

Hivanetwork.com

https://hivanetwork.com/

About This eBook

ePUB is an open, industry-standard format for eBooks. However,

support of ePUB and its many features varies across reading

devices and applications. Use your device or app settings to

customize the presentation to your liking. Settings that you can

customize often include font, font size, single or double column,

landscape or portrait mode, and figures that you can click or tap

to enlarge. For additional information about the settings and

features on your reading device or app, visit the device

manufacturer’s Web site.

Many titles include programming code or configuration

examples. To optimize the presentation of these elements, view

the eBook in single-column, landscape mode and adjust the font

size to the smallest setting. In addition to presenting code and

configurations in the reflowable text format, we have included

images of the code that mimic the presentation found in the print

book; therefore, where the reflowable format may compromise

the presentation of the code listing, you will see a “Click here to

view code image” link. Click the link to view the print-fidelity

code image. To return to the previous page viewed, click the Back

button on your device or app.

Red Hat RHCSA™ 9 Cert Guide

EX200

Sander van Vugt

Red Hat RHCSA™ 9 Cert Guide: EX200

Copyright © 2023 by Pearson Education, Inc.

ISBN-13: 978-0-13-809627-4

ISBN-10: 0-13-809627-9

Library of Congress Cataloging-in-Publication Data Is On File

ScoutAutomatedPrintCode

Trademarks

All rights reserved. No part of this book shall be reproduced,

stored in a retrieval system, or transmitted by any means,

electronic, mechanical, photocopying, recording, or otherwise,

without written permission from the publisher. No patent

liability is assumed with respect to the use of the information

contained herein. Although every precaution has been taken in

the preparation of this book, the publisher and author assume no

responsibility for errors or omissions. Nor is any liability

assumed for damages resulting from the use of the information

contained herein.

All terms mentioned in this book that are known to be

trademarks or service marks have been appropriately

Warning and Disclaimer

Special Sales

For information about buying this title in bulk quantities, or for

special sales opportunities (which may include electronic

Pearson IT Certification and Sander van Vugt have no affiliation

with Red Hat, Inc. The RED HAT and RHCSA trademarks are used

for identification purposes only and are not intended to indicate

affiliation with or approval by Red Hat, Inc.

Every effort has been made to make this book as complete and as

accurate as possible, but no warranty or fitness is implied. The

information provided is on an “as is” basis. The author and the

publisher shall have neither liability nor responsibility to any

person or entity with respect to any loss or damages arising from

the information contained in this book.

capitalized. Pearson IT Certification cannot attest to the accuracy

of this information. Use of a term in this book should not be

regarded as affecting the validity of any trademark or service

mark.

Red Hat and RHCSA are registered trademarks of Red Hat, Inc. in

the United States and other countries.

versions; custom cover designs; and content particular to your

business, training goals, marketing focus, or branding interests),

please contact our corporate sales department at

corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact

governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact

intlcs@pearson.com.

Vice President, IT Professional

Mark Taub

Acquisitions Editors

Harry Misthos

Denise Lincoln

Development Editor

Ellie Bru

Managing Editor

Sandra Schroeder

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Senior Project Editor

Tonya Simpson

Copy Editor

Bill McManus

Indexer

Erika Millen

Proofreader

Jen Hinchliffe

Technical Editors

John McDonough

William “Bo” Rothwell

Publishing Coordinator

Cindy Teeters

Cover Designer

Chuti Prasertsith

Compositor

codeMantra

Pearson’s Commitment to Diversity, Equity,
and Inclusion

Pearson is dedicated to creating bias-free content that reflects the

diversity of all learners. We embrace the many dimensions of

diversity, including but not limited to race, ethnicity, gender,

socioeconomic status, ability, age, sexual orientation, and

religious or political beliefs.

Education is a powerful force for equity and change in our

world. It has the potential to deliver opportunities that improve

lives and enable economic mobility. As we work with authors to

create content for every product and service, we acknowledge

our responsibility to demonstrate inclusivity and incorporate

diverse scholarship so that everyone can achieve their potential

through learning. As the world’s leading learning company, we

have a duty to help drive change and live up to our purpose to

help more people create a better life for themselves and to create

a better world.

Our ambition is to purposefully contribute to a world where

Everyone has an equitable and lifelong opportunity to succeed

through learning

Our educational products and services are inclusive and

Hivanetwork.com

https://hivanetwork.com/

represent the rich diversity of learners

Our educational content accurately reflects the histories and

experiences of the learners we serve

Our educational content prompts deeper discussions with

learners and motivates them to expand their own learning

(and worldview)

While we work hard to present unbiased content, we want to

hear from you about any concerns or needs with this Pearson

product so that we can investigate and address them.

Please contact us with concerns about any potential bias at

https://www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html

Contents at a Glance

Introduction

Part I Performing Basic System Management Tasks

CHAPTER 1 Installing Red Hat Enterprise Linux

CHAPTER 2 Using Essential Tools

CHAPTER 3 Essential File Management Tools

CHAPTER 4 Working with Text Files

CHAPTER 5 Connecting to Red Hat Enterprise Linux 9

CHAPTER 6 User and Group Management

CHAPTER 7 Permissions Management

CHAPTER 8 Configuring Networking

Part II Operating Running Systems

CHAPTER 9 Managing Software

CHAPTER 10 Managing Processes

CHAPTER 11 Working with Systemd

CHAPTER 12 Scheduling Tasks

CHAPTER 13 Configuring Logging

CHAPTER 14 Managing Storage

CHAPTER 15 Managing Advanced Storage

Part III Performing Advanced System Administration Tasks

CHAPTER 16 Basic Kernel Management

CHAPTER 17 Managing and Understanding the Boot

Procedure

CHAPTER 18 Essential Troubleshooting Skills

CHAPTER 19 An Introduction to Automation with Bash

Shell Scripting

Part IV Managing Network Services

CHAPTER 20 Configuring SSH

CHAPTER 21 Managing Apache HTTP Services

CHAPTER 22 Managing SELinux

CHAPTER 23 Configuring a Firewall

CHAPTER 24 Accessing Network Storage

CHAPTER 25 Configuring Time Services

CHAPTER 26 Managing Containers

CHAPTER 27 Final Preparation

CHAPTER 28 Theoretical Pre-Assessment Exam

Part V RHCSA 9 Practice Exams

RHCSA Practice Exam A

RHCSA Practice Exam B

APPENDIX A: Answers to the “Do I Know This Already?”

Quizzes and Review Questions

APPENDIX B: Red Hat RHCSA 9 Cert Guide: EX200 Exam

Updates

Glossary

Index

Online Elements

RHCSA Practice Exam C

RHCSA Practice Exam D

APPENDIX C: Memory Tables

APPENDIX D: Memory Tables Answer Key

APPENDIX E: Study Planner

Glossary

Table of Contents

Introduction

Part I Performing Basic System Management Tasks

Chapter 1 Installing Red Hat Enterprise Linux

“Do I Know This Already?” Quiz

Foundation Topics

Preparing to Install Red Hat Enterprise Linux

What Is Red Hat Enterprise Linux 9 Server?

Getting the Software

Using Red Hat Enterprise Linux

Using CentOS Stream

Other Distributions

Understanding Access to Repositories

Setup Requirements

Cert Guide Environment Description

Performing an Installation

Summary

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 1.1

Chapter 2 Using Essential Tools

“Do I Know This Already?” Quiz

Foundation Topics

Basic Shell Skills

Understanding Commands

Executing Commands

I/O Redirection

Using Pipes

History

Bash Completion

Editing Files with vim

Understanding the Shell Environment

Understanding Variables

Recognizing Environment Configuration Files

Using /etc/motd and /etc/issue

Finding Help

Using --help

Using man

Finding the Right man Page

Updating mandb

Using info

Using /usr/share/doc Documentation Files

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 2.1

Chapter 3 Essential File Management Tools

“Do I Know This Already?” Quiz

Foundation Topics

Working with the File System Hierarchy

Defining the File System Hierarchy

Understanding Mounts

Managing Files

Working with Wildcards

Managing and Working with Directories

Working with Absolute and Relative Pathnames

Listing Files and Directories

Copying Files and Directories

Moving Files and Directories

Deleting Files and Directories

Using Links

Understanding Hard Links

Understanding Symbolic Links

Creating Links

Removing Links

Working with Archives and Compressed Files

Managing Archives with tar

Creating Archives with tar

Monitoring and Extracting tar Files

Using Compression

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 3.1

Chapter 4 Working with Text Files

“Do I Know This Already?” Quiz

Foundation Topics

Using Common Text File–Related Tools

Doing More with less

Showing File Contents with cat

Displaying the First or Last Lines of a File with

head and tail

Filtering Specific Columns with cut

Sorting File Contents and Output with sort

Hivanetwork.com

https://hivanetwork.com/

Counting Lines, Words, and Characters with wc

A Primer to Using Regular Expressions

Using Line Anchors

Using Escaping in Regular Expressions

Using Wildcards and Multipliers

Using Extended Regular Expressions

Using grep to Analyze Text

Working with Other Useful Text Processing Utilities

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 4.1

Chapter 5 Connecting to Red Hat Enterprise Linux 9

“Do I Know This Already?” Quiz

Foundation Topics

Working on Local Consoles

Logging In to a Local Console

Switching Between Terminals in a Graphical

Environment

Working with Multiple Terminals in a

Nongraphical Environment

Understanding Pseudo Terminal Devices

Booting, Rebooting, and Shutting Down Systems

Using SSH and Related Utilities

Accessing Remote Systems Using SSH

Using Graphical Applications in an SSH

Environment

Securely Transferring Files Between Systems

Using scp to Securely Copy Files

Using sftp to Securely Transfer Files

Using rsync to Synchronize Files

Configuring Key-Based Authentication for SSH

Using Passphrases or Not?

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Labs

Lab 5.1

Lab 5.2

Chapter 6 User and Group Management

“Do I Know This Already?” Quiz

Foundation Topics

Understanding Different User Types

Users on Linux

Working as Root

Using su

sudo

PolicyKit

Creating and Managing User Accounts

System Accounts and Normal Accounts

Creating Users

Modifying the Configuration Files

Using useradd

Home Directories

Default Shell

Managing User Properties

Configuration Files for User Management

Defaults

Managing Password Properties

Creating a User Environment

Creating and Managing Group Accounts

Understanding Linux Groups

Creating Groups

Creating Groups with vigr

Using groupadd to Create Groups

Managing Group Properties

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Labs

Lab 6.1

Lab 6.2

Chapter 7 Permissions Management

“Do I Know This Already?” Quiz

Foundation Topics

Managing File Ownership

Displaying Ownership

Changing User Ownership

Changing Group Ownership

Understanding Default Ownership

Managing Basic Permissions

Understanding Read, Write, and Execute

Permissions

Applying Read, Write, and Execute Permissions

Managing Advanced Permissions

Understanding Advanced Permissions

Applying Advanced Permissions

Setting Default Permissions with umask

Working with User-Extended Attributes

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 7.1

Chapter 8 Configuring Networking

“Do I Know This Already?” Quiz

Foundation Topics

Networking Fundamentals

IP Addresses

IPv6 Addresses

IPv4 Network Masks

Binary Notation

MAC Addresses

Protocol and Ports

Managing Network Addresses and Interfaces

Validating Network Configuration

Validating Network Address Configuration

Validating Routing

Validating the Availability of Ports and Services

Managing Network Configuration with nmtui and

nmcli

Required Permissions to Change Network

Configuration

Configuring the Network with nmcli

Configuring the Network with nmtui

Working on Network Configuration Files

Setting Up Hostname and Name Resolution

Hostnames

DNS Name Resolution

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 8.1

Part II Operating Running Systems

Chapter 9 Managing Software

“Do I Know This Already?” Quiz

Foundation Topics

Managing Software Packages with dnf

Understanding the Role of Repositories

Registering Red Hat Enterprise Linux for

Support

Managing Subscriptions

Specifying Which Repository to Use

Understanding Repository Security

Creating Your Own Repository

Using dnf

Using dnf to Find Software Packages

Getting More Information About Packages

Installing and Removing Software Packages

Showing Lists of Packages

Updating Packages

Working with dnf Package Groups

Using dnf History

Managing Package Modules

Understanding dnf Modules

Managing Modules

Managing Software Packages with rpm

Understanding RPM Filenames

Querying the RPM Database

Querying RPM Package Files

Using repoquery

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Labs

Lab 9.1

Chapter 10 Managing Processes

“Do I Know This Already?” Quiz

Foundation Topics

Introduction to Process Management

Managing Shell Jobs

Running Jobs in the Foreground and Background

Managing Shell Jobs

Understanding Parent–Child Relations

Using Common Command-Line Tools for Process

Management

Understanding Processes and Threads

Using ps to Get Process Information

Understanding Process Priorities

Exploring Relations Between Slices

Managing Process Priorities

Sending Signals to Processes with kill, killall, and

Hivanetwork.com

https://hivanetwork.com/

pkill

Killing Zombies

Using top to Manage Processes

Using tuned to Optimize Performance

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 10.1

Chapter 11 Working with Systemd

“Do I Know This Already?” Quiz

Foundation Topics

Understanding Systemd

Understanding Systemd Unit Locations

Understanding Systemd Service Units

Understanding Systemd Mount Units

Understanding Systemd Socket Units

Understanding Systemd Target Units

Managing Units Through Systemd

Managing Dependencies

Managing Unit Options

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 11.1

Chapter 12 Scheduling Tasks

“Do I Know This Already?” Quiz

Foundation Topics

Understanding Task Scheduling Options in RHEL

Using Systemd Timers

Configuring cron to Automate Recurring Tasks

Managing the crond Service

Understanding cron Timing

Managing cron Configuration Files

Understanding the Purpose of anacron

Managing cron Security

Configuring at to Schedule Future Tasks

Summary

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 12.1

Chapter 13 Configuring Logging

“Do I Know This Already?” Quiz

Foundation Topics

Understanding System Logging

Understanding the Role of systemd-journald and

rsyslogd

Reading Log Files

Understanding Log File Contents

Live Log File Monitoring

Using logger

Working with systemd-journald

Using journalctl to Find Events

Preserving the Systemd Journal

Configuring rsyslogd

Understanding rsyslogd Configuration Files

Understanding rsyslog.conf Sections

Understanding Facilities, Priorities, and Log

Destinations

Rotating Log Files

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 13.1

Chapter 14 Managing Storage

“Do I Know This Already?” Quiz

Foundation Topics

Understanding MBR and GPT Partitions

Understanding the MBR Partitioning Scheme

Understanding the Need for GPT Partitioning

Understanding Storage Measurement Units

Managing Partitions and File Systems

Creating MBR Partitions with fdisk

Using Extended and Logical Partitions on MBR

Creating GPT Partitions with gdisk

Creating GPT Partitions with parted

Creating File Systems

Changing File System Properties

Managing Ext4 File System Properties

Managing XFS File System Properties

Adding Swap Partitions

Adding Swap Files

Mounting File Systems

Manually Mounting File Systems

Using Device Names, UUIDs, or Disk Labels

Automating File System Mounts Through

/etc/fstab

Using Systemd Mounts

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 14.1

Chapter 15 Managing Advanced Storage

“Do I Know This Already?” Quiz

Foundation Topics

Understanding LVM

LVM Architecture

LVM Features

Creating LVM Logical Volumes

Creating the Physical Volumes

Creating the Volume Groups

Creating the Logical Volumes and File Systems

Understanding LVM Device Naming

Resizing LVM Logical Volumes

Resizing Volume Groups

Resizing Logical Volumes and File Systems

Reducing Volume Groups

Configuring Stratis

Understanding Stratis Architecture

Creating Stratis Storage

Managing Stratis

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Labs

Lab 15.1

Lab 15.2

Part III Performing Advanced System Administration Tasks

Chapter 16 Basic Kernel Management

“Do I Know This Already?” Quiz

Foundation Topics

Understanding the Role of the Linux Kernel

Understanding the Use of Kernel Threads and

Drivers

Analyzing What the Kernel Is Doing

Working with Kernel Modules

Understanding Hardware Initialization

Managing Kernel Modules

Checking Driver Availability for Hardware

Devices

Managing Kernel Module Parameters

Upgrading the Linux Kernel

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 16.1

Chapter 17 Managing and Understanding the Boot Procedure

“Do I Know This Already?” Quiz

Foundation Topics

Managing Systemd Targets

Understanding Systemd Targets

Working with Targets

Understanding Target Units

Understanding Wants

Managing Systemd Targets

Isolating Targets

Setting the Default Target

Working with GRUB 2

Understanding GRUB 2

Understanding GRUB 2 Configuration Files

Modifying Default GRUB 2 Boot Options

Summary

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Review Questions

End-of-Chapter Labs

Lab 17.1

Lab 17.2

Chapter 18 Essential Troubleshooting Skills

“Do I Know This Already?” Quiz

Foundation Topics

Understanding the RHEL 9 Boot Procedure

Passing Kernel Boot Arguments

Accessing the Boot Prompt

Starting a Troubleshooting Target

Using a Rescue Disk

Hivanetwork.com

https://hivanetwork.com/

Restoring System Access Using a Rescue Disk

Reinstalling GRUB Using a Rescue Disk

Re-creating the Initramfs Using a Rescue Disk

Fixing Common Issues

Reinstalling GRUB 2

Fixing the Initramfs

Recovering from File System Issues

Resetting the Root Password

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 18.1

Chapter 19 An Introduction to Automation with Bash Shell Scripting

“Do I Know This Already?” Quiz

Foundation Topics

Understanding Shell Scripting Core Elements

Using Variables and Input

Using Positional Parameters

Working with Variables

Using Conditional Loops

Working with if … then … else

Using || and &&

Applying for

Understanding while and until

Understanding case

Bash Shell Script Debugging

Summary

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 19.1

Part IV Managing Network Services

Chapter 20 Configuring SSH

“Do I Know This Already?” Quiz

Foundation Topics

Hardening the SSH Server

Limiting Root Access

Configuring Alternative Ports

Modifying SELinux to Allow for Port Changes

Limiting User Access

Using Other Useful sshd Options

Session Options

Connection Keepalive Options

Configuring Key-Based Authentication with

Passphrases

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 20.1

Chapter 21 Managing Apache HTTP Services

“Do I Know This Already?” Quiz

Foundation Topics

Configuring a Basic Apache Server

Installing the Required Software

Identifying the Main Configuration File

Creating Web Server Content

Understanding Apache Configuration Files

Creating Apache Virtual Hosts

Summary

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 21.1

Chapter 22 Managing SELinux

“Do I Know This Already?” Quiz

Foundation Topics

Understanding SELinux Working Modes

Understanding Context Settings and the Policy

Monitoring Current Context Labels

Setting Context Types

Finding the Context Type You Need

Restoring Default File Contexts

Managing Port Access

Using Boolean Settings to Modify SELinux Settings

Diagnosing and Addressing SELinux Policy Violations

Making SELinux Analyzing Easier

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 22.1

Chapter 23 Configuring a Firewall

“Do I Know This Already?” Quiz

Foundation Topics

Understanding Linux Firewalling

Understanding Previous Solutions

Understanding Firewalld

Understanding Firewalld Zones

Understanding Firewalld Services

Working with Firewalld

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 23.1

Chapter 24 Accessing Network Storage

“Do I Know This Already?” Quiz

Foundation Topics

Using NFS Services

Understanding NFS Security

RHEL NFS Versions

Setting Up NFS

Mounting the NFS Share

Mounting Remote File Systems Through fstab

Mounting NFS Shares Through fstab

Using Automount to Mount Remote File Systems

Understanding Automount

Defining Mounts in Automount

Configuring Automount for NFS

Using Wildcards in Automount

Summary

Exam Preparation Tasks

Review All Key Topics

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 24.1

Chapter 25 Configuring Time Services

“Do I Know This Already?” Quiz

Foundation Topics

Understanding Local Time

Using Network Time Protocol

Managing Time on Red Hat Enterprise Linux

Using date

Using hwclock

Using timedatectl

Managing Time Zone Settings

Configuring Time Service Clients

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 25.1

Chapter 26 Managing Containers

“Do I Know This Already?” Quiz

Foundation Topics

Understanding Containers

Container Host Requirements

Containers on RHEL 9

Container Orchestration

Running a Container

Working with Container Images

Using Registries

Finding Images

Inspecting Images

Performing Image Housekeeping

Building Images from a Containerfile

Managing Containers

Managing Container Status

Running Commands in a Container

Managing Container Ports

Managing Container Environment Variables

Managing Container Storage

Running Containers as Systemd Services

Summary

Exam Preparation Tasks

Review All Key Topics

Complete Tables and Lists from Memory

Define Key Terms

Review Questions

End-of-Chapter Lab

Lab 26.1

Chapter 27 Final Preparation

General Tips

Verifying Your Readiness

Registering for the Exam

On Exam Day

During the Exam

The Nondisclosure Agreement

Chapter 28 Theoretical Pre-Assessment Exam

Part V RHCSA 9 Practice Exams

Hivanetwork.com

https://hivanetwork.com/

RHCSA Practice Exam A

RHCSA Practice Exam B

Appendix A: Answers to the “Do I Know This Already?” Quizzes and

Review Questions

Appendix B: Red Hat RHCSA 9 Cert Guide: EX200 Exam Updates

Glossary

Index

Online Elements:

RHCSA Practice Exam C

RHCSA Practice Exam D

Appendix C: Memory Tables

Appendix D: Memory Tables Answer Key

Appendix E: Study Planner

Glossary

About the Author

Sander van Vugt is an independent Linux trainer, author, and

consultant living in the Netherlands. Sander is the author of the

best-selling Red Hat Certified System Administrator (RHCSA)

Complete Video Course and the Red Hat Certified Engineer (RHCE)

Complete Video Course. He has also written numerous books

about different Linux-related topics and many articles for Linux

publications around the world. Sander has been teaching Red

Hat, Linux+, and LFCS classes since 1994. As a consultant, he

specializes in Linux high-availability solutions and performance

optimization. You can find more information about Sander on his

website at https://www.sandervanvugt.com.

For more information about RHCSA certification and additional

resources, visit the author’s Red Hat Certification page at

https://www.rhatcert.com/.

https://www.sandervanvugt.com
https://www.rhatcert.com/

Acknowledgments

This book could not have been written without the help of all the

people who contributed to it. I want to thank the people at

Pearson, Denise Lincoln, Harry Misthos, and Ellie Bru in

particular. We’ve worked a lot together over the years, and this

book is another milestone on our road to success!

About the Technical Reviewers

John McDonough is a cloud architect/cloud DevOps engineer at

Fortinet, delivering innovative cloud deployment and

automation solutions to global customers. Prior to Fortinet, John

was a Developer Advocate for Cisco Systems’ DevNet. During his

almost 35-year career, John has contributed to open source

projects, Ansible, and OpenStack, has been a distinguished

speaker at more than 20 Cisco Live events, and has spoken about

open source contribution and data center and cloud automation

at many industry events, including HashiConf, SXSW,

Devopsdays, Cisco Live, Apidays, and more.

William “Bo” Rothwell, at the impressionable age of 14, crossed

paths with a TRS-80 Micro Computer System (affectionately

known as a Trash 80). Soon after, the adults responsible for Bo

made the mistake of leaving him alone with the TRS-80. He

immediately dismantled it and held his first computer class,

showing his friends what made this “computer thing” work.

Since this experience, Bo’s passion for understanding how

computers work and sharing this knowledge with others has

resulted in a rewarding career in IT training. His experience

includes Linux, Unix, IT security, DevOps, and programming

languages such as Perl, Python, Tcl, and Bash. Bo is the founder

and lead instructor of One Course Source, an IT training

organization.

Bo is an author of several books, including Linux for Developers:

Jumpstart Your Linux Programming Skills, Linux Essentials for

Cybersecurity, and LPIC-2 Cert Guide. He can be reached on

LinkedIn: https://www.linkedin.com/in/bo-rothwell/.

https://www.linkedin.com/in/bo-rothwell/

We Want to Hear from You!

As the reader of this book, you are our most important critic and

commentator. We value your opinion and want to know what

we’re doing right, what we could do better, what areas you’d like

to see us publish in, and any other words of wisdom you’re

willing to pass our way.

We welcome your comments. You can email or write to let us

know what you did or didn’t like about this book—as well as

what we can do to make our books better.

Please note that we cannot help you with technical problems

related to the topic of this book.

When you write, please be sure to include this book’s title and

author as well as your name and email address. We will carefully

review your comments and share them with the author and

editors who worked on the book.

Email: community@informit.com

mailto:community@informit.com

Reader Services

Register your copy of Red Hat RHCSA 9 Cert Guide: EX200 at

www.pearsonitcertification.com for convenient access to

downloads, updates, and corrections as they become available.

To start the registration process, go to

www.pearsonitcertification.com/register and log in or create an

account*. Enter the product ISBN 9780138096274 and click

Submit. When the process is complete, you will find any

available bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us to

receive exclusive discounts on future editions of this product.

http://www.pearsonitcertification.com
http://www.pearsonitcertification.com/register

Introduction

Welcome to the Red Hat RHCSA 9 Cert Guide: EX200. The Red Hat

exams are some of the toughest in the business, and this guide

will be an essential tool in helping you prepare to take the Red

Hat Certified System Administrator (RHCSA) exam.

As an instructor with more than 20 years of experience teaching

Red Hat Enterprise Linux, I have taken the RHCSA exam (and the

RHCE exam) numerous times so that I can keep current on the

progression of the exam, what is new, and what is different. I

share my knowledge with you in this comprehensive Cert Guide

so that you get the guidance you need to pass the RHCSA exam.

This book contains everything you need to know to pass the 2022

version of the RHCSA exam. As you will see, the Cert Guide

covers every objective in the exam and comprises 28 chapters,

more than 80 exercises, 4 practice exams, an extensive glossary,

and hours of video training. This Cert Guide is the best resource

you can get to prepare for and pass the RHCSA exam.

Goals and Methods

To learn the topics described in this book, it is recommended that

you create your own testing environment. You cannot become an

RHCSA without practicing a lot. Within the exercises included in

Hivanetwork.com

https://hivanetwork.com/

every chapter of the book, you will find all the examples you

need to understand what is on the exam and thoroughly learn

the material needed to pass it. The exercises in the chapters

provide step-by-step procedures that you can follow to find

working solutions so that you can get real experience before

taking the exam.

Each chapter also includes one or more end-of-chapter labs.

These labs ask questions that are similar to the questions that

you might encounter on the exam. Solutions are not provided for

these labs, and that is on purpose, because you need to train

yourself to verify your work before you take the exam. On the

exam, you also have to be able to verify for yourself whether the

solution is working as expected. Please be sure to also go to this

book’s companion website, which provides additional practice

exams, appendixes, and video training—all key components to

studying for and passing the exam.

To make working with the assignments in this book as easy as

possible, the complete lab environment is Bring Your Own. In

Chapter 1 you’ll learn how to install Red Hat Enterprise Linux 9

in a virtual machine, and that is all that is required to go through

the labs.

This book contains everything you need to pass the exam, but if

you want more guidance and practice, I have a number of video

training titles available to help you study, including the

following:

Linux Fundamentals, Second Edition

Red Hat Certified System Administrator (RHCSA) RHEL 9

Apart from these products, you might also appreciate my

website, https://rhatcert.com. Through this website, I provide

updates on anything that is useful to exam candidates. I

recommend that you register on the website so that I can send

you messages about important updates that I’ve made available.

Also, you’ll find occasional video updates on my YouTube

channel, rhatcert. I hope that all these resources provide you

with everything you need to pass the Red Hat Certified System

Administrator exam in an affordable way. Good luck!

Who Should Read This Book?

This book is written as an RHCSA exam preparation guide. That

means that you should read it if you want to increase your

chances of passing the RHCSA exam. A secondary use of this book

is as a reference guide for Red Hat system administrators. As an

administrator, you’ll like the explanations and procedures that

describe how to get things done on Red Hat Enterprise Linux.

https://rhatcert.com

So, why should you consider passing the RHCSA exam? That

question is simple to answer: Linux has become a very important

operating system, and qualified professionals are in demand all

over the world. If you want to work as a Linux professional and

prove your skills, the RHCSA certificate really helps and is one of

the most sought-after certificates in IT. Having this certificate

dramatically increases your chances of becoming hired as a

Linux professional.

How This Book Is Organized

This book is organized as a reference guide to help you prepare

for the RHCSA exam. If you’re new to the topics, you can just read

it cover to cover. You can also read the individual chapters that

you need to fine-tune your skills in this book. Every chapter

starts with a “Do I Know This Already?” quiz that asks questions

about ten topics that are covered in that chapter and provides a

simple tool to check whether you’re already familiar with the

topics covered in the chapter.

The book also provides two RHCSA practice exams; these are an

essential part of readying yourself for the real exam experience.

You might be able to provide the right answer to the multiple-

choice chapter questions, but that doesn’t mean that you can

create the configurations when you take the exam. The

companion website includes two extra practice exams, two hours

of video from the Red Hat Certified System Administrator (RHCSA)

RHEL 9, and additional appendixes. The following outline

describes the topics that are covered in the chapters:

Part I: Performing Basic System Management Tasks

Chapter 1: Installing Red Hat Enterprise Linux: In this

chapter, you learn how to install Red Hat Enterprise Linux

Server (RHEL). It also shows how to set up an environment

that can be used for working on the labs and exercises in this

book.

Chapter 2: Using Essential Tools: This chapter covers some of

the Linux basics, including working with the shell and Linux

commands. This chapter is particularly important if you’re

new to working with Linux.

Chapter 3: Essential File Management Tools: In this chapter,

you learn how to work with tools to manage the Linux file

system. This is an important skill because everything on Linux

is very file system oriented.

Chapter 4: Working with Text Files: In this chapter, you

learn how to work with text files. The chapter teaches you how

to create text files, but also how to look for specific content in

the different text files.

Chapter 5: Connecting to Red Hat Enterprise Linux 9: This

chapter describes the different methods that can be used to

connect to RHEL 9. It explains both local login and remote

login and the different terminal types used for this purpose.

Chapter 6: User and Group Management: On Linux, users

are entities that can be used by people or processes that need

access to specific resources. This chapter explains how to

create users and make user management easier by working

with groups.

Chapter 7: Permissions Management: In this chapter, you

learn how to manage Linux permissions through the basic

read, write, and execute permissions, but also through the

special permissions and access control lists.

Chapter 8: Configuring Networking: A server is useless if it

isn’t connected to a network. In this chapter, you learn the

essential skills required for managing network connections.

Part II: Operating Running Systems

Chapter 9: Managing Software: Red Hat offers an advanced

system for managing software packages. This chapter teaches

you how it works.

Chapter 10: Managing Processes: As an administrator, you

need to know how to work with the different tasks that can be

running on Linux. This chapter shows how to do this, by

sending signals to processes and by changing process priority.

Chapter 11: Working with Systemd: Systemd is the standard

manager of services and more in RHEL 9. In this chapter, you

learn how to manage services using Systemd.

Chapter 12: Scheduling Tasks: In this chapter, you learn how

to schedule a task for execution at a time that fits you best.

Chapter 13: Configuring Logging: As an administrator, you

need to know what’s happening on your server. The rsyslogd

and systemd-journald services are used for this purpose. This

chapter explains how to work with them.

Chapter 14: Managing Storage: Storage management is an

important skill to master as a Linux administrator. This

chapter explains how hard disks can be organized in

partitions and how these partitions can be mounted in the file

system.

Chapter 15: Managing Advanced Storage: Dividing disks in

partitions isn’t very flexible. If you need optimal flexibility,

you need LVM logical volumes, which are used by default

while you’re installing Red Hat Enterprise Linux. This chapter

shows how to manage those logical volumes. You’ll also learn

how to work with the Stratis and VDO storage techniques.

Part III: Performing Advanced System Administration Tasks

Chapter 16: Basic Kernel Management: The kernel is the part

of the operating system that takes care of handling hardware.

This chapter explains how that works and what an

administrator can do to analyze the current configuration and

manage hardware devices in case the automated procedure

doesn’t work well.

Chapter 17: Managing and Understanding the Boot

Procedure: Many things are happening when a Linux server

boots. This chapter describes the boot procedure in detail and

zooms in on vital aspects of the boot procedure, including the

GRUB 2 boot loader and the Systemd service manager.

Chapter 18: Essential Troubleshooting Skills: Sometimes a

misconfiguration can cause your server to no longer boot

properly. This chapter teaches you some of the techniques that

can be applied when normal server startup is no longer

possible.

Chapter 19: An Introduction to Automation with Bash Shell

Scripting: Some tasks are complex and need to be performed

repeatedly. Such tasks are ideal candidates for optimization

through shell scripts. In this chapter, you learn how to use

conditional structures in shell scripts to automate tasks

efficiently.

Part IV: Managing Network Services

Chapter 20: Configuring SSH: Secure Shell (SSH) is one of the

fundamental services that is enabled on RHEL 9 by default.

Using SSH allows you to connect to a server remotely. In this

chapter, you learn how to set up an SSH server.

Chapter 21: Managing Apache HTTP Services: Apache is the

most commonly used service on Linux. This chapter shows

how to set up Apache web services, including the

configuration of Apache virtual hosts.

Chapter 22: Managing SELinux: Many Linux administrators

only know how to switch off SELinux, because SELinux is hard

to manage and is often why services cannot be accessed. In

this chapter, you learn how SELinux works and what to do to

configure it so that your services are still working and will be

much better protected against possible abuse.

Chapter 23: Configuring a Firewall: Apart from SELinux,

RHEL 9 comes with a firewall as one of the main security

measures, which is implemented by the firewalld service. In

this chapter, you learn how this service is organized and what

you can do to block or enable access to specific services.

Chapter 24: Accessing Network Storage: While you’re

working in a server environment, managing remote mounts is

an important skill. A remote mount allows a client computer to

access a file system offered through a remote server. These

remote mounts can be made through a persistent mount in

/etc/fstab, or by using the automount service. This chapter

teaches how to set up either of them and shows how to

Hivanetwork.com

https://hivanetwork.com/

configure an FTP server.

Chapter 25: Configuring Time Services: For many services,

such as databases and Kerberos, it is essential to have the right

time. That’s why as an administrator you need to be able to

manage time on Linux. This chapter teaches you how.

Chapter 26: Managing Containers: Containers have

revolutionized datacenter IT. Where services not so long ago

were running directly on top of the server operating system,

nowadays services are often offered as containers. Red Hat

Enterprise Linux 9 includes a complete platform to run

containers. In this chapter, you learn how to work with it.

Chapter 27: Final Preparation: In this chapter, you get some

final exam preparation tasks. It contains many tips that help

you maximize your chances of passing the RHCSA exam.

Chapter 28: Theoretical Pre-Assessment Exam: This chapter

provides an RHCSA theoretical pre-assessment exam to help

you assess your skills and determine the best route forward

for studying for the exam.

Part V: RHCSA 9 Practice Exams

This part supplies two RHCSA practice exams so that you can test

your knowledge and skills further before taking the exams. Two

additional exams are on the companion website.

How to Use This Book

To help you customize your study time using this book, the core

chapters have several features that help you make the best use of

your time:

“Do I Know This Already?” Quizzes: Each chapter begins

with a quiz that helps you determine the amount of time you

need to spend studying that chapter and the specific topics

that you need to focus on.

Foundation Topics: These are the core sections of each

chapter. They explain the protocols, concepts, and

configuration for the topics in that chapter.

Exam Preparation Tasks: Following the “Foundation Topics”

section of each chapter, the “Exam Preparation Tasks” section

lists a series of study activities that you should complete. Each

chapter includes the activities that make the most sense for

studying the topics in that chapter. The activities include the

following:

Review All Key Topics: The Key Topic icon is shown next to

the most important items in the “Foundation Topics” section

of the chapter. The Review All Key Topics activity lists the

key topics from the chapter and their corresponding page

numbers. Although the contents of the entire chapter could

be on the exam, you should definitely know the information

listed in each key topic.

Complete Tables and Lists from Memory: To help you

exercise your memory and memorize some facts, many of

the more important lists and tables from the chapter are

included in a document on the companion website. This

document offers only partial information, allowing you to

complete the table or list.

Define Key Terms: This section lists the most important

terms from the chapter, asking you to write a short

definition and compare your answer to the glossary at the

end of this book.

Review Questions: These questions at the end of each chapter

measure insight into the topics that were discussed in the

chapter.

End-of-Chapter Labs: Real labs give you the right impression

of what an exam assignment looks like. The end-of-chapter

labs are your first step in finding out what the exam tasks

really look like.

Other Features

In addition to the features in each of the core chapters, this book,

as a whole, has additional study resources on the companion

website, including the following:

Two practice exams: Red Hat RHCSA 9 Cert Guide: EX200

comes with four practice exams. You will find two in the book

and two additional exams on the companion website; these

are provided as PDFs so you can get extra practice testing your

skills before taking the exam in the testing facility.

More than an hour of video training: The companion

website contains more than an hour of instruction from the

best-selling Red Hat Certified System Administrator (RHCSA)

RHEL 9 Complete Video Course.

Exam Objective to Chapter Mapping

Table 1 details where every objective in the RHCSA exam is

covered in this book so that you can more easily create a

successful plan for passing the exam.

Table 1 Coverage of RHCSA Objectives

Objective Chapter Title Chapter

Understand and use essential tools

Access a shell prompt and issue
commands with correct syntax

Using Essential Tools 2

Use input-output redirection (>, >>, |, 2>,
etc.)

Using Essential Tools 2

Use grep and regular expressions to
analyze text

Working with Text
Files

4

Access remote systems using SSH Connecting to Red Hat
Enterprise Linux 9

5

Log in and switch users in multiuser
targets

Connecting to Red Hat
Enterprise Linux 9

5

Archive, compress, unpack, and
uncompress files using tar, star, gzip, and
bzip2

Essential File
Management Tools

3

Create and edit text files Working with Text
Files

4

Create, delete, copy, and move files and
directories

Essential File
Management Tools

3

Create hard and soft links Essential File
Management Tools

3

List, set, and change standard ugo/rwx
permissions

Permissions
Management

7

Locate, read, and use system
documentation including man, info, and
files in /usr/share/doc

Using Essential Tools 2

Create simple shell scripts

Conditionally execute code (use of: if, test,
[], etc.)

An Introduction to
Automation with Bash
Shell Scripting

19

Use Looping constructs (for, etc.) to
process file, command line input

An Introduction to
Automation with Bash
Shell Scripting

19

Process script inputs ($1, $2, etc.) An Introduction to
Automation with Bash
Shell Scripting

19

Processing output of shell commands
within a script

An Introduction to
Automation with Bash
Shell Scripting

19

Operate running systems

Boot, reboot, and shut down a system
normally

Connecting to Red Hat
Enterprise Linux 9

5

Boot systems into different targets
manually

Essential
Troubleshooting Skills

18

Interrupt the boot process in order to gain
access to a system

Essential
Troubleshooting Skills

18

Identify CPU/memory intensive processes
and kill processes

Managing Processes 10

Adjust process scheduling Managing Processes 10

Manage tuning profiles Managing Processes 10

Locate and interpret system log files and
journals

Configuring Logging 13

Preserve system journals Configuring Logging 13

Start, stop, and check the status of
network services

Configuring
Networking

8

Securely transfer files between systems Connecting to Red Hat
Enterprise Linux 9

5

Configure local storage

List, create, and delete partitions on MBR
and GPT disks

Managing Storage 14

Create and remove physical volumes Managing Advanced
Storage

15

Assign physical volumes to volume groups Managing Advanced
Storage

15

Create and delete logical volumes Managing Advanced
Storage

15

Configure systems to mount file systems
at boot by universally unique ID (UUID) or
label

Managing Storage 14

Add new partitions and logical volumes,
and swap to a system nondestructively

Managing Storage 14

Create and configure file systems

Hivanetwork.com

https://hivanetwork.com/

Create, mount, unmount, and use vfat,
ext4, and xfs file systems

Managing Storage 14

Mount and unmount network file systems
using NFS

Accessing Network
Storage

24

Configure autofs Accessing Network
Storage

24

Extend existing logical volumes Managing Advanced
Storage

15

Create and configure set-GID directories
for collaboration

Permissions
Management

7

Diagnose and correct file permission
problems

Permissions
Management

7

Deploy, configure, and maintain systems

Schedule tasks using at and cron Scheduling Tasks 12

Start and stop services and configure
services to start automatically at boot

Working with
Systemd

11

Configure systems to boot into a specific
target automatically

Managing and
Understanding the
Boot Procedure

17

Configure time service clients Configuring Time
Services

25

Install and update software packages
from Red Hat Network, a remote
repository, or from the local file system

Managing Software 9

Modify the system bootloader Managing and
Understanding the
Boot Procedure

17

Manage basic networking

Configure IPv4 and IPv6 addresses Configuring
Networking

8

Configure hostname resolution Configuring
Networking

8

Configure network services to start
automatically at boot

Configuring
Networking

8

Restrict network access using firewall-
cmd/firewall

Configuring a
Firewall

23

Manage users and groups

Create, delete, and modify local user
accounts

User and Group
Management

6

Change passwords and adjust password
aging for local user accounts

User and Group
Management

6

Create, delete, and modify local groups
and group memberships

User and Group
Management

6

Configure superuser access User and Group
Management

6

Manage security

Configure firewall settings using firewall-
cmd/firewalld

Configuring a
Firewall

23

Manage default file permissions

Configure key-based authentication for
SSH

Configuring SSH 20

Set enforcing and permissive modes for
SELinux

Managing SELinux 22

List and identify SELinux file and process
context

Managing SELinux 22

Restore default file contexts Managing SELinux 22

Manage SELinux port labels

Use Boolean settings to modify system
SELinux settings

Managing SELinux 22

Diagnose and address routine SELinux
policy violations

Managing SELinux 22

Manage containers

Find and retrieve container images from a
remote registry

Managing Containers 26

Inspect container images Managing Containers 26

Perform container management using
commands such as podman and skopeo

Managing Containers 26

Build a container from a Containerfile Managing Containers 26

Perform basic container management
such as running, starting, stopping, and
listing running containers

Managing Containers 26

Run a service inside a container Managing Containers 26

Configure a container to start
automatically as a systemd service

Managing Containers 26

Attach persistent storage to a container Managing Containers 26

Where Are the Companion Content Files?

Register this print version of Red Hat RHCSA 9 Cert Guide: EX200

to access the bonus content online.

This print version of this title comes with a website of companion

content. You have online access to these files by following these

steps:

1. Go to www.pearsonitcertification.com/register and log in or

create a new account.

2. Enter the ISBN: 9780138096274.

3. Answer the challenge question as proof of purchase.

4. Click the Access Bonus Content link in the Registered

Products section of your account page to be taken to the page

where your downloadable content is available.

Please note that many of the companion content files can be very

large, especially image and video files.

If you are unable to locate the files for this title by following the

steps, please visit www.pearsonitcertification.com/contact and

select the Site Problems/Comments option. A customer service

representative will assist you.

This book also includes an exclusive offer for 70 percent off the

Red Hat Certified System Administrator (RHCSA) RHEL 9 Complete

Video Course.

http://www.pearsonitcertification.com/register
http://www.pearsonitcertification.com/contact

Figure Credits

Cover image: eniegoite/Shutterstock

Figure 1-1 through Figure 1-12, Figure 5-1, Figure 5-2, Figure 8-1,

Figure 8-2, Figure 8-4, Figure 8-5, Figure 10-1, Figure 18-1 through

Figure 18-5: Red Hat, Inc

Figure 8-3: GNOME Project

Part I

Performing Basic System Management
Tasks

Hivanetwork.com

https://hivanetwork.com/

Chapter 1

Installing Red Hat Enterprise Linux

The following topics are covered in this chapter:

Preparing to Install Red Hat Enterprise Linux

Performing an Installation

This chapter covers no exam objectives.

To learn how to work with Red Hat Enterprise Linux (RHEL) as

an administrator, you first need to install it. This chapter teaches

you how to set up an environment in which you can perform all

exercises in this book.

On the Red Hat Certified System Administrator (RHCSA) exam,

you do not need to install Red Hat Enterprise Linux. However,

because you need to install an environment that allows you to

test all items discussed in this book, you start by installing Red

Hat Enterprise Linux in this chapter. This chapter describes all

steps that you will encounter while performing an installation of

RHEL 9. It also discusses how to set up an environment in which

you can perform all exercises in this book.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table 1-

1 lists the major headings in this chapter and their corresponding

“Do I Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quizzes and Review Questions.”

Table 1-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Preparing to Install Red Hat Enterprise Linux 1, 2, 6

Performing an Installation 3–5, 7–10

 You want to install a test environment to practice for the RHCSA

exam. Which of the following distributions should you avoid?

1. The most recent Fedora version

2. CentOS Stream

3. AlmaLinux

4. Rocky Linux

 Which of the following features is available in both RHEL and

CentOS Stream?

1. Hardware certification

2. Software certification

3. The right to make support calls

4. Software updates

 Why should you install the server with a GUI installation

pattern?

1. To prepare for RHCSA, you need some tools that run in a GUI

only.

2. The minimal installation is incomplete.

3. If you do not install a GUI immediately, it is hard to add it

later.

4. The Server with GUI is the default installation that is

recommended by Red Hat.

 Which is the default file system that is used in RHEL 9?

1. Ext3

2. Ext4

3. XFS

4. Btrfs

 Which feature is supported in Ext4 but not in XFS?

1. The ability to shrink the file system

2. Snapshots

3. File system quota

4. A maximum size that goes beyond 2 TB

 Which of the following is not a reason why Fedora should be

avoided?

1. Fedora contains features that may or may not be available in

future RHEL releases.

2. Fedora distributions show a much later state of development

than RHEL.

3. Fedora software is not stable.

4. Software in Fedora may differ from the same software in

RHEL.

 Which of the following options is not available from the

Installation Summary screen?

1. Time & Date

2. Keyboard

3. Language Support

4. Troubleshoot an Existing Installation

 After setting the root password that you want to use, you cannot

proceed in the installation. What is the most likely reason?

1. The password is unsecure, and unsecure passwords are not

accepted.

2. The password does not meet requirements in the password

policy.

3. You also need to create a user.

4. If an unsecure password is used, you need to click Done twice.

 Which statement about the system language is not true?

1. You can change the system language from the Installation

Summary screen.

2. You can change the system language directly after booting

from the installation media.

3. When setting the installation language, you can also select a

keyboard layout.

4. After installation, you cannot change the language settings.

 When installing a server that uses LVM logical volumes, you’ll

get at least three storage volumes (partitions or LVM). Which of

the following is not part of them?

1. /boot

2. /var

3. /

4. swap

Foundation Topics

Preparing to Install Red Hat Enterprise Linux

Before you start installing Red Hat Enterprise Linux, a bit of

preparation is helpful, as discussed in this section. You first learn

what exactly Red Hat Enterprise Linux is. Then you learn how

you can get access to the software. We then discuss the setup

requirements. After you know all about these, you move on to

the next section, where you learn how to install Red Hat

Enterprise Linux.

What Is Red Hat Enterprise Linux 9 Server?

RHEL 9 is a Linux distribution. As you probably know, Linux is

a free operating system. That means that the source code of all

programs is available for free. However, some enterprise Linux

distributions are sold as commercial products, with bundled

support and maintenance, which is the case for RHEL 9. To use

RHEL 9 for free you can register for a free Red Hat developer

subscription at https://developers.redhat.com. With this

https://developers.redhat.com

subscription, you can run up to 16 unsupported instances of

RHEL in any environment you’d like.

To use RHEL 9, you need a subscription. Only if you use a valid

subscription can you get access to free patches and updates.

When you pay for Red Hat Enterprise Linux, Red Hat offers you

a supported Enterprise Linux operating system, which has some

key benefits that are a normal requirement in corporate

environments:

Monitored updates and patches that have gone through a

thorough testing procedure

Different levels of support and help, depending on which type

of subscription you have purchased

A certified operating system that is guaranteed to run and to

be supported on specific hardware models

A certified platform for running enterprise applications such

as SAP middleware, Oracle Database, and many more

Access to the Red Hat Customer Portal at

https://access.redhat.com, where you can find much detailed

documentation that is available to customers only

Red Hat understands that not all potential customers are

interested in these enterprise features. That is why Red Hat is

involved in two free alternatives also:

https://access.redhat.com

CentOS Stream

Fedora

Apart from these, there are also two community initiatives to

provide free alternatives to RHEL, which contain the same

software but without the Red Hat branding:

Rocky Linux

AlmaLinux

You learn more about these free alternatives in the upcoming

sections of this chapter.

Getting the Software

There are different ways to get the software required to perform

all exercises in this book. In this section, you learn what your

options are.

Using Red Hat Enterprise Linux

If you want to learn how to work with the different programs,

tools, and services that are provided in Red Hat Enterprise Linux

9, the easiest way is to use the developer program that Red Hat

offers. Go to https://developers.redhat.com to register for the free

developer program. This program gives you access to Red Hat

Hivanetwork.com

https://developers.redhat.com
https://hivanetwork.com/

Enterprise Linux for free, which allows you to work with RHEL

in your own test environment without having to purchase it.

The most important thing that you get in the official RHEL 9

Server release is access to the Red Hat Customer Portal. Through

this portal, you have access to a wide variety of information

regarding RHEL, in addition to updates provided through Red

Hat Network (RHN). In particular, the Red Hat knowledge base is

invaluable; you can use it to find answers to many common

problems that have been posted there by Red Hat consultants.

Using CentOS Stream

CentOS is the Community Enterprise Operating System. CentOS

started as a recompiled version of RHEL, with all items that were

not available for free removed from the RHEL software.

Basically, just the name was changed and the Red Hat logo

(which is proprietary) was removed from all the CentOS software

packages. Before 2020, CentOS provided a good and completely

free alternative to RHEL.

In the past years, Red Hat has acquired CentOS and changed its

policy. Nowadays CentOS is provided as CentOS Stream. CentOS

Stream is a Linux distribution where new features that will be

released in the next version of RHEL are introduced. In the RHEL

development cycle, new features are introduced in Fedora. After

testing in Fedora, some features are introduced in CentOS

Stream, which is used as the last testing platform before the

features are included in RHEL. New features are continuously

integrated in CentOS Stream, and for that reason, it doesn’t know

any sub-versions such as RHEL 9.1. This makes CentOS Stream

not a good candidate for production environments.

Other Distributions

Another Linux distribution closely related to Red Hat Enterprise

Linux is Fedora, a completely open source Linux distribution

that is available for free. Red Hat has a lot of staff dedicated to

contributing to the Fedora project, because Red Hat uses Fedora

as the development platform for RHEL. The result is that Fedora

offers access to the latest and greatest software, which in most

cases is much more recent than the thoroughly tested software

components of RHEL (which is why you should not use Fedora to

prepare for the RHCSA exam). Fedora is also used by Red Hat as a

testing ground for new features that might or might not be

included in future RHEL releases. If you were to choose Fedora,

you would be working with items that are not available in RHEL,

which means that you would have to do things differently on the

exam. So, don’t use it!

AlmaLinux and Rocky Linux are community distributions that

provide the same software as in RHEL, but without any license

restrictions or support. These distributions are independently

developed and in no way supervised by Red Hat. If you want to

use a 100 percent compatible alternative for RHEL without being

bound by any license conditions, both AlmaLinux and Rocky

Linux are good alternatives.

Understanding Access to Repositories

An important difference between RHEL and the other

distributions is the access to repositories. A repository is the

installation source used for installing software. If you are using

free software such as AlmaLinux, correct repositories are

automatically set up, and no further action is required. If you are

using Red Hat Enterprise Linux with a subscription, you’ll need

to use the Subscription Manager software to get access to

repositories.

Tip

If you install Red Hat from the RHEL 9 installation

disc but do not register it, you will not have access to

a repository, which is why you need to know how to

set up a repository access manually. Manually

setting up a repository is a key skill that you should

master on the exam. In Chapter 9, “Managing

Software,” you learn how to do this.

Setup Requirements

RHEL 9 can be installed on physical hardware and on virtual

hardware. For the availability of specific features, it does not

really matter which type of hardware is used, as long as the

following minimal conditions are met:

1 GiB of RAM

A 10-GiB hard disk

A network card

Tip

One GB is 1000 × 1000 × 1000 bytes. With hardware

vendors it is common to work with multiples of

1000; however, that doesn’t correspond with how a

computer works, which is why most computer

software works with KiB, MiB, and GiB instead. In

this context, one GiB is 1024 × 1024 × 1024 bytes

(which is 1.07 GB).

The preceding requirements allow you to run a minimal

installation of RHEL, but if you want to create an environment

that enables you to perform all exercises described in this book,

make sure to meet the following minimal requirements:

64-bit platform support, either Intel based or ARM

2 GiB of RAM

A 20-GiB hard disk

A DVD drive, either virtual or physical

A network card

Note

Some resources on the Internet mention different

minimal requirements. This is not a big deal for the

RHCSA exam.

Cert Guide Environment Description

To set up an environment to work your way through this book, I

suggest you start by installing one RHEL 9 server, following the

instructions in the next section. For the chapters in Part IV,

“Managing Network Services,” it is useful if you have a second

server as well. This second server doesn’t have any specific

requirements.

