tracks
than you are at tracking down anomalous system states.

Linux systems are too diverse, customizable, and complicated to define an ironclad,
fully comprehensive list of definitive symptoms proving that the system is compromised.
As with any kind of detective or diagnostic work, you must look for clues where you
can—as systematically as you can. RFC 2196, “Site Security Handbook,” provides a list of
signs to check for. Though unmaintained, the “Steps for Recovering from a UNIX or NT
System Compromise,” available from CERT at http://www.cert.org/historical/tech_tips/
win-unix-system_compromise.cfm?, provides another list of anomalies to check for.

http://www.cert.org/historical/tech_tips/win-unix-system_compromise.cfm?
http://www.cert.org/historical/tech_tips/win-unix-system_compromise.cfm?

Symptoms Suggesting That the System Might Be Compromised 239

The following sections incorporate and extend the ideas found in both lists, including
all or most of their points in one form or another. The anomalies have been roughly cat-
egorized into the following: indications related to the system logs; changes to the system
configuration; changes related to the filesystem, file contents, file access permissions, and
file size; changes to user accounts, passwords, and user access; problems indicated in the
security audit reports; and unexpected performance degradation. The anomalous indica-
tions often cross category boundaries.

System Log Indications
System log indications include unusual error and status messages in the logs, truncated log
files, deleted log files, and emailed status reports:

 � System log files—Unexplained entries in the system log files, shrinking log files,
and missing log files all suggest that something is wrong. For example, /var/log/
messages contains the majority of the system log information on most Linux sys-
tems. If that log file is zero-sized or is missing large portions, additional investigation
is warranted.

 � System daemon status reports—Instead of (or in addition to) writing to the log
files, some daemons such as crond send status reports in email. Having unusual or
missing reports suggests that something is not right.

 � Anomalous console and terminal messages—Unexplained messages, pos-
sibly meant to announce the hacker’s presence, during a login session are obviously
suspicious.

 � Repeated access attempts—Ongoing login attempts or illegal file access attempts
through FTP or a web server, particularly attempts to subvert a web application, are
suspicious when the attempts are persistent, even if the attempts appear to end in
repeated failure.

System Configuration Indications
System configuration indications include modified configuration files and system scripts,
unintended processes running inexplicably, unexpected service port usage and assignments,
and changes in network device operational status:

 � cron jobs—Check the cron configuration scripts and executables for modification.
 � Altered system configuration files—A filesystem integrity check, manual or
using a tool as described in Chapter 14, “Filesystem Integrity,” would indicate
changed configuration files in /etc. These files are critical to proper system func-
tioning. Any change to a file (such as in /etc/, like /etc/passwd, /etc/group,
and similar files) is important to check.

Hiva-Network.Com

http://www.hiva-network.com/

240 Chapter 11 Intrusion Detection and Response

 � Unexplained services and processes, as shown by ps—Unexpectedly running
programs are a bad sign. Be aware that as part of the attack, the ps command itself
may have been replaced. More on this later.

 � Unexpected connection and unexpected port usage, as shown by netstat
or tcpdump—Unexpected network traffic is a bad sign.

 � System crashes and missing processes—System crashes, as well as unexpected
server crashes, might be suspect. A system crash can also suggest an attacker-initiated
system reboot, which could be necessary to restart certain critical system processes
after replacement with a trojan version.

 � Changes in device configuration—Reconfiguring a network interface to be in
promiscuous or debug mode is a sign that a packet sniffer is installed.

Filesystem Indications
Filesystem indications include new files and directories, missing files and directories,
altered file contents, md5sum or sha1sum mismatches, new setuid programs, and rapidly
growing or overflowing filesystems:

 � New files and directories—Besides files with suddenly bad digital signatures, you
might discover new files and directories. Especially suspicious are filenames starting
with one or more dots and legitimate-sounding filenames appearing in unlikely places.

 � setuid and setgid programs—New setuid files, and newly set setgid files,
are a good place to start looking under the hood for problems.

 � Missing files—Missing files, particularly log files, indicate a problem of some kind.
 � Rapidly changing filesystem sizes, as shown by df—If the machine is com-
promised, rapidly growing filesystems might be a sign of a hacker’s monitoring
program producing large log files.

 � Modified public file archives—Check the contents of your web and FTP areas
for new or modified files.

User Account Indications
User account indications include new user accounts, changes to the passwd file, unusual
activity in the user process accounting reports or missing process accounting reports,
changes to user files—especially environmental files—and loss of account access:

 � New and modified user accounts—New accounts in /etc/passwd and pro-
cesses running under new or unexpected user IDs as shown by ps are indications of
new accounts. Accounts with suddenly missing passwords indicate an open account.

 � User accounting records—Unusual user accounting reports, inexplicable logins,
missing or edited log files (such as /var/log/lastlog, /var/log/pacct, or
/var/log/usracct), and irregular user activity are signs of trouble.

What to Do If Your System Is Compromised 241

 � Changes to root or user accounts—A serious sign is a user’s login environ-
ment that has been modified or damaged to the point that the account is inacces-
sible. Of particular concern are changes to users’ PATH environment variable or ssh
authorized_keys.

 � Loss of account access—Similar to changes to a user’s login environment is
intentional access denial, whether by changing the account password, by removing
the account, or, for regular users, by changing the runlevel to single-user mode.

Security Audit Tool Indications
Security audit tool indications include filesystem integrity mismatches, file size changes,
changes to file permission mode bits, new setuid and setgid programs, alerts from
intrusion detection tools such as Snort, and service-monitoring data.

Files with mismatched hash signatures can be files that are new, files whose lengths or
creation or modification dates have changed, and files whose access modes are altered.
Of particular concern are newly installed trojan horse programs. Frequent targets for
replacement are programs managed by inetd or xinetd, inetd or xinetd itself, ls,
ps, netstat, ifconfig, telnet, login, su, ftp, syslogd, du, df, sync, and the libc
library.

System Performance Indications
System performance indications include unusually high load averages and heavy disk
access.

Unexplained, poor system performance could be caused by unusual process activity,
unusually high load averages, excessive network traffic, or heavy filesystem access.

If your system shows signs of a successful compromise, don’t panic. Don’t reboot the
system—important information could be lost. Simply physically disconnect the system
from the Internet.

What to Do If Your System Is Compromised
Regardless of how an anomaly is investigated, the intrusion analyst must take care when
performing the investigation. If attackers notice that there’s an investigator currently look-
ing around on the same system, it’s much more likely that they will slash and burn their
way out of the system. If an attacker thinks he or she is being followed or monitored, the
attacker might begin deleting anything and everything in the way, causing real damage
to the systems in question. An attack that might have resulted in only a defacement of a
website might suddenly turn into deletion of entire partitions if the attacker notices the
investigation.

After it has been determined that there has been a successful attack or that an attack
is currently under way, a number of responses frequently occur. These will, of course, be
dependent on your security policy.

242 Chapter 11 Intrusion Detection and Response

If storage space is available, take a snapshot of the entire system in its current state for
later analysis. If that isn’t an option for you, at least snapshot the system logs under
/var/log and the system configuration files under the /etc directory.

Keep a log. Write down everything. Documenting what you do and what you find not
only is good for reporting the incident to a response team, your ISP, or a lawyer but also
helps you keep track of what you’ve examined and what remains to be done.

If an attack has occurred or is currently under way, one of the first priorities is usually
to stop the attack and prevent further damage from occurring. Keeping in mind that an
attacker who notices an investigator on the same system is more likely to cause collateral
damage, unplugging the system from the network is a common recommendation. With
the network cable unplugged, the attacker simply can’t cause additional damage. There
is, of course, the possibility that the attacker will be using a tool to monitor the network
interface and automatically cover his or her tracks should that interface’s status change.

Looking for subtle changes to the system is part of this phase. Attackers may have set
up a cron job to restart their daemons if they are stopped. In addition, it’s quite typical for
attackers to replace common Linux utilities such as ls and ps with their own versions in
order to hide their processes and files. In this regard, a program such as Chkrootkit can be
helpful for detecting host-based intrusions.

The tools you use to mitigate damage will be determined by the type of attack. For
example, a denial-of-service attack against a router will necessarily require different steps
to mitigate the attack. The steps you might take to determine whether the system is com-
promised are the same steps to take in analyzing the compromised system:

1. Check the system logs and use netstat and lsof to see which processes are run-
ning and which ports are bound. Check the contents of the system configuration
files. Verify the contents and access modes of all your files and directories by check-
ing their digital signatures. Check for new setuid programs. Compare configu-
ration and user files against clean backup copies. It’s very likely that the attacker
installed trojan horse programs in place of the very system tools you’re using to
analyze the system.

2. Take stock of any volatile information, such as which processes are running and
which ports are in use.

3. Boot off an external drive or a backup copy of the system. Examine the system
using the clean tools from the unaffected system. As an alternative, install the disk
drives as secondary drives in a noncompromised system, and examine the disks
as data.

4. Determine how the attacker succeeded in gaining entry, and determine what was
done to your system.

5. If possible, completely reinstall the system from the original Linux distribution
media.

6. Correct the security vulnerability, whether by making a more careful selection of
services to run, by reconfiguring servers more securely, by defining access lists at the

Incident Reporting 243

xinetd or tcp_wrappers level and at the individual server level, by installing a
packet-filtering firewall, or by installing application proxy servers.

7. Install and configure any system integrity packages.

8. Enable all logging.

9. Restore user and special configuration files known to be untainted.

10. Create MD5 or SHA checksums for the system binaries and static
configuration files.

11. Reconnect the system to the network and install any new security upgrades from
your Linux vendor.

12. Create MD5 or SHA checksums for the newly installed binaries, and store the
checksum database on a USB drive, CD/DVD, or some other system.

13. Monitor the system for recurring illegal access attempts.

Incident Reporting
An incident can be a number of things; you need to define it for yourself. For example, an
incident might be defined as an anomalous attempt to gain or escalate privilege or com-
promise the confidentiality, integrity, or availability of one or more systems.

It is good practice to monitor your system log files, system integrity reports, and system
accounting reports as a matter of habit. Even with minimal logging enabled, sooner or
later you’ll see something that your security policy dictates is important enough to report.
With full logging enabled, you’ll have plenty of log entries to ponder 24 hours a day.

Some access attempts are more serious than others. Some will annoy you personally
more than others. The following sections start by discussing reasons why you might want
to report an incident and cover considerations concerning which types of incidents you
might report. These are individual decisions. The remaining sections focus on the various
reporting groups available and the kind of information you need to supply if you choose
to report something.

Why Report an Incident?
You might want to report an incident even if the attack attempt was unsuccessful. These
are some of the reasons:

 � To end the probes—Your firewall ensures that most probes remain harmless. But
even harmless probes are annoying if they occur repeatedly. Persistent, repeated,
ongoing scans fill your log files. Depending on how you’ve defined the notification
triggers in any log-monitoring software that you run, repeated probes can pester
you with continual email notifications. However, in today’s age of seemingly end-
less probes from bots owned by unaware broadband users, especially those in the
United States, it would simply be too time-consuming for most people to report
every probe.

Hiva-Network.Com

http://www.hiva-network.com/

244 Chapter 11 Intrusion Detection and Response

 � To help protect other sites—Automated probes and scans are generally build-
ing a database of all vulnerable hosts in a large IP address block. When identified
as potentially vulnerable to specific exploits, these hosts are targeted for selective
attacks. Today’s sophisticated analysis and cracking tools can compromise a vulner-
able system and hide their tracks in seconds. Reporting an incident might put a stop
to the scans before someone somewhere else gets hurt.

 � To inform the system or network administrator—Attacking sites quite often
are compromised systems, host a compromised user account, have misconfigured
software, are being spoofed, or have an individual troublemaker. System administra-
tors are usually responsive to an incident report. ISPs tend to stop their trouble-
making customers before other customers start complaining that remote sites have
blocked access from their address block and that they can’t exchange email with a
friend or family at a remote site.

 � To receive confirmation of the attack—Sometimes you might simply want
confirmation that what you’re seeing in the logs is a problem. Sometimes you might
want confirmation that a remote site was indeed leaking packets unintentionally
because of a faulty configuration. The remote site also is often glad for the heads-up
that its network isn’t behaving as it had intended.

 � To increase awareness and monitoring by all involved parties—If you
report the incident to the attacking site, the site ideally will monitor its configura-
tions and user activities more carefully. If you report the incident to an abuse center,
the abuse staff can contact the remote site with more clout than an individual car-
ries, keep an eye out for continued activity, and better help customers who have
been compromised. If you report the incident to a security newsgroup, other people
can get a better idea of what to watch out for.

What Kinds of Incidents Might You Report?
Which incidents you report depends completely on your tolerance, how serious you
consider different probes to be, and how much time you care to devote against what is
a global, exponentially growing infestation. It comes down to how you define the term
incident. In different people’s minds, incidents can range anywhere from simple port scans
to attempts to access your private files or system resources, to denial-of-service attacks, to
crashing your servers or your entire system, to gaining root login access to your system:

 � Denial-of-service attacks—Any kind of denial-of-service attack is blatantly hos-
tile. It’s difficult not to take such an attack personally. These attacks are the electronic
form of vandalism, obstruction, harassment, and theft of service. Because some forms
of denial-of-service attacks are possible because of the inherent nature of networked
devices, you can do little or nothing about some forms of attack other than to
report the incidents and block the attacker’s entire address block.

Incident Reporting 245

 � Attempts to reconfigure your system—An attacker can’t reconfigure your serv-
ers without a root login account on your machine, but he or she could conceivably
modify your system’s in-memory, network-related tables—or try, at least. Exploits to
consider include these:

 � Unauthorized DNS zone transfers to or from your machine over TCP
 � Changes to your in-memory routing tables
 � Attempts to reconfigure your network interfaces or routing tables via probes to
UDP port 161 for snmpd

 � Attempts to gain login account access—Probes to ssh TCP port 22 are obvi-
ous. Less obvious are probes to ports associated with servers known to be exploit-
able, either historically or currently. Buffer overflow exploits are generally intended
ultimately to execute commands and gain shell access. The mountd exploit is an
example of this.

 � Attempts to access nonpublic files—Attempts to access private files, such as the
/etc/passwd file, configuration files, or proprietary files, show up in your FTP log
(/var/log/xferlog or /var/log/messages) and in your web server access log
(/var/log/httpd/error_log).

 � Attempts to use private services—By definition, any service you haven’t made
available to the Internet is private. These are the private services potentially available
through your public servers, such as attempts to relay mail through your mail server.
Chances are, people are up to no good if they’re trying to use your machine instead
of their own or their ISP’s. Relay attempts show up in your mail log file
(/var/log/maillog).

 � Attempts to store files on your disk—If you host an improperly configured
anonymous FTP site, it’s possible for someone to set up a repository of stolen soft-
ware or media on your machine. Attempts to upload files are recorded in your FTP
log (/var/log/xferlog) if ftpd is configured to log file uploads.

 � Attempts to crash your system or individual servers—Buffer overflow
attempts against programs available through your website are possibly the easiest
to identify by error messages written in the web server log files. Other reports of
erroneous data will appear in your general syslog file (/var/log/messages), your
general daemon log (/var/log/daemon), your mail log (/var/log/maillog), your
FTP log (/var/log/xferlog), or your secure access log (/var/log/secure).

 � Attempts to exploit specific, known, currently exploitable vulnerabilities—
Attackers find new vulnerabilities with each new software release (and old ones too).

246 Chapter 11 Intrusion Detection and Response

To Whom Do You Report an Incident?
You have a number of options in terms of whom you report an incident to:

 � root, postmaster, or abuse at the offending site—The obvious place to
lodge a complaint is with the administrator of the offending site. Informing the
system administrator is often all that’s required to take care of a problem. This isn’t
always possible, though, because many probes originate from spoofed, nonexistent
IP addresses.

 � Network coordinator—If the IP address doesn’t have a DNS entry, contacting
the coordinator for the network address block is often helpful. The coordinator can
contact the administrator at the offending site or put you in direct contact. If the IP
address doesn’t resolve through the host or dig commands, you can almost always
find the network coordinator by supplying the address to the whois databases. The
whois command is hard-wired into the ARIN database. Three major databases are
available through the web:

 � ARIN—The American Registry for Internet Numbers maintains the IP address
database for the Western Hemisphere, the Americas. ARIN is located at http://
whois.arin.net/ui.

 � APNIC—The Asia Pacific Network Information Centre maintains the IP address
database for Asia. APNIC is located at http://www.apnic.net/apnic-bin/whois.pl.

 � RIPE—The Réseaux IP Européens maintains the IP address database for Europe.
RIPE is located at https://apps.db.ripe.net/search/query.html.

 � Your ISP abuse center—If scans are originating from within your ISP’s address
space, your abuse center is the place to contact. Your ISP can be helpful with scans
originating elsewhere, too, by contacting the offending site on your behalf. Chances
are good that your machine isn’t the only machine being probed on the ISP’s
network.

 � Your Linux vendor—If your system is compromised because of a software vul-
nerability in its distribution, your vendor will want to know so that a security
upgrade can be developed and released.

What Information Do You Supply?
An incident report must contain enough information to help the incident response team
track down the problem. When contacting the site from which the attack originated,
remember that your contact person might be the individual who intentionally launched
the attack. What you include out of the following list depends on whom you are contact-
ing and how comfortable you are including the information, as well as whatever privacy
and other policies may be in effect:

 � Your email address
 � Your phone number, if appropriate

http://whois.arin.net/ui
http://whois.arin.net/ui
http://www.apnic.net/apnic-bin/whois.pl
https://apps.db.ripe.net/search/query.html

Summary 247

 � Your IP address, hostname, and domain name
 � The IP addresses and hostnames, if available, involved in the attack
 � The date and time of the incident (including your time zone relative to GMT)
 � A description of the attack

 � How you detected the attack
 � Representative log file entries showing the incident
 � A description of the log file format
 � References to advisories and security notices describing the nature and signifi-
cance of the attack, if relevant

 � What you want the person to do (fix it, confirm it, explain it, monitor it, or be
informed of it)

Summary
This chapter focused on monitoring system integrity and intrusion detection. If you sus-
pect that a system might be compromised, you can refer to this chapter’s list of potential
problem indications. If you see some of these indications and conclude that the system is
compromised, you can make use of the list of recovery steps discussed. Finally, incident-
reporting considerations were discussed, and pointers were given on whom you might
report an incident to.

Chapter 12, “Intrusion Detection Tools,” looks at the implementation of some of the
things you learned in this chapter by looking at the specific tools involved in intrusion
detection and system testing.

Hiva-Network.Com

http://www.hiva-network.com/

This page intentionally left blank

12
Intrusion Detection Tools

In the preceding chapter you learned the concepts of intrusion detection and intrusion
response. Rarely are two attacks exactly the same, though the techniques used frequently
rely on a common set of methods and result in many of the same symptoms, as described
in the preceding chapter. It is through these common methods and symptoms that intru-
sion detection tools are able to assist the intrusion analyst with his or her job.

The intrusion analyst has much to choose from when looking for software tools to
assist in problem correlation, diagnosis, and resolution. This chapter focuses on the soft-
ware tools used in intrusion detection and tools that can help in any administrator’s tool-
kit. The chapter begins with a look at network sniffers and continues through tools to
check for rootkits and into filesystem checkers and log file monitoring.

Intrusion Detection Toolkit: Network Tools
Some of the primary tools of security and network administrators alike are network
analysis tools. These include network sniffers, intrusion detection software, and network
analyzers.

A network sniffer is software that passively listens to traffic received and sent by a
network interface. TCPDump is simple enough that beginners can learn it quickly yet
powerful enough to provide the necessary functionality for multiple protocols in multiple
situations. Using TCPDump, it’s possible to view traffic in numerous formats including
ASCII and use expressions to fine-tune the exact traffic to be viewed through the tool.

TCPDump is manual and primitive intrusion detection software. If you know what
you’re looking for, TCPDump can help you spot the anomalous traffic as it passes through
the network. TCPDump in and of itself won’t know that an attack just passed under its
nose; that’s the job of the intrusion analyst (as well as other software). However, TCP-
Dump almost always becomes an integral tool for investigating active attacks because it
allows the analyst to watch the attack in real time.

TCPDump is covered in depth in Chapter 13, “Network Monitoring and Attack
Detection.” There you’ll find coverage of normal protocol activity, as well as a look at
some exploits through the eyes, or nose as it were, of TCPDump.

When it comes to tools that listen to the network and perform some level of analysis
on the traffic, Snort is an excellent choice. Snort is provider- and enterprise-class intrusion

250 Chapter 12 Intrusion Detection Tools

detection software that’s both widely deployed and mature. Snort works using the concept
of intrusion signatures. The theory is that many attacks follow the same pattern or look
the same or very similar at the network level.

Consider this example: Assume that a packet is received on a certain port with its
header flags set a certain way. When this occurs, it is always a precursor to an attack or
an attempt to exploit a certain vulnerability. It can be said that this particular attack has,
therefore, a signature that identifies it as malicious traffic. This signature, unique to the
exploit of this vulnerability, can then be used by software such as Snort to detect that there
was an attempt to exploit the vulnerability. Snort can then perform an action based on this
detection (or can take no action).

ntop is network analysis software, as opposed to the sniffer that produces reports of
usage based on protocol, flow, host, and other parameters. Using ntop is recommended at
strategic points in the network to establish a baseline of the normal traffic flows on the
network.

I chose to feature ntop here because it’s simple to get working quickly. However, I also
recommend other analysis software for network traffic. Among other analysis software,
MRTG is another excellent choice for traffic analysis, as are RRDtool and Scrutinizer.

Creating baseline traffic reports and keeping them up-to-date helps not only to spot
anomalies, including both unexpected increases and decreases in the traffic, but also to
track when new bandwidth might be necessary. It is this dual use—security anomalies and
bandwidth usage monitoring—that makes traffic analysis invaluable.

To establish traffic baselines and effectively monitor the network for intrusions using
Snort and TCPDump on large networks, it’s important to place the tools at strategic
locations within the network. Most large networks (even medium and small ones) use
switches to pass traffic. Understanding the difference between switches and hubs is impor-
tant when considering where to place network tools.

Switches and Hubs and Why You Care
On a switched network, any given network interface would receive only traffic destined
for it as well as broadcast traffic. In a hub network environment the network interface
receives all traffic, whether that traffic is destined for it or for another device. This is why
switched networks are faster than hubbed networks—the unnecessary traffic isn’t sent to
all ports of the switch.

There are situations in which a network interface might receive all traffic or a greater
subset than merely its own in a switched network, such as those when a switch is config-
ured to mirror the traffic to a specific port. In practice this can be done, but it may result
in performance problems for the switch because it now has to copy all traffic to two ports
instead of one. Refer to your switch’s documentation for more information.

Regardless of where the traffic originates, if it comes into the interface where the
sniffer is running, the traffic can be captured. The key, at a network level, is to place sniffers
and the related intrusion detection software in the right locations. For host-based traffic
sniffing, the placement of the sniffer is obvious, on the host itself.

Rootkit Checkers 251

ARPWatch
Another item to be discussed in Chapter 13 is ARPWatch. ARPWatch is software that
watches for new devices on the network. ARPWatch can be helpful for auditing the
devices on the network, especially wireless networks.

Rootkit Checkers
A rootkit is a piece of software or a grouping of software that attempts to exploit one or
more vulnerabilities with the goal of enabling an attacker to gain elevated privileges or
perform any other type of attack against the target. Frequently, rootkits are used by less
skilled attackers who use the software built by another attacker but don’t really understand
the underlying exploit; they’re just interested in the results.

Many rootkits not only run the initial exploit to give the attacker root privileges but
also attempt to mask or hide the fact that an attack has been launched. They do this by
deleting log files or certain entries from log files, planting trojan horse versions of pro-
grams, and employing other means. There is also nothing stopping an attacker from chain-
ing rootkits together for multiple levels of deception and possible exploit.

Like network-centric attacks, rootkits frequently have signatures or leave other traces
that identify them. These traces and signatures might be the aforementioned removal of
log files, the presence of one or more processes, or other changes to the system that are
specific to the rootkit software or the exploit.

Also as with network-centric attacks, there is software to search for the signatures and
traces of rootkits as well. One such application is Chkrootkit.

Running Chkrootkit
Before you can run Chkrootkit, you need to get it. Chkrootkit can be downloaded from
http://www.chkrootkit.org/ and is also included as a package with many flavors of Linux.
After it’s downloaded, Chkrootkit needs to be unarchived and compiled:

tar -zxvf chkrootkit.tar.gz
cd chkrootkit-<NNNN>
make sense

Yes, that does say make sense in the code example. Although Chkrootkit is a shell
script, some additional functionality is gained by compiling the code. Compiling is not
required, but because it’s quick and adds some additional levels of checking, I recommend
doing so. Specifically, compiling Chkrootkit will enable these additional checks, though
the standard packages from a given operating system may also have them:

 � ifpromisc

 � chklastlog

 � chkwtmp

 � check_wtmpx

Hiva-Network.Com

http://www.chkrootkit.org/
http://www.hiva-network.com/

252 Chapter 12 Intrusion Detection Tools

 � chkproc

 � chkdirs

 � strings

Of all the tools used in this book, Chkrootkit is probably the easiest to use. To run
Chkrootkit, from within the chkrootkit source directory you simply type this:

./chkrootkit | less

You aren’t required to pipe the output to less, but there is a copious amount of
output. So if you actually want to read the output, you’ll probably need to pipe it
 somewhere—unless, of course, you have a huge scrollback buffer.

Because running Chkrootkit produces a lot of output, it is wise to pipe the output to
more or less, depending on your preference. Alternatively, you could redirect the output
to a file:

./chkrootkit > output.txt

Chkrootkit will output a number of lines informing you what it is currently checking
for along with the ultimate status of the check. The output will look similar to this:

Checking 'amd'... not found
Checking 'basename'... not infected
Checking 'biff'... not infected
Checking 'chfn'... not infected
Checking 'chsh'... not infected
Searching for ShitC Worm... nothing found
Searching for Omega Worm... nothing found
Searching for Sadmind/IIS Worm... nothing found
Searching for MonKit... nothing found
Searching for Showtee... nothing found

As you can see from the output sample, it doesn’t appear that any trojaned files or
rootkits were detected. An infected file or detection of a rootkit will look similar to the
following:

Checking 'bindshell'... INFECTED (PORTS: 1524 31337)

Even though the output from Chkrootkit seems to indicate that the computer is
infected with bindshell, Chkrootkit does sometimes produce false positives. However, if
you see the INFECTED output from Chkrootkit, it’s in your best interest to assume that
Chkrootkit reported correctly and take steps to mitigate the damage.

A false positive occurs when a tool detects and reports a problem when in fact there is
no problem. The underlying cause for false positives varies depending on the nature of the
software reporting the occurrence. False positives are not as bad as false negatives. A false
negative occurs when there really is a problem but the problem is not reported by tools
that should find it.

False positives and negatives are not limited to computing. Imagine the case in which
a person goes to a doctor and gets an ultrasound scan. Based on the scan results, the doc-
tor reports that the person has cancer. However, on further examination it appears that the

Rootkit Checkers 253

initial report was incorrect. This is an example of a false positive. Although additional tests
were unnecessarily performed based on the false positive, it is still much better than hav-
ing a false negative, with the cancer going unnoticed and untreated.

Because Chkrootkit reports using tools on the computer, it may report a false negative.
There are ways around this problem as described later in this section.

What If Chkrootkit Says the Computer Is Infected?
If Chkrootkit says your computer is infected, the first thing you should do is tell yourself
to remain calm. Although you should not assume so, there is a chance that Chkrootkit is
reporting a false positive. If Chkrootkit reports an infection, you should immediately take
steps to mitigate any further damage.

The preceding chapter of the book looked at incident response. Therefore, it would
be redundant to cover that same material in this chapter. However, as with all tools of this
nature, false positives come with the territory. It’s in your best interest to take the notice
seriously, but it might also be wise to try to determine whether Chkrootkit has reported a
false positive.

Chkrootkit uses various means to find rootkits. Many times Chkrootkit looks for
a certain signature in a file based on a known trojaned version of the file. Other times
Chkrootkit looks for ports that are open that have been known to be the result of a root-
kit or other attack. This was the case for the report of infection highlighted earlier in this
section. Chkrootkit reported that it believed that the computer was infected with the
bindshell rootkit. It based this finding on two ports that it found open, 1524 and 31337.
In reality, these ports were open because of another security tool, PortSentry, that listens
on those ports in hopes of catching other infected hosts. I used the program lsof with
the -i option to determine the exact program that was listening on those ports.

With dozens of rootkits reported by Chkrootkit, you probably won’t know the exact
ramifications of being infected by a given rootkit. Further, there’s a good chance that if
one rootkit has been run, multiple rootkits have been run, making cleanup all that much
more difficult. To begin the process of damage control, you can search the web for each
individual rootkit to determine what actions it takes when it’s run. However, realize that,
by definition, after a rootkit has been run successfully, the attacker has root privileges on
the computer and therefore may have done much greater damage to the system or may be
in the process of doing so now!

Whenever Chkrootkit reports an infection, you should take it seriously and always
assume the worst. Prudence suggests that you should immediately unplug the computer
from the network and take steps to clean up from the rootkit. In reality, it’s rarely that easy
or cut-and-dried.

Limitations of Chkrootkit and Similar Tools
Chkrootkit is a powerful and incredibly helpful tool but it is not without limitations.
These limitations aren’t really specific to Chkrootkit but rather are a limitation of any tool
that attempts to perform complex checks such as this. One such limitation, false positives,

254 Chapter 12 Intrusion Detection Tools

has already been discussed. Another limitation of Chkrootkit and other tools like it is that
they rely, by default, on programs included with the Linux computer itself, programs that
may have been compromised or altered to avoid detection by prying eyes such as those of
Chkrootkit and related utilities.

Here’s a partial list of programs that Chkrootkit uses; keep in mind that these programs
may themselves in turn rely on libraries or other things on the Linux computer that also
may be compromised:

 � awk

 � cut

 � echo

 � egrep

 � find

 � head

 � id

 � ls

 � netstat

 � ps

 � sed

 � strings

 � uname

Another limitation of tools such as Chkrootkit that is shared by similar tools is that it
can detect only rootkits that have been reported and for which it has been configured.
Some unlucky soul has to be the first to have the rootkit run on his or her computer. If
you happen to be that person, Chkrootkit won’t help. Realize, though, that there is a fair
chance that multiple rootkits will be run on the computer, which will make detection
easier. I realize that this is small consolation.

Using Chkrootkit Securely
It’s a good idea to use known-good sets of system binaries when using a tool such as
Chkrootkit. Many rootkits replace vital system binaries such as /bin/ps with versions of
their own. Therefore, if you try to use ps to find unknown processes, you may not be able
to see them because the trojaned version of ps hides them.

Chkrootkit gives two methods for working around this problem. The first method
involves using a known-good set of binaries, probably mounted from a CD-ROM. The
second method involves physically mounting the possibly compromised hard drive into a
different computer and then running the check from there. This second method is more
appropriate for forensics after a successful attack than for investigating a possible attack.

Filesystem Integrity 255

Mounting a CD-ROM with known-good versions of binaries is a safe and easy
method for performing a thorough examination using Chkrootkit. This method
assumes that you have a CD-ROM with the correct binaries already on the disc. To run
Chkrootkit with a CD-ROM copy of the binaries, first mount the CD. This is usually
accomplished using the mount command, although sometimes it’s mounted automatically.
A common method for mounting the CD-ROM drive in most modern Linux distribu-
tions is shown here:

mount -t iso9660 /dev/cdrom /mnt/cdrom

Chkrootkit uses the -p option to define the location of the binaries it should use.
Therefore, if the CD-ROM is mounted at /mnt/cdrom, you’d run Chkrootkit like so:

./chkrootkit -p /mnt/cdrom

The other method for running Chkrootkit is to physically mount the possibly com-
promised hard drive into another computer and run Chkrootkit against the contents of
that drive. This is accomplished by specifying an alternate “root” directory for Chkrootkit.
Assume that the second drive is mounted at /mnt/drive2:

./chkrootkit -r /mnt/drive2

When Should Chkrootkit Be Run?
Chkrootkit should be run whenever you like. There is no recommended schedule for
Chkrootkit. I personally run it at irregular intervals for fun, but then again I’m just that
type of guy. You should most definitely run Chkrootkit anytime you observe any suspi-
cious activity on the computer or on other computers that may interact with or reside on
the same network block as the computer in question. Whenever you run Chkrootkit, you
should always hop out to the website, http://www.chkrootkit.org/, to check for a new
version of the tool. A new signature for a rootkit or additional functionality might have
been added since the version you’re using.

You can also run Chkrootkit nightly from cron. However, I wouldn’t rely on such a
report being entirely accurate, but it could provide an early warning of an anomaly that
needs your attention. Running Chkrootkit from cron might look like this:

0 4 * * * /path/to/chkrootkit

The cron entry shown will run Chkrootkit every morning at 4:00 a.m. and root (the
recipient of cron job output) will receive a report every morning detailing the run of
Chkrootkit.

Filesystem Integrity
Hand in hand with a rootkit checker such as Chkrootkit goes filesystem integrity software.
Filesystem integrity software monitors important files on the computer and generates
reports based on changes to those files. The administrator can then watch for unexpected

Hiva-Network.Com

http://www.chkrootkit.org/
http://www.hiva-network.com/

256 Chapter 12 Intrusion Detection Tools

changes to the files in question. For example, if files such as /etc/resolv.conf or even
/etc/shadow change for no apparent reason, the administrator can take action.

Some popular filesystem integrity tools are OSSEC, Samhain, and AIDE. AIDE is cov-
ered in detail, and a more complete description of how filesystem integrity works is given,
in Chapter 14, “Filesystem Integrity.”

Log Monitoring
Log files are monitored to watch for anomalies that might indicate an attack. Although
this method is used successfully, it can result in huge amounts of data and become cum-
bersome on large networks.

When combined with other tools, log monitoring can be made to work. For example,
using log monitoring on a few key systems can reduce the amount of data being received.
However, this and other such measures are really stopgap measures because they do little
to ensure the security of the systems that aren’t monitored.

Numerous packages are available to monitor log files. One such package is Swatch. I’ll
briefly cover Swatch here just to give you a taste of some of the capabilities of these types
of tools.

Swatch
Swatch is available with many Linux distributions as an add-on package or can be down-
loaded from http://swatch.sourceforge.net/. Swatch is highly configurable and can per-
form a number of actions based on a match.

Swatch works in several modes, including a mode called single-pass, which has the
program parse a log file once, searching for matches and taking action based on those
matches. Another mode sees Swatch perform a running tail (tail -f) of a log file look-
ing for matches. By default, Swatch monitors /var/log/messages, but it can be config-
ured to monitor any file or even a socket.

Because Swatch is so powerful, I don’t feel as though I can do it justice in a book on
Linux firewalls. I invite you to read more about Swatch. For now, I’ll give a recipe for
monitoring a log file with Swatch. Another such recipe shows up in Chapter 13, in the
section on Snort titled “Automated Intrusion Monitoring with Snort.”

Using Swatch to Monitor SSH Login Failures
There are constant brute-force login attempts against SSH. These usually don’t result in
much of anything except annoyance. However, it’s generally useful to monitor log files for
these and other attempts to brute-force attack a server. Swatch can be configured to send
an email (or do any number of other actions) when such an attempt is logged. This section
shows how to send an email alert when an authentication failure is logged.

The system logs a line similar to the following when a login is attempted and fails:

Jun 7 17:09:10 ord sshd[3434]: error: \
 PAM: Authentication failure for root from 192.168.1.10

http://swatch.sourceforge.net/

How to Not Become Compromised 257

There are a number of unique items on this line, but I’ll choose to look for the words
“Authentication failure” because that is the type of thing I want to be alerted on. The
Swatch syntax is painfully easy yet can be incredibly powerful. This is because Swatch uses
regular expression syntax for matching. The match in this case is rather trivial. Simply tell-
ing Swatch what to watch for with the aptly titled watchfor configuration directive and
then giving it one or more actions to perform when a match is noted is all that’s required
for Swatch configuration. For example, to look for the words “Authentication failure” and
have an email sent, the Swatch configuration consists of the following:

watchfor /Authentication failure/
 mail

These two lines are saved in ~/.swatchrc. In this case, I’m doing so as root because
Swatch will need read access to the log file in question.

Next, start Swatch and tell it what file to monitor. Again, the default is /var/log/
messages. However, I’m creating this example on a Debian system and so the authentica-
tion failures are logged to /var/log/auth.log by default. Therefore, I point Swatch at
the correct configuration file and start it:

swatch —tail-file=/var/log/auth.log

Swatch will now monitor the log file for the words “Authentication failure” and will
send an email to root if and when the words are found.

As previously stated, there are several options for alerts, including executing other
programs. These programs could be shell scripts or really anything, so the possibilities are
virtually limitless.

How to Not Become Compromised
Virtually nothing can be done to stop an attacker with unlimited resources and unlimited
time. From DoS attacks to rootkits to physical attacks, if someone wants at your data badly
enough, chances are that he or she can get to it, given no other constraints. That said, there
are many things you can do to limit your exposure to most risks.

Neither this chapter nor this book deals with physical attacks on any level. If an
attacker is onsite and can simply walk off with the computer or hard drive containing the
data, there’s no amount of firewalling that will help. If the attacker has physical access to
the computer or device holding the data, the attacker can steal the data itself or possibly
plant his or her own malicious trojan software.

This section gives some general suggestions that are field tested to keep systems secure.
These suggestions are by no means all-encompassing; rather they are merely things I sug-
gest to help ensure system integrity.

Secure Often
Securing the computing environment is a continual process rather than an endpoint. As
you work to secure systems and networks, new vulnerabilities are being discovered and

258 Chapter 12 Intrusion Detection Tools

new software is being developed. There is simply no magic bullet that enables you to be
done and complete when it comes to securing a computer environment. This book has
been devoted to securing a network and its systems through the use of a firewall built
on Linux. This chapter has introduced some of the other aspects of a security-in-depth
process.

Using the tools available to you, such as those already introduced in this chapter, you
can secure a computer and the network on which it resides. There are, of course, addi-
tional steps you can take to further enhance the security of the environment.

Bastille Linux
Bastille Linux is a program that helps automate the process of system security as well as
report on the security of the system. Bastille Linux implements many of the security best
practices that you could find by reading volumes of material and countless websites. All
of those best practices are implemented through a wizardlike interface (command line or
GUI) that contains a lot of information on not only what you’re being asked but why it’s
important.

Bastille Linux goes so far as to give recommendations for certain features. Unlike many
tools that try to give recommendations, Bastille gets it right by explaining the reasoning
behind the proposed change, as well as the implications that it might have if you choose to
use the step.

Finally, Bastille also includes an undo process so that you can quickly undo any changes
that might be causing problems. Bastille is welcomed by experienced Linux administra-
tors and those new to Linux alike. Some Linux distributions include Bastille as a package.
More information on Bastille Linux can be found at http://bastille-linux.sourceforge.net.

Update Often
Although by far the most effortless of any task in this book, keeping a computer system
up-to-date is an often-overlooked aspect of system security. The best way to ensure that a
computer will be broken into is to leave it running without updating it.

One of the greatest strengths of Linux and open-source software is security. Some
people attempt to argue that this security is achieved because open-source software is less
popular. Of course, this completely ignores market-share statistics such as Netcraft’s web
server survey showing that Apache holds nearly 40% of the web server market and even
more if one excludes the placeholder sites running Microsoft IIS.

Part of this security strength comes from the open-source community’s ability to pro-
vide fixes within hours of the vulnerability disclosure. It’s quite common for fixes to be
available the same day as the disclosure, even for security issues that weren’t previously
publicly disclosed. For events in which a fix might take a little time, the community has
historically been excellent at providing workarounds to mitigate and sometimes eliminate
the vulnerabilities entirely.

Both of these characteristics, quick fixes and quick workarounds, work to your advan-
tage in maintaining system security. However, for either one to be of use, you need to

http://bastille-linux.sourceforge.net

How to Not Become Compromised 259

keep track of their availability by monitoring mailing lists and security websites. Most
major Linux vendors offer announce-only security mailing lists in which subscribers
receive an email whenever a vulnerability is disclosed.

Keeping software up-to-date is an important aspect of system security. I recommend
updating as often as possible while obviously paying attention to the software that’s being
updated to ensure that none of the updates breaks live systems.

Test Often
It’s not enough to secure often and update often, though those two items certainly go a
long way toward ensuring a secure environment. Another basic point of security in depth
is to test often. Testing ensures that the security policies are being enforced and the imple-
mentation of those security policies is successful.

Penetration testing is another important aspect of system security. Penetration testing,
or pen-testing, is a process by which the security of a system is tested by trying a num-
ber of attack vectors to get the system to behave in an unexpected way. The definition of
penetration testing is purposely vague so that it is not limited to attacks of only a certain
class or type.

Penetration testing can be both informal and formal. The informal pen-tests are typi-
cally run by security administrators or even developers using anything from manual
attempts to break into an application to automated attacks using a number of tools. A for-
mal pen-test would be done by a third party who would likely use a combination of both
manual and automated attacks to test the system. The type and frequency of pen-testing is
a matter for your security policy.

Of course, when you do test, it’s important to test both as if you were a normal attacker
and as if you were an insider. Testing as a normal attacker means testing the application
or system without any knowledge other than that which can be gleaned from outside of
the system. In other words, if you’re testing a web application, view the source of the web
page to see what parameters are being used. Many times, testing as a normal attacker also
means that you’ll have to test from a location external to the local network. This is espe-
cially important when testing a firewall rule set.

This section examines some of the tools you can use to test a network and computer
system. As with other lists presented in this chapter, it is not meant to be all-encompassing
or comprehensive. Rather, the tools examined here provide a good starting point on
which you can build your knowledge of security and penetration-testing concepts and
facilities.

Nmap
Nmap, the Network Mapper, is a program used to identify open ports and available
devices on a network. Nmap is frequently used by the intrusion analyst to determine what
ports are open and listening on a given host. In the context of a firewall, Nmap can be
used from an external location to test the firewall rules to ensure that no unexpected ports
are open and available.

Hiva-Network.Com

http://www.hiva-network.com/

260 Chapter 12 Intrusion Detection Tools

Nmap is available as a package on many popular Linux distributions. If Nmap isn’t
available on your distribution, it can be downloaded from http://www.nmap.org/.

Nmap includes many options for probing hosts and entire networks. These options are
too numerous to cover in depth here. In practice, I’ve found the following syntax to be
most useful for performing the aforementioned port scan, this one looking for TCP ports:

nmap -sS -v <host>

For example, to scan the host 192.168.1.10 for open TCP ports, the following syntax
would be used:

nmap -sS -v 192.168.1.10

Note that the use of the -v option enables extra verbosity. Although this option is not
required, it is recommended, and you can even add additional instances of -v to increase
the verbosity.

Various types of TCP scans are available with Nmap. I chose a SYN scan because I’ve
found it to generally be the most reliable for this type of test.

When Nmap begins a scan, it sends an initial ping or ICMP echo request to the target
host. Sometimes the target doesn’t respond to the ICMP echo request. In these cases, you
can disable the initial ICMP echo request sent by Nmap by using the -P0 option.

As previously stated, several options are available with Nmap. Typing simply nmap at the
command line will print a relatively verbose set of usage instructions containing many of
these options.

hping3
hping3 is another network utility that can be used to test for open ports and also to test
the behavior of network applications and devices. hping3 enables the user to set numer-
ous attributes of a network packet, or craft the packet as it’s sometimes called. When pack-
ets are crafted, the behavior of the network application or device can be observed.

hping3 is used in Chapter 13 to show how some attacks might look when viewed
with TCPDump.

Nikto
Nikto is a program to test a web server for known vulnerabilities and also to provide
information on that web server. Nikto can be downloaded from http://www.cirt.net/
Nikto2.

Because Nikto is web server specific, its coverage will be limited here. However, if you
are running a web server, I highly recommend Nikto to test the server for a number of
vulnerabilities.

http://www.nmap.org/
http://www.cirt.net/Nikto2
http://www.cirt.net/Nikto2

Summary 261

Summary
This chapter provided a look at intrusion detection tools and some basic security princi-
ples. From things like TCPDump, to sniffer placement, to filesystem integrity, the chapter
showed you around the world of intrusion detection.

These intrusion detection tools are best when coupled with security practices such as
regular updating, enhanced security measures, and penetration testing to ensure that the
security of the system is as you expect.

The next chapter of the book looks more in depth at network security by examining
TCPDump, a key tool in any administrator’s toolbox.

This page intentionally left blank

13
Network Monitoring
and Attack Detection

This chapter uses the knowledge you’ve gained throughout the book and in the pre-
ceding couple of chapters specifically to show how you might use some of the tools for
everyday monitoring and also for investigation.

The chapter begins with an overview of network monitoring, or sniffing. The informa-
tion in the beginning of this chapter builds on what you’ve already seen in the first two
chapters of the book. This chapter then continues with a look at TCPDump, a key tool in
the network security analyst’s toolkit. Finally, the chapter also looks at two helpful security
software packages: Snort and ARPWatch.

Listening to the Ether
Armed with the basic knowledge of some of the core protocols from the first two chap-
ters, you’re ready to begin listening to the network. Exactly what you may see when you
begin monitoring your network will depend on several factors, not the least of which is
the network topology itself.

A modern Ethernet network is a collection of endpoint devices such as computers
with network interfaces, interconnected using a hub or switch. The difference between a
hub and a switch is important to both network performance and security. In a hub envi-
ronment, every Ethernet frame is copied to every port on the hub, and therefore every
device is connected to the hub. Contrast a hub environment with a switched environ-
ment. In a switched environment, the switch sends frames to the specific port to which a
given device is connected. In other words, with a switch, traffic goes only to the devices
that should receive it. If an intruder can monitor the network in a hub environment, the
intruder will see all frames destined for all devices connected to that hub. In a switch envi-
ronment, the intruder will see only traffic destined for that host or broadcast traffic that is
copied to all ports.

Most managed switches enable the administrator to configure a certain port to receive
all traffic. Cisco calls this a “span” port, whereas others call it a “mirror” port. In effect, by
copying all traffic to the one port on the switch, the administrator can monitor all the

Hiva-Network.Com

http://www.hiva-network.com/

264 Chapter 13 Network Monitoring and Attack Detection

traffic for that switch to look for possible intrusions or other anomalies. Of course, this can
also be dangerous. If an attacker gains control over the device at the end of that port, the
attacker too can listen to everything! Also, in heavy traffic environments performance deg-
radation will likely occur if you attempt to monitor all ports. Therefore, choosing where
to monitor your network is important.

If you don’t have a managed switch or a switch that enables you to copy all traffic to
one port, you’ll need to find another means to listen to the traffic. I don’t recommend
removing the switch in favor of a hub. However, one method would be to connect a hub
to the firewall and then connect your intrusion detection or monitoring computer to that
hub as well, and finally connect the hub into the main switch. In this way you can moni-
tor internal firewall traffic without (much) performance degradation and without com-
promising much of the safety that a switch provides.

As I wrote the sentence about the safety of a switch, I was reminded of some types
of attacks that enable an attacker to listen to other traffic on a switch, even if it wasn’t
destined for the port where the attacker resides. These attacks, primarily ARP spoofing,
involve interfering with the normal operation of ARP. A good primer on ARP spoofing
can be found in the paper “An Introduction to Arp Spoofing,” available online at http://
packetstormsecurity.org/papers/protocols/intro_to_arp_spoofing.pdf.

Choosing monitoring points within a network is more art than science and is inevita-
bly debatable. There are those who say that only the interior of the network is important
to monitor because the firewall will prevent the outside traffic from being important
anyway. There are others who maintain that external points should be monitored so that
you can see what is being attempted on the network. And there are those, like myself, who
believe that both internal and external points should be monitored. Monitoring the inter-
nal network is important for (I hope) obvious reasons. You can look for anomalous traffic
and also monitor for unexpected conditions and performance. However, I believe that
monitoring the external network is important as well. I cut my computer security teeth at
an Internet provider where everything important was on the external network by nature.
Therefore, I was able to see just how valuable it was to know what’s happening on the
outside as a means to prevent attacks from being successful.

You have to make decisions that work in your environment. It may not make sense to
deploy a computer outside of your firewall just for intrusion detection. All security is a
trade-off between the assets you are trying to protect and the limited resources available to
protect them.

Three Valuable Tools
An ever-growing number of tools and software exist to monitor network traffic. Some of
these tools are free (as in price and speech), and some cost quite a bit of money. I’ve used
both the expensive tools and the free ones, and I’m confident in saying that the free ones
are better. The expensive tools are weak on functionality but strong on the pretty. The
interfaces for many of the products provide a nice “look and feel” (though many of them
seem to be somewhat unstable). In general, the open-source tools are a bit more involved

http://packetstormsecurity.org/papers/protocols/intro_to_arp_spoofing.pdf
http://packetstormsecurity.org/papers/protocols/intro_to_arp_spoofing.pdf

TCPDump: A Simple Overview 265

to set up and use, but they provide better functionality and with a little work can produce
some of the nicest-looking graphs and other pictures that the expensive tools provide. For
my money, I’d rather have intrusion detection tools that I can use quickly and easily when
investigating a potential attack. Dealing with cumbersome, nonintuitive GUIs only gets in
the way of the business of intrusion detection.

This section looks at a few monitoring tools with special emphasis on the tools that are
covered later in the book.

TCPDump
One of the primary tools in an intrusion detection analyst’s toolkit should be TCPDump.
TCPDump places a network interface into promiscuous mode so that it captures every
packet that arrives. Of course, this means that TCPDump needs to be run from the com-
puter experiencing the possible intrusion or needs to be run from a computer that is the
recipient of a “spanned” port in a switch environment. TCPDump is examined in greater
detail in the next section.

Snort
Snort is one of the best intrusion detection systems available, free or otherwise. Snort
captures network traffic in much the same way that TCPDump does. However, Snort uses
a database of well-known attack signatures to provide a level of detection as well. Whereas
TCPDump is more of a manual monitor, Snort is more automated insofar as the analyst
doesn’t need to manually examine each packet. You can get more information on Snort at
http://www.snort.org/.

ARPWatch
ARPWatch is a tool used to monitor ARP traffic on a network. The goal would be for
an administrator to spot possible ARP spoofing attempts as well as unknown devices that
have entered the network. ARPWatch can be downloaded from http://ee.lbl.gov/. Like
other tools, ARPWatch needs to be compiled before use if your system doesn’t have it
available as a package. ARPWatch is examined later in this chapter, in the section “Moni-
toring with ARPWatch.”

TCPDump: A Simple Overview
Recall what you’ve read in earlier chapters. You learned about IP addressing, subnetting,
and the headers of some of those core protocols. In this chapter the TCPDump tool will
be examined, and you will see some of those protocols up close and personal. Armed with
an understanding of how to monitor your network at this level, you can be confident that
you’ll be able to troubleshoot a wide range of problems, not just those related to computer
security.

An important tool in the intrusion analyst’s toolkit is TCPDump. At a basic level,
TCPDump is real-time packet capture and analysis software. This means that TCPDump
can be used to eavesdrop on network communication as it travels through the network.

http://snort.org/
http://ee.lbl.gov/

266 Chapter 13 Network Monitoring and Attack Detection

As has already been mentioned, however, the amount of traffic that one can eavesdrop on
is dictated by the network topology. If the computer from which TCPDump is running
is connected to a switched network, TCPDump will see only traffic destined for that host
or broadcast/multicast traffic. A good approach in a switched network would be to use
a “span” port to which all network traffic will be copied by the switch itself. Of course,
none of this is of concern in a hub-based network because all traffic is copied to all ports
on the hub.

TCPDump places the network interface into promiscuous mode. Before you get too
excited, consider that on busy interfaces this means that a huge amount of traffic will be
flying past the screen, which has the potential to slow down the traffic ever so slightly.
In any event, a large amount of traffic will be too much for a human to comprehend, so
you’ll want to capture the output to a file, pipe the output to a pager, or filter the traf-
fic to look for something specific. Filtering through a TCPDump expression is by far the
best option, but the choices are by no means mutually exclusive. I usually use a filter and a
pager such as less, just in case something interesting flies past my screen too quickly.

TCPDump can filter traffic by virtually any criteria you can imagine. Most commonly
for the intrusion analyst, you’ll look at traffic by protocol, host, port number, or a combi-
nation thereof. Before I go further, I would be remiss if I didn’t recommend reading or at
least referring to the TCPDump(1) manual page (type man tcpdump to read it). The man
page is a comprehensive document providing not only syntax but samples of use, as well
as some protocol diagrams. If you get stuck trying to use TCPDump and you don’t have a
copy of this book handy, maybe you should buy two copies of the book. Alternatively, use
the TCPDump man page for reference too.

Obtaining and Installing TCPDump
TCPDump can be downloaded from http://www.tcpdump.org/. TCPDump requires
the PCap library libpcap, so while you’re downloading TCPDump, you should download
libpcap as well. Most popular Linux distributions also include TCPDump as an available
package. For example, if you’re using Debian, you can simply type this:

apt-get install tcpdump

The package maintenance system will install TCPDump and any prerequisites too. For
everyone else, you can probably search your distribution’s repository for a package or just
download the source and compile it, which I recommend. Should you attempt to compile
TCPDump without having libpcap installed, you’ll see an error similar to the following
while running the configure script for TCPDump:

checking for main in -lpcap... no
configure: error: see the INSTALL doc for more info

Installation of both libpcap and TCPDump is fairly straightforward as far as compiling
software goes. Unarchive each piece of source code, run the configure script, compile, and
install.

http://www.tcpdump.org/

TCPDump: A Simple Overview 267

In essence:

tar -zxvf libpcap-<version>.tar.gz
cd libpcap-<version>
./configure
make
make install

Do the same for TCPDump:

tar -zxvf tcpdump-<version>.tar.gz
cd tcpdump-<version>
./configure
make
make install

TCPDump Options
TCPDump accepts a wide range of command-line options that alter its behavior, the
amount of data captured, and the way in which the data is captured. Such a wide range of
options means that you have the power to significantly change how the program operates.
For TCPDump, you’ll find that you frequently use a common set of options for most data
capture activities, and you may not use others at all.

Some of the more commonly used options include those listed in Table 13.1.
Examining each of these options in turn reveals the steps necessary for performing

basic packet capture and analysis. Not all of these options are necessarily required to cap-
ture traffic with TCPDump (in fact, none of them is required). It’s perfectly valid to sim-
ply type the tcpdump command on the command line to start capturing traffic. However,
in practice many of these options are necessary to gain the level of detail needed in order
to properly analyze the traffic.

Table 13.1 Some Common Options for TCPDump

Option Description

-i <interface> Specifies the interface to use

-v Produces output in verbose mode

-vv Produces output in really verbose mode

-x Causes TCPDump to print the packet itself in hexadecimal format

-X Causes TCPDump to also print the output in ASCII

-n Tells TCPDump not to perform DNS lookups for the IP addresses
seen during the capture

-F <file> Reads the expression from <file>

-D Prints available interfaces

-s <length> Sets the length for each packet of the capture to <length>

Hiva-Network.Com

http://www.hiva-network.com/

268 Chapter 13 Network Monitoring and Attack Detection

The -i <interface> option changes the default interface on which TCPDump will
listen for packets to capture. By default, TCPDump will listen on the first interface, eth0.
However, for multihomed machines it may be necessary to use this option so that the cor-
rect traffic is captured. For example, on a firewall the eth0 interface might be connected
to the internal network while the eth1 interface is connected to the Internet. You may be
interested in seeing the traffic that’s hitting your external interface (eth1); thus, you would
use the -i <interface> option in TCPDump.

The verbose mode options, -v, -vv, and -vvv (not included in Table 13.1), cause
 TCPDump to print more (and more, and more) information about each packet received.
With -v this information includes such important things as the TTL, packet ID, length, and
options. Experimentation is usually necessary during a packet capture to determine which
of these options will suit your needs. Different protocols may not have much (or any) addi-
tional information to print, so adding verbosity with these switches won’t do any good.

The -x option causes TCPDump to also print hex dumps of each packet. For my eyes,
this option isn’t particularly helpful because I don’t read hex so well. However, using the
lowercase -x is required to take advantage of the ASCII dump of the packets that can be
had by using the uppercase -X. Therefore, I’ll rarely if ever use just -x and instead use both
-x and -X. Although some parts of the packet may be printed by using just -X, using both
can be helpful.

A sometimes-helpful option out of the most common options is the -s <length>
option. Using this option is helpful to print the contents of packets themselves rather than
the default 68 bytes only. If you’re interested only in the headers of packets, this option
won’t be of much, if any, use. However, if you’d like to peek inside the packet itself, this
option will help to ensure that the packet capture isn’t truncated.

An option that becomes more useful the more you use TCPDump is the -F <file>
option. This option tells TCPDump to read the contents of <file> for the filter expres-
sion rather than reading the command line. This option is very handy for longer expres-
sions or expressions that are used frequently (or even infrequently). After using TCPDump
for a while, you may get tired of typing the same old filter expression to capture the same
packets week after week. Storing that expression in a file and then reading the expression
from the file when using TCPDump is a great way to save time.

When just starting out with TCPDump, an option that you may find useful is the -D
option. The -D option informs TCPDump to print a list of interfaces on which you can
perform the packet capture. Because packet captures are interface dependent, knowing
which interface to use is the most important thing you will have to choose. In Linux, it’s
somewhat easier to choose the right interface because interface names are usually simple,
like eth0 for the first Ethernet card. However, in Windows, -D is much more important
because interface names can be quite difficult to remember.

A final option worth noting is the -n option. Using -n tells TCPDump not to per-
form reverse DNS lookups on the hosts as it sees them during the capture. Doing reverse
lookups frequently slows down packet capture and naturally also increases the amount of
traffic. Therefore, adding -n is helpful for speeding up the capture as well as reducing the

TCPDump: A Simple Overview 269

signal-to-noise ratio. When I forget to set the -n option, I sometimes find myself asking,
“Why is this machine performing DNS lookups?” only to realize that the lookups are the
result of my packet capture activity.

TCPDump Expressions
Now the fun begins. By default, TCPDump will capture and output every packet that hits
the interface. Sometimes this is useful for quickly listening to some traffic on a quiet inter-
face. However, most captures will make use of expressions in TCPDump. A TCPDump
expression is a collection of criteria for network traffic that you’d like to view with
TCPDump. Expressions consist of one or more qualifiers and possibly a primitive, both of
which are discussed in the following subsections. An expression might be used to capture
only traffic that originates from a certain host or that is destined for a certain host. The
possibilities with expressions and combinations of expressions give you the ability to home
in on exactly the packets you need to see to assess a given network situation.

One of the more powerful features of expressions is the capability to negate. For
instance, if you want to listen to all traffic except network traffic on port 80 (usually
HTTP traffic), you could have TCPDump capture all traffic except that which is transmit-
ted or received on port 80. TCPDump can use other logical terms as well, such as AND, OR,
and the already-mentioned negation keyword NOT.

TCPDump expressions are enclosed within single quotes (') and can be grouped
together by enclosing the various parts of a given expression within parentheses. This
means that you can combine multiple expressions to capture only that traffic that is of
interest. The key to grouping expressions together is the use of the logical terms AND, OR,
and NOT. TCPDump has three qualifiers, each of which is introduced in turn in the dis-
cussion that follows. The first kind of qualifier is the type qualifier.

TCPDump’s Type Qualifier
Just as TCPDump has three kinds of qualifiers, the type qualifier itself contains some
variations, including host, port, portrange, and net. The host qualifier is used to specify the
host or destination of interesting traffic. The port type qualifier is not surprisingly used to
specify the port on which to capture packets, and portrange specifies a series of ports, such
as 5060-5080. The net type is used to specify the subnet for interesting traffic. You could
use the net qualifier in an expression to listen for traffic on an entire range of addresses.
Of course, there are times when you don’t want to listen to an entire range of addresses.
 TCPDump also accepts the modifier mask with the net qualifier to specify the subnet
mask. You can also use CIDR notation to specify the mask bits.

Before I go further, here’s an example of a TCPDump expression to capture traffic on
port 80:

tcpdump 'port 80'

Because this expression uses only a single criterion (port 80), there’s no need to enclose
it within parentheses. If, however, the goal was to capture traffic on port 80 with a source

270 Chapter 13 Network Monitoring and Attack Detection

or destination of one or more specific hosts, say 192.168.1.10 and 192.168.1.11, then
parentheses would be required, as in this example:

tcpdump 'port 80 and (host 192.168.1.10 or host 192.168.1.11)'

Parentheses are required only for logical grouping. In practice, you’ll suffer no penalty
for using them, and truthfully I normally use them just out of habit. When writing the
preceding simple port 80 example, I included the parentheses at first, only to go back
and remove them after I thought about what I was doing. Old habits die hard. Speak-
ing of unnecessary terms, the term host in the example isn’t required either—more on
that later.

Here are some examples using the net type qualifier to listen for traffic in both direc-
tions for the network listed:

tcpdump 'net 192.168.1'

Here’s that same example using CIDR notation:

tcpdump 'net 192.168.1.0/24'

And finally, here’s that same example using the mask modifier:

tcpdump 'net 192.168.1.0 mask 255.255.255.0'

If you fail to specify a type qualifier (host, net, port, portrange) within a TCPDump
expression, the host type is assumed. Therefore, don’t be surprised when you receive a
“parse error” when attempting something like this:

tcpdump '80'

Really, you probably wanted to have TCPDump listen for traffic on port 80:

tcpdump 'port 80'

TCPDump’s Direction Qualifier
Another kind of qualifier within a TCPDump expression is the direction qualifier. The
previous examples will look for traffic flowing in either direction, coming or going, on
port 80, for instance. For example, this might mean that traffic destined for a web server
running at 192.168.1.10 will be captured, but so will traffic leaving the computer at
192.168.1.10 and destined for another server on port 80. You can also specify the direc-
tion with which to capture traffic by using a direction qualifier. The terms src for the
source and dst for the destination are the two direction qualifiers used by TCPDump.
Adding the destination term to one of the previous examples yields an expression that will
look for port 80 traffic going to 192.168.1.10 or 192.168.1.11:

tcpdump 'port 80 and (src 192.168.1.10 or src 192.168.1.11)'

The direction qualifier isn’t limited to looking for traffic on certain addresses. It’s
perfectly valid to look for traffic with a source or destination of a specific port, as in this
example that looks for traffic with a destination of port 25 (usually SMTP):

tcpdump 'dst port 25'

TCPDump: A Simple Overview 271

There are direction qualifiers that are specific to 802.11 wireless link-layer traffic. These
include ra, ta, addr1, addr2, addr3, and addr4. Additionally, some protocols use the terms
inbound and outbound to specify the direction. See the TCPDump man page for more
details on these qualifiers.

TCPDump’s Protocol Qualifier
A final kind of qualifier for use in a TCPDump expression is the protocol qualifier. Not
surprisingly, protocol qualifiers enable you to choose which protocols should be captured
with TCPDump. The protocols that can be captured with TCPDump include, among
others, Ethernet (abbreviated ether for TCPDump syntax), WLAN, TCP, UDP, ICMP, IP,
IPv6 (abbreviated ip6 for TCPDump syntax), ARP, reverse ARP (abbreviated to rarp),
and more.

Primitives
Aside from the main three qualifiers (type, direction, and protocol), there are also what are
known as primitives for use in TCPDump expressions. Primitives are keywords that help
to specify additional parameters for the packet capture. Some highlights of commonly
used primitives include

 � Arithmetic operators
 � broadcast

 � gateway

 � greater

 � less

The arithmetic operators include +, -, *, /, >, <, >=, <=, =, !=, and a few others.
 TCPDump can use quite complex arithmetic operators and packet offsets to look into
packets. I prefer to leave it as an exercise for the reader to dive into these areas should you
find it necessary to do so.

The broadcast primitive, when prepended with either ip or ether, will look for
packets that are IP or Ethernet broadcasts respectively, though ether is the default type to
look for. For example, a TCPDump expression looking for ip broadcast will search for
broadcasts on an IP network. However, if the interface card on which TCPDump is listen-
ing has no subnet mask or if the any interface is being used, this broadcast primitive
will not work.

The primitives greater and less are used to search for packets with a length greater
than or equal to or less than or equal to the given length. These primitives are functionally
equivalent to using the arithmetic operators for the same. So, for example, the syntax

len >= 1500

is equivalent to this:

greater 1500

Hiva-Network.Com

http://www.hiva-network.com/

272 Chapter 13 Network Monitoring and Attack Detection

Beyond the Basics with TCPDump
You should now have a feel for the basic syntax of TCPDump, including some of the
options, the syntax, and TCPDump expressions. The amount of troubleshooting and diag-
nosis that can be accomplished with even a basic grasp of TCPDump syntax makes it an
essential tool for anyone managing networked computers. However, to examine more
difficult problems, you may find that you need to go beyond the basics of TCPDump.

Going beyond the basics of TCPDump requires deeper understanding of the protocols
themselves. Knowing the flags of TCP or the types of ICMP can help to narrow the focus
to only the packets of interest. Although this information and knowing how to use it with
TCPDump is not mandatory, having the ability to call on the information at any time
is valuable to say the least. Take the time to familiarize yourself with TCPDump’s more
involved syntax. It costs nothing but time to test a packet-filtering expression to see how
it works under various network conditions.

Using TCPDump to Capture Specific Protocols
In this section, I’ll give some examples that show you how to capture various forms of
network traffic for monitoring purposes. Included among the examples, you’ll see what
a DNS query looks like through TCPDump, some ICMP (ping) examples, and various
TCP- and UDP-based protocols. After you see how normal traffic looks, I’ll then show
you some of the fun stuff. Specifically, I’ll show what some types of attacks look like
through TCPDump so that you might be able to quickly detect these when they come
into (or out of) your network.

Throughout this section, I’ll be using a few different programs to generate traffic for
TCPDump to capture. My primary tool for TCP-related captures will be telnet. I’ll use
telnet to generate traffic and mirror what the real protocol (or close to it) does in the real
world. Generation of DNS queries will be accomplished using both the dig command
and the host command. The ping and traceroute commands will be used. Finally, the
hping3 command will be used to generate ICMP traffic as well as other interesting pack-
ets, especially in the attack section. With the exception of hping3, all of these programs
are installed on most major Linux distributions.

Using TCPDump in the Real World
So far in this chapter, you’ve seen a number of examples of using TCPDump to capture
various types of traffic. These examples were given to show the usage of TCPDump in
relation to expressions and other options. Now it’s time to give you real-life examples of
using TCPDump to capture specific types of traffic. The situations in which you might use
these examples will vary, but I’ll try to give some clue as to why you might use a given
example, where I can. It might be helpful to see how a filter expression is built when try-
ing to capture in the real world. I briefly touched on this topic earlier. However, before
giving recipe-type solutions, I’ll show you how to build a filter with the specific goal of
capturing an HTTP conversation.

Using TCPDump to Capture Specific Protocols 273

Building a Filter to Capture an HTTP Conversation
HTTP is the language of the Web. Usually HTTP rides over TCP, which in turn rides on
IP. I’m choosing HTTP as the first real-world capture only because people are generally
familiar with browsing a web page, even though they may not be familiar with the under-
lying protocol.

Recall that IP is a connectionless protocol whereas TCP is a connection-oriented
protocol. TCP uses a three-way handshake to begin a conversation. HTTP takes advantage
of the connection-oriented nature of TCP and in fact knows nothing of lower-layered
(remember the OSI model) protocols. As far as HTTP is concerned, it hands its data down
to the next lower layer and is done. To that end, when an HTTP conversation is initiated,
the first thing you should see through TCPDump is the three-way handshake of TCP fol-
lowed by protocol-specific data.

For the most part, HTTP traffic flows to a destination of port 80.

Note
The ports on which various services normally operate can be found by examining the file
/etc/services. With that in mind, the true source for port number assignments is IANA.
You can view the most current and complete list of official port number assignments at
the URL http://www.iana.org/assignments/port-numbers. However, remember that there’s
nothing preventing someone from running a service on a port other than the official port
number!

Because HTTP is usually found on port 80, it would be a good idea to start with a
basic TCPDump expression that looks only for port 80 traffic, such as this one:

tcpdump 'port 80'

Running that command and then generating some traffic by surfing to a web page
yields these results:

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes

17:15:38.934337 IP client.braingia.org.4485 > test.example.com.www: \
 S 523004834:523004834(0) win 5840 \
 <mss 1460,sackOK,timestamp 249916003 0,nop,wscale 0>

17:15:38.984650 IP test.example.com.www > client.braingia.org.4485: S \
 2810959978:2810959978(0) ack 523004835 win 5792 \
 <mss 1460,sackOK,timestamp 1320060704 249916003,nop,wscale 0>

17:15:38.984684 IP client.braingia.org.4485 > test.example.com.www: \
 . ack 1 win 5840 <nop,nop,timestamp 249916008 1320060704>

17:15:38.985326 IP client.braingia.org.4485 > test.example.com.www: \
 P 1:462(461) ack 1 win 5840 <nop,nop,timestamp 249916008 1320060704>

17:15:39.038067 IP test.example.com.www > client.braingia.org.4485: . \
 ack 462 win 6432 <nop,nop,timestamp 1320060710 249916008>

http://www.iana.org/assignments/port-numbers

274 Chapter 13 Network Monitoring and Attack Detection

17:15:39.065141 IP test.example.com.www > client.braingia.org.4485: . \
 1:1449(1448) ack 462 win 6432 <nop,nop,timestamp 1320060712 249916008>

17:15:39.065183 IP client.braingia.org.4485 > test.example.com.www: . \
 ack 1449 win 8688 <nop,nop,timestamp 249916016 1320060712>

Note
I’ve separated the results for greater readability, and I’ll continue to do so throughout the
rest of this chapter.

Notice the first two lines from the TCPDump output. In this case, the first line tells me
that I really should have more verbose output enabled in order to see anything interesting
within the packet, and the second line gives a status of the interface on which TCPDump
is listening, as well as the size of the capture.

The next line is the first line of the capture and is also coincidentally the first packet
(SYN) sent in the TCP three-way handshake. The first thing you’ll notice on the line is
a timestamp, followed by the protocol (IP). Next is the hostname of the computer that
initiated the packet (client.braingia.org) together with the source port for the traffic
(4485). This combination, source computer and source port, are known as the Source. The
greater-than sign (>) shows the direction of the flow in relation to the Destination for this
traffic, which, as you can see from that line, is test.example.com.www. The www signifies
the destination port that the traffic is headed for on the destination computer.

The next item of interest on the TCPDump output line is the Flags section, in this
case indicated by an uppercase S. Recall from Chapter 1, “Preliminary Concepts Under-
lying Packet-Filtering Firewalls,” that the TCP header can contain various flags to indi-
cate certain conditions for the packet. If you guessed that S indicates a packet with the
SYN flag set, you may have just won a valuable prize. Following the Flags section is the
Sequence Number space for the packet, indicating the sequence numbers that will be
covered within this packet. In the case of the example, the Sequence Number space
(523004834:523004834(0)) is zero length. The next item on this line is the Window
size, as indicated by the win 5840 in the output. Finally, enclosed within brackets are
options contained in the packet. Although these options can be of interest at certain times,
you’ll rarely need to care much about them in the real world.

You’ve now seen one single packet of a TCP three-way handshake through
TCPDump. Don’t worry, it does get more exciting than this, really it does. The next
line in the capture contains the response packet coming back from test.example.com.
Notice that the timestamp has increased and the protocol is still IP. However, now the
source computer is test.example.com on port 80 and the destination is
client.braingia.org.4485. Notice also that the SYN flag is set as evidenced by the
S following the source > destination area. The sequence number space is different now,
though, 2810959978:2810959978(0). This is because test.example.com chose its
own sequence number as part of the process. The first difference of real interest because
we haven’t seen it before is the ack 523004835. This is the second part of the TCP
three-way handshake, namely, what’s commonly referred to as the SYN-ACK packet. In
this packet, the original destination computer is answering or acknowledging the call to

Using TCPDump to Capture Specific Protocols 275

initiate a TCP connection on the specified port. Notice that the number following the
ack is equal to the original sequence number (523004834) plus one. This is the protocol
itself in action.