To set up the Cert Guide environment, I recommend that you use

a solution for desktop virtualization, such as VMware

Workstation (or VMware Fusion if you are on Mac), Microsoft

Hyper-V, or Oracle VM VirtualBox. Using one of these solutions

has the benefit that you can use snapshots, which enables you to

easily revert to a previous state of the configuration. Other

virtualization solutions, such as KVM, are supported as well, but

because KVM runs on Linux, you’ll need to have some Linux

knowledge already if you’d like to start with KVM. You can also

install on real hardware, but that solution will be less flexible.

Tip

In all chapters, you’ll find step-by-step exercises that

tell you exactly what to do to configure specific

services. At the end of all chapters, you’ll find end-

of-chapter labs that provide assignments that are

very similar to the types of assignments that you will

encounter on the exam. To get the most out of the

end-of-chapter labs, it is a good idea to start from a

clean environment. The most efficient way to do this

is by creating snapshots of the state of your virtual

machines when you are starting the chapter. This

allows you to revert to the state your virtual

machines were in when you started working on the

chapter, while still keeping all the work that you

have done in previous chapters.

Performing an Installation

Even if RHEL 9 can be installed from other media such as an

installation server or a USB key, the most common installation

starts from the installation DVD or, when you are working in a

virtual machine, from the installation DVD ISO file. So, take your

installation DVD (or its ISO) and boot the computer on which you

want to install the software. The following steps describe how to

proceed from the moment you see the installation DVD boot

screen:

Step 1. After booting from DVD, you’ll see the RHEL 9 boot menu. From

this menu, you can choose from different options:

Install Red Hat Enterprise Linux 9.0: Choose this for a

normal installation.

Test This Media & Install Red Hat Enterprise Linux 9.0:

Select this if before installing you want to test the installation

media. Note that testing will take a significant amount of time

and should not be necessary in most cases.

Troubleshooting: Select this option for some troubleshooting

options. This option is useful if you cannot boot normally from

your computer’s hard drive after RHEL has been installed on

it.

When the installation program starts, you can pass boot options

to the kernel to enable or disable specific features. To get access

to the prompt where you can add these options, press Tab from

the installation menu. This shows you the kernel boot line that

will be used and offers an option to change boot parameters.

Step 2. To start a normal installation, select the Install Red Hat

Enterprise Linux 9.0 boot option (see Figure 1-1). Note that the

exact sub-version will change if you install a later version of

RHEL 9.

Hivanetwork.com

https://hivanetwork.com/

Figure 1-1 Select Install Red Hat Enterprise Linux 9.0 to Start the Installation

Step 3. Once the base system from which you will perform the

installation has loaded, you see the Welcome to Red Hat

Enterprise Linux 9.0 screen. From this screen, you can select the

language and the keyboard setting. For the RHCSA exam, it

makes no sense to choose anything but English. If you are

working on a non-U.S. keyboard, from this screen you can select

the keyboard setting. Make sure to select the appropriate

keyboard setting, after which you click Continue to proceed (see

Figure 1-2).

Figure 1-2 Select the Appropriate Language and Keyboard Setting Before Continuing

Step 4. After selecting the keyboard and language settings, you’ll see the

Installation Summary screen (see Figure 1-3). From this screen,

you specify all settings you want to use. On this screen, you have

several different options:

Keyboard: Used to change the keyboard disposition.

Language Support: Used to add support for additional

languages.

Time & Date: Used to specify the current time and date, as

well as the time zone.

Root Password: Used to enable or disable the root user, and if

this user is enabled, to set a password.

Figure 1-3 Specify the Complete Configuration of Your Server from the Installation

Summary Screen

User Creation: Used to create a non-root user account and,

optionally, mark this user as an administrator.

Connect to Red Hat: Used to register your system with Red

Hat before starting the installation. Notice that all exercises in

this book assume that your system is not installed with Red

Hat!

Installation Source: Used to specify where to install from.

Typically, you’ll install from the installation DVD, which is

referred to as Local Media.

Software Selection: Offers different installation patterns, to

easily install a default set of packages.

Installation Destination: Used to identify to which disk(s) to

copy the files during the installation.

KDUMP: Allows you to use a KDUMP kernel. This is a kernel

that creates a core dump if anything goes wrong.

Network & Host Name: Allows you to set IP address and

related settings here.

Security Profile: Offers a limited set of security policies,

enabling you to easily harden a server.

From this Installation Summary screen, you can see whether

items still need to be configured—these items are marked with

an exclamation mark and a description in red text. As long as any

issues exist, you cannot click the Begin Installation button (that

is, it is disabled). You will not have to change settings for each

option in all cases, but for completeness, the following steps

describe the different settings available from the Installation

Summary screen, with recommended changes where

appropriate.

Step 5. Click the Keyboard option to view the settings to configure the

keyboard layout. From this screen, you can also select a

secondary keyboard layout, which is useful if your server is used

by administrators using different keyboard layouts. Not only are

different language settings supported, but also different

hardware layouts. If many administrators are using an Apple

Mac computer, for instance, you can select the standard

keyboard layout for Mac in the appropriate region.

After adding another keyboard layout, you can also configure

layout switching options. This is a key sequence that is used to

switch between different kinds of layout. Select Options to

specify the key combination you want to use for this purpose.

After specifying the configuration you want to use, click Done to

return to the Installation Summary screen.

Step 6. The Language Support option on the Installation Summary

screen is the same as the Language Support option that you used

in step 3 of this procedure. If you’ve already configured the

language settings to be used, you do not need to change anything

here.

Step 7. Click Time & Date to see a map of the world on which you can

easily click the time zone that you are in (see Figure 1-4).

Alternatively, you can select the region and city you are in from

the corresponding drop-down list boxes. You can also set the

current date and time, and after setting the network, you can

specify the Network Time Protocol (NTP) to be used to

synchronize time with time servers on the Internet. This option is

not accessible if the network is not accessible—you’ll have to set

up your network connection first to access this option. When

using network time, you can add the network time servers to be

used by clicking the configuration icon in the upper-right part of

the screen. After specifying the settings you want to use, click

Done in the upper-left corner of the screen to write the settings.

Figure 1-4 Selecting Time & Date Settings

Step 8. In the User Settings section, select Root Password. This opens

the screen that you can see in Figure 1-5. By default, the root user

account is disabled. If you want to be able to work as root, you

need to set a password here. Enter the same password twice, and

next click Done to continue.

Figure 1-5 Setting the Root User Password

Step 9. After you have set a password for the root user, scroll down to

get access to the User Creation option. Click to open it, so that

you can see the screen shown in Figure 1-6. In this screen, enter

student in the Full Name and User Name fields and set a

password. Also, select the option Make This User Administrator

and then click Done to continue.

Hivanetwork.com

https://hivanetwork.com/

Figure 1-6 Creating an Administrator User

Step 10. In the Software section of the Installation Summary screen,

click Installation Source to see the screen shown in Figure 1-7. If

you have booted from a regular installation disc, there is nothing

to specify. If you have booted from a minimal boot environment,

you can specify the network URL where additional packages are

available, as well as additional repositories that need to be used.

You do not have to do this for the RHCSA exam, but if ever you

are setting up an installation server, it is useful to know that this

option exists. Click Done.

Figure 1-7 Selecting the Installation Source

Step 11. Click Software Selection to access an important part of the

installation procedure (see Figure 1-8). From here, you select the

base environment and choose additional software available for

the selected environment. The Minimal Install option is very

common. This base environment allows you to install RHEL on a

minimal-size hard disk, providing just the essential software and

nothing else. For this book, I assume that you install the server

with the Server with GUI option. To perform the tasks that need

to be performed on the RHCSA exam, some easy-to-use graphical

tools are available, so it does make sense to install a server with a

graphical user interface (GUI), even if you would never do this in

a production environment. All additional packages can be added

later. At this point, you do not have to select any additional

packages. Click Done.

Figure 1-8 Make Sure You Select Server with GUI for Every Server You Are Going to
Use for the Exercises in This Book

Note

Some people say that real administrators do not use

the Server with GUI installation pattern. Preparing

for the RHCSA exam is not about being a real

administrator. The big advantage of using the Server

with GUI installation pattern is that it provides an

easy-to-use interface. Some tools discussed in this

book only run on a GUI. Also, when using a server

with a GUI, you can use multiple terminal windows

simultaneously, and that makes working with the

RHEL command line really easy!

Step 12. After installing the software, you need to specify where you

want to install to. Click Installation Destination on the

Installation Summary screen. By default, automatic partitioning

is selected, and you only need to approve the disk device you

want to use for automatic partitioning (see Figure 1-9). Many

advanced options are available as well. You can install using the

Automatic option under Storage Configuration to ensure that no

matter how your server is started, everything is configured to

have it boot correctly and your file systems are configured with

the default XFS file system.

Figure 1-9 Click Done to Proceed and Automatically Create the Storage Configuration

Step 13. The next part of the Installation Summary screen enables you to

set up networking. Notice that you must configure something. If

you do not do anything, your server might not be able to connect

to any network. Click Network & Host Name to set up

networking. This opens the screen that you see in Figure 1-10.

Figure 1-10 On the Network & Host Name Screen, Ensure the Network Card Is
Connected

After switching on the network connection (if it wasn’t already),

set the hostname to server1.example.com. Next, you could click

Configure to add further configuration. Networking is discussed

in detail in Chapter 8, “Configuring Networking,” so you do not

have to do that now and can just leave the default settings that

get an IP address from the Dynamic Host Configuration Protocol

(DHCP) server. Click Done when finished to return to the main

screen.

Step 14. The Security Profile option does not need any change.

Step 15. After specifying all settings from the Installation Summary

screen options, you can click Begin Installation to start the

installation. This immediately starts the installation procedure

and displays the screen shown in Figure 1-11.

Hivanetwork.com

https://hivanetwork.com/

Figure 1-11 Starting the Installation

Step 16. When the installation has completed, you’ll see the screen

shown in Figure 1-12. You’ll now need to click Reboot System to

restart the computer and finalize the installation.

Figure 1-12 Reboot to Finalize the Installation

Step 17. After rebooting, you have to go through a couple of additional

setup steps to set up your user environment. First, you’ll be

prompted to take a tour. Feel free to select No Thanks to skip this

tour, which otherwise would introduce you to the workings of

the GNOME graphical desktop. Next you will see a prompt

mentioning that your system is not registered. Click to dismiss

this prompt; you should NOT register your system at this

moment because that will complicate all the exercises about

repository management that you’ll find in Chapter 9.

Summary

In this chapter, you learned what Red Hat Enterprise Linux is

and how it relates to some other Linux distributions. You also

learned how to install Red Hat Enterprise Linux 9. You are now

ready to set up a basic environment that you can use to work on

all the exercises in this book.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 1-2 lists a

reference of these key topics and the page number on which

each is found.

Table 1-2 Key Topics for Chapter 1

Key Topic Element Description Page

List How to perform a RHEL 9 installation 10

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

distribution

Linux

Red Hat

CentOS

Fedora

AlmaLinux

Rocky Linux

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 You do not want to buy a RHEL license, but you want to create an

environment to practice for the exam. Which distribution should

you use?

 What happens to the network configuration if you don’t specify

anything during the installation?

 You want to install a minimal system. How much RAM do you

need?

 Why is it a good idea to have Internet access on all servers you

are installing?

 You want to install a virtual machine on a computer that does

not have an optical disk drive. What is the easiest alternative to

perform the installation?

 Why is it a good idea to install a GUI?

 What is the default file system on RHEL 9?

 Can you install RHEL if you do not have Internet access?

 What is the most important benefit of using Subscription

Manager to register your RHEL 9 installation?

 Which installation pattern should you use if you have a very

limited amount of disk space available?

End-of-Chapter Lab

In this chapter, you learned how to set up Red Hat Enterprise

Linux. At this point, you should have one server up and running.

For exercises in later chapters in this book, one additional server

is needed.

Lab 1.1

Repeat the procedure “Performing an Installation” to install one

more server. Details about the additional configuration on this

server follow in exercises in later chapters. For now, it is

sufficient to ensure that the following conditions are met:

Use the server name server2.example.com.

Set the network configuration to obtain an IP address

automatically.

Install this server using the Minimal Installation pattern.

Chapter 2

Using Essential Tools

The following topics are covered in this chapter:

Basic Shell Skills

Editing Files with vim

Understanding the Shell Environment

Finding Help

The following RHCSA exam objectives are covered in this

chapter:

Use input-output redirection (>, >>, |, 2>, etc.)

Access a shell prompt and issue commands with correct syntax

Create and edit text files

Locate, read, and use system documentation including man,

info, and files in /usr/share/doc

This chapter is dedicated to coverage of the basic Linux skills that

everyone should have before attempting to take the RHCSA

exam.

“Do I Know This Already?” Quiz

Hivanetwork.com

https://hivanetwork.com/

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table 2-

1 lists the major headings in this chapter and their corresponding

“Do I Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quizzes and Review Questions.”

Table 2-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Basic Shell Skills 1, 3–7

Editing Files with vim 8

Understanding the Shell Environment 2, 9

Finding Help 10

 Which of the following commands enables you to redirect

standard output as well as standard error to a file?

1. 1&2> file

2. > file 2>&1

3. >1&2 file

4. 1>2& file

 You want to set a local variable that will be available for every

user in every shell. Which of the following files should you use?

1. /etc/profile

2. /etc/bashrc

3. ~/.bash_profile

4. ~/.bashrc

 A user has created a script with the name myscript. The user

tries to run the script using the command myscript, but it is not

started. The user has verified that the script permissions are set

as executable. Which of the following is the most likely

explanation?

1. An internal command is preventing the startup of the script.

2. Users are not allowed to run scripts.

3. The directory that contains the script is not in the $PATH

variable.

4. The script does not have appropriate permissions.

 You need the output of the command ls to be used as input for

the less command. Which of the following examples will do that

for you?

1. ls > less

2. ls >> less

3. ls >| less

4. ls | less

 A user by accident has typed a password, which now shows as

item 299 in history. Which of the following do you recommend to

ensure the password is not stored in history?

1. Remove the ~/.bash_history file and type history -c.

2. Type history -c.

3. Remove the ~/.bash_history file.

4. Type history -d 299.

 Which of the following is not a valid method to repeat a

command from history?

1. Press Ctrl-r and start typing a part of the command.

2. Type ! followed by the first letters in the command.

3. Type ! followed by the number of the command as listed in

history.

4. Press Ctrl-x followed by the number in history.

 For which of the following items can Bash completion be used?

1. Commands

2. Files

3. Variables

4. All of the above

 Which of the following commands enables you to replace every

occurrence of old with new in a text file that is opened with vim?

1. :%s/old/new/g

2. :%r/old/new/

3. :%s/old/new/

4. r:/old/new

 Which approach works best if during the login process you want

to show a message to all users who have just logged in to a shell

session on your server?

1. Put the message in /etc/issue.

2. Put the message in /etc/motd.

3. Put the message in /etc/profile.

4. Put the message in /etc/bashrc.

 You are using man -k user, but you get the message “nothing

appropriate.” Which of the following solutions is most likely to

fix this for you?

1. Type sudo updatedb to update the mandb database.

2. Type sudo makewhatis to update the mandb database.

3. Type sudo mandb to update the mandb database.

4. Use man -K, not man -k.

Foundation Topics

Basic Shell Skills

The shell is the default working environment for a Linux

administrator. It is the environment where users and

administrators enter commands that are executed by the

operating system. Different shells for Linux are available, but

Bash is the most common shell. So, when we are talking about

“the shell” in this book, we are actually talking about the Bash

shell. This chapter provides an overview of some of the items

that you will encounter when working with the shell.

Understanding Commands

Working with the shell is all about working with command

syntax. Typically, command syntax has three basic parts: the

command, its options, and its arguments.

The command is the command itself, such as ls. This command

shows a list of files in the current directory. To modify the

behavior of the command, you can use options. Options are a

part of the program code, and they modify what the command is

doing. For instance, when you use the -l (lowercase letter l, not

number 1) option with the ls command, a long listing of

filenames and properties is displayed.

The word argument is a bit confusing. Generally speaking, it

refers to anything that the command addresses, so anything you

put after the command is an argument (including the options).

Apart from the options that can be used as an argument,

commands can have other arguments as well, which serve as a

target to the command.

Let’s have a look at an example: the command ls -l /etc. This

command has two different arguments: -l and /etc. The first

argument is an option, modifying the behavior of the command.

The second argument is a target, specifying where the command

should do its work. You’ll find these three elements in nearly all

commands you work with in a Linux environment.

Executing Commands

The purpose of the Linux shell is to provide an environment in

which commands can be executed. The shell takes care of

interpreting the command that a user has entered correctly. To

do this, the shell makes a distinction between three kinds of

commands:

Aliases

Internal commands

External commands

An alias is a command that a user can define as needed. Some

aliases are provided by default; type alias on the command line

to get an overview. To define an alias, use alias

newcommand=‘oldcommand’ (as in the default alias ll=‘ls -l --

color=auto’ that has already been created on your system).

Aliases are executed before anything else. So, if you have an alias

with the name ll but also a command with the name ll, the alias

will always take precedence for the command, unless a complete

pathname like /usr/bin/ls is used.

An internal command is a command that is a part of the shell

itself and, as such, doesn’t have to be loaded from disk

separately. An external command is a command that exists as

an executable file on the disk of the computer. Because it has to

be read from disk the first time it is used, it is a bit slower. When

a user executes a command, the shell first looks to determine

whether it is an internal command; if it is not, it looks for an

executable file with a name that matches the command on disk.

To find out whether a command is a Bash internal command or

an executable file on disk, you can use the type command. Use

for instance type pwd to find out that the pwd command that

will be executed is really an alias.

To change how external commands are found by the shell, use

the $PATH variable. This variable defines a list of directories that

is searched for a matching filename when a user enters a

command. To find out which exact command the shell will be

using, you can use the which command. For instance, type which

ls to find out where the shell will get the ls command from. An

even stronger command is type, which will also work on internal

commands and aliases.

You should notice that, for security reasons, the current directory

is not in the $PATH variable and Linux does not look in the

current directory to see whether a specific command is available

from that directory. That is why you need to start a command

that is in the current directory but nowhere in the $PATH by

including ./ in front of it. The dot stands for the current directory,

and by running it as ./, you tell Bash to look for the command in

the current directory. Although running commands this way is

Hivanetwork.com

https://hivanetwork.com/

not very common, you will have to do it to run scripts that you’ve

created in your current directory.

The $PATH variable can be set for specific users, but in general,

most users will be using the same $PATH variable. The only

exception to this is the user root, who needs access to specific

administration commands. In Exercise 2-1, you learn some of the

basics about working with commands.

Exercise 2-1 Using Internal and External Commands from the

Shell

1. Authenticate on the server1 server that you created in

Chapter 1, “Installing Red Hat Enterprise Linux,” as the user

that you also created in Chapter 1 when installing your server.

2. Click Activities. In the Search bar that appears, type term and

click the terminal icon that shows to open a terminal. All

exercises in this book are intended to be executed in a

terminal.

3. Type time ls. This executes the ls command where the Bash

internal time shows information about the time it took to

complete this command.

4. Type which time. This shows the filename /usr/bin/time that

was found in the $PATH variable.

5. Type time, which shows that time is a shell keyword.

6. Type echo $PATH to show the contents of the $PATH

variable. You can see that /usr/bin is included in the list, but

because there also is an internal command time, the time

command from the path will not be executed unless you tell

the shell specifically to do so—the command in step 2 has

executed the internal command for you because of command

precedence.

7. Type /usr/bin/time ls to run the /usr/bin/time command

when executing ls. You’ll notice that the output differs

completely. Ignore the meaning of the output; we get back to

that later. What matters for now is that you realize that these

are really two different commands.

I/O Redirection

By default, when a command is executed, it shows its results on

the screen of the computer you are working on. The computer

monitor is used as the standard destination for output, which is

also referred to as STDOUT. The shell also has default standard

destinations to send error messages to (STDERR) and to accept

input (STDIN). Table 2-2 gives an overview of all three.

Table 2-2 Standard Input, Output, and Error Overview

Name Default
Destination

Use in
Redirection

File Descriptor
Number

STDIN Computer
keyboard

< (same as 0<) 0

STDOUT Computer monitor > (same as 1>) 1

STDERR Computer monitor 2> 2

So if you run a command, that command would expect input

from the keyboard, and it would normally send its output to the

monitor of your computer without making a distinction between

normal output and errors. Some commands, however, are

started in the background and not from a current terminal

session, so these commands do not have a monitor or console

session to send their output to, and they do not listen to keyboard

input to accept their standard input. That is where redirection

comes in handy. Redirection is also useful if you want to work

with input from an alternative location, such as a file.

Programs started from the command line have no idea what they

are reading from or writing to. They just read from what the

Linux kernel calls file descriptor 0 if they want to read from

standard input, and they write to file descriptor number 1 to

display non-error output (also known as “standard output”) and

to file descriptor 2 if they have error messages to be output. By

default, these file descriptors are connected to the keyboard

and the screen. If you use redirection symbols such as <, >, and |,

the shell connects the file descriptors to files or other commands.

Let’s first look at the redirectors < and >. Later we discuss pipes

(the | symbol). Table 2-3 shows the most common redirectors

that are used from the Bash shell.

Table 2-3 Common Bash Redirectors

Redirector Explanation

> (same as
1>)

Redirects STDOUT. If redirection is to a file, the current contents of
that file are overwritten.

>> (same
as 1>>)

Redirects STDOUT in append mode. If output is written to a file,
the output is appended to that file.

2> Redirects STDERR.

2>&1 Redirects STDERR to the same destination as STDOUT. Notice that

this has to be used in combination with normal output redirection,
as in ls whuhiu > errout 2>&1.

< (same as
0<)

Redirects STDIN.

In I/O redirection, files can be used to replace the default STDIN,

STDOUT, and STDERR. You can also redirect to device files. A

device file on Linux is a file that is used to access specific

hardware. Your hard disk, for instance, can be referred to as

/dev/sda in most cases, the console of your server is known as

/dev/console or /dev/tty1, and if you want to discard a command’s

output, you can redirect to /dev/null. Note that to access most

device files, you need to have root privileges.

Using Pipes

Whereas an I/O redirector is used as an alternative for a

keyboard and computer monitor, a pipe can be used to catch the

output of one command and use that as input for a second

command. If a user runs the command ls, for instance, the

output of the command is shown onscreen, because the screen is

the default STDOUT. If the user uses ls | less, the commands ls

and less are started in parallel. The standard output of the ls

command is connected to the standard input of less. Everything

that ls writes to the standard output will become available for

reading from standard input in less. The result is that the output

of ls is shown in the less pager, where the user can browse up

and down through the results easily.

As a Linux administrator, you will use pipes a lot. Using pipes

makes Linux a flexible operating system; by combining multiple

commands using pipes, you can create “super” commands that

make almost anything possible. In Exercise 2-2, you use I/O

redirectors and pipes.

Exercise 2-2 Using I/O Redirection and Pipes

1. Open a shell as user student and type cd without any

arguments. This ensures that the home directory of this user is

the current directory while working on this exercise. Type

pwd to verify this.

2. Type ls. You’ll see the ls command output onscreen.

3. Type ls > /dev/null. This redirects STDOUT to the null device,

with the result that you will not see it.

4. Type ls ilwehgi > /dev/null. This command shows a “no such

file or directory” message onscreen. You see the message

because it is not STDOUT, but rather an error message that is

written to STDERR.

5. Type ls ilwehgi 2> /dev/null. Now you will no longer see the

error message.

6. Type ls ilwehgi /etc 2> /dev/null. This shows the contents of

the /etc folder while hiding the error message.

7. Type ls ilwehgi /etc 2> /dev/null > output. In this command,

you still write the error message to /dev/null while sending

STDOUT to a file with the name output that will be created in

your home directory.

8. Type cat output to show the contents of this file.

9. Type echo hello > output. This overwrites the contents of the

output file. Verify this by using cat output again.

10. Type ls >> output. This appends the result of the ls command

to the output file. Type cat output to verify.

11. Type ls -R /. This shows a long list of files and folders scrolling

over your computer monitor. (You might want to press Ctrl-C

to stop [or wait some time]).

12. Type ls -R /. | less. This shows the same result, but in the less

pager, where you can scroll up and down using the arrow

keys on your keyboard.

13. Type q to close less. This will also end the ls program.

14. Type ls > /dev/tty1. This gives an error message because you

are executing the command as an ordinary user, and ordinary

users cannot address device files directly (unless you were

logged in to tty1). Only the user root has permission to write to

device files directly.

History

A convenient feature of the Bash shell is the Bash history. Bash is

configured by default to keep the last 1,000 commands a user

used. When a shell session is closed, the history of that session is

updated to the history file. The name of this file is .bash_history

and it is created in the home directory of the user who started a

specific shell session. Notice that the history file is written to only

when the shell session is closed; until that moment, all

commands in the history are kept in memory.

The history feature makes it easy to repeat complex commands.

There are several ways of working with history:

Type history to show a list of all commands in the Bash

history.

Press Ctrl-r to open the prompt from which you can do

backward searches in commands that you have previously

used. Just type a string and Bash will look backward in the

command history for any command containing that string as

the command name or one of its arguments. Press Ctrl-r again

to repeat the last backward search.

Type !number to execute a command with a specific number

Hivanetwork.com

https://hivanetwork.com/

from history.

Use history -d number to delete a specific command from

history. Notice that this command will renumber all other

lines in history: if you’ve removed line 31, the line previously

numbered as line 32 will now be line 31.

Type !sometext to execute the last command that starts with

sometext. Notice that this is a potentially dangerous command

because the command that was found is executed

immediately!

In some cases it might be necessary to wipe the Bash history. This

capability is useful, for instance, if you’ve typed a password in

clear text by accident. If that happens, you can type history -c to

clear the current history. Commands from this session won’t be

written to the history file when you exit the current session. If

you want to remove both the current history and the contents of

the .bash_history file, then type history -w immediately after

running the history -c command. Alternatively, use history -d

number to remove a specific command from history.

Exercise 2-3 guides you through some history features.

Exercise 2-3 Working with History

1. Make sure that you have opened a shell as user student.

2. Type history to get an overview of commands that you have

previously used.

3. Type some commands, such as the following:
ls
pwd
cat /etc/hosts
ls –l

The goal is to fill the history a bit.

4. Open a second terminal on your server. To do so, click

Activities in the upper-left corner, and in the Search bar, type

term. Next, click the terminal window to start it.

5. Type history from this second terminal window. Notice that

you do not see the commands that you just typed in the other

terminal. The reason is that the history file has not been

updated yet.

6. From the first terminal session, press Ctrl-r. From the prompt

that opens now, type ls. You’ll see the last ls command you

used. Press Ctrl-r again. You’ll now see that you are looking

backward and that the previous ls command is highlighted.

Press Enter to execute it.

7. Type history | grep cat. The grep command searches the

history output for any commands that contain the text cat.

Note the command number of one of the cat commands you

have previously used.

8. Type !nn, where nn is replaced by the number you noted in

step 7. You’ll see that the last cat command is repeated.

9. Close this terminal by typing exit.

10. From the remaining terminal window, type history -c. This

wipes all history that is currently in memory. Close this

terminal session as well.

11. Open a new terminal session and type history. The result may

be a bit unexpected, but you’ll see a list of commands anyway.

The reason is that history -c clears the in-memory history, but

it does not remove the .bash_history file in your home

directory.

Bash Completion

Another useful feature of the Bash shell is command-line

completion. This feature helps you to find the command that you

need, and it also works on variables and filenames.

Bash completion is useful when you’re working with commands.

Just type the beginning of a command and press the Tab key. If

there is only one option for completion, Bash will complete the

command automatically for you. If there are several options, you

need to press Tab once more to get an overview of all the

available options. In Exercise 2-4, you learn how to work with

these great features.

Exercise 2-4 Using Bash Completion

1. Still from a user shell, type gd and press Tab. You’ll see that

nothing happens.

2. Press Tab again. Bash now shows a short list of all commands

that start with the letters gd.

3. To make it clear to Bash what you want, type i (so that your

prompt at this point shows the command gdi). Press Tab

again. Bash now completes the command to gdisk. Press Enter

to launch it, and press Enter again to close it.

4. Use cd /etc to go to the /etc directory.

5. Type cat ps and press Tab. Because there is one file only that

starts with pas, Bash knows what to do and automatically

completes the filename to passwd. Press Enter to execute the

command.

Editing Files with vim

Managing Linux often means working with files. Most things that

are configured on Linux are configured through files. To

complete administrative tasks, you often need to change the

contents of a configuration file with a text editor.

Over the years, many text editors have been created for Linux.

One editor really matters, though, and that is vi. Even if some

other text editors are easier to use, vi is the only text editor that

is always available. That is why as a Linux administrator you

need to know how to work with vi. One common alternative is

vim, or “vi improved”; it is a complete rewrite of vi with a lot of

enhancements that make working with vi easier, such as syntax

highlighting for many configuration files, which makes it easy to

recognize typing errors that you have made. Everything that you

learn in this section about vim works on vi as well.

An important concept when working with vim is that it uses

different modes. Two of them are particularly important:

command mode and input mode. These modes often cause

confusion because in command mode you can just enter a

command and you cannot edit the contents of a text file. To

change the contents of a text file, you need to get to input mode.

The challenge when working with vim is the vast number of

commands that are available. Some people have even produced

vim cheat sheets, listing all available commands. Do not use

them. Instead, focus on the minimal number of commands that

are really important. Table 2-4 summarizes the most essential

vim commands. Use these (and only these) and you’ll do fine on

the RHCSA exam.

Tip

Do not try to work with as many commands as

possible when working with vim. Just use a minimal

set of commands and use them often. You’ll see;

you’ll get used to these commands and remember

them on the exam. Also, you may like the vimtutor

command. (You may have to use dnf install vim-

enhanced to install it; Chapter 9, “Managing

Software,” provides more details about software

installation.) This command opens a vim tutorial

that has you work through some nice additional

exercises.

Table 2-4 vim Essential Commands

vim
Command Explanation

Esc Switches from input mode to command mode. Press this key
before typing any command.

i, a Switches from command mode to input mode at (i) or after (a)
the current cursor position.

o Opens a new line below the current cursor position and goes to
input mode.

:wq Writes the current file and quits.

:q! Quits the file without applying any changes. The ! forces the
command to do its work. Add the ! only if you really know
what you are doing.

:w filename Writes the current file with a new filename.

dd Deletes the current line and places the contents of the deleted
line into memory.

yy Copies the current line.

p Pastes the contents that have been cut or copied into memory.

v Enters visual mode, which allows you to select a block of text
using the arrow keys. Use d to cut the selection or y to copy it.

u Undoes the last command. Repeat as often as necessary.

Ctrl-r Redoes the last undo. (Cannot be repeated more than once.)

gg Goes to the first line in the document.

G Goes to the last line in the document.

/text Searches for text from the current cursor position forward.

?text Searches for text from the current cursor position backward.

^ Goes to the first position in the current line.

$ Goes to the last position in the current line.

!ls Adds the output of ls (or any other command) in the current
file.

:%s/old/new/g Replaces all occurrences of old with new.

Hivanetwork.com

https://hivanetwork.com/

Now you know the most essential commands for working with

vim. Exercise 2-5 gives you the opportunity to test them.

Exercise 2-5 vim Practice

1. Type vim ~/testfile. This starts vim and opens a file with the

name testfile in ~, which represents your current home

directory.

2. Type i to enter input mode and then type the following text:

 cow
 sheep
 ox
 chicken
 snake
 fish
 oxygen

3. Press Esc to get back to command mode and type :w to write

the file using the same filename.

4. Type :3 to go to line number 3.

5. Type dd to delete this line.

6. Type dd again to delete another line.

7. Type u to undo the last deletion.

8. Type o to open a new line.

9. Enter some more text at the current cursor position:

 tree
 farm

10. Press Esc to get back into command mode.

11. Type :%s/ox/OX/g and note the changes to the line that

contained ox.

12. Type :wq to write the file and quit. If for some reason that

does not work, use :wq!

Understanding the Shell Environment

When you are working from a shell, an environment is created

to ensure that all that is happening is happening the right way.

This environment consists of variables that define the user

environment, such as the $PATH variable discussed earlier. In

this section, you get a brief overview of the shell environment

and how it is created.

Understanding Variables

The Linux shell environment consists of many variables.

Variables are fixed names that can be assigned dynamic values.

An example of a variable is $LANG, which in my shell is set to

en_US.UTF-8. This value (which may differ on your system)

ensures that I can work in the English language using settings

that are common in the English language (think of how date and

time are displayed).

The advantage of working with variables for scripts and

programs is that the program only has to use the name of the

variable without taking interest in the specific value that is

assigned to the variable. Because different users have different

needs, the variables that are set in a user environment will

differ. To get an overview of the current variables defined in

your shell environment, type the env command, which will show

environment variables that are used to set important system

settings. Example 2-1 shows some lines of the output of this

command.

Example 2-1 Displaying the Current Environment

Click here to view code image

[user@server1 ~]$ env
MAIL=/var/spool/mail/user
PATH=/usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/home/
user/.local/bin:/home/user/bin
PWD=/home/user
LANG=en_US.UTF-8
HISTCONTROL=ignoredups

SHLVL=1
HOME=/home/user
LOGNAME=user
LESSOPEN=||/usr/bin/lesspipe.sh %s
_=/bin/env
OLDPWD=/etc

As you can see from Example 2-1, to define a variable, you type

the name of the variable, followed by an equal sign (=) and the

value that is assigned to the specific variable. To read the value

of a variable, you can use the echo command (among others),

followed by the name of the variable, as in echo $PATH, which

reads the current value of the $PATH variable and prints that to

STDOUT. For now, you do not have to know much more about

variables. You can read about more advanced use of variables in

Chapter 19, “An Introduction to Automation with Bash Shell

Scripting.”

Recognizing Environment Configuration Files

When a user logs in, an environment is created for that user

automatically. This happens based on the following four

configuration files, where some script code can be specified and

where variables can be defined:

/etc/profile: This is the generic file that is processed by all

users upon login.

/etc/bashrc: This file is processed when subshells are started.

~/.bash_profile: In this file, user-specific login shell variables

can be defined.

~/.bashrc: In this user-specific file, subshell variables can be

defined.

As you have seen, in these files a distinction is made between a

login shell and a subshell. A login shell is the first shell that is

opened for a user after the user has logged in. From the login

shell, a user may run scripts, which will start a subshell of that

login shell. Bash allows for the creation of a different

environment in the login shell and in the subshell, but to make

sure the same settings are used in all shells, it’s a good idea to

include subshell settings in the login shell as well.

Using /etc/motd and /etc/issue

To display messages during the login process, Bash uses the

/etc/motd and the /etc/issue files. Messages in /etc/motd display

after a user has successfully logged in to a shell. (Note that users

in a graphical environment do not see its contents after a

graphical login.) Using /etc/motd can be a convenient way for

system administrators to inform users about an issue or a

security policy, for example.

Another way to send information to users is by using /etc/issue.

The contents of this file display before the user logs in from a

text-based console interface. Using this file provides an excellent

means of specifying login instructions to users who are not

logged in yet.

In Exercise 2-6, you can practice the topics that have been

discussed in this section.

Exercise 2-6 Managing the Shell Environment

1. Open a shell in which you are user student.

2. Type echo $LANG to show the contents of the variable that

sets your system keyboard and language settings.

3. Type ls --help. You’ll see that help about the ls command is

displayed in the current language settings of your computer.

4. Type LANG=es_ES.UTF-8. This temporarily sets the language

variable to Spanish. Type ls --help again to verify.

5. Type exit to close your terminal window. Because you have

not changed the contents of any of the previously mentioned

files, when you open a new shell, the original value of the

LANG variable will be used.

6. Open a shell as user again.

7. Verify the current value of the LANG variable by typing echo

$LANG.

8. Type vim .bashrc to open the .bashrc configuration file.

9. In this file, add the line COLOR=red to set a variable with the

name COLOR and assign it the value red. Notice that this

variable doesn’t really change anything on your system; it just

sets a variable.

10. Close the user shell and open a new user shell.

11. Verify that the variable COLOR has been set, by using echo

$COLOR. Because the .bashrc file is included in the login

procedure, the variable is set after logging in.

Finding Help

On an average Linux system, hundreds of commands are

available—way too many to ever be able to remember all of

them, which is why using the help resources on your computer is

so very important. The man command is the most important

resource for getting help about command syntax and usage.

Apart from that, you can show a compact list of command

options by using command --help.

Using --help

The quickest way to get an overview of how to use a command is

by running the command with the --help option. Nearly all

commands will display a usage summary when using this option.

In this summary you’ll see all options that can be used with the

command. Notice that there is no strict order for the options; you

can use them in any order you’d like.

The list of options that is shown in this way is of use mainly

when you already have a generic understanding of how to use

the command and need a quick overview of options available

with the command—it doesn’t give detailed information that will

help users who don’t know the command yet.

Tip

Nearly all commands provide a short overview of

help when the option --help is used. Some

commands do not honor that option and consider it

erroneous. Fortunately, these commands will be so

friendly as to show an error message, displaying

valid options with the command, which effectively

means that you’ll get what you needed anyway.

Using man

When using the Linux command line, you will at some point

Hivanetwork.com

https://hivanetwork.com/

consult man pages. The man command is what makes working

from the command line doable. If you do not know how a

command is used, the man page of that command will provide

valuable insight. This section covers a few man essentials.

To start with, the most important parts of the man page in

general are at the bottom of the man page. Here you’ll find two

important sections: In many cases there are examples; if there

are no examples, there is always a “See Also” section. The topics

you find here are related man pages, which is useful if you have

just not hit the right man page. To get to the bottom of the man

page as fast as possible, use the G command. You can also type

/example to search the man page for any examples. Figure 2-1

shows what the end of a man page may look like.

Figure 2-1 Sample man Page Contents

Finding the Right man Page

To find information in man pages, you can search the mandb

database by using apropos or man -k. If the database is current,

getting access to the information you need is easy. Just type man

-k, followed by the keyword you want to search for. This

command looks in the summary of all man pages that are stored

in the mandb database. If you get “nothing appropriate” when

running this command, consult the section “Updating mandb”

later in this chapter. Example 2-2 shows a partial result of this

command.

Example 2-2 Searching man Pages with man –k

Click here to view code image

[root@server1 ~]# man -k partition
addpart (8) - simple wrapper around the "add partition" ioctl
cfdisk (8) - display or manipulate disk partition table
cgdisk (8) - Curses-based GUID partition table (GPT)
manipulator
delpart (8) - simple wrapper around the "del partition" ioctl
fdisk (8) - manipulate disk partition table
fixparts (8) - MBR partition table repair utility
gdisk (8) - Interactive GUID partition table (GPT)
manipulator
iostat (1) - Report Central Processing Unit (CPU) statistics
and in...
kpartx (8) - Create device maps from partition tables
mpartition (1) - partition an MSDOS hard disk
os-prober (1) - Discover bootable partitions on the local
system
partprobe (8) - inform the OS of partition table changes
partx (8) - tell the Linux kernel about the presence and
numbering...
pvcreate (8) - initialize a disk or partition for use by LVM
pvresize (8) - resize a disk or partition in use by LVM2

resizepart (8) - simple wrapper around the "resize partition"
ioctl
sfdisk (8) - partition table manipulator for Linux
sgdisk (- Command-line GUID partition table (GPT)
manipulator fo...
systemd-efi-boot-generator (8) - Generator for automatically mounting
the EFI...
systemd-gpt-auto-generator (8) - Generator for automatically
discovering and ..

Based on the information that man -k is giving you, you can

probably identify the man page that you need to access to do

whatever you want to accomplish. Be aware, however, that man

-k is not perfect; it searches only the short summary of each

command that is installed. If your keyword is not in the

summary, you’ll find nothing and get a “nothing appropriate”

error message.

Tip

Instead of using man -k, you can use the apropos

command, which is equivalent to man -k.

When using man -k to find specific information from the man

pages, you’ll sometimes get a load of information. If that

happens, it might help to filter down the results a bit by using the

grep command. But if you want to do that, it is important that

you know what you are looking for.

Man pages are categorized in different sections. The most

relevant sections for system administrators are as follows:

1: Executable programs or shell commands

5: File formats and conventions

8: System administration commands

There are also sections that provide in-depth details about your

Linux system, such as the sections about system calls and library

calls. When using man -k, you’ll get results from all of these

sections. To limit the results that display, it makes sense to use

grep to show only those sections that are relevant for what you

need. So, if you are looking for the configuration file that has

something to do with passwords, use man -k password | grep 5,

or if you are looking for the command that an administrator

would use to create partitions, use man -k partition | grep 8.

Another useful man option is -f. The command man -f

<somecommand> displays a short description of the item as

found in the mandb database. This description may help you

when deciding whether this man page contains the information

you are looking for.

Updating mandb

As previously mentioned, when you use the man -k command,

the mandb database is consulted. This database is automatically

created through a scheduled job. Occasionally, you might look for

something that should obviously be documented, but all you get

is the message “nothing appropriate.” If that happens, you might

need to update the mandb database manually. Doing that is easy:

Just run the mandb command as root without any arguments. It

will see whether new man pages have been installed and update

the mandb database accordingly.

Tip

Do not try to memorize all the commands that you

need to accomplish specific tasks. Instead, memorize

how to find these commands and find which man

page to read to get more information about the

command. In Exercise 2-7, you see how that works.

Assume that you are looking for a command, using man -k, but

all you get is the message “nothing appropriate” and you do not

remember how to fix it. Exercise 2-7 shows what you can do in

such cases.

Exercise 2-7 Using man -k

1. Make sure you are logged in as the student account.

2. Because man -k does not give the expected result, it makes

sense to look in the man page for the man command for

additional information about man -k. Type man man to open

the man page of man. Once in the man page, type /-k to look

for a description of the -k option. Type n a few times until you

get to the line that describes the option. You’ll see that man -k

is equivalent to apropos and that you can read the man page

of apropos for more details. So type q to exit this man page.

3. Type man apropos and read the first paragraphs of the

description. You’ll see that the database searched by apropos

is updated by the mandb program.

4. Type man mandb. This man page explains how to run mandb

to update the mandb database. As you’ll read, all you need to

do is type mandb, which does the work for you.

5. Type sudo mandb to update the mandb database. Notice that

you won’t see many man pages being added if the mandb

database was already up to date.

Using info

Apart from the information that you’ll find in man pages,

another system provides help about command usage. This is the

info system. Most commands are documented in man pages, but

some commands have their main documentation in the info

system and only show a short usage summary in the man page. If

that is the case, the “See Also” section of the man page of that

command will tell you that “The full documentation for…is

maintained as a Texinfo manual.” You then can read the info

page using the command pinfo or info. Both commands work,

but in pinfo, special items such as menu items are clearly

indicated, which is why using pinfo is easier.

When working with info, take a look at the top line of the viewer.

This shows the current position in the info document.

Particularly interesting are the Up, Next, and Previous indicators,

which tell you how to navigate. Info pages are organized like web

pages, which means that they are organized in a hierarchical

way. To browse through that hierarchy, type n to go to the next

page, p to go to the previous page, or u to move up in the

hierarchy.

In an info page, you’ll also find menus. Each item that is marked

with an asterisk (*) is a menu item. Use the arrow keys to select a

Hivanetwork.com

https://hivanetwork.com/

specific menu item. This brings you down one level. To get back

up again, type u. This brings you back to the original starting

point in the pinfo hierarchy. Figure 2-2 shows what an info page

looks like.

Figure 2-2 Getting More Command Usage Information Using pinfo

Exercise 2-8 shows an example of such a command, and in this

exercise you learn how to get the information out of the info

page.

Exercise 2-8 Using info

1. Type man ls. Type G to go to the end of the man page and look

at the “See Also” section. It tells you that the full

documentation for ls is maintained as a Texinfo manual that

can be shown with the info command. Quit the man page by

pressing q.

2. Type pinfo ‘(coreutils) ls invocation’. This shows the

information about ls usage in the pinfo page. Read through it

and press q when done. Alternatively, you can use the info

command, but pinfo shows nicer formatting.

Using /usr/share/doc Documentation Files

A third source of information consists of files that are sometimes

copied to the /usr/share/doc directory. These files are available in

particular for services and larger systems that are a bit more

complicated. You will not typically find much information about

a command like ls, but some services do provide useful

information in /usr/share/doc.

Some services store very useful information in this directory, like

rsyslog, bind, Kerberos, and OpenSSL. For some services, even

sample files are included.

Summary

In this chapter, you read about essential Linux administration

tasks. You learned about some of the important shell basics, such

as redirecting I/O, working with history, and managing the

environment. You also learned how to edit text files with the vim

editor. In the last part of this chapter, you learned how to find

information using man and related commands.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 2-5 lists a

reference of these key topics and the page number on which

each is found.

Table 2-5 Key Topics for Chapter 2

Key Topic Element Description Page

Table 2-4 vim Essential Commands 38

List Significant sections in man 46

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

shell

Bash

internal command

external command

$PATH

STDIN

STDOUT

STDERR

redirection

file descriptor

device file

pipe

environment

variable

login shell

subshell

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 What is a variable?

 Which command enables you to find the correct man page based

on keyword usage?

 Which file do you need to change if you want a variable to be set

for user bob when this user logs in?

 When analyzing how to use a command, you read that the

documentation is maintained with the Techinfo system. How can

you read the information?

 What is the name of the file where Bash stores its history?

 Which command enables you to update the database that

contains man keywords?

 How can you undo the last modification you have applied in

vim?

 What can you add to a command to make sure that it does not

show an error message, assuming that you do not care about the

information that is in the error messages either?

 How do you read the current contents of the $PATH variable?

 How do you repeat the last command you used that contains the

string dog somewhere in the command?

End-of-Chapter Lab

You have now learned about some of the most important basic

skills that a Linux administrator should have. Apply these skills

by doing the following end-of-chapter lab. End-of-chapter labs

have no solutions; you should be able to complete the end-of-

chapter labs without any additional help.

Lab 2.1

1. Modify your shell environment so that on every subshell that

is started, a variable is set. The name of the variable should be

COLOR, and the value should be set to red. Verify that it is

working.

2. Use the appropriate tools to find the command that you can

use to change a user password. Do you need root permissions

to use this command?

3. From your home directory, type the command ls -al wergihl *

and ensure that errors as well as regular output are redirected

to a file with the name /tmp/lsoutput.

Hivanetwork.com

https://hivanetwork.com/

Chapter 3

Essential File Management Tools

The following topics are covered in this chapter:

Working with the File System Hierarchy

Managing Files

Using Links

Working with Archives and Compressed Files

The following RHCSA exam objectives are covered in this

chapter:

Create, delete, copy, and move files and directories

Archive, compress, unpack, and uncompress files using tar,

star, gzip, and bzip2

Create hard and soft links

Linux is a file-oriented operating system. That means that many

things an administrator has to do on Linux can be traced down to

managing files on the Linux operating system. Also, when using

hardware devices, files are involved. This chapter introduces you

to essential file management skills. You learn how the Linux file

system is organized and how you can work with files and

directories. You also learn how to manage links and compressed

or uncompressed archives.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table 3-

1 lists the major headings in this chapter and their corresponding

“Do I Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quizzes and Review Questions.”

Table 3-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Working with the File System Hierarchy 1–4

Managing Files 5–7

Using Links 8–9

Working with Archives and Compressed Files 10

 Under which directory would you expect to find temporary files

that have been dynamically created since the last time you’ve

booted?

1. /boot

2. /bin

3. /sbin

4. /run

 Under which directory would you expect to find log files?

1. /proc

2. /run

3. /var

4. /usr

 When /home is mounted on a different device, additional mount

options can be provided to enhance security. Which of the

following are examples of these options?

1. ro

2. nodev

3. noexec

4. nosuid

 Which of the following commands would give the most accurate

overview of mounted disk devices (without showing much

information about mounted system devices as well)?

1. mount

2. mount -a

3. df -hT

4. du -h

 Which command enables you to show all files in the current

directory so that the newest files are listed last?

1. ls -lRt

2. ls -lrt

3. mls -alrt

4. ls -alr

 Which command enables you to copy hidden files as well as

regular files from /home/$USER to the current directory?

1. cp -a /home/$USER

2. cp -a /home/$USER/*

3. cp -a /home/$USER/.

4. cp -a home/$USER.

 Which command enables you to rename the file myfile to

mynewfile?

1. mv myfile mynewfile

2. rm myfile mynewfile

3. rn myfile mynewfile

4. ren myfile mynewfile

 Which statement about hard links is not true?

1. Hard links cannot be created to directories.

2. Hard links cannot refer to files on other devices.

3. The inode keeps a hard link counter.

4. If the original hard link is removed, all other hard links

become invalid.

 Which command creates a symbolic link to the directory /home

in the directory /tmp?

1. ln /tmp /home

2. ln /home /tmp

3. ln -s /home /tmp

4. ln -s /tmp /home

 Which tar option enables you to update an existing tar archive?

1. -a

2. -A

3. -r

4. -u

Foundation Topics

Working with the File System Hierarchy

To manage a Linux system, you should be familiar with the

default directories that exist on almost all Linux systems. This

section describes these directories and explains how mounts are

used to compose the file system hierarchy.

Defining the File System Hierarchy

The file system on most Linux systems is organized in a similar

way. The layout of the Linux file system is defined in the File

system Hierarchy Standard (FHS), and this file system

hierarchy is described in man 7 file-hierarchy. Table 3-2 shows

an overview of the most significant directories that you’ll

encounter on a Red Hat Enterprise Linux (RHEL) system, as

specified by the FHS.

Table 3-2 FHS Overview

Directory Use

/ Specifies the root directory. This is where the file system tree starts.

/boot Contains all files and directories that are needed to boot the Linux
kernel.

/dev Contains device files that are used for accessing physical devices.
This directory is essential during boot.

/etc Contains configuration files that are used by programs and services
on your server. This directory is essential during boot.

/home Used for local user home directories.

/media,
/mnt

Contain directories that are used for mounting devices in the file
system tree.

/opt Used for optional packages that may be installed on your server.

/proc Used by the proc file system. This is a file system structure that
gives access to kernel information.

/root Specifies the home directory of the root user.

/run Contains process and user-specific information that has been
created since the last boot.

/srv May be used for data by services like NFS, FTP, and HTTP.

/sys Used as an interface to different hardware devices that are
managed by the Linux kernel and associated processes.

/tmp Contains temporary files that may be deleted without any warning
during boot.

/usr Contains subdirectories with program files, libraries for these
program files, and documentation about them.

/var Contains files that may change in size dynamically, such as log files,
mail boxes, and spool files.

Understanding Mounts

To understand the organization of the Linux file system, you

Hivanetwork.com

https://hivanetwork.com/

need to understand the important concept of mounting. A mount

is a connection between a device and a directory. A Linux file

system is presented as one hierarchy, with the root directory (/)

as its starting point. This hierarchy may be distributed over

different devices and even computer systems that are mounted

into the root directory.

In the process of mounting, a device is connected to a specific

directory, such that after a successful mount this directory gives

access to the device contents.

Mounting devices makes it possible to organize the Linux file

system in a flexible way. There are several disadvantages to

storing all files in just one file system, which gives several good

reasons to work with multiple mounts:

High activity in one area may fill up the entire file system,

which will negatively impact services running on the server.

If all files are on the same device, it is difficult to secure access

and distinguish between different areas of the file system with

different security needs. By mounting a separate file system,

you can add mount options to meet specific security needs.

If a one-device file system is completely filled, it may be

difficult to make additional storage space available.

To avoid these pitfalls, it is common to organize Linux file

systems in different devices (and even shares on other computer

systems), such as disk partitions and logical volumes, and mount

these devices into the file system hierarchy. By configuring a

device as a dedicated mount, you also are able to use specific

mount options that can restrict access to the device. Some

directories are commonly mounted on dedicated devices:

/boot: This directory is often mounted on a separate device

because it requires essential information your computer needs

to boot. Because the root directory (/) is often on a Logical

Volume Manager (LVM) logical volume, from which Linux

cannot boot by default, the kernel and associated files need to

be stored separately on a dedicated /boot device.

/boot/EFI: If a system uses Extensible Firmware Interface (EFI)

for booting, a dedicated mount is required, giving access to all

files required in the earliest stage of the boot procedure.

/var: This directory is often on a dedicated device because it

grows in a dynamic and uncontrolled way (for example,

because of the log files that are written to /var/log). By putting

it on a dedicated device, you can ensure that it will not fill up

all storage on your server.

/home: This directory often is on a dedicated device for

security reasons. By putting it on a dedicated device, you can

mount it with specific options, such as noexec and nodev, to

enhance the security of the server. When you are reinstalling

the operating system, it is an advantage to have home

directories in a separate file system. The home directories can

then survive the system reinstall.

/usr: This directory contains operating system files only, to

which normal users normally do not need any write access.

Putting this directory on a dedicated device allows

administrators to configure it as a read-only mount.