The third packet in the capture, depicted again here for reference, is the final packet in
the connection setup for TCP:

17:15:38.984684 IP client.braingia.org.4485 > test.example.com.www: . \
 ack 1 win 5840 <nop,nop,timestamp 249916008 1320060704>

In this packet, the original source acknowledges the connection setup. Notice that
there is a single dot (.) where the flags would normally show up. This usually means that
there are no flags set; however, some flags like ACK show up in a different place on the
output line. The source side sets the ACK flag and also sets an initial sequence number
for this connection. At this point, the TCP connection is said to be established. That sure
seems like a lot of work, but didn’t I promise that this section was about HTTP? Sure
enough. The next packets with capture output indicate that an HTTP connection is
progressing:

17:15:38.985326 IP client.braingia.org.4485 > test.example.com.www: \
 P 1:462(461) ack 1 win 5840 <nop,nop,timestamp 249916008 1320060704>

17:15:39.038067 IP test.example.com.www > client.braingia.org.4485: . ack \
 462 win 6432 <nop,nop,timestamp 1320060710 249916008>

17:15:39.065141 IP test.example.com.www > client.braingia.org.4485: . \
 1:1449(1448) ack 462 win 6432 <nop,nop,timestamp 1320060712 249916008>

17:15:39.065183 IP client.braingia.org.4485 > test.example.com.www: . \
 ack 1449 win 8688 <nop,nop,timestamp 249916016 1320060712>

The source sends the beginning of the data for this communication. Notice that the
PUSH flag was set in the initial packet and that the sequence numbers increment. The two
sides acknowledge sequence numbers and data is transferred. But with the TCPDump
command that I ran (tcpdump 'port 80'), there isn’t much else to see. Therefore, I’ll
improve that command to include the options I normally include to peek inside the pack-
ets. I’ll leave it up to the reader to see what each of the options actually does, as explained
earlier in the chapter. Here’s the improved command for TCPDump:

tcpdump -vv -x -X -s 1500 'port 80'

With this command running, I can generate additional web traffic. Here are two and a
half packets from the result, picking up from just after the three-way handshake:

18:18:51.986230 IP (tos 0x0, ttl 64, id 10907, offset 0, flags [DF], \
 length: 513) client.braingia.org.4564 > test.example.com.www: \
 P [tcp sum ok] 1:462(461) ack 1 win 5840 <nop,nop,timestamp
 250295308 1320440053>
 0x0000: 0090 2741 78f0 00e0 1833 2ee8 0800 4500 .. 'Ax....3....E.
 0x0010: 0201 2a9b 4000 4006 044b c0a8 010a 455d ..*.@.@..K....E]
 0x0020: 0302 11d4 0050 0c9b 1ea0 9627 33f8 8018P..... '3...
 0x0030: 16d0 4915 0000 0101 080a 0eeb 340c 4eb4 ..I.........4.N.
 0x0040: 50f5 4745 5420 2f20 4854 5450 2f31 2e30 P.GET./.HTTP/1.0
 0x0050: 0d0a 486f 7374 3a20 7777 772e 6272 6169 ..Host:.text.exam

Hiva-Network.Com

http://www.hiva-network.com/

276 Chapter 13 Network Monitoring and Attack Detection

 0x0060: 6e67 6961 2e6f 7267 0d0a 4163 6365 7074 ple.com..Accept
 0x0070: 3a20 7465 7874 2f68 746d 6c2c 2074 6578 :.text/html,.tex
 0x0080: 742f 706c 6169 6e2c 2061 7070 6c69 6361 t/plain,.applica
 0x0090: 7469 6f6e 2f6d 7377 6f72 642c 2061 7070 tion/msword,.app
 0x00a0: 6c69 6361 7469 6f6e 2f70 6466 2c20 6170 lication/pdf,.ap
 0x00b0: 706c 6963 6174 696f 6e2f 6f63 7465 742d plication/octet-
 0x00c0: 7374 7265 616d 2c20 6170 706c 6963 6174 stream,.applicat
 0x00d0: 696f 6e2f 782d 7472 6f66 662d 6d61 6e2c ion/x-troff-man,
 0x00e0: 2061 7070 6c69 6361 7469 6f6e 2f78 2d74 .application/x-t
 0x00f0: 6172 2c20 6170 706c 6963 6174 696f 6e2f ar,.application/
 0x0100: 782d 6774 6172 2c20 6170 706c 6963 6174 x-gtar,.applicat
 0x0110: 696f 6e2f 7274 662c 2061 7070 6c69 6361 ion/rtf,.applica
 0x0120: 7469 6f6e 2f70 6f73 7473 6372 6970 742c tion/postscript,
 0x0130: 2061 7070 6c69 6361 7469 6f6e 2f67 686f .application/gho
 0x0140: 7374 7669 6577 2c20 7465 7874 2f2a 0d0a stview,.text/*..
 0x0150: 4163 6365 7074 3a20 6170 706c 6963 6174 Accept:.applicat
 0x0160: 696f 6e2f 782d 6465 6269 616e 2d70 6163 ion/x-debian-pac
 0x0170: 6b61 6765 2c20 6175 6469 6f2f 6261 7369 kage,.audio/basi
 0x0180: 632c 202a 2f2a 3b71 3d30 2e30 310d 0a41 c,.*/*;q=0.01..A
 0x0190: 6363 6570 742d 456e 636f 6469 6e67 3a20 ccept-Encoding:.
 0x01a0: 677a 6970 2c20 636f 6d70 7265 7373 0d0a gzip,.compress..
 0x01b0: 4163 6365 7074 2d4c 616e 6775 6167 653a Accept-Language:
 0x01c0: 2065 6e0d 0a55 7365 722d 4167 656e 743a .en..User-Agent:
 0x01d0: 204c 796e 782f 322e 382e 3472 656c 2e31 .Lynx/2.8.4rel.1
 0x01e0: 206c 6962 7777 772d 464d 2f32 2e31 3420 .libwww-FM/2.14.
 0x01f0: 5353 4c2d 4d4d 2f31 2e34 2e31 204f 7065 SSL-MM/1.4.1.Ope
 0x0200: 6e53 534c 2f30 2e39 2e36 630d 0a0d 0a nSSL/0.9.6c....
18:18:52.039595 IP (tos 0x0, ttl 48, id 25346, offset 0, flags [DF], \
 length: 52) test.example.com.www > client.braingia.org.4564: .
 [tcp sum ok] 1:1(0) ack 462 win 6432 <nop,nop,timestamp
 1320440059 250295308>
 0x0000: 00e0 1833 2ee8 0090 2741 78f0 0800 4500 ...3....'Ax...E.
 0x0010: 0034 6302 4000 3006 ddb0 455d 0302 c0a8 .4c.@.0...E]....
 0x0020: 010a 0050 11d4 9627 33f8 0c9b 206d 8010 ...P...'3....m..
 0x0030: 1920 6799 0000 0101 080a 4eb4 50fb 0eeb ..g.......N.P...
 0x0040: 340c 4.
18:18:52.047021 IP (tos 0x0, ttl 48, id 25347, offset 0, flags [DF], \
 length: 1500) test.example.com.www > client.braingia.org.4564:\
 . 1:1449(1448) ack 462 win 6432 <nop,nop,timestamp \
 1320440059 250295308>
 0x0000: 00e0 1833 2ee8 0090 2741 78f0 0800 4500 ...3....'Ax...E.
 0x0010: 05dc 6303 4000 3006 d807 455d 0302 c0a8 ..c.@.0...E]....
 0x0020: 010a 0050 11d4 9627 33f8 0c9b 206d 8010 ...P...'3....m..
 0x0030: 1920 b9f7 0000 0101 080a 4eb4 50fb 0eebN.P...
 0x0040: 340c 4854 5450 2f31 2e31 2032 3030 204f 4.HTTP/1.1.200.O
 0x0050: 4b0d 0a44 6174 653a 2054 7565 2c20 3237 K..Date:.Tue,.27
 0x0060: 204a 756c 2032 3030 3420 3233 3a31 393a .Jul.2004.23:19:
 0x0070: 3030 2047 4d54 0d0a 5365 7276 6572 3a20 00.GMT..Server:.
 0x0080: 4170 6163 6865 2f31 2e33 2e32 3620 2855 Apache/1.3.26.(U
 0x0090: 6e69 7829 2044 6562 6961 6e20 474e 552f nix).Debian.GNU/
 0x00a0: 4c69 6e75 7820 6d6f 645f 6d6f 6e6f 2f30 Linux.mod_mono/0
 0x00b0: 2e31 3120 6d6f 645f 7065 726c 2f31 2e32 .11.mod_perl/1.2
 0x00c0: 360d 0a43 6f6e 6e65 6374 696f 6e3a 2063 6..Connection:.c
 0x00d0: 6c6f 7365 0d0a 436f 6e74 656e 742d 5479 lose..Content-Ty
 0x00e0: 7065 3a20 7465 7874 2f68 746d 6c3b 2063 pe:.text/html;.c
 0x00f0: 6861 7273 6574 3d69 736f 2d38 3835 392d harset=iso-8859-

<output truncated>

Using TCPDump to Capture Specific Protocols 277

Notice that this output contains an actual request (see the first packet, near
GET./.HTTP/1.0) and also contains a portion of the response from the web server. All of
this traffic is in plain text because HTTP is not encrypted. This output contains both hex
and ASCII. To obtain output with just ASCII, remove the -x and -X from the command
and replace them with a single -A. I personally find the dual hex and ASCII output to be
helpful at times.

That’s all there is to capturing HTTP traffic with TCPDump. Obvious improvements
for the command would be to expand the expression to look for a specific source or des-
tination. It’s important to understand that only traffic on port 80 will be found with the
command as given. If you’re running HTTP traffic on another port, substitute that port
instead of (or in addition to) the port found in the sample command.

Capturing an SMTP Conversation
Capturing an SMTP conversation is not unlike capturing an HTTP session. Begin with
the basic TCPDump options that you’d like to use and then build an expression to grab
the appropriate type of data, including protocol, port, and source or destination hosts.
For example, here’s a simple capture of port 25 traffic along with my normal TCPDump
choice of options:

tcpdump -vv -x -X -s 1500 'port 25'

The TCP three-way handshake is again present, as you might expect:

20:40:08.638690 murphy.debian.org.45772 > test.example.com.smtp: \
 S [tcp sum ok] 1485971964:1485971964(0) win 5840 <mss 1460,
 sackOK,timestamp 795074473 0,nop,ws cale 0> (DF) \
 (ttl 57, id 65109, len 60)
0x0000 4500 003c fe55 4000 3906 deae 9252 8a06 E..<.U@.9....R..
0x0010 455d 0302 b2cc 0019 5892 21fc 0000 0000 E]......X.!.....
0x0020 a002 16d0 8ffe 0000 0204 05b4 0402 080a
0x0030 2f63 dfa9 0000 0000 0103 0300 /c..........
20:40:08.638769 test.example.com.smtp > murphy.debian.org.45772: S \
 [tcp sum ok] 2853594323:2853594323(0) ack 1485971965 win 5792 \
 <mss 1460,sackOK,timestamp 132 1286843 795074473,nop,wscale 0> \
 (DF) (ttl 64, id 0, len 60)
0x0000 4500 003c 0000 4000 4006 d604 455d 0302 E..<..@.@...E]..
0x0010 9252 8a06 0019 b2cc aa16 64d3 5892 21fd .R........d.X.!.
0x0020 a012 16a0 f5b6 0000 0204 05b4 0402 080a
0x0030 4ec1 3cbb 2f63 dfa9 0103 0300 N.<./c......
20:40:08.640600 murphy.debian.org.45772 > test.example.com.smtp: . \
 [tcp sum ok] 1:1(0) ack 1 win 5840 <nop,nop,timestamp \
 795074473 1321286843> (DF) (ttl 57, id 65110, len 52)
0x0000 4500 0034 fe56 4000 3906 deb5 9252 8a06 E..4.V@.9....R..
0x0010 455d 0302 b2cc 0019 5892 21fd aa16 64d4 E]......X.!...d.
0x0020 8010 16d0 244c 0000 0101 080a 2f63 dfa9 $L....../c..
0x0030 4ec1 3cbb N.<.

There’s nothing really new of interest during the three-way handshake process. Notice,
though, that the ASCII output isn’t of much use during the three-way handshake.

278 Chapter 13 Network Monitoring and Attack Detection

As with HTTP, after the initial TCP handshake is done, the SMTP conversation gets
under way:

20:40:08.683352 test.example.com.smtp > murphy.debian.org.45772: P \
 [tcp sum ok] 1:51(50) ack 1 win 5792 <nop,nop,timestamp \
 1321286848 795074473> (DF) (ttl 64,id 22639, len 102)
0x0000 4500 0066 586f 4000 4006 7d6b 455d 0302 E..fXo@.@.}kE]..
0x0010 9252 8a06 0019 b2cc aa16 64d4 5892 21fd .R........d.X.!.
0x0020 8018 16a0 bd07 0000 0101 080a 4ec1 3cc0 N.<.
0x0030 2f63 dfa9 3232 3020 6466 7730 2e69 6367 /c..220.test.exa
0x0040 6d65 6469 612e 636f 6d20 4553 4d54 5020 mple.com.ESMTP.
0x0050 506f 7374 6669 7820 2844 6562 6961 6e2f Postfix.(Debian/
0x0060 474e 5529 0d0a GNU)..
20:40:08.684581 murphy.debian.org.45772 > test.example.com.smtp: . [tcp sum ok]
 1:1(0) ack 51 win 5840 <nop,nop,timestamp 795074478 1321286848> (DF) (ttl 57, i
d 65111, len 52)
0x0000 4500 0034 fe57 4000 3906 deb4 9252 8a06 E..4.W@.9....R..
0x0010 455d 0302 b2cc 0019 5892 21fd aa16 6506 E]......X.!...e.
0x0020 8010 16d0 2410 0000 0101 080a 2f63 dfae $......./c..
0x0030 4ec1 3cc0 N.<.
20:40:08.685428 murphy.debian.org.45772 > test.example.com.smtp: P [tcp sum ok]
 1:25(24) ack 51 win 5840 <nop,nop,timestamp 795074478 1321286848> (DF) (ttl 57,
 id 65112, len 76)
0x0000 4500 004c fe58 4000 3906 de9b 9252 8a06 E..L.X@.9....R..
0x0010 455d 0302 b2cc 0019 5892 21fd aa16 6506 E]......X.!...e.
0x0020 8018 16d0 3cc4 0000 0101 080a 2f63 dfae <......./c..
0x0030 4ec1 3cc0 4548 4c4f 206d 7572 7068 792e N.<.EHLO.murphy.
0x0040 6465 6269 616e 2e6f 7267 0d0a debian.org..

Capturing an SSH Conversation
Although it’s not possible to actually capture an SSH conversation, you can look at some
of the connection setup portions of the protocol. Because SSH is encrypted, though, none
of the credentials or other data during the actual session is available for you to view. It
should be noted, however, that if you can gain access to the private key of the server, you
could theoretically decrypt the contents of the SSH connection. Doing this is well beyond
the scope of this text.

I’ll leave it as an exercise for the reader to capture an SSH connection, including setup,
should you want to view what a normal connection looks like for SSH.

Capturing Other TCP-Based Protocols
Capturing other TCP-based protocols follows much the same process as that in the
examples shown. For example, capturing POP3 connections can be accomplished and the
entire stream can be captured because POP3, like SMTP, is not encrypted during transit.
One protocol is of particular interest because it has confounded network administrators
for a long time. That protocol is FTP.

FTP utilizes two TCP ports, 20 and 21. Port 21 is normally used for commands and
is sometimes referred to as the control channel. Port 20 in FTP is used for data and is
sometimes aptly titled the data channel. Therefore, if you want to capture FTP traffic with
 TCPDump, you need to grab both ports 20 and 21 to see everything.

Using TCPDump to Capture Specific Protocols 279

A trend over the past few years has been protocols that use nonstandard ports to cir-
cumvent firewalls and packet capturing and filtering. Such programs, including much
of the peer-to-peer software, can be somewhat difficult to find during packet captures
because most of the data during the conversation is binary and is thus not human readable.

Capturing a DNS Query
TCPDump handles DNS queries a little differently from a packet that’s simply TCP. More
information can be gleaned from just the initial packet result line as opposed to making it
necessary to increase the snaplen with the -s option. For example, consider the follow-
ing trace of a simple DNS query that was looking for the IP address of a host named
www.braingia.org:

21:18:39.289121 192.168.1.10.1514 > 192.168.1.1.53: 60792+ A? www.braingia.org.
�(34) (DF)

21:18:39.289568 192.168.1.1.53 > 192.168.1.10.1514: 60792*- 1/2/2 A 192.168.1.50
�(118) (DF)

In the packet trace we see host 192.168.1.10 on an ephemeral port communicating
with a destination of 192.168.1.1 on port 53. A query ID number is given; in this case
it’s 60792. You see that the query ID number is followed by a +. This symbol indicates that
the querier asked for recursion on this query. The A? on the trace line indicates that this
was an address query. The query was for www.braingia.org, as is shown, and the size of
the query is 34 bytes, which does not include IP or UDP overhead.

The answer comes quickly, as we see in the next line of the trace, which shows that the
source is now 192.168.1.1 talking to the destination of 192.168.1.10. As you can see,
the answer was contained in the same query ID, 60792; however, this time there are two
extra characters, the * and the -. The * in a response indicates that this is an authoritative
answer, and the - indicates that recursion is available and not set. The next portion of the
response, 1/2/2, indicates the number of answer records (1), the number of name server
records (2), and the number of additional records (2). The first answer given in this case
is of type A and is 192.168.1.50. Finally, the size of the response is given to be 118 bytes.

Capturing pings
Although it may seem innocent enough, ICMP (the protocol behind ping) has been used
fairly often as a means by which to attack hosts and otherwise wreak havoc. Therefore, as a
security analyst, an administrator, or a curious bystander, you should know that it’s in your
best interest to see some of the normal activity for ICMP through TCPDump so that you
might be able to spot an anomaly later.

I’ll go out onto a limb and say that ICMP is most frequently used for the simple echo
request and echo reply provided by ping. However, ICMP can be and is used for much
more than that, including informing a fast sender when to slow down (Source Quench),
redirecting to other hosts (Redirect), and many other areas. Refer to Chapter 1 for more
information on ICMP, or, as always, refer to the original RFC on ICMP for the authorita-
tive information on the protocol.

Hiva-Network.Com

http://www.braingia.org
http://www.braingia.org
http://www.hiva-network.com/

280 Chapter 13 Network Monitoring and Attack Detection

Attacks through the Eyes of TCPDump
You’ve seen what normal TCP and UDP packet traces look like through TCPDump, but
how will you know whether someone or something is acting abnormally? Unfortunately,
finding nefarious activity is not that easy. Buried in normal packet traces may be signs
that someone is attempting an attack on your server. An attacker will obviously attempt to
disguise his or her activity, making detection even more difficult. Not only do you have to
wade through all the normal traffic within a packet trace, but you then have to search for
the proverbial needle in a haystack to find what may be an attack attempt or even one in
progress.

Recall from Chapter 11, “Intrusion Detection and Response,” that not everything that
falls outside of normal activity can be termed an attack. Some of it is the result of mal-
functioning or misconfigured equipment. More often than not, abnormal activity spotted
in a packet trace is due to reconnaissance of one form or another. And the large majority
of reconnaissance work is done through automation. Rather than spending many fruit-
less hours searching for a vulnerable host, attackers will automate the process and have the
program alert them when it finds an interesting host.

There are naturally exceptions to the rule of automation. Attacks may be the result of
directed activity against your server or network. Before the attack there is usually some
manual reconnaissance that takes place. This may include the would-be attacker manually
crafting or creating packets to attempt to exploit possible holes in your server or network.
More often than not, however, the attacker will have had some automated reconnaissance
data that directed his or her efforts in your direction. If an automated scan alerted the
attacker that one of your servers may be vulnerable to a particular type of attack, you may
find the hosts or your entire subnet within the sights of the attacker.

Leaving a host vulnerable or making a host appear vulnerable and then observing the
attacks is the premise behind a honeypot. A honeypot is a host or device that shows up as
vulnerable to an attacker and thus looks like a target for attack. The idea is that by watch-
ing the methods that attackers use to exploit a hole or watching what they do when they
compromise the host, the observer can learn from it and defend against such activity.

As if all the possible reasons already given for seeing abnormal activity aren’t enough,
here’s one more: you’ll also encounter accidental connections that may appear to be
attacks. In other words, at times someone simply mistypes an IP address when attempting
to connect to his or her server. Anyone who has ever answered the telephone only to find
out that the caller dialed incorrectly can relate to this situation.

In summary, there are some basic categories within which abnormal activity might fall:

 � Automated or semiautomated reconnaissance scan
 � Directed attack
 � Misconfigured equipment

Using TCPDump to Capture Specific Protocols 281

 � Wrong number
 � Malfunctioning equipment

With those categories in mind, this section examines some abnormal packet traces
or traces that you shouldn’t see under normal conditions. By no means does this section
include all the possible crafted and abnormal packets. The hope is to give you an under-
standing of some of the types of things to look for when performing an investigation.

Normal Scan (Nmap)
Sometimes an attacker will scan your subnet or individual IP address for open ports. This
scan can be anything from an innocent attempt to look for a service to reconnaissance
for an attack. Many times, these scans are completely automated, with an attacker setting
up one or more robots (bots) to automatically scan for vulnerable versions of software to
exploit.

This simulation was created with the Nmap program with the following
command line:

nmap -sT 192.168.1.2

The TCPDump capture of the port scan is shown in the following text; note that I’ve
truncated the output because Nmap scanned for more than 1650 ports. I’ve divided the
capture to make explaining it easier as well.

Nmap scans begin with an ICMP echo request to the target host, as shown here. Note,
however, that this ICMP exchange can be disabled by the person running the Nmap scan,
so it might not always show up:

12:31:21.834284 IP 192.168.1.10 > 192.168.1.2: icmp 8: echo request seq 27074
12:31:21.834508 IP 192.168.1.2 > 192.168.1.10: icmp 8: echo reply seq 27074

Next, Nmap looks for port 80, the default HTTP port. Notice that the scan comes
from an ephemeral port on the scanner’s side aimed for port 80 on the recipient. In this
case, the recipient host 192.168.1.2 is listening on port 80, and a TCP response is sent
back to the scanning host with the TCP RST flag set and the sequence number set:

12:31:21.834318 IP 192.168.1.10.60034 > 192.168.1.2.80: . ack 2624625246 win 4096
12:31:21.834363 IP 192.168.1.2.80 > 192.168.1.10.60034: R \
 2624625246:2624625246(0) win 0

Next, Nmap looks for the telnet port (tcp/23). Notice the difference between this and
the preceding scan. Aside from the ports being different, the response packet is also differ-
ent. In this case, the recipient host is not listening on TCP port 23, so it responds with a
packet with the TCP RST flag set but with the TCP sequence number set to 0:

12:31:21.935005 IP 192.168.1.10.3171 > 192.168.1.2.23: S 752173650:752173650(0) \
 win 5840 <mss 1460,sackOK,timestamp 1421906912 0,nop,wscale 0>
12:31:21.935046 IP 192.168.1.2.23 > 192.168.1.10.3171: R 0:0(0) ack 752173651
�win 0

282 Chapter 13 Network Monitoring and Attack Detection

The following packets are essentially the same as the preceding telnet port scan insofar
as the recipient host is not listening on the ports being scanned:

12:31:21.935129 IP 192.168.1.10.3172 > 192.168.1.2.554: S 758180552:758180552(0)
�\
 win 5840 <mss 1460,sackOK,timestamp 1421906912 0,nop,wscale 0>
12:31:21.935186 IP 192.168.1.2.554 > 192.168.1.10.3172: R 0:0(0) ack 758180553
�win 0
12:31:21.935149 IP 192.168.1.10.3174 > 192.168.1.2.21: S 751983738:751983738(0) \
 win 5840 <mss 1460,sackOK,timestamp 1421906912 0,nop,wscale 0>
12:31:21.935289 IP 192.168.1.2.21 > 192.168.1.10.3174: R 0:0(0) ack 751983739 win
�0
12:31:21.935255 IP 192.168.1.10.3175 > 192.168.1.2.1723: S 757954867:757954867(0)
�\
 win 5840 <mss 1460,sackOK,timestamp 1421906912 0,nop,wscale 0>
12:31:21.935320 IP 192.168.1.2.1723 > 192.168.1.10.3175: R 0:0(0) \
 ack 757954868 win 0

Finally, another open port is found. This time the open port is tcp/25, the well-known
SMTP port:

12:31:21.935381 IP 192.168.1.10.3176 > 192.168.1.2.25: S 762467904:762467904(0) \
 win 5840 <mss 1460,sackOK,timestamp 1421906912 0,nop,wscale 0>
12:31:21.935448 IP 192.168.1.2.25 > 192.168.1.10.3176: S 2645882457:2645882457(0)
�\
 ack 762467905 win 5792 <mss 1460,sackOK,timestamp \
 921140115 1421906912,nop,wscale 7>

As stated previously, the Nmap scan continues for another 1650 or so ports. I chose
to save a tree by not showing the remainder of the port scans here. Rest assured that they
look largely the same as the ones already shown.

The response you take when port scanned depends on your security policy. If I notice
a wide port scan, one in which a large number of ports are scanned, I’ll usually take steps
to block the host. However, because I’m not at the computer 24 hours a day (close, but
not quite), I use a tool called PortSentry to monitor for this type of activity. However,
other anti–port scan software exists, including a plug-in for Snort.

Smurf Attack
A Smurf attack is a DoS attack whereby the attacker sends ICMP echo requests with a
forged source address to one or more broadcast addresses. The forged source address is
the recipient of the attack, and it will be inundated with echo replies from the broadcast
addresses of other networks. Imagine echo replies coming from 254 hosts directed at
a machine with a small or slow Internet connection. Now imagine those replies com-
ing from 100 networks of 254 hosts each. It doesn’t take long for an entire network to
become bogged down receiving ICMP replies.

The following trace was created with the hping3 command:

hping3 -1 -a 192.168.1.2 192.168.1.255

Using TCPDump to Capture Specific Protocols 283

On the network under attack, only one host responded to the broadcasted ping; how-
ever, there’s no way to guarantee that other networks wouldn’t have a large number of
hosts that respond:

12:57:06.871156 IP 192.168.1.2 > 192.168.1.255: icmp 8: echo request seq 0
12:57:06.871637 IP 192.168.1.8 > 192.168.1.2: icmp 8: echo reply seq 0
12:57:07.870259 IP 192.168.1.2 > 192.168.1.255: icmp 8: echo request seq 256
12:57:07.871008 IP 192.168.1.8 > 192.168.1.2: icmp 8: echo reply seq 256
12:57:08.870132 IP 192.168.1.2 > 192.168.1.255: icmp 8: echo request seq 512
12:57:08.870880 IP 192.168.1.8 > 192.168.1.2: icmp 8: echo reply seq 512

There is no good host-based defense for a Smurf attack. Even if ICMP replies are dis-
abled on the individual host, the bandwidth is still being consumed by all the replies com-
ing into the network.

To effectively counter a Smurf attack, ICMP echo requests directed to broadcast
addresses mustn’t cross router boundaries. This means that you’re relying on others to be
good netizens. In addition, ICMP echo replies must be filtered as far upstream from your
location as possible. However, I’m not an advocate of filtering ICMP echo replies. A better
solution is to rate-limit the echo replies as far upstream as possible while still allowing the
replies for all the good that they do in problem diagnosis.

Xmas Tree and TCP Header Flags
The Xmas Tree attack is so named because all the bit flags are set to on within the TCP
header. The idea is to cause the recipient host to respond, thus causing a DoS. Recall the
TCP flag bits SYN, RST, ACK, URG, and others from Chapter 1. These bits should never all
appear at the same time, and when they do it’s an indication of a crafted packet.

Xmas Tree attacks are quite uncommon. However, it’s important to consider the TCP
flags when examining packets. Setting these flags with invalid combinations is almost
always an indication of a crafted packet (though it also in a few instances could indicate
broken or misconfigured software). The goal of the crafted packet might be anything from
reconnaissance to an active attack such as one to get through a firewall.

The following capture sets the TCP flags SYN, FIN, RST, and PUSH, which should never
show up in a real packet. It was created with the hping3 command:

hping3 -SFRP 192.168.1.2

There are three packets in this capture. Notice that the source port increments and that
the destination port is 0. The TCP flags are also shown, SFRP in this case. Seeing this in
the wild should cause the intrusion analyst to immediately begin investigating the packets
according to the security policy.

13:20:03.989780 IP (tos 0x0, ttl 64, id 2270, offset 0, flags [none], length: \
 40) 192.168.1.10.2687 > 192.168.1.2.0: SFRP [tcp sum ok] \
 925164686:925164686(0) win 512
13:20:04.989734 IP (tos 0x0, ttl 64, id 9285, offset 0, flags [none], \
 length: 40) 192.168.1.10.2688 > 192.168.1.2.0: SFRP [tcp sum ok] \
 1113258177:1113258177(0) win 512
13:20:05.989731 IP (tos 0x0, ttl 64, id 26951, offset 0, flags [none], \
 length: 40) 192.168.1.10.2689 > 192.168.1.2.0: SFRP [tcp sum ok] \
 2097818687:2097818687(0) win 512

Hiva-Network.Com

http://www.hiva-network.com/

284 Chapter 13 Network Monitoring and Attack Detection

LAND Attack
The LAND attack is a DoS attack against computers running Microsoft Windows. The
attack was originally reported to affect Windows 95 and Windows NT back in 1997.
Microsoft eventually patched the vulnerability for the operating systems. However, the
vulnerability resurfaced in Microsoft’s newer operating systems, including Windows XP
Service Pack 2 and even Windows Server 2003.

The LAND attack is quite trivial and occurs when the source and destination addresses
and ports are set to the recipient host and the SYN flag is set.

hping3 again provides an easy way to re-create this for testing:

hping3 -k -S -s 25 -p 25 -a 192.168.1.2 192.168.1.2

The capture through TCPDump is shown next. Notice that the source and destination
addresses and ports are the same and that the source port is not incrementing and that it’s
also below the ephemeral ports:

13:42:28.079339 IP 192.168.1.2.25 > 192.168.1.2.25: S 764505725:764505725(0) win
�512
13:42:29.079462 IP 192.168.1.2.25 > 192.168.1.2.25: S 2081780101:2081780101(0) \
 win 512
13:42:30.079461 IP 192.168.1.2.25 > 192.168.1.2.25: S 390202112:390202112(0) win
�512

Recording Traffic with TCPDump
While consulting for a small Internet provider, I noticed that there was a routine and sig-
nificant spike in network traffic at about 3:00 a.m. every morning, lasting anywhere from
15 minutes to an hour. My goal was to determine the cause of this traffic spike. Because
the traffic was routine and at an odd hour, my initial thought was that it was the result of
an automatic update process for the servers on the network.

Most of the servers in the network were running Debian Linux and using apt-proxy.
This meant that only one local server would contact the off-site Debian update servers
and obtain any updates necessary. All the other servers in the local network would then
contact that local master server. This setup cut the Internet utilization immensely.

Although the master server could certainly be a contributing factor, I didn’t feel that
there would be enough update traffic on a nightly basis to warrant such a significant spike
in traffic. My assumption was confirmed when I looked at the update schedule on the
master server and found that it was actually looking for updates at a different time anyway,
and thus it wasn’t contributing to the 3:00 a.m. spike at all.

With that cause eliminated, I needed to look at the traffic itself at 3:00 a.m. However,
I wasn’t really looking forward to staying awake until that hour, and if I was awake, I
might not be in shape to read a packet trace. Enter cron. By using cron to fire TCPDump,
I could capture the packet trace to a file for later analysis. No great surprise here and I
wasn’t breaking any new ground, but it seemed like a fair solution to the problem. I con-
figured the switch to copy packets to the port on which the monitoring machine was
connected and got to work on the TCPDump portion.

Using TCPDump to Capture Specific Protocols 285

TCPDump offers a couple of features that come in handy for this type of trace. The
first feature is the capability to write the output to a file (record, if you will) and then read
that file in later (playback). The second helpful feature is the capability to exit after captur-
ing a certain number of packets. Granted, I could have used another means to stop the
packet trace, such as another cron job to kill the TCPDump capture, but I thought that
using TCPDump’s native capability was the quickest and easiest solution.

All the TCPDump commands I’ve shown so far in this chapter have used expressions
such as port 80 or host <n>.<n>.<n>.<n>. Expressions are helpful when you’re look-
ing for specific and known traffic. However, expressions aren’t of much help when you’re
unsure of what exactly you’re searching for, as was the case here. The best option was to
capture everything and then work on a filter during playback.

The two TCPDump options of interest that haven’t been covered yet in the chapter
are -w and -c. The -w option causes TCPDump to place the raw output into the specified
file so that it can later be fed back through TCPDump. The resulting file is in TCPDump’s
native format and is thus not readable by a plain-text pager such as cat, less, or more.
The -c option informs TCPDump that it should exit after it captures <N> packets. Get-
ting <N> correct seemed to be the most difficult part of the capture.

The capture results needed to show me only basic information about the packet,
including source and destination, as well as a few bits of the packet. To that end, the
 TCPDump command was rather easy to craft:

/usr/sbin/tcpdump -c 25000 -w dumpfile -n

In this command I have TCPDump exiting after capturing 25,000 packets, writing the
capture to a file called dumpfile, and not performing DNS queries for the source and
destination. Getting to this command did require some level of testing to see just how
long it took to capture 25,000 packets and what information was included in the capture.
After it was tested, I entered the command into cron with this schedule:

5 3 * * * /usr/sbin/tcpdump -c 25000 -w dumpfile -n

That is, every morning at 3:05 a.m. the capture would take place. Then at a better hour,
like 11:00 a.m. when I get out of bed, I’d look to see whether indeed there was traffic the
prior evening that required me to look at the dumpfile. If there was traffic, I’d log in to
the server and run a command to read the dumpfile:

tcpdump -r dumpfile -X -vv

Running this command gave me an idea of what traffic was out there. Intermingled
with the normal traffic was an FTP conversation between one of the ISP’s larger custom-
ers and another host on the Internet. The FTP traffic was easily the most frequent packet I
was seeing within the trace. Another night’s packet trace confirmed it. I had the ISP con-
tact its customer to find out whether this was known activity and, if so, to let the customer
know that it might be going over its bandwidth allocation for the month.

This example is somewhat typical of a security analyst’s job. Spot an anomaly, investi-
gate the anomaly while ruling out possibilities, and take action based on the investigation.

286 Chapter 13 Network Monitoring and Attack Detection

Although the ultimate cause of this particular anomaly turned out not to be any type of
unauthorized attack, the result of the investigation was a happier customer because that
customer could take corrective action before exceeding its bandwidth for the month.

Automated Intrusion Monitoring with Snort
Snort is an excellent intrusion detection software package combining best-in-class tech-
nology with open-source configurability. Snort actually has a few different modes of
operation, including a sniffer mode, a packet logger mode, an intrusion detection mode,
and what is called inline mode. It is the intrusion detection mode that is of interest in this
section. However, inline mode is also notable because it provides a way to configure Snort
and iptables to work together to dynamically accept or drop packets based on Snort
rules. For the purposes of this chapter, when referring to Snort I’m referring specifically
to the intrusion detection mode.

When in intrusion detection mode, Snort works by using a number of rules that define
anomalous traffic. Many of these rules come predefined for you by Sourcefire, the makers
of Snort. Many other rules are available from the community, and of course you can also
write your own rules as necessary.

In addition to rules, Snort has a number of preprocessors that enable modules to view
and alter packets before they are handled by the intrusion detection engine of the soft-
ware. Preprocessors can be developed to suit your needs, though the preprocessors already
available are helpful. The preexisting preprocessors include two types of port scan detec-
tors to help detect and take action when a port scan is detected. There are also preproces-
sors to reassemble TCP streams to provide stateful analysis and preprocessors to decode
RPC traffic and inspect HTTP traffic. Other preprocessors are described in detail in the
Snort documentation available with Snort or online at https://www.snort.org/documents.

Snort works by detecting and reporting on events. The actual process of reporting on
events can be configured through event handling within Snort. Event handling calls for
configuration based on thresholds. This highly configurable aspect of Snort helps to pre-
vent being inundated with log entries and alerts.

Normally you’d want to be notified in some way when certain Snort rules are trig-
gered. Snort uses output modules that can be configured to send the output to various
locations. A commonly used output module is the alert_syslog module, which sends alerts
to the local syslog facility. Other output modules exist, including alert_fast and alert_full.
The former puts a fast entry into the file specified, and the latter sends the entire packet
header along with the event message. Other output modules exist, and more information
on them can be found within the Snort documentation.

One interesting output module is the database output module. The database module
enables Snort alerts to be sent to an SQL database. Using this output module enables you
to leverage software which can generate reports on the alerts and events in Snort.

Snort has numerous additional features and nuances that help make it one of the best, if
not the best, intrusion detection software available.

https://www.snort.org/documents

Automated Intrusion Monitoring with Snort 287

Obtaining and Installing Snort
Snort is available with many Linux distributions as an additional package, and most distri-
butions also include the Snort rules, either included with the Snort package or as an add-
on package. You can also download Snort from http://www.snort.org/.

Installation of Snort and the default rules should nearly always be done by installing
the package available with your distribution. If this isn’t possible or if the available package
doesn’t include the options you’d like, you’ll need to compile from source.

The Snort package comes in a gzip archive and therefore needs to be unzipped and
unarchived prior to being compiled:

tar -zxvf snort-<version>.tar.gz

After it’s unzipped and unarchived, you can cd into the Snort source directory and run
the configure script:

cd snort-<version>
./configure

It is at the point of running the configure script where many compile-time options
can be set. To obtain a list of some of these options, notably options to enable support for
certain databases or enable certain other features, type the following:

./configure --help

In addition, the INSTALL document and other documentation within the
<snort-source>/doc directory explain these and other options available when compil-
ing Snort from source.

Running the configure script, along with any options, will result in Snort looking
for various prerequisites. For example, when compiling Snort from source, you might
receive an error indicating that one or more prerequisites can’t be found, such as this
error:

checking for pcre.h... no
 ERROR! Libpcre header not found, go get it from
 http://www.pcre.org

With that error in mind, I was able to install the pcre development files, rerun the
configure script, and continue.

After the configure script has run successfully, compile the software by typing this:

make

The software will now compile. Should you get any errors during this phase, con-
sult the Snort documentation and mailing list archives to see whether you’ve received a
known error for your architecture.

Finally, after the software is compiled, install it by typing the following:

make install

Hiva-Network.Com

http://snort.org/
http://www.hiva-network.com/

288 Chapter 13 Network Monitoring and Attack Detection

The software will now be installed and should be ready to use. By default, the software
is installed into /usr/local/bin. You can test the basic Snort command by typing this:

/usr/local/bin/snort -?

You should see output with help options, similar to this:

 ,,_ -*> Snort! <*-
 o")~ Version 2.3.3 (Build 14)
 '''' By Martin Roesch & The Snort Team: http://www.snort.org/team.html
 (C) Copyright 1998-2004 Sourcefire Inc., et al.

USAGE: ./snort [-options] <filter options>
Options:
 -A Set alert mode: fast, full, console, or none (alert file alerts only)
 "unsock" enables UNIX socket logging (experimental).
...
<output truncated>

Configuring Snort
The source code for Snort includes a sample configuration file. If you’ve installed from
your distribution’s package, that too should include a sample Snort configuration file. Usu-
ally this file is called snort.conf. On most popular distributions, including Debian, this
file (along with a number of Snort rules) is placed in /etc/snort/.

If you’re working with a source installation, the sample snort.conf configuration file
is located in <snort-source>/etc/ and sample rules are located in <snort-source>/
rules/. For those working with a source code version, I recommend creating a direc-
tory in either /etc/ or /usr/local/etc/ called snort and placing the snort.conf
configuration file and the Snort rules in that directory. In addition, the default Snort con-
figuration file calls various map and extra configuration files as well. These files can also be
found in the <snort-source>/etc/ directory. Creating the directory and copying all the
files into it would look like this (again, this is applicable only to those who have compiled
Snort from source):

mkdir /etc/snort
cp <snort-source>/etc/snort.conf /etc/snort/
cp <snort-source>/etc/*.map /etc/snort/
cp <snort-source>/etc/*.config /etc/snort/
cp <snort-source>/rules/*.rules /etc/snort/

One additional and important change is done to the snort.conf configuration file.
After you’ve copied it to the /etc/snort directory, edit the file and change the
RULE_PATH variable from its default of ../rules to /etc/snort. The line should look
like this when you’re done:

var RULE_PATH /etc/snort

Finally, create the Snort log directory with the following command:

mkdir /var/log/snort

Automated Intrusion Monitoring with Snort 289

With all the groundwork done, it’s time to officially start Snort for the first time.
If you’ve installed from your distribution’s package, it’s likely that you can start Snort
through the normal run control mechanism, such as /etc/init.d/snort start. If
you’ve compiled from source, you’ll need to start Snort manually and point to the loca-
tion of its configuration file:

/usr/local/bin/snort -c /etc/snort/snort.conf

If you receive any errors, chances are that there are missing files. Check the Snort
source directory structure for the missing files and copy them to the appropriate location,
based on the configuration file.

If all goes well, you should see a message such as this, near the end of the output:

 --== Initialization Complete ==--

As you can see, the shell prompt didn’t return. This is because Snort was not told to
fork into daemon mode. Press Ctrl+C to kill Snort and add a -D to the command line. It
should now look like this:

/usr/local/bin/snort -c /etc/snort/snort.conf -D

Snort will start again and this time fork off into the background, returning you to the
shell prompt.