Apart from these directories, you may find servers that have

other directories that are mounted on dedicated partitions or

volumes also. After all, it is up to the discretion of the

administrator to decide which directories get their own

dedicated devices.

To get an overview of all devices and their mount points, you can

use different commands:

The mount command gives an overview of all mounted

devices. To get this information, the /proc/mounts file is read,

where the kernel keeps information about all current mounts.

It shows kernel interfaces also, which may lead to a long list of

mounted devices being displayed. Example 3-1 shows sample

output of this command.

Example 3-1 Partial mount Command Output

Click here to view code image

[root@server1 ~]# mount
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime,seclabel)
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
devtmpfs on /dev type devtmpfs (rw,nosuid,seclabel,size=909060k,
 nr_inodes=227265,mode=755)
securityfs on /sys/kernel/security type securityfs (rw,nosuid,nodev,
 noexec,relatime)
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev,seclabel)
devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,seclabel,
 gid=5,mode=620,ptmxmode=000)
tmpfs on /run type tmpfs (rw,nosuid,nodev,seclabel,mode=755)
tmpfs on /sys/fs/cgroup type tmpfs (ro,nosuid,nodev,noexec,seclabel,
 mode=755)
…
/dev/nvme0n1p1 on /boot type xfs (rw,relatime,seclabel,attr2,inode64
, noquota)
sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw,relatime)
tmpfs on /run/user/42 type tmpfs (rw,nosuid,nodev,relatime,seclabel,
 size=184968k,mode=700,uid=42,gid=42)
tmpfs on /run/user/1000 type tmpfs (rw,nosuid,nodev,relatime,seclabel,
 size=184968k,mode=700,uid=1000,gid=1000)
gvfsd-fuse on /run/user/1000/gvfs type fuse.gvfsd-fuse
 (rw,nosuid,nodev,relatime,user_id=1000,group_id=1000)

/dev/sr0 on /run/media/student/RHEL-9-0-BaseOS-x86_64 type iso9660
(ro,nosuid,nodev,relatime,nojoliet,check=s,map=n,blocksize=2048,
 uid=1000,gid=1000,dmode=500,fmode=400,uhelper=udisks2)
tmpfs on /run/user/0 type tmpfs (rw,nosuid,nodev,relatime,seclabel,
 size=184968k,mode=700))

The df -Th command was designed to show available disk

space on mounted devices; it includes most of the system

mounts. Because it will look on all mounted file systems, it is a

convenient command to use to get an overview of current

system mounts. The -h option summarizes the output of the

command in a human-readable way, and the -T option shows

which file system type is used on the different mounts.

The findmnt command shows mounts and the relationship

that exists between the different mounts. Because the output

of the mount command is a bit overwhelming, you may like

the output of findmnt. Notice that because of width limitations

of the book page, the output that belongs in the OPTIONS

column appears on the left side of the page.

In Exercise 3-1, you use different commands to get an overview

of currently mounted devices.

Exercise 3-1 Getting an Overview of Current Mounts

1. Log in as the student user and type mount. Notice that the

output of the command is quite overwhelming. If you read

carefully, though, you’ll see a few directories from the Linux

directory structure and their corresponding mounts.

2. Type df -hT. Notice that a lot fewer devices are shown. An

example of the output of this command is shown in Example

3-2.

Example 3-2 df -hT Sample Output

Click here to view code image

[root@server1 ~]# df -hT
 Filesystem Type Size Used Avail Use% Mounted on
 /dev/mapper/centos-root xfs 5.9G 3.9G 2.1G 66% /
 devtmpfs devtmpfs 908M 0 908M 0% /dev
 tmpfs tmpfs 918M 144K 917M 1% /dev/shm
 tmpfs tmpfs 918M 21M 897M 3% /run
 tmpfs tmpfs 918M 0 918M 0% /sys/fs/
cgroup
 /dev/sda1 xfs 197M 131M 67M 67% /boot

Now that you have entered the mount and df commands, let’s

have a closer look at the output of the df -hT command in

Example 3-2.

The output of df is shown in seven columns:

Filesystem: The name of the device file that interacts with the

disk device that is used. The real devices in the output start

with /dev (which refers to the directory that is used to store

device files). You can also see a couple of tmpfs devices. These

are kernel devices that are used to create a temporary file

system in RAM.

Type: The type of file system that was used.

Size: The size of the mounted device.

Used: The amount of disk space the device has in use.

Avail: The amount of unused disk space.

Use%: The percentage of the device that currently is in use.

Mounted on: The directory the device currently is mounted

on.

Note that when you use the df command, the sizes are reported

in kibibytes. The option -m will display these in mebibytes, and

using -h will display a human-readable format in KiB, MiB, GiB,

TiB, or PiB.

Managing Files

As an administrator, you need to be able to perform common file

management tasks. These tasks include the following:

Working with wildcards

Managing and working with directories

Working with absolute and relative pathnames

Listing files and directories

Copying files and directories

Moving files and directories

Deleting files and directories

The following subsections explain how to perform these tasks.

Working with Wildcards

When you’re working with files, using wildcards can make your

work a lot easier. A wildcard is a shell feature that helps you

refer to multiple files in an easy way. Table 3-3 gives an

overview.

Table 3-3 Wildcard Overview

Wildcard Use

* Refers to an unlimited number of any characters. ls *, for instance,
shows all files in the current directory (except those that have a
name starting with a dot).

Hivanetwork.com

https://hivanetwork.com/

? Used to refer to one specific character that can be any character. ls
c?t would match cat as well as cut.

[auo] Refers to one character that may be selected from the range that is
specified between square brackets. ls c[auo]t would match cat, cut,
and cot.

Managing and Working with Directories

To organize files, Linux works with directories (also referred to

as folders). You have already read about some default

directories as defined by the FHS. When users start creating files

and storing them on a server, it makes sense to provide a

directory structure as well. As an administrator, you have to be

able to walk through the directory structure. Exercise 3-2 gives

you practice working with directories.

Exercise 3-2 Working with Directories

1. Open a shell as the student user. Type cd. Next, type pwd,

which stands for print working directory. You’ll see that you

are currently in your home directory; that is, name

/home/<username>.

2. Type touch file1. This command creates an empty file with

the name file1 on your server. Because you currently are in

your home directory, you can create any file you want to.

3. Type cd /. This changes the current directory to the root (/)

directory. Type touch file2. You’ll see a “permission denied”

message. Ordinary users can create files only in directories

where they have the permissions needed for this.

4. Type cd /tmp. This brings you to the /tmp directory, where all

users have write permissions. Again, type touch file2. You’ll

see that you can create items in the /tmp directory (unless

there is already a file2 that is owned by somebody else).

5. Type cd without any arguments. This command brings you

back to your home directory.

6. Type mkdir files. This creates a directory with the name files

in the current directory. The mkdir command uses the name

of the directory that needs to be created as a relative

pathname; it is relative to the position you are currently in.

7. Type mkdir /home/$USER/files. In this command, you are

using the variable $USER, which is substituted with your

current username. The complete argument of mkdir is an

absolute filename to the files directory that you are trying to

create. Because this directory already exists, you’ll get a “file

exists” error message.

8. Type rmdir files to remove the files directory that you have

just created. The rmdir command enables you to remove

directories, but it works only if the directory is empty and

does not contain any files.

Working with Absolute and Relative Pathnames

In the previous section, you worked with the commands cd and

mkdir. You used these commands to browse through the

directory structure. You also worked with a relative filename and

an absolute filename.

An absolute filename, or absolute pathname, is a complete path

reference to the file or directory you want to work with. This

pathname starts with the root directory, followed by all

subdirectories up to the actual filename. No matter what your

current directory is, absolute filenames will always work. An

example of an absolute filename is /home/lisa/file1.

A relative filename is relative to the current directory as shown

with the pwd command. It contains only the elements that are

required to get from the current directory up to the item you

need. Suppose that your current directory is /home (as shown by

the pwd command). When you refer to the relative filename

lisa/file1, you are referring to the absolute filename

/home/lisa/file1.

When working with relative filenames, it is sometimes useful to

move up one level in the hierarchy. Imagine you are logged in as

root and you want to copy the file /home/lisa/file1 to the

directory /home/lara. A few solutions would work:

Use cp /home/lisa/file1 /home/lara. Because in this command

you are using absolute pathnames, this command will work at

all times.

Make sure your current directory is /home and use cp

lisa/file1 lara. Notice that both the source file and the

destination file are referred to as relative filenames and for

that reason do not start with a /. There is a risk though: if the

directory lara in this example doesn’t exist, the cp command

creates a file with the name lara. If you want to make sure it

copies to a directory, and generates an error message if the

directory doesn’t exist, use cp lisa/file1 lara/.

If the current directory is set to /home/lisa, you could also use

cp file1 ../lara. In this command, the name of the target file

uses .., which means go up one level. The .. is followed by /lara,

so the total name of the target file would be interpreted as “go

up one level” (so you would be in /home), and from there, look

for the /lara subdirectory.

Tip

If you are new to working with Linux,

understanding relative filenames is not always easy.

There is an easy workaround, though. Just make

sure that you always work with absolute pathnames.

Using absolute pathnames involves more typing, but

it is easier, so you’ll make fewer mistakes.

In Chapter 2, “Using Essential Tools,” you learned how you can

use Bash completion via the Tab key to complete commands.

Using Bash completion makes it a lot easier to work with long

commands. Bash completion works on filenames, too. If you have

a long filename, like my-long-file-name, try typing my- and

pressing the Tab key. If in the current directory, just one file has

a name starting with my-, the filename will automatically be

completed. If there are more files that have a name starting with

my-, you have to press the Tab key twice to see a list of all

available filenames.

Listing Files and Directories

While working with files and directories, it is useful to show the

contents of the current directory. For this purpose, you can use

the ls command. If used without arguments, ls shows the

contents of the current directory. Some common arguments

make working with ls easier. Table 3-4 gives an overview.

Table 3-4 ls Common Command-Line Options

Command Use

ls -l Shows a long listing, which includes information about file
properties, such as creation date and permissions.

ls -a Shows all files, including hidden files.

ls -lrt The -t option shows commands sorted based on modification date.
You’ll see the most recently modified files last in the list because of
the -r option. This is a very useful command.

ls -d Shows the names of directories, not the contents of all directories
that match the wildcards that have been used with the ls
command.

ls -R Shows the contents of the current directory, in addition to all of its
subdirectories; that is, it Recursively descends all subdirectories.

Tip

A hidden file on Linux is a file that has a name that

starts with a dot. Try the following: touch .hidden.

Next, type ls. You will not see the file. Then type ls -

a. You’ll see it.

When using ls and ls -l, you’ll see that files are color-coded. The

different colors that are used for different file types make it

easier to distinguish between different kinds of files. Do not focus

too much on them, though, because the colors that are used are

the result of a variable setting that might be different in other

Linux shells or on other Linux servers.

Copying Files and Directories

To organize files on your server, you’ll often copy files. The cp

command helps you do so. Copying a single file is not difficult:

just use cp /<path to file> /<path to destination>. To copy the

file /etc/hosts to the directory /tmp, for instance, use cp /etc/hosts

/tmp. This results in the file hosts being written to /tmp.

Tip

If you copy a file to a directory but the target

directory does not exist, a file will be created with

the name of the alleged target directory. In many

cases, that’s not the best solution and it would be

better to just get an error message instead. You can

accomplish this by placing a / after the directory

name, so use cp /etc/hosts /tmp/ and not cp

/etc/hosts /tmp.

With the cp command, you can also copy an entire subdirectory,

with its contents and everything beneath it. To do so, use the

option -R, which stands for recursive. (You’ll see the option -R

with many other Linux commands also.) For example, to copy

the directory /etc and everything in it to the directory /tmp, you

would use the command cp -R /etc /tmp.

While using the cp command, you need to consider permissions

and other properties of the files. Without extra options, you risk

these properties not being copied. If you want to make sure that

you keep the current permissions, use the -a option, which has cp

work in archive mode. This option ensures that permissions and

all other file properties will be kept while copying. So, to copy an

exact state of your home directory and everything within it to the

Hivanetwork.com

https://hivanetwork.com/

/tmp directory, use cp -a ~ /tmp.

A special case when working with cp is hidden files. By default,

hidden files are not copied over. There are three solutions to

copy hidden files as well:

cp /somedir/.* /tmp This copies all files that have a name

starting with a dot (the hidden files, that is) to /tmp. It gives an

error message for directories whose name starts with a dot in

/somedir, because the -R option was not used.

cp -a /somedir/ . This copies the entire directory /somedir,

including its contents, to the current directory. So, as a result, a

subdirectory somedir will be created in the current directory.

cp -a /somedir/. . This copies all files, regular and hidden, to

the current directory (notice the space between the two dots at

the end of this command).

Moving Files and Directories

To move files and directories, you use the mv command. This

command removes the file from its current location and puts it in

the new location. You can also use it to rename a file (which, in

fact, is nothing else than copying and deleting the original file

anyway). Let’s take a look at some examples:

mv myfile /tmp Moves the file myfile from the current

directory to /tmp.

mkdir somefiles; mv somefiles /tmp First creates a directory

with the name somefiles and then moves this directory to

/tmp. Notice that this also works if the directory contains files.

mv myfile mynewfile Renames the file myfile to a new file

with the name mynewfile.

Deleting Files and Directories

The last common file administration task is file deletion. To

delete files and directories, you use the rm command. When this

command is used on a single file, the single file is removed. You

can also use it on directories that contain files. To do so, include

the -r option, which again stands for recursive.

Note

Many commands have an option that creates

recursive behavior. On some commands you use the

option -R, and on other commands you use the

option -r. That is confusing, but it is just the way it is.

On RHEL 9, if you use the rm command as root, it prompts for

confirmation. The reason is that through /root/.bashrc, rm is

defined as an alias to rm -i. If you do not like that, you can use

the -f option or remove the alias from /root/.bashrc. Make sure

that you know what you are doing after removing this safety

feature, because you’ll never be warned anymore while

removing files.

In Exercise 3-3, you work with the common file management

utilities.

Note

In this exercise dots are important and used as a

part of the commands. To avoid confusion, if

normally a dot would be used to indicate the end of

a sentence, in this exercise I’ve left it out if it

immediately follows a command.

Exercise 3-3 Working with Files

Figure 3-1 provides an overview of the directory structure you

are working with in this exercise.

1. Open a shell as an ordinary user.

2. Type pwd

You should be in the directory /home/$USER.

Figure 3-1 Sample Directory Structure Overview

3. Type mkdir newfiles oldfiles

Type ls

You’ll see the two directories you have just created, as well as

some other directories that already existed in the user home

directory.

4. Type touch newfiles/.hidden; touch newfiles/unhidden

This creates two files in the directory newfiles.

5. Type cd oldfiles

6. Type ls -al

This shows two items only: ., which refers to the current

directory; and .., which refers to the item above this (the

parent directory).

7. Type ls -al ../newfiles

In this command, you are using a relative pathname to refer

to the contents of the /home/$USER/newfiles directory.

8. Use the command cp -a ../newfiles/ . (notice the space

between the / and the . at the end of the command).

9. Type ls -a

You see that you have created the subdirectory newfiles into

the directory oldfiles.

10. Make sure that you are still in /home/$USER/oldfiles, and type

rm -rf newfiles

11. Now use the command cp -a ../newfiles/* . (notice the space

between the * and .). Type ls -al to see what has been copied

now. You’ll see that the hidden file has not been copied.

12. To make sure that you copy hidden files as well as regular

files, use cp -a ../newfiles/. .

13. Verify the command worked this time, using ls -al

You’ll notice that the hidden files as well as the regular files

have been successfully copied.

Using Links

Links on Linux are like aliases that are assigned to a file. There

are symbolic links, and there are hard links. To understand a

link, you need to know a bit about how the Linux file system uses

inodes for file system administration.

Understanding Hard Links

Linux stores administrative data about files in inodes. The inode

is used to store all administrative data about files. Every file on

Linux has an inode, and in the inode, important information

about the file is stored:

The data block where the file contents are stored

The creation, access, and modification date

Permissions

File owners

Just one important piece of information is not stored in the

inode: the name of the file. Names are stored in the directory,

and each filename knows which inode it has to address to access

further file information. It is interesting to know that an inode

does not know which name it has; it just knows how many

names are associated with the inode. These names are referred

to as hard links. So every file always has one hard link to start

with, which is the name of the file.

When you create a file, you give it a name. Basically, this name is

a hard link. On a Linux file system, multiple hard links can be

created to a file. This is useful if a file with the same contents

needs to be available at multiple locations, and you need an easy

solution to keep the contents the same. If a change is applied to

any one of the hard links, it will show in all other hard links as

well, as all hard links point to the same data blocks. Some

restrictions apply to hard links, though:

Hard links must exist all on the same device (partition, logical

volume, etc).

You cannot create hard links to directories.

When the last name (hard link) to a file is removed, access to

the file’s data is also removed.

The nice thing about hard links is that no difference exists

between the first hard link and the second hard link. They are

both just hard links, and if the first hard link that ever existed for

a file is removed, that does not impact the other hard links that

still exist. The Linux operating system uses links on many

locations to make files more accessible.

Understanding Symbolic Links

A symbolic link (also referred to as a soft link) does not link

directly to the inode but to the name of the file. This makes

symbolic links much more flexible, but it also has some

disadvantages. The advantage of symbolic links is that they can

link to files on other devices, as well as on directories. The major

disadvantage is that when the original file is removed, the

symbolic link becomes invalid and does not work any longer.

Figure 3-2 gives a schematic overview of how inodes, hard links,

and symbolic links relate to one another.

Figure 3-2 Links and Inodes Overview

Creating Links

Use the ln command to create links. It uses the same order of

parameters as cp and mv; first you mention the source name,

followed by the destination name. If you want to create a

symbolic link, you use the option -s, and then you specify the

source and target file or directory. One important restriction

applies: to be able to create hard links, you must be the owner of

the item that you want to link to.

Table 3-5 shows some examples.

Table 3-5 ln Usage Examples

Hivanetwork.com

https://hivanetwork.com/

Command Explanation

ln /etc/hosts . Creates a link to the file /etc/hosts in the current directory

ln -s /etc/hosts
.

Creates a symbolic link to the file /etc/hosts in the current
directory

ln -s /home
/tmp

Creates a symbolic link to the directory /home in the directory
/tmp

The ls command will reveal whether a file is a link:

In the output of the ls -l command, the first character is an l if

the file is a symbolic link.

If a file is a symbolic link, the output of ls -l shows the name of

the item it links to after the filename.

If a file is a hard link, ls -l shows the hard link counter. In the

output in Example 3-3, this is the number 3 that is right before

root root for the hosts file.

Example 3-3 Showing Link Properties with ls -l

Click here to view code image

[root@localhost tmp]# \ls -l
total 3
lrwxrwxrwx. 1 root root 5 Jan 19 04:38 home -> /home
-rw-r--r--. 3 root root 158 Jun 7 2013 hosts

Note

In Example 3-3, the command used is \ls -l, not ls -l.

The ls command by default is an alias, which takes

care of using the different colors when showing ls

output; the \ in front of the command causes the

alias not to be used.

Removing Links

Removing links can be dangerous. To show you why, let’s

consider the following procedure.

1. Make a directory named test in your home directory: mkdir

~/test

2. Copy all files that have a name starting with a, b, c, d, or e from

/etc to this directory: cp /etc/[a-e]* ~/test

3. Type ls -l ~/test/ to verify the contents of the test directory.

4. Make sure that you are in your home directory, by using cd

without arguments.

5. Type ln -s test link

6. Type rm link. This removes the symbolic link. (Do not use -r or

-f to remove symbolic links, even if they are subdirectories.)

7. Type ls -l. You’ll see that the symbolic link has been removed.

8. Let’s do it again. Type ln -s test link to create the link again.

9. Type rm -rf link/ (which is what you would get by using Bash

command-line completion).

10. Type ls. You’ll see that the directory link still exists.

11. Type ls test/. You’ll see the directory test is now empty.

In Exercise 3-4, you learn how to work with symbolic links and

hard links.

Exercise 3-4 Working with Symbolic Links and Hard Links

Note

In this exercise dots are important and used as a

part of the commands. To avoid confusion, if

normally a dot would be used to indicate the end of

a sentence, in this exercise I’ve left it out if it

immediately follows a command.

1. Open a shell as the student user.

2. From your home directory, type ln /etc/passwd . (Make sure

that the command ends with a dot that has a space before it!)

This command gives you an “operation not permitted” error

because you are not the owner of /etc/passwd.

3. Type ln -s /etc/passwd . (Again, make sure that the command

ends with a space and a dot!) This works; you do not have to

be the owner to create a symbolic link.

4. Type ln -s /etc/hosts (this time with no dot at the end of the

command). You’ll notice this command also works. If the

target is not specified, the link is created in the current

directory.

5. Type touch newfile and create a hard link to this file by using

ln newfile linkedfile

6. Type ls -l and notice the link counter for newfile and

linkedfile, which is currently set to 2.

7. Type ln -s newfile symlinkfile to create a symbolic link to

newfile.

8. Type rm newfile

9. Type cat symlinkfile. You will get a “no such file or directory”

error message because the original file could not be found.

10. Type cat linkedfile. This gives no problem.

11. Type ls -l and look at the way the symlinkfile is displayed. Also

look at linkedfile, which now has the link counter set to 1.

12. Type ln linkedfile newfile

13. Type ls -l again. You’ll see that the original situation has been

restored.

Working with Archives and Compressed Files

Another important file-related task is managing archives and

compressed files. To create an archive of files on a Linux

computer, you often use tar command. This command was

originally designed to stream files to a tape without any

compression of the files, and it still doesn’t compress anything by

default. If you want to compress files as well, you have to either

use a specific compression tool or specify an option that

compresses the archive while it is created. In this section, you

learn how to work with archives and compressed files.

Managing Archives with tar

The Tape ARchiver (tar) utility is used to archive files. Although

originally designed to stream files to a backup tape, in its current

use tar is used mostly to write files to an archive file. You have to

be able to perform four important tasks with tar on the RHCSA

exam:

Create an archive

List the contents of an archive

Extract an archive

Compress and uncompress archives

Creating Archives with tar

To create an archive, you use the following syntax: tar -cf

archivename.tar /files-you-want-to-archive. If you want to see

what is happening, use the -v option as well. To put files in an

archive, you need at least read permissions to the file and

execute permissions on the directory the file resides in. Use tar -

cvf /root/homes.tar /home as user root to write the contents of

the /home directory and everything below it to the file homes.tar

in the directory /root. Notice the options that are used; the order

in these options is important.

Originally, tar did not use the dash (-) in front of its options.

Modern tar implementations use that dash, as do all other Linux

programs, but they still allow the old usage without a dash for

backward compatibility. For a complete overview of relevant

options used, see Table 3-6 in the next section.

While you’re managing archives with tar, it is also possible to

add a file to an existing archive or to update an archive. To add a

file to an archive, you use the -r options. Use, for instance, tar -

rvf /root/homes.tar /etc/hosts to add the /etc/hosts file to the

archive.

To update a currently existing archive file, you can use the -u

option. So, use tar -uvf /root/homes.tar /home to write newer

versions of all files in /home to the archive.

Monitoring and Extracting tar Files

Before you extract a file, it is good to know what might be

expected. The option -t can be used to find out. Type, for

instance, tar -tvf /root/homes.tar to see the contents of the tar

archive.

Tip

It is good practice to create archive files with an

extension such as .tar or .tgz so that they can be

easily recognized, but not everyone does that. If you

think that a file is a tar archive but you are not sure,

use the file command. If you type file somefile, for

instance, the file command analyzes its contents

and shows on the command line what type of file it

is.

To extract the contents of an archive, use tar -xvf

/archivename.tar. This extracts the archive in the current

directory. That means that if you are in /root when typing tar -

xvf /root/homes.tar, and the file contains a directory /home,

after extracting you’ll have a new directory /root/home that

contains the entire contents of the file. This might not be what

you wanted to accomplish. There are two solutions to put the

extracted contents right where you want to have them:

Before extracting the archive file, use the cd command to get

into the directory where you want to extract the file.

Use the option -C /targetdir to specify the target directory

where you want to extract the file to. If you want to put the

contents of the file /root/homes.tar in the directory /tmp, for

instance, you can use tar -xvf homes.tar -C /tmp.

Note

The RHCSA objectives mention that you need to

know how to work with star as well. The star utility

was designed to offer support for archiving

nondefault file attributes, such as access control lists

(see Chapter 7, “Permissions Management”) or

SELinux file context (see Chapter 22, “Managing

SELinux”). In its current release, tar offers this

functionality also, so there is no real need to use star

anymore. You’ll also notice that it isn’t even included

in the default installation patterns.

Hivanetwork.com

https://hivanetwork.com/

Apart from extracting an entire archive file, it is also possible to

extract one file out of the archive. To do so, use tar -xvf

/archivename.tar file-you-want-to-extract. If your archive

etc.tar contains the file /etc/hosts that you want to extract, for

instance, use tar -xvf /root/etc.tar etc/hosts.

Using Compression

Many files contain a lot of redundancy. Compression programs

allow you to make files take less disk space by taking out that

redundancy. If there is no redundancy, you won’t gain much by

using compression. In all examples of the tar command that you

have seen so far, not a single byte has been compressed.

Originally, after you created the archive, it had to be compressed

with a separate compression utility, such as gzip or bzip2. After

having created home.tar, you can compress it with gzip

home.tar. gzip replaces home.tar with its compressed version,

home.tar.gz, which takes significantly less space.

As an alternative to using gzip, you can use the bzip2 utility.

Originally, bzip2 used a more efficient encryption algorithm,

which resulted in smaller file sizes, but currently hardly any

difference in file size exists between the result of bzip2 and the

result of gzip. Another alternative for compressing files, is the xz

utility, which has recently been introduced.

To decompress files that have been compressed with gzip or

bzip2, you can use the gunzip and bunzip2 utilities; you work

with some examples of this command in Exercise 3-5.

As an alternative to using these utilities from the command line,

you can include the -z (gzip), -J (xz), or -j (bzip2) option while

creating the archive with tar. This will immediately compress the

archive while it is created. There is no need to use this option

while extracting. The tar utility will recognize the compressed

content and automatically decompress it for you. In Exercise 3-5,

you apply the newly acquired tar skills. Table 3-6 gives an

overview of the most significant tar options.

Table 3-6 Overview of tar Options

Option Use

c Creates an archive.

v Shows verbose output while tar is working.

t Shows the contents of an archive.

z Compresses/decompresses the archive while creating it, by using gzip.

j Compresses/decompresses the archive by using bzip2.

J Compresses/decompresses the archive using xz.

x Extracts an archive.

u Updates an archive; only newer files will be written to the archive.

C Changes the working directory before performing the command.

r Appends files to an archive.

Exercise 3-5 Using tar

1. Open a root shell on your server. When you log in, the home

directory of user root will become the current directory, so all

relative filenames used in this exercise refer to /root/.

2. Type tar cvf etc.tar /etc to archive the contents of the /etc

directory.

3. Type file etc.tar and read the information that is provided by

the command. This should look like the following:
Click here to view code image

[root@server1 ~]# file etc.tartar: POSIX tar archive (GNU)

4. Type gzip etc.tar to compress the tar file, which packages it

into the file etc.tar.gz.

5. Type tar tvf etc.tar.gz Notice that the tar command has no

issues reading from a gzip compressed file. Also notice that

the archive content consists of all relative filenames.

6. Type tar xvf etc.tar.gz etc/hosts

7. Type ls -R Notice that a subdirectory etc has been created in

the current directory. In this subdirectory, the file hosts has

been restored.

8. Type gunzip etc.tar.gz This decompresses the compressed file

but does not change anything else with regard to the tar

command.

9. Type tar xvf etc.tar -C /tmp etc/passwd This extracts the

password file including its relative pathname to the /tmp

directory. Use ls -l /tmp/etc/passwd to verify.

10. Type tar cjvf homes.tar /home This creates a compressed

archive of the home directory to the home directory of user

root.

11. Type rm -f *gz *tar to remove all files resulting from exercises

in this chapter from the home directory of /root.

Summary

In this chapter, you learned how to work with essential file

management tools. You learned how the Linux directory

structure is organized by default, and you learned what file types

to expect in which directories. You also learned how to find your

way in the directory structure and to work with files.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 3-7 lists a

reference for these key topics and the page number on which

each is found.

Table 3-7 Key Topics for Chapter 3

Key Topic Element Description Page

Table 3-2 FHS Overview 56

Table 3-3 Wildcard Overview 61

Paragraph Definition of an absolute filename 63

Paragraph Definition of a relative filename 63

Table 3-4 ls Common Command-Line Options 64

Paragraph Definition of an inode 68

Table 3-5 ln Usage Examples 69

Table 3-6 Overview of tar Options 74

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

File System Hierarchy Standard (FHS)

mount

root directory

device

directory

folder

absolute filename

path

relative filename

inode

hard link

symbolic link

tar

star

compression

gzip

bzip2

xz

Hivanetwork.com

https://hivanetwork.com/

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 Which directory would you go to if you were looking for

configuration files?

 Which command enables you to display a list of current

directory contents, with the newest files listed first?

 Which command enables you to rename the file myfile to

yourfile?

 Which command enables you to wipe an entire directory

structure, including all of its contents?

 How do you create a link to the directory /tmp in your home

directory?

 How would you copy all files that have a name that starts with a,

b, or c from the directory /etc to your current directory?

 Which command enables you to create a link to the directory /etc

in your home directory?

 What is the safe option to remove a symbolic link to a directory?

 How do you create a compressed archive of the directories /etc

and /home and write that archive to /tmp/etchome.tgz?

 How would you extract the file /etc/passwd from

/tmp/etchome.tgz that you have created in the previous step?

End-of-Chapter Lab

In this chapter, you learned how to perform basic file

management tasks. Managing files is an essential task for a Linux

administrator. This end-of-chapter lab enables you to practice

these skills and make sure that you master them before taking

the RHCSA exam.

Lab 3.1

1. Log in as user student and use sudo -i to open a root shell. In

the home directory of root, create one archive file that

contains the contents of the /home directory and the /etc

directory. Use the name /root/essentials.tar for the archive file.

2. Copy this archive to the /tmp directory. Also create a hard link

to this file in the / directory.

3. Rename the file /essentials.tar to /archive.tar.

4. Create a symbolic link in the home directory of the user root

that refers to /archive.tar. Use the name link.tar for the

symbolic link.

5. Remove the file /archive.tar and see what happened to the

symbolic link. Remove the symbolic link also.

6. Compress the /root/essentials.tar file.

Chapter 4

Working with Text Files

The following topics are covered in this chapter:

Using Common Text File–Related Tools

A Primer to Using Regular Expressions

Using grep to Analyze Text

Working with Other Useful Text Processing Utilities

The following RHCSA exam objectives are covered in this

chapter:

Use grep and regular expressions to analyze text

Create and edit text files

Since the early days of UNIX, working with text files has been an

important administrator skill. Even on modern Linux versions

such as Red Hat Enterprise Linux 9, working with text files is still

an important skill, as everything you do on Linux is stored as a

text file. By applying the correct tools, you’ll easily find and

modify the configuration of everything. This chapter is about

these tools. Make sure that you master them well, because good

knowledge of these tools really will make your work as a Linux

administrator a lot easier. At the same time, it will increase your

chances of passing the RHCSA exam.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table 4-

1 lists the major headings in this chapter and their corresponding

“Do I Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quizzes and Review Questions.”

Table 4-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Using Common Text File–Related Tools 1–5

A Primer to Using Regular Expressions 6–8

Using grep to Analyze Text 10

Working with Other Useful Text Processing Utilities 9

 Which command was developed to show only the first ten lines

in a text file?

1. head

2. top

3. first

4. cat

 Which command enables you to count the number of words in a

text file?

1. count

2. list

3. ls -l

4. wc

 Which key on your keyboard do you use in less to go to the last

line of the current text file?

1. End

2. Page Down

3. q

4. G

 Which option is missing (…) from the following command,

assuming that you want to filter the first field out of the

/etc/passwd file and assuming that the character that is used as

the field delimiter is a :?

cut ... : -f 1 /etc/passwd

1. -d

2. -c

3. -t

4. -x

 Which option is missing (…) if you want to sort the third column

of the output of the command ps aux?

ps aux | sort ...

1. -k3

2. -s3

3. -k f 3

4. -f 3

 Which of the following commands would only show lines in the

file /etc/passwd that start with the text anna?

1. grep anna /etc/passwd

2. grep -v anna /etc/passwd

3. grep $anna /etc/passwd

4. grep ^anna /etc/passwd

 Which regular expression do you use to make the previous

character optional?

1. ?

2. .

3. *

4. &

 Which regular expression do you use if you want the preceding

character to occur at least one time?

1. ?

2. .

3. *

4. +

 Assuming that the field delimiter : is used, which command

prints the fourth field of a line in the /etc/passwd file if the text

user occurs in that line?

1. awk '/user/ { print $4 }' /etc/passwd

Hivanetwork.com

https://hivanetwork.com/

2. awk -d : '/user/ { print $4 }' /etc/passwd

3. awk -F : '/user/ $4' /etc/passwd

4. awk -F : '/user/ { print $4 }' /etc/passwd

 Which option would you use with grep to show only lines that

do not contain the regular expression that was used?

1. -x

2. -v

3. -u

4. -q

Foundation Topics

Using Common Text File–Related Tools

Before we start talking about the best possible way to find text

files containing specific text, let’s take a look at how you can

display text files in an efficient way. Table 4-2 provides an

overview of some common commands often used for this

purpose.

Table 4-2 Essential Tools for Managing Text File Contents

Command Explanation

less Opens the text file in a pager, which allows for easy reading

cat Dumps the contents of the text file on the screen

head Shows the top of the text file

tail Shows the bottom of the text file

cut Used to filter specific columns or characters from a text file

sort Sorts the contents of a text file

wc Counts the number of lines, words, and characters in a text file

Apart from their use on a text file, these commands may also

prove very useful when used with pipes. You can use the

command less /etc/passwd, for example, to open the contents of

the /etc/passwd file in the less pager, but you can also use the

command ps aux | less, which sends the output of the command

ps aux to the less pager to allow for easy reading.

Doing More with less

In many cases, as a Linux administrator you’ll need to read the

contents of text files. The less utility offers a convenient way to

do so. To open the contents of a text file in less, just type less

followed by the name of the file you want to see, as in less

/etc/passwd.

From less, you can use the Page Up and Page Down keys on your

keyboard to browse through the file contents. Seen enough?

Then you can press q to quit less. Also very useful is that you can

easily search for specific contents in less using /sometext for a

forward search and ?sometext for a backward search. Repeat

the last search by using n.

If you think this sounds familiar, it should. You have seen similar

behavior in vim and man. The reason is that all of these

commands are based on the same code.

Note

Once upon a time, less was developed because it

offered more features than the classical UNIX tool

more, which was developed to go through file

contents page by page. So, the idea was to do more

with less. Developers did not like that, so they

enhanced the features of the more command as

well. The result is that both more and less offer

many features that are similar, and which tool you

use doesn’t really matter that much anymore. There

is one significant difference, though, and that is the

more utility ends if the end of the file is reached. To

prevent this behavior, you can start more with the -

p option. Another difference is that the more tool is

a standard part of any Linux and UNIX installation.

This is not the case for less, which may have to be

installed separately.

In Exercise 4-1, you apply some basic less skills to work with file

contents and command output.

Exercise 4-1 Applying Basic less Skills

1. From a terminal, type less /etc/passwd. This opens the

/etc/passwd file in the less pager.

2. Type /root to look for the text root. You’ll see that all

occurrences of the text root are highlighted.

3. Press G to go to the last line in the file.

4. Press q to quit less.

5. Type ps aux | less. This sends the output of the ps aux

command (which shows a listing of all processes) to less.

Browse through the list.

6. Press q to quit less.

Showing File Contents with cat

The less utility is useful to read long text files. If a text file is not

that long, you are probably better off using cat, which just

dumps the contents of the text file on the terminal it was started

from. This is convenient if the text file is short. If the text file is

long, however, you’ll see all contents scrolling by on the screen,

and only the lines that fit on the terminal screen are displayed.

Using cat is simple. Just type cat followed by the name of the file

you want to see. For instance, use cat /etc/passwd to show the

contents of this file on your computer screen.

Tip

The cat utility dumps the contents of a file to the

screen from the beginning to the end, which means

that for a long file you’ll see the last lines of the file

only. If you are interested in the first lines, you can

use the tac utility, which gives the inversed result of

cat.

Displaying the First or Last Lines of a File with head and tail

If a text file contains much information, it can be useful to filter

the output a bit. You can use the head and tail utilities to do that.

Using head on a text file will show by default the first ten lines of

that file. Using tail on a text file shows the last ten lines by

default. You can adjust the number of lines that are shown by

adding -n followed by the number you want to see. So, tail -n 5

/etc/passwd shows the last five lines of the /etc/passwd file.

Tip

With older versions of head and tail, you had to use

the -n option to specify the number of lines you

wanted to see. With current versions of both

utilities, you may also omit the -n option. So, using

either tail -5 /etc/passwd or tail -n 5 /etc/passwd

gives you the exact same results.

Another useful option that you can use with tail is -f. This option

starts by showing you the last ten lines of the file you’ve

specified, but it refreshes the display as new lines are added to

the file. This is convenient for monitoring log files. The command

tail -f /var/log/messages (which has to be run as the root user) is

a common command to show in real time messages that are

written to the main log file /var/log/messages. To end this

command, press Ctrl-C.

By combining tail and head, you can do smart things as well.

Suppose, for instance, that you want to see line number 11 of the

/etc/passwd file. To do that, use head -n 11 /etc/passwd | tail -n

1. The command before the pipe shows the first 11 lines from the

file. The result is sent to the pipe, and on that result tail -n 1 is

used, which leads to only line number 11 being displayed. In

Exercise 4-2, you apply some basic head and tail operations to

get the exact results that you want.

Exercise 4-2 Using Basic head and tail Operations

1. From a root shell, type tail -f /var/log/messages. You’ll see the

last lines of /var/log/messages being displayed. The file doesn’t

close automatically.

2. Press Ctrl-C to quit the previous command.

3. Type head -n 5 /etc/passwd to show the first five lines in

/etc/passwd.

4. Type tail -n 2 /etc/passwd to show the last two lines of

/etc/passwd.

5. Type head -n 5 /etc/passwd | tail -n 1 to show only line

number 5 of the /etc/passwd file.

Filtering Specific Columns with cut

When you’re working with text files, it can be useful to filter out

specific fields. Imagine that you need to see a list of all users in

the /etc/passwd file. In this file, several fields are defined, of

which the first contains the name of the users who are defined.

To filter out a specific field, the cut command is useful. To do

this, use the -d option to specify the field delimiter followed by -f

with the number of the specific field you want to filter out. So,

the complete command is cut -d : -f 1 /etc/passwd if you want to

filter out the first field of the /etc/passwd file. You can see the

result in Example 4-1.

Example 4-1 Filtering Specific Fields with cut

Click here to view code image

[root@localhost ~]# cut -d : -f 1 /etc/passwd
root
bin
daemon

Hivanetwork.com

https://hivanetwork.com/

adm
lp
sync
shutdown
halt
...

Sorting File Contents and Output with sort

Another very useful command to use on text files is sort. As you

can probably guess, this command sorts text. If you type sort

/etc/passwd, for instance, the content of the /etc/passwd file is

sorted in byte order. You can use the sort command on the

output of a command also, as in cut -f 1 -d : /etc/passwd | sort,

which sorts the contents of the first column in the /etc/passwd

file.

By default, the sort command sorts in byte order, which is the

order in which the characters appear in the ASCII text table.

Notice that this looks like alphabetical order, but it is not, as all

capital letters are shown before lowercase letters. So Zoo would

be listed before apple. In some cases, that is not convenient

because the content that needs sorting may be numeric or in

another format. The sort command offers different options to

help sorting these specific types of data. Type, for instance, cut -f

3 -d : /etc/passwd | sort -n to sort the third field of the

/etc/passwd file in numeric order. It can be useful also to sort in

reverse order; if you use the command du -h | sort -rn, you get a

list of files sorted with the biggest file in that directory listed first.

You can also use the sort command and specify which column

you want to sort. To do this, use sort -k3 -t : /etc/passwd, for

instance, which uses the field separator : to sort the third column

of the /etc/passwd file. Add -n to the command to sort in a

numeric order, and not in an alphabetic order.

Another example is shown in Example 4-2, where the output of

the ps aux command is sorted. This command gives an overview

of processes running on a Linux system. The fourth column

indicates memory usage, and by applying a numeric sort to the

output of the command, you can see that the processes are sorted

by memory usage, such that the process that consumes the most

memory is listed last.

Example 4-2 Using ps aux to Find the Busiest Processes on a

Linux Server

Click here to view code image

[root@localhost ~]# ps aux | sort -k 4 -n

root 897 0.3 1.1 348584 42200 ? Ssl 08:12 0:00
 /usr/bin/python3 -s /usr/sbin/firewalld --nofork --nopid
student 2657 1.0 1.1 2936188 45200 ? Ssl 08:14 0:00
 /usr/bin/gjs /usr/share/org.gnome.Characters/org.gnome.Characters.
 BackgroundService
student 2465 0.3 1.3 143976 52644 ? S 08:14 0:00
 /usr/bin/Xwayland :0 -rootless -noreset -accessx -core -auth /
 run/user/1000/.mutter-Xwaylandauth.0SRUV1 -listenfd 4 -listenfd 5
 -displayfd 6 -initfd 7
student 2660 1.9 1.4 780200 53412 ? Ssl 08:14 0:00
 /usr/libexec/gnome-terminal-server
root 2480 2.1 1.6 379000 61568 ? Ssl 08:14 0:00
 /usr/bin/python3 /usr/libexec/rhsm-service
student 2368 0.9 1.6 1057048 61096 ? Sl 08:14 0:00
 /usr/libexec/evolution-data-server/evolution-alarm-notify
root 1536 0.6 1.8 555908 69916 ? Ssl 08:12 0:00
 /usr/libexec/packagekitd
student 2518 0.6 1.8 789408 70336 ? Ssl 08:14 0:00
 /usr/libexec/gsd-xsettings
student 2540 0.5 1.8 641720 68828 ? Sl 08:14 0:00
 /usr/libexec/ibus-x11 --kill-daemon
student 2381 4.7 1.9 1393476 74756 ? Sl 08:14 0:00
 /usr/bin/gnome-software --gapplication-service
student 2000 16.0 7.8 3926096 295276 ? Ssl 08:14 0:03
 /usr/bin/gnome-shell

Counting Lines, Words, and Characters with wc

When working with text files, you sometimes get a large amount

of output. Before deciding which approach to handling the large

amount of output works best in a specific case, you might want to

have an idea about the amount of text you are dealing with. In

that case, the wc command is useful. In its output, this command

gives three different results: the number of lines, the number of

words, and the number of characters.

Consider, for example, the ps aux command. When executed as

root, this command gives a list of all processes running on a

server. One solution to count how many processes there are

exactly is to pipe the output of ps aux through wc, as in ps aux |

wc. You can see the result of the command in Example 4-3, which

shows that the total number of lines is 90 and that there are 1,045

words and 7,583 characters in the command output.

Example 4-3 Counting the Number of Lines, Words, and

Characters with wc

Click here to view code image

[root@localhost ~]# ps aux | wc
 90 1045 7583

A Primer to Using Regular Expressions

Working with text files is an important skill for a Linux

administrator. You must know not only how to create and modify

existing text files, but also how to find the text file that contains

specific text.

It will be clear sometimes which specific text you are looking for.

Other times, it might not. For example, are you looking for color

or colour? Both spellings might give a match. This is just one

example of why using flexible patterns while looking for text can

prove useful. In Linux these flexible patterns are known as

regular expressions, often also referred to as regex.

To understand regular expressions a bit better, let’s take a look at

a text file example, shown in Example 4-4. This file contains the

last six lines from the /etc/passwd file. (This file is used for

storing Linux accounts; see Chapter 6, “User and Group

Management,” for more details.)

Example 4-4 Sample Lines from /etc/passwd

Click here to view code image

[root@localhost ~]# tail -n 6 /etc/passwd
anna:x:1000:1000::/home/anna:/bin/bash
rihanna:x:1001:1001::/home/rihanna:/bin/bash
annabel:x:1002:1002::/home/annabel:/bin/bash
anand:x:1003:1003::/home/anand:/bin/bash
joanna:x:1004:1004::/home/joanna:/bin/bash
joana:x:1005:1005::/home/joana:/bin/bash

Now suppose that you are looking for the user anna. In that case,

you could use the general regular expression parser grep to look

for that specific string in the file /etc/passwd by using the

command grep anna /etc/passwd. Example 4-5 shows the results

of that command, and as you can see, way too many results are

shown.

Example 4-5 Example of Why You Need to Know About Regular

Expressions

Click here to view code image

[root@localhost ~]# grep anna /etc/passwd
anna:x:1000:1000::/home/anna:/bin/bash
rihanna:x:1001:1001::/home/rihanna:/bin/bash
annabel:x:1002:1002::/home/annabel:/bin/bash
joanna:x:1004:1004::/home/joanna:/bin/bash

A regular expression is a search pattern that allows you to look

for specific text in an advanced and flexible way.

Using Line Anchors

In Example 4-5, suppose that you wanted to specify that you are

looking for lines that start with the text anna. The type of regular

expression that specifies where in a line of output the result is

expected is known as a line anchor.

To show only lines that start with the text you are looking for,

you can use the regular expression ^ (in this case, to indicate that

you are looking only for lines where anna is at the beginning of

the line; see Example 4-6).

Example 4-6 Looking for Lines Starting with a Specific Pattern

Click here to view code image

[root@localhost ~]# grep ^anna /etc/passwd
anna:x:1000:1000::/home/anna:/bin/bash

annabel:x:1002:1002::/home/annabel:/bin/bash

Another regular expression that relates to the position of specific

text in a specific line is $, which states that the line ends with

some text. For instance, the command grep ash$ /etc/passwd

shows all lines in the /etc/passwd file that end with the text ash.

This command shows all accounts that have a shell and are able

to log in (see Chapter 6 for more details).

Using Escaping in Regular Expressions

Although not mandatory, when you’re using regular expressions,

it is a good idea to use escaping to prevent regular expressions

from being interpreted by the shell. When a command line is

entered, the Bash shell parses the command line, looking for any

special characters like *, $, and ?. It will next interpret these

characters. The point is that regular expressions use some of

these characters as well, and to make sure the Bash shell doesn’t

interpret them, you should use escaping.

In many cases, it is not really necessary to use escaping; in some

cases, the regular expression fails without escaping. To prevent

this from ever happening, it is a good idea to put the regular

expression between quotes. So, instead of typing grep ^anna

/etc/passwd, it is better to use grep '^anna' /etc/passwd, even if

Hivanetwork.com

https://hivanetwork.com/

in this case both examples work.

Using Wildcards and Multipliers

In some cases, you might know which text you are looking for,

but you might not know how the specific text is written. Or you

might just want to use one regular expression to match different

patterns. In those cases, wildcards and multipliers come in

handy.

To start with, there is the dot (.) regular expression. This is used

as a wildcard character to look for one specific character. So, the

regular expression r.t would match the strings rat, rot, and rut.

In some cases, you might want to be more specific about the

characters you are looking for. If that is the case, you can specify

a range of characters that you are looking for. For instance, the

regular expression r[aou]t matches the strings rat, rot, and rut

but it wouldn’t match rit and ret.

Another useful regular expression is the multiplier *. This

matches zero or more of the previous character. That does not

seem to be very useful, but indeed it is, as you will see in the

examples at the end of this section.

If you know exactly how many of the previous character you are

looking for, you can specify a number also, as in re\{2\}d, which

would match reed, but not red. The last regular expression that is

useful to know about is ?, which matches zero or one of the

previous character. Table 4-3 provides an overview of the most

important regular expressions.

Using Extended Regular Expressions

What makes regular expressions sometimes a bit hard to

understand is the fact that there are different sets of regular

expressions. The base regular expressions as discussed so far are

supported by tools like grep. There is also a set of extended

regular expressions, which is not supported by default. When

used with grep, you’ll have to add the -E option to indicate it is

an extended regular expression. The + can be used to indicate

that a character should occur one or more times, and the ? is

used to indicate that a character should occur zero or one times.

When used in grep, don’t forget to use grep -E to ensure that

these are interpreted as extended regular expressions!

Table 4-3 Most Significant Regular Expressions

Regular

Expression Use

^text Matches line that starts with specified text.

text$ Matches line that ends with specified text.

. Wildcard. (Matches any single character.)

[abc] Matches a, b, or c.

? Extended regular expression that matches zero or one of the
preceding character.

+ Extended regular expression that matches one or more of the
preceding character.

* Matches zero to an infinite number of the previous character.

\{2\} Matches exactly two of the previous character.

\{1,3\} Matches a minimum of one and a maximum of three of the
previous character.

colou?r Matches zero or one of the previous character. This makes the
previous character optional, which in this example would match
both color and colour.

(…) Used to group multiple characters so that the regular expression
can be applied to the group.

Let’s take a look at an example of a regular expression that

comes from the man page semanage-fcontext and relates to

managing SELinux (see Chapter 22, “Managing SELinux”). The

sample line contains the following regular expression:

"/web(/.*)?"

In this regular expression, the text /web is referred to. This text

string can be followed by the regular expression (/.*)?. To

understand the regular expression, start with the ?, which refers

to the part between braces and indicates that the part between

braces may occur zero times or one time. Within the braces, the

pattern starts with a slash, which is just a slash, followed by zero

or more characters. So this means that just the directory name

gives a match, but also the directory name followed by just a

slash, or a slash that is followed by a filename.

What makes regular expressions difficult is that there is not just

one set of regular expressions; there are also extended regular

expressions. And to make the concept more complex, the

extended regular expressions need specific commands. The well-

known command grep (covered next) by default deals with base

regular expressions. If you want to use extended regular

expressions, you need grep -E or egrep.

Two common extended regular expressions are + and ?. The +

will look for a pattern where the preceding character occurs one

or more times, and the ? looks for a pattern where the preceding

character does not occur or occurs one time. Use the following

procedure to find out how these extended regular expressions

can be confusing:

Step 1. Create a text file with the name regex.txt and the following

contents:

bat
boot
boat
bt

Step 2. Use grep 'b.*t' regex.txt to see any line that starts with a b and

ends with a t.

Step 3. Use grep 'b.+t' regex.txt. You might expect to see only lines that

have at least three characters, but you don’t, because you are

using an extended regular expression, and without using any

additional options, grep doesn’t recognize the extended regular

expression.

Step 4. Use grep -E 'b.+t' regex.txt. Now you see that the extended

regular expression does work as expected.

Using grep to Analyze Text

The ultimate utility to work with regular expressions is grep,

which stands for “general regular expression parser.” Quite a

few examples that you have seen already were based on the grep

command. The grep command has a couple of useful options to

make it even more efficient. Table 4-4 describes some of the most

useful options.

Table 4-4 Most Useful grep Options

Option Use

-i Matches upper- and lowercase letters (i.e., not case sensitive).

-v Shows only lines that do not contain the regular expression.

-r Searches files in the current directory and all subdirectories.

-e Searches for lines matching more than one regular expression.
Use -e before each regular expression you want to use.

-E Interprets the search pattern as an extended regular expression.

-A
<number>

Shows <number> of lines after the matching regular expression.

-B
<number>

Shows <number> of lines before the matching regular expression.

In Exercise 4-3, you work through some examples using these

grep options.

Exercise 4-3 Using Common grep Options

1. Type grep ' #'/etc/services. This shows that the file

/etc/services contains a number of lines that start with the

comment sign, #.

2. To view the configuration lines that really matter, type grep -v

'^#' /etc/ services. This shows only lines that do not start with

a #.

3. Type grep -v '^#' /etc/services -B 5. This shows lines that do

not start with a # sign but also the five lines that are directly

before each of those lines, which is useful because in the

preceding lines you’ll typically find comments on how to use

the specific parameters. However, you’ll also see that many

blank lines are displayed.

4. Type grep -v -e '^#' -e '^$'/etc/services. This excludes all blank

lines and lines that start with #.

Working with Other Useful Text Processing Utilities

The grep utility is a powerful utility that allows you to work with

regular expressions. It is not the only utility, though. Some even

more powerful utilities exist, like awk and sed, both of which are

extremely rich and merit a book by themselves. The utilities

were developed in the time that computers did not commonly

have screens attached, and for that reason they do a good job of

treating text files in a scripted way.

Hivanetwork.com

https://hivanetwork.com/

As a Linux administrator in the twenty-first century, you do not

have to be a specialist in using these utilities anymore. It does

make sense, however, to know how to perform some common

tasks using these utilities. The most useful use cases are

summarized in the following examples.

This command shows the fourth field from /etc/passwd:

Click here to view code image

awk -F : ' { print $4 } ' /etc/passwd

This is something that can be done by using the cut utility as

well, but the awk utility is more successful in distinguishing the

fields that are used in command output of files. The bottom line

is that if cut does not work, you should try the awk utility.