There is, of course, much more to Snort configuration than merely getting it running
with the default options and rule sets. For more information on specific Snort configura-
tions, refer to the Snort documentation.

Testing Snort
With Snort now running in the background, you could assume that it’s running perfectly fine
and that log entries will be placed into /var/log/snort for you. However, I’m not one to
assume things, especially about computer security. Therefore, to test the Snort installation I’ll use
the handy hping3 tool to craft a packet or two and fire them toward the host running Snort.

In this case, I’m just looking for verification that Snort is running and monitoring
something. The default rules look for bad packets, so crafting one of those should be triv-
ial with hping3. From another host on the network (192.168.1.10), I ran the following
hping3 command toward the host running Snort (192.168.1.2):

hping3 -X 192.168.1.2

The -X option causes an Xmas scan to be run. Looking in /var/log/snort on the host
running Snort reveals that the alert file has received some information, and there is also a
new directory called 192.168.1.10, which was the source of the test packets. Inside that
directory are files corresponding to the packets I sent, the contents of which are shown here:

[**] BAD-TRAFFIC tcp port 0 traffic [**]
06/07-16:19:00.712543 192.168.1.10:1984 -> 192.168.1.2:0
TCP TTL:64 TOS:0x0 ID:48557 IpLen:20 DgmLen:40
*2****** Seq: 0xED1609B Ack: 0x13E893C5 Win: 0x200 TcpLen: 20
=+

290 Chapter 13 Network Monitoring and Attack Detection

[**] BAD-TRAFFIC tcp port 0 traffic [**]
06/07-16:19:00.712610 192.168.1.2:0 -> 192.168.1.10:1984
TCP TTL:64 TOS:0x0 ID:10034 IpLen:20 DgmLen:40 DF
***A*R** Seq: 0x0 Ack: 0xED1609B Win: 0x0 TcpLen: 20
=+

As you can see from the output, Snort has captured what it believes to be (correctly so)
bad TCP packets. The alert log file /var/log/snort/alert also contains information
that is especially useful for sorting the alerts. Here are the log entries from the alert log file
that correspond to the previously shown entries from the specific host file:

[**] [1:524:8] BAD-TRAFFIC tcp port 0 traffic [**]
[Classification: Misc activity] [Priority: 3]
06/07-16:19:00.712543 192.168.1.10:1984 -> 192.168.1.2:0
TCP TTL:64 TOS:0x0 ID:48557 IpLen:20 DgmLen:40
*2****** Seq: 0xED1609B Ack: 0x13E893C5 Win: 0x200 TcpLen: 20

[**] [1:524:8] BAD-TRAFFIC tcp port 0 traffic [**]
[Classification: Misc activity] [Priority: 3]
06/07-16:19:00.712610 192.168.1.2:0 -> 192.168.1.10:1984
TCP TTL:64 TOS:0x0 ID:10034 IpLen:20 DgmLen:40 DF
***A*R** Seq: 0x0 Ack: 0xED1609B Win: 0x0 TcpLen: 20

As you can see from these entries, there are some additional items such as
Classification and Priority that can help to, well, classify and prioritize the alert.
Both the classification and the priority can be configured within the alert log file.

Receiving Alerts
I recommend working with Snort to gain experience with rules and configuration
options before configuring it to send alerts in email or via another means. You might eas-
ily find yourself overwhelmed by alerts with the default Snort rules, depending on your
network layout.

Recall from Chapter 11 that log file–monitoring software was introduced and a recipe
was given for using Swatch to monitor log files for certain events, at which time it would
send an email based on the alert. If you see where I’m going with this, congratulations!

Using Swatch to Monitor for Snort Alerts
With its default configuration, Snort logs to /var/log/snort/alert. Therefore, creat-
ing a Swatch configuration to monitor this file is quite easy. Again, it would be easy to
overwhelm yourself or the system with alerts and emails from Swatch, so you should use
caution when configuring any actions based on Snort alerts until you’ve had a chance to
configure Snort further.

Recall that Snort logs some prioritization data within /var/log/snort/alert. There-
fore, you could set up a Swatch rule to watch for anything with a certain priority, say 3,
for example, and send an email when that’s seen. This would be placed within your Swatch
configuration file which, by default, is ~/.swatchrc. Here’s the configuration entry:

watchfor /Priority: 3/
 mail

Monitoring with ARPWatch 291

Starting Swatch and pointing it toward the Snort alert file, /var/log/snort/alert,
looks like this:

swatch --tail-file=/var/log/snort/alert

Now when an alert with Priority: 3 is logged, an email will be sent by Swatch.

Final Thoughts on Snort
Snort comes highly recommended as a means to automate the task of intrusion detec-
tion. I’ve only been able to touch on the very basics of Snort here in hopes of giving you
a starting point for working with it. From here, you can combine Snort with MySQL and
ACID to create an enterprise-class intrusion detection system. Snort can be configured
just as you need and extended to fit any size of organization.

Monitoring with ARPWatch
ARPWatch is a daemon that watches for new Ethernet interfaces on a network. If a new
ARP entry is seen, it could be indicative of a rogue computer somewhere within the
network.

ARPWatch uses the PCap library, which may not (yet) be on your system. If it’s not,
you’ll find out during the configuration process for ARPWatch. The PCap library, com-
monly known as libpcap, can be downloaded from http://www.tcpdump.org/. The PCap
library is used for other network- and security-related programs such as TCPDump.
Because TCPDump was already covered, I’ll forgo repeating the instructions for installing
libpcap in this chapter and instead refer you to the section “TCPDump: A Simple Over-
view” for those instructions.

Installation of ARPWatch involves untarring the ARPWatch archive that you down-
load, usually something like tar -zxvf arpwatch.tar.Z. From there, change the direc-
tory into the ARPWatch directory and run the configure script:

./configure

You’ll see a (I hope somewhat) familiar series of output statements, something like this:

creating cache ./config.cache
checking host system type... i686-pc-linux-gnu
checking target system type... i686-pc-linux-gnu
checking build system type... i686-pc-linux-gnu
checking for gcc... gcc
checking whether the C compiler (gcc) works... yes
... (output truncated) ...

If you see an error to the effect of the following, you’ll need to install libpcap:

checking for main in -lpcap... no
configure: error: see the INSTALL doc for more info

Refer to the section on TCPDump earlier in this chapter for information on installing
the PCap library.

Hiva-Network.Com

http://www.tcpdump.org/
http://www.hiva-network.com/

292 Chapter 13 Network Monitoring and Attack Detection

For the rest of you, and if you’re joining us again after installing PCap, the next step to
compile ARPWatch is to make it. From the command line within the ARPWatch source
code directory, type this:

make

ARPWatch will now compile and you’ll see messages indicating the progress, as well as
possibly a warning or two:

report.o(.text+0x409): the use of 'mktemp' is dangerous, better use 'mkstemp'
gcc -O2 -DDEBUG -DHAVE_FCNTL_H=1 -DHAVE_MEMORY_H=1 -DTIME_WITH_SYS_TIME=1 \
 -DHAVE_BCOPY=1 -DHAVE_STRERROR=1 -DRETSIGTYPE=void -DRETSIGVAL= \
 -DHAVE_SIGSET=1 -DDECLWAITSTATUS=int -DSTDC_HEADERS=1 \
 -DARPDIR=\"/usr/local/arpwatch\" -DPATH \
 _SENDMAIL=\"/usr/sbin/sendmail\" -I.\
 -Ilinux-include -c ./arpsnmp.c
gcc -O2 -DDEBUG -DHAVE_FCNTL_H=1 -DHAVE_MEMORY_H=1 -DTIME_WITH_SYS_TIME=1 \
 -DHAVE_BCOPY=1 -DHAVE_STRERROR=1 -DRETSIGTYPE=void -DRETSIGVAL= \
 -DHAVE_SIGSET=1 -DDECLWAITSTATUS=int -DSTDC_HEADERS=1 \
 -DARPDIR=\"/usr/local/arpwatch\" \
 -DPATH_SENDMAIL=\"/usr/sbin/sendmail\" \
 -I. -Ilinux-include -o arpsnmp \
 arpsnmp.o db.o dns.o \
 ec.o file.o intoa.o \
 machdep.o util.o report.o setsignal.o version.o
report.o: In function 'report':
report.o(.text+0x409): the use of 'mktemp' is dangerous, better use 'mkstemp'

After it’s compiled, install ARPWatch with the following command:

make install

ARPWatch will be installed (by default) into /usr/local/sbin. This directory is usu-
ally in root’s path, but if you type arpwatch and receive a command not found error,
you probably need to preface the command with its directory, like this:

/usr/local/bin/arpwatch

As ARPWatch runs, it will report to the SYSLOG daemon about new MAC addresses
found on the network. This means that ARPWatch will usually output to /var/
log/messages, so you can run a grep command to find out about the new hosts as
 ARPWatch finds them:

grep arpwatch /var/log/messages

ARPWatch will also send email to the root account on a system detailing the new
hosts. The email contains details such as the date, the IP address, and the MAC address:

 hostname: client.example.com
 ip address: 192.168.1.10
 ethernet address: 0:e1:18:34:2f:e8
 ethernet vendor: <unknown>
 timestamp: Saturday, May 22, 2004 11:25:59 -0500

Summary 293

In both of these ways, it’s possible to know virtually instantly when a new host appears
on the network. Such information would be helpful to the security administrator when
monitoring for possible unauthorized use of a network.

ARPWatch will run in the background as a daemon, silently (or ideally silently) going
about its business and reporting back to you as needed. If, for some reason, ARPWatch
shuts off, maybe because the machine rebooted, the existing entries will be written to a
file called arp.dat (the location of this file varies greatly; if you need to find it, run
find / -name "arp.dat"). If you need to reset ARPWatch’s monitoring database so
that it will “pick up” all the hosts on the network again, run these commands from within
the directory in which you locate ARPWatch:

rm arp.dat
touch arp.dat

A tip about using ARPWatch: Make sure that the ARPWatch data file, arp.dat, is
monitored for unauthorized changes. If an attacker can alter this file and add his or her
own entry manually, ARPWatch won’t alert you to the presence of the new host. Make
sure that the arp.dat file is monitored by AIDE (covered in Chapter 14, “Filesystem
Integrity”) or through other similar means.

Summary
This chapter showed you some of the tools used in intrusion detection. The goal was to
provide you with some hands-on experience based on the concepts introduced in previ-
ous chapters. You learned about network sniffers in this chapter and focused specifically on
TCPDump. Some packets and attack types were viewed through the eyes of TCPDump
as well.

Other tools introduced and discussed in this chapter included Snort, which provides
an excellent intrusion detection system. Finally, using ARPWatch to monitor for new and
unexpected ARP entries on the network was also discussed.

The next chapter looks at filesystem integrity through the eyes of AIDE, a filesystem
integrity checker.

This page intentionally left blank

14
Filesystem Integrity

Integrity is one of three commonly used principles of computer security; confidential-
ity and availability are the other two. In the purest sense of the three principles, integrity
simply refers to the means by which you ensure that data is authentic and has not been
altered or tampered with in any way. One aspect of ensuring data integrity is ensuring the
integrity of the system on which the data is housed.

This chapter looks at some very specific means you have at your disposal when run-
ning Linux to ensure data integrity. These include examining the files on a Linux system
to make sure that they haven’t been altered without your knowledge and looking for
anomalies that may indicate the presence of an intruder on the system.

Filesystem Integrity Defined
Maintaining system integrity is yet another layer of security meant to give you, the secu-
rity administrator, a warm, fuzzy feeling. For the purposes of this chapter, the term filesys-
tem integrity refers to the verifiable knowledge that the computer system and the objects
contained therein are in a known-good state. Although that’s a wide definition, filesystem
integrity in this chapter will simply entail verification that the files located on the com-
puter have not been tampered with or altered. As such, this chapter concentrates on tools
to assist you in checking the files.

Practical Filesystem Integrity
Various tools are available to check the integrity of files on the system. In this chapter, I’ll
show AIDE, the Advanced Intrusion Detection Environment. AIDE is an open-source
filesystem integrity-checking tool.

A basic integrity check of a file usually involves obtaining checksum values of the files
on the computer and comparing those checksums against known-good values. Check-
sums are sometimes also referred to as hash values or signatures. More complex checking
is done by tools such as AIDE, as you’ll see later in the chapter.

Checksums are frequently used to verify the integrity of a downloaded file. For exam-
ple, many Linux FTP repositories contain a file called sha1sums. Inside of that sha1sums
file are the checksums of the files as they reside on the FTP server. When you download

Hiva-Network.Com

http://www.hiva-network.com/

296 Chapter 14 Filesystem Integrity

the file, you can then verify the checksum against the downloaded file. If your checksum
value matches the checksum on the server, you know you have a good file. If the values
don’t match, something went wrong with the download and you can save some time
rather than trying to work with a corrupt file or wasting a CD-R.

A hands-on example would be helpful. Jump into a console and type the following:

sha1sum /etc/passwd

You’ll see a value such as this:

dbf758aecfc31b789336d019f650d404fc280d64 /etc/passwd

Note that your value will be substantially different from mine, unless you’re running
the command against my password file, in which case I have other problems that need
attention.

If you add a user, delete a user, or make any change that affects the password file, that
sha1sum value will change. For example, if you make a change to someone’s name within
the passwd file, the sha1sum of the passwd file will change because the file’s contents are
now different. Continuing with the preceding example, you can change the name of the
root user by running this (as root):

chfn root

You’ll be presented with various options for changing the account information for the
user, beginning with the Full Name. Change the Full Name value to whatever you’d like,
and continue with changes to other values if you’d like. Now running a sha1sum against
/etc/passwd will show a different checksum for the file:

sha1sum /etc/passwd
a22e91a7bb7a21ca6c2b9d4f32e03f4ed3eeec37 /etc/passwd

Installing AIDE
AIDE is a filesystem integrity-checking tool offering many of the features you’d expect
from such a program. More information on AIDE, including links to download, is avail-
able at http://aide.sourceforge.net.

As with other tools featured in the book, AIDE is available as a package for most
popular Linux distributions, or it can be downloaded and compiled. However, you will
probably also need some prerequisites before attempting to compile AIDE. If this is the
case, the configure script for AIDE will inform you of these prerequisites, which you will
then need to download and compile (or install from operating system packages) before
continuing with AIDE’s compilation. Compiling AIDE follows the same pattern as other
software compilation, such as this in Linux:

tar -zxvf aide-<NNNN>.tar.gz
cd aide-<NNNN>
./configure
make
make install

http://aide.sourceforge.net

Configuring AIDE 297

The remainder of this chapter shows usage of compiled AIDE rather than a prepack-
aged version; specific paths and commands may be slightly different if you run a packaged
version. The underlying concepts remain the same.

Configuring AIDE
AIDE, like many other Linux applications, operates using a configuration file. The con-
figuration file is text based and contains information that the program uses to determine
the characteristics it will use when it runs. The first time you run AIDE you’ll create and
initialize the database that will be used for future checks of the filesystem’s integrity. That
database is then manually checked over for sanity, and you’ll run an update process that
will be used from then on to look for changes that occur on the filesystem.

Creating an AIDE Configuration File
After AIDE has been installed, the first thing you’ll want to do is create a configuration
file. The AIDE configuration file is normally called aide.conf and is located in /etc/ or
/etc/aide/ for a packaged version of AIDE. Comments within the AIDE configuration
file begin with a pound sign (#). There are three categories of lines within the AIDE con-
figuration file: configuration lines, macro lines, and selection lines. In Debian, the AIDE
configuration is located in /etc/aide and is split among several directories, including a
generic aide.conf file as well as a directory containing specific rules and another direc-
tory containing settings.

The heart of the AIDE configuration file is the selection lines that you use to deter-
mine what objects on the filesystem will be monitored. Configuration lines are also
important in determining how AIDE will operate, and macro lines are important for
creating advanced configurations. AIDE uses a series of parameter=value directives to
indicate the type of checking to perform on a given object. Table 14.1 lists some of those
directives.

AIDE also enables the administrator to create custom groups containing the default
groups. Doing so can save you time and improve the readability of the configuration file.
You might use a custom group to combine other groups of commonly used checks. For
example, creating a group called MyGroup with commonly used types of checks is as
simple as this:

MyGroup p+i+n+m+md5

These groupings, whether default or custom, are used to determine the type of check
that will be performed on a given selection. You also configure the files and directories to
be checked using a selection line in the configuration file. Selection lines consist of the
object to be checked together with the type of check to be performed. The object can be
a file, a directory, a regular expression, or more commonly a combination of a file along
with some regular expression syntax. I’ll take a glance at regular expressions in a later sec-
tion, but for now I’ll show simple examples of the selection process.

298 Chapter 14 Filesystem Integrity

The following selection line would examine everything in the /etc directory, specifi-
cally looking at the number of links, the user who owns a given file, the group who owns
a given file, and the size of the file:

/etc n+u+g+s

A change to one of those attributes that occurs unexpectedly might indicate tamper-
ing. The next example uses a custom group called MyGroup as the check for the files
within the /bin directory:

/bin MyGroup

Objects can be ignored or skipped by using an exclamation point (!), as in the follow-
ing example, which causes AIDE to ignore everything in /var/log:

!/var/log/.*

Table 14.1 AIDE Configuration Directives

Directive Description

p Permissions

i inode

n Number of links

u User

g Group

s Size

b Block count

m mtime

a atime

c ctime

ftype File type

S Check for growing size

sha1 sha1 checksum

sha256 sha256 checksum

sha512 sha512 checksum

rmd160 rmd160 checksum

tiger tiger checksum

R p+i+n+u+g+s+m+c+md5

L p+i+n+u+g

E Empty group

> Growing logfile p+u+g+i+n+S

haval haval checksum

gost gost checksum

crc32 crc32 checksum

Configuring AIDE 299

Ignoring objects that change frequently can drastically reduce the number of irrelevant
lines that appear in the AIDE report. However, you should be careful not to ignore too
much; otherwise, you might miss important filesystem changes.

Rule lines in the configuration file use regular expressions to enable powerful matching
capabilities. Don’t worry if you’re not familiar with the black magic involved in regular
expressions; I’ll go easy on you here.

A primary concern with matching files in AIDE is that you don’t leave room for an
attacker to circumvent the file integrity checker. This could occur if you specified a file-
name without fully qualifying the file. For example, if you wanted to skip checking a file
in the /var/log/ directory because it changes, you might use this (seemingly correct)
syntax:

!/var/log/maillog

However, due to the regular expression matching that occurs, an attacker could create a
file called this:

/var/log/maillog.crack

Because you’ve excluded /var/log/maillog already, AIDE will not check anything
that begins with /var/log/maillog. To solve this problem you add a dollar sign ($) to
the end of the file. In regular expression syntax, a $ indicates the end-of-line. Therefore,
by changing the syntax for the file you want to exclude and adding a $, you use the most
specific match for that filesystem check:

!/var/log/maillog$

By default, AIDE will create a file-based database called aide.db.new. This file is
then moved (manually) for future checks. Therefore, there’s not really a need to alter this
behavior within the context of the configuration file; however, you certainly can change
the path and name of this file using the configuration options:

database=file:<filename>
database_out=file:<filename>

AIDE can also use an SQL database server such as PostgreSQL to store database con-
tents, although that configuration is beyond the scope of this book.

A Sample AIDE Configuration File
At the very least you need to tell AIDE what parts of the filesystem to check and what
rules to use for those checks. You can also add numerous other bits to the configuration to
alter how AIDE performs. For the purposes of this section, I’ll show a very basic configu-
ration file with the caveat that you should add to it as you see necessary for your Linux
installation.

Hiva-Network.Com

http://www.hiva-network.com/

300 Chapter 14 Filesystem Integrity

If you’ve compiled AIDE, open the file /usr/local/etc/aide.conf. If the file
doesn’t exist, create it. Place the following lines within the file:

/bin R
/sbin R
/etc R+a
/lib R
/usr/lib R

If you’re using a packaged version from a distribution such as Debian, the configuration
file and several wrapper scripts are already provided, so you can safely skip this step.

Initializing the AIDE Database
With a quick and basic configuration file in hand, it’s time to initialize the AIDE data-
base. This process can take a varying length of time depending on how many files you’re
checking and the amount of resources the computer has available. Initializing the AIDE
database is as simple as running the following for the compiled version:

/usr/local/bin/aide --init

Alternatively, on Debian with a packaged version, you should run

aideinit

AIDE will now initialize the database based on the criteria you chose in the configura-
tion file. When it’s complete, you’ll see a message similar to this:

AIDE, version 0.15.1

AIDE database initialized.

The next step is to rename (move) the newly created database to aide.db so that it
becomes the default or master database:

mv /usr/local/etc/aide.db.new /usr/local/etc/aide.db

Now you should be able to run a check of the database to verify that everything is
working okay:

/usr/local/bin/aide --check

If everything goes well, you’ll see output similar to the following:

AIDE, version 0.15.1

All files match AIDE database. Looks okay!

With the AIDE database initialized, you should immediately copy the database to a
disk, preferably a read-only media such as a CD-R, or you should securely copy it to
another computer. If you leave the AIDE database on the computer, attackers may be able
to simply alter the AIDE database to cover their tracks after replacing system files with
their own! Each time you update the AIDE database from this point forward, you should
always copy the resulting database file to secure media.

Monitoring AIDE for Bad Things 301

Scheduling AIDE to Run Automatically
AIDE is best run using a cron job (scheduled task). Therefore, you should schedule AIDE
to run automatically without your intervention. AIDE is commonly run once per day, but
you should schedule it to run according to your security policy. The easiest and quickest
method to have AIDE run daily is to create a crontab entry.

Creating a crontab entry is a matter of running this (as root):

crontab -e

To run AIDE nightly at 2:00 a.m., enter the following line into crontab:

0 2 * * * /usr/local/bin/aide --check

For more information on the format of crontab entries, see your distribution’s
documentation.

Monitoring AIDE for Bad Things
Okay, so you have this shiny new filesystem integrity-checking tool all set up and running.
But now what? Now you sit and wait for something to happen. Usually nothing does, and
even when it appears that something bad might have happened, many times it hasn’t.

AIDE will continue to monitor the filesystem according to the rules you configured.
Thanks to the cron job, you’ll receive reports nightly containing the files and the attri-
butes for those files that have changed since the database was initialized or last updated.
Many times these changes will be completely benign. Recall the example from the begin-
ning of the chapter. If you add a user, files such as /etc/passwd and /etc/shadow will
change. AIDE will notice and report accordingly, assuming that you’re checking /etc.
However, if you didn’t add a user or make other changes to /etc/passwd or /etc/
shadow, you might examine more closely to make sure that an attacker hasn’t altered
either one of those important files.

Of course, there are other files that AIDE will be reporting on. You should closely
monitor the AIDE report for files that were altered unexpectedly. For example, the files /
bin/su or /usr/bin/passwd should rarely be altered and then only by certain known
software updates. Therefore, if a file such as /bin/su shows up in an AIDE report, you
need to look into it immediately to see when and why that file changed. Taking this
example one step further, assume for a moment that AIDE ran overnight through its
normal process. In the morning you awake to find an email containing some of the
following lines:

AIDE 0.15.1 found differences between database and filesystem!!
Start timestamp: 2014-07-31 23:50:17

Summary:
 Total number of files: 16112
 Added files: 0
 Removed files: 0
 Changed files: 1

302 Chapter 14 Filesystem Integrity

Changed files:

changed: /etc/adjtime

Detailed information about changes:

File: /etc/adjtime
 Atime : 2014-07-11 05:43:38 , 2014-07-31 23:36:06

The AIDE check that you scheduled found something. You can quickly tell from the
summary lines what has been found:

Summary:
 Total number of files: 16112
 Added files: 0
 Removed files: 0
 Changed files: 1

Next you’ll see a slightly more detailed summary of the files that have been added,
changed, or removed since the database was initialized or last updated. In this case, there’s
only one file that’s been changed:

File: /etc/adjtime
 Atime : 2014-07-11 05:43:38 , 2014-07-31 23:36:06

Based on this report, it’s easy to see that something changed with /etc/adjtime.

Cleaning Up the AIDE Database
Over time, you’ll notice that AIDE check reports become longer and longer. This is usu-
ally the result of normal activity on the server, such as adding and deleting users, updat-
ing software, and changing settings in configuration files. You should regularly update
the AIDE database not only to shorten reports but also to better track when unexpected
changes occur. If you don’t regularly update the AIDE database, you might miss a change
that resulted from an attack.

You may be asking, “How often should I update the AIDE database?” The answer
depends largely on your needs and your security policy. When you first start to use AIDE,
I expect that you should be updating the database at least for the first few runs (again,
depending on your security policy) and, more important, refining the configuration file.
You’ll find that certain files change so often that you need to either exclude them entirely
or change the types of checks that occur on those files.

It is much better to change the types of checks than to simply skip the files altogether.
Some file attributes that AIDE can check will not change often or at all for the same
file. Attributes such as inode and ctime shouldn’t change. Therefore, if you notice that

Changing the Output of the AIDE Report 303

certain files keep showing up in the AIDE report and you’ve ruled out nefarious activity,
you should change the type of check that occurs on that file within the AIDE configura-
tion file.

A file that regularly changes on some systems is the Samba password file, /etc/samba/
smbpasswd. On such systems, the file regularly shows up in the report where everything
in the /etc/ directory is examined using the R check (refer to Table 14.2). A more appro-
priate check type for this file might include things that don’t change often such as inode
and ctime. Such a check would appear like this in the AIDE configuration file:

/etc/samba/smbpasswd$ c+i

Note the use of the $ at the end of the filename in the example to indicate the
end-of-line.

As the AIDE report runs, you’ll be able to use more granularity to refine the files that
are checked and the checks themselves. After you update the AIDE configuration file,
you’ll need to update the database so that the changes take effect. This process is accom-
plished by running this command:

/usr/local/bin/aide --update

After the update is complete, you’ll have a new database file, /usr/local/etc/aide
.db.new, by default. This file should be moved to overwrite the existing database:

mv /usr/local/etc/aide.db.new /usr/local/etc/aide.db

Now running aide --check will give a clean result:

AIDE, version 0.15.1

All files match AIDE database. Looks okay!

After you update the database, you should copy the file to secure media or to another
computer to ensure the integrity of the database.

With the AIDE configuration file and database updated and AIDE scheduled to run
nightly, you now have an infrastructure in place to verify the integrity of your filesystem.
From here you can read on to find out about more advanced configurations for AIDE, or
you can go to Chapter 12 to find out about the rootkit-checking tool called Chkrootkit.

Changing the Output of the AIDE Report
You might want a little more flexibility in the location of the AIDE report. For example,
you may not want to receive emails if everything is okay with the AIDE report, or you
may want to have AIDE report into a file instead of providing standard output. AIDE has
four basic options for configuring output that can be configured through the AIDE con-
figuration file.

Hiva-Network.Com

http://www.hiva-network.com/

304 Chapter 14 Filesystem Integrity

Linux Output Streams
Linux has three generic streams of output that are created when a program runs. These
streams are referred to as STDIN, STDOUT, and STDERR, which are abbreviations for
Standard Input, Standard Output, and Standard Error, respectively. When you see a referral
to STDOUT, it refers to the normal method of output to the screen, and STDERR indicates
output as a result of an error condition. As you might expect, STDIN refers to the method
of input when read from the input file descriptor.

The general AIDE configuration option called report_url configures how output is
displayed. By default, output is displayed to STDOUT. Output can be displayed to any or all
of the following:

� STDOUT (default)
� STDERR

� Text file
� File descriptor

Of these four possibilities, STDOUT, STDERR, and text file are of interest. Future versions
of AIDE may include output configurations for automated email and automated output to
the syslog facility.

Of particular interest is the text file type of output for AIDE. This output type is speci-
fied using this configuration line:

report_url=file:/<path>/<filename>

For example, to configure AIDE reports to go to a file called aidereport.txt in the
/var/log/aide directory that you create, you would use this configuration option in the
AIDE configuration file:

report_url=file:/var/log/aide/aidereport.txt

However, the report_url configuration option is only one means for getting out-
put into a file. Because you’re running the AIDE report from cron, you could also simply
redirect the output to a file. For example, recall the crontab entry shown earlier in the
chapter:

0 2 * * * /usr/local/bin/aide --check

You could alter that cron entry to redirect the output to a file. Doing so would cause
all output to go to that file and would also enable additional features such as date-based
naming. This can be done with a little shell trick using runquotes (sometimes called a
backtick, usually found with the tilde [~] on the keyboard). Here’s the new cron entry:

0 2 * * * /usr/local/bin/aide --check >/var/log/aide/aidereport-'date +%m%d%Y'
�.txt

Changing the Output of the AIDE Report 305

Now the AIDE report will run and redirect STDOUT to a file called

/var/log/aide/aidereport-<date>.txt

For example, for a report run on March 12, 2014, the file would be called

/var/log/aide/aidereport-03122014.txt

With a redirected configuration such as the one shown, you will no longer receive
emails when AIDE runs through its normal cron job. Rather, you will receive emails only
when an error occurs with the AIDE cron job. Because you’ll no longer be receiving the
emails, you may be tempted to ignore your monitoring duties and just let all the AIDE
reports pile up. However, you should still monitor the AIDE reports by looking at them
for anomalies and cleaning them up as appropriate.

Obtaining More Verbose Output
AIDE reports can be configured with additional verbosity. Adding verbosity to AIDE is
valuable when you’re troubleshooting rule matching. For example, when you set the ver-
bose configuration option, you’ll be able to see how AIDE builds the list of files to check.
If you’re seeing unexpected results or if files are being included or excluded for mysterious
reasons, adding this option to the configuration or adding it as a command-line option
will help.

The configuration option to add verbosity is as follows:

verbose=<N>

In this case, <N> is a positive integer with a maximum value of 255. In practice, only
numbers above 200 give additional debugging output for most of the checks. Therefore,
to add the maximum verbosity level, you would use this configuration setting:

verbose=255

With this configuration set, you’ll see much additional output during an AIDE run:

Handling / with s "/bin" with node "/"
Handling / with s "/sbin" with node "/"
Handling / with s "/etc" with node "/"
Handling / with s "/lib" with node "/"
Handling /usr with s "/usr/lib" with node "/usr"
tree: "/"
2 ^/bin
3 ^/sbin
4 ^/etc
5 ^/lib
tree: "/usr"
6 ^/usr/lib

AIDE, version 0.15.1

All files match AIDE database. Looks okay!

306 Chapter 14 Filesystem Integrity

The output is much more verbose (as you would expect) and includes the functions
being called within the AIDE program itself, as well as details on the files that AIDE is
checking as it is checking them. Using this output can be invaluable when you’re trying to
troubleshoot a problem with your AIDE configuration.

Defining Macros in AIDE
Macros are used in AIDE to define commonly used objects and objects to be used as vari-
ables throughout an AIDE configuration file. You might use an AIDE macro to define the
top-level directory to be used within the configuration. You would then use this macro
within selection lines, and it would be substituted like a variable in that selection line. You
also might use a macro to set a variable based on certain criteria. Macros can then be used
within the AIDE configuration within control structures (decisional blocks of code) to
alter the configuration of AIDE based on the outcome of the control structure.

Macros are defined using the following syntax:

@@define <macro> <definition>

Macros can also be undefined with this syntax:

@@undef <macro>

Macros are used within the configuration with the following syntax:

@@{<macro>}

An example of using a macro in a simple way is to create a macro for a complex direc-
tory hierarchy so that you don’t have to type it into the configuration file multiple times.
Assume that you have a certain structure of directories on the computer that you want to
define using a macro:

@@define BASEDIR /usr/src/linux

This macro could then be used later within the configuration of selections for AIDE:

@@{BASEDIR}/.config R
!@@{BASEDIR}/doc

A more powerful use of macros involves changing the configuration based on some
criteria. For example, macros can be used within two types of control structures, one based
on whether the macro has been defined and the other based on the host from which the
AIDE program is being run.

These control structures are basically if/then/else statements, and they have associ-
ated negations as well. The syntax for determining whether a macro has been defined
is this:

@@ifdef <macro>

The negation for the @@ifdef evaluation is as shown here:

@@ifndef <macro>

The Types of AIDE Checks 307

For determining the current host, this is the syntax:

@@ifhost <hostname>

The negation for the @@ifhost evaluation is, as you might guess, the following:

@@ifnhost <hostname>

Regardless of which control structure is used, it must be closed using this statement:

@@endif

Multiple control structures can be grouped using an else type of structure that you
would expect for an associated if statement. The syntax is simply as follows:

@@else

Here’s an example of how each of these might be used. The first example checks to see
whether the macro called SOURCE has been defined and, if not, defines it:

@@ifndef SOURCE
@@define SOURCE /usr/src
@@endif

The second example looks at the hostname of the computer from which AIDE is
being run and sets a macro based on the results of that check. This might be helpful if you
have directory structures that differ among various hosts and you’d like to use only one
common AIDE configuration file among them. Here’s the second example:

@@ifhost cwa
@@define LOCALBINDIR /usr/local/sbin
@@endif

Finally, here is an example using an else statement:

@@ifhost cwa
@@define LOCALBINDIR /usr/local/sbin
@@else@@define LOCALBINDIR /usr/local/bin
@@endif

For all the examples, recall that you’d use these macros later within the configuration
using the following syntax:

@@{<macro>}

The Types of AIDE Checks
You may be wondering about the different types of checks AIDE can perform. Some of
the checks are described again in Table 14.2. Note that this isn’t an exhaustive list and new
options will likely be added over time.

It’s probably helpful to break down the types of AIDE checks into categories. There are
three basic categories of AIDE checks: what I will term standard checks, grouped checks,
and checksums. The standard type of AIDE check looks for information that can be gath-
ered from the file or the file’s descriptor. These checks are listed in Table 14.3.

Hiva-Network.Com

http://www.hiva-network.com/

308 Chapter 14 Filesystem Integrity

These standard checks all utilize filesystem functions that are built in or native in Linux
and can be found from the inode entry for the file. As such, running a given standard
check is less resource intensive than a checksum check. Some of these checks lend them-
selves to certain files, whereas others will cause the file to show up in a report nearly every
time the check is run. For example, the ctime of a given file should not change unless the
file is deleted or replaced with another.

It may not be readily apparent what some of the standard checks actually do. Table 14.4
describes what may be the more obscure checks within this group.

On the other hand, grouped checks combine some of the more commonly used stan-
dard checks, as described in Table 14.5.

Table 14.2 AIDE Check Types

Directive Description

p Permissions

ftype File type

i inode

n Number of links

l Link name

u User

g Group

s Size

b Block count

m mtime

a atime

c ctime

S Check for growing size

md5 md5 checksum

sha1 sha1 checksum

sha256 sha256 checksum

sha512 sha512 checksum

rmd160 rmd160 checksum

tiger tiger checksum

R p+i+n+u+g+s+m+c+md5

L p+i+n+u+g

E Empty group

> Growing logfile p+u+g+i+n+S

haval haval checksum

gost gost checksum

crc32 crc32 checksum

The Types of AIDE Checks 309

Table 14.3 Standard Checks in AIDE

Directive Description

p Permissions

i inode

n Number of links

u User

g Group

s Size

b Block count

m mtime

a atime

c ctime

S Check for growing size

Table 14.4 Explanation of Some Standard Checks

Check Name Explanation

inode The inode is a data structure that holds information about a given
file in Linux. The inode contains information such as the location of
the file, the permissions, the owner and group information, and many
other useful bits.

Number of links Links are akin to shortcuts in the Windows world. This type of check
looks to see how many links exist to the given file.

mtime The mtime of a file is the time when the file was last modified.

atime The atime of a file is the time when the file was last accessed.

ctime The ctime of a file is the time when the file was created.

Table 14.5 Grouped Checks in AIDE

Directive Definition

R p+ftype+i+l+n+u+g+s+m+c+md5

L p+ftype+i+l+n+u+g

E Empty group

> Growing logfile p+u+g+i+n+S

310 Chapter 14 Filesystem Integrity

Finally, checksums utilize cryptographic checksums of the files, as explained earlier in
the chapter and defined in Table 14.6.

The differences in the various checksum check types can be explained simply as the
differences in the cryptographic algorithms used to create the checksums. I’ll leave it up
to you to do further research on the types of cryptographic algorithms used by AIDE. I
recommend Applied Cryptography, by Bruce Schneier, as a great reference for this purpose.

Summary
This chapter looked at filesystem integrity and how it can help your system security by
ensuring that files haven’t been unexpectedly altered. The chapter began with a look at
how checksums are used to check files. The chapter continued with an in-depth look at
one filesystem integrity software package, AIDE. You saw how to install, configure, and use
AIDE on your system.

Table 14.6 Checksum Checks in AIDE

Directive Definition

md5 md5 checksum

sha1 sha1 checksum

sha256 sha256 checksum

sha512 sha512 checksum

rmd160 rmd160 checksum

tiger tiger checksum

haval haval checksum

gost gost checksum

crc32 crc32 checksum

Appendices

 A Security Resources

 B Firewall Examples and Support Scripts

 C Glossary

 D GNU Free Documentation License

IV

Hiva-Network.Com

http://www.hiva-network.com/

This page intentionally left blank

A
Security Resources

This appendix lists some common sources of security-related notices, information, tools,
updates, and patches currently on the Internet. Many more sites exist, and new sites pop
up every day—consider this list a starting point, not a complete list. The appendix also
serves as a general reference section for this book.