You can also use the awk utility to do tasks that you might be

used to using grep for. Consider the following example:

Click here to view code image

awk -F : ' /user/ { print $4 } ' /etc/passwd

This command searches the /etc/passwd file for the text user and

will print the fourth field of any matching line.

In this example, the “stream editor” sed is used to print the fifth

line from the /etc/passwd file:

sed -n 5p /etc/passwd

The sed utility is a very powerful utility for filtering text from

text files (like grep), but it has the benefit that it also allows you

to apply modifications to text files, as shown in the following

example:

Click here to view code image

sed -i s/old-text/new-text/g ~/myfile

In this example, the sed utility is used to search for the text old-

text in ~/myfile and replace all occurrences with the text new-

text. Notice that the default sed behavior is to write the output to

STDOUT, but the option -i will write the result directly to the file.

Make sure that you know what you are doing before using this

command, because it might be difficult to revert file

modifications that are applied in this way.

You’ll like the following example if you’ve ever had a utility

containing a specific line in a file that was erroneous:

sed -i -e ' 2d ' ~/myfile

With this command, you can delete a line based on a specific line

number. You can also make more complicated references to line

numbers. Use, for instance, sed -i -e '2d;20,25d' ~/myfile to delete

lines 2 and 20 through 25 in the file ~/myfile.

Tip

Do not focus on awk and sed too much. These are

amazing utilities, but many of the things that can be

accomplished using them can be done using other

tools as well. The awk and sed tools are very rich,

and you can easily get lost in them if you are trying

to dig too deep.

Summary

In this chapter, you learned how to work with text files. You

acquired some important skills like searching text files with grep

and displaying text files or part of them with different utilities.

You also learned how regular expressions can be used to make

the search results more specific. Finally, you learned about the

very sophisticated utilities awk and sed, which allow you to

perform more advanced operations on text files.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 4-5 lists a

reference for these key topics and the page number on which

each is found.

Table 4-5 Key Topics for Chapter 4

Key Topic Element Description Page

Table 4-2 Essential Tools for Managing Text File Contents 84

Paragraph Definition of a regular expression 90

Paragraph Definition of a regular expression 90

Table 4-3 Most Significant Regular Expressions 92

Table 4-4 Most Useful grep Options 94

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

pager

regular expression

line anchor

escaping

wildcard

multiplier

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 Which command enables you to see the results of the ps aux

command in a way that you can easily browse up and down in

the results?

 Which command enables you to show the last five lines from

~/samplefile?

 Which command do you use if you want to know how many

words are in ~/samplefile?

 After opening command output using tail -f ~/mylogfile, how do

you stop showing output?

 Which grep option do you use to exclude all lines that start with

either a # or a ;?

 Which regular expression do you use to match one or more of

the preceding characters?

 Which grep command enables you to see text as well as TEXT in

a file?

 Which grep command enables you to show all lines starting with

PATH, as well as the five lines just before that line?

 Which sed command do you use to show line 9 from

~/samplefile?

 Which command enables you to replace all occurrences of the

word user with the word users in ~/samplefile?

End-of-Chapter Lab

In this end-of-chapter lab, you work with some of the most

significant text processing utilities.

Lab 4.1

1. Describe two ways to show line 5 from the /etc/passwd file.

2. How would you locate all text files on your server that contain

the current IP address? Do you need a regular expression to do

this?

3. You have just used the sed command that replaces all

occurrences of the text Administrator with root. Your

Windows administrators do not like that very much. How do

you revert?

4. Assuming that in the ps aux command the fifth line contains

information about memory utilization, how would you process

the output of that command to show the process that has the

heaviest memory utilization first in the results list?

5. Which command enables you to filter the sixth column of ps

aux output?

6. How do you delete the sixth line from the file ~/myfile?

Hivanetwork.com

https://hivanetwork.com/

Chapter 5

Connecting to Red Hat Enterprise Linux 9

The following topics are covered in this chapter:

Working on Local Consoles

Using SSH and Related Utilities

The following RHCSA exam objectives are covered in this

chapter:

Access remote systems using SSH

Log in and switch users in multiuser targets

Boot, reboot, and shut down a system normally

Securely transfer files between systems

Configure key-based authentication for SSH

You have already learned how to log in on Linux from a

graphical environment. In this chapter, you learn about some

other methods to access a Linux shell and start working. You

learn how to work from local consoles and from Secure Shell

(SSH) to connect to Linux. You also learn how to perform some

basic tasks from these environments.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table 5-

1 lists the major headings in this chapter and their corresponding

“Do I Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quizzes and Review Questions.”

Table 5-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Working on Local Consoles 1–6

Using SSH and Related Utilities 7–10

 Which is the correct term for the description here?

“Used to refer to the physical screen you are currently looking at

as a user”

1. Terminal

2. Console

3. Shell

4. Interface

 Which is the correct term for the description here?

“The environment from which a shell is used where users can

enter their commands”

1. Terminal

2. Console

3. Shell

4. Interface

 Which is the correct term for the description here?

“The environment that offers a command line on which users

type the commands they want to use”

1. Terminal

2. Console

3. Shell

4. Interface

 Which device file is associated with the virtual console that is

opened after using the Alt-F6 key sequence?

1. /dev/console6

2. /dev/tty6

3. /dev/vty6

4. /dev/pts/6

 Which of the following methods will open a pseudo terminal

device? (Choose two)

1. Log in using an SSH session

2. Press Alt-F2 to open a new nongraphical login

3. Type terminal in the search menu and open it

4. Enter your username and password on a nongraphical console

 Sometimes a server reboot may be necessary to accomplish a

task. Which of the following is not typically one of them?

1. To recover from serious problems such as server hangs and

kernel panics

2. To apply kernel updates

3. To apply changes to kernel modules that are being used

currently and therefore cannot be reloaded easily

4. To apply changes to the network configuration

 Which of the following is true about remote access to Linux

servers from a Windows environment?

1. Open a shell terminal on Windows and type ssh to access

Linux servers remotely. The ssh command is available as a

default part of the Windows operating system.

2. Configure Remote Access on Windows if you want to access

Linux servers running the sshd process.

3. Install the PuTTY program on Windows to access sshd services

on Linux from Windows.

4. You cannot remotely access Linux machines from Windows.

 What is the name of the file in which the public key fingerprint

of the SSH servers you have connected to in the past are stored?

1. /etc/ssh/remote_hosts

2. /etc/ssh/known_hosts

3. ~/.ssh/remote_hosts

4. ~/.ssh/known_hosts

 To allow graphical applications to be used through an SSH

session, you can set a parameter in the /etc/ssh/ssh_config file.

Using this parameter makes it unnecessary to use the -X

command-line option each time an SSH session is initiated.

Which of the following parameters should be used?

1. Host *

2. TunnelX11 yes

3. ForwardX11 yes

4. Xclient yes

 Which of the following statements about key-based SSH

authentication is true?

1. After creating the key pair, you need to copy the private key to

the remote server.

2. Use scp to copy the public key to the remote server.

3. Use ssh-copy-id to copy the public key to the remote server.

4. Use ssh-keygen on the server to generate a key pair that

matches the client keys.

Foundation Topics

Working on Local Consoles

You have already learned how to log in on Linux by using a

graphical console. In this section, you learn some more about the

possibilities you have while working from either a graphical

Linux console or a text-based Linux console.

Before we get into details, it makes sense to highlight the

difference between the words console and terminal. In this

book, I follow the common notion of a console as the

environment the user is looking at. That means that the console

is basically what you see when you are looking at your computer

screen.

A terminal is an environment that is opened on the console and

provides access to a nongraphical shell, typically Bash. This is the

command-line environment that can be used to type commands.

A terminal can be offered through a window while using a

graphical console, but it can also be opened as the only thing that

you see in a textual console. You can also open a remote

terminal, using SSH.

This means that in a textual environment, the words console and

terminal are more or less equivalent. In a graphical environment,

they are not. Think of it like this: You can have multiple

terminals open on a console, but you cannot have multiple

consoles open in one terminal.

Logging In to a Local Console

Roughly, there are two ways to make yourself known to a Linux

server. Sometimes you just sit at the Linux console and

interactively log in from the login prompt that is presented. In

other cases, a remote connection is established. The second part

of this chapter is about logging in from a remote session; in this

part, you learn how to work from a local console.

If a Linux server boots with a graphical environment (the so-

called graphical target), you see a login prompt requesting you to

select a username and enter a password. Many Linux servers do

not use a graphical environment at all, though, and just present a

text-based console, as shown in Figure 5-1.

Figure 5-1 Logging In from a Text Console

To log in from a text console, you need to know which user

account you should use. On many installations, the unrestricted

system administrator user root is available, but using this

account to do your work typically is not a good idea. The user

root has no limitations to access the system and can therefore do

a lot of damage. A small mistake can have a huge impact. On

older versions of RHEL, the user root was enabled by default. On

RHEL 9, you can indicate while installing if the root user should

have a password or not. If the root user doesn’t get a password,

you’ll only be able to log in with an administrator user. This is a

user that will only obtain root superpowers while using the sudo

Hivanetwork.com

https://hivanetwork.com/

command.

If the root user, is enabled, you shouldn’t use it. Typically, it is a

better idea to log in as one of the locally defined users, and there

are many reasons to do so, including the following:

Logging in this way will make it more difficult to make critical

errors.

On many occasions, you will not need root permissions

anyway.

If you only allow access to normal users and not to root, it will

force an attacker to guess two different things: the name of

that specific user as well as the password of that user.

If you do need root access anyway, you can use the sudo -i

command from the local user environment to open a root

shell. Note that you are allowed to do this only if you have

sudo privileges, and you’ll have to type your current user

password after using the command.

If you know the root user password, use su - to open a root

shell. This command will prompt for the root user password,

and you’ll be able to work as root until you type exit. Notice

that the sudo -i command only works for authorized users and

doesn’t require the user to enter the root password, and for

that reason is considered more secure.

Use sudo to configure specific administration tasks for specific

users only. See Chapter 6, “User and Group Management,” for

more information.

Switching Between Terminals in a Graphical Environment

When you’re working in a graphical environment, it is relatively

easy to open several different working environments, such as

different terminal windows in which you can work from a shell.

In the upper-left part of the graphical interface, click Activities,

and in the Search bar that appears, type term, which presents an

icon to open a terminal. Because terminals are opened as a

subshell, you do not have to log in to each terminal again, and

will get access as the same user account that was originally used

to log in to the graphical environment (see Figure 5-2).

Figure 5-2 Using Different Terminal Windows from the Graphical Environment

Working from a graphical environment is convenient. As an

administrator, you can open several terminal windows, and in

each terminal window you can use the su - command to open a

shell in which you can work with a different user identity, or use

sudo -i to open a root shell. This allows you to easily test features

and see the results of these tests immediately. Exercise 5-1 guides

you through a common scenario where you can do this and see

how testing things from one terminal window while monitoring

from another terminal window can be convenient.

Exercise 5-1 Working from Several Terminal Windows

Simultaneously

1. Start your computer and make sure to log in as a non-root

user account from the graphical login window that is

presented. You should have a local user with the name student

and the password password that you can use for this purpose.

2. Click Activities, and type term. Next, click the terminal icon

to open a new terminal window.

3. From the Terminal menu on the top of your screen, select

New Window.

4. From one of the terminal windows, type the command sudo -i

and enter the password of the student user. Then, type tail -f

/var/log/secure. This opens a trace on the file /var/log/secure,

where you can monitor security events in real time.

5. From the other terminal windows, type su -. When asked for a

password, you normally enter the password for the user root.

Enter a wrong password.

6. Now look at the terminal where the trace on /var/log/secure is

still open. You will see that an error message has been written

to this file.

7. Press Ctrl-C to close the tail -f session on the /var/log/secure

file.

Working with Multiple Terminals in a Nongraphical
Environment

In the previous section, you learned how to work with multiple

terminals in a graphical environment. This is relatively easy

because you just have to open a new terminal window. In a

nongraphical environment, you have only one terminal interface

that is available, and that makes working in different user shell

environments a bit more difficult.

To offer an option that makes working from several consoles on

the same server possible, Linux uses the concept of a virtual

terminal. This feature allows you to open six different terminal

windows from the same console at the same time and use key

sequences to navigate between them. To open these terminal

windows, you can use the key sequences Alt-F1 through Alt-F6.

The following virtual consoles are available:

F1: Gives access to the GNOME Display Manager (GDM)

graphical login

F2: Provides access to the current graphical console

F3: Gives access back to the current graphical session

F4–F6: Gives access to nongraphical consoles

Tip

A convenient alternative to using the Alt-Function

key sequences is offered by the chvt command. This

command enables you to switch to a different

virtual environment directly from the current

environment. If you are in a graphical console right

now, open a terminal and type chvt 4. This brings

you to a login prompt on virtual terminal 4. Switch

back to the graphical environment using the chvt 3

command, or use chvt 1 to switch back to a

graphical login prompt.

Of these virtual consoles, the first one is used as the default

console. It is commonly known as the virtual console tty1, and it

has a corresponding device file in the /dev directory that has the

name /dev/tty1. The other virtual consoles also have

corresponding device files, which are numbered /dev/tty1

through /dev/tty6.

When you’re working from a graphical environment, it is also

possible to open different virtual consoles. Because the

combinations between the Alt key and the Function keys

typically already have a meaning in the graphical environment,

you need to use a Ctrl-Alt-Function key instead. So, do not use Alt-

F4 to open /dev/tty4 from a graphical environment, but instead

use Ctrl-Alt-F4. To get back to the graphical console, you can use

the Alt-F3 key sequence. The Alt-F6 and Ctrl-Alt-F6 key sequences

are essentially the same. It is important to use the Ctrl key as well

when going from a GUI to a text environment. To go back from

the text environment to the GUI environment, using the Ctrl key

is optional.

Note

A long time ago, big central computers were used, to

which dumb terminal devices were connected.

These dumb terminal devices consisted of nothing

more than a monitor and keyboard attached to it.

From each of these dumb terminal devices, a console

session to the operating system could be started. On

a modern Linux server, no dumb terminals are

attached. They have been replaced with the virtual

terminals described here.

Understanding Pseudo Terminal Devices

Every terminal used in a Linux environment has a device file

associated with it. You’ve just learned that terminals that are

started in a nongraphical environment are typically referred to

through the devices /dev/tty1 through /dev/tty6.

For terminal windows that are started from a graphical

environment, pseudo terminals are started. These pseudo

terminals are referred to using numbers in the /dev/pts directory.

So, the first terminal window that is started from a graphical

environment appears as /dev/pts/1, the second terminal window

appears as /dev/pts/2, and so on. In Exercise 5-2, you learn how to

work with these pseudo terminal devices and see which user is

active on which pseudo terminal.

Note

On earlier versions of Linux, pseudo terminals were

seen as pty devices. These types of terminals are

now deprecated and replaced with the pts terminal

types, as described before.

Exercise 5-2 Working with Pseudo Terminals

1. Log in to the graphical console, using a non-root user account.

2. Open a terminal window.

3. From the terminal window, type w. This will give an overview

of all users who are currently logged in. Notice the column

that mentions the tty the users are on, in which you see tty2

that refers to the terminal window.

4. Open another graphical terminal window. Type su - to

become root.

5. Type w to display once more an overview of all users who are

currently logged in. Notice that the second su - session doesn’t

show as an additional user account because both have been

started from the graphical interface, which is tty2.

At this point, you know how to work with the console, terminals,

virtual terminals, and pseudo terminals. In the section “Using

SSH and Related Utilities” later in this chapter, you use SSH to

open terminal sessions to your server. These sessions show as

pseudo terminals as well.

Booting, Rebooting, and Shutting Down Systems

As an administrator of a Linux server, you occasionally have to

reboot the Linux server. Rebooting a server is not often a

requirement, but it can make your work a lot easier because it

will make sure that all processes and tasks that were running on

Hivanetwork.com

https://hivanetwork.com/

your server have reread their configurations and initialized

properly.

Tip

Rebooting a Linux server is an important task on the

RHCSA exam. Everything you have configured

should still be working after the server has

rebooted. So, make sure that you reboot at least once

during the exam, but also after making critical

modifications to the server configuration. If your

server cannot reboot anymore after applying critical

modifications to your server’s configuration, at least

you know where to look to fix the issues.

For an administrator who really knows Linux very thoroughly,

rebooting a server is seldom necessary. Experienced

administrators can often trigger the right parameter to force a

process to reread its configurations. There are some scenarios,

though, in which even experienced Linux administrators have to

reboot:

To recover from serious problems such as server hangs and

kernel panics

To apply kernel updates

To apply changes to kernel modules that are being used

currently and therefore cannot be reloaded easily

When a server is rebooted, all processes that are running need to

shut down properly. If the server is just stopped by pulling the

power plug, much data will typically be lost. The reason is that

processes that have written data do not typically write that data

directly to disk, but instead store it in memory buffers (a cache)

from where it is committed to disk when it is convenient for the

operating system.

To issue a proper reboot, you have to alert the Systemd process.

The Systemd process is the first process that was started when

the server was started, and it is responsible for managing all

other processes, directly or indirectly. As a result, on system

reboots or halts, the Systemd process needs to make sure that all

these processes are stopped. To tell the Systemd process this has

to happen, you can use a few commands:

systemctl reboot or reboot

systemctl halt or halt

systemctl poweroff or poweroff

When stopping a machine, you can use the systemctl halt

command or the systemctl poweroff command. The difference

between these two commands is that the systemctl poweroff

command talks to power management on the machine to shut off

power on the machine. This often does not happen when using

systemctl halt.

Note

Using the methods that have just been described will

normally reboot or stop your machine. In some

cases, these commands might not work. For such

scenarios, there is an emergency reset option as

well. Using this option may prove useful if the

machine is not physically accessible. To force a

machine to reset, from a root shell you can type

echo b > /proc/sysrq-trigger. This command

immediately resets the machine without saving

anything. Notice that this command should be used

only if there are no other options!

Using SSH and Related Utilities

In the previous sections in this chapter, you learned how to

access a terminal if you have direct access to the server console.

Many administrators work with servers that are not physically

accessible. To manage these servers, Secure Shell (SSH) is

normally used. In this section, you learn how to work with SSH.

On modern Linux distributions, Secure Shell is the common

method to gain access to other machines over the network. In

SSH, cryptography is used to ensure that you are connecting to

the intended server. Also, traffic is encrypted while being

transmitted.

Accessing Remote Systems Using SSH

To access a server using SSH, you need the sshd server process,

as well as an SSH client. On the remote server that you want to

access, the sshd service must be running and offering services,

which it does at its default port 22, and it should not be blocked

by the firewall. After installation, Red Hat Enterprise Linux starts

the sshd process automatically, and by default it is not blocked by

the firewall.

If the SSH port is open, you can access it using the ssh command

from the command line. The ssh command by default tries to

reach the sshd process on the server port 22. If you have

configured the sshd process to offer its services on a different

port, use ssh -p followed by the port number you want to connect

to.

The ssh command is available on all Linux distributions, and on

Apple Mac computers as well, where it can be launched from a

Mac terminal.

If you have a Windows version that does not have the Windows

subsystem for Linux, the ssh command is not a native part of the

Windows operating system. If you want to access Linux servers

through SSH from a Windows computer, you need to install an

SSH client like PuTTY on Windows. From PuTTY, different types

of remote sessions can be established with Linux machines.

Alternative SSH clients for Windows are available as well, such

as MobaXterm, KiTTY, mRemoteNG, Bitvise, and Xshell.

Accessing another Linux machine from a Linux terminal is

relatively easy. Just type ssh followed by the name or IP address

of the other Linux machine. After connecting, you will be

prompted for a password if a default configuration is used. This

is the password of a user account with the same name as your

current user account, but who should exist on the remote

machine.

When remotely connecting to a Linux server, the SSH client tries

to do that as the user account you are currently logged in with on

the local machine. If you want to connect using a different user

account, you can specify the name of this user on the command

line, in the user@server format. If, for instance, you want to

establish an SSH session as user root to a remote server, type ssh

root@remoteserver. In Exercise 5-3, you learn how to log in to a

remote server using SSH.

Exercise 5-3 Using SSH to Log In to a Remote Server

This exercise assumes that a remote server is available and

reachable. In this exercise, server1 is used as the local server,

and server2 is the remote server on which the sshd process

should be up and running. If you cannot access a remote server

to perform the steps in the exercise, you might alternatively

replace server2 with localhost. It is obvious that by doing so you

will not log in to a remote server, but you still use the ssh

command to connect to an sshd process, and you’ll get the full

experience of working with ssh.

1. Open a root shell on server2. Type systemctl status sshd. This

should show you that the sshd process is currently up and

running.

2. Type ip a | grep 'inet '. (Notice the space between inet and

the closing quote mark.) Notice the IPv4 address your server is

currently using. In the rest of this exercise, it is assumed that

server2 is using IP address 192.168.4.220. Replace that address

with the address that you have found here.

3. Open a shell as a nonprivileged user on server1.

4. On server1, type ssh root@192.168.4.220. This connects to the

sshd process on server2 and opens a root shell.

5. Before being prompted for a password, you see a message

indicating that the authenticity of host 192.168.4.220 cannot be

established (see Example 5-1). This message is shown because

the host you are connecting to is not yet known on your

current host, which might involve a security risk. Type yes to

continue.

6. When prompted, enter the root password. After entering it,

you now are logged in to server2.

7. Type w. Notice that the SSH session you have just opened

shows as just another pseudo terminal session, but you’ll see

the source IP address in the FROM column.

8. Type exit to close the SSH session.

Example 5-1 Security Message Displayed When Logging In to a

Remote Server for the First Time

Click here to view code image

[student@localhost ~]$ ssh root@192.168.29.161
The authenticity of host '192.168.29.161 (192.168.29.161)' can't be
 established.
ED25519 key fingerprint is SHA256:+1vqdHo9iV/

 RNOq26LHsgcASPPW1ga6kxEVjYyAKWIk.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])? y

Note

On some occasions, using ssh to get access to a

server will be slow. If you want to know why, use

the -v option with the ssh command. This will start

SSH in verbose mode and show all the individual

components that are contacted. By doing so, you

might get an indication why your server is being

slow.

The security message in Example 5-1 is displayed because the

remote server has never been contacted before and therefore

there is no way to verify the identity of the remote server. After

you connect to the remote server, a public key fingerprint is

stored in the file ~/.ssh/known_hosts.

The next time you connect to the same server, this fingerprint is

checked with the encryption key that was sent over by the

remote server to initialize contact. If the fingerprint matches, you

will not see this message anymore.

Hivanetwork.com

https://hivanetwork.com/

In some cases, the remote host key fingerprint does not match

the key fingerprint that is stored locally. That is a potentially

dangerous situation. Instead of being connected to the intended

server, you might be connected to the server of an evildoer. It

does, however, also happen if you are connecting to an IP

address that you have been connected to before but that is now

in use by a different server, or if the sshd service has been

deleted and reinstalled.

If you encounter such a mismatch between the host key that is

presented and the one that you’ve cached, you just have to

remove the key fingerprint from the ~/.ssh/known_hosts file on

the client computer. You can easily do so, using sed. For instance,

use sed -i -e '25d' ~/.ssh/known_hosts to remove line 25 from the

known_hosts file (assuming that is the line containing the

erroneous key).

Using Graphical Applications in an SSH Environment

From an SSH session, by default you cannot start graphical

applications. That is because of security; a remote host cannot

display screens on your computer without specific permission to

do that. There are two requirements for starting graphical

applications through an SSH connection:

An X server must be running on the client computer. The X

server is the software component that creates the graphical

screens.

The remote host must be allowed to display screens on the

local computer.

The easiest way to allow the remote host to display graphical

screens on your computer is by adding the -Y option to the ssh

command. So, use ssh -Y linda@server2 if you want to connect

as linda to server2, and also be able to start graphical

applications.

As you have noticed, the ssh command gives you a few options.

Table 5-2 shows some of the most common options available.

Table 5-2 Common ssh Options

Option Use

-v Verbose; shows in detail what is happening while establishing the
connection

-Y Enables support for graphical applications

-p
<PORT>

Used to connect to an SSH service that is not listening on the default
port 22

As an administrator, you can also create a systemwide

configuration that allows you to use X forwarding, which is

starting graphical applications through an SSH session. As root,

open the configuration file /etc/ssh/ssh_config and make sure it

includes the following line:

ForwardX11 yes

The next time you use the ssh command, X forwarding will be

available by default.

Securely Transferring Files Between Systems

If a host is running the sshd service, that service can also be used

to securely transfer files between systems. To do that, you can

use the scp command if you want the file to be copied, or rsync if

you want to synchronize the file. Also, the sftp command is a

part of the SSH solution and enables users to use an FTP

command-line syntax to transfer files using sshd.

Using scp to Securely Copy Files

The scp command is similar to the cp command, which is used to

copy local files, but it also includes an option that enables it to

work with remote hosts. You can use scp to copy files and

subdirectories to and from remote hosts. To copy, for instance,

the /etc/hosts file to the /tmp directory on server2 using your

current user account, use the following command:

scp /etc/hosts server2:/tmp

If you want to connect to server2 as user root to copy the

/etc/passwd file to your home directory, you use the following

command:

Click here to view code image

scp root@server2:/etc/passwd ~

You can also use scp to copy an entire subdirectory structure. To

do so, use the -r option, as in the following command:

scp -r server2:/etc/ /tmp

Notice that the scp command can be configured to connect to a

nondefault SSH port also. It is a bit confusing, but to do this with

the scp command, you need the -P option followed by the port

number you want to connect to. Notice that ssh uses -p

(lowercase) to specify the port it needs to connect to; the scp

command uses an uppercase -P.

Using sftp to Securely Transfer Files

The sftp command provides an alternative to securely transfer

files. Whereas the scp command provides an interface that is

very similar to the cp command, the sftp command provides an

FTP-like interface. Because even modern FTP servers are still

transferring passwords and other sensitive data without using

encryption, sftp should be considered as an alternative.

When working with sftp, you open an FTP client session to the

remote server, where the only requirement on the remote server

is that it should be running the sshd process. From the FTP client

session, you use typical FTP client commands, like put to upload

a file or get to download a file.

Notice that when working with sftp, the local directory is

important, even if after opening the FTP session you only see the

remote directory on the server. When you’re downloading a file

using the get command, the file will be stored in the current local

directory, and when you’re uploading a file using put, the file

will be searched for in the local directory. Exercise 5-4 gives you

a guided tour through using the sftp command and the rsync

command, discussed next.

Using rsync to Synchronize Files

The rsync command uses SSH to synchronize files between a

remote directory and a local directory. The advantage of

synchronizing files is that only differences need to be considered.

So, for example, if you synchronize a 100-MiB file in which only a

few blocks have changed since the previous sync, only the

changed blocks will be synchronized. This approach is also

known as a delta sync.

When you use the rsync command, multiple options are

available. Table 5-3 provides an overview.

Table 5-3 Common rsync Options

Option Use

-r Synchronizes the entire directory tree

-l Copies symbolic links as symbolic links

-p Preserves permissions

-n Performs only a dry run, not actually

synchronizing anything

-a Uses archive mode, thus ensuring that entire

subdirectory trees and all file properties will be

synchronized

-A Uses archive mode, and in addition synchronizes

ACLs

-X Synchronizes SELinux context as well

Exercise 5-4 Using SFTP to Manage Files on a Remote Server

1. From a sudo shell, add a line that matches the server2 IP

address to the hostname server2.

2. From a terminal, type sftp student@server2. This gives you

access to an SFTP prompt that is opened on server2.

3. Type ls. You’ll see files in the current working directory on the

remote server.

4. Type pwd. This shows the current directory on the remote

server.

5. Type lpwd. This shows your local current directory.

6. Type lcd /tmp. This changes the local current directory to

/tmp.

7. Type put /etc/hosts. This file will upload the /etc/hosts file

from server1 to the user student home directory on server2.

8. Type exit to close your SFTP session.

Configuring Key-Based Authentication for SSH

If SSH is used on the Internet, it might not be a good idea to allow

password logins. SSH is more secure when using public/private

keys for authentication. This authentication method is normally

enabled by default because it is more secure than password-

based authentication. Only if that is not possible is a password

login used. The only thing you need to do to enable key-based

login is to create a key pair; everything else is organized by

default already.

When using public/private key-based authentication, the user

who wants to connect to a server generates a public/private key

pair. The private key needs to be kept private and will never be

distributed. The public key is stored in the home directory of the

target user on the SSH server in the file .ssh/authorized_keys.

When authenticating using key pairs, the user generates a hash

Hivanetwork.com

https://hivanetwork.com/

derived from the private key. This hash is sent to the server, and

if on the server it proves to match the public key that is stored on

the server, the user is authenticated.

Using Passphrases or Not?

When creating a public/private key pair, you are prompted for a

passphrase. If you want maximal security, you should enter a

passphrase. You are prompted for that passphrase each time that

you are using the private key to authenticate to a remote host.

That is very secure, but it is not very convenient. To create a

configuration that allows for maximal convenience, you can just

press the Enter key twice when generating the public/private key

pair to confirm that you do not want to set a passphrase. This is a

typical configuration that is used for authentication between

servers in a trusted environment where no outside access is

possible anyway.

To create a key pair, use the ssh-keygen command. Next, use the

ssh-copy-id command to copy the public key over to the target

server. In Exercise 5-5, you create a public/private key pair to log

in to the server2 host. (If no remote host is available, you can use

localhost as an alternative to verify the procedure.)

Exercise 5-5 Connecting to a Remote Server with Public/Private

Keys

1. On server1, open a root shell.

2. Type ssh-keygen.

3. When asked for the filename in which to store the (private)

key, accept the default filename ~/.ssh/id_rsa.

4. When asked to enter a passphrase, press Enter twice.

5. The private key now is written to the ~/.ssh/id_rsa file and the

public key is written to the ~/.ssh/id_rsa.pub file.

6. Use ssh-copy-id server2 to copy to server2 the public key you

have just created. You are then asked for the password on the

remote server one last time.

7. After copying the public key, verify that it can actually be used

for authentication. To do this, type ssh server2. You should

now authenticate without having to enter the password for

the remote user account.

After you copy the public key to the remote host, it will be

written to the ~/.ssh/authorized_keys file on that host. Notice that

if multiple users are using keys to log in with that specific

account, the authorized_keys file may contain a lot of public

keys. Make sure never to overwrite it because that will wipe all

keys that are used by other users as well!

Summary

In this chapter, you learned how to connect to Red Hat Enterprise

Linux 9. You learned the difference between consoles, terminals,

and shells, and you learned how to set up terminal sessions

locally as well as remotely. You also learned how to use SSH to

connect to a remote server and how to securely copy files

between servers.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 5-4 lists a

reference for these key topics and the page number on which

each is found.

Table 5-4 Key Topics for Chapter 5

Key Topic

Element
Description Page

Paragraph Definitions of the words console

and terminal

104

List Situations that typically require a

server reboot

109

Table 5-2 Common ssh Options 113

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

console

terminal

subshell

reboot

Systemd

key-based login

public key

private key

Review Questions

The questions that follow use an open-ended format that is

meant to help you test your knowledge of concepts and

terminology and the breadth of your knowledge. You can find the

answers to these questions in Appendix A.

 What is the console?

 On a server that currently has an operational graphical interface,

you are at a text-based login prompt. Which key sequence do you

use to switch back to your current work on the graphical

interface?

 Which command(s) show(s) all users that currently have a

terminal session open to a Linux server?

 On a server where no GUI is operational, what would you expect

to be the device name that is used by the first SSH session that is

opened to that server?

 Which command would you use to get detailed information on

what SSH is doing while logging in?

 How do you initiate an SSH session with support for graphical

applications?

 What is the name of the configuration file that needs to be edited

to modify SSH client settings?

 How do you copy the /etc/hosts file to the directory /tmp on

server2 using the username lisa?

 What is the name of the file in which public keys are stored for

remote users who want to log in to this machine using key-based

authentication?

 Which command enables you to generate an SSH public/private

key pair?

End-of-Chapter Labs

The end-of-chapter labs help you practice what you learned

throughout the chapter. The first lab is about connecting to RHEL

9 locally, and the second lab is about using SSH to log in to a

remote server.

Lab 5.1

1. Log in to the local console on server1. Make sure that server1

does not show a graphical interface anymore, but just a text-

based login prompt.

2. Log in from that environment and activate tty6. From tty6,

switch back on the graphical interface and use the correct key

sequence to go to the graphical interface.

Lab 5.2

1. Set up SSH-based authentication. From server2, use SSH to

connect to server1.

2. Make sure that graphical applications are supported through

the SSH session. Also set up key-based authentication so that

no password has to be entered while connecting to the remote

server.

Chapter 6

User and Group Management

The following topics are covered in this chapter:

Understanding Different User Types

Creating and Managing User Accounts

Creating and Managing Group Accounts

The following RHCSA exam objectives are covered in this

chapter:

Create, delete, and modify local user accounts

Change passwords and adjust password aging for local user

accounts

Create, delete, and modify local groups and group

memberships

Configure superuser access

On a Linux system, various processes are normally being used.

These processes need access to specific resources on the Linux

system. To determine how these resources can be accessed, a

distinction is made between processes that run in kernel mode

and processes that run without full permissions to the operating

system. In the latter case user accounts are needed, not only to

Hivanetwork.com

https://hivanetwork.com/

grant the required permissions to processes, but also to make

sure that people can do their work. This chapter explains how to

set up user and group accounts.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table 6-

1 lists the major headings in this chapter and their corresponding

“Do I Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quizzes and Review Questions.”

Table 6-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding Different User Types 1–4

Creating and Managing User Accounts 3–6

Creating and Managing Group Accounts 7–10

 What should you do with the root user account to enhance

system security?

1. Don’t set a password.

2. Allow password-less sudo.

3. Delete the root user.

4. Disable SSH login for the root user.

 On a default installation of an RHEL 9 server, which group does

the user typically need to be a member of to be able to use sudo

to run all administration commands?

1. admin

2. root

3. sys

4. wheel

 Which of the following sudo configurations allows user amy to

change passwords for all users, but not root?

1. amy ALL=! /usr/bin/passwd root, /usr/bin/passwd

2. amy ALL=/usr/bin/passwd, ! /usr/bin/passwd root

3. amy ALL=passwd, ! passwd root

4. amy ALL=! passwd root, passwd

 Which of the following commands shows correct syntax for using

a command with a pipe in a sudo environment?

1. sudo -c "cat /etc/passwd | grep root"

2. sudo "cat /etc/passwd | grep root"

3. sudo sh -c "cat /etc/passwd | grep root"

4. sudo cat /etc/passwd | grep root

 Which configuration file should you change to set the default

location for all new user home directories?

1. /etc/login.defaults

2. /etc/login.defs

3. /etc/default/useradd

4. /etc/default/login.defs

 Which command enables you to get information about password

properties such as password expiry?

1. chage -l

2. usermod --show

3. passwd -l

4. chage --show

 Which of the following files is not processed when a user starts a

login shell?

1. /etc/profile

2. /etc/.profile

3. ~/.bashrc

4. ~/.bash_profile

 Which of the following offers the best option to modify user

group membership?

1. vigr

2. vipw

3. vipasswd

4. usermod

 Which command can be used to list all the groups a user is a

member of?

1. userlist

2. grouplist

3. id

4. groups

 What can you do to ensure that no users, except for the user

root, can log in temporarily?

1. Set the default shell to /usr/sbin/nologin.

2. Set the default shell to /bin/false.

3. Create a file with the name /etc/nologin.

4. Create a file with the name /etc/nologin.txt.

Foundation Topics

Understanding Different User Types

In this chapter, you learn how to create and manage user

accounts. Before diving into the details of user management, you

learn how users are used in a Linux environment.

Users on Linux

On Linux, there are two ways to look at system security. There

are privileged users, and there are unprivileged users. The

default privileged user is root. This user account has full access

to everything on a Linux server and is allowed to work in system

space without restrictions. The root user account is meant to

perform system administration tasks and should be used for that

only. For all other tasks, an unprivileged user account should be

used.

On modern Linux distributions like RHEL 9, the root user

account is often disabled. While installing RHEL 9, you have a

choice of what to do with the root user. If you create a regular

user and choose the option Make This User Administrator, you

don’t have to set a root password and you’ll be able to use sudo

when administrator privileges are needed. If you want to be able

to log in as root directly, you can set a password for the root user.

To get information about a user account, you can use the id

command. When using this command from the command line,

you can see details about the current user. You can also use it on

other user accounts to get details about those accounts. Example

6-1 shows an example of the output of the command.

Example 6-1 Getting More Information About Users with id

Click here to view code image

[root@localhost ~]# id linda
uid=1001(linda) gid=1001(linda) groups=1001(linda)

Working as Root

On all Linux systems, by default there is the user root, also

known as the superuser. This account is used for managing

Linux and has no restrictions at all. Root, for instance, can create

other user accounts on the system. For some tasks, root privileges

are required. Some examples are installing software, managing

users, and creating partitions on disk devices. Generally

speaking, all tasks that involve direct access to devices need root

permissions.

Because the root account is so useful for managing a Linux

environment, some people make a habit of logging in as root

directly. That is not recommended, especially not when you are

logging in to a graphical environment. When you log in as root in

a graphical environment, all tasks that are executed run as root

as well, and that involves an unnecessary security risk.

Therefore, you should instead use one of the alternative methods

described in Table 6-2.

Table 6-2 Methods to Run Tasks with Elevated Permissions

Method Description

su Opens a subshell as a different user, with the

advantage that commands are executed as root

only in the subshell

sudo Allows authorized users to work with

administrator privileges

PolicyKit Enables you to set up graphical utilities to run

with administrative privileges

Using su

From a terminal window, you can use the su command to start a

subshell in which you have another identity. To perform

administrative tasks, for instance, you can log in with a normal

user account and type su to open a root shell. The benefit is that

root privileges are used only in the root shell. You do need to

enter the root password though, which is best practice from a

security perspective.

If you type just the command su, the username root is implied.

But su can be used to run tasks as another user as well. Type su

linda to open a subshell as the user linda, for example. When

using su as an ordinary user, you are prompted for a password,

and after entering that, you acquire the credentials of the target

user:

Hivanetwork.com

https://hivanetwork.com/

[linda@localhost ~]$ su
Password:
[root@localhost linda]#

The subshell that is started when using su is an environment

where you are able to work as the target user account, but

environment settings for that user account have not been set. If

you need complete access to the entire environment of the user

account, you can use su - to start a login shell. If you start a login

shell, all scripts that make up the user environment are

processed, which makes you work in an environment that is

exactly the same as when logging in as that user.

Tip

If you want to use su, using su - is better than using

su. When the - is used, a login shell is started;

without the -, some variables may not be set

correctly. So, you are better off using su -

immediately. But don’t forget that for running tasks

with administrator privileges, you’re better off using

sudo.

In Exercise 6-1, you practice switching user accounts.

Exercise 6-1 Switching User Accounts

1. Log in to your system as a nonprivileged user and open a

terminal.

2. Type whoami to see which user account you are currently

using. Type id as well, and notice that you get more detail

about your current credentials when using id.

3. Type su -. When prompted for a password, enter the root

password. Type id again. You see that you are currently root.

4. Type useradd bob to create a user that you can use for testing

purposes.

5. Still from the root shell, use su - bob and confirm that you can

log in without entering a password. Notice that user bob

doesn’t even have a password that is currently set.

6. Type exit to exit from the user bob shell. Type exit again to

exit from the root shell and return to the ordinary user shell.

sudo

If a non-root user needs to perform a specific system

administration task, the user does not need root access; instead,

the system administrator can configure sudo to give that user

administrator permissions to perform the specific task. The user

then carries out the task by starting the command with sudo

(and entering the user’s password when prompted). So, instead

of using commands like useradd as the root user, you can use a

sudo-enabled user account and type sudo useradd. This

approach is definitely more secure because you will have

administrator permissions only while running this specific

command.

When creating a Linux user during the installation process as

described in Chapter 1, “Installing Red Hat Enterprise Linux,”

you can select to grant administrator permissions to that specific

user. If you select to do so, the user will be able to use all

administrator commands using sudo. It is also possible to set up

sudo privileges after installation by making the user a member

of the group wheel. To do that in a very easy way, use this simple

two-step procedure:

1. Make the administrative user account a member of the group

wheel by using usermod -aG wheel user.

2. Type visudo and make sure the line %wheel ALL=(ALL) ALL is

included.

Apart from this method, which would give a user access to all

administrative commands, you can use visudo to edit the

/etc/sudoers configuration file and give user access to specific

commands only. For example, if you included the line linda

ALL=/usr/bin/useradd, /usr/bin/passwd in this file, that would

allow user linda to run only the commands useradd and passwd

with administrative privileges.

Tip

While using sudo, you are prompted to enter a

password. Based on this password a token is

generated, which allows you to run new sudo

commands without having to enter the password

again. However, this token is valid for only five

minutes. It is possible to extend the lifetime of the

token: include the following in /etc/sudoers (using

visudo) to extend the token lifetime to 240 minutes:

Click here to view code image

Defaults timestamp_timeout=240

If you want to set up users with specific sudo

privileges, be careful with the passwd command. If

a user has sudo privileges on the passwd command,

that would allow the user to set or change the

password for the root user as well. This can be easily

prevented, though, by adding an exception. Just

include the line linda ALL=/usr/bin/useradd,

/usr/bin/passwd, ! /usr/bin/passwd root. This

would allow user linda to change the password for

all users, but not for root.

To assign sudo privileges to individual users or

groups of users, you can change the contents of

/etc/sudoers using visudo. A better practice is to

create a drop-in file in the directory /etc/sudoers.d.

This drop-in file would have the exact same contents

as the modification you would make to /etc/sudoers,

with the benefit that the custom configuration is

separated from the standard configuration that was

created while installing Linux. Files in /etc/sudoers.d

are always included while using sudo.

Tip

It’s convenient to be able to use pipes in sudo

commands. By default, this is not allowed, but if you

use sudo sh -c, you can use any command

containing a pipe as its argument. For example, use

sudo sh -c "rpm -qa | grep ssh" to get a list of all

packages that have the string “ssh” in their name.

PolicyKit

Most administration programs with a graphical user interface

use PolicyKit to authenticate as the root user. If a normal user

who is not a member of the group wheel accesses such an

application, that user will be prompted for authentication. If a

user who is a member of the group wheel opens a PolicyKit

application, that user will have to enter their own password. For

the RHCSA exam, you do not have to know the details of

PolicyKit, but it is good to know that you can use the pkexec

command as an alternative to sudo in case you ever completely

lose sudo access to a system. In that case, just use pkexec visudo

to be able to repair the sudo configuration.

In Exercise 6-2, you practice working with sudo.

Exercise 6-2 Switching User Accounts

1. Log in to your system as the student user and open a

terminal.

2. Type sudo -i to open a sudo root shell. When prompted for a

password, enter the password assigned to user student.

3. Use useradd betty; useradd amy to create two users.

4. Type echo password | passwd --stdin betty; echo password

| passwd --stdin amy to set the password for these two users.

Type exit to return to the user student shell.

5. Use su - betty to open a shell as user betty. When prompted

for a password, enter the password you’ve just assigned for

user betty.

6. Type sudo ls /root, enter the user betty password and notice

the error message.

7. Type exit to return to the shell in which you are user student.

Use whoami to verify the current user ID.

8. Type sudo sh -c 'echo "betty ALL=(ALL) ALL" >

/etc/sudoers.d/betty' to allow full sudo access for betty.

9. Use su - betty to open a shell as betty and enter the password

of this user when prompted.

10. Use sudo ls -l /root to verify that sudo access is working. The

/root directory can only be viewed by the root user due to the

permissions on that directory.

11. Use sudo sh -c ' echo "amy ALL=/usr/sbin/useradd,

/usr/bin/passwd, ! /usr/bin/passwd root" >

/etc/sudoers.d/amy' to allow user amy to create users and

reset user passwords, but not for root.

12. Type su - amy and enter user amy’s password when

prompted.

13. Use sudo passwd betty to verify that you can change the

password as user amy.

14. Use sudo passwd root to verify that changing the root user

password is not allowed.

15. Type exit and exit to return to the user student shell. Use

whoami to verify that you’re in the right shell.

Creating and Managing User Accounts

Now that you know how to perform tasks as either an

administrative user or a nonadministrative user, it is time to

learn how to manage user accounts on Linux. In this section, you

learn what is involved.

System Accounts and Normal Accounts

A typical Linux environment has two kinds of user accounts.

There are normal user accounts for the people who need to work

on a server and who need limited access to the resources on that

server. These user accounts typically have a password that is

used for authenticating the user to the system. There are also

system accounts that are used by the services the server is

offering. Both types of user accounts share common properties,

which are kept in the files /etc/passwd and /etc/shadow. Example

6-2 shows a part of the contents of the /etc/passwd file.

Example 6-2 Partial Contents of the /etc/passwd User

Configuration File

Click here to view code image

Hivanetwork.com

https://hivanetwork.com/

ntp:x:38:38::/etc/ntp:/sbin/nologin
chrony:x:994:993::/var/lib/chrony:/sbin/nologin
abrt:x:173:173::/etc/abrt:/sbin/nologin
pulse:x:171:171:PulseAudio System Daemon:/var/run/pulse:/sbin/nologin
gdm:x:42:42::/var/lib/gdm:/sbin/nologin
gnome-initial-setup:x:993:991::/run/gnome-initial-setup/:/sbin/nologin
postfix:x:89:89::/var/spool/postfix:/sbin/nologin
sshd:x:74:74:Privilege-separated SSH:/var/empty/sshd:/sbin/nologin
tcpdump:x:72:72::/:/sbin/nologin
user:x:1000:1000:user:/home/user:/bin/bash

Note

On many Linux servers, hardly any user accounts

are used by people. Many Linux servers are installed

to run a specific service, and if people interact with

that service, they will authenticate within the

service.

As you can see in Example 6-2, to define a user account, different

fields are used in /etc/passwd. The fields are separated from each

other by a colon. The following is a summary of these fields,

followed by a short description of their purpose.

Username: This is a unique name for the user. Usernames are

important to match a user to their password, which is stored

separately in /etc/shadow (see next bullet). On Linux, there can

be no spaces in the username, and in general it’s a good idea to

specify usernames in all lowercase letters.

Password: In the old days, the second field of /etc/passwd was

used to store the hashed password of the user. Because the

/etc/passwd file is readable by all users, this poses a security

threat, and for that reason on current Linux systems the

hashed passwords are stored in /etc/shadow (discussed in the

next section).

UID: Each user has a unique user ID (UID). This is a numeric

ID. It is the UID that really determines what a user can do.

When permissions are set for a user, the UID (and not the

username) is stored in the file metadata. UID 0 is reserved for

root, the unrestricted user account. The lower UIDs (typically

up to 999) are used for system accounts, and the higher UIDs

(from 1000 on by default) are reserved for people who need to

connect a directory to the server. The range of UIDs that are

used to create regular user accounts is set in /etc/login.defs.

GID: On Linux, each user is a member of at least one group.

This group is referred to as the primary group, and this group

plays a central role in permissions management, as discussed

later in this chapter. Users can be a member of additional

groups, which are administered in the file /etc/group.

Comment field: The Comment field, as you can guess, is used

to add comments for user accounts. This field is optional, but it

can be used to describe what a user account is created for.

Some utilities, such as the obsolete finger utility, can be used

to get information from this field. The field is also referred to

as the GECOS field, which stands for General Electric

Comprehensive Operating System and had a specific purpose

for identifying jobs in the early 1970s when General Electric

was still an important manufacturer of servers.

Directory: This is the initial directory where the user is placed

after logging in, also referred to as the home directory. If the

user account is used by a person, this is where the person

would store their personal files and programs. For a system

user account, this is the environment where the service can

store files it needs while operating.

Shell: This is the program that is started after the user has

successfully connected to a server. For most users this will be

/bin/bash, the default Linux shell. For system user accounts, it

will typically be a shell like /sbin/nologin. The /sbin/nologin

command is a specific command that silently denies access to

users (to ensure that if by accident an intruder logs in to the

server, the intruder cannot get any shell access). Optionally,

you can create an /etc/nologin.txt file, in which case only root

will be able to log in but other users will see the contents of

this file when their logins are denied.

A part of the user properties is stored in /etc/passwd, which was

just discussed. Another part of the configuration of user

properties is stored in the /etc/shadow file. The settings in this file

are used to set properties of the password. Only the user root and

processes running as root have access to /etc/shadow. Example 6-

3 shows /etc/shadow contents.

Example 6-3 Sample Content from /etc/shadow

Click here to view code image

[root@localhost ~]# tail -n 10 /etc/shadow
ntp:!!:16420::::::
chrony:!!:16420::::::
abrt:!!:16420::::::
pulse:!!:16420::::::
gdm:!!:16420::::::
gnome-initial-setup:!!:16420::::::
postfix:!!:16420::::::
sshd:!!:16420::::::
tcpdump:!!:16420::::::

user:$6$3VZbGx1djo6FfyZo$/Trg7Q.3foIsIFYxBm6UnHuxxBrxQxHDnDuZxgS.
We/MAuHn8HboBZzpaMD8gfm.fmlB/ML9LnuaT7CbwVXx31:16420:0:99999:7:::

The following fields are included in /etc/shadow:

Login name: Notice that /etc/shadow does not contain any

UIDs, but usernames only. This opens up a possibility for

multiple users using the same UID but different passwords

(which, by the way, is not recommended).

Encrypted password: This field contains all that is needed to

store the password in a secure way. If the field is empty, no

password is set and the user cannot log in. If the field starts

with an exclamation mark, login for this account currently is

disabled.

Days since Jan. 1, 1970, that the password was last changed:

Many things on Linux refer to this date, which on Linux is

considered the beginning of time. It is also referred to as

epoch.

Days before password may be changed: This allows system

administrators to use a stricter password policy, where it is

not possible to change back to the original password

immediately after a password has been changed. Typically this

field is set to the value 0.

Days after which password must be changed: This field

contains the maximal validity period of passwords. Notice in

the last line of Example 6-3 that it is set to 99,999 (about 274

years), which is the default.

Days before password is to expire that user is warned: This

field is used to warn a user when a forced password change is

upcoming. Notice in the last line of Example 6-3 that it is set to

7 days, which is the default (even if the password validity is set

to 99,999 days).

Days after password expires that account is disabled: Use

this field to enforce a password change. After password expiry,

the user no longer can log in. After the account has reached

the maximum validity period, the account is locked out. This

field allows for a grace period in which the user can change

her password, but only during the login process. This field is

set in days and is unset by default.

Days since Jan. 1, 1970, that account is disabled: An

administrator can set this field to disable an account on a

specific date. This is typically a better approach than removing

an account, as all associated properties and files of the account

will be kept, but the account no longer can be used to

authenticate on your server. Note that this field does not have

a default value.

A reserved field, which was once added “for future use”:

This field was reserved a long time ago; it will probably never

be used.

Most of the password properties can be managed with the

passwd or chage command, which are discussed later in this

chapter.

Creating Users

There are many solutions for creating users on a Linux server. To

start, you can edit the contents of the /etc/passwd and

/etc/shadow configuration files directly in an editor, using the

vipw command (with the risk of making an error that could

make logging in impossible to anyone). Another option is to use

useradd, which is the utility that you should use for creating

users. To remove users, you can use the userdel command. Use

userdel -r to remove a user and the complete user environment.

Modifying the Configuration Files

Creating a user account by modifying the configuration files

simply requires adding one line to /etc/passwd and another line

to /etc/shadow, in which the user account and all of its properties

are defined. This method of creating users is not recommended,

though. If you make an error, you might mess up the consistency

of the file and make logging in completely impossible to anyone.

Also, you might encounter locking problems if one administrator

is trying to modify the file contents directly while another

administrator wants to write a modification with some tool.

If you insist on modifying the configuration files directly, you

should use vipw. This command opens an editor interface on

your configuration files, and more important, it sets the

appropriate locks on the configuration files to prevent

corruption. It does not check syntax, however, so make sure that

you know what you are doing, because making even one typo

might still severely mess up your server. If you want to use this

tool to modify the /etc/shadow file, use vipw -s. To edit the

contents of the /etc/group file where groups are defined, you can

use a similar command with the name vigr.

Note

It is nice to know that vipw and vigr exist, but it is

better not to use these utilities or anything else that

opens the user and group configuration files

directly. Instead, use tools like useradd and

groupmod.

Hivanetwork.com

https://hivanetwork.com/

Using useradd

The useradd utility is probably the most common tool on Linux

for adding users. It allows you to add a user account from the

command line by using many of its parameters. Use, for instance,

the command useradd -m -u 1201 -G sales,ops linda to create a

user linda who is a member of the secondary groups sales and

ops with UID 1201 and add a home directory to the user account

as well. (Secondary groups are explained in the section

“Understanding Linux Groups,” later in the chapter.)

Home Directories

All normal users will have a home directory. For people, the

home directory is the directory where personal files can be

stored. For system accounts, the home directory often contains

the working environment for the service account.

As an administrator, you normally will not change home

directory–related settings for system accounts because they are

created automatically from the RPM post-installation scripts

when installing the related software packages. If you have people

who need user accounts, you probably do want to manage home

directory contents a bit.

When creating home directories (which happens by default

while you’re creating users), the content of the “skeleton”

directory is copied to the user home directory. The skeleton

directory is /etc/skel, and it contains files that are copied to the

user home directory at the moment this directory is created.

These files will also get the appropriate permissions to ensure

that the new user can use and access them.

By default, the skeleton directory contains mostly configuration

files that determine how the user environment is set up. If in

your environment specific files need to be present in the home

directories of all users, you take care of that by adding the files to

the skeleton directory.

Default Shell

Most regular users normally have a default shell. This is the

program that is started after successful authentication. For most

users, this shell is set to /bin/bash. System users should not have

an interactive shell as the default shell. For most system users

this shell is set to /sbin/nologin. To set or change the default shell

using useradd or usermod, use the -s option. Use for instance

useradd caroline -s /sbin/nologin to make sure this user will not

be allowed to log in.

Managing User Properties

For changing user properties, the same rules apply as for

creating user accounts. You can either work directly in the

configuration files using vipw or use command-line tools.

The ultimate command-line utility for modifying user properties

is usermod. It can be used to set all properties of users as stored

in /etc/passwd and /etc/shadow, plus some additional tasks, such

as managing group membership. There is just one task it does not

do well: setting passwords. Although usermod has an option -p

that tells you to “use encrypted password for the new password,”

it expects you to do the password encryption before adding the

user account. That does not make it particularly useful. If as root

you want to change the user password, you’d use the passwd

command.

Configuration Files for User Management Defaults

When you’re working with tools such as useradd, some default

values are assumed. These default values are set in two

configuration files: /etc/login.defs and /etc/default/useradd.

Example 6-4 shows the contents of /etc/default/useradd.

Example 6-4 useradd Defaults in /etc/default/useradd

Click here to view code image

[root@localhost skel]# cat /etc/default/useradd
useradd defaults file
GROUP=100
HOME=/home
INACTIVE=-1
EXPIRE=
SHELL=/bin/bash
SKEL=/etc/skel
CREATE_MAIL_SPOOL=yes

As shown in Example 6-4, the /etc/default/useradd file contains

some default values that are applied when using useradd.

In the file /etc/login.defs, different login-related variables are set.

This file is used by different commands, and it relates to setting

up the appropriate environment for new users. Here is a list of

some of the most significant properties that can be set from

/etc/login.defs:

MOTD_FILE: Defines the file that is used as the “message of

the day” file. In this file, you can include messages to be

displayed after the user has successfully logged in to the

server.

ENV_PATH: Defines the $PATH variable, a list of directories

that should be searched for executable files after logging in.

PASS_MAX_DAYS, PASS_MIN_DAYS, and PASS_WARN_AGE:

Define the default password expiration properties when

creating new users.

UID_MIN: Indicates the first UID to use when creating new

users.

CREATE_HOME: Indicates whether or not to create a home

directory for new users.

Managing Password Properties

You learned about the password properties that can be set in

/etc/shadow. You can use two commands to change these

properties for users: chage and passwd. The commands are

rather straightforward, as long as you know what the options are

used for. For instance, the command passwd -n 30 -w 3 -x 90

linda sets the password for user linda to a minimal usage period

of 30 days and an expiry after 90 days, where a warning is

generated 3 days before expiry.

Many of the tasks that can be accomplished with passwd can be

done with chage also. For instance, use chage -E 2025-12-31 bob

to have the account for user bob expire on December 31, 2025. To

see current password management settings, use chage -l (see

Example 6-5). The chage command also has an interactive mode;

if you type chage anna, for instance, the command will prompt

for all the password properties you want to set interactively.

Example 6-5 Showing Password Expiry Information with chage -

l

Click here to view code image

linux:~ # chage -l linda
Last password change : Apr 11, 2020
Password expires : never
Password inactive : never
Account expires : never
Minimum number of days between password change : 0
Maximum number of days between password change : 99999
Number of days of warning before password expir : 7

Creating a User Environment

When a user logs in, an environment is created. The

environment consists of some variables that determine how the

user is working. One such variable, for instance, is $PATH, which

defines a list of directories that should be searched when a user

types a command.

To construct the user environment, a few files play a role:

/etc/profile: Used for default settings for all users when

starting a login shell

/etc/bashrc: Used to define defaults for all users when starting

a subshell

~/.profile: Specific settings for one user applied when starting

a login shell

~/.bashrc: Specific settings for one user applied when starting

a subshell

When you log in, the files are read in this order, and variables

and other settings that are defined in these files are applied. If a

variable or setting occurs in more than one file, the last one wins.

In Exercise 6-3, you apply common solutions to create user

accounts.

Exercise 6-3 Creating User Accounts

1. From a sudo shell, type vim /etc/login.defs to open the

configuration file /etc/login.defs and the PASS_MAX_DAYS to

use the value 99 before you start creating users. Look for the

parameter CREATE_HOME and make sure it is set to “yes.”

2. Use cd /etc/skel to go to the /etc/skel directory. Type mkdir

fotos and mkdir files to add two default directories to all user

home directories. Also change the contents of the file .bashrc

to include the line export EDITOR=/usr/bin/vim, which sets

the default editor for tools that need to modify text files.

3. Type useradd linda to create an account for user linda. Then,

type id linda to verify that linda is a member of a group with

the name linda and nothing else. Also verify that the

directories Pictures and Documents have been created in user

linda’s home directory.

4. Use passwd linda to set a password for the user you have just

created. Use the password password.

5. Type passwd -n 30 -w 3 -x 90 linda to change the password

properties. This has the password expire after 90 days (-x 90).

Three days before expiry, the user will get a warning (-w 3),

and the password has to be used for at least 30 days before (-n

30) it can be changed.

6. Create a few more users: lucy, lori, and bob, using for i in lucy

lori bob; do useradd $i; done. You may get an error message

stating the user already exists. This message can be safely

ignored.

Hivanetwork.com

https://hivanetwork.com/

7. Use grep lori /etc/passwd /etc/shadow /etc/group. This shows

the user lori created in all three critical files and confirms

they have been set up correctly.

Creating and Managing Group Accounts

Every Linux user has to be a member of at least one group. In

this section, you learn how to manage settings for Linux group

accounts.

Understanding Linux Groups

Linux users can be a member of two different kinds of groups.

First, there is the primary group. Every user must be a member

of the primary group, and a user has only one primary group.

When a user creates a file, the user’s primary group becomes the

group owner of the file. (File ownership is discussed in detail in

Chapter 7, “Permissions Management.”) Users can also access all

files their primary group has access to. The user’s primary group

membership is defined in /etc/passwd; the group itself is stored

in the /etc/group configuration file.

Besides the mandatory primary group, users can be a member of

one or more secondary groups as well. A user can be a member

of a secondary group in addition to the primary group.

Secondary groups are important to get access to files. If the group

a user is a member of has access to specific files, the user will get

access to those files also. Working with secondary groups is

important, in particular in environments where Linux is used as

a file server to allow people working for different departments to

share files with one another. You have also seen how secondary

group membership can be used to enable user administrative

privileges through sudo, by making the user a member of the

group wheel.

Creating Groups

As is the case for creating users, there are also different options

for creating groups. The group configuration files can be

modified directly using vigr or the command-line utility

groupadd.

Creating Groups with vigr

With the vigr command, you open an editor interface directly on

the /etc/group configuration file. In this file, groups are defined in

four fields per group (see Example 6-6).

Example 6-6 Sample /etc/group Content

kvm:x:36:qemu
qemu:x:107:
libstoragemgmt:x:994:
rpc:x:32:
rpcuser:x:29:
"/etc/group.edit" 65L, 870C

The following fields are used in /etc/group:

Group name: As is suggested by the name of the field, it

contains the name of the group.

Group password: Where applicable, this field contains a

group password, a feature that is hardly used anymore. A

group password can be used by users who want to join the

group on a temporary basis, so that access to files the group

has access to is allowed. If a group password is used, it is

stored in the /etc/gshadow file, as that file is root accessible

only.

Group ID: This field contains a unique numeric group

identification number.

Members: Here you find the names of users who are a

member of this group as a secondary group. Note that this

field does not show users who are a member of this group as

their primary group.

As mentioned, in addition to /etc/group, there is the /etc/gshadow

file. This file is not commonly used to store group passwords

(because hardly anyone still uses them), but it does have a cool

feature. In the third field of this file you can list administrators.

This is a comma-separated list of users that can change

passwords for group members, which are listed in the fourth

field of this file. Note that specifying group members here is

optional, but if it is done, the group member names must be the

same as the group members in /etc/group.

Using groupadd to Create Groups

Another method to create new groups is by using the groupadd

command. This command is easy to use. Just use groupadd

followed by the name of the group you want to add. There are

some advanced options; the only significant one is -g, which

allows you to specify a group ID when creating the group.

Managing Group Properties

To manage group properties, groupmod is available. You can use

this command to change the name or group ID of the group, but

it does not allow you to add group members. Notice that it may

be a bad idea to change either of these properties, as it can affect

group-owned files that already exist. To do this, you use

usermod. As discussed before, usermod -aG will add users to

new groups that will be used as their secondary group. Because a

group does not have many properties, it is quite common that

group properties are managed directly in the /etc/group file by

using the vigr command.

To see which users are a member of a group, use the lid

command. For example, use lid -g sales to check which users are

a member of the group sales.

In Exercise 6-4, you create two groups and add some users as

members to these groups.

Tip

Because a user’s group membership is defined in

two different locations, it can be difficult to find out

which groups exactly a user is a member of. A

convenient command to check this is groupmems.

Use, for example, the command groupmems -g

sales -l to see which users are a member of the

group sales. This shows users who are a member of

this group as a secondary group assignment, but also

users who are a member of this group as the

primary group assignment.

Exercise 6-4 Working with Groups

1. Open a sudo shell and type groupadd sales followed by

groupadd account to add groups with the names sales and

account.

2. Use usermod to add users linda and laura to the group sales,

and lori and bob to the sales group account:

usermod -aG sales linda
usermod -aG sales lucy
usermod -aG account lori
usermod -aG account bob
linux:~ # id linda

3. Type id linda to verify that user linda has correctly been

added to the group sales. In the results of this command, you

see that linda is assigned to a group with the name linda. This

is user linda’s primary group and is indicated with the gid

option. The groups parameter shows all groups user linda

currently is a member of, which includes the primary group

as well as the secondary group sales that the user has just

been assigned to.
Click here to view code image

uid=1000(linda) gid=1000(linda) groups=1000(linda),1001(sales)

Summary

In this chapter, you learned how to create and manage users and

groups. You learned which configuration files are used to store

users and groups, and you learned which properties are used in

these files. You also learned which utilities are available to

manage user and group accounts.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have a couple of choices for exam preparation:

the end-of-chapter labs; the memory tables in Appendix C;

Chapter 27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 6-3 lists a

reference for these key topics and the page number on which

each is found.

Table 6-3 Key Topics for Chapter 6

Key Topic

Element
Description Page

Section Users on Linux 124

Table 6-2 Methods to Run Tasks with Elevated

Permissions

125

List Description of user account fields in

/etc/passwd

129

List Description of password property

fields in /etc/shadow

131

List Significant properties that can be set

from /etc/login.defs

134

List Files that play a role in constructing

the user environment

136

Complete Tables and Lists from Memory

Hivanetwork.com

https://hivanetwork.com/

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

user

privileged user

unprivileged user

root

password

GECOS

group

primary group

secondary group

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 What is the name of the default parameter that you can change

to expand the lifetime of the sudo token that is generated after

entering the sudo password?

 What is the configuration file in which sudo is defined?

 Which command should you use to modify a sudo configuration?

 What can you do if you’ve made an error to the sudo

configuration and because of this error sudo no longer works,

assuming that the root user does not have a password set?

 How many groups can you assign to a user account in

/etc/passwd?

 If you want to grant a user access to all admin commands

through sudo, which group should you make that user a member

of?

 Which command should you use to modify the /etc/group file

manually?

 Which two commands can you use to change user password

information?

 What is the name of the file where user passwords are stored?

 What is the name of the file where group accounts are stored?

End-of-Chapter Labs

You have now learned how to set up an environment where user

accounts can log in to your server and access resources on your

server. In these end-of-chapter labs, you learn how to configure

an environment for users and groups.

Lab 6.1

Set up a shared group environment that meets the following

requirements:

Create two groups: sales and account.

Create users joana, john, laura, and beatrix. Make sure they

have their primary group set to a private group that has the

name of the user.

Make joanna and john members of the group sales, and laura

and beatrix members of the group account.

Set a password policy that requires users to change their

password every 90 days.

Lab 6.2

Create a sudo configuration that allows user bill to manage user

properties and passwords, but which does not allow this user to

change the password for the root user.

Chapter 7

Permissions Management

The following topics are covered in this chapter:

Managing File Ownership

Managing Basic Permissions

Managing Advanced Permissions

Setting Default Permissions with umask

Working with User-Extended Attributes

The following RHCSA exam objectives are covered in this

chapter:

Manage default permissions

List, set, and change standard ugo/rwx permissions

Create and configure set-GID directories for collaboration

Diagnose and correct file permission problems

To get access to files on Linux, you use permissions. These

permissions are assigned to three entities: the file owner, the

group owner, and the others entity (which is everybody else). In

this chapter, you learn how to apply permissions. The chapter

starts with an overview of the basic permissions, after which the

special permissions are discussed. At the end of this chapter, you

learn how to set default permissions through the umask and

how to manage user-extended attributes.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table 7-

1 lists the major headings in this chapter and their corresponding

“Do I Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quizzes and Review Questions.”

Table 7-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Managing File Ownership 1–3

Managing Basic Permissions 4–5

Managing Advanced Permissions 6–7

Setting Default Permissions with umask 8–9

Working with User-Extended Attributes 10

 A user needs to work in a session where all new files that the

user creates will be group-owned by the group sales, until the

session is closed. Which command would do that?

1. chgrp sales

2. setgid sales

3. newgrp sales

4. setgroup sales

 Which command enables you to find all files on a system that are

owned by user linda?

1. find / -user linda

2. find / -uid linda

3. ls -l | grep linda

4. ls -R | find linda

 Which command does not set group ownership to the group sales

for the file myfile?

1. chgrp sales myfile

2. chown .sales myfile

3. chgrp myfile sales

4. chown :sales myfile

 Which command would be used to allow read and write

permissions to the user and group owners and no permissions at

all to anyone else?

1. chown 007 filename

2. chmod 077 filename

3. chmod 660 filename

4. chmod 770 filename

 You want to apply the execute permission recursively, such that

only all subdirectories and not the files in these directories will

get the execute permission assigned. How can you do this?

1. Use chmod +x */

2. Use chmod +X *

3. Use umask 444, and then use chmod +x *

4. Use umask 444, and next use chmod +X *

 Which command enables you to set the SGID permission on a

directory?

1. chmod u+s /dir

Hivanetwork.com

https://hivanetwork.com/

2. chmod g-s /dir

3. chmod g+s /dir

4. chmod 1770 /dir

 While observing current permission settings, you notice that the

passwd program file has the execute permission set. What

should you do?

1. Run a security scan on your system, because something

obviously is wrong.

2. Check the system logs to find out who has wrongly applied this

permission.

3. Check whether the execute permission is also set. If that is not

the case, it’s not a big deal.

4. Nothing, because the passwd program file needs the SUID

permission to be able to update passwords in the secured

/etc/shadow file.

 How can you make sure that the root user has a different umask

than ordinary users?

1. You don’t have to do anything; this happens by default.

2. Set the default umask in /etc/login.defs.

3. Set a specific umask for the root user in the ~/bash_profile file.

4. Use an if statement to apply a specific umask for the root user

in the /etc/profile file.

 Which of the following umask settings meets the following

requirements?

Grants all permissions to the owner of the file

Grants read permissions to the group owner of the file

Grants no permissions to others

1. 740

2. 750

3. 027

4. 047

 Which command enables you to check all attributes that are

currently set on myfile?

1. ls --attr myfile

2. getattr myfile

3. lsattr myfile

4. listattr myfile

Foundation Topics

Managing File Ownership

Before we discuss permissions, you need to understand the role

of file and directory ownership. File and directory ownership

are vital for working with permissions. In this section, you first

learn how you can see ownership. Then you learn how to change

user and group ownership for files and directories.

Displaying Ownership

On Linux, every file and every directory has two owners: a user

owner and a group owner. Apart from that, there is the “others”

entity, which also is considered to be an entity to determine the

permissions a user has. Collectively, the user, group, and others

(ugo) owners are shown when listing permissions with the ls -l

command.

These owners are set when a file or directory is created. On

creation, the user who creates the file becomes the user owner,

and the primary group of that user becomes the group owner. To

determine whether you as a user have permissions to a file or a

directory, the shell checks ownership. This happens in the

following order:

1. The shell checks whether you are the user owner of the file

you want to access, which is also referred to as the user of the

file. If you are the user, you get the permissions that are set for

the user, and the shell looks no further.

2. If you are not the user owner, the shell checks whether you

are a member of the group owner, which is also referred to as

the group of the file. If you are a member of the group, you get

access to the file with the permissions of the group, and the

shell looks no further.

3. If you are neither the user owner nor the group owner and

have not obtained permissions through access control lists

(ACLs), you get the permissions of the others entity.

To see current ownership assignments, you can use the ls -l

command. This command shows the user owner and the group

owner. In Example 7-1, you can see the ownership settings for

directories in the directory /home.

Example 7-1 Displaying Current File Ownership

Click here to view code image

[root@server1 home]# ls -l
total 8
drwx------. 3 bob bob 74 Feb 6 10:13 bob
drwx------. 3 caroline caroline 74 Feb 6 10:13 caroline
drwx------. 3 fozia fozia 74 Feb 6 10:13 fozia
drwx------. 3 lara lara 74 Feb 6 10:13 lara
drwx------. 5 lisa lisa 4096 Feb 6 10:12 lisa
drwx------. 14 user user 4096 Feb 5 10:35 user

Using the ls command, you can display ownership for files in a

given directory. It may on occasion be useful to get a list of all

files on the system that have a given user or group as owner. To

do this, you may use find with the argument -user. For instance,

the following command shows all files that have user linda as

their owner:

find / -user linda

You can also use find to search for files that have a specific group

as their owner. For instance, the following command searches all

files that are owned by the group users:

find / -group users

Changing User Ownership

To apply appropriate permissions, the first thing to consider is

ownership. To do this, you can use the chown command. The

syntax of this command is not hard to understand:

chown who what

For instance, the following command changes ownership for the

file files to user linda:

chown linda files

The chown command has a few options, of which one is

particularly useful: -R. You might guess what it does, because this

option is available for many other commands as well. It allows

you to set ownership recursively, which allows you to set

ownership of the current directory and everything below. The

following command changes ownership for the directory /files

and everything beneath it to user linda:

chown -R linda /files

Changing Group Ownership

There are actually two ways to change group ownership. You can

do it using chown, but there is also a specific command with the

name chgrp that does the job. If you want to use the chown

command, use a . or : in front of the group name. The following

changes the group owner of directory /home/account to the

group account:

chown .account /home/account

You can use chown to change user and/or group ownership in a

number of ways, an overview of which follows:

chown lisa myfile Sets user lisa as the owner of myfile

chown lisa.sales myfile Sets user lisa as user owner and

group sales as group owner of myfile

chown lisa:sales myfile Sets user lisa as user owner and

group sales as group owner of myfile

chown .sales myfile Sets group sales as group owner of myfile

without changing the user owner

chown :sales myfile Sets group sales as group owner of myfile

without changing the user owner

You can also use the chgrp command to change group

ownership. Consider the following example, where you can use

chgrp to set group ownership for the directory /home/account to

the group account:

chgrp account /home/account

As is the case for chown, you can use the option -R with chgrp as

well to change group ownership recursively.

Understanding Default Ownership

You might have noticed that when a user creates a file, default

ownership is applied. The user who creates the file automatically

becomes user owner, and the primary group of that user

automatically becomes group owner. Normally, this is the group

that is set in the /etc/passwd file as the user’s primary group. If

the user is a member of more groups, however, the user can use

the newgrp command to change the effective primary group so

that new files will get the new primary group as group owner.

To show the current primary group, a user can use the groups

command. Of the groups listed, the primary group is the first

name after the : character:

Click here to view code image

[root@server1 ~]# groups lisa
lisa : lisa account sales

If the current user linda wants to change the effective primary

group, user linda can use the newgrp command, followed by the

name of the group that user linda wants to set as the new

effective primary group. This will open a new shell, in which the

new temporary primary group is set. This group will continue to

be used as the effective primary group until user linda uses the

Hivanetwork.com

https://hivanetwork.com/

exit command or logs out. Example 7-2 shows how user linda

uses this command to make sales her effective primary group.

Example 7-2 Using newgrp to Change the Effective Primary

Group

Click here to view code image

[lisa@server1 ~]$ groups
lisa account sales
[lisa@server1 ~]$ newgrp sales
[lisa@server1 ~]$ groups
sales lisa account
[lisa@server1 ~]$ touch file1
[lisa@server1 ~]$ ls -l
total 0
-rw-r--r--. 1 lisa sales 0 Feb 6 10:06 file1

After you change the effective primary group, all new files that

the user creates will get this group as their group owner. To

return to the original primary group setting, use exit.

To be able to use the newgrp command, a user has to be a

member of that group. Alternatively, a group password can be

set for the group using the gpasswd command, but that is

uncommonly used. If a user uses the newgrp command but is not

a member of the target group, the shell prompts for the group

password. After the user enters the correct group password, the

new effective primary group is set.

Managing Basic Permissions

The Linux permissions system was invented in the 1970s.

Because computing needs were limited in those years, the basic

permission system that was created was rather limited as well.

This basic permission system uses three permissions that can be

applied to files and directories. In this section, you learn how the

system works and how to modify these permissions.

Understanding Read, Write, and Execute Permissions

The three basic permissions allow users to read, write, and

execute files. The effect of these permissions differs when

applied to files or directories. If applied to a file, the read

permission gives the right to open the file for viewing. Therefore,

you can read its contents, but it also means that your computer

can open the file to do something with it. A program file that

needs access to a library needs, for example, read access to that

library. From that follows that the read permission is the most

basic permission you need to work with files.

If applied to a directory, read allows you to list the contents of

that directory. You should be aware that this permission does not

allow you to read files in the directory as well. The Linux

permission system does not know inheritance, and the only way

to read a file is by using the read permissions on that file. To

open a file for reading, however, it is required to have read as

well as execute permissions to the directory because you would

not see the file otherwise.

As you can probably guess, the write permission, if applied to a

file, allows you to modify the contents of the file. Stated

otherwise, write allows you to modify the contents of existing

files. It does not, however, allow you to create or delete new files.

To do that, you need write permission on the directory where

you want to create the file. To modify the permissions on a file,

you don’t need permissions on the file; you just have to be

owner, or root. On directories, this permission also allows you to

create and remove new subdirectories.

The execute permission is what you need to run a program file.

Also, you need the execute permission on a directory if you want

to do anything in that directory. The execute permission will

never be set by default, which makes Linux almost completely

immune to viruses. Only the user owner and the root user can

apply the execute permission.

Whereas having the execute permission on files means that you

are allowed to run a program file, if applied to a directory it

means that you are allowed to use the cd command to enter that

directory. This means that execute is an important permission

for directories, and you will see that it is normally applied as the

default permission to directories. Without it, there is no way to

change to that directory! Table 7-2 summarizes the use of the

basic permissions.

Table 7-2 Use of Read, Write, and Execute Permissions

Permission Applied to Files Applied to Directories

Read View file content List contents of directory

Write Change contents of a
file

Create and delete files and
subdirectories

Execute Run a program file Change to the directory

Applying Read, Write, and Execute Permissions

To apply permissions, you use the chmod command. When using

chmod, you can set permissions for user, group, and others. You

can use this command in two modes: the relative mode and the

absolute mode. In absolute mode, three digits are used to set the

basic permissions. The three digits apply to user, group, and

others, respectively. Table 7-3 provides an overview of the

permissions and their numeric representation.

Table 7-3 Numeric Representation of Permissions

Permission Numeric Representation

Read 4

Write 2

Execute 1

When setting permissions, calculate the value that you need. If

you want to set read, write, and execute for the user, read and

execute for the group, and read and execute for others on the file

/somefile, for example, you use the following chmod command:

chmod 755 /somefile

When you use chmod in this way, all current permissions are

replaced by the permissions you set. If you want to modify

permissions relative to the current permissions, you can use

chmod in relative mode. When using chmod in relative mode,

you work with three indicators to specify what you want to do:

First, you specify for whom you want to change permissions.

To do this, you can choose between user (u), group (g), others

(o), and all (a).

Then, you use an operator to add or remove permissions from

the current mode, or set them in an absolute way.

At the end, you use r, w, and x to specify what permissions you

want to set.

When changing permissions in relative mode, you may omit the

“to whom” part to add or remove a permission for all entities.

For instance, the following adds the execute permission for all

users:

chmod +x somefile

When working in relative mode, you may use more complex

commands as well. For instance, the following adds the write

permission to the group and removes read for others:

chmod g+w,o-r somefile

When applied in recursive mode, the execute permission needs

special attention. In the following procedure you can find out

why:

1. Open a root shell and type mkdir ~/files

2. Use cp /etc/[a-e]* ~/files. Ignore the errors and warnings that

you see.

3. Type ls -l ~/files/* and observe the permissions that are set on

the files.

4. Use chmod -R a+x ~/files

5. Type ls -l ~/files/* again. You’ll notice that all files have

become executable as well.

Files becoming executable in an uncontrolled way are a major

security issue. For that reason, if you want to apply the execute

permission in a recursive way, you should apply it as X, not x. So

instead of using chmod -R a+x files, use chmod -R a+X files. This

ensures that subdirectories will obtain the execute permission

but the execute permission is not applied to any files.

In Exercise 7-1, you learn how to work with basic permissions by

creating a directory structure for the groups that you created

earlier. You also assign the correct permissions to these

directories.

Exercise 7-1 Managing Basic Permissions

1. From a root shell, type mkdir -p /data/sales /data/account.

2. Before setting the permissions, change the owners of these

directories using chown linda.sales /data/sales and chown

linda.account /data/account.

3. Set the permissions to enable the user and group owners to

write files to these directories, and deny all access for all

others: chmod 770 /data/sales, and next chmod 770

/data/account.

4. Use su - laura to become user laura and change into the

directory /data/account. Use touch emptyfile to create a file in

this directory. Does this work? Type groups to figure out why.

5. Still as user laura, use cd /data/sales and use touch emptyfile

to create a file in this directory. Does this work? Type groups

to figure out why.

Hivanetwork.com

https://hivanetwork.com/

Managing Advanced Permissions

Apart from the basic permissions that you have just read about,

Linux has a set of advanced permissions as well. These are not

permissions that you would set by default, but they sometimes

provide a useful addition to realize more advanced scenarios. In

this section, you learn what they are and how to set them.

Understanding Advanced Permissions

There are three advanced permissions. The first of them is the set

user ID (SUID) permission. On some very specific occasions, you

may want to apply this permission to executable files. By default,

a user who runs an executable file runs this file with their own

permissions. For normal users, that usually means that the use of

the program is restricted. In some cases, however, the user needs

special permissions, just for the execution of a certain task.

Consider, for example, the situation where a user needs to

change their password. To do this, the user needs to write their

new password to the /etc/shadow file. This file, however, is not

writeable for users who do not have root permissions:

Click here to view code image

[root@hnl ~]# ls -l /etc/shadow
----------. 1 root root 1184 Apr 30 16:54 /etc/shadow

The SUID permission offers a solution for this problem. On the

/usr/bin/passwd utility, this permission is applied by default. That

means that when a user is changing their password, the user

temporarily has root permissions because the /usr/bin/passwd

utility is owned by the root user, which allows the user to write

to the /etc/shadow file. You can see the SUID permission with ls -l

as an s at the position where normally you would expect to see

the x for the user permissions (the lowercase s means that both

SUID and execute are set, whereas an uppercase S would mean

that only SUID is set):

Click here to view code image

[root@hnl ~]# ls -l /usr/bin/passwd
-rwsr-xr-x. 1 root root 32680 Jan 28 2010 /usr/bin/passwd

The SUID permission may look useful (and it is in some cases),

but at the same time, it is potentially dangerous. If it is applied

wrongly, you may give away root permissions by accident. I

therefore recommend using it with the greatest care only, or

better yet: don’t apply it to any files at all. It is set on some

operating system files and should stay there, but there really is

no good reason to set it on files ever.

The second special permission is set group ID (SGID). This

permission has two effects. If applied on an executable file, it

gives the user who executes the file the permissions of the group

owner of that file. So, SGID can accomplish more or less the same

thing that SUID does. For this purpose, however, SGID is hardly

used. As is the case for the SUID permission, SGID is applied to

some system files as a default setting.

When applied to a directory, SGID may be useful, because you

can use it to set default group ownership on files and

subdirectories created in that directory. By default, when a user

creates a file, the user’s effective primary group is set as the

group owner for that file. That is not always very useful,

especially because on Red Hat Enterprise Linux, users have their

primary group set to a group with the same name as the user,

and of which the user is the only member. So by default, files that

a user creates will be group shared with nobody else.

Imagine a situation where users linda and lori work for the

accounting department and are both members of the group

account. By default, these users are members of the private

group of which they are the only member. Both users, however,

are members of the accounting group as well but as a secondary

group setting.

The default situation is that when either of these users creates a

file, the primary group becomes owner. So by default, user linda

cannot access the files that user lori has created and vice versa.

However, if you create a shared group directory (say,

/groups/account) and make sure that the SGID permission is

applied to that directory, and that the group account is set as the

group owner for that directory, all files created in this directory

and all its subdirectories also get the group accounting as the

default group owner. For that reason, the SGID permission is a

very useful permission to set on shared group directories.

The SGID permission shows in the output of ls -l as an s at the

position where you normally find the group execute permission

(a lowercase s indicates that both SGID and execute are set,

whereas an uppercase S means that only SGID is set):

Click here to view code image

[root@hnl data]# ls -ld account
drwxr-sr-x. 2 root account 4096 Apr 30 21:28 account

The third of the special permissions is sticky bit. This permission

is useful to protect files against accidental deletion in an

environment where multiple users have write permissions in the

same directory. If sticky bit is applied, a user may delete a file

only if they are the user owner of the file or of the directory that

contains the file. It is for that reason that sticky bit is applied as a

default permission to the /tmp directory, and it can be useful on

shared group directories as well.

Without sticky bit, if a user can create files in a directory, the

user can also delete files from that directory. In a shared group

environment, this may be annoying. Imagine users linda and lori

again, who both have write permissions to the directory

/data/account and get these permissions because of their

membership in the group accounting. Therefore, user linda can

delete files that user lori has created and vice versa.

When you apply sticky bit, a user can delete files only if one of

the following is true:

The user has root access.

The user is owner of the file.

The user is owner of the directory where the file exists.

When using ls -l, you can see sticky bit as a T at the position

where you normally see the execute permission for others (a

lowercase t indicates that sticky bit as well as the execute

permission for the others entity are set, whereas uppercase T

indicates that only sticky bit is set):

Click here to view code image

[root@hnl data]# ls -ld account/
drwxr-sr-T 2 root account 4096 Apr 30 21:28 account/

Tip

Make sure that you know how to manage these

advanced permissions. The RHCSA objectives

specifically mention that you need to be able to use

SGID to create a shared group directory.

Applying Advanced Permissions

To apply SUID, SGID, and sticky bit, you can use chmod as well.

SUID has numeric value 4, SGID has numeric value 2, and sticky

bit has numeric value 1. If you want to apply these permissions,

you need to add a four-digit argument to chmod, of which the

first digit refers to the special permissions. The following line

would, for example, add the SGID permission to a directory and

set rwx for user and rx for group and others:

chmod 2755 /somedir

It is rather impractical if you have to look up the current

permissions that are set before working with chmod in absolute

mode. (You risk overwriting permissions if you do not.)

Therefore, I recommend working in relative mode if you need to

apply any of the special permissions:

For SUID, use chmod u+s

For SGID, use chmod g+s

For sticky bit, use chmod +t, followed by the name of the file

or the directory that you want to set the permissions on

Table 7-4 summarizes all that is important to know about

managing special permissions.

Table 7-4 Working with SUID, SGID, and Sticky Bit

Permission Numeric
Value

Relative
Value On Files On Directories

SUID 4 u+s User executes
file with
permissions of
file owner.

No meaning.

SGID 2 g+s User executes
file with
permissions of
group owner.

Files created in
directory get the
same group
owner.

Sticky bit 1 +t No meaning. Prevents users
from deleting
files from other
users.

In Exercise 7-2, you use special permissions to make it easier for

members of a group to share files in a shared group directory.

Make sure you have finished Exercise 7-1 before starting this

exercise. You assign the set group ID bit and sticky bit and see

that after setting these, features are added that make it easier for

group members to work together.

Exercise 7-2 Working with Special Permissions

1. Start this exercise from a root shell.

2. Use su - linda to open a terminal in which you are user linda.

3. Use cd /data/sales to go to the sales directory. Use touch

Hivanetwork.com

https://hivanetwork.com/

linda1 and touch linda2 to create two files of which linda is

the owner.

4. Type exit to go back to a root shell, and next use su - laura to

switch the current user identity to user laura, who also is a

member of the sales group.

5. Use cd /data/sales again, and from that directory, use ls -l.

You’ll see the two files that were created by user linda that are

group-owned by the group linda. Use rm -f linda*. This will

remove both files.

6. Use the commands touch laura1 laura2 to create two files

that are owned by user laura.

7. Use su - to escalate your current permissions to root level.

8. Use chmod g+s,o+t /data/sales to set the group ID bit as well

as sticky bit on the shared group directory.

9. Use su - linda and type cd /data/sales. First, use touch linda3

linda4. You should now see that the two files you have created

are owned by the group sales, which is group owner of the

directory /data/sales.

10. Use rm -rd laura*. Normally, sticky bit prevents you from

doing so, but because user linda is the owner of the directory

that contains the files, you are allowed to do it anyway!

Setting Default Permissions with umask

To set default permissions, you use either file ACLs or umask.

ACLs were within the scope of previous versions of the RHCSA

exam, but you don’t have to know about them for the RHCSA 9

exam. In this section, you learn how to modify default

permissions using umask.

You have probably noticed that when creating a new file, some

default permissions are set. These permissions are determined

by the umask setting. This shell setting is applied to all users

when logging in to the system. In the umask setting, a numeric

value is used that is subtracted from the maximum permissions

that can be set automatically to a file; the maximum setting for

files is 666, and for directories is 777.

Of the digits used in the umask, like with the numeric arguments

for the chmod command, the first digit refers to user

permissions, the second digit refers to the group permissions,

and the last refers to default permissions set for others. The

default umask setting of 022 gives 644 for all new files and 755

for all new directories that are created on your server. A

complete overview of all umask numeric values and their result

is shown in Table 7-5.

Table 7-5 umask Values and Their Result

Value Applied to Files Applied to Directories

0 Read and write Everything

1 Read and write Read and write

2 Read Read and execute

3 Read Read

4 Write Write and execute

5 Write Write

6 Nothing Execute

7 Nothing Nothing

An easy way to see how the umask setting works is as follows:

Start with the default permissions for a file set to 666 and

subtract the umask to get the effective permissions. For a

directory, start with its default permissions that are set to 777

and subtract the umask to get the effective permissions.

There are two ways to change the umask setting: for all users

and for individual users. If you want to set the umask for all

users, you must make sure the umask setting is considered when

starting the shell environment files as directed by /etc/profile.

The right approach is to create a shell script with the name

umask.sh in the /etc/profile.d directory and specify the umask

you want to use in that shell script. If the umask is changed in

this file, it applies to all users after logging in to your server.

An alternative to setting the umask through /etc/profile and

related files where it is applied to all users logging in to the

system is to change the umask settings in a file with the name

.profile, which is created in the home directory of an individual

user. Settings applied in this file are applied for the individual

user only; therefore, this is a nice method if you need more

granularity. I personally like this feature to change the default

umask for user root to 027, whereas normal users work with the

default umask 022.

Working with User-Extended Attributes

When you work with permissions, a relationship always exists

between a user or group object and the permissions these user or

group objects have on a file or directory. An alternative method

of securing files on a Linux server is by working with attributes.

Attributes do their work regardless of the user who accesses the

file.

Many attributes are documented. Some attributes are available

but not yet implemented. Do not use them; they bring you

nothing. Following are the most useful attributes that you can

apply:

A This attribute ensures that the file access time of the file is

not modified. Normally, every time a file is opened, the file

access time must be written to the file’s metadata. This affects

performance in a negative way; therefore, on files that are

accessed on a regular basis, the A attribute can be used to

disable this feature.

a This attribute allows a file to be added to but not to be

removed.

c If you are using a file system where volume-level

compression is supported, this file attribute makes sure that

the file is compressed the first time the compression engine

becomes active.

D This attribute makes sure that changes to files are written to

disk immediately, and not to cache first. This is a useful

attribute on important database files to make sure that they do

not get lost between file cache and hard disk.

d This attribute makes sure the file is not backed up in

backups where the legacy dump utility is used.

I This attribute enables indexing for the directory where it is

enabled.

i This attribute makes the file immutable. Therefore, no

changes can be made to the file at all, which is useful for files

that need a bit of extra protection.

s This attribute overwrites the blocks where the file was stored

with 0s after the file has been deleted. This makes sure that

recovery of the file is not possible after it has been deleted.

u This attribute saves undelete information. This allows a

utility to be developed that works with that information to

salvage deleted files.

Note

Although quite a few attributes can be used, be

aware that most attributes are rather experimental

and are only of any use if an application is used that

can work with the given attribute. For example, it

does not make sense to apply the u attribute if no

application has been developed that can use this

attribute to recover deleted files.

If you want to apply attributes, you can use the chattr command.

For example, use chattr +s somefile to apply the attributes to

somefile. Need to remove the attribute again? Then use chattr -s

somefile and it will be removed. You should try this to find out

how attributes are one of the rare cases where you can even

block access to the root user:

Step 1. Open a root shell.

Step 2. Create a file named touch /root/myfile

Step 3. Set the immutable permission to chattr +i /root/myfile

Step 4. Try to remove the file: rm -f /root/myfile. You can’t!

Step 5. Remove the attribute again: chattr -i /root/myfile

To get an overview of all attributes that are currently applied,

use the lsattr command.

Summary

In this chapter, you learned how to work with permissions. You

read about the three basic permissions as well as the advanced

permissions. You also learned how to use the umask setting to

apply default permissions. Toward the end of this chapter, you

learned how to use user-extended attributes to apply an

additional level of file system security.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 7-6 lists a

reference for these key topics and the page number on which

each is found.

Table 7-6 Key Topics for Chapter 7

Hivanetwork.com

https://hivanetwork.com/

Key Topic

Element
Description Page

Table 7-2 Use of Read, Write, and Execute

Permissions

152

Table 7-3 Numeric Representation of

Permissions

153

Table 7-4 Working with SUID, SGID, and

Sticky Bit

158

Table 7-5 umask Values and Their Result 159

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

ownership

permissions

inheritance

attribute

Review Questions

The questions that follow use an open-ended format that is

meant to help you test your knowledge of the concepts and

terminology and the breadth of your knowledge. You can find the

answers to these questions in Appendix A.

 How do you use chown to set the group owner to a file?

 Which command finds all files that are owned by a specific user?

 How would you apply read, write, and execute permissions to all

files in /data for the user and group owners while setting no

permissions for others?

 Which command enables you in relative permission mode to add

the execute permission to a file that you want to make

executable?

 Which command enables you to ensure that group ownership of

all new files that will be created in a directory is set to the group

owner of that directory?

 You want to ensure that users can only delete files of which they

are the owner, or files that are in a directory of which they are

the owner. Which command will do that for you?

 Which umask do you need to set if you never want “others” to

get any permissions on new files?

 Which command ensures that nobody can delete myfile by

accident?

 How can you search for all files that have the SUID permission

set?

 Which command do you use to check if any attributes have been

applied?

End-of-Chapter Lab

In Chapter 6, “User and Group Management,” you created some

users and groups. These users and groups are needed to perform

the exercises in this lab.

Lab 7.1

1. Set up a shared group environment. If you haven’t created

these directories in a previous exercise yet, create two

directories: /data/account and /data/sales. Make the group sales

the owner of the directory sales, and make the group account

the owner of the directory account.

2. Configure the permissions so that the user owner (which must

be root) and group owner have full access to the directory.

There should be no permissions assigned to the others entity.

3. Ensure that all new files in both directories inherit the group

owner of their respective directory. This means that all files

that will be created in /data/sales will be owned by the group

sales, and all files in /data/account will be owned by the group

account.

4. Ensure that users are only allowed to remove files of which

they are the owner.

Chapter 8

Configuring Networking

The following topics are covered in this chapter:

Networking Fundamentals

Managing Network Addresses and Interfaces

Validating Network Configuration

Managing Network Configuration with nmtui and nmcli

Setting Up Hostname and Name Resolution

The following RHCSA exam objectives are covered in this

chapter:

Configure IPv4 and IPv6 addresses

Configure hostname resolution

Networking is one of the most essential items on a modern

server. On RHEL 9, networking is managed by the

NetworkManager service. The old network service doesn’t exist

anymore, and that means that modern NetworkManager-related

tools like nmcli and nmtui are the only way to manage network

settings.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table 8-

1 lists the major headings in this chapter and their corresponding

“Do I Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quizzes and Review Questions.”

Table 8-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Networking Fundamentals 1–2

Managing Network Addresses and Interfaces 3

Validating Network Configuration 4

Managing Network Configuration with nmtui

and nmcli

5–8

Setting Up Hostname and Name Resolution 9–10

 Which of the following IP addresses belong to the same network?

1. 192.168.4.17/26

2. 192.168.4.94/26

3. 192.168.4.97/26

4. 192.168.4.120/26

1. I and II

2. II and III

3. III and IV

4. II, III, and IV

 Which of the following is not a private IP address?

1. 10.10.10.10

2. 169.254.11.23

3. 172.19.18.17

4. 192.168.192.192

 Which of the following could be the network interface name on a

RHEL 9 system?

1. p6p1

2. eth0

3. eno1677783

4. e0

 Which command shows the recommended way to display

information about the network interface as well as its IP

configuration?

1. ifconfig -all

2. ipconfig

3. ip link show

4. ip addr show

 Which statement about NetworkManager is not true?

1. It is safe to disable NetworkManager and work with the

network service instead.

2. NetworkManager manages network connections that are

applied to network interfaces.

3. NetworkManager has a text-based user interface with the

name nmtui

4. NetworkManager is the default service to manage networking

in RHEL 9.

 Which man page contains excellent examples on nmcli usage?

1. nmcli

2. nmcli-examples

3. nm-config

4. nm-tools

Hivanetwork.com

https://hivanetwork.com/

 Which of the following is the name of the text user interface to

specify network connection properties?

1. system-config-network

2. system-config-networkmanager

3. nmtui

4. nmcli

 Which of the following commands shows correct syntax to set a

fixed IP address to a connection using nmcli?

1. nmcli con add con-name "static" ifname eth0 autoconnect

no type ethernet ipv4 10.0.0.10/24 gw4 10.0.0.1

2. nmcli con add con-name "static" ifname eth0 autoconnect

no type ethernet ipv4 10.0.0.10/24 gwv4 10.0.0.1

3. nmcli con add con-name "static" ifname eth0 type ethernet

ipv4 10.0.0.10/24 gw4 10.0.0.1

4. nmcli con add con-name "static" ifname eth0 autoconnect

no type ethernet ip4 10.0.0.10/24 gw4 10.0.0.1

 Which of the following is not a recommended way to specify

which DNS servers to use?

1. Edit /etc/resolv.conf.

2. Set the DNS options in /etc/sysconfig/network-scripts/ifcfg-

<ID>.

3. Set the DNS server names using nmcli.

4. Use nmtui to set the DNS server names.

 In which configuration file would you set the hostname?

1. /etc/sysconfig/network

2. /etc/sysconfig/hostname

3. /etc/hostname

4. /etc/defaults/hostname

Foundation Topics

Networking Fundamentals

To set up networking on a server, your server needs a unique

address on the network. For this purpose, Internet Protocol (IP)

addresses are used. Currently, two versions of IP addresses are

relevant:

IPv4 addresses: These are based on 32-bit addresses and have

four octets, separated by dots, such as 192.168.10.100.

IPv6 addresses: These are based on 128-bit addresses and are

written in eight groups of hexadecimal numbers that are 16

bits each and separated by colons. An IPv6 address may look

like fe80:badb:abe01:45bc:34ad:1313:6723:8798.

In this chapter, you learn how to work with IPv4 addresses. IPv6

addresses are described only briefly (but in enough detail to deal

with it on the exam), as IPv4 is still the protocol used by most

administrators.

IP Addresses

Originally, IP addresses were assigned to computers and routers.

Nowadays, many other devices also need IP addresses to

communicate, such as smartphones, industrial equipment, and

almost all other devices that are connected to the Internet. This

chapter refers to all of those devices by using the word node.

You’ll also occasionally encounter the word host. A host is

typically a server providing services on the network.

To make it easier for computers to communicate with one

another, every IP address belongs to a specific network, and to

communicate with computers on another network, a router is

used. A router is a machine (often dedicated hardware that has

been created for that purpose) that connects networks to one

another.

To communicate on the Internet, every computer needs a

worldwide unique IP address. These addresses are scarce; a

theoretical maximum of four billion IP addresses is available,

and that is not enough to provide every device on the planet with

an IP address. IPv6 is the ultimate solution for that problem,

because a very large number of IP addresses can be created in

IPv6. Because many networks still work with IPv4, though,

another solution exists: private network addresses.

Private network addresses are addresses that are for use in

internal networks only. Some specific IP network addresses have

been reserved for this purpose:

10.0.0.0/8 (a single Class A network)

172.16.0.0/12 (16 Class B networks)

192.168.0.0/16 (256 Class C networks)

When private addresses are used, the nodes that are using them

cannot access the Internet directly, and nodes from the Internet

cannot easily access them. Because that is not very convenient,

Network Address Translation (NAT) is commonly used on the

router that connects the private network to the Internet. In NAT,

the nodes use a private IP address, but when accessing the

Internet, this private IP address is replaced with the IP address of

the NAT router. Hence, nodes on the Internet think that they are

communicating with the NAT router, and not with the individual

hosts.

The NAT router in its turn uses tables to keep track of all

connections that currently exist for the hosts in the network.

Based on this table, the NAT router helps make it possible for

computers with a private IP address to connect to hosts on the

Internet anyway. The use of NAT is very common; it is embedded

in most routers that are used in home and small business

networks to connect computers and other devices in those

networks to the Internet.

IPv6 Addresses

Let’s look at a valid IPv6 address, such as

02fb:0000:0000:0000:90ff:fe23:8998:1234. In this address, you can

see that a long range of zeros occurs. To make IPv6 addresses

more readable, you can replace one range of zeros with ::

instead. Also, if an IPv6 address starts with a leading zero, you

can omit it. So the previously mentioned IPv6 address can be

rewritten as 2fb::90ff:fe23:8998:1234.

IPv4 Network Masks

To know to which network a computer belongs, a subnet mask is

used with every IP address. The subnet mask defines which part

of the network address indicates the network and which part

indicates the node. Subnet masks may be written in the Classless

Inter-Domain Routing (CIDR) notation, which indicates the

number of bits in the subnet mask, or in the classical notation,

and they always need to be specified with the network address.

Examples include 192.168.10.100/24 (CIDR notation), which

indicates that a 24-bit network address is used, and

192.168.10.100/255.255.255.0 (classical notation), which indicates

exactly the same.

Often, network masks use multiple bytes. In the example using

192.168.10.100/24, the first 3 bytes (the 192.168.10 part) form the

network part, and the last byte (the number 100) is the host part

on that network.

When talking about network addresses, you use a 4-byte number,

as well, in which the node address is set to 0. So in the example of

192.168.10.100/24, the network address is 192.168.10.0. In IPv4

networks, there is also always a broadcast address. This is the

address that can be used to address all nodes in the network. In

the broadcast address, all node bits are set to 1, which makes for

the decimal number 255 if an entire byte is referred to. So in the

example of the address 192.168.10.100/24, the broadcast address

is 192.168.10.255.

Binary Notation

Because the number of IPv4 addresses is limited, in modern IPv4

networks variable-length network masks are used. These are

network masks such as 212.209.113.33/27. In a variable-length

subnet mask, only a part of the byte is used for addressing nodes,

and another part is used for addressing the network. In the

subnet mask /27, the first 3 bits of the last byte are used to

address the network, and the last 5 bits are used for addressing

nodes. This becomes clearer if you write down the address in a

binary notation:

IP address:

Click here to view code image

212.209.113.33 = 11010100.11010001.00001010.00100001

Subnet mask:

Click here to view code image

/27 = 11111111.11111111.11111111.11100000

When applying the subnet mask to the IP address, you can see

that the first 3 bits of the IP address belong to the network, so the

network is 00100000. And if you use a binary calculator, you can

see that it corresponds with the decimal IP address 32. Using the

/27 subnet mask allows for the creation of multiple networks.

Table 8-2 gives an overview.

Table 8-2 Binary-Decimal Conversion Overview

Binary Value Decimal Value

00000000 0

00100000 32

01000000 64

01100000 96

10000000 128

10100000 160

Hivanetwork.com

https://hivanetwork.com/

11000000 192

11100000 224

So, based on this information, if you consider the IP address

212.209.113.33/27 again, you can see that it belongs to the

network 212.209.113.32/27, and that in this network the

broadcast address (which has the node part of the IP address set

to all 1s) is 212.209.113.63; therefore, with a /27 subnet mask, 30

nodes can be addressed per network. You’ll get 32 IP addresses,

but 2 of them are the network address and the broadcast

address, which cannot be used as a host IP address.

Exam Tip

You do not need to make this kind of calculation on

the RHCSA exam, but it helps in understanding how

IP network addressing works.

MAC Addresses

IP addresses are the addresses that allow nodes to communicate

to any other node on the Internet. They are not the only

addresses in use though. Each network card also has a 12-byte

MAC address. MAC addresses are for use on the local network

(that is, the local physical network or local WLAN, just up to the

first router that is encountered); they cannot be used for

communications between nodes that are on different networks.

MAC addresses are important, though, because they help

computers find the specific network card that an IP address

belongs to.

An example of a MAC address is 00:0c:29:7d:9b:17. Notice that

each MAC address consists of two parts. The first 6 bytes is the

vendor ID, and the second 6 bytes is the unique node ID. Vendor

IDs are registered, and by using registered vendor IDs, it is

possible to allocate unique MAC addresses.

Protocol and Ports

In the previous section you learned how to use IP addresses to

identify individual nodes. On these nodes, you will typically be

running services, like a web server or an FTP server. To identify

these services, port addresses are used. Every service has a

specific port address, such as port 80 for Hypertext Transfer

Protocol (HTTP) or port 22 for a Secure Shell (SSH) server, and in

network communication, the sender and the receiver are using

port addresses. So, there is a destination port address as well as a

source port address involved in network communications.

Because not all services are addressed in a similar way, a specific

protocol is used between the IP address and the port address,

such as Transfer Control Protocol (TCP), User Datagram Protocol

(UDP), or Internet Control Message Protocol (ICMP). Every

protocol has specific properties: TCP is typically used when the

network communication must be reliable and delivery must be

guaranteed; UDP is used when it must be fast and guaranteed

delivery is not necessary.

Managing Network Addresses and Interfaces

As a Linux server administrator, you need to manage network

addresses and network interfaces. The network addresses can

be assigned in two ways:

Fixed IP addresses: Useful for servers and other computers

that always need to be available at the same IP address.

Dynamically assigned IP addresses: Useful for end users’

devices, and for instances in a cloud environment. To

dynamically assign IP addresses, you usually use a Dynamic

Host Configuration Protocol (DHCP) server.

For a long time, network cards in Linux have had default names,

such as eth0, eth1, and eth2. This naming is assigned based on

the order of detection of the network card. So, eth0 is the first

network card that is detected, eth1 the second, and so on. This

works well in an environment where a node has one or two

network cards only. If a node has multiple network cards that

need to be dynamically added and removed, however, this

approach does not work so well because it is very hard to

identify which physical network card is using which name.

In RHEL 9, the default names for network cards are based on

firmware, device topology, and device types. This leads to

network card names that always consist of the following parts:

Ethernet interfaces begin with en, WLAN interfaces begin with

wl, and WWAN interfaces begin with ww.

The next part of the name represents the type of adapter. An o

is used for onboard, s is for a hotplug slot, and p is for a PCI

location. Administrators can also use x to create a device name

that is based on the MAC address of the network card.