Security Information Sources
Security information of all kinds—notices and alerts, whitepapers, tutorials, and so on—
can be found in the following sources:

BugTraq:
http://www.securityfocus.com/archive/1

CERT Coordination Center:
https://www.us-cert.gov

Internet Engineering Task Force (IETF):
http://www.ietf.org/

Packet Storm:
http://packetstormsecurity.org/

RFC Editor:
http://www.rfc-editor.org/

SANS Institute:
http://www.sans.org/

Security Focus:
http://www.securityfocus.com/

http://www.securityfocus.com/
http://www.sans.org/
http://www.rfc-editor.org/
http://packetstormsecurity.org/
http://www.ietf.org/
https://www.us-cert.gov
http://www.securityfocus.com/archive/1

314 Appendix A Security Resources

Reference Papers and FAQs
Some useful reference papers, some of which were cited within the book, can be found
on these sites:

“Help Defeat Denial of Service Attacks: Step-by-Step”:
http://www.sans.org/dosstep/

“Internet Firewalls: Frequently Asked Questions”:
http://www.interhack.net/pubs/fwfaq/

 “Service Name and Transport Protocol Port Number Registry” (IANA):
http://www.iana.org/assignments/port-numbers

http://www.iana.org/assignments/port-numbers
http://www.interhack.net/pubs/fwfaq/
http://www.sans.org/dosstep/

B
Firewall Examples

and Support Scripts

A firewall for a standalone system is described in Chapter 5, “Building and Installing a
Standalone Firewall.” The standalone example is optimized in Chapter 6, “Firewall Opti-
mization.” The same example is extended in Chapter 7, “Packet Forwarding,” to function
as either a gateway or a choke firewall, with a full set of firewall rules applied to both the
external public interface and the internal local network interface. The gateway serves as
the link between the Internet and a DMZ network containing public servers. The choke
serves as the link between a private LAN and the DMZ.

The sample firewalls are presented piecemeal in Chapters 5, 6, and 7. This appendix
presents the same firewall examples as they would appear in a firewall script.

iptables Firewall for a Standalone System
from Chapter 5
Chapter 5 covers the application protocols and firewall rules for the types of services most
likely to be used on an individual, standalone Linux box. Additionally, both client and
server rules are presented for services that not everyone will use. This section first presents
the iptables script and then the nftables script.

The complete iptables firewall script, as it would appear in /etc/rc.d/
rc.firewall or /etc/init.d/firewall, follows:

#!/bin/sh

/sbin/modprobe ip_conntrack_ftp

CONNECTION_TRACKING="1"
ACCEPT_AUTH="0"
SSH_SERVER="0"
FTP_SERVER="0"
WEB_SERVER="0"
SSL_SERVER="0"
DHCP_CLIENT="1"

Hiva-Network.Com

http://www.hiva-network.com/

316 Appendix B Firewall Examples and Support Scripts

IPT="/sbin/iptables" # Location of iptables on your system
INTERNET="eth0" # Internet-connected interface
LOOPBACK_INTERFACE="lo" # However your system names it
IPADDR="my.ip.address" # Your IP address
SUBNET_BASE="my.subnet.base" # ISP network segment base address
SUBNET_BROADCAST="my.subnet.bcast" # Network segment broadcast address
MY_ISP="my.isp.address.range" # ISP server & NOC address range

NAMESERVER="isp.name.server.1" # Address of a remote name server
POP_SERVER="isp.pop.server" # Address of a remote pop server
MAIL_SERVER="isp.mail.server" # Address of a remote mail gateway
NEWS_SERVER="isp.news.server" # Address of a remote news server
TIME_SERVER="some.time.server" # Address of a remote time server
DHCP_SERVER="isp.dhcp.server" # Address of your ISP dhcp server

LOOPBACK="127.0.0.0/8" # Reserved loopback address range
CLASS_A="10.0.0.0/8" # Class A private networks
CLASS_B="172.16.0.0/12" # Class B private networks
CLASS_C="192.168.0.0/16" # Class C private networks
CLASS_D_MULTICAST="224.0.0.0/4" # Class D multicast addresses
CLASS_E_RESERVED_NET="240.0.0.0/5" # Class E reserved addresses
BROADCAST_SRC="0.0.0.0" # Broadcast source address
BROADCAST_DEST="255.255.255.255" # Broadcast destination address

PRIVPORTS="0:1023" # Well-known, privileged port range
UNPRIVPORTS="1024:65535" # Unprivileged port range

SSH_PORTS="1024:65535"

###

Enable broadcast echo Protection
echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts

Disable Source Routed Packets
for f in /proc/sys/net/ipv4/conf/*/accept_source_route; do
 echo 0 > $f
done

Enable TCP SYN Cookie Protection
echo 1 > /proc/sys/net/ipv4/tcp_syncookies

Disable ICMP Redirect Acceptance
for f in /proc/sys/net/ipv4/conf/*/accept_redirects; do
 echo 0 > $f
done

Don't send Redirect Messages
for f in /proc/sys/net/ipv4/conf/*/send_redirects; do
 echo 0 > $f
done

Drop Spoofed Packets coming in on an interface, which, if replied to,
would result in the reply going out a different interface.
for f in /proc/sys/net/ipv4/conf/*/rp_filter; do
 echo 1 > $f
done

iptables Firewall for a Standalone System from Chapter 5 317

Log packets with impossible addresses.
for f in /proc/sys/net/ipv4/conf/*/log_martians; do
 echo 1 > $f
done

###

Remove any existing rules from all chains
$IPT --flush
$IPT -t nat --flush
$IPT -t mangle --flush
$IPT -X
$IPT -t nat -X
$IPT -t mangle -X
$IPT --policy INPUT ACCEPT
$IPT --policy OUTPUT ACCEPT
$IPT --policy FORWARD ACCEPT
$IPT -t nat --policy PREROUTING ACCEPT
$IPT -t nat --policy OUTPUT ACCEPT
$IPT -t nat --policy POSTROUTING ACCEPT
$IPT -t mangle --policy PREROUTING ACCEPT
$IPT -t mangle --policy OUTPUT ACCEPT
if ["$1" = "stop"]
then
echo "Firewall completely stopped! WARNING: THIS HOST HAS NO FIREWALL RUNNING."
exit 0
fi
Unlimited traffic on the loopback interface
$IPT -A INPUT -i lo -j ACCEPT
$IPT -A OUTPUT -o lo -j ACCEPT

Set the default policy to drop
$IPT --policy INPUT DROP
$IPT --policy OUTPUT DROP
$IPT --policy FORWARD DROP

###
Stealth Scans and TCP State Flags
All of the bits are cleared
$IPT -A INPUT -p tcp --tcp-flags ALL NONE -j DROP
SYN and FIN are both set
$IPT -A INPUT -p tcp --tcp-flags SYN,FIN SYN,FIN -j DROP
SYN and RST are both set
$IPT -A INPUT -p tcp --tcp-flags SYN,RST SYN,RST -j DROP
FIN and RST are both set
$IPT -A INPUT -p tcp --tcp-flags FIN,RST FIN,RST -j DROP
FIN is the only bit set, without the expected accompanying ACK
$IPT -A INPUT -p tcp --tcp-flags ACK,FIN FIN -j DROP
PSH is the only bit set, without the expected accompanying ACK
$IPT -A INPUT -p tcp --tcp-flags ACK,PSH PSH -j DROP
URG is the only bit set, without the expected accompanying ACK
$IPT -A INPUT -p tcp --tcp-flags ACK,URG URG -j DROP

###
Using Connection State to Bypass Rule Checking

318 Appendix B Firewall Examples and Support Scripts

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT
 $IPT -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

 $IPT -A INPUT -m state --state INVALID -j LOG \
 --log-prefix "INVALID input: "
 $IPT -A INPUT -m state --state INVALID -j DROP

 $IPT -A OUTPUT -m state --state INVALID -j LOG \
 --log-prefix "INVALID output: "
 $IPT -A OUTPUT -m state --state INVALID -j DROP
fi

###
Source Address Spoofing and Other Bad Addresses

Refuse spoofed packets pretending to be from
the external interface's IP address
$IPT -A INPUT -i $INTERNET -s $IPADDR -j DROP

Refuse packets claiming to be from a Class A private network
$IPT -A INPUT -i $INTERNET -s $CLASS_A -j DROP

Refuse packets claiming to be from a Class B private network
$IPT -A INPUT -i $INTERNET -s $CLASS_B -j DROP

Refuse packets claiming to be from a Class C private network
$IPT -A INPUT -i $INTERNET -s $CLASS_C -j DROP
Refuse packets claiming to be from the loopback interface
$IPT -A INPUT -i $INTERNET -s $LOOPBACK -j DROP

Refuse malformed broadcast packets
$IPT -A INPUT -i $INTERNET -s $BROADCAST_DEST -j LOG
$IPT -A INPUT -i $INTERNET -s $BROADCAST_DEST -j DROP

$IPT -A INPUT -i $INTERNET -d $BROADCAST_SRC -j LOG
$IPT -A INPUT -i $INTERNET -d $BROADCAST_SRC -j DROP

if ["$DHCP_CLIENT" = "0"]; then
 # Refuse directed broadcasts
 # Used to map networks and in Denial of Service attacks
 $IPT -A INPUT -i $INTERNET -d $SUBNET_BASE -j DROP
 $IPT -A INPUT -i $INTERNET -d $SUBNET_BROADCAST -j DROP

 # Refuse limited broadcasts
 $IPT -A INPUT -i $INTERNET -d $BROADCAST_DEST -j DROP
fi

Refuse Class D multicast addresses
illegal as a source address
$IPT -A INPUT -i $INTERNET -s $CLASS_D_MULTICAST -j DROP

$IPT -A INPUT -i $INTERNET ! -p UDP -d $CLASS_D_MULTICAST -j DROP

$IPT -A INPUT -i $INTERNET -p udp -d $CLASS_D_MULTICAST -j ACCEPT

iptables Firewall for a Standalone System from Chapter 5 319

Refuse Class E reserved IP addresses
$IPT -A INPUT -i $INTERNET -s $CLASS_E_RESERVED_NET -j DROP

if ["$DHCP_CLIENT" = "1"]; then
 $IPT -A INPUT -i $INTERNET -p udp \
 -s $BROADCAST_SRC --sport 67 \
 -d $BROADCAST_DEST --dport 68 -j ACCEPT
fi

refuse addresses defined as reserved by the IANA
0.*.*.* - Can't be blocked unilaterally with DHCP
169.254.0.0/16 - Link Local Networks
192.0.2.0/24 - TEST-NET

$IPT -A INPUT -i $INTERNET -s 0.0.0.0/8 -j DROP
$IPT -A INPUT -i $INTERNET -s 169.254.0.0/16 -j DROP
$IPT -A INPUT -i $INTERNET -s 192.0.2.0/24 -j DROP

###
DNS Name Server

DNS Forwarding Name Server or client requests

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p udp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $NAMESERVER --dport 53 \
 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p udp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $NAMESERVER --dport 53 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p udp \
 -s $NAMESERVER --sport 53 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

#...
TCP is used for large responses

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $NAMESERVER --dport 53 \
 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $NAMESERVER --dport 53 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 -s $NAMESERVER --sport 53 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

Hiva-Network.Com

http://www.hiva-network.com/

320 Appendix B Firewall Examples and Support Scripts

#...
DNS Caching Name Server (local server to primary server)

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p udp \
 -s $IPADDR --sport 53 \
 -d $NAMESERVER --dport 53 \
 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p udp \
 -s $IPADDR --sport 53 \
 -d $NAMESERVER --dport 53 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p udp \
 -s $NAMESERVER --sport 53 \
 -d $IPADDR --dport 53 -j ACCEPT

#...
Incoming Remote Client Requests to Local Servers

if ["$ACCEPT_AUTH" = "1"]; then
 if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A INPUT -i $INTERNET -p tcp \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport 113 \
 -m state --state NEW -j ACCEPT
 fi

$IPT -A INPUT -i $INTERNET -p tcp \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport 113 -j ACCEPT

$IPT -A OUTPUT -o $INTERNET -p tcp ! --syn \
 -s $IPADDR --sport 113 \
 --dport $UNPRIVPORTS -j ACCEPT
else
$IPT -A INPUT -i $INTERNET -p tcp \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport 113 -j REJECT --reject-with tcp-reset
fi

###
Sending Mail to Any External Mail Server
Use "-d $MAIL_SERVER" if an ISP mail gateway is used instead

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport 25 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport 25 -j ACCEPT

iptables Firewall for a Standalone System from Chapter 5 321

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 --sport 25 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

###
Retrieving Mail as a POP Client (TCP Port 110)

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $POP_SERVER --dport 110 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $POP_SERVER --dport 110 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 -s $POP_SERVER --sport 110 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

###
ssh (TCP Port 22)

Outgoing Local Client Requests to Remote Servers

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $SSH_PORTS \
 --dport 22 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $SSH_PORTS \
 --dport 22 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 --sport 22 \
 -d $IPADDR --dport $SSH_PORTS -j ACCEPT

#...
Incoming Remote Client Requests to Local Servers

if ["$SSH_SERVER" = "1"]; then
 if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A INPUT -i $INTERNET -p tcp \
 --sport $SSH_PORTS \
 -d $IPADDR --dport 22 \
 -m state --state NEW -j ACCEPT
 fi

$IPT -A INPUT -i $INTERNET -p tcp \
 --sport $SSH_PORTS \
 -d $IPADDR --dport 22 -j ACCEPT

322 Appendix B Firewall Examples and Support Scripts

$IPT -A OUTPUT -o $INTERNET -p tcp ! --syn \
 -s $IPADDR --sport 22 \
 --dport $SSH_PORTS -j ACCEPT
fi

###
ftp (TCP Ports 21, 20)

Outgoing Local Client Requests to Remote Servers

Outgoing Control Connection to Port 21
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport 21 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport 21 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 --sport 21 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

Incoming Port Mode Data Channel Connection from Port 20
if ["$CONNECTION_TRACKING" = "1"]; then
 # This rule is not necessary if the ip_conntrack_ftp
 # module is used.
 $IPT -A INPUT -i $INTERNET -p tcp \
 --sport 20 \
 -d $IPADDR --dport $UNPRIVPORTS \
 -m state --state NEW -j ACCEPT
fi

$IPT -A INPUT -i $INTERNET -p tcp \
 --sport 20 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

$IPT -A OUTPUT -o $INTERNET -p tcp ! --syn \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport 20 -j ACCEPT

Outgoing Passive Mode Data Channel Connection Between Unprivileged Ports
if ["$CONNECTION_TRACKING" = "1"]; then
 # This rule is not necessary if the ip_conntrack_ftp
 # module is used.
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport $UNPRIVPORTS -m state --state NEW -j ACCEPT
fi

 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport $UNPRIVPORTS -j ACCEPT

iptables Firewall for a Standalone System from Chapter 5 323

 $IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

#...
Incoming Remote Client Requests to Local Servers

if ["$FTP_SERVER" = "1"]; then

 # Incoming Control Connection to Port 21
 if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A INPUT -i $INTERNET -p tcp \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport 21 \
 -m state --state NEW -j ACCEPT
 fi

$IPT -A INPUT -i $INTERNET -p tcp \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport 21 -j ACCEPT

$IPT -A OUTPUT -o $INTERNET -p tcp ! --syn \
 -s $IPADDR --sport 21 \
 --dport $UNPRIVPORTS -j ACCEPT

 # Outgoing Port Mode Data Channel Connection to Port 20
 if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport 20\
 --dport $UNPRIVPORTS -m state --state NEW -j ACCEPT
 fi

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport 20 \
 --dport $UNPRIVPORTS -j ACCEPT

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport 20 -j ACCEPT

 # Incoming Passive Mode Data Channel Connection Between Unprivileged Ports
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A INPUT -i $INTERNET -p tcp \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport $UNPRIVPORTS \
 -m state --state NEW -j ACCEPT
 fi

$IPT -A INPUT -i $INTERNET -p tcp \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

$IPT -A OUTPUT -o $INTERNET -p tcp ! --syn \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport $UNPRIVPORTS -j ACCEPT
fi

Hiva-Network.Com

http://www.hiva-network.com/

324 Appendix B Firewall Examples and Support Scripts

###
HTTP Web Traffic (TCP Port 80)

Outgoing Local Client Requests to Remote Servers

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport 80 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport 80 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 --sport 80 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

#...
Incoming Remote Client Requests to Local Servers

if ["$WEB_SERVER" = "1"]; then
 if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A INPUT -i $INTERNET -p tcp \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport 80 \
 -m state --state NEW -j ACCEPT
fi

$IPT -A INPUT -i $INTERNET -p tcp \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport 80 -j ACCEPT

$IPT -A OUTPUT -o $INTERNET -p tcp ! --syn \
 -s $IPADDR --sport 80 \
 --dport $UNPRIVPORTS -j ACCEPT
fi

###
SSL Web Traffic (TCP Port 443)

Outgoing Local Client Requests to Remote Servers

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport 443 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport 443 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 --sport 443 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

iptables Firewall for a Standalone System from Chapter 5 325

#...
Incoming Remote Client Requests to Local Servers

if ["$SSL_SERVER" = "1"]; then
 if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A INPUT -i $INTERNET -p tcp \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport 443 \
 -m state --state NEW -j ACCEPT
fi

$IPT -A INPUT -i $INTERNET -p tcp \
 --sport $UNPRIVPORTS \
 -d $IPADDR --dport 443 -j ACCEPT

$IPT -A OUTPUT -o $INTERNET -p tcp ! --syn \
 -s $IPADDR --sport 443 \
 --dport $UNPRIVPORTS -j ACCEPT
fi

###
whois (TCP Port 43)

Outgoing Local Client Requests to Remote Servers

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport 43 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p tcp \
 -s $IPADDR --sport $UNPRIVPORTS \
 --dport 43 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p tcp ! --syn \
 --sport 43 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

###
Accessing Remote Network Time Servers (UDP 123)
Note: Some client and servers use source port 123
when querying a remote server on destination port 123.

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p udp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $TIME_SERVER --dport 123 \
 -m state --state NEW -j ACCEPT
fi

$IPT -A OUTPUT -o $INTERNET -p udp \
 -s $IPADDR --sport $UNPRIVPORTS \
 -d $TIME_SERVER --dport 123 -j ACCEPT

326 Appendix B Firewall Examples and Support Scripts

$IPT -A INPUT -i $INTERNET -p udp \
 -s $TIME_SERVER --sport 123 \
 -d $IPADDR --dport $UNPRIVPORTS -j ACCEPT

###
Accessing Your ISP's DHCP Server (UDP Ports 67, 68)

Some broadcast packets are explicitly ignored by the firewall.
Others are dropped by the default policy.
DHCP tests must precede broadcast-related rules, as DHCP relies
on broadcast traffic initially.

if ["$DHCP_CLIENT" = "1"]; then
 # Initialization or rebinding: No lease or Lease time expired.

$IPT -A OUTPUT -o $INTERNET -p udp \
 -s $BROADCAST_SRC --sport 68 \
 -d $BROADCAST_DEST --dport 67 -j ACCEPT

 # Incoming DHCPOFFER from available DHCP servers

$IPT -A INPUT -i $INTERNET -p udp \
 -s $BROADCAST_SRC --sport 67 \
 -d $BROADCAST_DEST --dport 68 -j ACCEPT

 # Fall back to initialization
 # The client knows its server, but has either lost its lease,
 # or else needs to reconfirm the IP address after rebooting.

$IPT -A OUTPUT -o $INTERNET -p udp \
 -s $BROADCAST_SRC --sport 68 \
 -d $DHCP_SERVER --dport 67 -j ACCEPT

$IPT -A INPUT -i $INTERNET -p udp \
 -s $DHCP_SERVER --sport 67 \
 -d $BROADCAST_DEST --dport 68 -j ACCEPT

 # As a result of the above, we're supposed to change our IP
 # address with this message, which is addressed to our new
 # address before the dhcp client has received the update.
 # Depending on the server implementation, the destination address
 # can be the new IP address, the subnet address, or the limited
 # broadcast address.

 # If the network subnet address is used as the destination,
 # the next rule must allow incoming packets destined to the
 # subnet address, and the rule must precede any general rules
 # that block such incoming broadcast packets.

$IPT -A INPUT -i $INTERNET -p udp \
 -s $DHCP_SERVER --sport 67 \
 --dport 68 -j ACCEPT

 # Lease renewal

iptables Firewall for a Standalone System from Chapter 5 327

$IPT -A OUTPUT -o $INTERNET -p udp \
 -s $IPADDR --sport 68 \
 -d $DHCP_SERVER --dport 67 -j ACCEPT
$IPT -A INPUT -i $INTERNET -p udp \
 -s $DHCP_SERVER --sport 67 \
 -d $IPADDR --dport 68 -j ACCEPT

 # Refuse directed broadcasts
 # Used to map networks and in Denial of Service attacks
 iptables -A INPUT -i $INTERNET -d $SUBNET_BASE -j DROP
 iptables -A INPUT -i $INTERNET -d $SUBNET_BROADCAST -j DROP

 # Refuse limited broadcasts
 iptables -A INPUT -i $INTERNET -d $BROADCAST_DEST -j DROP

fi
###
ICMP Control and Status Messages

Log and drop initial ICMP fragments
$IPT -A INPUT -i $INTERNET --fragment -p icmp -j LOG \
 --log-prefix "Fragmented ICMP: "

$IPT -A INPUT -i $INTERNET --fragment -p icmp -j DROP

$IPT -A INPUT -i $INTERNET -p icmp \
 --icmp-type source-quench -d $IPADDR -j ACCEPT

$IPT -A OUTPUT -o $INTERNET -p icmp \
 -s $IPADDR --icmp-type source-quench -j ACCEPT

$IPT -A INPUT -i $INTERNET -p icmp \
 --icmp-type parameter-problem -d $IPADDR -j ACCEPT

$IPT -A OUTPUT -o $INTERNET -p icmp \
 -s $IPADDR --icmp-type parameter-problem -j ACCEPT

$IPT -A INPUT -i $INTERNET -p icmp \
 --icmp-type destination-unreachable -d $IPADDR -j ACCEPT

$IPT -A OUTPUT -o $INTERNET -p icmp \
 -s $IPADDR --icmp-type fragmentation-needed -j ACCEPT

Don't log dropped outgoing ICMP error messages
$IPT -A OUTPUT -o $INTERNET -p icmp \
 -s $IPADDR --icmp-type destination-unreachable -j DROP

Intermediate traceroute responses
$IPT -A INPUT -i $INTERNET -p icmp \
 --icmp-type time-exceeded -d $IPADDR -j ACCEPT

Allow outgoing pings to anywhere
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A OUTPUT -o $INTERNET -p icmp \
 -s $IPADDR --icmp-type echo-request \
 -m state --state NEW -j ACCEPT
fi

Hiva-Network.Com

http://www.hiva-network.com/

328 Appendix B Firewall Examples and Support Scripts

$IPT -A OUTPUT -o $INTERNET -p icmp \
 -s $IPADDR --icmp-type echo-request -j ACCEPT

$IPT -A INPUT -i $INTERNET -p icmp \
 --icmp-type echo-reply -d $IPADDR -j ACCEPT

Allow incoming pings from trusted hosts
if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A INPUT -i $INTERNET -p icmp \
 -s $MY_ISP --icmp-type echo-request -d $IPADDR \
 -m state --state NEW -j ACCEPT
fi

$IPT -A INPUT -i $INTERNET -p icmp \
 -s $MY_ISP --icmp-type echo-request -d $IPADDR -j ACCEPT

$IPT -A OUTPUT -o $INTERNET -p icmp \
 -s $IPADDR --icmp-type echo-reply -d $MY_ISP -j ACCEPT

###
Logging Dropped Packets
$IPT -A INPUT -i $INTERNET -p tcp \
 -d $IPADDR -j LOG

$IPT -A OUTPUT -o $INTERNET -j LOG

exit 0

nftables Firewall for a Standalone System
from Chapter 5
This section contains an nftables script based on the example shown in Chapter 5. The
script relies on the setup-tables file from that chapter, which it expects to find in the
same directory. Here are the contents of the setup-tables file:

table filter {
 chain input {
 type filter hook input priority 0;
 }
 chain output {
 type filter hook output priority 0;
 }
}

Here is the firewall script:

#!/bin/sh

NFT="/usr/local/sbin/nft" # Location of nft on your system
INTERNET="eth0" # Internet-connected interface
LOOPBACK_INTERFACE="lo" # However your system names it
IPADDR="my.ip.address" # Your IP address
MY_ISP="my.isp.address.range" # ISP server & NOC address range
SUBNET_BASE="my.subnet.base" # Your subnet's network address

nftables Firewall for a Standalone System from Chapter 5 329

SUBNET_BROADCAST="my.subnet.bcast" # Your subnet's broadcast address
LOOPBACK="127.0.0.0/8" # Reserved loopback address range
NAMESERVER="isp.name.server.1" # Address of a remote name server
SMTP_GATEWAY="isp.smtp.server" # Address of a remote mail gateway
POP_SERVER="isp.pop.server" # Address of a remote pop server
IMAP_SERVER="isp.imap.server" # Address of a remote imap server
TIME_SERVER="time.nist.gov" # Address of a remote NTP server
CLASS_A="10.0.0.0/8" # Class A private networks
CLASS_B="172.16.0.0/12" # Class B private networks
CLASS_C="192.168.0.0/16" # Class C private networks
CLASS_D_MULTICAST="224.0.0.0/4" # Class D multicast addresses
CLASS_E_RESERVED_NET="240.0.0.0/5" # Class E reserved addresses
BROADCAST_SRC="0.0.0.0" # Broadcast source address
BROADCAST_DEST="255.255.255.255" # Broadcast destination address
PRIVPORTS="0-1023" # Well-known, privileged port range
UNPRIVPORTS="1024-65535" # Unprivileged port range

for i in '$NFT list tables | awk '{print $2}''
do
 echo "Flushing ${i}"
 $NFT flush table ${i}
 for j in '$NFT list table ${i} | grep chain | awk '{print $2}''
 do
 echo "...Deleting chain ${j} from table ${i}"
 $NFT delete chain ${i} ${j}
 done
 echo "Deleting ${i}"
 $NFT delete table ${i}
done

if ["$1" = "stop"]
then
echo "Firewall completely stopped! WARNING: THIS HOST HAS NO FIREWALL RUNNING."
exit 0
fi

$NFT -f setup-tables

#loopback
$NFT add rule filter input iifname lo accept
$NFT add rule filter output oifname lo accept

#connection state
$NFT add rule filter input ct state established,related accept
$NFT add rule filter input ct state invalid log prefix \"INVALID input: \" limit
�rate 3/second drop
$NFT add rule filter output ct state established,related accept
$NFT add rule filter output ct state invalid log prefix \"INVALID output: \"
�limit rate 3/second drop

#source address spoofing
$NFT add rule filter input iif $INTERNET ip saddr $IPADDR

#invalid addresses
$NFT add rule filter input iif $INTERNET ip saddr $CLASS_A drop
$NFT add rule filter input iif $INTERNET ip saddr $CLASS_B drop
$NFT add rule filter input iif $INTERNET ip saddr $CLASS_C drop
$NFT add rule filter input iif $INTERNET ip saddr $LOOPBACK drop

330 Appendix B Firewall Examples and Support Scripts

#broadcast src and dest
$NFT add rule filter input iif $INTERNET ip saddr $BROADCAST_DEST log limit rate
�3/second drop
$NFT add rule filter input iif $INTERNET ip saddr $BROADCAST_SRC log limit rate
�3/second drop

#directed broadcast
$NFT add rule filter input iif $INTERNET ip daddr $SUBNET_BASE drop
$NFT add rule filter input iif $INTERNET ip daddr $SUBNET_BROADCAST drop

#limited broadcast
$NFT add rule filter input iif $INTERNET ip daddr $BROADCAST_DEST drop

#multicast
$NFT add rule filter input iif $INTERNET ip saddr $CLASS_D_MULTICAST drop
$NFT add rule filter input iif $INTERNET ip daddr $CLASS_D_MULTICAST ip protocol
�!= udp drop
$NFT add rule filter input iif $INTERNET ip daddr $CLASS_D_MULTICAST ip protocol
�udp accept

#class e
$NFT add rule filter input iif $INTERNET ip saddr $CLASS_E_RESERVED_NET drop

#x windows
XWINDOW_PORTS="6000-6063"
$NFT add rule filter output oif $INTERNET ct state new tcp dport $XWINDOW_PORTS
�reject
$NFT add rule filter input iif $INTERNET ct state new tcp dport $XWINDOW_PORTS
�drop

NFS_PORT="2049" # (TCP) NFS
SOCKS_PORT="1080" # (TCP) socks
OPENWINDOWS_PORT="2000" # (TCP) OpenWindows
SQUID_PORT="3128" # (TCP) squid

$NFT add rule filter output oif $INTERNET tcp dport {$NFS_PORT,$SOCKS_
�PORT,$OPENWINDOWS_PORT,$SQUID_PORT} ct state new reject
$NFT add rule filter input iif $INTERNET tcp dport {$NFS_PORT,$SOCKS_
�PORT,$OPENWINDOWS_PORT,$SQUID_PORT} ct state new drop

NFS_PORT="2049" # NFS
LOCKD_PORT="4045" # RPC lockd for NFS
$NFT add rule filter output oif $INTERNET udp dport {$NFS_PORT,$LOCKD_PORT}
�reject
$NFT add rule filter input iif $INTERNET udp dport {$NFS_PORT,$LOCKD_PORT} drop

#DNS
$NFT add rule filter output oif $INTERNET ip saddr $IPADDR udp sport $UNPRIVPORTS
�ip daddr $NAMESERVER udp dport 53 ct state new accept
$NFT add rule filter input iif $INTERNET ip daddr $IPADDR udp dport $UNPRIVPORTS
�ip saddr $NAMESERVER udp sport 53 accept

#tcp dns
$NFT add rule filter output oif $INTERNET ip saddr $IPADDR tcp sport $UNPRIVPORTS
�ip daddr $NAMESERVER tcp dport 53 ct state new accept
$NFT add rule filter input iif $INTERNET ip daddr $IPADDR tcp dport $UNPRIVPORTS
�ip saddr $NAMESERVER tcp sport 53 tcp flags != syn accept

nftables Firewall for a Standalone System from Chapter 5 331

#tcp smtp
$NFT add rule filter output oif $INTERNET ip daddr $SMTP_GATEWAY tcp dport 25 ip
�saddr $IPADDR tcp sport $UNPRIVPORTS accept
$NFT add rule filter input iif $INTERNET ip saddr $SMTP_GATEWAY tcp sport 25 ip
�daddr $IPADDR tcp dport $UNPRIVPORTS tcp flags != syn accept

$NFT add rule filter output oif $INTERNET ip saddr $IPADDR tcp sport $UNPRIVPORTS
�tcp dport 25 accept
$NFT add rule filter input iif $INTERNET ip daddr $IPADDR tcp sport 25 tcp dport
�$UNPRIVPORTS tcp flags != syn accept
$NFT add rule filter input iif $INTERNET tcp sport $UNPRIVPORTS ip daddr $IPADDR
�tcp dport 25 accept
$NFT add rule filter output oif $INTERNET tcp sport 25 ip saddr $IPADDR tcp dport
�$UNPRIVPORTS tcp flags != syn accept

#tcp pop3
$NFT add rule filter output oif $INTERNET ip saddr $IPADDR ip daddr $POP_SERVER
�tcp sport $UNPRIVPORTS tcp dport 110 accept
$NFT add rule filter input iif $INTERNET ip saddr $POP_SERVER tcp sport 110 ip
�daddr $IPADDR tcp dport $UNPRIVPORTS tcp flags != syn accept

#tcp imaps
$NFT add rule filter output oif $INTERNET ip saddr $IPADDR tcp sport $UNPRIVPORTS
�ip daddr $IMAP_SERVER tcp dport 993 accept
$NFT add rule filter input iif $INTERNET ip saddr $IMAP_SERVER tcp sport 993 ip
�daddr $IPADDR tcp dport $UNPRIVPORTS tcp flags != syn accept

#allowing clients to connect to your IMAPs server
$NFT add rule filter input iif $INTERNET ip saddr 0/0 tcp sport $UNPRIVPORTS ip
�daddr $IPADDR tcp dport 993 accept
$NFT add rule filter output oif $INTERNET ip saddr $IPADDR tcp sport 993 ip daddr
�0/0 tcp dport $UNPRIVPORTS tcp flags != syn accept

#ssh
SSH_PORTS="1020-65535"
$NFT add rule filter output oif $INTERNET ip saddr $IPADDR tcp sport $SSH_PORTS
�tcp dport 22 accept
$NFT add rule filter input iif $INTERNET tcp sport 22 ip daddr $IPADDR tcp dport
�$SSH_PORTS tcp flags != syn accept
$NFT add rule filter input iif $INTERNET tcp sport $SSH_PORTS ip daddr $IPADDR
�tcp dport 22 accept
$NFT add rule filter output oif $INTERNET ip saddr $IPADDR tcp sport 22 tcp dport
�$SSH_PORTS tcp flags != syn accept

#ftp
$NFT add rule filter output oif $INTERNET ip saddr $IPADDR tcp sport $UNPRIVPORTS
�tcp dport 21 accept
$NFT add rule filter input iif $INTERNET ip daddr $IPADDR tcp sport 21 tcp dport
�$UNPRIVPORTS accept
#assume use of ct state module for ftp

#dhcp (this machine does dhcp on two interfaces, so need more rules)
$NFT add rule filter output oif $INTERNET ip saddr $BROADCAST_SRC udp sport 67-68
�ip daddr $BROADCAST_DEST udp dport 67-68 accept
$NFT add rule filter input iif $INTERNET udp sport 67-68 udp dport 67-68 accept
$NFT add rule filter output udp sport 67-68 udp dport 67-68 accept
$NFT add rule filter input udp sport 67-68 udp dport 67-68 accept

Hiva-Network.Com

http://www.hiva-network.com/

332 Appendix B Firewall Examples and Support Scripts

#ntp
$NFT add rule filter output oif $INTERNET ip saddr $IPADDR udp sport $UNPRIVPORTS
�ip daddr $TIME_SERVER udp dport 123 accept
$NFT add rule filter input iif $INTERNET ip saddr $TIME_SERVER udp sport 123 ip
�daddr $IPADDR udp dport $UNPRIVPORTS accept

#log anything that made it this far
$NFT add rule filter input log
$NFT add rule filter output log

#default policy:
$NFT add rule filter input drop
$NFT add rule filter output reject

Optimized iptables Firewall from Chapter 6
For most systems on DSL, cable modem, and lower-speed leased line connections, the
chances are good that the Linux network code can handle packets faster than the network
connection can. Particularly because firewall rules are order dependent and difficult to
construct, organizing the rules for readability is probably a bigger win than organizing for
speed.

In addition to general rule ordering, iptables supports user-defined rule lists, or
chains, that you can use to optimize your firewall rules. Passing a packet from one chain
to another based on values in the packet header provides a means to selectively test the
packet against a subset of the INPUT, OUTPUT, or FORWARD rules rather than testing the
packet against every rule in the list until a match is found.

Based on these particular scripts, an input packet from an NTP time server must be
tested against numerous input rules in the unoptimized firewall script before the packet
matches its ACCEPT rule. Using user-defined chains to optimize the firewall, the same
input packet is tested against far fewer rules before matching its ACCEPT rule. With the
addition of connection state tracking, the same input packet is tested against only a hand-
ful of rules before matching its ACCEPT rule.

With user-defined chains, rules are used to pass packets between chains, as well as
to define under what conditions the packet is accepted or dropped. If a packet doesn’t
match any rule in the user-defined chain, control returns to the calling chain. If the
packet doesn’t match a top-level chain selection rule, the packet isn’t passed to that chain
for testing against the chain’s rules. The packet is simply tested against the next chain
selection rule.