Then follows a number, which is used to represent an index,

ID, or port.

If the fixed name cannot be determined, traditional names

such as eth0 are used.

Based on this information, device names such as eno16777734

can be used, which stands for an onboard Ethernet device, with

its unique index number.

Apart from this default device naming, network cards can be

named based on the BIOS device name as well. In this naming

scheme, names such as em1 (embedded network card 1) or p4p1

(which is PCI slot 4, port 1) can be used.

Validating Network Configuration

Before you can learn how to set network information, you must

know how to verify current network information. In this section,

you learn how to do that, and you learn how to check the

following networking items:

IP address and subnet mask

Routing

Availability of ports and services

Validating Network Address Configuration

To verify the configuration of the network address, you need to

use the ip utility. The ip utility is a modern utility that can

consider advanced networking features that have been

introduced in the past decades. With the ip utility, you can

monitor many aspects of networking:

Use ip addr to configure and monitor network addresses.

Use ip route to configure and monitor routing information.

Use ip link to configure and monitor network link state.

Apart from these items, the ip utility can manage many other

aspects of networking, but you do not need to know about them

for the RHCSA exam.

Warning

In earlier Linux versions and some other UNIX-like

operating systems, the ifconfig utility was and is

used for validating network configuration. Do not

use this utility on modern Linux distributions.

Because Linux has become an important player in

cloud computing, networking has evolved a lot to

match cloud computing requirements, and many

new features have been added to Linux networking.

With the ifconfig utility, you cannot manage or

validate these concepts. Even if ifconfig is still the

default tool on some operating systems (like macOS,

for instance), you should never use it anymore on

Linux!

To show current network settings, you can use the ip addr show

command (which can be abbreviated as ip a s or even as ip a).

The ip command is relatively smart and does not always require

you to type the complete option.

The result of the ip addr show command looks like Example 8-1.

Example 8-1 Monitoring Current Network Configuration with ip

addr show

Click here to view code image

[root@server1 ~]# ip addr show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
 group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel
 state UP group default qlen 1000
 link/ether 00:0c:29:50:9e:c9 brd ff:ff:ff:ff:ff:ff
 inet 192.168.4.210/24 brd 192.168.4.255 scope global dynamic
 noprefixroute ens33
 valid_lft 1370sec preferred_lft 1370sec
 inet6 fe80::959:3b1a:9607:8928/64 scope link noprefixroute

 valid_lft forever preferred_lft forever

In the result of this command, you see a listing of all network

interfaces in your computer. You’ll normally see at least two

interfaces, but on specific configurations, there can be many

more interfaces. In Example 8-1, two interfaces are shown: the

loopback interface lo and the onboard Ethernet card ens33.

The loopback interface is used for communication between

processes. Some processes use the IP protocol for internal

communications. For that reason, you’ll always find a loopback

interface, and the IP address of the loopback interface is always

set to 127.0.0.1. The important part of the output of the command

is for the onboard Ethernet card. The command shows the

following items about its current status:

Current state: The most important part of this line is the text

state UP, which shows that this network card is currently up

and available.

MAC address configuration: This is the unique MAC address

that is set for every network card. You can see the MAC

address itself (00:0c:29:50:9e:c9), as well as the corresponding

broadcast address.

IPv4 configuration: This line shows the IP address that is

Hivanetwork.com

https://hivanetwork.com/

currently set, as well as the subnet mask that is used. You can

also see the broadcast address that is used for this network

configuration. Notice that on some interfaces you may find

multiple IPv4 addresses.

IPv6 configuration: This line shows the current IPv6 address

and its configuration. Even if you haven’t configured anything,

every interface automatically gets an IPv6 address, which can

be used for communication on the local network only.

If you are just interested in the link state of the network

interfaces, you can use the ip link show command. This

command (of which you can see the output in Example 8-2)

repeats the link state information of the ip addr show command.

If you add the option -s, you can also see current link statistics,

which gives information about packets transmitted and received,

as well as an overview of errors that have occurred during

packet transmission.

Example 8-2 ip link show Output

Click here to view code image

[root@server1 ~]# ip -s link show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN
 mode DEFAULT group default qlen 1000

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 RX: bytes packets errors dropped overrun mcast
 0 0 0 0 0 0
 TX: bytes packets errors dropped carrier collsns
 0 0 0 0 0 0
2: ens33: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel
 state UP mode DEFAULT group default qlen 1000
 link/ether 00:0c:29:50:9e:c9 brd ff:ff:ff:ff:ff:ff
 RX: bytes packets errors dropped overrun mcast
 143349 564 0 0 0 0
 TX: bytes packets errors dropped carrier collsns
 133129 541 0 0 0 0

In case the ip link show command shows the current link state

as down, you can temporarily bring it up again by using ip link

set, which is followed by dev devicename and up (for example,

ip link set dev ens33 up).

In Exercise 8-1, you learn how to manage and monitor

networking with the ip utility and other utilities.

Exercise 8-1 Validating Network Configuration

1. Open a root shell.

2. Type ip -s link show. This shows all existing network

connections, in addition to statistics about the number of

packets that have been sent and associated error messages.

3. Type ip addr show. You’ll see the current address

assignments for network interfaces on your server.

Validating Routing

One important aspect of networking is routing. On every

network that needs to communicate to nodes on other networks,

routing is a requirement. Every network has, at least, a default

router (also called the default gateway) that is set, and you can

see which router is used as the default router by using the

command ip route show (see Example 8-3). You should always

perform one quick check to verify that your router is set

correctly: the default router at all times must be on the same

network as the local IP address that your network card is using.

Example 8-3 ip route show Output

Click here to view code image

[root@server1 ~]# ip route show
default via 192.168.4.2 dev ens33 proto dhcp metric 100
192.168.4.0/24 dev ens33 proto kernel scope link src 192.168.4.210
 metric 100
192.168.122.0/24 dev virbr0 proto kernel scope link src 192.168.122.1

 linkdown

In Example 8-3, the most important part is the first line. It shows

that the default route goes through (“via”) IP address 192.168.4.2,

and also shows that network interface ens33 must be used to

address that IP address. The line shows that this default route

was assigned by a DHCP server. The metric is used in case

multiple routes are available to the same destination. In that

case, the route with the lowest metric will be used. This is

something important on router devices, but on computers that

are not a router, the metric doesn’t really matter.

Next you can see lines that identify the local connected networks.

When you’re booting, an entry is added for each local network as

well, and in this example this applies to the networks 192.168.4.0

and 192.168.122.0. These routes are automatically generated and

do not need to be managed.

Validating the Availability of Ports and Services

Network problems can be related to the local IP address and

router settings but can also be related to network ports that are

not available on your server or on a remote server. To verify

availability of ports on your server, you can use the netstat

command or the newer ss command, which provides the same

functionality. Exercise 8-2 shows how to verify network settings.

By typing ss -lt, you’ll see all listening TCP ports on the local

system (see Example 8-4).

Example 8-4 Using ss -lt to Display All Listening Ports on the

Local System

Click here to view code image

[root@server1 ~]# ss -lt
State Recv-Q Send-Q Local Address:Port Peer
 Address:Port
LISTEN 0 32 192.168.122.1:domain 0.0.0.0:*
LISTEN 0 128 0.0.0.0:ssh 0.0.0.0:*
LISTEN 0 5 127.0.0.1:ipp 0.0.0.0:*
LISTEN 0 128 0.0.0.0:sunrpc 0.0.0.0:*
LISTEN 0 128 [::]:ssh [::]:*
LISTEN 0 5 [::1]:ipp [::]:*
LISTEN 0 128 [::]:sunrpc [::]:*

Notice where the port is listening on. Some ports are only

listening on the IPv4 loopback address 127.0.0.1 or the IPv6

loopback address ::1, which means that they are locally

accessible only and cannot be reached from external machines.

Other ports are listening on *, which stands for all IPv4

addresses, or on :::*, which represents all ports on all IPv6

addresses.

Exercise 8-2 Verifying Network Settings

1. Open a root shell to your server and type ip addr show. This

shows the current network configuration. Note the IPv4

address that is used and the network device names that are

used; you need these later in this exercise.

2. Type ip route show to verify routing configuration.

3. If your computer is connected to the Internet, you can now

use the ping command to verify the connection to the Internet

is working properly. Type ping -c 4 8.8.8.8, for instance, to

send four packets to IP address 8.8.8.8. If your Internet

connection is up and running, you should get “echo reply”

answers.

4. Type ip addr add 10.0.0.10/24 dev <yourdevicename>. This

will temporarily set a new IP address.

5. Type ip addr show. You’ll see the newly set IP address, in

addition to the IP address that was already in use.

6. Type ifconfig. Notice that you do not see the newly set IP

address (and there are no options with the ifconfig command

that allow you to see it). This is one example of why you

should not use the ifconfig command anymore.

7. Type ss -tul. You’ll now see a list of all UDP and TCP ports that

are listening on your server.

Managing Network Configuration with nmtui and
nmcli

As mentioned earlier in this chapter, networking on RHEL 9 is

managed by the NetworkManager service. You can use the

systemctl status NetworkManager command to verify its

current status. When NetworkManager comes up, it reads the

network card configuration scripts, which are in

/etc/NetworkManager/system-connections and have a name that

starts with the name of the network interface the configuration

applies to, like ens160.nmconnection.

When working with network configuration in RHEL 9, you

should know the difference between a device and a connection:

A device is a network interface card.

A connection is the configuration that is used on a device.

In RHEL 9, you can create multiple connections for a device. This

makes sense on mobile computers, for example, to differentiate

between settings that are used to connect to the home network

and settings that are used to connect to the corporate network.

Switching between connections on devices is common on end-

user computers but not so common on servers. To manage the

network connections that you want to assign to devices, you use

the nmtui command or the nmcli command.

Exam Tip

The nmcli tool is cool and very powerful, but it’s not

the easiest tool available. To change network

configurations fast and efficiently, you should use

the menu-driven nmtui utility. It may not be as cool

as nmcli, but it allows you to do what you need to do

in less than a minute, after which you can continue

with the other tasks.

Required Permissions to Change Network Configuration

Obviously, the root user can make modifications to current

networking. However, if an ordinary user is logged in to the local

console, this user is able to make changes to the network

configuration as well. As long as the user is using the system

keyboard to enter either a graphical console or a text-based

console, these permissions are granted. The reason is that users

are supposed to be able to connect their local system to a

network. Notice that regular users who have used ssh to connect

to a server are not allowed to change the network configuration.

Hivanetwork.com

https://hivanetwork.com/

To check your current permissions, use the nmcli general

permissions command, as shown in Figure 8-1.

Figure 8-1 Verifying Current Permissions to Change Network Configuration

Configuring the Network with nmcli

Earlier in this chapter, you learned how to use ip to verify

network configuration. You have also applied the ip addr add

command to temporarily set an IP address on a network

interface. Everything you do with the ip command, though, is

nonpersistent. If you want to make your configuration persistent,

use nmtui or nmcli.

A good start is to use nmcli to show all connections. This shows

active and inactive connections. You can easily see the difference

because inactive connections are not currently assigned to a

device (see Example 8-5).

Example 8-5 Showing Current Connection Status

Click here to view code image

[root@server1 ~]# nmcli con show
NAME UUID TYPE DEVICE
ens33 db6f53bd-654e-45dd-97ef-224514f8050a ethernet ens33

After finding the name of the connection, you can use nmcli con

show followed by the name of the connection to see all

properties of the connection. Notice that this command shows

many properties. Example 8-6 shows the partial output of this

command.

Example 8-6 Displaying Connection Properties

Click here to view code image

[root@server1 ~]# nmcli con show ens33
connection.id: ens33
connection.uuid: db6f53bd-654e-45dd-97ef-
 224514f8050a
connection.stable-id: --
connection.type: 802-3-ethernet
connection.interface-name: ens33
connection.autoconnect: yes
connection.autoconnect-priority: 0
connection.autoconnect-retries: -1 (default)
connection.multi-connect: 0 (default)
…
DHCP4.OPTION[21]: requested_wpad = 1
DHCP4.OPTION[22]: routers = 192.168.4.2
DHCP4.OPTION[23]: subnet_mask = 255.255.255.0
IP6.ADDRESS[1]: fe80::959:3b1a:9607:8928/64
IP6.GATEWAY: --
IP6.ROUTE[1]: dst = fe80::/64, nh = ::,
 mt = 100
IP6.ROUTE[2]: dst = ff00::/8, nh = ::,
 mt = 256, table=255

To find out what exactly these settings are doing, execute man 5

nm-settings. You can also use nmcli to show an overview of

currently configured devices and the status of these devices.

Type, for instance, the nmcli dev status command to show a list

of all devices, and nmcli dev show <devicename> to show

settings for a specific device.

Tip

Using nmcli might seem difficult. It’s not, because it

offers excellent command-line completion features

—just make sure that the bash-completion package

has been installed. Try it by typing nmcli, but don’t

press Enter! Instead, press the Tab key twice—you

will see all available options that nmcli expects at

this moment. Choose an option, such as connection,

and press the Tab key twice. Using this approach

helps you to compose long commands without the

need to memorize anything!

In Exercise 8-3, you learn how to create connections and switch

between connections using the nmcli command.

Exercise 8-3 Managing Network Connections with nmcli

In this exercise you create a new connection and manage its

status. This connection needs to be connected to a network

device. In this exercise the device ens33 is used. If necessary,

change this to the name of the network device in use on your

computer. Run this exercise from a console session, not using an

SSH connection.

1. Create a new network connection by typing nmcli con add

con-name dhcp type ethernet ifname ens33 ipv4.method

auto.

2. Create a connection with the name static to define a static IP

address and gateway: nmcli con add con-name static ifname

ens33 autoconnect no type ethernet ip4 10.0.0.10/24 gw4

10.0.0.1 ipv4.method manual. The gateway might not exist in

your configuration, but that does not matter.

3. Type nmcli con show to show the connections, and use nmcli

con up static to activate the static connection. Switch back to

the DHCP connection using nmcli con up dhcp.

In this exercise, you created network connections using nmcli

con add. You can also change current connection properties by

using nmcli con mod.

In Exercise 8-4, you learn how to change connection parameters

with nmcli.

Exercise 8-4 Changing Connection Parameters with nmcli

1. Make sure that the static connection does not connect

automatically by using nmcli con mod static

connection.autoconnect no.

2. Add a DNS server to the static connection by using nmcli con

mod static ipv4.dns 10.0.0.10. Notice that while adding a

network connection, you use ip4, but while modifying

parameters for an existing connection, you often use ipv4

instead. This is not a typo; it is just how it works.

3. To add a second item for the same parameters, use a + sign.

Test this by adding a second DNS server, using nmcli con mod

static +ipv4.dns 8.8.8.8.

4. Using nmcli con mod, you can also change parameters such

as the existing IP address. Try this by using nmcli con mod

static ipv4.addresses 10.0.0.100/24.

5. And to add a second IP address, you use the + sign again:

nmcli con mod static +ipv4.addresses 10.20.30.40/16.

6. After changing connection properties, you need to activate

them. To do that, you can use nmcli con up static.

This is all you need to know about nmcli for the RHCSA exam. As

you’ve noticed, nmcli is a very rich command. The exact syntax

of this command may be hard to remember. Fortunately, though,

there is an excellent man page with examples. Type man nmcli-

examples to show this man page; you’ll notice that if you can

find this man page, you can do almost anything with nmcli. Also,

don’t forget to use Tab completion while working with nmcli.

Configuring the Network with nmtui

If you do not like the complicated syntax of the nmcli command

line, you might like nmtui. This is a text user interface that

allows you to create network connections easily. Figure 8-2

shows what the nmtui interface looks like.

The nmtui interface consists of three menu options:

Edit a Connection: Use this option to create new connections

or edit existing connections.

Activate a Connection: Use this to (re)activate a connection.

Set System Hostname: Use this to set the hostname of your

computer.

Figure 8-2 The nmtui Interface

The option to edit a connection offers almost all the features that

you might ever need while working on network connections. It

sure allows you to do anything you need to be doing on the

RHCSA exam. You can use it to add any type of connection—not

just Ethernet connections, but also advanced connection types

such as network bridges and teamed network drivers are

supported.

When you select the option Edit a Connection, you get access to a

rich interface that allows you to edit most properties of network

connections. After editing the connection, you need to deactivate

it and activate it again.

Tip

If you like graphical user interface (GUI) tools, you

are lucky. Use nm-connection-editor instead of

nmtui, but be prepared that this interface offers a

relatively restricted option set. It does not contain

advanced options such as the options to create

network team interfaces and manage network

bridge interfaces. It does, however, offer all you

need to manage address configuration on a network

Hivanetwork.com

https://hivanetwork.com/

connection. Start it by using the nm-connection-

editor command or by using the applet in the

GNOME graphical interface. Figure 8-3 shows what

the default interface of this tool looks like.

Figure 8-3 The nm-connection-editor Interface

Working on Network Configuration Files

Every connection that you create is stored as a configuration file

in the directory /etc/NetworkManager/system-connections. The

name of the configuration files starts with the name of the

connection, followed by .nmconnection. In Example 8-7, you can

see what such a configuration file looks like.

In previous versions of RHEL, network connections were stored

in the /etc/sysconfig/network-scripts directory. If

NetworkManager finds legacy connection scripts in this

directory, they will still be used, but NetworkManager

connection scripts are no longer stored by default at this location.

Example 8-7 Example of a NetworkManager Connection File

Click here to view code image

[root@server1 ~]# cat /etc/NetworkManager/system-connections/
 ens160.nmconnection
[connection]
id=ens160
uuid=5e4ddb28-2a00-3c27-9ba6-c773de3d7bcb
type=ethernet
autoconnect-priority=-999
interface-name=ens160
timestamp=1663070258

[ethernet]

[ipv4]
address1=192.168.29.5/24,192.168.29.2
dns=8.8.8.8;8.8.4.4;
method=manual

[ipv6]
addr-gen-mode=eui64
method=auto

Setting Up Hostname and Name Resolution

To communicate with other hosts, hostnames are used. As an

administrator, you must know how to set the hostname. You also

need to make sure that hosts can contact one another based on

hostnames by setting up hostname resolution. In this section, you

learn how to do that.

Hostnames

Because hostnames are used to access servers and the services

they’re offering, it is important to know how to set the system

hostname. A hostname typically consists of different parts. These

are the name of the host and the Domain Name System (DNS)

domain in which the host resides. These two parts together make

up the fully qualified domain name (FQDN), which looks like

server1.example.com. It is good practice to always specify an

FQDN, and not just the hostname, because the FQDN provides a

unique identity on the Internet. There are different ways to

change the hostname:

Use nmtui and select the option Change Hostname.

Use hostnamectl set-hostname.

Edit the contents of the configuration file /etc/hostname.

To configure the hostname with hostnamectl, you can use a

command like hostnamectl set-hostname

myhost.example.com. After setting the hostname, you can use

hostnamectl status to show the current hostname. Example 8-8

shows the output of this command.

Example 8-8 Showing Current Hostname Configuration

Click here to view code image

[root@server1 ~]# hostnamectl status
 Static hostname : server1.example.com
 Icon name : computer-vm
 Chassis : vm
 Machine ID : 5aa095b495ed458d934c54a88078c165

 Boot ID. : 5fdef4be9cab48c59873af505d778761
 Virtualization : vmware
 Operating System : Red Hat Enterprise Linux 9.0 (Ootpa)
 CPE OS Name : cpe:/o:redhat:enterprise_linux:9.0:GA
 Kernel : Linux 4.18.0-80.el9.x86_64
 Architecture : x86-64

When using hostnamectl status, you see not only information

about the hostname but also information about the Linux kernel,

virtualization type, and much more.

Alternatively, you can set the hostname using the nmtui

interface. Figure 8-4 shows the screen from which this can be

done.

Figure 8-4 Changing the Hostname Using nmtui

To set hostname resolution, you typically use DNS. Configuring a

DNS server is not an RHCSA objective, but you need to know how

to configure your server to use an existing DNS server for

hostname resolution. Apart from DNS, you can configure

hostname resolution in the /etc/hosts file. Example 8-9 shows the

contents of an /etc/hosts file as it generated by default after

installation.

Example 8-9 /etc/hosts Sample Contents

Click here to view code image

[root@server1 ~]# cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4
 localhost4. localdomain4
::1 localhost localhost.localdomain localhost6
 localhost6. localdomain6

All hostname–IP address definitions as set in /etc/hosts will be

applied before the hostname in DNS is used. This is configured as

a default in the hosts line in /etc/nsswitch.conf, which by default

looks like this:

hosts: files dns myhostname

Setting up an /etc/hosts file is easy; just make sure that it contains

at least two columns. The first column has the IP address of the

specific host, and the second column specifies the hostname. The

hostname can be provided as a short name (like server1) or as an

FQDN. In an FQDN, the hostname as well as the complete DNS

name are included, as in server1.example.com.

If a host has more than one name, like a short name and a fully

qualified DNS name, you can specify both of them in /etc/hosts. In

that case, the second column must contain the FQDN, and the

third column can contain the alias. Example 8-10 shows a

hostname configuration example.

Example 8-10 /etc/hosts Configuration Example

Click here to view code image

[root@server2 ~]# cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4
 localhost4. localdomain4
::1 localhost localhost.localdomain localhost6
 localhost6. localdomain6
10.0.0.10 server1.example.com server1
10.0.0.20 server2.example.com server2

DNS Name Resolution

Just using an /etc/hosts file is not enough for name resolution if

you want to be able to communicate with other hosts on the

Internet. You should use DNS, too. To specify which DNS server

should be used, set the DNS server using nmcli or nmtui as

previously discussed. The NetworkManager configuration stores

the DNS information in the configuration file for the network

connection, which is in /etc/sysconfig/network-scripts, and from

there pushes the configuration to the /etc/resolv.conf file, which

is used for DNS name server resolving. Do not edit

/etc/resolv.conf directly, as it will be overwritten the next time

you restart NetworkManager.

It is recommended to always set up at least two DNS name

servers to be contacted. If the first name server does not answer,

the second name server is contacted. To specify which DNS name

servers you want to use, you have a few different options:

Use nmtui to set the DNS name servers. Figure 8-5 shows the

interface from which you can do this.

Use a DHCP server that is configured to hand out the address

of the DNS name server.

Use nmcli con mod <connection-id> [+]ipv4.dns <ip-of-dns>.

Hivanetwork.com

https://hivanetwork.com/

Figure 8-5 Setting DNS Servers from the nmtui Interface

Notice that if your computer is configured to get the network

configuration from a DHCP server, the DNS server is also set via

the DHCP server. If you do not want this to happen, use the

following command: nmcli con mod <con-name> ipv4.ignore-

auto-dns yes.

To verify hostname resolution, you can use the getent hosts

<servername> command. This command searches in both

/etc/hosts and DNS to resolve the hostname that has been

specified.

Exam Tip

Do not specify the DNS servers directly in

/etc/resolv.conf. They will be overwritten by

NetworkManager when it is (re)started.

Summary

In this chapter, you learned how to configure networking in

RHEL 9. First you read how the IP protocol is used to connect

computers, and then you read which techniques are used to

make services between hosts accessible. Next you read how to

verify the network configuration using the ip utility and some

related utilities. In the last part of this chapter, you read how to

set IP addresses and other host configurations in a permanent

way by using either the nmcli or the nmtui utility.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 8-3 lists a

reference for these key topics and the page number on which

each is found.

Table 8-3 Key Topics for Chapter 8

Key Topic

Element
Description Page

List IPv4 and IPv6 short descriptions 170

List Private network addresses 170

Table 8-2 Binary-Decimal Conversion

Overview

172

List IP address types 174

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

Internet Protocol (IP)

IPv4

IPv6

subnet mask

port

protocol

interface

Dynamic Host Configuration Protocol (DHCP)

connection

Domain Name System (DNS)

fully qualified domain name (FQDN)

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 What is the network address in the address 213.214.215.99/29?

 Which command only shows link status and not the IP address?

 You have manually edited the /etc/resolv.conf file to include DNS

servers. After a restart your modifications have disappeared.

What is happening?

 Which file contains the hostname in RHEL 9?

 Which command enables you to set the hostname in an easy

way?

 Where does NetworkManager store the configuration that it

generates?

 Which configuration file can you change to enable hostname

resolution for a specific IP address?

 Is a non-administrator user allowed to change NetworkManager

connections?

 How do you verify the current status of the NetworkManager

service?

 Which command enables you to change the current IP address

and default gateway on your network connection?

End-of-Chapter Lab

For exercises in later chapters in this book, it is recommended to

have a test environment in which at least two servers are

present. To do the exercises in this lab, make sure that you have

a second server installed.

Lab 8.1

1. If you didn’t do so earlier, set up the first server to use the

FQDN server1.example.com. Set up the second server to use

server2.example.com.

2. On server1.example.com, use nmtui and configure your

primary network card to automatically get an IP address

through DHCP. Also set a fixed IP address to 192.168.4.210. On

server2, set the fixed IP address to 192.168.4.220.

3. Make sure that from server1 you can ping server2, and vice

versa.

4. To allow you to access servers on the Internet, make sure that

your local DHCP server provides the default router and DNS

servers.

Part II

Operating Running Systems

Hivanetwork.com

https://hivanetwork.com/

Chapter 9

Managing Software

The following topics are covered in this chapter:

Managing Software Packages with dnf

Using dnf

Managing Package Modules

Managing Software Packages with rpm

The following RHCSA exam objective is covered in this chapter:

Install and update software packages from Red Hat Network, a

remote repository, or from the local file system

Managing software packages is an important task for an

administrator of Red Hat Enterprise Linux. In this chapter, you

learn how to manage software packages from the command line

by using the dnf utility. You also learn which role repositories

play in software management with dnf. Next, we cover working

with Package Modules, a solution that makes it possible to work

with the specific version packages that you need in your

environment. In the last part of this chapter, you learn how to

manage software with the rpm command, which is useful to

query new and installed software packages.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table 9-

1 lists the major headings in this chapter and their corresponding

“Do I Know This Already?” quiz questions. You can find the

answers in Appendix A, “Answers to the ‘Do I Know This

Already?’ Quizzes and Review Questions.”

Table 9-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Managing Software Packages with dnf 1–4

Using dnf 5

Managing Package Modules 6–7

Managing Software Packages with rpm 8–10

 Which of the following is not a mandatory component in a .repo

file that is used to indicate which repositories should be used?

1. [label]

2. name=

3. baseurl=

4. gpgcheck=

 Which installation source is used on RHEL if a server is not

registered with Red Hat?

1. The installation medium is used.

2. No installation source is used.

3. The base Red Hat repository is used, without updates.

4. You have full access to Red Hat repositories, but the software

you are using is not supported.

 Which of the following should be used in the .repo file to refer to

a repository that is in the directory /repo on the local file system?

1. file=/repo

2. baseurl=file://repo

3. baseurl=file:///repo

4. file=http:///repo

 Which of the following is true about GPG-based repository

security?

1. If packages in the repository have been signed, you need to

import the GPG key while installing packages from the

repository for the first time.

2. GPG package signing is mandatory.

3. GPG package signatures prevent packages in a repository from

being changed.

4. GPG package signing is recommended on Internet repositories

but not required on local repositories that are for internal use

only.

 Which command enables you to search the package that contains

the file semanage?

1. dnf search seinfo

2. dnf search all seinfo

3. dnf provides seinfo

4. dnf whatprovides */seinfo

 Which dnf module component allows you to work with different

versions side by side?

1. Application profile

2. Application stream

3. Module version

4. RPM group

 Which of the following commands allows you to install the devel

profile of the PHP 8.1 application stream?

1. dnf module install php:8.1 devel

2. dnf module install php:8.1 --devel

3. dnf module install php:8.1/devel

4. dnf module install php:8.1@devel

 Which command should you use to install an RPM file that has

been downloaded to your computer?

1. dnf install

2. dnf localinstall

3. rpm -ivh

4. rpm -Uvh

 Which command enables you to find the RPM package a specific

file belongs to?

1. rpm -ql /my/file

2. rpm -qlf /my/file

3. rpm -qf /my/file

4. rom -qa /my/file

 Which command enables you to analyze whether there are

scripts in an RPM package file that you have just downloaded?

1. rpm -qs packagename.rpm

2. rpm -qps packagename.rpm

3. rpm -qp --scripts packagename.rpm

4. rpm -q --scripts packagename.rpm

Foundation Topics

Managing Software Packages with dnf

The default utility used to manage software packages on Red Hat

Enterprise Linux is dnf. dnf is designed to work with

repositories, which are online depots of available software

packages. In this section, you learn how to create and manage

repositories and how to manage software packages based on the

contents of the repositories.

Understanding the Role of Repositories

Software on Red Hat Enterprise Linux is provided in the Red Hat

Package Manager (RPM) format. This is a specific format used

to archive the package and provide package metadata as well.

When you are working with software in RHEL, repositories play

a key role. Working with repositories makes it easy to keep your

server current: The maintainer of the repository publishes

updated packages in the repository, and the result is that

whenever you use the dnf command to install software, the most

recent version of the software is automatically used.

Another major benefit of working with dnf is the way that

package dependencies are dealt with. On Linux (as on most other

modern operating systems), software packages have

dependencies. This means that to be able to use one package,

other packages may have to be present as well. Without using

repositories, that would mean that these packages have to be

installed manually.

The repository system takes care of resolving dependencies

automatically. If a package is going to be installed, it contains

information about the required dependencies. The dnf command

then looks in the repositories configured on this system to fetch

the dependencies automatically. If all goes well, the installer just

sees a short list of the dependencies that will be installed as a

dependency to install the package. If you are using RHEL with

the repositories that are provided for registered installations of

RHEL, there is no reason why this procedure should not work,

and the attempts to install software will usually succeed.

While installing RHEL 9, it asks you to register with the Red Hat

Customer Portal, which provides different repositories. After

registering, you can install software packages that are verified by

Red Hat automatically. If you choose to install RHEL without

registration, it cannot get in touch with the Red Hat repositories,

and you end up with no repositories at all. In that case, you have

to be able to configure a repository client to specify yourself

which repository you want to use.

Note that repositories are specific to an operating system.

Therefore, if you are using RHEL, you should use RHEL

repositories only. Do not try, for instance, to add CentOS

repositories to a RHEL server. If you want to provide additional

software from the Fedora project to a RHEL server (which for

support reasons is not recommended), you can consider adding

the EPEL (Extra Packages for Enterprise Linux) repositories. See

https://fedoraproject.org/wiki/EPEL for more information,

including information on how to configure your system to use

EPEL repositories.

Warning

Before adding the EPEL repository to RHEL, make

sure that it doesn’t break your current support

status. EPEL packages are not managed by Red Hat,

Hivanetwork.com

https://fedoraproject.org/wiki/EPEL
https://hivanetwork.com/

and adding them may break supported Red Hat

packages.

Registering Red Hat Enterprise Linux for Support

Red Hat Enterprise Linux is a supported Linux operating system

that requires you to register. To register RHEL, you need a valid

entitlement. This entitlement is associated to your account on the

Red Hat Customer Portal. You can obtain an entitlement by

purchasing a subscription for RHEL or by joining the Red Hat

Developer program, which gives access to the no-cost Red Hat

Enterprise Developer subscription. With a developer

subscription you are allowed to install a maximum of 16 RHEL

systems. You won’t get any support on these systems, but you will

be able to access the Red Hat repositories and receive updates.

You can sign up for the Red Hat Developer subscription at

https://developers.redhat.com.

After obtaining a valid subscription for Red Hat Enterprise

Linux, you can use the Red Hat Subscription Management

(RHSM) tools to manage your entitlement. Managing an

entitlement involves four basic tasks:

Register: While registering a subscription, you connect it to

your current Red Hat account. As a result, the subscription-

https://developers.redhat.com

manager tool can inventory the system. If a system is no

longer used, it can also be unregistered.

Subscribe: Subscribing a system gives it access to updates for

Red Hat products that your subscription is entitled to. Also, by

subscribing, you’ll get access to the support level that is

associated with your account.

Enable repositories: After subscribing a system, you’ll get

access to a default set of repositories. Some repositories by

default are disabled but can be enabled after subscribing your

system.

Review and track: You can review and track current

subscriptions that are in use.

Managing Subscriptions

You can manage subscriptions either from the GNOME graphical

interface or from the command line. The subscription-manager

tool is used for managing subscriptions from the command line.

You can use it in the following ways:

Register a system: Type subscription-manager register to

register. It will prompt for the name of your Red Hat user

account as well as your password, and after you enter these,

your RHEL server will be registered.

List available subscriptions: Each account has access to

specific subscriptions. Type subscription-manager list --

available to see what your account is entitled to.

Automatically attach a subscription: Registering a server is

not enough to get access to the repositories. Use subscription-

manager attach --auto to automatically attach your

subscription to the repositories that are available.

Get an overview: To see which subscriptions you’re currently

using, type subscription-manager list --consumed.

Unregister: If you’re going to deprovision a system, use

subscription-manager unregister. If you have access to a

limited number of registered systems only, unregistering is

important to ensure that you don’t run out of available

licenses.

After you register and attach a subscription, entitlement

certificates are written to the /etc/pki directory. In

/etc/pki/product, stored certificates indicate which Red Hat

products are installed on this system. In /etc/pki/consumer,

stored certificates identify the Red Hat account to which the

system is registered, and the /etc/pki/entitlement directory

contains information about the subscriptions that are attached to

this system.

Specifying Which Repository to Use

On most occasions, after the installation of your server has

finished, it is configured with a list of repositories that should be

used. You sometimes have to tell your server which repositories

should be; for example, if:

You want to distribute nondefault software packages through

repositories.

You are installing Red Hat Enterprise Linux without

registering it.

Telling your server which repository to use is not difficult, but it

is important that you know how to do it (for the RHCSA exam,

too).

Important!

To learn how to work with repositories and software

packages, do not use the repositories that are

provided by default. So if you have installed RHEL,

do not register using subscription-manager, and if

you have installed CentOS, remove all files from

/etc/yum.repos.d. If you overlooked this requirement

while installing earlier, you can use subscription-

manager unregister to remove all registration.

To tell your server which repository to use, you need to create a

file with a name that ends in .repo in the directory

/etc/yum.repos.d. The following parameters are commonly used:

[label] The .repo file can contain different repositories, each

section starting with a label that identifies the specific

repository.

name= Use this to specify the name of the repository you want

to use.

baseurl= This option contains the URL that points to the

specific repository location.

gpgcheck= Use this option to specify if a GNU Privacy Guard

(GPG) key validity check should be used to verify that packages

have not been tampered with.

In older versions of RHEL you needed to memorize how to create

a repository client file. In RHEL 9, the dnf config-manager tool is

available, even in a minimal installation, to create the repository

client file for you. To easily generate the repository client file, use

dnf config-manager --add-

repo=http://reposerver.example.com/BaseOS. Just make sure

to replace the URL in this example with the correct URI that

points to the location of the repository that you want to use. If for

instance you have copied the contents of the RHEL 9 installation

disk to the /repo directory, you would be using a file:// URI. In

that case, the following command would add the BaseOS

repository: dnf config-manager --add-repo=file:///repo/BaseOS.

If you’re using the dnf config-manager tool to add repositories,

you need to edit the repository file in /etc/yum.conf.d after

adding it, so that it includes the line gpgcheck=0. Without that

option the dnf tool wants to do a GPG check on incoming

packages, which requires additional complex configuration that

is not needed on the RHCSA exam. In Example 9-1 you can see

what the resulting repository file would look like. In Exercise 9-1

you will find all the instructions that are needed to set up your

own repository and configure access to it.

Example 9-1 Repository File Example

Click here to view code image

[root@server1 ~]# cat /etc/yum.repos.d/repo_BaseOS.repo
[repo_BaseOS]
name=created by dnf config-manager from file:///repo/BaseOS
baseurl=file:///repo/BaseOS
enabled=1
gpgcheck=0

In the repository configuration files, several options can be used.

Table 9-2 summarizes some of the most common options.

Table 9-2 Key Options in .repo Files

Option Explanation

[label] Contains the label used as an identifier in the repository file.

name= Mandatory option that specifies the name of the repository.

mirrorlist= Optional parameter that refers to a URL where information about
mirror servers for this server can be obtained. Typically used for
big online repositories only.

baseurl= Mandatory option that refers to the base URL where the RPM
packages are found.

gpgcheck= Set to 1 if a GNU Privacy Guard (GPG) integrity check needs to be
performed on the packages. If set to 1, a GPG key is required.

gpgkey= Specifies the location of the GPG key that is used to check package
integrity.

When you’re creating a repository file, the baseurl parameter is

the most important because it tells your server where to find the

files that are to be installed. The baseurl takes as its argument the

URL where files need to be installed from. This will often be an

HTTP or FTP URL, but it can be a file-based URL as well.

When you use a URL, two components are included. First, the

URL identifies the protocol to be used and is in the format

protocol://, such as http://, ftp://, or file://. Following the URL is the

exact location on that URL. That can be the name of a web server

or an FTP server, including the subdirectory where the files are

found. If the URL is file based, the location on the file system

starts with a / as well.

Therefore, for a file system-based URL, there will be three slashes

in the baseurl, such as baseurl:///repo, which refers to the

directory /repo on the local file system.

Understanding Repository Security

Using repositories allows you to transparently install software

packages from the Internet. This capability is convenient, but it

also involves a security risk. When installing RPM packages, you

do that with root permissions, and if in the RPM package script

code is executed (which is common), it is executed as root as well.

For that reason, you need to make sure that you can trust the

Hivanetwork.com

https://hivanetwork.com/

software packages you are trying to install. This is why

repositories in general use keys for package signing. This is also

why on Red Hat Enterprise Linux it is a good idea to use trusted

repositories only.

To secure packages in a repository, these packages are often

signed with a GPG key. This makes it possible to check whether

packages have been changed since the owner of the repository

provided them. The GPG key used to sign the software packages

is typically made available through the repository as well. The

users of the repository can download that key and store it locally

so that the package signature check can be performed

automatically each time a package is downloaded from the

repository.

If repository security is compromised and an intruder manages

to hack the repository server and put some fake packages on it,

the GPG key signature will not match, and the dnf command will

complain while installing new packages. This is why it is highly

recommended to use GPG keys when using Internet repositories.

If you are using a repository where GPG package signing has

been used, on first contact with that repository, the dnf

command will propose to download the key that was used for

package signing (see Example 9-2). This is a transparent

procedure that requires no further action. The GPG keys that

were used for package signing are installed to the /etc/pki/rpm-

gpg directory by default.

Tip

For using internal repositories, the security risks are

not that high. For that reason, you do not have to

know how to work with GPG-signed packages on the

RHCSA exam.

Example 9-2 On First Contact with a Repository, the GPG Key Is

Downloaded

Click here to view code image

[
[root@localhost ~]# dnf install nmap
Updating Subscription Management repositories.
Red Hat Enterprise Linux 9 for x86_64 - AppStream (RPMs)
10 MB/s | 9.3 MB 00:00
Red Hat Enterprise Linux 9 for x86_64 - BaseOS (RPMs)
4.0 MB/s | 3.6 MB 00:00
Dependencies resolved.
 Package Architecture Version
Repository Size

Installing:
 nmap x86_64 3:7.91-10.el9
 rhel-9-for-x86_64-appstream-rpms 5.6 M

Transaction Summary

Install 1 Package
Total download size: 5.6 M
Installed size: 24 M
Is this ok [y/N]: y
Downloading Packages:
nmap-7.91-10.el9.x86_64.rpm
9.8 MB/s | 5.6 MB 00:00
Total
9.8 MB/s | 5.6 MB 00:00

Red Hat Enterprise Linux 9 for x86_64 - AppStream (RPMs)
3.5 MB/s | 3.6 kB 00:00
Importing GPG key 0xFD431D51:
 Userid : "Red Hat, Inc. (release key 2) <security@redhat.com>"
 Fingerprint: 567E 347A D004 4ADE 55BA 8A5F 199E 2F91 FD43 1D51
 From : /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
Is this ok [y/N]:

Creating Your Own Repository

Creating your own repository is not a requirement for the RHCSA

exam, but knowing how to do so is useful if you want to test

setting up and working with repositories. Also, if you’re using a

RHEL system that is not connected to the Red Hat repositories,

it’s the only way you can install packages.

The procedure itself is not hard to summarize. You need to make

sure all RPM packages are available in the directory that you

want to use as a repository, and after doing that, you need to use

the createrepo command to generate the metadata that enables

you to use that directory as a repository. If you’re using the RHEL

9 installation disk, the procedure is even easier, as you don’t

have to generate the repository metadata. Exercise 9-1 describes

how to create your own repository using the RHEL 9 installation

disk.

Exercise 9-1 Creating Your Own Repository

To perform this exercise, you need to have access to the RHEL or

CentOS installation disk or ISO file.

1. Insert the installation disk in your virtual machine and make

sure it is attached and available.

2. Open a root shell and type mkdir /repo so that you have a

mount point where you can mount the ISO file.

3. Add the following line to the end of the /etc/fstab

configuration file: /dev/sr0 /repo iso9660 defaults 0 0

4. Type mount -a, followed by mount | grep sr0. You should

now see that the optical device is mounted on the directory

/repo. At this point, the directory /repo can be used as a

repository.

5. Now, two subdirectories are available through the /repo

directory. The BaseOS repository provides access to the base

packages, and the Application Stream (AppStream)

repository provides access to application streams (these

repositories are described in more detail in the “Managing

Package Module Streams” section later in this chapter). To

make them accessible, you need to add two files to the

/etc/yum.repos.d directory. Start with the file BaseOS.repo.

You can generate this file using dnf config-manager --add-

repo=file:///repo/BaseOS

6. Add the file /etc/yum.repos.d/AppStream.repo using the

following command: dnf config-manager --add-

repo=file:///repo/AppStream

7. Type ls /etc/yum.repos.d/. This will show you two new files:

repo_BaseOS.repo and repo_AppStream.repo. Add the

following line to the end of both files: gpgcheck=0

8. Type dnf repolist to verify the availability of the newly

created repository. It should show the name of both

repositories, including the number of packages offered

through this repository (see Example 9-3). Notice that if you’re

doing this on RHEL, you’ll also see a message that this system

is not registered with an entitlement server. You can safely

ignore that message.

Example 9-3 Verifying Repository Availability with dnf repolist

Click here to view code image

[root@server1 ~]# dnf repolist
Updating Subscription Management repositories.
Unable to read consumer identity
This system is not registered with an entitlement server. You can use
 subscription-manager to register.
repo id repo name
repo_AppStream created by dnf
 config-manager from file:///repo/AppStream
repo_BaseOS created by dnf
 config-manager from file:///repo/BaseOS

Using dnf

At this point, you should have operational repositories, so it is

time to start using them. To use repositories, you need the dnf

command. This command enables you to perform several tasks

on the repositories. Table 9-3 provides an overview of common

dnf tasks.

Table 9-3 Common dnf Tasks

Task Explanation

search Search packages for a string that occurs in the package name
or summary.

search all Search packages for a string that occurs in the package name,
summary, or description.

[what]provides
*/name

Perform a deep search in the package to look for specific files
within the package.

info Provide more information about the package.

install Install the package.

remove Remove the package.

list [all |
installed]

List all or installed packages.

group list List package groups.

group install Install all packages from a group.

update Update packages specified.

clean all Remove all stored metadata.

Using dnf to Find Software Packages

To install packages with dnf, you first need to know the name of

the package. The dnf search command can help you with that.

When you use dnf search, it first gets in touch with the online

repositories (which might take a minute), after which it

downloads the most recent repository metadata to the local

Hivanetwork.com

https://hivanetwork.com/

machine. Then, dnf search looks in the package name and

description for the string you have been looking for. If this

doesn’t give the expected result, try using dnf search all, which

performs a deeper search in the package description as well. In

Example 9-4, you can see what the result looks like after using

dnf search user.

Example 9-4 dnf search Sample Output

Click here to view code image

[root@server1 ~]# dnf search user
Updating Subscription Management repositories.
Unable to read consumer identity

This system is not registered with an entitlement server. You can use
 subscription-manager to register.

Last metadata expiration check: 0:01:45 ago on Wed 14 Sep 2022
 10:52:12 AM CEST.
=== Name & Summary
 Matched: user ===
gnome-user-docs.noarch : GNOME User Documentation
libuser.x86_64 : A user and group account administration library
libuser.i686 : A user and group account administration library
perl-User-pwent.noarch : By-name interface to Perl built-in user name
 resolver

usermode.x86_64 : Tools for certain user account management tasks
usermode-gtk.x86_64 : Graphical tools for certain user account
 management tasks
userspace-rcu.x86_64 : RCU (read-copy-update) implementation in
 user-space
userspace-rcu.i686 : RCU (read-copy-update) implementation in
 user-space
util-linux-user.x86_64 : libuser based util-linux utilities
xdg-user-dirs.x86_64 : Handles user special directories
== Name
 Matched: user ===
anaconda-user-help.noarch : Content for the Anaconda built-in help
 system
gnome-shell-extension-user-theme.noarch : Support for custom themes in
 GNOME Shell
xdg-user-dirs-gtk.x86_64 : Gnome integration of special directories
== Summary
 Matched: user ===
NetworkManager.x86_64 : Network connection manager and user
 applications
PackageKit-command-not-found.x86_64 : Ask the user to install command
 line programs automatically
accountsservice.x86_64 : D-Bus interfaces for querying and
 manipulating user account information
anaconda-gui.x86_64 : Graphical user interface for the Anaconda
 installer...

Because the dnf search command looks in the package name

and summary only, it often does not show what you need. In

some cases you might need to find a package that contains a

specific file. To do this, the dnf whatprovides command or dnf

provides command will help you. (There is no functional

difference between these two commands, and there’s even a

third option that does exactly the same: dnf wp.) To make it clear

that you are looking for packages containing a specific file, you

need to specify the filename as */filename, or use the full

pathname to the file you want to use. So if you need to look for

the package containing the file Containerfile, for example, use

dnf whatprovides */Containerfile. It will show the name of the

package as a result.

Getting More Information About Packages

Before you install a package, it is a good idea to get some more

information about the package. Because the dnf command was

developed to be intuitive, it is almost possible to guess how that

works. Just use dnf info, followed by the name of the package. In

Example 9-5, you see what this looks like for the nmap package

(which, by the way, is a very useful tool). It is a network sniffer

that allows you to find ports that are open on other hosts. Just

use nmap 192.168.4.100 to give it a try, but be aware that some

network administrators really do not like nmap and might

consider this a hostile attack.

Example 9-5 Sample Output of dnf info nmap

Click here to view code image

[root@server1 ~]# dnf info nmap
Updating Subscription Management repositories.
Unable to read consumer identity
This system is not registered with an entitlement server. You can use subscription-manager to register.
Last metadata expiration check: 0:04:47 ago on Wed 14 Sep 2022 10:52:12 AM CEST.
Available Packages
Name : nmap
Epoch : 3
Version : 7.91
Release : 10.el9
Architecture : x86_64
Size : 5.6 M
Source : nmap-7.91-10.el9.src.rpm
Repository : repo_AppStream
Summary : Network exploration tool and security scanner
URL : http://nmap.org/
License : Nmap
Description : Nmap is a utility for network exploration or security
 auditing. It supports
 : ping scanning (determine which hosts are up), many
 port scanning techniques
 : (determine what services the hosts are offering), and

 TCP/IP fingerprinting
 : (remote host operating system identification). Nmap
 also offers flexible target
 : and port specification, decoy scanning, determination
 of TCP sequence
 : predictability characteristics, reverse-identd
 scanning, and more. In addition
 : to the classic command-line nmap executable, the Nmap
 suite includes a flexible
 : data transfer, redirection, and debugging tool (netcat
 utility ncat), a utility
 : for comparing scan results (ndiff), and a packet
 generation and response
 : analysis tool (nping).

Installing and Removing Software Packages

If after looking at the dnf info output you are happy with the

package, the next step is to install it. As with anything else you

are doing with dnf, it is not hard to guess how to do that: use dnf

install nmap. When used in this way, the dnf command asks for

confirmation. If when you type the dnf install command you are

sure about what you are doing, you might as well use the -y

option, which passes a “yes” to the confirmation prompt that dnf

normally issues. Example 9-6 shows what the result looks like.

Example 9-6 Installing Software with dnf

Click here to view code image

[root@server1 ~]# dnf install nmap
Updating Subscription Management repositories.
Unable to read consumer identity

This system is not registered with an entitlement server. You can use
 subscription-manager to register.

Last metadata expiration check: 0:05:58 ago on Wed 14 Sep 2022
 10:52:12 AM CEST.

Dependencies resolved.
===
===
 Package Architecture Version
Repository Size
===
===
Installing:
 nmap x86_64 3:7.91-10.el9
repo_AppStream 5.6 M
Transaction Summary
===
===
Install 1 Package

Total size: 5.6 M
Installed size: 24 M
Is this ok [y/N]: y
Downloading Packages:
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
Running transaction
 Preparing :
1/1
 Installing : nmap-3:7.91-10.el9.x86_64
1/1
 Running scriptlet: nmap-3:7.91-10.el9.x86_64
1/1
 Verifying : nmap-3:7.91-10.el9.x86_64
1/1
Installed products updated.

Installed:
 nmap-3:7.91-10.el9.x86_64

Complete!

In Example 9-6, you can see that dnf starts by analyzing what is

going to be installed. Once that is clear, it gives an overview of

the package that is going to be installed, including its

dependencies. Then, the package itself is installed to the system.

To remove software packages from a machine, use the dnf

remove command. This command also does a dependency

analysis, which means that it will remove not only the selected

package but also all packages that depend on it. This may

sometimes lead to a long list of software packages that are going

to be removed. To avoid unpleasant surprises, you should never

use dnf remove with the -y option.

Note

Some packages are protected. Therefore, you cannot

easily remove them. If dnf remove encounters

protected packages, it refuses to remove them.

Showing Lists of Packages

When working with dnf, you may also use the dnf list command

to show lists of packages. Used without arguments, dnf list shows

a list of all software packages that are available, including the

repository they were installed from—assuming that the package

has been installed. If a repository name is shown, the package is

available in that specific repository. If @anaconda is listed, the

Hivanetwork.com

https://hivanetwork.com/

package has already been installed on this system. Example 9-7

shows the partial output of the dnf list command.

Example 9-7 Partial Output of the dnf list Command

Click here to view code image

[root@server3 ~]# dnf list | less
Updating Subscription Management repositories.
Unable to read consumer identity

This system is not registered with an entitlement server. You can use
subscription-manager to register.

Last metadata expiration check: 0:12:17 ago on Wed 14 Sep 2022
10:52:12 AM CEST.
Installed Packages
ModemManager.x86_64 1.18.2-3.el9 @anaconda
ModemManager-glib.x86_64 1.18.2-3.el9 @anaconda
NetworkManager.x86_64 1:1.36.0-4.el9_0 @anaconda
NetworkManager-adsl.x86_64 1:1.36.0-4.el9_0 @anaconda
NetworkManager-bluetooth.x86_64 1:1.36.0-4.el9_0 @anaconda
NetworkManager-config-server.noarch 1:1.36.0-4.el9_0 @anaconda
NetworkManager-libnm.x86_64 1:1.36.0-4.el9_0 @anaconda
NetworkManager-team.x86_64 1:1.36.0-4.el9_0 @anaconda
NetworkManager-tui.x86_64 1:1.36.0-4.el9_0 @anaconda
NetworkManager-wifi.x86_64 1:1.36.0-4.el9_0 @anaconda
NetworkManager-wwan.x86_64 1:1.36.0-4.el9_0 @anaconda

PackageKit.x86_64 1.2.4-2.el9 @AppStream
PackageKit-command-not-found.x86_64 1.2.4-2.el9 @AppStream
PackageKit-glib.x86_64 1.2.4-2.el9 @AppStream
PackageKit-gstreamer-plugin.x86_64 1.2.4-2.el9 @AppStream
PackageKit-gtk3-module.x86_64 1.2.4-2.el9 @AppStream
abattis-cantarell-fonts.noarch 0.301-4.el9 @AppStream
accountsservice.x86_64 0.6.55-10.el9 @AppStream
accountsservice-libs.x86_64 0.6.55-10.el9 @AppStream
...

If you only want to see which packages are installed on your

server, you can use the dnf list installed command. The dnf list

command can also prove useful when used with the name of a

specific package as its argument. For instance, type dnf list

kernel to show which version of the kernel is actually installed

and which version is available as the most recent version in the

repositories, which is particularly useful if your system is using

online repositories and you want to check if a newer version of

the package is available. Example 9-8 shows the result of this

command, taken from a registered RHEL 9 system.

Example 9-8 Use dnf list packagename for Information About

Installed and Available Versions

Click here to view code image

[root@localhost ~]# dnf list kernel
Updating Subscription Management repositories.
Last metadata expiration check: 0:04:09 ago on Wed 14 Sep 2022
11:02:40 AM CEST.
Installed Packages
kernel.x86_64
5.14.0-70.13.1.el9_0
@anaconda
Available Packages
kernel.x86_64
5.14.0-70.22.1.el9_0
rhel-9-for-x86_64-baseos-rpms

Updating Packages

One of the major benefits of working with dnf repositories is that

repositories make it easy to update packages. The repository

maintainer is responsible for copying updated packages to the

repositories. The index in the repository always contains the

current version of a package in the repository. On the local

machine also, a database is available with the current versions of

the packages that are used. When you use the dnf update

command, current versions of packages that are installed are

compared to the version of these packages in the repositories. As

shown in Example 9-9, dnf next shows an overview of updatable

packages. From this overview, type y to install the updates.

Notice that while updating packages the old version of the

package is replaced with a newer version of the package. There is

one exception, which is for the kernel package. Even if you are

using the dnf update kernel command, the kernel package is not

updated, but the newer kernel is installed in addition to the old

kernel, so that while booting you can select the kernel that you

want to use. This is useful if the new kernel won’t work because

of hardware compatibility issues. In that case, you can interrupt

the GRUB 2 boot process (see Chapter 17, “Managing and

Understanding the Boot Procedure,” for more details) to start the

older kernel.

Example 9-9 Using dnf update

Click here to view code image

[root@localhost ~]# dnf update kernel
Updating Subscription Management repositories.
Last metadata expiration check: 0:06:25 ago on Wed 14 Sep 2022
11:02:40 AM CEST.

Dependencies resolved.
 Package Architecture Version

Repository Size

Installing:
 kernel x86_64
5.14.0-70.22.1.el9_0 rhel-9-for-x86_64-baseos-rpms
595 k
Installing dependencies:
 kernel-core x86_64
5.14.0-70.22.1.el9_0 rhel-9-for-x86_64-baseos-rpms
34 M
 kernel-modules x86_64
5.14.0-70.22.1.el9_0 rhel-9-for-x86_64-baseos-rpms
21 M
Transaction Summary

Install 3 Packages

Total download size: 56 M
Installed size: 93 M
Is this ok [y/N]:

Working with dnf Package Groups

While managing specific services on a Linux machine, you often

need several different packages. If, for instance, you want to

make your machine a virtualization host, you need the KVM

packages, but also all supporting packages such as qemu, libvirt,

and the client packages. Or while configuring your server as a

web server, you need to install additional packages like PHP as

well in many cases.

To make it easier to manage specific functionality, instead of

specific packages, you can work with package groups as well. A

package group is defined in the repository, and dnf offers the

group management commands to work with these groups. For an

overview of all current groups, use dnf group list. This shows

output as in Example 9-10.

Tip

The name of the command is dnf group, but there

are aliases that ensure that dnf groups and even

commands like dnf groupinstall are also working.

So, you can use any of these commands.

Example 9-10 Showing Available dnf Groups

Click here to view code image

[root@localhost ~]# dnf group list
Updating Subscription Management repositories.
Last metadata expiration check: 0:11:10 ago on Wed 14 Sep 2022
11:02:40 AM CEST.
Available Environment Groups:
 Server
 Minimal Install
 Workstation
 Virtualization Host
 Custom Operating System
Installed Environment Groups:
 Server with GUI
Installed Groups:
 Container Management
 Headless Management
Available Groups:
 .NET Development
 Console Internet Tools
 RPM Development Tools
 Scientific Support
 Legacy UNIX Compatibility
 Network Servers
 Graphical Administration Tools
 Development Tools
 Security Tools
 Smart Card Support
 System Tools

Notice that some dnf groups are not listed by default. To show

those as well, type dnf group list hidden. You see that the list of

groups that is displayed is considerably longer. The difference is

that dnf group list shows environment groups, which contain

basic functionality. Within an environment group, different

subgroups can be used; these are displayed only when using dnf

group list hidden.

To get information about packages available in a group, you use

dnf group info. Because group names normally contain spaces,

do not forget to put the entire group name between quotes. So,

type dnf group info "Container Management" to see what is in

the Container Management group. As you can see in Example 9-

11, this command shows mandatory items and optional items in

the group. The items can be groups and individual packages.

Example 9-11 Showing Group Contents with dnf group info

Click here to view code image

[root@localhost ~]# dnf group info "Container Management"
Updating Subscription Management repositories.
Last metadata expiration check: 0:12:49 ago on Wed 14 Sep 2022 11:02:40 AM CEST.
Group: Container Management
 Description: Tools for managing Linux containers
 Mandatory Packages:

Hivanetwork.com

https://hivanetwork.com/

 buildah
 containernetworking-plugins
 podman
 Optional Packages:
 python3-psutil
 toolbox

Using dnf History

While you’re working with dnf, all actions are registered. You

can use the dnf history command to get an overview of all

actions that have been issued. From the history file, it is possible

to undo specific actions; use dnf history undo followed by the

number of the specific action you want to undo.

In Example 9-12, you see the result of the dnf history command,

where every action has its own ID.

Example 9-12 Showing Past dnf Actions Using dnf history

Click here to view code image

[root@localhost ~]# dnf history
Updating Subscription Management repositories.
ID | Command line
| Date and time | Action(s) | Altered

 2 | install nmap
| 2022-09-14 10:45 | Install | 1 <
 1 |

As you can see, action number 2 altered one package and was

used to install packages. To undo this action completely, type dnf

history undo 2. In Exercise 9-2, you apply some of the most

useful dnf commands for common package management tasks,

as discussed previously.

Exercise 9-2 Using dnf for Package Management

1. Type dnf repolist to show a list of the current repositories

that your system is using.

2. Type dnf search seinfo. This will give no matching result.

3. Type dnf provides seinfo. The command shows that the

setools-console-<version> package contains this file.

4. Install this package using dnf install -y setools-console.

Depending on your current configuration, you might notice

that quite a few dependencies have to be installed also.

5. Type dnf list setools-console. You see that the package is

listed as installed.

6. Type dnf history and note the number of the last dnf

command you used.

7. Type dnf history undo <nn> (where <nn> is replaced with the

number that you found in step 6). This undoes the last action,

so it removes the package you just installed.

8. Repeat the dnf list setools-console command. The package is

now listed as available but not as installed.

Managing Package Modules

Up to Red Hat Enterprise Linux 7, all packages were offered in

one repository. This made package version management

challenging, as Red Hat has always maintained the philosophy

that major versions of packages should not be changed during a

distribution lifetime. The issue is that changing a major version

of any package often involves changing dependencies as well,

and if that happens, it is very difficult to guarantee that all

packages are installed with the right version. As a result of

adhering to this philosophy, Red Hat was not able to introduce

Python 3 during the RHEL 7 lifetime. The current Python 2

version that was included in RHEL 7, however, became

deprecated, and customers had a hard time understanding this.

To offer a higher level of flexibility, with the introduction of

RHEL 8, Red Hat introduced two different repositories. The

BaseOS repository is for core operating system packages, and all

packages in this repository will not change their major version

during the distribution lifetime. The Application Stream

(AppStream) repository contains other packages that may change

their major version during the distribution lifetime. Important

applications like Python are provided as AppStream packages, to

ensure that if a new major version becomes available during the

distribution lifetime, this major version can be included.

Understanding dnf Modules

In the AppStream repository, content with varying life cycles is

provided. This content may be provided as traditional RPM

packages, but also as modules. A module describes a set of RPM

packages that belong together, and adds features to package

management. Typically, modules are organized around a specific

version of an application, and in a module you’ll find module

packages, together with all of the dependencies for that specific

version.

Each module can have one or more application streams. A

stream contains one specific version, and updates are provided

for a specific stream. By using streams, different versions of

packages can be offered through the same repositories. When

you’re working with modules that have different streams, only

one stream can be enabled at the same time. This allows users to

select the package version that is needed in their environment.

Modules can also have one or more profiles. A profile is a list of

packages that are installed together for a particular use case. You

may find, for instance, a minimal profile, a default profile, a

server profile, and many more. While you’re working with

modules, you may select which profile you want to use. Table 9-4

provides an overview of key terminology when working with

modules.

Table 9-4 dnf Module Terminology

Item Explanation

RPM The default package format. Contains files, as well as metadata
that describes how to install the files. Optionally may contain pre-
and post-installation scripts as well.

Module A delivery mechanism to install RPM packages. In a module,
different versions and profiles can be provided.

Application
stream

A specific version of the module.

Profile A collection of packages that are installed together for a
particular use case.

Managing Modules

The dnf command in RHEL 9 supports working with modules

using the dnf module command. To find out which modules are

available, you may want to start with the dnf module list

command. You can see its sample output in Example 9-13.

Note

In RHEL 9.0 no modules are provided. It is expected

that in future updates modules will be provided. To

show the working of the dnf module command, all

examples are taken from CentOS Stream.

Example 9-13 Showing dnf Modules with dnf module list

Click here to view code image

[root@localhost ~]# dnf module list
Last metadata expiration check: 2:51:45 ago on Wed 14 Sep 2022
08:39:28 AM CEST.
CentOS Stream 9 - AppStream

Name Stream Profiles
Summary
maven 3.8 common [d]
Java project management and project comprehension tool
nodejs 18 common [d], development, minimal, s2i
Javascript runtime
php 8.1 common [d], devel, minimal PHP
scripting language
ruby 3.1 common [d] An
interpreter of object-oriented scripting language
Hint: [d]efault, [e]nabled, [x]disabled, [i]nstalled

In the list of modules, you can see whether or not the module is

installed and whether or not a specific stream is enabled. To list

specific streams for a module, use the dnf module list

modulename command. For instance, use dnf module list

maven to get details about streams that are available for the

Maven module, as shown in Example 9-14.

Example 9-14 Showing Details About dnf Modules with dnf

module list

Click here to view code image

[root@localhost ~]# dnf module list maven
Last metadata expiration check: 2:53:36 ago on Wed 14 Sep 2022

08:39:28 AM CEST.
CentOS Stream 9 - AppStream
Name Stream Profiles
Summary
maven 3.8 common [d] Java
project management and project comprehension tool

Hint: [d]efault, [e]nabled, [x]disabled, [i]nstalled

After you find out which module streams are available, the next

step is to get information about specific profiles. You can use dnf

module info to obtain this information. For instance, use dnf

module info php to get more information about the php module.

This will provide information for profiles that are available in all

the module streams. To find profile information for a specific

stream, you can provide the stream version as an argument. For

instance, use dnf module info php:8.1 (see Example 9-15).

Example 9-15 Showing Information About dnf Modules with dnf

module list

Click here to view code image

[
root@localhost ~]# dnf module info php:8.1
Last metadata expiration check: 2:55:06 ago on Wed 14 Sep 2022

Hivanetwork.com

https://hivanetwork.com/

08:39:28 AM CEST.
Name : php
Stream : 8.1
Version : 920220706080036
Context : 9
Architecture : x86_64
Profiles : common [d], devel, minimal
Default profiles : common
Repo : appstream
Summary : PHP scripting language
Description : php 8.1 module
Requires :
Artifacts : apcu-panel-0:5.1.21-1.module_el9+137+d73770a9.
 noarch
 : php-0:8.1.8-1.module_el9+158+97f99411.src
 : php-0:8.1.8-1.module_el9+158+97f99411.x86_64
 : php-bcmath-0:8.1.8-1.module_el9+158+97f99411.x86_64
 : php-bcmath-debuginfo-0:8.1.8-1.module_el9+158+
 97f99411.x86_64
 : php-cli-0:8.1.8-1.module_el9+158+97f99411.x86_64
 : php-cli-debuginfo-0:8.1.8-1.module_el9+158+
 97f99411.x86_64
 : php-common-0:8.1.8-1.module_el9+158+97f99411.x86_64
 : php-common-debuginfo-0:8.1.8-
…
1.module_el9+158+97f99411.x86_64
 : php-process-0:8.1.8-1.module_el9+158+97f99411.
 x86_64

 : php-process-debuginfo-0:8.1.8-1.module_el9+158+
 97f99411.x86_64
 : php-snmp-0:8.1.8-1.module_el9+158+
 97f99411.x86_64
 : php-snmp-debuginfo-0:8.1.8-1.module_el9+158+
 97f99411.x86_64
 : php-soap-0:8.1.8-1.module_el9+158+97f99411.x86_64
 : php-soap-debuginfo-0:8.1.8-1.module_el9+158+
 97f99411.x86_64
 : php-xml-0:8.1.8-1.module_el9+158+97f99411.x86_64
 : php-xml-debuginfo-0:8.1.8-1.module_el9+158+
 97f99411.x86_64

Hint: [d]efault, [e]nabled, [x]disabled, [i]nstalled, [a]ctive]

After you find module information, the next step is to enable a

module stream and install modules. Every module has a default

module stream, providing access to a specific version. If that

version is what you need, you don’t have to enable anything. If

you want to work with a different version, you should start by

enabling the corresponding module stream. For example, type

dnf module enable php:8.1 to enable that specific version.

Enabling a module stream before starting to work with a specific

module is not mandatory. If you just use dnf module install to

install packages from a module, packages from the default

module stream will be installed. You can also switch between

application stream versions. If, for instance, you are now on

php:8.1 and you want to change to php:8.2, you just have to type

dnf module install php:8.2. This will disable the old stream and

enable the new stream. After doing this, to ensure that all

dependent packages that are not in the module itself are updated

as well, type dnf distro-sync to finalize the procedure.

Managing Software Packages with rpm

Once upon a time, repositories did not exist, and the rpm

command was used to install package files after they had been

downloaded. That worked, but there was one major issue: the

dependency hell. Because RPM packages have always focused on

specific functionality, to install specific software, a collection of

RPM packages was normally required. Therefore, a “missing

dependency” message was often issued while users were trying

to install RPM packages, which meant that to install the selected

package, other packages needed to be installed first. Sometimes a

whole chain of dependencies needed to be installed to finally get

the desired functionality. That did not make working with RPM

packages a joyful experience.

On modern RHEL systems, repositories are used, and packages

are installed using dnf. The dnf command considers all package

dependencies and tries to look them up in the currently available

repositories. On a RHEL system configured to get updates from

Red Hat, or on a CentOS system where consistent repositories are

used, the result is that package installation nowadays is without

problems and the rpm command no longer is used for software

installation.

Even after downloading an RPM package file, you do not need to

use the rpm -Uvh packagename command to install it (even if it

still works). A much better alternative is dnf install

packagename, which installs the package and also considers the

repositories to resolve dependencies automatically. That does not

mean the rpm command has become totally useless. You can still

use it to query RPM packages.

Tip

On your system, two package databases are

maintained: the dnf database and the RPM database.

When you are installing packages through dnf, the

dnf database is updated first, after which the

updated information is synchronized to the RPM

database. If you install packages using the rpm

command, the update is written to the RPM database

only and will not be updated to the dnf database,

which is an important reason not to use the rpm

command to install software packages.

Understanding RPM Filenames

When you’re working with RPM packages directly, it makes sense

to understand how the RPM filename is composed. A typical RPM

filename looks like autofs-5.0.7-40.el7.x86_64.rpm. This name

consists of several parts:

autofs: The name of the actual package.

5.0.7: The version of the package. This normally corresponds

to the name of the package as it was released by the package

creator.

-40: The sub-version of the package.

el7: The Red Hat version this package was created for.

x86_64: The platform (32 bits or 64 bits) this package was

created for.

Querying the RPM Database

The rpm command enables you to get much information about

packages. Using RPM queries can be a really useful way to find

out how software can be configured and used. To start, you can

use the rpm -qa command. Like dnf list installed, this command

shows a list of all software that is installed on the machine. Use

grep on this command to find out specific package names. To

perform queries on RPM packages, you just need the name and

not the version information.

After finding the package about which you want more

information, you can start with some generic queries to find out

what is in the package. In the following examples, I assume that

you are using RPM queries on the nmap RPM package. To start,

type rpm -qi nmap to get a description of the package. This will

perform a query of a package that is already installed on your

system, and it will query the package database to get more details

about it.

The next step is to use rpm -ql nmap, which shows a list of all

files that are in the package. On some packages, the result can be

a really long list of filenames that is not particularly useful. To

get more specific information, use rpm -qd nmap, which shows

all documentation available for the package, or rpm -qc nmap,

which shows all configuration files in the package.

Using RPM queries can really help in finding out more useful

information about packages. The only thing that you need to

know is the RPM package name that a specific file belongs to. To

find this, use rpm -qf, followed by the specific filename you are

looking for. Use, for instance, rpm -qf /bin/ls to find the name of

the RPM package the ls command comes from. In upcoming

Exercise 9-3, you’ll see how useful it can be to use RPM queries in

this way.

Querying RPM Package Files

RPM queries by default are used on the RPM database, and what

you are querying are installed RPM packages. It sometimes

makes sense to query an RPM package file before actually

installing it. To do this, you need to add the -p option to the

query, because without the -p option, you will be querying the

database, not the package file. Also, when querying a package

file, you need to refer to the complete filename, including the

version number and all other information that you do not have

to use when querying the RPM database. As an example, the rpm

-qp --scripts httpd-2.4.6-19.el7.centos.x86_64.rpm command

queries the specific RPM file to see whether it contains scripts.

A query option that needs special attention is --scripts, which

queries an RPM package or package file to see which scripts it

contains (if any). This option is especially important when

combined with the -p option, to find out whether a package file

that you are going to install includes any scripts.

When you install RPM packages, you do so as root. Before

installing an RPM package from an unknown source, you need to

make sure that it does not include any rogue scripts. If you do

not, you risk installing malware on your computer without even

knowing it.

Table 9-5 describes the most important RPM querying options.

Table 9-5 Common RPM Query Commands

Command Description

rpm -qf Uses a filename as its argument to find the specific RPM package a
file belongs to.

rpm -ql Uses the RPM database to provide a list of files in the RPM package.

rpm -qi Uses the RPM database to provide package information (equivalent
to yum info).

Hivanetwork.com

https://hivanetwork.com/

rpm -qd Uses the RPM database to show all documentation that is available
in the package.

rpm -qc Uses the RPM database to show all configuration files that are
available in the package.

rpm -q --
scripts

Uses the RPM database to show scripts that are used in the
package. This is particularly useful if combined with the -p option.

rpm -qp
<pkg>

The -p option is used with all the previously listed options to query
individual RPM package files instead of the RPM package database.
Using this option before installation helps you find out what is
actually in the package before it is installed.

rpm -qR Shows dependencies for a specific package.

rpm -V Shows which parts of a specific package have been changed since
installation.

rpm -Va Verifies all installed packages and shows which parts of the
package have been changed since installation. This is an easy and
convenient way to do a package integrity check.

rpm -qa Lists all packages that are installed on this server.

Using repoquery

While rpm -qp provides useful tools to query packages before

installation, there is a slight problem with this command: It

works only on RPM package files, and it cannot query files

directly from the repositories. If you want to query packages

from the repositories before they have been installed, you need

repoquery. This binary is not installed by default, so make sure

to install the dnf-utils RPM package to use it.

The repoquery command is pretty similar to the rpm -q

command and uses many similar options. There is just one

significant option missing: --scripts. A simple solution is to make

sure that you are using trusted repositories only, to prevent

installing software that contains dangerous script code.

If you need to thoroughly analyze what an RPM package is doing

when it is installed, you can download it to your machine, which

allows you to use the rpm -qp --scripts command on the

package. To download a package from the repository to the local

directory, you can use the yumdownloader command, which

comes from the yum-utils package.

Now that you have learned all about RPM querying options, you

can practice these newly acquired skills in Exercise 9-3 to get

more information about software that is installed on your RHEL

system.

Exercise 9-3 Using RPM Queries

1. To practice working with rpm, we need a package. It doesn’t

really matter which package that is. Type dnf install -y

dnsmasq (you may get a message that the package is already

installed).

2. Type which dnsmasq. This command gives the complete

pathname of the dnsmasq command.

3. Type rpm -qf $(which dnsmasq). This does an RPM file query

on the result of the which dnsmasq command; you learn

more about this technique in Chapter 19, “An Introduction to

Automation with Bash Shell Scripting.”

4. Now that you know that the dnsmasq binary comes from the

dnsmasq package, use rpm -qi dnsmasq to show more

information about the package.

5. The information that is shown with rpm -qi is useful, but it

does not give the details that are needed to start working with

the software in the package. Use rpm -ql dnsmasq to show a

list of all files in the package.

6. Use rpm -qd dnsmasq to show the available documentation.

Notice that this command reveals that there is a man page, but

there is also a doc.html file and a setup.html file in the

/usr/share/doc/dnsmasq-version directory. Open these files

with your browser to get more information about the use of

dnsmasq.

7. Type rpm -qc dnsmasq to see which configuration files are

used by dnsmasq.

8. After installation, it does not make much sense, but it is

always good to know which scripts are executed when a

package is installed. Use rpm -q --scripts dnsmasq to show

the script code that can be executed from this RPM.

Tip

Working with RPM queries is a valuable skill on the

RHCSA exam. If you know how to handle queries,

you can find all relevant configuration files and the

documentation.

Summary

In this chapter, you learned how to work with software on Red

Hat Enterprise Linux. You learned how to use dnf to manage

software packages coming from repositories. You also learned

how to use the rpm command to perform queries on the

packages on your system. Make sure that you master these

essential skills well; they are key to getting things done on Red

Hat Enterprise Linux.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 9-6 lists a

reference for these key topics and the page number on which

each is found.

Table 9-6 Key Topics for Chapter 9

Key Topic Element Description Page

Table 9-3 Common dnf Tasks 206

List RPM package name components 222

Table 9-5 Common RPM Query Commands 224

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

package

dnf

Red Hat Package Manager (RPM)

repository

dependency

Application Stream (AppStream)

package group

module

stream

profile

dependency hell

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 You have a directory containing a collection of RPM packages

and want to make that directory a repository. Which command

enables you to do that?

 What needs to be in the repository file to point to a repository on

http://server.example.com/repo?

 You have just configured a new repository to be used on your

RHEL computer. Which command enables you to verify that the

repository is indeed available?

 Which command enables you to search the RPM package

containing the file useradd?

 Which two commands do you need to use to show the name of

the dnf group that contains security tools and shows what is in

that group?

 Which command do you use to ensure that all PHP-related

packages are going to be installed using the older version 7.1,

without actually installing anything yet?

 You want to make sure that an RPM package that you have

downloaded does not contain any dangerous script code. Which

command enables you to do so?

 Which command reveals all documentation in an RPM package?

 Which command shows the RPM package a file comes from?

 Which command enables you to query software from the

repository?

End-of-Chapter Lab

Hivanetwork.com

https://hivanetwork.com/

In this end-of-chapter lab, you use some of the essential RHEL

package management skills. All assignments can be done on one

server.

Lab 9.1

1. Copy some RPM files from the installation disk to the /myrepo

directory. Make this directory a repository and make sure that

your server is using this repository.

2. List the repositories currently in use on your server.

3. Search for the package that contains the cache-only DNS name

server. Do not install it yet.

4. Perform an extensive query of the package so that you know

before you install it which files it contains, which

dependencies it has, and where to find the documentation and

configuration.

5. Check whether the RPM package contains any scripts. You may

download it, but you may not install it yet; you want to know

which scripts are in a package before actually installing it,

right?

6. Install the package you found in step 3.

7. Undo the installation.

Chapter 10

Managing Processes

The following topics are covered in this chapter:

Introducing Process Management

Managing Shell Jobs

Using Common Command-Line Tools for Process Management

Using top to Manage Processes

Using tuned to Optimize Performance

The following RHCSA exam objectives are covered in this

chapter:

Identify CPU/memory-intensive processes and kill processes

Adjust process scheduling

Manage tuning profiles

Process management is an important task for a Linux

administrator. In this chapter, you learn what you need to know

to manage processes from a perspective of the daily operation of

a server. You learn how to work with shell jobs and generic

processes. You also are introduced to system performance

optimization using tuned.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

10-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 10-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Introducing Process Management 1

Managing Shell Jobs 2–3

Using Common Command-Line Tools for Process Management 4–8

Using top to Manage Processes 9

Using tuned to Optimize Performance 10

 Which of the following are not generally considered a type of

process? (Choose two.)

1. A shell job

2. A cron job

3. A daemon

4. A thread

 Which of the following can be used to move a job to the

background?

1. Press &

2. Press Ctrl-Z and then type bg

3. Press Ctrl-D and then type bg

4. Press Ctrl-Z, followed by &

 Which key combination enables you to cancel a current

interactive shell job?

1. Ctrl-C

2. Ctrl-D

3. Ctrl-Z

4. Ctrl-Break

 Which of the following statements are true about threads?

(Choose two.)

1. Threads cannot be managed individually by an administrator.

2. Multithreaded processes can make the working of processes

more efficient.

3. Threads can be used only on supported platforms.

4. Using multiple processes is more efficient, in general, than

using multiple threads.

 Which of the following commands is most appropriate if you’re

looking for detailed information about the command and how it

was started?

1. ps ef

2. ps aux

3. ps

4. ps fax

 Of the following nice values, which will increase the priority of

the selected process?

1. 100

2. 20

3. -19

4. -100

 Which of the following shows correct syntax to change the

priority for the current process with PID 1234?

1. nice -n 5 1234

2. renice 5 1234

3. renice 5 -p 1234

4. nice 5 -p 1234

 Which of the following commands cannot be used to send signals

to processes?

1. kill

2. mkill

3. pkill

4. killall

 Which of the following commands would you use from top to

change the priority of a process?

1. r

2. n

3. c

4. k

 Which of the following commands will set the current

performance profile to powersave?

1. tuneadm profile set powersave

2. tuned-adm profile powersave

3. tuneadm profile --set powersave

4. tuned-adm profile --set powersave

Foundation Topics

Introducing Process Management

For everything that happens on a Linux server, a process is

started. For that reason, process management is among the key

skills that an administrator has to master. To do this efficiently,

you need to know which type of process you are dealing with. A

major distinction can be made between three process types:

Shell jobs are commands started from the command line. They

are associated with the shell that was current when the

process was started. Shell jobs are also referred to as

interactive processes.

Daemons are processes that provide services. They normally

are started when a computer is booted and often (but certainly

not in all cases) run with root privileges.

Kernel threads are a part of the Linux kernel. You cannot

manage them using common tools, but for monitoring of

performance on a system, it’s important to keep an eye on

them.

When a process is started, it can use multiple threads. A thread

is a task started by a process and that a dedicated CPU can

service. The Linux shell does not offer tools to manage individual

threads. Thread management should be taken care of from

within the command.

If you want to manage a process efficiently, it is paramount that

you know what type of process you are dealing with. Shell jobs

require a different approach than the processes that are

automatically started when a computer boots.

Managing Shell Jobs

When a user types a command, a shell job is started. If no

particular measures have been taken, the job is started as a

foreground process, occupying the terminal it was started from

until it has finished its work. As a Linux administrator, you need

to know how to start shell jobs as foreground processes or as

background processes and what you can do to manage shell

jobs.

Hivanetwork.com

https://hivanetwork.com/

Running Jobs in the Foreground and Background

By default, any executed command is started as a foreground job.

That means that you cannot do anything on the terminal where

the command was started until it is done. For many commands,

that does not really matter because the command often takes a

little while to complete, after which it returns access to the shell

from which it was started. Sometimes it might prove useful to

start commands in the background. This makes sense for

processes that do not require user interaction and take

significant time to finish. A process that does require user

interaction will not be able to get that when running in the

background, and for that reason will typically stall when moved

to the background. You can take two different approaches to run

a process in the background.

If you know that a job will take a long time to complete, you can

start it with an & behind it. This command immediately starts the

job in the background to make room for other tasks to be started

from the command line. To move the last job that was started in

the background back as a foreground job, use the fg command.

This command immediately, and with no further questions,

brings the last job back to the foreground. If multiple jobs are

currently running in the background, you can move a job back to

the foreground by adding its job ID, as shown by the jobs

command.

A job might sometimes have been started that takes (much)

longer than predicted. If that happens, you can use Ctrl-Z to

temporarily stop the job. This does not remove the job from

memory; it just pauses the job so that it can be managed. Once

the job is paused, you can continue it as a background job by

using the bg command. An alternative key sequence that you can

use to manage shell jobs is Ctrl-C. This key combination stops the

current job and removes it from memory.

A related key combination is Ctrl-D, which sends the End Of File

(EOF) character to the current job. The result is that the job stops

waiting for further input so that it can complete what it was

currently doing. The result of pressing Ctrl-D is sometimes

similar to the result of pressing Ctrl-C, but there is a difference.

When Ctrl-C is used, the job is just canceled, and nothing is closed

properly. When Ctrl-D is used, the job stops waiting for further

input and next terminates, which often is just what is needed to

complete in a proper way.

Managing Shell Jobs

When you’re moving jobs between the foreground and

background, it may be useful to have an overview of all current

jobs. To get such an overview, use the jobs command. As you can

see in Table 10-2, this command gives an overview of all jobs

currently running as a background job, including the job number

assigned to the job when starting it in the background. These job

numbers can be used as an argument to the fg and bg commands

to perform job management tasks. In Exercise 10-1, you learn

how to perform common job management tasks from the shell.

Table 10-2 Job Management Overview

Command Use

& (used at the
end of a
command line)

Starts the command immediately in the background.

Ctrl-Z Stops the job temporarily so that it can be managed. For
instance, it can be moved to the background.

Ctrl-D Sends the EOF character to the current job to indicate that it
should stop waiting for further input.

Ctrl-C Can be used to cancel the current interactive job.

bg Continues the job that has just been frozen using Ctrl-Z in the
background.

fg Brings back to the foreground the last job that was moved to
background execution.

jobs Shows which jobs are currently running from this shell.
Displays job numbers that can be used as an argument to the
commands bg and fg.

Exercise 10-1 Managing Jobs

1. Open a root shell and type the following commands:

sleep 3600 &
dd if=/dev/zero of=/dev/null &
sleep 7200

2. Because you started the last command with no & after the

command, you have to wait 2 hours before you get back

control of the shell. Press Ctrl-Z to stop the command.

3. Type jobs. You will see the three jobs that you just started. The

first two of them have the Running state, and the last job

currently is in the Stopped state.

4. Type bg 3 to continue running job 3 in the background. Note

that because it was started as the last job, you did not really

have to add the number 3.

5. Type fg 1 to move job 1 to the foreground.

6. Press Ctrl-C to cancel job number 1 and type jobs to confirm

that it is now gone.

7. Use the same approach to cancel jobs 2 and 3 also.

8. Open a second terminal on your server.

9. From that second terminal, type dd if=/dev/zero of=/dev/null

&

10. Type exit to close the second terminal.

11. From the other terminal, start top. You will see that the dd job

is still running. It should show on top of the list of running

processes. From top, press k to kill the dd job. It will prompt

for a PID to kill; make sure to enter the PID of the process you

want to terminate, and then press Enter to apply default

values.

Note

You learned how to manage interactive shell jobs in

this section. Note that all of these jobs are processes

as well. As the user who started the job, you can also

manage it. In the next section, you learn how to use

process management to manage jobs started by

other users.

Understanding Parent–Child Relations

When a process is started from a shell, it becomes a child process

of that shell. In process management, the parent–child

relationship between processes is very important. The parent is

needed to manage the child. For that reason, all processes started

from a shell are terminated when that shell is stopped. This also

offers an easy way to terminate processes no longer needed.

Processes started in the background will not be killed when the

parent shell from which they were started is killed. To terminate

these processes, you need to use the kill command, as described

later in this chapter.

Note

In earlier versions of the Bash shell, background

processes were also killed when the shell they were

started from was terminated. To prevent that, the

process could be started with the nohup command

in front of it. Using nohup for this purpose is no

longer needed in RHEL 9. If a parent process is killed

while the child process still is active, the child

process becomes a child of systemd instead.

Using Common Command-Line Tools for Process
Management

On a Linux server, many processes are usually running. On an

average server or desktop computer, there are often more than

100 active processes. With so many processes being active, things

may go wrong. If that happens, it is good to know how

noninteractive processes can be stopped or how the priority of

these processes can be adjusted to make more system resources

available for other processes.

Understanding Processes and Threads

Tasks on Linux are typically started as processes. One process

can start several worker threads. Working with threads makes

sense, because if the process is very busy, the threads can be

handled by different CPUs or CPU cores available in the machine.

As a Linux administrator, you cannot manage individual threads;

you can manage processes, though. It is the programmer of the

multithreaded application that has to define how threads relate

to one another.

Before we talk about different ways to manage processes, it is

good to know that there are two different types of background

processes: kernel threads and daemon processes. Kernel threads

are a part of the Linux kernel, and each of them is started with

its own process identification number (PID). When managing

processes, you can easily recognize the kernel processes because

they have a name that is between square brackets. Example 10-1

shows a list of a few processes as output of the command ps aux

| head (discussed later in this chapter), in which you can see a

couple of kernel threads.

As an administrator, you need to know that kernel threads

cannot be managed. You cannot adjust their priority; neither is it

possible to kill them, except by taking the entire machine down.

Example 10-1 Showing Kernel Threads with ps aux

Click here to view code image

[root@server3 ~]# ps aux | head
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME
 COMMAND
root 1 0.0 0.4 252864 7792 ? Ss 08:25 0:02 /usr/lib/
 systemd/systemd --switched-root --system --deserialize 17
root 2 0.0 0.0 0 0 ? S 08:25 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? I< 08:25 0:00 [rcu_gp]

Hivanetwork.com

https://hivanetwork.com/

root 4 0.0 0.0 0 0 ? I< 08:25 0:00 [rcu_par_gp]
root 6 0.0 0.0 0 0 ? I< 08:25 0:00 [kworker/0:
 0H-kblockd]
root 8 0.0 0.0 0 0 ? I< 08:25 0:00 [mm_percpu_wq]
root 9 0.0 0.0 0 0 ? S 08:25 0:00 [ksoftirqd/0]
root 10 0.0 0.0 0 0 ? I 08:25 0:00 [rcu_sched]
root 11 0.0 0.0 0 0 ? S 08:25 0:00 [migration/0]

Using ps to Get Process Information

The most common command to get an overview of currently

running processes is ps. If used without any arguments, the ps

command shows only those processes that have been started by

the current user. You can use many different options to display

different process properties. If you are looking for a short

summary of the active processes, use ps aux (as you saw in

Example 10-1). If you are looking for not only the name of the

process but also the exact command that was used to start the

process, use ps -ef (see Example 10-2). Alternative ways to use ps

exist as well, such as the command ps fax, which shows

hierarchical relationships between parent and child processes

(see Example 10-3).

Example 10-2 Using ps -ef to See the Exact Command Used to

Start Processes

Click here to view code image

 [root@server3 ~]# ps -ef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 08:25 ? 00:00:02 /usr/lib/systemd/systemd
 --switched-root --system --deserialize 17
...
root 34948 2 0 12:16 ? 00:00:00 [kworker/0:1-events]
root 34971 1030 0 12:17 ? 00:00:00 sshd: root [priv]
root 34975 34971 0 12:17 ? 00:00:00 sshd: root@pts/2
root 34976 34975 0 12:17 pts/2 00:00:00 -bash
root 35034 1 0 12:17 pts/2 00:00:00 sleep 3600
root 35062 2 0 12:20 ? 00:00:00 [kworker/u256:2]
root 35064 2 0 12:20 ? 00:00:00 [kworker/0:3-cgroup_
 destroy]
root 35067 2 0 12:20 ? 00:00:00 [kworker/1:2-events_
 freezable_power_]
root 35087 939 0 12:21 ? 00:00:00 sleep 60
root 35088 33127 0 12:22 pts/1 00:00:00 ps -ef

Note

For many commands, options need to start with a

hyphen. For some commands, this is not the case

and using the hyphen is optional. The ps command

is one of these commands, due to historic reasons. In

the old times of UNIX, there were two main flavors:

the System V flavor, in which using hyphens before

options was mandatory, and the BSD flavor, in

which using hyphens was optional. The ps command

is based on both of these flavors, and for that reason

some options don’t have to start with a hyphen.

Example 10-3 Using ps fax to Show Parent-Child Relationships

Between Processes

Click here to view code image

 [root@server3 ~]# ps fax
 PID TTY STAT TIME COMMAND
 2 ? S 0:00 [kthreadd]
 3 ? I< 0:00 _ [rcu_gp]
 4 ? I< 0:00 _ [rcu_par_gp]
...
 2460 ? Ssl 0:00 _ /usr/bin/pulseaudio --daemonize=no
 2465 ? Ssl 0:00 _ /usr/bin/dbus-daemon
 --session--address=systemd: --nofork --nopidfile --systemd-activation --
 2561 ? Ssl 0:00 _ /usr/libexec/at-spi-bus-launcher
 2566 ? Sl 0:00 | _ /usr/bin/dbus-daemon --config-
 file=/usr/share/defaults/at-spi2/ accessibility.conf --nofork

 2569 ? Sl 0:00 _ /usr/libexec/at-spi2-registryd
 --use-gnome-session
 2589 ? Ssl 0:00 _ /usr/libexec/xdg-permission-store
 2594 ? Sl 0:00 _ /usr/libexec/ibus-portal
 2704 ? Sl 0:00 _ /usr/libexec/dconf-service
 2587 ? Sl 0:00 /usr/libexec/ibus-x11 --kill-daemon
 2758 ? Sl 0:00 /usr/bin/gnome-keyring-daemon --daemonize
 --login
 2908 tty3 Sl 0:00 /usr/libexec/ibus-x11 --kill-daemon
 2936 ? Ssl 0:00 /usr/libexec/geoclue
 3102 tty3 Sl+ 0:00 /usr/libexec/gsd-printer
 3173 tty3 Sl+ 0:12 /usr/bin/vmtoolsd -n vmusr
 3378 ? Ssl 0:00 /usr/libexec/fwupd/fwupd
 3440 ? Ss 0:00 gpg-agent --homedir /var/lib/fwupd/gnupg
 --use-standard-socket --daemon
 3455 ? S 0:00 /usr/libexec/platform-python /usr/
 libexec/rhsmd
 33093 ? Ss 0:00 /usr/lib/systemd/systemd --user
 33105 ? S 0:00 _ (sd-pam)
 33117 ? S<sl 0:00 _ /usr/bin/pulseaudio --daemonize=no
 33123 ? Ssl 0:00 _ /usr/bin/dbus-daemon --session
 --address=systemd: --nofork --nopidfile --systemd-activation --
 35034 pts/2 S 0:00 sleep 3600

An important piece of information to get out of the ps command

is the PID. Many tasks require the PID to operate, and that is why

a command like ps aux | grep dd, which will show process

details about dd, including its PID, is quite common. An

alternative way to get the same result is to use the pgrep

command. Use pgrep dd to get a list of all PIDs that have a name

containing the string “dd”.

Understanding Process Priorities

On modern Linux systems, cgroups are used to allocate system

resources. In cgroups, three system areas, the so-called slices, are

defined:

system: This is where all systemd-managed processes are

running.

user: This is where all user processes (including root

processes) are running.

machine: This optional slice is used for virtual machines and

containers.

By default, all slices have the same CPUWeight. That means that

CPU capacity is equally divided if there is high demand. All

processes in the system slice get as much CPU cycles as all

processes in the user slice, and that can result in surprising

behavior. Within a slice, process priority can be managed by

using nice and renice.

Exploring Relations Between Slices

As mentioned before, by default all processes in the system slice

get as many CPU cycles as all processes in the user slice. You

won’t get any questions about this on the RHCSA exam, but as it

may lead to surprising situations, it’s good to know how this

works anyway. Apply the following procedure to discover what

the result can be.

Step 1. Open a root shell and clone the course git repository: git clone

https://github.com/sandervanvugt/rhcsa

Step 2. Use cp rhcsa/stress* /etc/systemd/system

Step 3. Type systemctl daemon-reload to ensure that systemd catches

the new files.

Step 4. Type systemctl start stress1, followed by systemctl start

stress2

Step 5. Use top to monitor CPU usage of the processes. You’ll see that

there are two very active dd processes, which each get about 50

percent of all CPU capacity. Keep the top screen open.

Step 6. Open a terminal, and as a non-root user, type while true; do

true; done

Step 7. Observe what is happening in top. If you have a single-core

https://github.com/sandervanvugt/rhcsa

system, you will see that both dd processes get 50 percent of all

CPU cycles, and the user bash process that was just started also

gets 50 percent of all CPU cycles. This proves that one very busy

user process can have dramatic consequences for the system

processes.

Step 8. If in the previous step you don’t see the described behavior, type

1 in the top interface. This will show a line for each CPU core on

your system. You should see multiple CPU cores.

Step 9. To temporarily shut down a CPU core, use the command echo 0

> /sys/bus/cpu/devices/cpu1/online. Repeat this command for

each CPU, except for cpu0.

Step 10. To enable any CPU core you’ve just disabled, use either echo 1 >

/sys/bus/cpu/devices/cpu1/online or reboot.

Step 11. Use killall dd to make sure all dd processes are terminated.

As you’ve just seen, the standard configuration of cgroup slices

can lead to unexpected results. If you don’t like this behavior,

you can increase the priority of the system slice. Use systemctl

set-property system.slice CPUWeight=800 to set the CPUWeight

of all processes in the system slices eight times as high as all

processes in the user slice.

Managing Process Priorities

When Linux processes are started, they are started with a

specific priority. By default, all regular processes are equal and

are started with the same priority, which is the priority number

20, as shown by utilities like top. In some cases, it is useful to

change the default priority that was assigned to the process when

it was started. You can do that using the nice and renice

commands. Use nice if you want to start a process with an

adjusted priority. Use renice to change the priority for a

currently active process. Alternatively, you can use the r

command from the top utility to change the priority of a

currently running process.

Changing process priority may make sense in two different

scenarios. Suppose, for example, that you are about to start a

backup job that does not necessarily have to finish fast. Typically,

backup jobs are rather resource intensive, so you might want to

start the backup job in a way that does not annoy other users too

much, by lowering its priority.

Another example is where you are about to start a very

important calculation job. To ensure that it is handled as fast as

possible, you might want to give it an increased priority, taking

away CPU time from other processes.

Hivanetwork.com

https://hivanetwork.com/

On earlier Linux versions, it could be dangerous to increase the

priority of one job too much, because of the risk that other

processes (including vital kernel processes) might be blocked out

completely. On current Linux kernels, that risk is minimized for

these reasons:

Modern Linux kernels differentiate between essential kernel

threads that are started as real-time processes and normal

user processes. Increasing the priority of a user process will

never be able to block out kernel threads or other processes

that were started as real-time processes.

Modern computers often have multiple CPU cores. A single-

threaded process that is running with the highest priority will

never be able to get beyond the boundaries of the CPU it is

running on.

As you’ve read before, processes are running in slices, and by

default, each slice can claim as many CPU cycles as each other

slice.

When using nice or renice to adjust process priority, you can

select from values ranging from –20 to 19. The default niceness of

a process is set to 0 (which results in the priority value of 20). By

applying a negative niceness, you increase the priority. Use a

positive niceness to decrease the priority. It is a good idea not to

use the ultimate values immediately. Instead, use increments of 5

and see how it affects the application.

Tip

Do not set process priority to –20; it risks blocking

other processes from getting served.

Let’s take a look at examples of how to use nice and renice:

1. Run the command nice -n 5 dd if=/dev/zero of=/dev/null & to

an infinite I/O-intensive job, but with an adjusted niceness so

that some room remains for other processes as well.

2. Use ps aux | grep dd to find the PID of the dd command that

you just started. The PID is in the second column of the

command output.

3. Use renice -n 10 -p 1234 (assuming that 1234 is the PID you

just found).

4. Use top to verify the adjusted process priority and stop the dd

process you just started.

Note that regular users can only decrease the priority of a

running process. You must be root to give processes increased

priority by using negative nice values.

Sending Signals to Processes with kill, killall, and pkill

Before you start to think about using the kill command or

sending other signals to processes, it is good to know that Linux

processes have a hierarchical relationship. Every process has a

parent process, and as long as it lives, the parent process is

responsible for the child processes it has created. In older

versions of Linux, killing a parent process would also kill all of its

child processes. In RHEL 9, if you kill a parent process, all of its

child processes become children of the systemd process.

The Linux kernel allows many signals to be sent to processes. Use

man 7 signal for a complete overview of all the available signals.

Three of these signals work for all processes:

The signal SIGTERM (15) is used to ask a process to stop.

The signal SIGKILL (9) is used to force a process to stop.

The SIGHUP (1) signal is used to hang up a process. The effect

is that the process will reread its configuration files, which

makes this a useful signal to use after making modifications to

a process configuration file.

To send a signal to a process, you use the kill command. The

most common use is the need to stop a process, which you can do

by using the kill command followed by the PID of the process.

This sends the SIGTERM signal to the process, which normally

causes the process to cease its activity and close all open files.

Sometimes the kill command does not work because the process

you want to kill can ignore it. In that case, you can use kill -9 to

send the SIGKILL signal to the process. Because the SIGKILL

signal cannot be ignored, it forces the process to stop, but you

also risk losing data while using this command. In general, it is a

bad idea to use kill -9:

You risk losing data.

Your system may become unstable if other processes depend

on the process you have just killed.

Tip

Use kill -l to show a list of available signals that can

be used with kill.

There are some commands that are related to kill: killall and

pkill. The pkill command is a bit easier to use because it takes

the name rather than the PID of the process as an argument. You

can use the killall command if multiple processes using the same

name need to be killed simultaneously. However, it is

recommended to use kill, followed by the exact PID of processes

you want to stop, because otherwise you risk terminating

processes that didn’t need to be killed anyway.

Using killall was particularly common when Linux

environments were multiprocessing instead of multithreading.

In a multiprocessing environment where a server starts several

commands, all with the same name, it is not easy to stop these

commands one by one based on their individual PID. Using

killall enables you to terminate all these processes

simultaneously.

In a multithreaded environment, the urge to use killall is

weaker. Because there is often just one process that is generating

several threads, all these threads are terminated anyway by

stopping the process that started them. You still can use killall,

though, to terminate lots of processes with the same name that

have been started on your server. In Exercise 10-2, you practice

using ps, nice, kill, and related utilities to manage processes.

Exercise 10-2 Managing Processes from the Command Line

1. Open a root shell. From this shell, type dd if=/dev/zero

of=/dev/null &. Repeat this command three times.

2. Type ps aux | grep dd. This command shows all lines of

output that have the letters dd in them; you will see more than

just the dd processes, but that should not really matter. The

processes you just started are listed last.

3. Use the PID of one of the dd processes to adjust the niceness,

using renice -n 5 <PID>.

4. Type ps fax | grep -B5 dd. The -B5 option shows the matching

lines, including the five lines before that. Because ps fax

shows hierarchical relationships between processes, you

should also find the shell and its PID from which all the dd

processes were started.

5. Find the PID of the shell from which the dd processes were

started and type kill -9 <PID>, replacing <PID> with the PID of

the shell you just found. Because the dd processes were

started as background processes, they are not killed when

their parent shell is killed. Instead, they have been moved up

and are now children of the systemd process.

6. Use killall to kill all remaining dd processes.

Killing Zombies

Zombies are processes with a special state. Zombie processes are

processes that have completed execution but are still listed in the

process table. You can check if you have zombies using ps aux |

grep defunct. Although zombies are harmless, it is annoying to

have them, and you may want to do something to clean them up.

The issue with zombies is that you cannot kill them in the way

that works for normal processes. Rebooting your system is a

solution, but doing so is a bit too much for processes that aren’t

really causing any harm. Fortunately, in recent RHEL systems

you can often—not in all cases—get rid of zombies by applying

the following procedure:

Step 1. Make sure you have cloned the books git repository, using git

clone https://github.com/sandervanvugt/rhcsa.

Step 2. Enter the rhcsa directory, using cd rhcsa, and use ./zombie to

start the demo zombie process.

Step 3. Use ps aux | grep zombie to verify the zombie is running. You

should see two processes, one being the parent that is

responsible for the zombie, the other one being the zombie itself.

Step 4. Use kill <childpid>, in which <childpid> is replaced with the

actual PID of the child processes you’ve found in step 3. Notice

that this fails.

Step 5. use kill -SIGCHLD <parentpid>. This will tell the parent process

to remove its child processes. Now the zombie will get adopted

by systemd, and after a few seconds it will be removed.

https://github.com/sandervanvugt/rhcsa

Step 6. If the zombie wasn’t killed by this procedure, use kill -9 to kill

the parent process.

Using top to Manage Processes

A convenient tool to manage processes is top. For common

process management tasks, top is great because it gives an

overview of the most active processes currently running (hence

the name top). This enables you to easily find processes that

might need attention. From top, you can also perform common

process management tasks, such as adjusting the current process

priority and killing processes. Figure 10-1 shows the interface

that appears when you start top.

Hivanetwork.com

https://hivanetwork.com/

Figure 10-1 Using top Makes Process Management Easy

Among the information that you can conveniently obtain from

the top utility is the process state. Table 10-3 provides an

overview of the different process states that you may observe.

Table 10-3 Linux Process States Overview

State Meaning

Running (R) The process is currently active and using CPU time, or in the
queue of runnable processes waiting to get services.

Sleeping (S) The process is waiting for an event to complete.

Uninterruptible
sleep (D)

The process is in a sleep state that cannot be stopped. This
usually happens while a process is waiting for I/O. This state
is also known as blocking state.

Stopped (T) The process has been stopped, which typically has happened
to an interactive shell process, using the Ctrl-Z key sequence.

Zombie (Z) The process has been stopped but could not be removed by its
parent, which has put it in an unmanageable state.

Now that you know how to use the kill and nice commands from

the command line, using the same functionality from top is even

easier. From top, type k; top then prompts for the PID of the

process you want to send a signal to. By default, the most active

process is selected. After you enter the PID, top asks which signal

you want to send. By default, signal 15 for SIGTERM is used.

However, if you want to insist on a bit more, you can type 9 for

SIGKILL. Now press Enter to terminate the process.

To renice a running process from top, type r. You are first

prompted for the PID of the process you want to renice. After

entering the PID, you are prompted for the nice value you want

to use. Enter a positive value to decrease process priority or a

negative value to increase process priority.

Another important parameter you can get from top is the load

average. The load average is expressed as the number of

processes that are in a runnable state (R) or in a blocking state

(D). Processes are in a runnable state if they currently are

running, or waiting to be serviced. Processes are in a blocking

state if they are waiting for I/O. The load average is shown for the

last 1, 5, and 15 minutes, and you can see the current values in

the upper-right corner of the top screen. Alternatively, you can

use the uptime command to show current load average statistics

(see Example 10-4).

Example 10-4 Using uptime for Information About Load

Average

Click here to view code image

 [root@server3 ~]# uptime
 12:43:03 up 4:17, 3 users, load average: 4.90, 0.98, 0.19

As a rule of thumb, the load average should not be higher than

the number of CPU cores in your system. You can find out the

number of CPU cores in your system by using the lscpu

command. If the load average over a longer period is higher than

the number of CPUs in your system, you may have a

performance problem. In Exercise 10-3 you investigate the load

average statistics and learn how to manage load average.

Exercise 10-3 Managing Load Average

1. Open a root shell. From this shell, type dd if=/dev/zero

of=/dev/null &. Repeat this command three times.

2. Type top and observe the current load average. After a few

seconds, use q to quit top.

3. From the command line, type uptime. You should see the

numbers that are shown as the load average is slowly

increasing.

4. Type lscpu and look for the number of CPU(s). Also look for

the Core(s) per CPU parameter so that you can calculate the

total number of CPU cores.

5. Use killall dd to kill all dd processes.

Using tuned to Optimize Performance

To offer the best possible performance right from the start, RHEL

9 comes with tuned. It offers a daemon that monitors system

activity and provides some profiles. In the profiles, an

administrator can automatically tune a system for best possible

latency, throughput, or power consumption.

Based on the properties of an installed system, a tuned profile is

selected automatically at installation, and after installation it’s

possible to manually change the current profile. Administrators

can also change settings in a tuned profile. Table 10-4 gives an

overview of the most important default profiles.

Table 10-4 tuned Profile Overview

Profile Use

balanced The best compromise between power usage and
performance

desktop Based on the balanced profile, but tuned for better response
to interactive applications

latency-
performance

Tuned for maximum throughput

network-latency Based on latency-performance, but with additional options
to reduce network latency

network-
throughput

Based on throughput-performance, optimizes older CPUs
for streaming content

powersave Tunes for maximum power saving

throughput-
performance

Tunes for maximum throughput

virtual-guest Optimizes Linux for running as a virtual machine

virtual-host Optimizes Linux for use as a KVM host

It is relatively easy to create custom profiles. Also, when you’re

installing specific packages, profiles may be added. So you may

find that some additional performance profiles exist on your

server.

To manage the performance profile, the tuned-adm command is

provided. It talks to the tuned daemon, so before you can use it,

run systemctl enable --now tuned to start the tuned daemon.

Next, use tuned-adm active to find out which profile currently is

selected. For an overview of profiles available on your server,

type tuned-adm list. To select another profile, type tuned-adm

profile profile-name. The tuned service can also recommend a

tuned profile for your system: use tuned-adm recommend. In

Exercise 10-4 you can practice working with tuned.

Exercise 10-4 Using tuned

1. Use dnf -y install tuned to ensure that tuned is installed. (It

probably already is.)