Following is the Chapter 5 firewall script, optimized with user-defined chains:

#!/bin/sh

/sbin/modprobe ip_conntrack_ftp

CONNECTION_TRACKING="1"
ACCEPT_AUTH="0"
DHCP_CLIENT="0"
IPT="/sbin/iptables" # Location of iptables on your system
INTERNET="eth0" # Internet-connected interface

Optimized iptables Firewall from Chapter 6 333

LOOPBACK_INTERFACE="lo" # However your system names it
IPADDR="my.ip.address" # Your IP address
SUBNET_BASE="network.address" # ISP network segment base address
SUBNET_BROADCAST="directed.broadcast" # Network segment broadcast address
MY_ISP="my.isp.address.range" # ISP server & NOC address range

NAMESERVER_1="isp.name.server.1" # Address of a remote name server
NAMESERVER_2="isp.name.server.2" # Address of a remote name server
NAMESERVER_3="isp.name.server.3" # Address of a remote name server
POP_SERVER="isp.pop.server" # Address of a remote pop server
MAIL_SERVER="isp.mail.server" # Address of a remote mail gateway
NEWS_SERVER="isp.news.server" # Address of a remote news server
TIME_SERVER="some.timne.server" # Address of a remote time server
DHCP_SERVER="isp.dhcp.server" # Address of your ISP dhcp server
SSH_CLIENT="some.ssh.client"

LOOPBACK="127.0.0.0/8" # Reserved loopback address range
CLASS_A="10.0.0.0/8" # Class A private networks
CLASS_B="172.16.0.0/12" # Class B private networks
CLASS_C="192.168.0.0/16" # Class C private networks
CLASS_D_MULTICAST="224.0.0.0/4" # Class D multicast addresses
CLASS_E_RESERVED_NET="240.0.0.0/5" # Class E reserved addresses
BROADCAST_SRC="0.0.0.0" # Broadcast source address
BROADCAST_DEST="255.255.255.255" # Broadcast destination address

PRIVPORTS="0:1023" # Well-known, privileged port range
UNPRIVPORTS="1024:65535" # Unprivileged port range

Traceroute usually uses -S 32769:65535 -D 33434:33523
TRACEROUTE_SRC_PORTS="32769:65535"
TRACEROUTE_DEST_PORTS="33434:33523"

USER_CHAINS="EXT-input EXT-output \
 tcp-state-flags connection-tracking \
 source-address-check destination-address-check \
 local-dns-server-query remote-dns-server-response \
 local-tcp-client-request remote-tcp-server-response \
 remote-tcp-client-request local-tcp-server-response \
 local-udp-client-request remote-udp-server-response \
 local-dhcp-client-query remote-dhcp-server-response \
 EXT-icmp-out EXT-icmp-in \
 EXT-log-in EXT-log-out \
 log-tcp-state"

###

Enable broadcast echo Protection
echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts

Disable Source Routed Packets
for f in /proc/sys/net/ipv4/conf/*/accept_source_route; do
 echo 0 > $f
done

Enable TCP SYN Cookie Protection
echo 1 > /proc/sys/net/ipv4/tcp_syncookies

334 Appendix B Firewall Examples and Support Scripts

Disable ICMP Redirect Acceptance
for f in /proc/sys/net/ipv4/conf/*/accept_redirects; do
 echo 0 > $f
done

Don't send Redirect Messages
for f in /proc/sys/net/ipv4/conf/*/send_redirects; do
 echo 0 > $f
done

Drop Spoofed Packets coming in on an interface, which, if replied to,
would result in the reply going out a different interface.
for f in /proc/sys/net/ipv4/conf/*/rp_filter; do
 echo 1 > $f
done

Log packets with impossible addresses.
for f in /proc/sys/net/ipv4/conf/*/log_martians; do
 echo 1 > $f
done

###

Remove any existing rules from all chains
$IPT --flush
$IPT -t nat --flush
$IPT -t mangle --flush
$IPT -X
$IPT -t nat -X
$IPT -t mangle -X

$IPT --policy INPUT ACCEPT
$IPT --policy OUTPUT ACCEPT
$IPT --policy FORWARD ACCEPT
$IPT -t nat --policy PREROUTING ACCEPT
$IPT -t nat --policy OUTPUT ACCEPT
$IPT -t nat --policy POSTROUTING ACCEPT
$IPT -t mangle --policy PREROUTING ACCEPT
$IPT -t mangle --policy OUTPUT ACCEPT
if ["$1" = "stop"]
then
echo "Firewall completely stopped! WARNING: THIS HOST HAS NO FIREWALL RUNNING."
exit 0
fi

Unlimited traffic on the loopback interface
$IPT -A INPUT -i lo -j ACCEPT
$IPT -A OUTPUT -o lo -j ACCEPT

Set the default policy to drop
$IPT --policy INPUT DROP
$IPT --policy OUTPUT DROP
$IPT --policy FORWARD DROP

Create the user-defined chains
for i in $USER_CHAINS; do
 $IPT -N $i
done

Optimized iptables Firewall from Chapter 6 335

###
DNS Caching Name Server (query to remote, primary server)

$IPT -A EXT-output -p udp --sport 53 --dport 53 \
 -j local-dns-server-query

$IPT -A EXT-input -p udp --sport 53 --dport 53 \
 -j remote-dns-server-response

DNS Caching Name Server (query to remote server over TCP)

$IPT -A EXT-output -p tcp \
 --sport $UNPRIVPORTS --dport 53 \
 -j local-dns-server-query

$IPT -A EXT-input -p tcp ! --syn \
 --sport 53 --dport $UNPRIVPORTS \
 -j remote-dns-server-response

###
DNS Forwarding Name Server or client requests

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A local-dns-server-query \
 -d $NAMESERVER_1 \
 -m state --state NEW -j ACCEPT

 $IPT -A local-dns-server-query \
 -d $NAMESERVER_2 \
 -m state --state NEW -j ACCEPT

 $IPT -A local-dns-server-query \
 -d $NAMESERVER_3 \
 -m state --state NEW -j ACCEPT
fi

$IPT -A local-dns-server-query \
 -d $NAMESERVER_1 -j ACCEPT

$IPT -A local-dns-server-query \
 -d $NAMESERVER_2 -j ACCEPT

$IPT -A local-dns-server-query \
 -d $NAMESERVER_3 -j ACCEPT

DNS server responses to local requests

$IPT -A remote-dns-server-response \
 -s $NAMESERVER_1 -j ACCEPT

$IPT -A remote-dns-server-response \
 -s $NAMESERVER_2 -j ACCEPT

$IPT -A remote-dns-server-response \
 -s $NAMESERVER_3 -j ACCEPT

Hiva-Network.Com

http://www.hiva-network.com/

336 Appendix B Firewall Examples and Support Scripts

###
Local TCP client, remote server

$IPT -A EXT-output -p tcp \
 --sport $UNPRIVPORTS \
 -j local-tcp-client-request

$IPT -A EXT-input -p tcp ! --syn \
 --dport $UNPRIVPORTS \
 -j remote-tcp-server-response

###
Local TCP client output and remote server input chains

SSH client

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A local-tcp-client-request -p tcp \
 -d <selected host> --dport 22 \
 -m state --state NEW \
 -j ACCEPT
fi

$IPT -A local-tcp-client-request -p tcp \
 -d <selected host> --dport 22 \
 -j ACCEPT

$IPT -A remote-tcp-server-response -p tcp ! --syn \
 -s <selected host> --sport 22 \
 -j ACCEPT

#...
Client rules for HTTP, HTTPS, AUTH, and FTP control requests

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A local-tcp-client-request -p tcp \
 -m multiport --destination-port 80,443,21 \
 --syn -m state --state NEW \
 -j ACCEPT
fi

$IPT -A local-tcp-client-request -p tcp \
 -m multiport --destination-port 80,443,21 \
 -j ACCEPT

$IPT -A remote-tcp-server-response -p tcp \
 -m multiport --source-port 80,443,21 ! --syn \
 -j ACCEPT

#...
POP client

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A local-tcp-client-request -p tcp \
 -d $POP_SERVER --dport 110 \
 -m state --state NEW \
 -j ACCEPT
fi

Optimized iptables Firewall from Chapter 6 337

$IPT -A local-tcp-client-request -p tcp \
 -d $POP_SERVER --dport 110 \
 -j ACCEPT

$IPT -A remote-tcp-server-response -p tcp ! --syn \
 -s $POP_SERVER --sport 110 \
 -j ACCEPT
#...
SMTP mail client

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A local-tcp-client-request -p tcp \
 -d $MAIL_SERVER --dport 25 \
 -m state --state NEW \
 -j ACCEPT
fi

$IPT -A local-tcp-client-request -p tcp \
 -d $MAIL_SERVER --dport 25 \
 -j ACCEPT

$IPT -A remote-tcp-server-response -p tcp ! --syn \
 -s $MAIL_SERVER --sport 25 \
 -j ACCEPT

#...
Usenet news client

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A local-tcp-client-request -p tcp \
 -d $NEWS_SERVER --dport 119 \
 -m state --state NEW \
 -j ACCEPT
fi
$IPT -A local-tcp-client-request -p tcp \
 -d $NEWS_SERVER --dport 119 \
 -j ACCEPT

$IPT -A remote-tcp-server-response -p tcp ! --syn \
 -s $NEWS_SERVER --sport 119 \
 -j ACCEPT

#...
FTP client - passive mode data channel connection

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A local-tcp-client-request -p tcp \
 --dport $UNPRIVPORTS \
 -m state --state NEW \
 -j ACCEPT
fi

$IPT -A local-tcp-client-request -p tcp \
 --dport $UNPRIVPORTS -j ACCEPT

$IPT -A remote-tcp-server-response -p tcp ! --syn \
 --sport $UNPRIVPORTS -j ACCEPT

338 Appendix B Firewall Examples and Support Scripts

###
Local TCP server, remote client

$IPT -A EXT-input -p tcp \
 --sport $UNPRIVPORTS \
 -j remote-tcp-client-request

$IPT -A EXT-output -p tcp ! --syn \
 --dport $UNPRIVPORTS \
 -j local-tcp-server-response

Kludge for incoming FTP data channel connections
from remote servers using port mode.
The state modules treat this connection as RELATED
if the ip_conntrack_ftp module is loaded.

$IPT -A EXT-input -p tcp \
 --sport 20 --dport $UNPRIVPORTS \
 -j ACCEPT

$IPT -A EXT-output -p tcp ! --syn \
 --sport $UNPRIVPORTS --dport 20 \
 -j ACCEPT

###
Remote TCP client input and local server output chains

SSH server

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A remote-tcp-client-request -p tcp \
 -s <selected host> --destination-port 22 \
 -m state --state NEW \
 -j ACCEPT
fi

$IPT -A remote-tcp-client-request -p tcp \
 -s <selected host> --destination-port 22 \
 -j ACCEPT

$IPT -A local-tcp-server-response -p tcp ! --syn \
 --source-port 22 -d <selected host> \
 -j ACCEPT

#...
AUTH identd server

if ["$ACCEPT_AUTH" = "0"]; then
 $IPT -A remote-tcp-client-request -p tcp \
 --destination-port 113 \
 -j REJECT --reject-with tcp-reset
else
 $IPT -A remote-tcp-client-request -p tcp \
 --destination-port 113 \
 -j ACCEPT

Optimized iptables Firewall from Chapter 6 339

 $IPT -A local-tcp-server-response -p tcp ! --syn \
 --source-port 113 \
 -j ACCEPT
fi

###
Local UDP client, remote server

$IPT -A EXT-output -p udp \
 --sport $UNPRIVPORTS \
 -j local-udp-client-request

$IPT -A EXT-input -p udp \
 --dport $UNPRIVPORTS \
 -j remote-udp-server-response

###
NTP time client

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A local-udp-client-request -p udp \
 -d $TIME_SERVER --dport 123 \
 -m state --state NEW \
 -j ACCEPT
fi
$IPT -A local-udp-client-request -p udp \
 -d $TIME_SERVER --dport 123 \
 -j ACCEPT

$IPT -A remote-udp-server-response -p udp \
 -s $TIME_SERVER --sport 123 \
 -j ACCEPT

###
ICMP

$IPT -A EXT-input -p icmp -j EXT-icmp-in

$IPT -A EXT-output -p icmp -j EXT-icmp-out

###
ICMP traffic

Log and drop initial ICMP fragments
$IPT -A EXT-icmp-in --fragment -j LOG \
 --log-prefix "Fragmented incoming ICMP: "

$IPT -A EXT-icmp-in --fragment -j DROP

$IPT -A EXT-icmp-out --fragment -j LOG \
 --log-prefix "Fragmented outgoing ICMP: "

$IPT -A EXT-icmp-out --fragment -j DROP

Outgoing ping

Hiva-Network.Com

http://www.hiva-network.com/

340 Appendix B Firewall Examples and Support Scripts

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A EXT-icmp-out -p icmp \
 --icmp-type echo-request \
 -m state --state NEW \
 -j ACCEPT
fi

$IPT -A EXT-icmp-out -p icmp \
 --icmp-type echo-request -j ACCEPT

$IPT -A EXT-icmp-in -p icmp \
 --icmp-type echo-reply -j ACCEPT

Incoming ping

if ["$CONNECTION_TRACKING" = "1"]; then
 $IPT -A EXT-icmp-in -p icmp \
 -s $MY_ISP \
 --icmp-type echo-request \
 -m state --state NEW \
 -j ACCEPT
fi

$IPT -A EXT-icmp-in -p icmp \
 --icmp-type echo-request \
 -s $MY_ISP -j ACCEPT

$IPT -A EXT-icmp-out -p icmp \
 --icmp-type echo-reply \
 -d $MY_ISP -j ACCEPT

Destination Unreachable Type 3
$IPT -A EXT-icmp-out -p icmp \
 --icmp-type fragmentation-needed -j ACCEPT

$IPT -A EXT-icmp-in -p icmp \
 --icmp-type destination-unreachable -j ACCEPT

Parameter Problem
$IPT -A EXT-icmp-out -p icmp \
 --icmp-type parameter-problem -j ACCEPT

$IPT -A EXT-icmp-in -p icmp \
 --icmp-type parameter-problem -j ACCEPT

Time Exceeded
$IPT -A EXT-icmp-in -p icmp \
 --icmp-type time-exceeded -j ACCEPT

Source Quench
$IPT -A EXT-icmp-out -p icmp \
 --icmp-type source-quench -j ACCEPT

###
TCP State Flags

All of the bits are cleared
$IPT -A tcp-state-flags -p tcp --tcp-flags ALL NONE -j log-tcp-state

Optimized iptables Firewall from Chapter 6 341

SYN and FIN are both set
$IPT -A tcp-state-flags -p tcp --tcp-flags SYN,FIN SYN,FIN -j log-tcp-state

SYN and RST are both set
$IPT -A tcp-state-flags -p tcp --tcp-flags SYN,RST SYN,RST -j log-tcp-state

FIN and RST are both set
$IPT -A tcp-state-flags -p tcp --tcp-flags FIN,RST FIN,RST -j log-tcp-state

FIN is the only bit set, without the expected accompanying ACK
$IPT -A tcp-state-flags -p tcp --tcp-flags ACK,FIN FIN -j log-tcp-state

PSH is the only bit set, without the expected accompanying ACK
$IPT -A tcp-state-flags -p tcp --tcp-flags ACK,PSH PSH -j log-tcp-state

URG is the only bit set, without the expected accompanying ACK
$IPT -A tcp-state-flags -p tcp --tcp-flags ACK,URG URG -j log-tcp-state

###
Log and drop TCP packets with bad state combinations

$IPT -A log-tcp-state -p tcp -j LOG \
 --log-prefix "Illegal TCP state: " \
 --log-ip-options --log-tcp-options

$IPT -A log-tcp-state -j DROP

###
Bypass rule checking for ESTABLISHED exchanges

if ["$CONNECTION_TRACKING" = "1"]; then
 # Bypass the firewall filters for established exchanges
 $IPT -A connection-tracking -m state \
 --state ESTABLISHED,RELATED \
 -j ACCEPT

 $IPT -A connection-tracking -m state --state INVALID \
 -j LOG --log-prefix "INVALID packet: "
 $IPT -A connection-tracking -m state --state INVALID -j DROP
fi

###
DHCP traffic

Some broadcast packets are explicitly ignored by the firewall.
Others are dropped by the default policy.
DHCP tests must precede broadcast-related rules, as DHCP relies
on broadcast traffic initially.

if ["$DHCP_CLIENT" = "1"]; then

 # Initialization or rebinding: No lease or Lease time expired.

 $IPT -A local-dhcp-client-query \
 -s $BROADCAST_SRC \
 -d $BROADCAST_DEST -j ACCEPT

 # Incoming DHCPOFFER from available DHCP servers

342 Appendix B Firewall Examples and Support Scripts

 $IPT -A remote-dhcp-server-response \
 -s $BROADCAST_SRC \
 -d $BROADCAST_DEST -j ACCEPT

 # Fall back to initialization
 # The client knows its server, but has either lost its lease,
 # or else needs to reconfirm the IP address after rebooting.

 $IPT -A local-dhcp-client-query \
 -s $BROADCAST_SRC \
 -d $DHCP_SERVER -j ACCEPT

 $IPT -A remote-dhcp-server-response \
 -s $DHCP_SERVER \
 -d $BROADCAST_DEST -j ACCEPT

 # As a result of the above, we're supposed to change our IP
 # address with this message, which is addressed to our new
 # address before the dhcp client has received the update.
 # Depending on the server implementation, the destination address
 # can be the new IP address, the subnet address, or the limited
 # broadcast address.

 # If the network subnet address is used as the destination,
 # the next rule must allow incoming packets destined to the
 # subnet address, and the rule must precede any general rules
 # that block such incoming broadcast packets.

 $IPT -A remote-dhcp-server-response \
 -s $DHCP_SERVER -j ACCEPT

 # Lease renewal

 $IPT -A local-dhcp-client-query \
 -s $IPADDR \
 -d $DHCP_SERVER -j ACCEPT
fi
###
Source Address Spoof Checks

Drop packets pretending to be originating from the receiving interface
$IPT -A source-address-check -s $IPADDR -j DROP

Refuse packets claiming to be from private networks

$IPT -A source-address-check -s $CLASS_A -j DROP
$IPT -A source-address-check -s $CLASS_B -j DROP
$IPT -A source-address-check -s $CLASS_C -j DROP
$IPT -A source-address-check -s $CLASS_D_MULTICAST -j DROP
$IPT -A source-address-check -s $CLASS_E_RESERVED_NET -j DROP
$IPT -A source-address-check -s $LOOPBACK -j DROP

$IPT -A source-address-check -s 0.0.0.0/8 -j DROP
$IPT -A source-address-check -s 169.254.0.0/16 -j DROP
$IPT -A source-address-check -s 192.0.2.0/24 -j DROP

Optimized iptables Firewall from Chapter 6 343

###
Bad Destination Address and Port Checks

Block directed broadcasts from the Internet

$IPT -A destination-address-check -d $BROADCAST_DEST -j DROP
$IPT -A destination-address-check -d $SUBNET_BASE -j DROP
$IPT -A destination-address-check -d $SUBNET_BROADCAST -j DROP
$IPT -A destination-address-check ! -p udp \
 -d $CLASS_D_MULTICAST -j DROP

###
Logging Rules Prior to Dropping by the Default Policy

ICMP rules

$IPT -A EXT-log-in -p icmp \
 ! --icmp-type echo-request -m limit -j LOG

TCP rules

$IPT -A EXT-log-in -p tcp \
 --dport 0:19 -j LOG

Skip ftp, telnet, ssh
$IPT -A EXT-log-in -p tcp \
 --dport 24 -j LOG

Skip smtp
$IPT -A EXT-log-in -p tcp \
 --dport 26:78 -j LOG

Skip finger, www
$IPT -A EXT-log-in -p tcp \
 --dport 81:109 -j LOG

Skip pop-3, sunrpc
$IPT -A EXT-log-in -p tcp \
 --dport 112:136 -j LOG

Skip NetBIOS
$IPT -A EXT-log-in -p tcp \
 --dport 140:142 -j LOG

Skip imap
$IPT -A EXT-log-in -p tcp \
 --dport 144:442 -j LOG

Skip secure_web/SSL
$IPT -A EXT-log-in -p tcp \
 --dport 444:65535 -j LOG

#UDP rules

$IPT -A EXT-log-in -p udp \
 --dport 0:110 -j LOG

Hiva-Network.Com

http://www.hiva-network.com/

344 Appendix B Firewall Examples and Support Scripts

Skip sunrpc
$IPT -A EXT-log-in -p udp \
 --dport 112:160 -j LOG

Skip snmp
$IPT -A EXT-log-in -p udp \
 --dport 163:634 -j LOG

Skip NFS mountd
$IPT -A EXT-log-in -p udp \
 --dport 636:5631 -j LOG

Skip pcAnywhere
$IPT -A EXT-log-in -p udp \
 --dport 5633:31336 -j LOG

Skip traceroute's default ports
$IPT -A EXT-log-in -p udp \
 --sport $TRACEROUTE_SRC_PORTS \
 --dport $TRACEROUTE_DEST_PORTS -j LOG

Skip the rest
$IPT -A EXT-log-in -p udp \
 --dport 33434:65535 -j LOG

Outgoing Packets

Don't log rejected outgoing ICMP destination-unreachable packets
$IPT -A EXT-log-out -p icmp \
 --icmp-type destination-unreachable -j DROP

$IPT -A EXT-log-out -j LOG

###
Install the User-defined Chains on the built-in
INPUT and OUTPUT chains

If TCP: Check for common stealth scan TCP state patterns
$IPT -A INPUT -p tcp -j tcp-state-flags
$IPT -A OUTPUT -p tcp -j tcp-state-flags

if ["$CONNECTION_TRACKING" = "1"]; then
 # Bypass the firewall filters for established exchanges
 $IPT -A INPUT -j connection-tracking
 $IPT -A OUTPUT -j connection-tracking
fi

if ["$DHCP_CLIENT" = "1"]; then
 $IPT -A INPUT -i $INTERNET -p udp \
 --sport 67 --dport 68 -j remote-dhcp-server-response
 $IPT -A OUTPUT -o $INTERNET -p udp \
 --sport 68 --dport 67 -j local-dhcp-client-query
fi

Test for illegal source and destination addresses in incoming packets
$IPT -A INPUT ! -p tcp -j source-address-check
$IPT -A INPUT -p tcp --syn -j source-address-check
$IPT -A INPUT -j destination-address-check

nftables Firewall from Chapter 6 345

Test for illegal destination addresses in outgoing packets
$IPT -A OUTPUT -j destination-address-check

Begin standard firewall tests for packets addressed to this host
$IPT -A INPUT -i $INTERNET -d $IPADDR -j EXT-input

Multicast traffic
CHOOSE WHETHER TO DROP OR ACCEPT!
$IPT -A INPUT -i $INTERNET -p udp -d $CLASS_D_MULTICAST -j [DROP | ACCEPT]
$IPT -A OUTPUT -o $INTERNET -p udp -s $IPADDR -d $CLASS_D_MULTICAST \
-j [DROP | ACCEPT]

Begin standard firewall tests for packets sent from this host.
Source address spoofing by this host is not allowed due to the
test on source address in this rule.
$IPT -A OUTPUT -o $INTERNET -s $IPADDR -j EXT-output

Log anything of interest that fell through,
before the default policy drops the packet.
$IPT -A INPUT -j EXT-log-in
$IPT -A OUTPUT -j EXT-log-out

exit 0

nftables Firewall from Chapter 6
Recall that in Chapter 6 we built an optimized nftables firewall that used several differ-
ent files for declaring variables and building rules. This section shows the contents of each
of those files. The only one that needs to be executed is the main rc.firewall. The
remainder need to be in the same directory.

Here are the rc.firewall contents:

#!/bin/sh

NFT="/usr/local/sbin/nft" # Location of nft on your system

Enable broadcast echo Protection
echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts
Disable Source Routed Packets
for f in /proc/sys/net/ipv4/conf/*/accept_source_route; do
 echo 0 > $f
done
Enable TCP SYN Cookie Protection
echo 1 > /proc/sys/net/ipv4/tcp_syncookies
Disable ICMP Redirect Acceptance
for f in /proc/sys/net/ipv4/conf/*/accept_redirects; do
 echo 0 > $f
done

Don't send Redirect Messages
for f in /proc/sys/net/ipv4/conf/*/send_redirects; do
 echo 0 > $f
done
Drop Spoofed Packets coming in on an interface, which, if replied to,
would result in the reply going out a different interface.

346 Appendix B Firewall Examples and Support Scripts

for f in /proc/sys/net/ipv4/conf/*/rp_filter; do
 echo 1 > $f
done
Log packets with impossible addresses.
for f in /proc/sys/net/ipv4/conf/*/log_martians; do
 echo 1 > $f
done

for i in '$NFT list tables | awk '{print $2}''
do
 echo "Flushing ${i}"
 $NFT flush table ${i}
 for j in '$NFT list table ${i} | grep chain | awk '{print $2}''
 do
 echo "...Deleting chain ${j} from table ${i}"
 $NFT delete chain ${i} ${j}
 done
 echo "Deleting ${i}"
 $NFT delete table ${i}
done

if ["$1" = "stop"]
then
echo "Firewall completely stopped! WARNING: THIS HOST HAS NO FIREWALL RUNNING."
exit 0
fi
$NFT -f setup-tables
$NFT -f localhost-policy
$NFT -f connectionstate-policy

$NFT -f invalid-policy
$NFT -f dns-policy

$NFT -f tcp-client-policy
$NFT -f tcp-server-policy

$NFT -f icmp-policy

$NFT -f log-policy
#default drop
$NFT -f default-policy

Here are the contents of nft-vars:

define int_loopback = lo
define int_internet = ethN
define ip_external =
define subnet_external =
define subnet_bcast =
define net_loopback = 127.0.0.0/8
define net_class_a = 10.0.0.0/8
define net_class_b = 172.16.0.0/16
define net_class_c = 192.168.0.0/16
define net_class_d = 224.0.0.0/4
define net_class_e = 240.0.0.0/5
define broadcast_src = 0.0.0.0
define broadcast_dest = 255.255.255.255

nftables Firewall from Chapter 6 347

define ports_priv = 0-1023
define ports_unpriv = 1024-65535

define nameserver_1 =
define nameserver_2 =
define nameserver_3 =

define server_smtp =

Here are the contents of connectionstate-policy:

table filter {
 chain input {
 ct state established,related accept
 ct state invalid log prefix "INVALID input: " limit rate 3/second

�drop
 }
 chain output {
 ct state established,related accept
 ct state invalid log prefix "INVALID output: " limit rate

�3/second drop
 }
}

Here are the contents of default-policy:

table filter {
 chain input {
 drop
 }
 chain output {
 drop
 }
}
table nat {
 chain postrouting {
 drop
 }
 chain prerouting {
 drop
 }
}

Here are the contents of dns-policy:

include "nft-vars"
table filter {
 chain input {
 ip daddr { $nameserver_1,$nameserver_2,$nameserver_3 } udp sport

�53 udp dport 53 accept
 ip daddr { $nameserver_1,$nameserver_2,$nameserver_3 } tcp sport

�53 tcp dport $ports_unpriv accept
 ip daddr { $nameserver_1,$nameserver_2,$nameserver_3 } udp sport

�53 udp dport $ports_unpriv accept
 }
 chain output {
 ip daddr { $nameserver_1,$nameserver_2,$nameserver_3 } udp sport

�53 udp dport 53 accept

Hiva-Network.Com

http://www.hiva-network.com/

348 Appendix B Firewall Examples and Support Scripts

 ip daddr { $nameserver_1,$nameserver_2,$nameserver_3 } tcp sport
�$ports_unpriv tcp dport 53 accept
 ip daddr { $nameserver_1,$nameserver_2,$nameserver_3 } udp sport
�$ports_unpriv udp dport 53 accept
 }
}

Here are the contents of icmp-policy:

include "nft-vars"
table filter {
 chain input {
 icmp type { echo-reply,destination-unreachable,parameter-
�problem,source-quench,time-exceeded} accept
 }
 chain output {
 icmp type { echo-request,parameter-problem,source-quench} accept
 }
}

Here are the contents of invalid-policy:

include "nft-vars"
table filter {
 chain input {
 iif $int_internet ip saddr $ip_external drop
 iif $int_internet ip saddr $net_class_a drop
 iif $int_internet ip saddr $net_class_b drop
 iif $int_internet ip saddr $net_class_c drop
 iif $int_internet ip protocol udp ip daddr $net_class_d accept
 iif $int_internet ip saddr $net_class_e drop
 iif $int_internet ip saddr $net_loopback drop
 iif $int_internet ip daddr $broadcast_dest drop
 }
 chain output {
 }
}

Here are the contents of localhost-policy:

include "nft-vars"
table filter {
 chain input {
 iifname $int_loopback accept
 }
 chain output {
 oifname $int_loopback accept
 }
}

Here are the contents of log-policy:

include "nft-vars"
table filter {
 chain input {
 log prefix "INPUT packet dropped: " limit rate 3/second
 }

nftables Firewall from Chapter 6 349

 chain output {
 log prefix "OUTPUT packet dropped: " limit rate 3/second
 }
}

Here are the contents of setup-tables:

include "nft-vars"
table filter {
 chain input {
 type filter hook input priority 0;
 }
 chain output {
 type filter hook output priority 0;
 }
}

Here are the contents of tcp-client-policy:

include "nft-vars"
table filter {
 chain input {
 }
 chain output {
 tcp dport {21,22,80,110,143,993,995,443} tcp sport $ports_unpriv

�accept
 ip daddr $server_smtp tcp dport 25 tcp sport $ports_unpriv accept
 }
}

Here are the contents of tcp-server-policy:

include "nft-vars"
table filter {
 chain input {
 #CHOOSE WHETHER TO ACCEPT OR DROP!
 ip daddr $ip_external tcp sport $ports_unpriv tcp dport {22} [

�accept | drop]
 }
 chain output {
 }
}

This page intentionally left blank

C
Glossary

This glossary defines terms and acronyms used in the book. Multiword terms are alpha-
betized on the major noun in the term, followed by a comma and the rest of the term.

ACCEPT A firewall-filtering rule decision to pass a packet through to its next destination.

accept-everything-by-default policy A policy that accepts all packets that don’t match
a firewall rule in the chain. Therefore, most firewall rules are DENY rules defining the
exceptions to the default ACCEPT policy.

ACK The TCP flag that acknowledges receipt of a previously received TCP segment.

application-level gateway See also proxy, application-level. Often referred to as ALG,
application-level (or layer) gateway is an overloaded term. In firewall terms, ALG often
refers to application-specific support modules that inspect application payload for
embedded addresses and ports, and that recognize secondary streams associated with
the session.

AUTH TCP service port 113, associated with the identd user authentication server.

authentication The process of determining that an entity is who or what it claims to be.

authorization The process of determining what services and resources an entity can use.

bastion See firewall, bastion.

BIND Berkeley Internet Name Domain, the Berkeley implementation of the DNS
protocol.

BOOTP Bootstrap Protocol, which is used by diskless workstations to discover their IP
address and the location of the boot server, and to initiate the system download over
TFTP before booting. BOOTP was developed to replace RARP.

BOOTPC UDP service port 68, associated with the BOOTP and DHCP clients.

bootpd The BOOTP server program.

BOOTPS UDP service port 67, associated with the BOOTP and DHCP servers.

Hiva-Network.Com

http://www.hiva-network.com/

352 Appendix C Glossary

border router A device to route packets that resides on the edge or boundary of a
network.

broadcast An IP packet that is addressed and sent to all interfaces connected to the same
network or subnet.

CERT Computer Emergency Response Team, an information coordination center and
Internet security emergency prevention center formed at the Software Engineering
Institute of Carnegie Mellon University after the Internet Worm incident in 1988.

chain The list of rules defining which packets can come in and which can go out
through a network interface.

checksum A number produced by performing some arithmetic computation on the
numeric value of each byte in a file or packet. If the file is changed, or the packet cor-
rupted, a second checksum produced for the same object will not match the original
checksum.

choke See firewall, choke.

chroot Both a program and a system call that defines a directory to be the root of the
filesystem, and that then executes a program to run confined to that virtual filesystem.

circuit gateway See proxy, circuit-level.

class, network address Historically, one of five classes of network addresses. An IPv4
address is a 32-bit value. The address space is divided into Class A through Class E
addresses, depending on the value of the first 4 most significant bits in the 32-bit value.
The Class A network address space maps 128 separate networks, each addressing more
than 16 million hosts. The Class B network address space maps 16,384 networks, each
addressing up to 64,534 hosts. The Class C network address space maps about 2 mil-
lion networks, each addressing up to 254 hosts. Class D is used for multicast addresses.
Class E is reserved for unspecified or experimental purposes. The network classes have
largely become an artifact with the introduction of CIDR. People refer to them out of
familiarity and because their byte-boundary characteristics make them convenient to
use in examples.

Classless Inter-Domain Routing CIDR replaces the concept of network address
classes for space allocation with the concept of variable-length network fields. A con-
ceptual extension of the idea of variable-length subnet masks, CIDR is intended to
improve router table scalability and to solve the allocation problems caused by the
exhaustion of the classful address space for midsize organizations.

client/server model The model for distributed network services, in which a central-
ized program, a server, provides a service to remote client programs requesting that
service, whether the service is receiving a copy of a web page, downloading a file from
a central repository, performing a database lookup, sending or receiving electronic mail,

Appendix C Glossary 353

performing some kind of computation on client-supplied data, or establishing human
communication connections between two or more people.

daemon A basic system services server running in the background.

DARPA Defense Advanced Research Projects Agency.

Datalink layer In the OSI reference model, the second layer, which represents point-to-
point data signal delivery between two adjacent network devices, such as the delivery
of an Ethernet frame from a computer to an external router. (In the TCP/IP reference
model, this functionality is included as part of the first layer, the subnet layer.)

default policy A policy for a firewall rule set—whether for an INPUT chain, an OUTPUT
chain, or a FORWARD chain in the filter table—that defines a packet’s disposition
when the packet doesn’t match any rule in the set. See also accept-everything-by-
default policy and deny-everything-by-default policy.

denial-of-service (DoS) attack An attack based on the idea of sending unexpected
data or flooding a system with packets to disrupt or seriously degrade service, tie up
local servers to the extent that legitimate requests can’t be honored, or, in the worst
case, crash a system or systems altogether.

deny-everything-by-default policy A policy that silently drops all packets that don’t
match a firewall rule in the chain. Most firewall rules are ACCEPT rules defining the
exceptions to the default DENY policy.

DHCP Dynamic Host Configuration Protocol, which is used to dynamically assign IP
addresses and provide server and router information to clients without registered IP
addresses. DHCP was developed to replace BOOTP.

DMZ The demilitarized zone, a perimeter network containing machines hosting public
services, separated from a local, private network. The less secure public servers are iso-
lated from the private LAN.

DNS Domain Name Service, a global Internet database service primarily providing host-
to-IP and IP-to-host mapping.

DROP A firewall-filtering rule decision to silently drop a packet without returning
any notification to the sender. DROP is identical to DENY in earlier Linux firewall
technologies.

dual-homed A computer that has two network interfaces. See also multihomed.

dynamically assigned address IP address temporarily assigned to a client network
interface by a central server, such as a DHCP server.

Ethernet frame Over an Ethernet network, IP datagrams are encapsulated in Ethernet
frames.

354 Appendix C Glossary

filter, firewall A firewall packet-filtering rule defining the characteristics of the packet’s
IP and transport headers, which, if matched, determines whether the packet is to be
allowed through the network interface or is to be dropped. Filters are defined in terms
of such fields as a packet’s source and destination addresses, source and destination
ports, protocol type, TCP connection state, and ICMP message type.

finger A user information lookup program.

firewall A device or group of devices that enforces an access control policy between
networks.

firewall, bastion Frequently, a firewall that has two or more network interfaces and is
the gateway or connection point between those networks, most typically between a
local site and the Internet. Because a bastion firewall is the single point of connection
between networks, the bastion is secured to the greatest extent possible. More generally,
a bastion is a firewall that remote sites have direct access to, whether that host connects
networks or protects a server that provides public services.

firewall, choke A LAN firewall that has two or more network interfaces and is the
gateway or connection point between those networks. One side connects to a DMZ
perimeter network between the choke firewall and a bastion gateway firewall. The
other network interface connects to an internal, private LAN.

firewall, dual-homed A single-host, gateway firewall that either requires local users to
specifically connect to the firewall machine to access the Internet or proxies all remote
services accessible to the site. In a dual-homed gateway firewall system, no traffic is
allowed to pass between the LAN and the Internet.

firewall, screened-host Almost identical to a dual-homed firewall, the single-host fire-
wall does not sit directly between the Internet and the local network. The screened-
host firewall is separated from the public network by an intermediate router and a
packet filter. Local users must either specifically connect to the firewall machine to
access the Internet or go through proxies on the firewall machine. The screening
router ensures that all traffic between networks, or at least specific kinds of traffic, goes
through the screened host. The difference between the screened-host firewall and the
dual-host firewall is primarily in the location of the firewall within the local network.

firewall, screened-subnet A firewall system incorporating a gateway firewall, a DMZ
network housing public servers, and an internal choke firewall that screens the LAN
from both the DMZ and direct Internet access. Public services are not hosted from the
choke firewall.

flooding, packet A denial-of-service attack in which the victim host or network is sent
more packets of a given type than the victim can accommodate.

forward To route packets from one network to another in the process of delivering a
packet from one computer to another.

Appendix C Glossary 355

fragment An IP packet containing a piece of a TCP segment.

FTP File Transfer Protocol. The protocol and programs used to copy files between net-
worked computers.

FTP, anonymous FTP service accessible to any client that requests the service.

FTP, authenticated FTP service accessible to predefined accounts, which must be
authenticated before using the service.

gateway A computer or program serving as either the conduit or the termination point
and relay between two networks.

hosts.allow, hosts.deny TCP wrappers’ configuration files are /etc/hosts.allow
and /etc/hosts.deny.

HOWTO In addition to the standard man pages, Linux includes user-supplied online
documentation on numerous topics, in many languages and in multiple formats. The
HOWTO documents are coordinated and maintained by the Linux Documentation
Project.

HTTP Hypertext Transfer Protocol, used by web servers and browsers.

hub A hardware signal repeater used to physically connect multiple network segments,
extend the distance of a physical network, or connect network segments of different
physical types.

IANA Internet Assigned Numbers Authority.

ICMP Internet Control Message Protocol. A Network-layer IP status and control
message.

identd The user authentication (AUTH) server.

IMAP Internet Message Access Protocol, used to retrieve mail from mail hosts running
an IMAP server.

inetd A network superserver that listens for incoming connections to service ports used
by servers that it manages. When a connection request arrives, inetd starts a copy of
the request server to handle the connection. By default, inetd has been replaced by an
extended version called xinetd.

IP datagram An IP Network-layer packet.

ipchains With the introduction of the newer implementation of the IPFW firewall
mechanism in Linux, the firewall administration program that replaced ipfwadm.
iptables is supplied with an ipchains compatibility module for sites that want to
continue using their existing firewall scripts.

IPFW IP firewall mechanism, now replaced by Netfilter.

Hiva-Network.Com

http://www.hiva-network.com/

356 Appendix C Glossary

ipfwadm Before the introduction of ipchains, the Linux IPFW firewall administration
program. iptables is supplied with an ipfwadm compatibility module for sites that
want to continue using their existing firewall scripts.

iptables The firewall administration program beginning in the 2.4 series kernel.

klogd The kernel logging daemon that collects operating-system error and status mes-
sages from the kernel message buffers and, in conjunction with syslogd, writes the
messages to a system log file.

LAN Local area network.

localhost The symbolic name often given to a machine’s loopback interface in
/etc/hosts.

loopback interface A special software network interface used by the system to deliver
locally generated network messages destined to the local machine, bypassing the hard-
ware network interface and associated network driver.

man page The standard Linux online documentation format. Manual pages are written
for almost all user and system administration programs, as well as system calls, library
calls, device types, and system file formats.

masquerading The process of replacing an outgoing packet’s local source address with
that of the firewall or gateway machine so that the LAN’s IP addresses remain hidden.
In the IPFW firewall mechanism, masquerading referred to the source NAT function-
ality implemented in Linux. In Netfilter, masquerading refers to a specialized form
of source NAT for use with connections that are dynamically assigned temporary IP
addresses that tend to change with each connection.

MD5 A cryptographic checksum algorithm used to ensure data integrity by creating
digital signatures, called message digests, of objects.

MTU Maximum Transmission Unit, the maximum packet size based on the underlying
network.

multicast An IP packet specially addressed to a Class D multicast IP address. Multicast
clients are registered with the intermediate routers to receive packets addressed to a
particular multicast address.

multihomed A computer that has two or more network interfaces. See also dual-homed.

name server, primary An authoritative server for a domain or a zone of the domain
space. The server maintains a complete database of hostnames and IP addresses for
this zone.

name server, secondary A backup or peer to a primary name server.

NAT Network Address Translation, the process of replacing a packet’s source or destina-
tion address with that of some other network interface. NAT is primarily intended to

Appendix C Glossary 357

allow traffic between incompatible network address spaces, such as between the Inter-
net and a LAN that is assigned private addresses internally.

Netfilter The firewall mechanism included beginning with the Linux 2.4 kernel.

nft The administration program for an nftables firewall.

nftables The firewall mechanism included beginning with the Linux 3.13 kernel.

netstat A program that reports various kinds of network status based on the various
network-related kernel tables.

Network layer In the OSI reference model, the third layer, which represents end-to-end
communication between two computers, such as routing and delivery of an IP data-
gram from a source computer to some external destination computer. In the TCP/IP
reference model, this is referred to as the second layer, the Internet layer.

NFS Network File System, used to share filesystems between networked computers.

Nmap A network security auditing (that is, port-scanning) tool that includes many of the
newer scanning techniques in use today.

NNTP Network News Transfer Protocol, used by Usenet.

NTP Network Time Protocol, used by ntpd and ntpdate.

OSI (Open System Interconnection) reference model A seven-layer model devel-
oped by the International Organization for Standardization (ISO) to provide a frame-
work or guide for network interconnection standards.

OSPF The Open Shortest Path First routing protocol for TCP/IP, which is the most
commonly used routing protocol today.

packet An IP network datagram.

packet filtering See firewall.

PATH The shell environmental variable defining which directories the shell should search
for unqualified executable commands and in which order the shell should search those
directories.

peer-to-peer A communication mode used for communication between two server pro-
grams. A peer-to-peer communication protocol is often, but not always, different from
the protocol used to communicate between the server and a client.

Physical layer In the OSI reference model, the first layer, which represents the physical
medium used to carry the signals between two adjacent network devices, such as cop-
per wire, optical fiber, packet radio, or infrared. In the TCP/IP reference model, this is
included as part of the first layer, the subnet layer.

358 Appendix C Glossary

PID Process ID, which is a process’s unique numeric identifier on the system, usually
associated with the process’s slot in the system process table.

ping A simple network-analysis tool used to determine whether a remote host is reach-
able and responding. ping sends an ICMP echo request message. The recipient host
returns an ICMP echo reply message in response.

POP Post Office Protocol, used to retrieve mail from mail hosts running a POP server.

port In TCP or UDP, the numeric designator of a particular network communication
channel. Port assignments are managed by IANA. Some ports are assigned to particular
application communication protocols as part of the protocol standard. Some ports are
registered as being associated with a particular service by convention. Some ports are
unassigned and free to be dynamically assigned for use by clients and user programs:

 � Privileged—A port in the range from 0 to 1023. Many of these ports are assigned
to application protocols by international standard. On a Linux system, access to the
privileged ports requires system-level privilege.

 � Unprivileged—A port in the range from 1024 to 65535. Some of these ports are
registered for use by certain programs by convention. Any port in this range can be
used by a client program to establish a connection with a networked server.

port scan A probe of all or a set of a host computer’s service ports, typically service ports
that are often associated with security vulnerabilities.

portmap An RPC manager daemon, used to map between a particular RPC service
number that a client is requesting to access and the service port to which the associated
server is bound.

probe To send some kind of packet to a service port on a host computer. The purpose of
a probe is to determine whether a response is generated from the target host.

proxy A program that creates and maintains a network connection on behalf of another
program, providing an application-level conduit between a client and a server. The
actual client and server have no direct communication. The proxy appears to be the
server to the client program and appears to be the client to the server program. Appli-
cation proxies generally are categorized as application gateways or circuit gateways.

proxy, application-level A proxy server for a particular service. Application-level gate-
way proxies understand the particular application protocol that they proxy for. The
proxy is capable of inspecting the application payload and making decisions based on
information at the Application level, instead of making decisions merely at the IP and
Transport levels.

proxy, circuit-level A proxy server that can be implemented either as separate appli-
cations for each service being proxied or as a single generalized connection relay. A
circuit-level proxy doesn’t have any specific knowledge about the application protocols.

Appendix C Glossary 359

The proxy makes decisions based on the same IP and transport information that
a packet-filtering firewall does, with the possible addition of some amount of user
authentication functionality.

QoS Quality of Service.

RARP Reverse Address Resolution Protocol, developed to enable diskless machines to
ask servers for their IP address based on their MAC hardware address.

REJECT A firewall-filtering rule decision to drop a packet and return an error message to
the sender.

resolver The client side of DNS. The resolver is implemented as library code that is
linked to programs requiring network access. The DNS client configuration file is
/etc/resolv.conf.

RFC Request for Comments, a note or memo published through the Internet Society
or the Internet Engineering Task Force. Some RFCs become standards. RFCs typically
concern a topic related to the Internet or the TCP/IP protocol suite.

RIP Routing Information Protocol, an older routing protocol still in use today, especially
within a large LAN. The routed daemon uses RIP.

RPC Remote procedure call.

rule See firewall and filter, firewall.

runlevel A booting and system state concept taken from System V UNIX. A system nor-
mally operates at one of runlevels 2, 3, or 5. Runlevel 3 is the default, normal, multiuser
system state. Runlevel 2 is similar to runlevel 3, without xinetd, portmap, or NFS
services running. Runlevel 5 is the same as runlevel 3, with the addition of the X Win-
dow Display Manager, which presents an X-based login and host-selection screen.

screened host See firewall, screened-host.

screened subnet See firewall, screened-subnet.

script An ASCII file that can contain either shell or Linux program commands. These
scripts are interpreted by shell programs such as sh, csh, bash, zsh, or ksh, or by pro-
grams such as perl, awk, or sed.

segment, TCP A TCP message.

setgid A program that, when executed, assumes the group ID of the program’s owner
rather than the group ID of the process running the program.

setuid A program that, when executed, assumes the user ID of the program’s owner
rather than the user ID of the process running the program.

shell A command interpreter, such as sh, csh, bash, zsh, and ksh.

Hiva-Network.Com

http://www.hiva-network.com/

360 Appendix C Glossary

SMTP Simple Mail Transfer Protocol, used to exchange mail between mail servers and
between mail programs and mail servers.

SNMP Simple Network Management Protocol, used to manage network device con-
figuration from a remote workstation.

socket The unique network connection point defined by the pairing of an IP address
with a particular TCP or UDP service port.

SOCKS A circuit gateway proxy package available from NEC.

spoofing, source address Forging the source address in an IP packet header so that it
appears to be that of some other address.

SSH Secure Shell protocol, used for authenticated, encrypted network connections.

SSL Secure Socket Layer protocol, used for encrypted communication. SSL is most com-
monly used by web servers and browsers for exchanging personal information for
e-commerce.

statically assigned address Permanently assigned, hard-coded IP addresses, whether
publicly registered addresses or private class addresses.

subnet layer In the TCP/IP reference model, the first layer, which represents both the
physical media used to carry the signals between two adjacent network devices and
point-to-point data signal delivery between two adjacent network devices, such as the
delivery of an Ethernet frame from a computer to an external router.

SYN The TCP connection synchronization request flag. A SYN message is the first message
sent from a program seeking to open a connection with another networked program.

syslog.conf The system-logging daemon’s configuration file.

syslogd The system-logging daemon, which collects error and status messages generated
by system programs that post messages using the syslog() system call.

TCP Transmission Control Protocol, used for reliable, ongoing network connections
between two programs.

TCP/IP reference model An informal network communication model developed
when TCP/IP became the de facto standard for Internet communication among
UNIX machines during the late 1970s and early 1980s. Rather than being a formal,
academic ideal, the TCP/IP reference model is based on what manufacturers and
developers finally came to agree on for communication across the Internet.

tcp_wrapper An authorization scheme used to control which local services are available
to which remote hosts on the network.

TFTP Trivial File Transfer Protocol, the protocol used to download a boot image to a
diskless workstation or router. The protocol is a UDP-based, simplified version of FTP.

Appendix C Glossary 361

three-way handshake The TCP connection establishment protocol. When a client
program sends its first message to a server, the connection request message, the SYN
flag is set and accompanied by a synchronization sequence number that the client will
use as the starting point to number all the rest of the messages that the client will send.
The server responds with an acknowledgment (ACK) to the SYN message, along with its
own synchronization request (SYN). The server includes the client’s sequence number
incremented by the number of contiguous data bytes received, plus 1. The purpose of
the acknowledgment is to acknowledge the message to which the client referred by its
sequence number. As with the client’s first message, the SYN flag is accompanied by a
synchronization sequence number. The server is passing along its own starting sequence
number for its half of the connection. The client responds with an ACK of the server’s
SYN-ACK, incrementing the server’s sequence number by the number of contigu-
ous data bytes received, plus 1 to indicate receipt of the message. The connection is
established.

TOS Type of Service, the field in the IP packet header that was intended to provide a hint
of the preferred routing policy or packet-routing preference.

traceroute A network analysis tool used to determine the path from one computer to
another across the network.

Transport layer In the OSI reference model, the fourth layer, which represents end-to-
end communication between two programs, such as the delivery of a packet from a
client program to a server program. In the TCP/IP reference model, this is referred to
as the third layer, also the Transport layer. However, the TCP/IP Layer 3 Transport-level
abstraction includes the concept of the OSI Layer 5 Session layer, which includes the
concepts of an orderly and synchronized exchange of messages.

TTL Time to Live, an IP packet header field that is a maximum count of the number of
routers the packet can pass through before reaching its destination.

UDP User Datagram Protocol, used to send individual network messages between pro-
grams, without any guarantee of delivery or delivery order.

unicast An IP packet sent point to point, from one computer’s network interface to
another’s.

UUCP UNIX-to-UNIX Copy Protocol.

world-readable Filesystem objects—files, directories, and entire filesystems—that are
readable by any account or program on the system.

world-writable Filesystem objects—files, directories, and entire filesystems—that are
writable by any account or program on the system.

X Windows The Linux graphical user interface window display system.

This page intentionally left blank

D
GNU Free

Documentation License1

Version 1.3, 3 November 2008

0. Preamble
The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft,” which means that derivative works of the docu-
ment must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals provid-
ing the same freedoms that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. Applicability and Definitions
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document,” below, refers to any such man-
ual or work. Any member of the public is a licensee, and is addressed as “you.” You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

1. Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

Hiva-Network.Com

http://fsf.org/
http://www.hiva-network.com/

364 Appendix D GNU Free Documentation License

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suit-
able for input to text formatters. A copy made in an otherwise Transparent file format whose
markup, or absence of markup, has been arranged to thwart or discourage subsequent modi-
fication by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not “Transparent” is called “Opaque.”

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that can be read and edited only by propri-
etary word processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML, PostScript or PDF produced
by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, “Title Page” means
the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to
the public.

3. Copying in Quantity 365

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements,” “Dedications,” “Endorsements,” or “History.”) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. Verbatim Copying
You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice say-
ing this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may pub-
licly display copies.

3. Copying in Quantity
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these
Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back
cover. Both covers must also clearly and legibly identify you as the publisher of these cop-
ies. The front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location from
which the general network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free of added material.

366 Appendix D GNU Free Documentation License

If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain
thus accessible at the stated location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. Modifications
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

 � A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a pre-
vious version if the original publisher of that version gives permission.

 � B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

 � C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

 � D. Preserve all the copyright notices of the Document.
 � E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

 � F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

 � G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

 � H. Include an unaltered copy of this License.
 � I. Preserve the section Entitled “History,” Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

5. Combining Documents 367

 � J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “His-
tory” section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version
it refers to gives permission.

 � K. For any section Entitled “Acknowledgements” or “Dedications,” Preserve the
Title of the section, and preserve in the section all the substance and tone of each of
the contributor acknowledgements and/or dedications given therein.

 � L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

 � M. Delete any section Entitled “Endorsements.” Such a section may not be included
in the Modified Version.

 � N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict
in title with any Invariant Section.

 � O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements,” provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. Combining Documents
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you

Hiva-Network.Com

http://www.hiva-network.com/

368 Appendix D GNU Free Documentation License

include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identi-
cal Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or pub-
lisher of that section if known, or else a unique number. Make the same adjustment to the
section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sec-
tions Entitled “Acknowledgements,” and any sections Entitled “Dedications.” You must
delete all sections Entitled “Endorsements.”

6. Collections of Documents
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of that
document.

7. Aggregation with Independent Works
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Document’s
Cover Texts may be placed on covers that bracket the Document within the aggregate, or
the electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. Translation
Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations

10. Future Revisions of this License 369

requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements,” “Dedications,” or “His-
tory,” the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. Termination
You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particu-
lar copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to 60 days after the
cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. Future Revisions of this License
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the

http://www.gnu.org/copyleft/

370 Appendix D GNU Free Documentation License

Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. Relicensing
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for any-
body to edit those works. A public wiki that anybody can edit is an example of such a
server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and subse-
quently incorporated in whole or in part into the MMC, (1) had no cover texts or invari-
ant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

Index

: (colon), command-line syntax, 62

[] (square brackets), command-line syntax, 62

(pound sign), comment indicator, 297

| (pipe symbol), command-line syntax, 62

< > (angle brackets), command-line
syntax, 62

0.0.0.0 IP address

definition, 110
denying packets addressed to, 109

255.255.255.255 IP address, denying
packets originating from, 109

A
-a option, 224

-a (- -handle) option, 85–86

-A option, 224

Accept packet and stop processing, 87

ACCEPT rule

defining a default policy, 106
definition, 351

accept statement, 87

accept-everything-by-default policy,
29–30, 351. See also Default policies.

ACK flag, 16, 351

add command

nftables, chain syntax, 86–87
nftables, table syntax, 85–86

Adding

chains to a table, 86–87
rules, 87
tables, 85–86

Hiva-Network.Com

http://www.hiva-network.com/

372 Index

Address families, 84

Address information, displaying numerically,
85–86

Address Resolution Protocol (ARP), 17–18

Addresses. See Ethernet addresses; IP
addresses.

addrtype match extension, 77

AIDE (Advanced Intrusion Detection
Environment)

changing report output, 303–306
checksum checks, 310
configuration files, 297–300
configuring, 297–301
defining macros, 306–307
grouped checks, 309
initializing the database, 300
installing, 296–297
monitoring, 301–302
report verbosity, 305–306
running automatically, 301
standard checks, 308–309
types of checks, 307–310
updating the database, 302–303

Alerts from the Snort program, 290–291

ALG (application-level gateway). See also
Proxies, application-level.

definition, 351
description, 25–26

Angle brackets (< >), command-line
syntax, 62

Application layer, 6

Applied Cryptography, 310

Arithmetic operators, 271

ARP (Address Resolution Protocol), 17–18

arp address family, 84

ARP header expressions, 91

ARP packets, 18

ARP spoofing, 264

ARPWatch daemon, 265, 291–293

Attack detection. See also Intrusion
detection.

ARP spoofing, 264
capturing network traffic. See Snort

program.
hub environment vs. switched, 263
mirror ports, 263–264
monitoring ARP traffic. See

ARPWatch daemon.
overview, 263–264
packet capture and analysis. See

TCPDump.
span ports, 263–264

AUTH port, 351

Authentication, definition, 351

Authentication header, in VPNs, 230–231

Authorization, definition, 351

B
Basic NAT, 58, 199

Bastille Linux, 258

Bastion firewalls

definition, 3, 354
limitations of, 179–180
packet forwarding, 179–180

Bidirectional NAT, 58, 199

BIND (Berkeley Internet Name Domain), 351

Bit flags, TCP, 15–16

Blocking

directed broadcasts, 110
limited broadcasts, 110
local TCP services, 113–115
problem sites, 33–34

Books and publications

Applied Cryptography, 310
“Denial of Service,” 40
“Email Bombing and Spamming,” 46
FAQs, 314

Index 373

“Help Defeat Denial of Services
Attacks: Step-by-Step,” 314

“Internet Firewalls: Frequently Asked
Questions,” 314

“Multicast over TCP/IP HOW
TO,” 111

reference papers, 314
RFC 1112 “Host Extensions for IP

Multicasting,” 111
RFC 1122 “Requirements for

Internet Hosts—Communication
Layers,” 102

RFC 1458 “Requirements for
Multicast Protocols,” 111

RFC 1631 “The IP Network Address
Translator (NAT),” 197

RFC 1700 “Assigned Numbers,” 113
RFC 1812 “Requirements for IP

Version 4 Routers,” 102
RFC 2196 “Site Security

Handbook,” 238
RFC 2236 “Internet Group

Management Protocol Version
2,” 111

RFC 2474, “Definition of the
Differentiated Services Field
(DS Field) in the IPv4 and IPv6
Headers,” 77

RFC 2475, “An Architecture for
Differentiated Services,” 77

RFC 2588 “IP Multicast and
Firewalls,” 111

RFC 2647 “Benchmarking
Terminology for Firewall
Performance,” 25

RFC 2663 “IP Network Address
Translator (NAT) Terminology and
Considerations,” 198

RFC 2827 “Network Ingress
Filtering: Defeating Denial of Service
Attacks . . . ,” 47

RFC 2990 “Next Steps for the IP
QoS Architecture,” 77

RFC 3022 “Traditional IP Network
Address Translator (Traditional
NAT),” 197

RFC 3168 “The Addition of Explicit
Congestion Notification (ECN) to
IP,” 77

RFC 3260 “New Terminology and
Clarifications for Diffserv,” 77

RFC 3704 “Ingress Filtering for
Multihomed Networks,” 47

security information, 313
“Service Name and Transport

Protocol Port Number Registry
(IANA),” 314

“Steps for Recovering from a UNIX
or NT System Compromise,” 238

“TCP SYN Flooding and IP Spoofing
Attacks,” 41

TCP/IP Illustrated, Volume 1, Second
Edition, 7

“UDP Port Denial-of-Service
Attack,” 43

BOOTP (Bootstrap Protocol), 351

BOOTPC port, 351

bootpd program, definition, 351

BOOTPS port, 351

Border router, definition, 352

Branching, 149

bridge address family, 84

Broadcast, definition, 352

Broadcast addresses, 8, 9, 11

broadcast primitive, 271

Broadcasting, 11–12

Buffer overflows, 45

C
CERT (Computer Emergency Response

Team), 352

Chain commands on individual rules, 64

Chain types, nftables, 87

374 Index

Chains. See also User-defined chains.

adding to a table, 86–87
built-in, 61
clearing, 85–86
creating, 86
definition, 352
deleting, 86
displaying for tables, 85–86
FORWARD, 60–61
INPUT, 60–61
nat table, 61
in nftables. See nftables, chain

syntax.
operations on, 62–63
OUTPUT, 59–61
POSTROUTING, 59–61
PREROUTING, 59–61
renaming, 86
user-defined, 54–55

Checksums

AIDE checks, 310
definition, 352
TCP (Transmission Control

Protocol), 15
Chkrootkit program

downloading, 251
false negatives, 252
false positives, 252
infection reports, 253
limitations, 253–254
run schedule, 255
running, 251–253
using securely, 254–255

Choke firewalls, 181–182, 354

chroot program/system call, 352

CIDR (Classless Inter-Domain
Routing), 352

Circuit gateway. See Proxies, circuit-level.

Class, network address, 352

Clearing chains and rules, 85

Client/server model, 352–353

CLOSED state, 17

CLOSE_WAIT state, 17

Colon (:), command-line syntax, 62

Command-line input, enabling, 85

Command-line options, nftables, 85

Commands, filter table, 62–67

Commands and subcommands,
nftables, 83

Compromised machines. See Attack
detection; Intrusion detection.

Computer Emergency Response Team
(CERT), 352

Configuration files, AIDE, 297–300

Configuring

AIDE, 297–301
email services. See Email services,

initializing.
firewalls. See Initializing firewalls;

Installing firewalls.
internal LANs, 191–192
multiple LANs, 192–195
Snort program, 288–289

Connection state, initializing
firewalls, 107

Connection tracking expressions, 88–89

Connectionless vs. connection-oriented
protocols, 7

connectionstate-policy file, 170, 173

connection-tracking chain, 151, 166

Conntrack expressions, 88–89

Conservation of addresses, 10

Continue processing packets, 87

continue statement, 87

Countermeasures. See Intrusion prevention.

create command, 86

CWR flag, 16

Index 375

D
Daemons. See also specific daemons.

definition, 353
listening on service ports, 19

DARPA network model, 6

Database, AIDE

initializing, 300
updating, 302–303

Datalink layer, 6, 353

Debian, initializing firewalls, 140

- -debug option, 85

Debugging

enabling, 85
firewall scripts, 139–140

Debugging, firewall rules

firewall development tips, 211–212
fuser command, 226–227
iptables -L INPUT, 214–215
iptables -n -L INPUT, 215–216
iptables table listing, 213–214
iptables -v -L INPUT, 216
listing firewall rules, 213–217
log message priorities, 218
log messages, interpreting, 220–223
network security auditing, 227
nftables listing example, 216–217
Nmap tool, 227
open ports, checking for, 223–227
output reporting conventions, 226
port-bound processes, checking for,

226–227
syslog configuration, 217–220
system logs, 217–223
verbosity, 216

Default policies. See also accept-everything-
by-default policy; Deny-everything-by-default
policy.

accept-everything-by-default, 29–30

definition, 353
deny-everything-by-default, 29–30
packet-filtering, 31–32

delete command, nftables

chain syntax, 86
rule syntax, 87
table syntax, 85

Deleting

chains, 86
rules, 87
tables, 85

Demilitarized zone (DMZ), 180, 353

Demultiplexing, 6

“Denial of Service,” 40

Denial of service (DoS) attacks. See DoS
(denial of service) attacks.

Deny-everything-by-default policy. See also
Default policies.

debugging, 211–212
definition, 353
description, 30
shortcomings, 114

Denying packets vs. rejecting, 31

Destination addresses, NAT, 202

Destination NAT (DNAT), 205–206,
209–210

destination-address-check chain, 151, 168

Detecting intrusions. See Intrusion detection.

DHCP (Dynamic Host Configuration
Protocol), 353

DHCPACK messages, 135

DHCPDECLINE messages, 135

DHCPDISCOVER messages, 135

DHCPINFORM messages, 135

DHCPNAK messages, 135

DHCPOFFER messages, 135

DHCPRELEASE messages, 135

DHCPREQUEST messages, 135

Directed broadcasts, 12, 110

Hiva-Network.Com

http://www.hiva-network.com/

376 Index

Direction qualifier, TCPDump, 270–271

Directories, including in a search path, 85

Disallowing incoming packets, 108–109

DMZ (demilitarized zone), 180, 353

DNAT (destination NAT), 205–206,
209–210

DNAT target extensions, 56, 58, 80–81

DNS (Domain Name Service)

definition, 18, 353
DNS lookups, as a client, 120–121
DNS lookups, as a forwarding server,

121–122
enabling, 117–122
zone transfers, 118

DNS BIND port usage, 121

DNS lookups, 120–122

DNS protocol, 119

DNS traffic, identifying, 157

dns-policy file, 170

Documentation. See Books and
publications.

Domains, 18

DoS (denial of service) attacks. See also
Filtering incoming packets.

buffer overflows, 45
countermeasures, 41
definition, 353
e-mail exploits, 46
enabling the SYN cookie module, 41
filesystem overflow, 45
fragmentation bombs, 44–45
ping, disabling, 42
ping flooding, 41–42
Ping of Death, 42–43
redirect bombs, 45
Smurf attack, 41
source address filtering, 40–41
TCP SYN flooding, 40–41

Teardrop attack, 44
UDP flooding, 43

Dotted decimal notation, 8

Dotted quad notation, 8

Drop packet and stop processing, 88

DROP rule

defining a default policy, 106
definition, 353

drop statement, 88

Dropping packets, 108, 112, 138

Dual-homed computer, 353. See also
Multihomed computer.

Dynamic Host Configuration Protocol
(DHCP), 353

Dynamically assigned address, 353

E
ECE flag, 16

“Email Bombing and Spamming,” 46

Email services, DoS (denial of service)
attacks, 46

Email services, initializing

hosting a mail server, 127–128
mail protocols, 124
overview, 123
receiving mail, 125–127
relaying outgoing mail, 124
sending mail to external mail

servers, 125
sending over SMTP, 123

Encapsulation, 6

End-to-end transparency, 4

Error messages

ICMP Type 3 error message, 35, 44
iptables, selecting, 57
output stream, 304
STDERR, standard error stream, 304

Index 377

ESP (encapsulating security payload), 231–232

ESTABLISHED packets, 73

ESTABLISHED state, 17

established state expression, 89

Ethernet addresses, 18

Ethernet cards, identifying, 18

Ethernet frame, 353

Exploits and attacks. See Attack detection;
Intrusion detection.

Expressions, nftables

ARP header expressions, 91
IPv4 payload expressions, 90
IPv6 header expressions, 90
TCP header expressions, 90
UDP header expressions, 91

Expressions, TCPDump, 269–271

Extensions. See Statements.

External rules files, 170

EXT-icmp-in chain, 152, 164

EXT-icmp-out chain, 152, 164

EXT-input chains, 151, 157

EXT-log-in chain, 152, 168–170

EXT-log-out chain, 152, 168–170

EXT-output chains, 151, 157

F
-f (- -file) option, 85

Facilities, 217–218

Fall, Kevin R., 7

False negatives/positives, 252

File syntax, nftables, 92

File Transfer Protocol (FTP). See FTP (File
Transfer Protocol).

Files, including, 85

Filesystem integrity

basic integrity checks, 295
checksums, 295–296
definition, 295–296

intrusion indications, 240
software for checking, 255–256. See

also AIDE (Advanced Intrusion
Detection Environment).

Filesystem overflow, DoS (denial of service)
attacks, 46

Filter, firewall rule, 354

filter chains, 87

filter table

description, 54–55
feature extensions, 56
flushing the chain, 103
match extensions, 56
syntax. See iptables syntax, filter table.
target extensions, 56

Filtering incoming packets. See also DoS
(denial of service) attacks; Packet-filtering
firewalls.

blocking problem sites, 33–34
illegal addresses, 32–33
limited broadcast, 34
limiting incoming packets to selected

hosts, 34
by local destination address, 34–35
by local destination port, 35
probes, 36–39
by remote source address, 31–34
by remote source port, 35
scans, 36–39
source address spoofing, 32–33
source-routed packets, 46
by TCP connection state, 35–36

Filtering iptables log messages, 57

Filtering outgoing packets. See also Packet-
filtering firewalls.

by local source address, 47
by local source port, 48
by outgoing TCP connection state,

48–49

378 Index

Filtering outgoing packets. See also Packet-
filtering firewalls. (continued)

overview, 46–47
by remote destination address, 47–48
by remote destination port, 48

FIN flag, 16

finger program, 354

FIN_WAIT_2 state, 17

Firewall Administration Program. See Iptables.

Firewall initialization, optimization example,
153–154, 170–172

Firewall logs. See Logging.

Firewall rules, listing, 213–217

Firewalls

basic. See Bastion firewalls.
bastion. See Bastion firewalls.
choke, 181–182, 354
combining with VPNs, 233–234
definition, 3, 25, 354
development tips, 211–212
dual-homed, 354
initializing. See Initializing firewalls.
installing. See Installing firewalls.
NAT-enabled routers as, 4
nonstateful. See Stateless firewalls.
packet-filtering. See Packet-filtering

firewalls.
purpose of, 3–4
router devices as, 4
screened-host, 354
screened-subnet, 354
standalone. See Bastion firewalls.
stateful, 25
stateless, 25
transparency, 4

Firewalls, examples (code listings)

iptables, 315–328
nftables, 328–332

Flooding

packet, 354
ping, 41–42
TCP SYN, 40–41
UDP, 43

flush command, nftables

chain syntax, 86
table syntax, 85

Flushing the chains

definition, 103–104
effect on default policy, 211
nftables, chain syntax, 86
nftables, table syntax, 85

Forward, definition, 354

FORWARD chains, mangle table, 61

forward hooks, 85

Forwarding. See also Packet forwarding.

host, 209–210
NAT, 201
port, 59

Fragment, definition, 355

Fragmentation bombs, 44–45

Frames, OSI (Open System
Interconnection), 6

FTP (File Transfer Protocol)

anonymous, 355
authenticated, 355
definition, 355
initializing firewalls, 130–133
on unprivileged ports, 114

Full NAT, 201

fuser command, 226–227

G
Gateway, definition, 355

Gateway firewall setups, packet forwarding,
181–182

Index 379

gateway primitive, 271

Generic routing encapsulation, 230

goto statement, 88

greater primitive, 271

Grouped checks, AIDE, 309

H
-h (- -help) option, 85

Hacks. See Attack detection; Intrusion
detection.

- -handle (-a) option, 85–86

header expressions

ARP, 91
IPv6, 90
TCP, 90
UDP, 91

Header flags, TCP, 283

Headers

authentication, VPNs, 230–231
IPv4 addressing, 8
IPv6, 8
TCP, 15

Help, displaying, 85

Host forwarding, example, 209–210

Hostnames, IP addressing, 18

hosts.allow, TCP wrappers’ configuration
file, 355

hosts.deny, TCP wrappers’ configuration
file, 355

HOWTO documents, 355

hping3 program, 260

HTTP (Hypertext Transfer Protocol), 355

HTTP conversations, capturing,
273–277

Hub environment vs. switched, 263

Hubs

definition, 355
intrusion detection, 250

I
-i (- -interactive) option, 85

-I (- -includepath) option, 85

IANA (Internet Assigned Numbers Authority),
19–20, 355

ICMP (Internet Control Message Protocol),
12 –14, 355

icmp filter table match options, 66–67

ICMP traffic, optimization example, 163–165

ICMP Type 3 error message, 35, 44

icmp-policy file, 170

identd server, 355

IGMP (Internet Group Management
Protocol), 111

IKE (Internet Key Exchange), 232

Illegal addresses, 32–33

IMAP (Internet Message Access
Protocol), 355

Impossible addresses, logging, 102

Incident reporting, intrusions detected.
See Intrusion response, incident
reporting.

Including files, 85

Incoming multicast packets, 111

Incoming packets. See Filtering incoming
packets.

inet address family, 84

inetd server, definition, 355

Infection reports, 253

Initializing firewalls. See also Installing
firewalls.

connection state, 107
on Debian, 140
DNS (Domain Name Service),

enabling, 117–122
flushing the chain, 103–104
FTP, 130–133
generic TCP service, 133–134
impossible addresses, logging, 102

Hiva-Network.Com

http://www.hiva-network.com/

380 Index

Initializing firewalls. See also Installing
firewalls. (continued)

inadvertent lockout, 100
Internet services, enabling, 117–122
kernel-monitoring, enabling, 101–102
logging, 108, 109
log_martians command, 102
loopback interface, enabling, 105
preexisting rules, removing from

chains. See Flushing the chain.
on Red Hat, 140
redirect messages, disabling, 102
remotely, 100
rule checking, bypassing, 107
rule invocations, 99–100
scalability, 107
source address validation,

disabling, 102
source-routed packets, disabling, 101
spoofing source addresses, 108–112
SSH (Secure Shell), 128–130
stopping the firewall, 104–105
on SUSE, 140
SYN cookies, enabling, 102
TCP services, enabling, 122–128
timeouts, 107
UDP services, enabling, 134–138

Initializing firewalls, bad addresses

address 0.0.0.0, 109–110
address 255.255.255.255, 109
directed broadcasts, 110
disallowing incoming packets, 108–109
dropping packets, 108, 112, 138
incoming multicast packets, 111
limited broadcasts, 110
logging dropped packets, 138
multicast packets with non-UDP

protocol, 111

multicast registration and routing,
111–112

spoofed multicast network packets,
110–111

Initializing firewalls, default policies

defining, 106
resetting, 104–105
rules, 106

Initializing firewalls, email services

hosting a mail server, 127–128
mail protocols, 124
overview, 123
receiving mail, 125–127
relaying outgoing mail, 124
sending mail to external mail

servers, 125
sending over SMTP, 123

Initializing firewalls, shell script

executing, 99–100
symbolic constants for names and

addresses, 100
INPUT chains, mangle table, 61

input hooks, 84

insert command, 87

Installing

AIDE, 296–297
Snort program, 287–288
TCPDump, 266–267
user-defined chains, optimization

example, 155–156
Installing firewalls. See also Initializing

firewalls.

with dynamic IP addresses, 141
firewall script, 139–140
start argument, 139
starting and stopping the firewall,

140–141
stop argument, 139

Index 381

Internet Assigned Numbers Authority (IANA),
19–20, 355

Internet Control Message Protocol (ICMP),
12–14, 355

Internet Group Management Protocol
(IGMP), 111

Internet Key Exchange (IKE), 232

Internet Message Access Protocol
(IMAP), 355

Internet Protocol (IP), 7, 12–14

Internet Protocol Security (IPSec), 230. See
also IP addresses.

Internet services, enabling, 117–122

Intrusion detection. See also Attack
detection; Intrusion response.

human role in, 237–238
overview, 237–238

Intrusion detection, symptoms

filesystem indications, 240
overview, 238–239
security audit tool indications, 241
system configuration indications,

239–240
system log indications, 239
system performance indications, 241
user account indications, 240–241

Intrusion detection toolkit

establishing traffic baselines, 250
filesystem integrity software, 255–256
hubs, 250
limitations of tools, 253–254
log monitoring, 256–257
monitoring SSH login failures,

256–257
network sniffers, 249
network tools, 249–250
ntop program, 250
rootkit checkers, 251

rootkits, 251
Snort, 249–250
Swatch program, 256–257
switches, 250
TCPDump, 249

Intrusion detection toolkit, Chkrootkit
program

downloading, 251
false negatives, 252
false positives, 252
infection reports, 253
limitations, 253–254
run schedule, 255
running, 251–253
using securely, 254–255

Intrusion prevention

Bastille Linux, 258
DoS (denial of service) attacks, 41
hping3 program, 260
Nikto program, 260
Nmap (Network Mapper) program,

259–260
open ports, testing for, 260
overview, 257
penetration testing, 259–260
secure often, 257–258
test often, 259–260
update often, 258–259
web servers, testing, 260

Intrusion response

checklist, 242–243
documenting your actions, 242
keeping a log, 242
overview, 241–243
snapshot the system logs, 242

Intrusion response, incident reporting

designating a report recipient, 246

382 Index

Intrusion response, incident reporting
(continued)

kinds of reportable incidents, 244–245
overview, 243
reasons for, 243–244
recommended information, 246–247

INVALID packets, 73

invalid state expression, 89

invalid-policy file, 170, 173

IP (Internet Protocol), 7, 12–14

ip address family, 84

IP addresses. See also IPSec.

0.0.0.0, 109–110
255.255.255.255, 109
bad addresses. See Initializing firewalls,

bad addresses.
broadcast, 8, 9, 11
broadcasting, 11–12
conservation of addresses, 10
directed broadcasts, 12
DNS (Domain Name Service), 18
domains, 18
dotted decimal notation, 8
dotted quad notation, 8
Ethernet addresses, 18
hostnames, 18
illegal, 32–33
for IPv4, 8–9
for IPv6, 8
limited broadcasts, 8, 12
linking physical devices to IP

addresses. See ARP (Address
Resolution Protocol).

loopback, 8
masking, 99
multicast, 9–10
multicasting, 11–12
network, 8

network domains, 18
network-directed broadcasts, 8
overview, 8–11
special, 7
subnetting, 8–11
subscribers, 11–12
symbolic names for, 18, 98
syntax, 9
unicast, 9

IP datagrams

definition, 355
maximum size, 11
MTU (Maximum Transmission

Unit), 11
splitting. See IP fragmentation.

IP fragmentation, 11

ip6 address family, 84

ipchains module

definition, 355
in earlier distributions, 96
vs. iptables, 52

IPFW (IP firewall) mechanism. See also
Ipfwadm module.

definition, 355
vs. Netfilter, 51–54. See also Netfilter

firewall.
in older distributions, 96
packet traversal, 52–54

ipfwadm module, 96, 356

iprange match extension, 77–78

IPSec (Internet Protocol Security), 230. See
also IP addresses.

$IPT, 97

iptables

definition, 356
error messages, selecting, 57
filter log messages, 57
filter table, 54–56

Index 383

firewall example (code listing), 315–328
vs. ipchains, 52
-L INPUT, 214–215
load feature, potential bugs, 140–141
mangle table, 54–55, 56, 60–61
match extensions, 56
-n -L INPUT, 215–216
NAPT (Network Address and Port

Translation), 58
vs. nftables, 83
packet matching, 57
QUEUE target, 57
REJECT target, 57
RETURN target, 58
save feature, potential bugs, 140–141
script, optimization example, 151–152
shell script, shebang line (first line), 97
syntax, 54–55
TOS field, 57
user-defined chains, 54–55

iptables command

defining rules, 97
definition, 54
enabling filter table commands, 62
location, setting, 97
syntax, 55

iptables syntax

chain commands on individual
rules, 64

FORWARD chains, 61
icmp filter table match options, 66–67
INPUT chains, 61
list chain command, options, 63
LOG target extension, 67
mangle table, 61, 81–82
mark target extension, 81–82
nat table, 61

nat table target extensions, 79–82
OUTPUT chains, 61
POSTROUTING chains, 61
PREROUTING chains, 61
primary tables, 61
REJECT target extension, 68

iptables syntax, filter table

addrtype match extension, 77
built-in chains, 61
commands, 62–67
iprange match extension, 77–78
length match extension, 78–79
limit match extension, 70–71
LOG target extension, 67
mac match extension, 75
mark match extension, 76
match extensions, 68–79
match operations, 62, 64
multiport match extension, 69–70
operations on entire chains, 62–63
operations on rules, 62
owner match extension, 75–76
REJECT target extension, 68
rule options, 64–65
state match extension, 71–75
target extensions, 67–68
tcp match options, 65
tos match extension, 76–77
udp match options, 66
ULOG target extension, 57, 68
unclean match extension, 77

iptables syntax, nat table

DNAT target extensions, 80–81
MASQUERADE target extensions, 80
REDIRECT target extensions, 81
SNAT target extensions, 79–80
target extensions, 79–81

Hiva-Network.Com

http://www.hiva-network.com/

384 Index

iptables table listing, 213–214

iptables -v -L INPUT, 216

IPv4 addressing

address shortage, 4
classes, 8–9
dotted decimal notation, 8
dotted quad notation, 8
header, 8
IP addressing, 8–9

IPv4 payload expressions, 90

IPv6

header, 8
header expressions, 90
IP addressing, 8

J
-j LOG target, 108, 138

jump statement, 88

K
Kernel-monitoring, enabling, 101–102

klogd daemon, 356

L
-L command, 223

L2TP (Layer 2 Tunneling Protocol), 229–230

LAND attack, 284

LANs (local area networks)

definition, 356
NAT example, 209–210
security, packet forwarding, 182–183

LANs, packet forwarding on a larger or less
trusted

configuring an internal LAN, 191–192
configuring multiple LANs, 192–195
creating multiple networks, 188–190

dividing address space, 188–190
overview, 188
selective internal access, 190–195
subnetting, 188–190

LANs, packet forwarding on a trusted

forwarding local traffic, 186–188
LAN access to the gateway firewall,

184–186
multiple LANs, 186–188

length match extension, 78–79

less primitive, 271

Libreswan program, 233

limit match extension, 70–71

Limit reached on matching received
packets, 88

limit statement, 88

Limited broadcasts

blocking, 110
broadcasting, 12
definition, 8
filtering incoming packets, 34

Limiting incoming packets to selected
hosts, 34

Linux

output streams, 304
VPNs (Virtual Private Networks),

232–233
Linux Firewall Administration Program. See

Iptables.

Linux kernel, custom vs. stock, 97–98

list chain command, options, 63

list command, nftables

chain syntax, 86
table syntax, 85–86

Local destination address,filtering by,
34–35

Local destination port, filtering incoming
packets, 35

Index 385

Local source address, filtering outgoing
packets, 47

Local source port, filtering outgoing
packets, 48

local_dhcp_client_query chain, 166–167

local_dns_client_request chain, 159–161

local_dns_server_query chain, 151, 158

localhost, definition, 356

localhost-policy file, 170, 172

local_tcp_client_request chain, 152

local_tcp_server_response chain, 152,
161–162

local_udp_client_request chain, 152, 163

lockd daemon, 116

Lockout, inadvertent, 100, 139–140

Log messages

filtering, 57
interpreting, 220–223
priorities, 218

Log monitoring for intrusion detection,
256–257

Log packets, 88

log statement, 88

LOG target extension, 67

Logging (administrator’s journal), 242

Logging (system logs)

as debugging tools, 217–223
dropped packets, 138, 168–170,

175–176
initializing firewalls, 108, 109
intrusion indications, 239
port scans, 38
snapshotting as intrusion response, 242

log_martians command, 102

log-policy file, 170

log-tcp-state chain, 152, 165–166

Loopback addresses, 8

Loopback interface, 105, 356

M
MAC addresses

definition, 17
identifying Ethernet cards, 18
packet-filtering firewalls, 27

mac match extension, 75

Macros, in AIDE, 306–307

Man pages, definition, 356

mangle table

built-in chains, 61
command syntax, 81–82
description, 54–55
FORWARD chains, 60
INPUT chains, 60
MARK extension, 56, 81–82
marking, 60
OUTPUT chains, 60
POSTROUTING chains, 60
PREROUTING chains, 60
target extensions, 56
TOS extension, 56
TOS field, 60

MARK extension, 56

mark match extension, 76

mark target extension, 81–82

Masking IP addresses, 99

MASQUERADE, 203–204

MASQUERADE target extensions, 57, 59, 80

Masquerading. See also NAPT (Network
Address and Port Translation); NAT
(Network Address Translation).

definition, 356
description, 201
in earlier Linux versions, 52
in iptables, 59
LAN traffic to the Internet, example,

206–208

386 Index

Match extensions, filter table, 68–79

Match operations, filter table, 62, 64

MD5 algorithm, 356

Meta expressions, 89

Mirror ports, 263–264

Monitoring

AIDE, 301–302
ARP traffic. See ARPWatch daemon.
for automated intrusion detection. See

Snort program.
kernel-monitoring, enabling, 101–102
logs, 256–257
networks with ARPWatch daemon,

291–293
sessions, 72
Snort alerts, 290–291
SSH login failures, 256–257
system logs, 256–257

MSS (Maximum Segment Size), 17

MTU (Maximum Transmission Unit), 11, 356

Multicast addresses, 9–10

“Multicast over TCP/IP HOW TO,” 111

Multicast packets, 111, 356

Multicast registration and routing, 111–112

Multicasting, 11–12

Multihomed computer, 356. See also Dual-
homed computer.

multiport match extension, 69–70, 114

N
-n option, 224

-n (- -numeric) option, 85–86

Name server, primary, 356

Name server, secondary, 356

Naming firewall scripts, 139

NAPT (Network Address and Port
Translation), 58, 199. See also
Masquerading.

NAT (Network Address Translation). See also
Masquerading.

advantages of, 199–200
basic, 199
bidirectional, 199
definition, 4, 356–357
destination addresses, 202
disadvantages of, 200
DNAT (destination NAT), 205–206
forwarding, 201
full, 201
introduction, 197–198
in iptables, 52
MASQUERADE, 203–204
masquerading, 201
NAPT (Network Address and

Port Translation), 199. See also
Masquerading.

nat table syntax, 203
REDIRECT destination NAT,

205–206
semantics, 201–206
SNAT (source NAT), 203–204
source NAT. See SNAT (source

NAT).
traditional, 198–199
with transport-mode IPSec, 200
twice, 199

NAT (Network Address Translation), examples

DNAT (destination NAT), 209–210
host forwarding, 209–210
LANs, 209–210
masquerading LAN traffic to the

Internet, 206–208
proxies, 209–210
SNAT and private LANs, 206–208
standard NAT, LAN traffic on the

Internet, 208

Index 387

nat chains, 87

nat table

basic NAT, 58
bidirectional NAT, 58
built-in chains, 61
definition, 54–55
DNAT target extensions, 56, 58
feature overview, 58–60
flushing the chain, 103
MASQUERADE target extensions,

57, 59
NAPT (Network Address and Port

Translation), 58
OUTPUT chains, 59
port forwarding, 59
POSTROUTING chains, 59
PREROUTING chains, 59
REDIRECT target extensions, 57
RETURN target, 58
SNAT target extensions, 56, 58, 59
syntax, 203. See also iptables syntax,

nat table.
target extensions, 56, 56–58, 79–82
traditional unidirectional outbound

NAT, 58
twice NAT, 58

NAT-enabled routers as firewalls, 4

Netfilter firewall mechanism

definition, 357
as firewall administration program, 96
vs. IPFW, 51–54
packet traversal, 54

Netfilter Tables. See Nftables.

netstat command, 224–226

netstat program, 357

Network Address and Port Translation
(NAPT), 58, 199. See also Masquerading.

Network address class, 352

Network Address Translation (NAT). See NAT
(Network Address Translation).

Network addresses, 8

Network domains, 18

Network File System (NFS), 357

Network layer, 6, 357

Network Mapper (Nmap)

definition, 357
description, 227
identifying open ports and available

devices, 259–260, 281–282
intrusion detection, 259–260

Network models, 6. See also OSI (Open
System Interconnection) model layers.

Network News Transfer Protocol (NNTP), 357

Network security auditing, 227

Network sniffers, 249

Network Time Protocol (NTP), 137, 357

Network tools, 249–250

Network-directed broadcasts, 8

Networks. See also LANs; VPNs (Virtual
Private Networks).

private vs. public, 50
protecting nonsecure local services, 50
selecting services to run, 50
subnetting, 8–11

NEW packets, 73

new state expression, 89

NFS (Network File System), 357

nft command syntax, 83

nft program

definition, 357
as firewall administration program, 96
version number, displaying, 85

nftables

add command, 86–87
adding chains to a table, 86–87
address families, 84

Hiva-Network.Com

http://www.hiva-network.com/

388 Index

nftables (continued)
arp address family, 84
bridge address family, 84
chain syntax, 86–87
chain types, 87
clearing chains, 86
command-line options, 85
create command, 86
creating chains, 86
definition, 357
delete command, 86
deleting chains, 86
displaying rules in a chain, 86
file syntax, 92
as firewall administration program, 96
firewall example (code listing),

328–332
flush command, 86
forward hooks, 85
inet address family, 84
input hooks, 84
ip address family, 84
ip6 address family, 84
vs. iptables, 83
list command, 86
listing, example, 216–217
nft command syntax, 83
output hooks, 85
postrouting hooks, 85
prerouting hooks, 84
rename command, 86
renaming chains, 86
rule subcommand, 84
script, optimization example, 170
table subcommand, 84
typical commands and

subcommands, 83

nftables, basic operations

ARP header expressions, 91
IPv4 payload expressions, 90
IPv6 header expressions, 90
TCP header expressions, 90
UDP header expressions, 91

nftables, command-line options

-a (--handle) option, 85–86
address information, displaying

numerically, 85–86
--debug option, 85
debugging, enabling, 85
directories, including in a search

path, 85
enabling command-line input, 85
-f (--file) option, 85
-h (--help) option, 85
help, displaying, 85
-i (--interactive) option, 85
-I (--includepath) option, 85
including files, 85
-n (--numeric) option, 85–86
nft version number, displaying, 85
port information, displaying

numerically, 85–86
rule handles, displaying, 85–86
-v (--version) option, 85

nftables, expressions

connection tracking expressions,
88–89

established state expression, 89
invalid state expression, 89
meta expressions, 89
new state expression, 89
payload expressions, 88
related state expression, 89
state expressions, 89
untracked state expression, 89

Index 389

nftables, rule syntax

accept packet and stop processing, 87
accept statement, 87
add command, 87
adding rules, 87
continue processing packets, 87
continue statement, 87
delete command, 87
deleting rules, 87
drop packet and stop processing, 88
drop statement, 88
goto statement, 88
insert command, 87
jump statement, 88
limit reached on matching received

packets, 88
limit statement, 88
log packets, 88
log statement, 88
prepend a rule on a chain, 87
queue statement, 88
reject statement, 88
return processing to the calling

chain, 88
return statement, 88
send processing to a specified chain,

don’t return, 88
send processing to a specified chain,

return, 88
statements and verdicts, 87–88
stop and reject the packet, 88
stop and send packets to the user-space

process, 88
nftables, table syntax

add command, 85–86
adding a table, 85–86
clearing all chains and rules for a

table, 85

default tables, 85–86
delete command, 85
deleting a table, 85
displaying chains and rules for a table,

85–86
flush command, 85
list command, 85–86
table syntax, 85–86

nft-vars file, 170

Nikto program, 260

Nmap (Network Mapper)

definition, 357
description, 227
identifying open ports and available

devices, 259–260, 281–282
intrusion detection, 259–260

NNTP (Network News Transfer Protocol), 357

NS flag, 16

ntop program, 250

NTP (Network Time Protocol), 137, 357

ntpd daemon, 137

- -numeric (-n) option, 85–86

O
Open Shortest Path First (OSPF), 357

Open System Interconnection (OSI)
model layers. See OSI (Open System
Interconnection) model layers.

Openswan program, 233

OpenVPN program, 233

Optimization

external rules files, 170
goal of, 176–177
ICMP traffic, 163–165
iptables, 176–177
nftables, 177
rc.firewall script, 173–175

390 Index

Optimization (continued)
source address checking, bypassing,

162–163
TCP, enabling local server traffic, 161
TCP traffic, enabling from local

clients, 159–161
UDP, local client traffic, 162

Optimization, examples

connection-tracking chain, 166
destination-address-check chain, 168
EXT-icmp-in chain, 164
EXT-icmp-out chain, 164
EXT-input chains, building, 157
EXT-log-in chain, 168–170
EXT-log-out chain, 168–170
EXT-output chains, building, 157
firewall initialization, 153–154, 170–172
ICMP traffic, 163–165
installing user-defined chains, 155–156
iptables firewall (code listing), 332–345
iptables script, 151–152
local_dhcp_client_query chain,

166–167
local_dns_client_request chain,

159–161
local_dns_server_query chain, 158
local_tcp_server_response chain,

161–162
local_udp_client_request chain, 163
logging dropped packets, 168–170
log-tcp-state chain, 165–166
nftables firewall (code listing),

345–349
nftables script, 170
rc.firewall script, 345–349
remote_dhcp_server_response chain,

166–167
remote_dns_server_query chain, 158

remote_dns_server_response chain,
159–161

remote_tcp_client_request chain,
161–162

remote_udp_server_response
chain, 163

source address checking, bypassing,
162–163

source-address-check chain, 167–168
TCP, enabling local server traffic, 161
TCP traffic, enabling from local

clients, 159–161
tcp-state-flags chain, 165
UDP, local client traffic, 162

Optimization, rule organization

building rules files, 172–176
bypassing spoofing rules, 146
connection state, enabling, 173
creating tables, 172
external rules files, 170
heavily used services, 147
ICMP rules, placing, 147
ICMP traffic, 175
incoming packet rules, placing,

146–147
invalid traffic, dropping, 173
local client traffic, over TCP, 174
local server traffic, over TCP, 175
localhost traffic, enabling, 172
rc.firewall script, 173–175
state module for ESTABLISHED and

RELATED matches, 146
traffic, enabling, 173–174
traffic flow to determine rule

placement, 147–148
transport protocols, 146–147
UDP rules, placing, 147
where to begin, 145

Index 391

Optimization, user-defined chains

branching, 149
characteristics of, 150–151
connection-tracking, 151, 166
destination-address-check, 151, 168
DNS traffic, identifying, 157
EXT-icmp-in, 152, 164
EXT-icmp-out, 152, 164
EXT-input, 151
EXT-log-in, 152, 168–170
EXT-log-out, 152, 168–170
EXT-output, 151
local_dhcp_client_query, 166–167
local_dns_client_request, 159–161
local_dns_server_query, 151, 158
local_tcp_client_request, 152
local_tcp_server_response, 152,

161–162
local_udp_client_request, 152, 163
logging dropped packets, 168–170,

175–176
log-tcp-state, 152, 165–166
remote_dhcp_server_response, 152,

166–167
remote_dns_server_query, 158
remote_dns_server_response, 151,

159–161
remote_tcp_client_request, 152,

161–162
remote_tcp_server_response, 152
remote_udp_server_response, 152, 163
source-address-check, 151, 167–168
tcp-state-flags, 151, 165
USER_CHAINS variable, 151

OSI (Open System Interconnection) model
layers

Application, 6
connectionless vs. connection-oriented

protocols, 7

Datalink, 6
definition, 357
demultiplexing, 6
encapsulation, 6
frames, 6
Network, 6
overview, 5–6
Physical, 6
Presentation, 6
Session, 6
Transport layer, 6
Transport protocols. See TCP

(Transmission Control Protocol);
UDP (User Datagram Protocol).

OSPF (Open Shortest Path First), 357

Outgoing TCP connection state, filtering
outgoing packets, 48–49

OUTPUT chains

mangle table, 61
nat table, 59, 61

output hooks, 85

owner match extension, 75–76

P
-p option, 224

Packet forwarding

choke firewalls, 181–182
DMZ (demilitarized zone), 180
gateway firewall setups, 181–182
LAN security, 182–183
limitations of a bastion firewall,

179–180
perimeter networks, 180

Packet forwarding, on a larger or less trusted
LAN

configuring an internal LAN, 191–192
configuring multiple LANs, 192–195
creating multiple networks, 188–190

Hiva-Network.Com

http://www.hiva-network.com/

392 Index

Packet forwarding, on a larger or less trusted
LAN (continued)

dividing address space, 188–190
overview, 188
selective internal access, 190–195
subnetting, 188–190

Packet forwarding, on a trusted home LAN

forwarding local traffic, 186–188
LAN access to the gateway firewall,

184–186
multiple LANs, 186–188

Packet matching, iptables, 57

Packet-filtering firewalls. See also Filtering
incoming packets; Filtering outgoing
packets.

accept-everything-by-default policy,
29–30

default policy, 29–30
deny-everything-by-default policy,

29–30
MAC address filtering, 27
overview, 26–28
rejecting packets vs. denying packets, 31

Packets

definition, 357
destination address, specifying, 98–99
dropped, logging, 138
dropping, 108, 112, 138
filtering. See Filtering incoming

packets; Filtering outgoing packets;
Packet-filtering firewalls.

fragments, 44
logging, 88
source address, specifying, 98–99

PATH variable, 357

Payload expressions, 88

Peer-to-peer communication protocol, 357

Penetration testing, 259–260

Penetrations. See Attack detection; Intrusion
detection.

Perimeter networks, packet
forwarding, 180

Physical devices, linking to IP addresses.
See ARP (Address Resolution
Protocol).

Physical layer, 6, 357

PID (process ID), 358

ping flooding, 41–42

Ping of Death, 42–43

pings

capturing, 279
definition, 358
disabling, 42

Pipe symbol (|), command-line syntax, 62

Point-to-Point Tunneling Protocol (PPTP),
229–230, 233

Policy defaults. See Default policies.

POP (Post Office Protocol), 358

Port forwarding, 59

Port information, displaying numerically,
85–86

Port numbers

mapping to service names, 19–20
numeric vs. symbolic, 96–97

Port scans

definition, 36–38, 358
in firewall logs, 38
general, 36
for open ports, 281–282
responding to, 38–39
stealth, 38
targeted, 36–38
threat level, 38–39

portmap daemon

definition, 358
description, 113

Ports

common scan targets, 36–38
definition, 358

Index 393

privileged, 358. See also Unprivileged
ports.

service ports, 19–23
Ports, open

checking for, 223–227
scanning for, 281–282
testing for, 260

Post Office Protocol (POP), 358

POSTROUTING chains, 59, 61

postrouting hooks, 85

Pound sign (#), comment
indicator, 297

PPTP (Point-to-Point Tunneling Protocol),
229–230, 233

pptpd daemon, 233

Prepend a rule on a chain, 87

PREROUTING chains, 59, 61

prerouting hooks, 84

Presentation layer, 6

Primitives for TCPDump, 271

Private networks vs. public, 49–50

Probes, definition, 36, 358

Process ID (PID), 358

Protocol qualifier, TCPDump, 271

Proxies

application-level, 358. See also ALG
(application-level gateway).

circuit-level, 358–359
definition, 358
example, 209–210

PSH flag, 16

Public networks vs. private, 49–50

Q
QoS (Quality of Service), 359

Queries, capturing, 279

queue statement, 88

QUEUE target, 57

R
RARP (Reverse Address Resolution

Protocol), 359

rc.firewall script, 173–175

Recording traffic, 284–286

Red Hat, initializing firewalls, 140

Redirect bombs, 45

REDIRECT destination NAT, 205–206

redirect messages, disabling, 102

REDIRECT target extensions, 57, 81

REJECT rule, 106, 359

reject statement, 88

REJECT target extension, 57, 68

Rejecting packets vs. denying, 31

RELATED packets, 73

related state expression, 89

Remote destination address, filtering
outgoing packets, 47–48

Remote destination port, filtering outgoing
packets, 48

Remote procedure call (RPC), 359

Remote source address, filtering incoming
packets, 31–34

Remote source port, filtering incoming
packets, 35

remote_dhcp_server_response chain, 152,
166–167

remote_dns_server_query chain, 158

remote_dns_server_response chain, 151,
159–161

Remotely initializing firewalls, 100

remote_tcp_client_request chain, 152,
161–162

remote_tcp_server_response
chain, 152

remote_udp_server_response chain,
152, 163

rename command, 86

Renaming chains, 86

394 Index

Report output, AIDE, 303–306

Report verbosity, AIDE, 305–306

Reporting intrusions. See Intrusion response,
incident reporting.

Request For Comments (RFC), 359

Resolver, 359

Resources. See Books and publications.

Responding to intrusions. See Intrusion
response.

Return processing to the calling chain, 88

return statement, 88

RETURN target, 58

Reverse Address Resolution Protocol
(RARP), 359

RFC (Request For Comments), 359

RFC 1112 “Host Extensions for IP
Multicasting,” 111

RFC 1122 “Requirements for Internet
Hosts—Communication Layers,” 102

RFC 1458 “Requirements for Multicast
Protocols,” 111

RFC 1631 “The IP Network Address
Translator (NAT),” 197

RFC 1700 “Assigned Numbers,” 113

RFC 1812 “Requirements for IP Version 4
Routers,” 102

RFC 2196 “Site Security Handbook,” 238

RFC 2236 “Internet Group Management
Protocol Version 2,” 111

RFC 2474, “Definition of the Differentiated
Services Field (DS Field) in the IPv4 and
IPv6 Headers,” 77

RFC 2475, “An Architecture for Differentiated
Services,” 77

RFC 2588 “IP Multicast and Firewalls,” 111

RFC 2647 “Benchmarking Terminology for
Firewall Performance,” 25

RFC 2663 “IP Network Address
Translator (NAT) Terminology and
Considerations,” 198

RFC 2827 “Network Ingress Filtering:
Defeating Denial of Service Attacks . . . ,” 47

RFC 2990 “Next Steps for the IP QoS
Architecture,” 77

RFC 3022 “Traditional IP Network Address
Translator (Traditional NAT),” 197

RFC 3168 “The Addition of Explicit
Congestion Notification (ECN) to IP,” 77

RFC 3260 “New Terminology and
Clarifications for Diffserv,” 77

RFC 3704 “Ingress Filtering for Multihomed
Networks,” 47

RIP (Routing Information Protocol), 359

Rootkit checkers, 251

Rootkits, 251

route chains, 87

Router devices as firewalls, 4

Routing protocols, 19

RPC (remote procedure call), 359

RST flag, 16

Rule organization

building rules files, 172–176
bypassing spoofing rules, 146
connection state, enabling, 173
creating tables, 172
external rules files, 170
heavily used services, 147
ICMP rules, placing, 147
ICMP traffic, 175
incoming packet rules, placing, 146–147
invalid traffic, dropping, 173
local client traffic, over TCP, 174
local server traffic, over TCP, 175
localhost traffic, enabling, 172
rc.firewall script, 173–175
state module for ESTABLISHED and

RELATED matches, 146
traffic, enabling, 173–174

Index 395

traffic flow to determine rule
placement, 147–148

transport protocols, 146–147
UDP rules, placing, 147
where to begin, 145

rule subcommand, 84

Rules. See also Filter, firewall; Firewall;
nftables, rule syntax.

adding, 87
checking, bypassing, 107
clearing, 85
definition order, 96
deleting, 87
filter table operations on, 62
flushing the chain, 103
handles, displaying, 85–86
invocations, initializing firewalls, 99–100
listing, 85–86, 213–217
options, filter table, 64–65
packet addresses, specifying, 98–99
prepending on a chain, 87
removing from chains. See Flushing

the chain.
Runlevel, 359

S
Scalability, initializing firewalls, 107

Scanning for open ports. See Port scans.

Schneier, Bruce, 310

Screened host. See Firewalls, screened-host.

Screened subnet. See Firewalls, screened-
subnet.

Scripts, definition, 359

Secure Shell (SSH) protocol. See SSH (Secure
Shell) protocol.

Secure Sockets Layer (SSL) protocol, 360

Securing often, as intrusion prevention,
257–258

Security associations, VPNs, 232

Security audit tools, intrusion
indications, 241

Segments, TCP, 15, 359

Send processing to a specified chain, don’t
return, 88

Send processing to a specified chain,
return, 88

Server programs. See Daemons.

Service names, mapping to port numbers,
19–20

Service ports, 19–23

Session layer, 6

Session monitoring, maintaining state
information, 72

setgid program, 359

setuid program, 359

setup-tables file, 170, 172

Shebang line (first script line), 97

Shell, definition, 359

SMTP (Simple Mail Transfer Protocol), 360

SMTP conversations, capturing, 277–278

Smurf attack, 41, 282–283

Snapshotting the system logs, 242

SNAT (source NAT)

and private LANs, example, 206–208
semantics, 203–204
target extensions, nat table, 56, 58, 59,

79–80
SNMP (Simple Network Management

Protocol), 360

Snort program

configuring, 288–289
description, 249–250, 265
installing, 287–288

Snort program, automated intrusion
monitoring

obtaining, 287–288
overview, 286

Hiva-Network.Com

http://www.hiva-network.com/

396 Index

Snort program, automated intrusion
monitoring (continued)

receiving alerts, 290–291
with Swatch, 290–291
testing, 289–290

Socket, definition, 360

SOCKS package, 360

Source address checking, bypassing,
162–163

Source addresses

filtering, 41
spoofing. See Spoofing source

addresses.
validation, disabling, 102

source-address-check chain, 151, 167–168

Source-routed packets

disabling, 101
filtering, 46

Span ports, 263–264

Special addresses, 7

Splitting IP datagrams. See IP fragmentation.

Spoofing source addresses

definition, 360
initializing firewalls, 108–112
multicast network packets, 110–111
overview, 32–33

Square brackets ([]), command-line
syntax, 62

squid Web cache, blocking TCP-based
services, 114

SSH conversations, capturing, 278

SSH (Secure Shell) protocol

definition, 360
initializing firewalls, 128–130
login failures, monitoring, 256–257

SSL (Secure Sockets Layer) protocol, 360

Standalone firewall. See Bastion firewall.

Standard checks, AIDE, 308–309

Standard NAT, LAN traffic on the
Internet, 208

start argument, 139

Starting and stopping firewalls, 140–141

State expressions, 89

state match extension, 71–75

Stateless firewalls, 25

Statements, rule syntax, 87–88

Statements and verdicts, 87–88

Statistically assigned address, 360

STDERR, standard error stream, 304

STDIN, standard input stream, 304

STDOUT, standard output stream, 304

Stealth port scans, 38

“Steps for Recovering from a UNIX or NT
System Compromise,” 238

Stevens, Richard W., 7

stop argument, 139

Stop processing rules and

reject the packet, 88
send packets to the user-space

process, 88
Stopping and starting firewalls, 104–105,

140–141

Subnet layer, definition, 360

Subnetting, 10–11

Subscribers, 11–12

SUSE, initializing firewalls, 140

Swatch program, 256–257, 290–291

Switched environment vs. hub, 263

Switches, intrusion detection, 250

Symbolic names for

hosts, 98
IP addresses, 18, 98
port numbers, 96–97

SYN cookies, enabling, 41, 102

SYN flag, 16, 360

SYN packets, 16

Index 397

SYN segments, 16

SYN_ACK packets, 17

SYN_ACK segments, 17

SYN_RCVD state, 17

SYN_SENT state, 16

syslog configuration, 217–220

syslog.conf file, 360

syslogd daemon, 360

System configuration, intrusion indication,
239–240

System logs

as debugging tools, 217–223
dropped packets, 138, 168–170,

175–176
initializing firewalls, 108, 109
intrusion indications, 239
port scans, 38
snapshotting as intrusion response, 242

System performance, intrusion
indications, 241

T
table subcommand, 84

Table syntax, nftables, 85–86

Tables

adding, 85–86
clearing chains and rules, 85
deleting, 85
displaying chains and rules, 85–86

Target extensions

filter table, 67–68
mangle table, 56
nat table, 56, 56–58, 79–81

Targeted port scans, 36–38

TCP (Transmission Control Protocol)

a typical connection, 20–23
bit flags, 15–16. See also specific flags.

checksums, 15
CLOSED state, 17
CLOSE_WAIT state, 17
connections, 16–17
definition, 14–15, 360
enabling, 122–128
ESTABLISHED state, 17
FIN_WAIT_2 state, 17
generic, initializing firewalls, 133–134
header, 15
MSS (Maximum Segment Size), 17
protocol tables, 116–117
segments, 15
SYN packets, 16
SYN segments, 16
SYN_ACK packets, 17
SYN_ACK segments, 17
SYN_RCVD state, 17
SYN_SENT state, 16
three-way handshake, 16
TIME_WAIT state, 17
traffic, enabling from local clients,

159–161
TCP, enabling local server traffic, 161

TCP connection state, filtering incoming
packets, 35–36

TCP header expressions, 90

TCP header flags, 283

tcp match options, 65

TCP SYN flooding, 40–41

“TCP SYN Flooding and IP Spoofing Attacks,”41

tcp-client-policy file, 170

TCPDump

arithmetic operators, 271
broadcast primitive, 271
description, 249, 265
direction qualifier, 270–271

398 Index

TCPDump (continued)
expressions, 269–271
gateway primitive, 271
greater primitive, 271
installing, 266–267
less primitive, 271
obtaining, 266–267
options, 266–269
overview, 265–266
primitives, 271
protocol qualifier, 271
type qualifier, 269–270

TCPDump, attack detection

LAND attack, 284
Nmap (Network Mapper), 281–282
overview, 280–281
recording traffic, 284–286
scanning for open ports, 281–282
Smurf attacks, 282–283
TCP header flags, 283
Xmas Tree attack, 283

TCPDump, capturing

HTTP conversations, 273–277
other TCP-based protocols,

278–279
pings, 279
queries, 279
SMTP conversations, 277–278
SSH conversations, 278

TCP/IP reference model

definition, 360
firewall placement, 27
layers, 6

tcp-server-policy file, 170

tcp-state-flags chain, 151, 165

tcp_wrapper scheme, 360

Teardrop attack, 44

Testing

as intrusion prevention, 259–260
for open ports, 260
penetration, 259–260
Snort program, 289–290
web servers, 260

TFTP (Trivial File Transfer Protocol), 360

Three-way handshake, 16, 361

Time To Live (TTL), 361

Timeouts, initializing firewalls, 107

TIME_WAIT state, 17

TOS (Type of Service), 361

TOS extension, 56

TOS field, 57

tos match extension, 76–77

traceroute tool, 361

Traditional NAT, 198–199

Traditional unidirectional outbound
NAT, 58

Traffic baselines, establishing, 250

Transmission Control Protocol (TCP).
See TCP (Transmission Control
Protocol).

Transparency, firewalls, 4

Transport layer, 6

Transport layer, definition, 361

Transport mode, VPNs, 231

Transport protocols. See TCP (Transmission
Control Protocol); UDP (User Datagram
Protocol).

Trivial File Transfer Protocol
(TFTP), 360

TTL (Time To Live), 361

Tunnel mode, VPNs, 231

Tuples, 72

Twice NAT, 58, 199

Type of Service (TOS), 361

Type qualifier, 269–270

Index 399

U
UDP (User Datagram Protocol)

definition, 14, 361
flooding, 43
local client traffic, 162
protocol tables, 116–117

UDP (User Datagram Protocol), enabling

accessing your ISP’s DHCP server,
134–136

DHCP message types, 135
DHCP protocol, 136
overview, 134–138
remote network time servers,

accessing, 136–138
UDP header expressions, 91

udp match options, 66

“UDP Port Denial-of-Service Attack,” 43

ULOG target extension, 57, 68

unclean match extension, 77

Unicast, definition, 361

Unicast addresses, 9

Unprivileged ports

definition, 358
official port number assignments, 113
port range, syntax, 114
port scans, 113
purpose of, 19

Unprivileged ports, protecting services on

blocking local TCP services, 113–115
common local TCP services, 113–115
common local UDP services, 116
deny-by-default, shortcomings, 114
disallowing connections, 114–115
FTP, 114
official port number assignments, 113
overview, 112–113
port range, syntax, 114

port scans, 113
TCP service protocol tables, 116–117
UDP service protocol tables, 116–117

untracked state expression, 89

Updating, as intrusion prevention, 258–259

URG flag, 16

User accounts, intrusion indications, 240–241

User Datagram Protocol (UDP). See UDP
(User Datagram Protocol).

USER_CHAINS variable chain, 151

User-defined chains

branching, 149
characteristics of, 150–151
connection-tracking, 151, 166
destination-address-check, 151, 168
DNS traffic, identifying, 157
EXT-icmp-in, 152, 164
EXT-icmp-out, 152, 164
EXT-input, 151
EXT-log-in, 152, 168–170
EXT-log-out, 152, 168–170
EXT-output, 151
local_dhcp_client_query, 166–167
local_dns_client_request, 159–161
local_dns_server_query, 151, 158
local_tcp_client_request, 152
local_tcp_server_response, 152, 161–162
local_udp_client_request, 152, 163
logging dropped packets, 168–170,

175–176
log-tcp-state, 152, 165–166
remote_dhcp_server_response, 152,

166–167
remote_dns_server_query, 158
remote_dns_server_response, 151,

159–161
remote_tcp_client_request, 152,

161–162

Hiva-Network.Com

http://www.hiva-network.com/

400 Index

User-defined chains (continued)
remote_tcp_server_response, 152
remote_udp_server_response, 152, 163
source-address-check, 151, 167–168
tcp-state-flags, 151, 165
USER_CHAINS variable, 151

UUCP protocol, 361

V
-v (- -version) option, 85

Verbosity of output, 216

VPNs (Virtual Private Networks)

authentication header, 230–231
combining with firewalls, 233–234
ESP (encapsulating security payload),

231–232
generic routing encapsulation, 230
IKE (Internet Key Exchange), 232
IPSec (Internet Protocol Security), 230
L2TP (Layer 2 Tunneling Protocol),

229–230
Libreswan program, 233
Linux, 232–233

Openswan program, 233
OpenVPN program, 233
overview, 229
PPTP (Point-to-Point Tunneling

Protocol), 229–230, 233
protocols, 229–232
security associations, 232
transport mode, 231
tunnel mode, 231

W
Web servers, testing, 260

World-readable, 361

World-writable, 361

X
X Windows, 361

Xmas Tree attack, 283

Z
Zone transfers, 118

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you’re
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

	Contents
	Preface
	About the Author
	I: Packet Filtering and Basic Security Measures
	1 Preliminary Concepts Underlying Packet-Filtering Firewalls
	The OSI Networking Model
	The Internet Protocol
	Transport Mechanisms
	Don’t Forget Address Resolution Protocol
	Hostnames and IP Addresses
	Routing: Getting a Packet from Here to There
	Service Ports: The Door to the Programs on Your System
	Summary

	2 Packet-Filtering Concepts
	A Packet-Filtering Firewall
	Choosing a Default Packet-Filtering Policy
	Rejecting versus Denying a Packet
	Filtering Incoming Packets
	Filtering Outgoing Packets
	Private versus Public Network Services
	Summary

	3 iptables: The Legacy Linux Firewall Administration Program
	Differences between IPFW and Netfilter Firewall Mechanisms
	Basic iptables Syntax
	iptables Features
	iptables Syntax
	Summary

	4 nftables: The Linux Firewall Administration Program
	Differences between iptables and nftables
	Basic nftables Syntax
	nftables Features
	nftables Syntax
	Summary

	5 Building and Installing a Standalone Firewall
	The Linux Firewall Administration Programs
	Initializing the Firewall
	Protecting Services on Assigned Unprivileged Ports
	Enabling Basic, Required Internet Services
	Enabling Common TCP Services
	Enabling Common UDP Services
	Logging Dropped Incoming Packets
	Logging Dropped Outgoing Packets
	Installing the Firewall
	Summary

	II: Advanced Issues, Multiple Firewalls, and Perimeter Networks
	6 Firewall Optimization
	Rule Organization
	User-Defined Chains
	Optimized Examples
	What Did Optimization Buy?
	Summary

	7 Packet Forwarding
	The Limitations of a Standalone Firewall
	Basic Gateway Firewall Setups
	LAN Security Issues
	Configuration Options for a Trusted Home LAN
	Configuration Options for a Larger or Less Trusted LAN
	Summary

	8 NAT—Network Address Translation
	The Conceptual Background of NAT
	NAT Semantics with iptables and nftables
	Examples of SNAT and Private LANs
	Examples of DNAT, LANs, and Proxies
	Summary

	9 Debugging the Firewall Rules
	General Firewall Development Tips
	Listing the Firewall Rules
	Interpreting the System Logs
	Checking for Open Ports
	Summary

	10 Virtual Private Networks
	Overview of Virtual Private Networks
	VPN Protocols
	Linux and VPN Products
	VPN and Firewalls
	Summary

	III: Beyond iptables and nftables
	11 Intrusion Detection and Response
	Detecting Intrusions
	Symptoms Suggesting That the System Might Be Compromised
	What to Do If Your System Is Compromised
	Incident Reporting
	Summary

	12 Intrusion Detection Tools
	Intrusion Detection Toolkit: Network Tools
	Rootkit Checkers
	Filesystem Integrity
	Log Monitoring
	How to Not Become Compromised
	Summary

	13 Network Monitoring and Attack Detection
	Listening to the Ether
	TCPDump: A Simple Overview
	Using TCPDump to Capture Specific Protocols
	Automated Intrusion Monitoring with Snort
	Monitoring with ARPWatch
	Summary

	14 Filesystem Integrity
	Filesystem Integrity Defined
	Installing AIDE
	Configuring AIDE
	Monitoring AIDE for Bad Things
	Cleaning Up the AIDE Database
	Changing the Output of the AIDE Report
	Defining Macros in AIDE
	The Types of AIDE Checks
	Summary

	IV: Appendices
	A: Security Resources
	Security Information Sources
	Reference Papers and FAQs

	B: Firewall Examples and Support Scripts
	iptables Firewall for a Standalone System from Chapter 5
	nftables Firewall for a Standalone System from Chapter 5
	Optimized iptables Firewall from Chapter 6
	nftables Firewall from Chapter 6

	C: Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X

	D: GNU Free Documentation License
	0. Preamble
	1. Applicability and Definitions
	2. Verbatim Copying
	3. Copying in Quantity
	4. Modifications
	5. Combining Documents
	6. Collections of Documents
	7. Aggregation with Independent Works
	8. Translation
	9. Termination
	10. Future Revisions of this License
	11. Relicensing

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