2. Type systemctl status tuned to check whether tuned

currently is running. If it is not, use systemctl enable --now

tuned.

3. Type tuned-adm active to see which profile currently is used.

4. Type tuned-adm recommend to see which tuned profile is

recommended.

5. To select and activate the throughput-performance profile,

type tuned-adm profile throughput-performance.

Summary

Managing processes is a common task for a Linux system

administrator. In this chapter, you learned how to look up

specific processes and how to change their priority using nice

and kill. You also learned how to use tuned to select the

performance profile that best matches your server’s workload.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 10-5 lists a

reference for these key topics and the page number on which

each is found.

Table 10-5 Key Topics for Chapter 10

Key Topic Element Description Page

Hivanetwork.com

https://hivanetwork.com/

Table 10-2 Job Management Overview 236

List Essential signals overview 244

Table 10-3 Linux Process States Overview 247

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

process

thread

job

foreground process

background process

process identification number (PID)

nice

kill

signal

zombie

profile

tuned

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 Which command gives an overview of all current shell jobs?

 How do you stop the current shell job to continue running it in

the background?

 Which keystroke combination can you use to cancel the current

shell job?

 A user is asking you to cancel one of the jobs he has started. You

cannot access the shell that user currently is working from. What

can you do to cancel his job anyway?

 Which command would you use to show parent–child

relationships between processes?

 Which command enables you to change the priority of PID 1234

to a higher priority?

 On your system, 20 dd processes are currently running. What is

the easiest way to stop all of them?

 Which command enables you to stop the command with the

name mycommand?

 Which command do you use from top to kill a process?

 What is required to select a performance profile that best

matches your system needs?

End-of-Chapter Lab

In this end-of-chapter lab, you apply some of the most important

process management tasks. Use the tools that you find the most

convenient to perform these labs.

Lab 10.1

1. Launch the command dd if=/dev/zero of=/dev/null three

times as a background job.

2. Increase the priority of one of these commands using the nice

value -5. Change the priority of the same process again, but

this time use the value -15. Observe the difference.

3. Kill all the dd processes you just started.

4. Ensure that tuned is installed and active, and set the

throughput-performance profile.

Chapter 11

Working with Systemd

The following topics are covered in this chapter:

Understanding Systemd

Managing Units Through Systemd

The following RHCSA exam objectives are covered in this

chapter:

Start, stop, and check the status of network services

Start and stop services and configure services to automatically

start at boot

In this chapter, you learn about Systemd, which is the system and

service manager used on RHEL since RHEL 7. You discover all the

things that Systemd can do, and after you have a good general

understanding, you learn how to work with Systemd services.

Systemd is also involved in booting your system in a desired

state, which is called a target. That topic is covered in Chapter 17,

“Managing and Understanding the Boot Procedure.”

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

11-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 11-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding Systemd 1–5

Managing Units Through Systemd 6–10

 Which command shows all service unit files on your system that

are currently loaded?

1. systemctl -t service

2. systemctl -t service --all

3. systemctl --list-services

4. systemctl --show-units | grep services

 Which statement about Systemd wants is not true?

1. You can create wants by using the systemctl enable

command.

2. The target to which a specific want applies is agnostic of the

associated wants.

3. Wants are always administered in the /usr/lib/systemd/system

directory.

4. Each service knows to which target it wants to be added.

 What is the best solution to avoid conflicts between incompatible

units?

1. Nothing; the unit files have defined for themselves which units

they are not compatible with.

2. Disable the service using systemctl disable.

3. Unmask the service using systemctl unmask.

4. Mask the service using systemctl mask.

 Which of the following is not a valid status for Systemd services?

1. Active(running)

2. Active(exited)

3. Active(waiting)

4. Running(dead)

 Which of the following statements is not true about socket units?

1. A socket unit requires a service unit with the same name.

2. Socket units can listen on ports and activate services only

when activity occurs on a port.

3. Socket units cannot contain the name of the associated binary

that should be started.

4. Socket units may react upon path activity.

 Which of the following is not a valid Systemd unit type?

1. service

2. udev

3. mount

4. socket

 You want to find out which other Systemd units have

dependencies to a specific unit. Which command would you use?

1. systemd list-dependencies --reverse

2. systemctl list-dependencies --reverse

3. systemctl status my.unit --show-deps

4. systemd status my.unit --show-deps -r

Hivanetwork.com

https://hivanetwork.com/

 How do you change the default editor that Systemd uses to vim?

1. export EDITOR=vim

2. export SYSTEMD_EDITOR=vim

3. export EDITOR=/bin/vim

4. export SYSTEMD_EDITOR=/bin/vim

 Which of the following keywords should you use to define a

Systemd dependency if you want to ensure that the boot

procedure doesn’t fail if the dependency fails?

1. Required

2. Requisite

3. Before

4. Wants

 Which of the following is not a valid command while working

with units in systemctl?

1. systemctl unit start

2. systemctl status -l unit

3. systemctl mask unit

4. systemctl disable unit

Foundation Topics

Understanding Systemd

Systemd is the part of Red Hat Enterprise Linux that is

responsible for starting not only services but also a variety of

other items. In this chapter, you learn how Systemd is organized

and what items are started from Systemd.

To describe it in a generic way, the Systemd system and service

manager is used to start stuff. The stuff is referred to as units.

Units can be many things. One of the most important unit types is

the service. Typically, services are processes that provide specific

functionality and allow connections from external clients coming

in, such as the SSH service, the Apache web service, and many

more. Apart from service, other unit types exist, such as socket,

mount, and target. To display a list of available units, type

systemctl -t help (see Example 11-1).

Example 11-1 Unit Types in Systemd

Click here to view code image

[root@server1 ~]# systemctl -t help
Available unit types:

service
socket
target
device
mount
automount
swap
timer
path
slice
scope

Understanding Systemd Unit Locations

The major benefit of working with Systemd, as compared to

previous methods Red Hat used for managing services, is that it

provides a uniform interface to start units. This interface is

defined in the unit file. Unit files can occur in three locations:

/usr/lib/systemd/system: Contains default unit files that have

been installed from RPM packages. You should never edit

these files directly.

/etc/systemd/system: Contains custom unit files. It may also

contain files that have been written by an administrator or

generated by the systemctl edit command.

/run/systemd/system: Contains unit files that have been

generated automatically.

If a unit file exists in more than one of these locations, units in

the /run directory have highest precedence and will overwrite

any settings that were defined elsewhere. Units in

/etc/systemd/system have second highest precedence, and units

in /usr/lib/systemd/system come last.

Understanding Systemd Service Units

Probably the most important unit type is the service unit. It is

used to start processes. You can start any type of process by using

a service unit, including daemon processes and commands.

Example 11-2 shows a service unit file, vsftpd.service, for the

Very Secure FTP service.

Example 11-2 A Service Unit File

Click here to view code image

[Unit]
Description=Vsftpd ftp daemon
After=network.target

[Service]
Type=forking

ExecStart=/usr/sbin/vsftpd /etc/vsftpd/vsftpd.conf

[Install]
WantedBy=multi-user.target

You can see from this unit file example that unit files are

relatively easy to understand. Systemd service unit files typically

consist of the following three sections (other types of unit files

have different sections):

[Unit] Describes the unit and defines dependencies. This

section also contains the important After statement and

optionally the Before statement. These statements define

dependencies between different units, and they relate to the

perspective of this unit. The Before statement indicates that

this unit should be started before the unit that is specified. The

After statement indicates that this unit should be started after

the unit that is specified.

[Service] Describes how to start and stop the service and

request status installation. Normally, you can expect an

ExecStart line, which indicates how to start the unit, or an

ExecStop line, which indicates how to stop the unit. Note the

Type option, which is used to specify how the process should

start. The forking type is commonly used by daemon

processes, but you can also use other types, such as oneshot

and simple, which will start any command from a Systemd

unit. See man 5 systemd.service for more details.

[Install] Indicates in which target this unit has to be started.

The section “Understanding Systemd Target Units” a bit later

in this chapter explains how to work with targets. This section

is optional, but units that don’t have an [Install] section cannot

be started automatically.

Understanding Systemd Mount Units

A mount unit specifies how a file system can be mounted on a

specific directory. Mount units are an alternative for mounting

file systems through /etc/fstab, about which you’ll learn more in

Chapter 14 “Managing Storage.” Example 11-3 shows a mount

unit file, tmp.mount.

Example 11-3 A Mount Unit File

Click here to view code image

[root@server1 ~]# cat /usr/lib/systemd/system/tmp.mount
[Unit]
Description=Temporary Directory /tmp

Documentation=https://systemd.io/TEMPORARY_DIRECTORIES
Documentation=man:file-hierarchy(7)
Documentation=https://www.freedesktop.org/wiki/Software/systemd/
 APIFileSystems
ConditionPathIsSymbolicLink=!/tmp
DefaultDependencies=no
Conflicts=umount.target
Before=local-fs.target umount.target
After=swap.target

[Mount]
What=tmpfs
Where=/tmp
Type=tmpfs
Options=mode=1777,strictatime,nosuid,nodev,size=50%,nr_inodes=1m

Make 'systemctl enable tmp.mount' work:
[Install]
WantedBy=local-fs.target

The tmp.mount unit file in Example 11-3 shows some interesting

additional configuration options in its sections:

[Unit] The Conflicts statement is used to list units that cannot

be used together with this unit. Use this statement for

mutually exclusive units.

[Mount] This section defines exactly where the mount has to

be performed. Here you see the arguments that are typically

used in any mount command.

Understanding Systemd Socket Units

Another type of unit that is interesting to look at is the socket. A

socket creates a method for applications to communicate with

one another. A socket may be defined as a file but also as a port

on which Systemd will be listening for incoming connections.

That way, a service doesn’t have to run continuously but instead

will start only if a connection is coming in on the socket that is

specified. Every socket needs a corresponding service file.

Example 11-4 shows what the cockpit.socket file looks like; notice

that this file requires a service file with the name cockpit.service.

Example 11-4 A Socket Unit File

Click here to view code image

[Unit]
Description=Cockpit Web Service Socket
Documentation=man:cockpit-ws(8)
Wants=cockpit-motd.service

[Socket]
ListenStream=9090
ExecStartPost=-/usr/share/cockpit/motd/update-motd '' localhost

Hivanetwork.com

https://hivanetwork.com/

ExecStartPost=-/bin/ln -snf active.motd /run/cockpit/motd
ExecStopPost=-/bin/ln -snf /usr/share/cockpit/motd/inactive.motd /run/
 cockpit/motd

[Install]
WantedBy=sockets.target

The important option in Example 11-4 is ListenStream. This

option defines the TCP port that Systemd should be listening to

for incoming connections. Sockets can also be created for UDP

ports, in which case you would use ListenDatagram instead of

ListenStream.

Understanding Systemd Target Units

The unit files are used to build the functionality that is needed on

your server. To make it possible to load them in the right order

and at the right moment, you use a specific type of unit: the

target unit. A simple definition of a target unit is “a group of

units.” Some targets are used to define the state a server should

be started in. As such, target units are comparable to the

runlevels used in earlier versions of RHEL.

Other targets are just a group of services that make it easy to

manage not only individual units but also all the units that are

required to get specific functionality. The sound.target is an

example of such a target; you can use it to easily start or stop all

units that are required to enable sound on a system.

Targets by themselves can have dependencies on other targets.

These dependencies are defined in the target unit. An example of

such a dependency relation is the basic.target. This target defines

all the units that should always be started. You can use the

systemctl list-dependencies command for an overview of any

existing dependencies.

Example 11-5 shows the definition of a target unit file, multi-

user.target, which defines the normal operational state of a RHEL

server.

Example 11-5 A Target Unit File

Click here to view code image

[Unit]
Description=Multi-User System
Documentation=man:systemd.special(7)
Requires=basic.target
Conflicts=rescue.service rescue.target

After=basic.target rescue.service rescue.target
AllowIsolate=yes

You can see that by itself the target unit does not contain any

information about the units that it should start. It just defines

what it requires and which services and targets it cannot coexist

with. It also defines load ordering, by using the After statement

in the [Unit] section. The target file does not contain any

information about the units that should be included; that is

defined in the [Install] section of the different unit files.

When administrators use the systemctl enable command, to

ensure that a unit is automatically started while booting, the

[Install] section of that unit is considered to determine to which

target the unit should be added.

When you add a unit to a target, under the hood a symbolic link

is created in the target directory in /etc/systemd/system. If, for

instance, you enabled the vsftpd service to be automatically

started, you’ll find that a symbolic link /etc/systemd/system/multi-

user.target/wants/vsftpd.service has been added, pointing to the

unit file in /usr/lib/systemd/system/vsftpd.service and thus

ensuring that the unit will automatically be started. In Systemd

terminology, this symbolic link is known as a want, as it defines

what the target wants to start when it is processed.

Managing Units Through Systemd

Managing the current state of Systemd units is an important task

for RHEL administrators. Managing units means not only

managing their current state but also changing options used by

the different units.

Managing Systemd units starts with starting and stopping units.

As an administrator, you use the systemctl command to do that.

In Exercise 11-1, you start, stop, and manage a unit. After you

configure a unit so that it can be started without problems, you

need to make sure that it restarts automatically upon reboot. You

do this by enabling or disabling the unit.

Tip

The systemctl command has a large number of

options, which may appear overwhelming at first

sight, but there’s no need to be overwhelmed. Just

ensure that the bash-completion package is

installed and use Tab completion on the systemctl

command, which provides easy access to all of the

available options.

Exercise 11-1 Managing Units with systemctl

1. From a root shell, type dnf -y install vsftpd to install the Very

Secure FTP service.

2. Type systemctl start vsftpd to activate the FTP server on

your machine.

3. Type systemctl status vsftpd to get output like that shown in

Example 11-6, where you can see that the vsftpd service is

currently operational. In the Loaded line, you can also see that

the service is currently disabled, which means that it will not

be activated on a system restart. The vendor preset also shows

as disabled, which means that, by default, after installation

this unit will not automatically be enabled.

4. Type systemctl enable vsftpd to create a symbolic link in the

wants directory for the multiuser target to ensure that the

service is automatically started after a restart.

5. Type systemctl status vsftpd again. You’ll see that the unit

file has changed from being disabled to enabled.

Example 11-6 Requesting Current Unit Status with systemctl

status

Click here to view code image

[root@server1 system]# systemctl status vsftpd
• vsftpd.service - Vsftpd ftp daemon
 Loaded: loaded (/usr/lib/systemd/system/vsftpd.service; enabled;
 vendor preset: disabled)
 Active: active (running) since Thu 2022-09-15 08:42:50 CEST; 6s
 ago
 Process: 33967 ExecStart=/usr/sbin/vsftpd /etc/vsftpd/vsftpd.conf
 (code=exited, status=0/SUCCESS)
 Main PID: 33968 (vsftpd)
 Tasks: 1 (limit: 23272)
 Memory: 708.0K
 CPU: 2ms
 CGroup: /system.slice/vsftpd.service
 └─33968 /usr/sbin/vsftpd /etc/vsftpd/vsftpd.conf

Sep 15 08:42:50 server1.example.com systemd[1]: Starting Vsftpd ftp
 daemon...
Sep 15 08:42:50 server1.example.com systemd[1]: Started Vsftpd ftp
 daemon. .

When requesting the current status of a Systemd unit as in

Example 11-6, you can see different kinds of information about it.

Table 11-2 shows the different kinds of information that you can

get about unit files when using the systemctl status command.

Table 11-2 Systemd Status Overview

Status Description

Loaded The unit file has been processed and the unit is active.

Active(running) The unit is running with one or more active processes.

Active(exited) The unit has successfully completed a one-time run.

Active(waiting) The unit is running and waiting for an event.

Inactive(dead) The unit is not running.

Enabled The unit will be started at boot time.

Disabled The unit will not be started at boot time.

Static The unit cannot be enabled but may be started by another
unit automatically.

As an administrator, you also often need to get a current

overview of the current status of Systemd unit files. Different

commands, some of which are shown in Table 11-3, can help you

get this insight.

Table 11-3 systemctl Unit Overview Commands

Command Description

systemctl -t service Shows only service units

systemctl list-units -t
service

Shows all active service units (same result as the
previous command)

systemctl list-units -t
service --all

Shows inactive service units as well as active
service units

systemctl --failed -t
service

Shows all services that have failed

systemctl status -l
your.service

Shows detailed status information about services

Hivanetwork.com

https://hivanetwork.com/

Managing Dependencies

In general, there are two ways to manage Systemd dependencies:

Unit types such as socket, timer, and path are directly related

to a service unit. Systemd can make the connection because

the first part of the name is the same: cockpit.socket works

with cockpit.service. Accessing either of these unit types will

automatically trigger the service type.

Dependencies can be defined within the unit, using keywords

like Requires, Requisite, After, and Before.

As an administrator, you can request a list of unit dependencies.

Type systemctl list-dependencies followed by a unit name to

find out which dependencies it has; add the --reverse option to

find out which units are required for this unit to be started.

Example 11-7 shows an example of this command.

Example 11-7 Showing Unit Dependencies

Click here to view code image

[root@server1 ~]# systemctl list-dependencies vsftpd
 vsftpd.service
└─system.slice
└─basic.target
 ├─alsa-restore.service

 ├─alsa-state.service
 ├─firewalld.service
 ├─microcode.service
 ├─rhel-autorelabel-mark.service
 ├─rhel-autorelabel.service
 ├─rhel-configure.service
 ├─rhel-dmesg.service
 ├─rhel-loadmodules.service
 ├─paths.target
 ├─slices.target
 │ ├─-.slice
 │ ├─system.slice
 ├─sockets.target
 │ ├─avahi-daemon.socket
 │ ├─cups.socket
 │ ├─dbus.socket
 │ ├─dm-event.socket
 │ ├─iscsid.socket
 │ ├─iscsiuio.socket
 │ ├─lvm2-lvmetad.socket
 │ ├─rpcbind.socket
 │ ├─systemd-initctl.socket
 │ ├─systemd-journald.socket
 │ ├─systemd-shutdownd.socket
 │ ├─systemd-udevd-control.socket
 │ ├─systemd-udevd-kernel.socket
 ├─sysinit.target
 │ ├─dev-hugepages.mount

 │ ├─dev-mqueue.mount
 │ ├─dmraid-activation.service
 │ ├─iscsi.service

To ensure accurate dependency management, you can use

different keywords in the [Unit] section of a unit:

Requires: If this unit loads, units listed here will load also. If

one of the other units is deactivated, this unit will also be

deactivated.

Requisite: If the unit listed here is not already loaded, this

unit will fail.

Wants: This unit wants to load the units that are listed here,

but it will not fail if any of the listed units fail.

Before: This unit will start before the unit specified with

Before.

After: This unit will start after the unit specified with After.

In upcoming Exercise 11-2 you learn how to use these options to

manage unit dependency relations.

Managing Unit Options

When working with Systemd unit files, you risk getting

overwhelmed by its many options. Every unit file can be

configured with different options. To figure out which options

are available for a specific unit, use the systemctl show

command. For instance, the systemctl show sshd command

shows all Systemd options that can be configured in the

sshd.service unit, including their current default values. Example

11-8 shows the output of this command.

Example 11-8 Showing Available Options with systemctl show

Click here to view code image

[root@server1 ~]# systemctl show | head -20
Id=sshd.service
Names=sshd.service
Requires=basic.target
Wants=sshd-keygen.service system.slice
WantedBy=multi-user.target
ConsistsOf=sshd-keygen.service
Conflicts=shutdown.target
ConflictedBy=sshd.socket
Before=shutdown.target multi-user.target
After=network.target sshd-keygen.service systemd-journald.socket
 basic.target system.slice
Description=OpenSSH server daemon
LoadState=loaded
ActiveState=active
SubState=running

FragmentPath=/usr/lib/systemd/system/sshd.service
UnitFileState=enabled
InactiveExitTimestamp=Sat 2015-05-02 11:06:02 EDT
InactiveExitTimestampMonotonic=2596332166
ActiveEnterTimestamp=Sat 2015-05-02 11:06:02 EDT
ActiveEnterTimestampMonotonic=2596332166
ActiveExitTimestamp=Sat 2015-05-02 11:05:22 EDT
ActiveExitTimestampMonotonic=2559916100
InactiveEnterTimestamp=Sat 2015-05-02 11:06:02 EDT

When changing unit files to apply options, you need to make sure

that the changes are written to /etc/systemd/system, which is the

location where custom unit files should be created. The

recommended way to do so is to use the systemctl edit

command. This command creates a subdirectory in

/etc/systemd/system for the service that you are editing; for

example, if you use systemctl edit sshd.service, you get a

directory with the name /etc/systemd/systemd/sshd.service.d in

which a file with the name override.conf is created. All settings

that are applied in this file overwrite any existing settings in the

service file in /usr/lib/systemd/system. In Exercise 11-2 you learn

how to apply changes to Systemd units.

Tip

By default, Systemd uses the nano editor. Not

everybody likes that very much (including me). If

you want vim to be used instead of nano, edit the

/root/.bash_profile file to include the following line:

export SYSTEMD_EDITOR="/bin/vim" and add this

line to the ~/.bashrc file. After you log in again, vim

will be used as the default editor. If you would

rather use /bin/vim as the default editor for all

commands that need an external editor (including

systemctl), you may also include export

EDITOR="/bin/vim" instead.

Exercise 11-2 Changing Unit Configuration

1. From a root shell, type dnf -y install httpd to install the

Apache web server package.

2. Use systemctl cat httpd.service to show the current

configuration of the unit file that starts the Apache web

server.

3. Type systemctl show httpd.service to get an overview of

available configuration options for this unit file.

4. Type export SYSTEMD_EDITOR=/bin/vim to ensure you use

vim as the default editor for the duration of this session.

(Optionally, add this line to ~/.bashrc to make it persistent.)

5. Use systemctl edit httpd.service to change the default

configuration, and add a [Service] section that includes the

Restart=always and RestartSec=5s lines.

6. Enter systemctl daemon-reload to ensure that Systemd picks

up the new configuration.

7. Type systemctl start httpd to start the httpd service and

systemctl status sshd to verify that the sshd service is indeed

running.

8. Use killall httpd to kill the httpd process.

9. Type systemctl status httpd and then repeat after 5 seconds.

You’ll notice that the httpd process gets automatically

restarted.

Summary

In this chapter you learned how to work with Systemd. You read

how to manage Systemd service state and how to change

different options in Systemd. In the next chapter you’ll learn how

to schedule tasks using the cron and at services.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 11-4 lists a

reference for these key topics and the page numbers on which

each is found.

Table 11-4 Key Topics for Chapter 11

Key Topic Element Description Page Number

Example 11-1 Unit Types in Systemd 256

List Three sections of a Systemd unit file 257

Section Understanding Systemd Target Units 260

Exercise 11-1 Managing Units with systemctl 261

Hivanetwork.com

https://hivanetwork.com/

Exercise 11-1 Managing Units with systemctl 261

Table 11-3 systemctl Unit Overview Commands 263

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

Systemd

unit

target

want

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 What is a unit?

 Which command should you use to show all service units that

are currently loaded?

 How do you create a want for a service?

 How do you change the default editor for systemctl?

 Which directory contains custom Systemd unit files?

 What should you include to ensure that a unit file will

automatically load another unit file?

 Which command shows available configuration options for the

httpd.service unit?

 Which command shows all dependencies for a specific unit?

 What does it mean if systemctl status shows that a unit is dead?

 How do you create a Systemd override file?

End-of-Chapter Lab

You have now learned how to work with Systemd. Before you

continue, it is a good idea to work on a lab that helps ensure you

can apply the skills that you acquired in this chapter.

Lab 11.1

1. Install the vsftpd and httpd services.

2. Set the default systemctl editor to vim.

3. Edit the httpd.service unit file such that starting httpd will

always auto-start vsftpd. Edit the httpd service such that after

failure it will automatically start again in 10 seconds.

Chapter 12

Scheduling Tasks

The following topics are covered in this chapter:

Understanding Task Scheduling Options in RHEL

Using Systemd Timers

Configuring cron to Automate Recurring Tasks

Configuring at to Schedule Future Tasks

The following RHCSA exam objective is covered in this chapter:

Schedule tasks using at and cron

On a Linux server it is important that certain tasks run at certain

times. This can be done by using the at and cron services, which

can be configured to run tasks in the future. The at service is for

executing future tasks once only, and the cron service is for

executing recurring regular tasks. Apart from these services,

which have been around in all previous versions of RHEL,

Systemd is providing timer units that can be used as an

alternative. In this chapter you learn how to configure both cron

and at, as well as Systemd timers.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

12-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 12-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding Task Scheduling Options in

RHEL

1

Using Systemd Timers 2–4

Configuring cron to Automate Recurring Tasks 5–8

Configuring at to Schedule Future Tasks 9–10

 What is the default solution for scheduling recurring jobs in

RHEL 9?

1. Systemd timers

2. cron

3. anacron

4. at

 How do you configure a timer to start at a specific time?

1. Use a cron-style starting time notation in the [Timer] section.

2. Use OnCalendar in the [Timer] section.

3. Use OnTime in the [Timer] section.

4. Schedule it through cron.

 You want a timer to be started 1 minute after starting of the

Systemd service. Which option do you use?

1. OnCalendar

2. OnUnitActiveSec

3. OnBootSec

4. OnStartupSec

 You want a systemd user unit to be started 2 minutes after the

user has logged in. Which of the following would you use?

1. OnCalendar

2. OnUserLogin

3. OnUserActiveSec

4. OnStartupSec

 Which of the following would run a cron task Sunday at 11 a.m.?

1. * 11 7 * *

2. 0 11 * 7 *

3. 0 11 * * 7

4. 11 0 * 7 *

 Which of the following launches a job every 5 minutes from

Monday through Friday?

1. */5 * * * 1-5

2. */5 * 1-5 * *

3. 0/5 * * * 1-5

4. 0/5 * 1-5 * *

 How do you create a cron job for a specific user?

1. Log in as that user and type crontab -e to open the cron editor.

2. Open the crontab file in the user home directory and add what

you want to add.

3. As root, type crontab -e username.

4. As root, type crontab -u username -e.

 Which of the following is not a recommended way to specify jobs

that should be executed with cron?

1. Modify /etc/crontab.

2. Put the jobs in separate scripts in /etc/cron.d.

3. Use crontab -e to create user-specific cron jobs.

4. Put scripts in /etc/cron.{hourly|daily|weekly|monthly} for

automatic execution.

 After you enter commands in the at shell, which command

enables you to close the at shell?

1. Ctrl-V

2. Ctrl-D

3. exit

4. :wq

 Which command enables you to see current at jobs scheduled

for execution?

1. atrm

2. atls

3. atq

4. at

Foundation Topics

Hivanetwork.com

https://hivanetwork.com/

Understanding Task Scheduling Options in RHEL

RHEL 9 offers different solutions for scheduling tasks:

Systemd timers are now the default solution to ensure that

specific tasks are started at specific moments.

cron is the legacy scheduler service. It is still supported and

responsible for scheduling a few services.

st is used to schedule an occasional user job for future

execution.

Using Systemd Timers

Since its initial appearance in RHEL 7, systemd has been

replacing many services. Since the release of RHEL 9 it is also

responsible for scheduling tasks. It is now the primary

mechanism to do so, which means that if ever you are trying to

find out how future tasks are executed, you should consider

systemd timers first.

A systemd timer is always used together with a service file, and

the names should match. For example, the logrotate.timer file is

used to modify the logrotate.service file. The service unit defines

how the service should be started, and the timer defines when it

will be started. If you need a service to be started by a timer, you

enable the timer, not the service. Example 12-1 shows what the

logrotate.timer file looks like.

Example 12-1 Sample Timer Contents

Click here to view code image

[root@server1 system]# systemctl cat logrotate.timer
/usr/lib/systemd/system/logrotate.timer
[Unit]
Description=Daily rotation of log files
Documentation=man:logrotate(8) man:logrotate.conf(5)

[Timer]
OnCalendar=daily
AccuracySec=1h
Persistent=true

[Install]
WantedBy=timers.target

To define how the timer should be started, the timer unit

contains a [Timer] section. In the code in Example 12-1, you can

see that it lists three options:

OnCalendar: Describes when the timer should execute. In this

case it is set to daily, which ensures daily execution.

AccuracySec: Indicates a time window within which the timer

should execute. In Example 12-1 it is set to 1 hour. If the timer

needs to be executed at a more specific time, it is common to

set it to a lower value. Use 1us for the best accuracy.

Persistent: A modifier to OnCalendar=daily, it specifies that

the last execution time should be stored on disk, so that the

next time it executes is exactly one day later.

In systemd timers, different options can be used to indicate when

the related service should be started. Table 12-2 lists the most

important options.

Table 12-2 Timing Options in Systemd Timers

Option Use

OnActiveSec Defines a timer relative to the moment

the timer is activated.

OnBootSec Defines a timer relative to when the

machine was booted.

OnStartupSec Specifies a time relative to when the

service manager was started. In most

cases this is the same as OnBootSec, but

not when systemd user units are used.

OnUnitActiveSec Defines a timer relative to when the unit

that the timer activates was last

activated.

OnCalendar Defines timers based on calendar event

expressions, such as daily. See man

systemd.time for more details.

In Exercise 12-1 you’ll learn how to explore how systemd timers

are organized.

Exercise 12-1: Using Systemd Timers

1. Use systemctl list-units -t timer to show a list of all timers.

2. Type systemctl list-unit-files logrotate.*, which should show

there is a logrotate.service and a logrotate.timer.

3. Enter systemctl cat logrotate.service to verify the contents

of the logrotate.service unit file. Notice that it doesn’t have an

[Install] section.

4. Use systemctl status logrotate.service, which will show it

marked as triggered by the logrotate.timer.

5. Use systemctl status logrotate.timer to verify the status of

the related timer.

6. Install the sysstat package, using dnf install -y sysstat.

7. Verify the unit files that were added from this package, using

systemctl list-unit-files sysstat*.

8. Type systemctl cat sysstat-collect.timer to show what the

sysstat-collect timer is doing. You’ll see the line

OnCalendar=*:00/10, which ensures that it will run every 10

minutes.

Configuring cron to Automate Recurring Tasks

Task scheduling has been common on Linux for a long time, and

in the past the crond service was the primary tool to schedule

tasks.

The crond service consists of two major components. First is the

cron daemon crond, which in RHEL 9 is also started as a systemd

service. This daemon looks every minute to see whether there is

work to do. Second, this work to do is defined in the cron

configuration, which consists of multiple files working together

to provide the right information to the right service at the right

time. In this section, you learn how to configure cron.

Exam Tip

Even if systemd timers are now the default solution

for running recurring tasks, cron is still available.

Make sure you master both for purposes of

preparing for the RHCSA exam!

Managing the crond Service

The crond service is started by default on every RHEL system.

Managing the crond service itself is easy: it does not need much

management. Where other services need to be reloaded or

restarted to activate changes to their configuration, this is not

needed by crond. The crond daemon wakes up every minute

and checks its configuration to see whether anything needs to be

started.

To monitor the current status of the crond service, you can use

the systemctl status crond command. Example 12-2 shows the

output of this command.

Example 12-2 Monitoring the Current State of the crond Service

Click here to view code image

[root@localhost ~]# systemctl status crond
• crond.service - Command Scheduler
 Loaded: loaded (/usr/lib/systemd/system/crond.service; enabled; vendor preset: enabled)
 Active: active (running) since Mon 2022-11-21 12:19:12 CET; 1h
 21min ago
 Main PID: 1169 (crond)
 Tasks: 2 (limit: 23284)
 Memory: 1.5M
 CPU: 66ms
 CGroup: /system.slice/crond.service
 ├─1169 /usr/sbin/crond -n
 └─6689 /usr/sbin/anacron -s
Nov 21 13:01:01 localhost.localdomain anacron[6689]: Will run job
 'cron.daily' in 12 min.
Nov 21 13:01:01 localhost.localdomain anacron[6689]: Will run job
 'cron.weekly' in 32 min.
Nov 21 13:01:01 localhost.localdomain anacron[6689]: Will run job
 'cron.monthly' in 52 min.
Nov 21 13:01:01 localhost.localdomain anacron[6689]: Jobs will be
 executed sequentially
Nov 21 13:01:01 localhost.localdomain run-parts[6691]: (/etc/cron.
 hourly) finished 0anacron
Nov 21 13:01:01 localhost.localdomain CROND[6675]: (root) CMDEND
 (run-parts /etc/cron.hourly)
Nov 21 13:13:01 localhost.localdomain anacron[6689]: Job 'cron.daily'
 started
Nov 21 13:13:01 localhost.localdomain anacron[6689]: Job 'cron.daily'
 terminated

Nov 21 13:33:01 localhost.localdomain anacron[6689]: Job 'cron.weekly'
 started
Nov 21 13:33:01 localhost.localdomain anacron[6689]: Job 'cron.weekly'
 terminated

The most significant part of the output of the systemctl status

crond command is in the beginning, which indicates that the

cron service is loaded and enabled. The fact that the service is

enabled means that it will automatically be started whenever

this service is restarting. The last part of the command output

shows current status information. Through the journald service,

the systemctl command can find out what is actually happening

to the crond service.

Understanding cron Timing

When scheduling services through cron, you need to specify

when exactly the services need to be started. In the crontab

configuration (which is explained in more depth in the next

section), you use a time string to indicate when tasks should be

started. Table 12-3 shows the time and date fields used (in the

order specified).

Hivanetwork.com

https://hivanetwork.com/

Table 12-3 cron Time and Date Fields

Field Values

minute 0–59

hour 0–23

day of month 1–31

month 1–12 (or month names)

day of week 0–7 (Sunday is 0 or 7), or day names

In any of these fields, you can use an * as a wildcard to refer to

any value. Ranges of numbers are allowed, as are lists and

patterns. Some examples are listed next:

* 11 * * * Every minute between 11:00 and 11:59 (probably not

what you want)

0 11 * * 1-5 Every day at 11 a.m. on weekdays only

0 7-18 * * 1-5 Every hour at the top of the hour between 7 a.m.

and 6 p.m. on weekdays

0 */2 2 12 5 Every two hours on the hour on December 2 and

every Friday in December

Tip

You don’t need to remember all this; man 5 crontab

shows all possible constructions.

Managing cron Configuration Files

The main configuration file for cron is /etc/crontab, but you will

not change this file directly. It does give you a convenient

overview, though, of some time specifications that can be used in

cron. It also sets environment variables that are used by the

commands that are executed through cron (see Example 12-3). To

make modifications to the cron jobs, there are other locations

where cron jobs should be specified.

Example 12-3 /etc/crontab Sample Content

Click here to view code image

[root@server2 ~]# cat /etc/crontab
SHELL=/bin/bash

PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root

For details see man 4 crontabs

Example of job definition:
.---------------- minute (0 - 59)
| .------------- hour (0 - 23)
| | .---------- day of month (1 - 31)
| | | .------- month (1 - 12) OR jan,feb,mar,apr ...
| | | | .---- day of week (0 - 6) (Sunday=0 or 7) OR
sun,mon,tue,wed,thu,fri,sat
| | | | |
* * * * * user-name command to be executed

Instead of modifying /etc/crontab, different cron configuration

files are used:

cron files in /etc/cron.d

Scripts in /etc/cron.hourly, cron.daily, cron.weekly, and

cron.monthly

User-specific files that are created with crontab -e

In this section, you get an overview of these locations.

Note

If you want to experiment with how cron works, you

should allow for a sufficient amount of time for the

job to be executed. The crond service reads its

configuration every minute, after which new jobs

can be scheduled for execution on the next minute.

So, if you want to make sure your job is executed as

fast as possible, allow for a safe margin of three

minutes between the moment you save the cron

configuration and the execution time.

To start, cron jobs can be started for specific users. To create a

user-specific cron job, type crontab -e after logging in as that

user, or as root type crontab -e -u username. These user-specific

cron jobs are the most common way for scheduling additional

jobs through cron.

When you are using crontab -e, the default editor opens and

creates a temporary file. After you edit the cron configuration,

the temporary file is moved to its final location in the directory

/var/spool/cron. In this directory, a file is created for each user.

These files should never be edited directly! When the file is saved

by crontab -e, it is activated automatically.

Whereas in the early days of RHEL the /etc/crontab file was

modified directly, on RHEL 9 you do not do that anymore. If you

want to add cron jobs, you add these to the /etc/cron.d directory.

Just put a file in that directory (the exact name does not really

matter) and make sure that it meets the syntax of a typical cron

job. In Example 12-4, you can see an example of the

/etc/cron.d/0hourly.cron file, which takes care of running hourly

jobs through cron.

Example 12-4 Example cron Jobs in /etc/cron.d

Click here to view code image

[root@server1 cron.d]# ls
0hourly
[root@server1 cron.d]# cat 0hourly
Run the hourly jobs
SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
01 * * * * root run-parts /etc/cron.hourly

This example starts by setting environment variables. These are

the environment variables that should be considered while

running this specific job. On the last line the job itself is defined.

The first part of this definition specifies when the job should run.

In this case it will run 1 minute after each hour, each day of the

month, each month, and each day of the week. The job will be

executed as the root user, and the job itself involves the run-

parts command, which is responsible for running the scripted

cron jobs in /etc/cron.hourly.

The last way to schedule cron jobs is through the following

directories:

/etc/cron.hourly

/etc/cron.daily

/etc/cron.weekly

/etc/cron.monthly

In these directories, you typically find scripts (not files that meet

the crontab syntax requirements) that are put in there from RPM

package files. When opening these scripts, notice that no

information is included about the time when the command

should be executed. The reason is that the exact time of

execution does not really matter. The only thing that does matter

is that the job is launched once an hour, once a day, a week, or a

month, and anacron is taking care of everything else.

Understanding the Purpose of anacron

To ensure regular execution of the job, cron uses the anacron

service. This service takes care of starting the hourly, daily,

weekly, and monthly cron jobs, no matter at which exact time. To

determine how this should be done, anacron uses the

/etc/anacrontab file. Example 12-5 shows the contents of the

/etc/anacrontab file, which is used to specify how anacron jobs

should be executed.

Example 12-5 anacrontab Configuration

Click here to view code image

[root@server1 spool]# cat /etc/anacrontab
/etc/anacrontab: configuration file for anacron

See anacron(8) and anacrontab(5) for details.

SHELL=/bin/sh
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root
the maximal random delay added to the base delay of the jobs
RANDOM_DELAY=45
the jobs will be started during the following hours only
START_HOURS_RANGE=3-22

#period in days delay in minutes job-identifier command
1 5 cron.daily nice run-parts /etc/cron.daily
7 25 cron.weekly nice run-parts /etc/cron.weekly
@monthly 45 cron.monthly nice run-parts /etc/cron.monthly

In /etc/anacrontab, the jobs to be executed are specified in lines

that contain four fields, as shown in Example 12-5. The first field

specifies the frequency of job execution, expressed in days. The

second field specifies how long anacron waits before executing

the job, which is followed by the third field that contains a job

identifier. The fourth field specifies the command that should be

executed.

Tip

Although it’s useful to know how anacron works, it

typically is not a service that is configured directly.

The need to configure services through anacron is

taken away by the /etc/cron.hourly, cron.daily,

cron.weekly, and cron.monthly files.

Note

It is not easy to get an overview of the cron jobs

actually scheduled for execution. There is no single

Hivanetwork.com

https://hivanetwork.com/

command that would show all currently scheduled

cron jobs. The crontab -l command does list cron

jobs, but only for the current user account.

Managing cron Security

By default, all users can enter cron jobs. It is possible to limit

which user is allowed to schedule cron jobs by using the

/etc/cron.allow and /etc/cron.deny configuration files. If the

cron.allow file exists, a user must be listed in it to be allowed to

use cron. If the /etc/cron.deny file exists, a user must not be listed

in it to be allowed to set up cron jobs. Both files should not exist

on the same system at the same time. Only root can use cron if

neither file exists.

In Exercise 12-2, you apply some of the cron basics and schedule

cron jobs using different mechanisms.

Exercise 12-2 Running Scheduled Tasks Through cron

1. Open a root shell. Type cat /etc/crontab to get an impression

of the contents of the /etc/crontab configuration file.

2. Type crontab -e. This opens an editor interface that by default

uses vi as its editor. Add the following line:
Click here to view code image

0 2 * * 1-5 logger message from root

3. Use the vi command :wq! to close the editing session and

write changes.

4. Type cd /etc/cron.hourly. In this directory, create a script file

with the name eachhour that contains the following line:
Click here to view code image

logger This message is written at $(date)

5. Use chmod +x eachhour to make the script executable; if you

fail to make it executable, it will not work.

6. Enter the directory /etc/crond.d and in this directory create a

file with the name eachhour. Put the following contents in the

file:
Click here to view code image

11 * * * * root logger This message is written from /etc/cron.d

7. Save the modifications to the configuration file and continue

to the next section. (For optimal effect, perform step 8 after a

couple of hours.)

8. After a couple of hours, type grep written /var/log/messages

and read the messages to verify correct cron operations.

Configuring at to Schedule Future Tasks

Whereas cron is used to schedule jobs that need to be executed

on a regular basis, the atd service is available for services that

need to be executed only once. On RHEL 9, the atd service is

available by default, so all that you need to do is schedule jobs.

To run a job through the atd service, you would use the at

command, followed by the time the job needs to be executed.

This can be a specific time, as in at 14:00, but it can also be a time

indication like at teatime or at noon. After you type this, the at

shell opens. From this shell, you can type several commands that

will be executed at the specific time that is mentioned. After

entering the commands, press Ctrl-D to quit the at shell.

After scheduling jobs with at, you can use the atq command (q

for queue) to get an overview of all jobs currently scheduled. It is

also possible to remove current at jobs. To do this, use the atrm

command, optionally followed by the number of the at job that

you want to remove. In Exercise 12-3, you learn how to work

with at to schedule jobs for execution at a specific time.

Tip

The batch command works like at, but it’s a bit

more sophisticated. When using batch, you can

specify that a job is started only when system

performance parameters allow. Typically, that is

when system load is lower than 0.8. This value is a

bit low on modern multi-CPU systems, which is why

the load value can be specified manually when

starting atd, using the -l command-line option. Use,

for instance, atd -l 3.0 to make sure that no batch job

is started when the system load is higher than 3.0.

Exercise 12-3 Scheduling Jobs with at

1. Type systemctl status atd. In the line that starts with Loaded:,

this command should show you that the service is currently

loaded and enabled, which means that it is ready to start

receiving jobs.

2. Type at 15:00 (or replace with any time near to the time at

which you are working on this exercise).

3. Type logger message from at. Press Ctrl-D to close the at

shell.

4. Type atq to verify that the job has indeed been scheduled.

Summary

In this chapter, you learned how to schedule jobs for future

execution. RHEL 9 provides three solutions to do so: systemd

timers have become the default solution, the legacy cron service

is still around, and at can be used to schedule deferred user

tasks.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 12-4 lists a

reference for these key topics and the page number on which

each is found.

Table 12-4 Key Topics for Chapter 12

Key Topic

Element Description Page

Table 12-2 Timing Options in Systemd

Timers

275

Table 12-3 cron Time and Date Fields 278

List crontab time indicators examples 278

List Methods to enter crontab

information

279

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

timer

crond

anacron

at

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 Where do you configure a cron job that needs to be executed

once every two weeks?

 How do you configure a service to be started 5 minutes after

your system has started?

 You have enabled a systemd service unit file to be started by a

timer, but it doesn’t work. What should you check?

 What is the easiest way to start a service every 7 hours?

 How do you match a specific timer to a specific service?

 Which command enables you to schedule a cron job for user

lisa?

 How do you specify that user boris is never allowed to schedule

jobs through cron?

 You need to make sure that a job is executed every day, even if

the server at execution time is temporarily unavailable. How do

you do this?

 Which service must be running to schedule at jobs?

 Which command enables you to find out whether any current at

jobs are scheduled for execution?

End-of-Chapter Lab

In this end-of-chapter lab, you work on at jobs and on cron jobs.

Lab 12.1

1. Create a cron job that performs an update of all software on

your computer every evening at 11 p.m.

2. Schedule your machine to be rebooted at 3 a.m. tomorrow

morning.

3. Use a systemd timer to start the vsftpd service five minutes

after your system has started.

Hivanetwork.com

https://hivanetwork.com/

Chapter 13

Configuring Logging

The following topics are covered in this chapter:

Understanding System Logging

Working with systemd-journald

Configuring rsyslogd

Rotating Log Files

The following RHCSA exam objectives are covered in this

chapter:

Locate and interpret system log files and journals

Preserve system journals

Analyzing log files is an important system administrator task. If

anything goes wrong on a Linux system, the answer is often in

the log files. On RHEL 9, two different log systems are used, and it

is important to know which information can be found where.

This chapter teaches you all about it. You learn how to read log

files, how to configure rsyslogd and journald, and how to set up

your system for log rotation so that you can prevent your disks

from being completely filled up by services that are logging too

enthusiastically.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

13-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 13-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding System Logging 1–3

Working with systemd-journald 4–6

Configuring rsyslogd 7–9

Rotating Log Files 10

 Which of the following statements about systemd-journald is not

true?

1. systemd-journald logs kernel messages.

2. systemd-journald writes to the journal, which by default does

not persist between boots.

3. systemd-journald is a replacement of rsyslogd.

4. To read files from the systemd journal, you use the journalctl

command.

 Which log would you read to find messages related to

authentication errors?

1. /var/log/messages

2. /var/log/lastlog

3. /var/log/audit/audit.log

4. /var/log/secure

 Which log would you read to find information that relates to

SELinux events?

1. /var/log/messages

2. /var/log/lastlog

3. /var/log/audit/audit.log

4. /var/log/secure

 Which directory is used to store the systemd journal

persistently?

1. /var/log/journal

2. /var/run/journal

3. /run/log

4. /run/log/journal

 What do you need to do to make the systemd journal persistent?

1. Create the directory /var/log/journal.

2. Open /etc/sysconfig/journal and set the PERSISTENT option to

yes.

3. Open the /etc/systemd/journald.conf file and set the

PERSISTENT option to yes.

4. Create the /var/log/journal file and set appropriate

permissions.

 After making the systemd journal persistent, what should you do

to immediately activate this change?

1. Reboot your server.

2. Nothing, it will be picked up automatically.

3. Use systemctl daemon-reload.

4. Use systemctl restart systemd-journal-flush.

 What is the name of the rsyslogd configuration file?

1. /etc/rsyslog.conf

2. /etc/sysconfig/rsyslogd.conf

3. /etc/sysconfig/rsyslog.conf

4. /etc/rsyslog.d/rsyslogd.conf

 In the rsyslog.conf file, which of the following destinations refers

to a specific rsyslogd module?

1. -/var/log/maillog

2. /var/log/messages

3. :omusrmsg:*

4. *

 Which facility is the best solution if you want to configure the

Apache web server to log messages through rsyslog?

1. daemon

2. apache

3. syslog

4. local0-7

 You want to maximize the file size of a log file to 10 MB. Where

do you configure this?

1. Create a file in /etc/logrotate.d and specify the maximal size in

that file.

2. Put the maximal size in the logrotate cron job.

3. Configure the destination with the maximal size option.

4. This cannot be done.

Foundation Topics

Understanding System Logging

Most services used on a Linux server write information to log

files. This information can be written to different destinations,

and there are multiple solutions to find the relevant information

in system logs. No fewer than three different approaches can be

used by services to write log information:

Systemd-journald: With the introduction of Systemd, the

journald log service systemd-journald has been introduced

also. This service is tightly integrated with Systemd, which

allows administrators to read detailed information from the

journal while monitoring service status using the systemctl

status command or the journalctl command. Systemd-

journald is the default solution for logging in RHEL 9.

Direct write: Some services write logging information directly

to the log files—even some important services such as the

Apache web server and the Samba file server. This approach

to logging is not recommended.

rsyslogd: rsyslogd is the enhancement of syslogd, a service

that takes care of managing centralized log files. syslogd has

been around for a long time. Even if systemd-journald is now

the default for logging, rsyslogd provides features not offered

by systemd-journald, and for that reason it is still offered on

RHEL 9. Also, rsyslogd is still configured to work as it did in

older versions of RHEL, which means that you can still use the

log files it generates to get the log information you need.

Understanding the Role of systemd-journald and rsyslogd

On RHEL 9, systemd-journald provides an advanced log

management system. It collects messages from the kernel, the

entire boot procedure, and services and writes these messages to

an event journal. This event journal is stored in a binary format,

and you can query it by using the journalctl command. The

journalctl command enables you to access a deep level of detail

about messages that are logged, as it is an integrated part of

Systemd and, as such, receives all messages that have been

generated by Systemd units.

Because the journal that is written by systemd-journald is not

persistent between reboots, messages are also forwarded to the

rsyslogd service, which writes the messages to different files in

the /var/log directory. rsyslogd also offers features that do not

exist in journald, such as centralized logging and filtering

messages by using modules. Numerous modules are available to

enhance rsyslog logging, such as output modules that allow

administrators to store messages in a database. As the rsyslogd

advanced features are used a lot, RHEL 9 still offers rsyslogd for

logging as an addition to systemd-journald.

Systemd-journald is tightly integrated with systemd; therefore, it

logs everything that your server is doing. rsyslogd adds some

services to it. In particular, it takes care of writing log

information to specific files (that will be persistent between

reboots), and it allows you to configure remote logging and log

servers.

Apart from rsyslogd and systemd-journald, there is the auditd

service. This service provides auditing, an in-depth trace of what

specific services, processes, or users have been doing.

Configuration of auditing is beyond the scope of the RHCSA

Hivanetwork.com

https://hivanetwork.com/

exam, but you’ll notice that SELinux, for instance, logs detailed

messages to the auditd service.

To get more information about what has been happening on a

machine running RHEL, administrators have to take three

approaches:

Use the journalctl command to get more detailed information

from the journal.

Use the systemctl status <unit> command to get a short

overview of the most recent significant events that have been

logged by Systemd units through systemd-journald. This

command shows the status of services, as well as the most

recent log entries that have been written. Example 13-1 shows

some status log messages that have been logged for this

service.

Monitor the files in /var/log that are written by rsyslogd.

Example 13-1 Using systemctl status to Show Relevant Log

Information

Click here to view code image

[root@server1 ~]# systemctl status sshd -l
 sshd.service – OpenSSH server daemon

 Loaded: loaded (/usr/lib/systemd/system/sshd.service; enabled;
 vendor preset: enabled)
 Active: active (running) since Sat 2019-06-08 03:34:56 EDT; 55min
 ago
 Docs: man:sshd(8)
 man:sshd_config(5)
 Main PID: 1055 (sshd)
 Tasks: 1 (limit: 11363)
 Memory: 5.5M
 Cgroup: /system.slice/sshd.service

 └─1055 /usr/sbin/sshd -D -oCiphers=aes256-gcm@openssh.com,
 chacha20-poly1305@openssh.com,ae>

Jun 08 03:34:56 server1.example.com systemd[1]: Starting OpenSSH
 server daemon...
Jun 08 03:34:56 server1.example.com sshd[1055]: Server listening on
 0.0.0.0 port 22.
Jun 08 03:34:56 server1.example.com sshd[1055]: Server listening on ::
 port 22.
Jun 08 03:34:56 server1.example.com systemd[1]: Started OpenSSH server
 daemon.
Jun 08 03:57:38 server1.example.com sshd[3368]: Accepted password for
 root from 192.168.4.1 port 5470>
Jun 08 03:57:38 server1.example.com sshd[3368]: pam_
 unix(sshd:session):session opened for user root

Reading Log Files

Apart from the messages that are written by systemd-journald to

the journal and which can be read using the journalctl

command, on a Linux system you’ll also find different log files in

the directory /var/log. Most of the files in this directory are

managed by rsyslogd, but some of the files are created directly by

specific services. You can read these files by using a pager utility

such as less.

The exact number of files in the /var/log directory will change,

depending on the configuration of a server and the services that

are running on that server. Some files, however, do exist on most

occasions, and as an administrator, you should know which files

they are and what content can be expected in these files. Table

13-2 provides an overview of some of the standard files that are

created in this directory.

Table 13-2 System Log Files Overview

Log File Explanation

/var/log/messages This is the most commonly used log

file; it is the generic log file where

most messages are written to.

/var/log/dmesg Contains kernel log messages.

/var/log/secure Contains authentication-related

messages. Look here to see which

authentication errors have

occurred on a server.

/var/log/boot.log Contains messages that are related

to system startup.

/var/log/audit/audit.log Contains audit messages. SELinux

writes to this file.

/var/log/maillog Contains mail-related messages.

/var/log/httpd/ Contains log files that are written

by the Apache web server (if it is

installed). Notice that Apache

writes messages to these files

directly and not through rsyslog.

Understanding Log File Contents

As an administrator, you need to be able to interpret the contents

of log files. For example, Example 13-2 shows partial content

from the /var/log/messages file.

Example 13-2 /var/log/messages Sample Content

Click here to view code image

[root@localhost ~]# tail -10 /var/log/messages
Jan 26 09:45:06 localhost systemd[1590]: Reached target Exit the
 Session.
Jan 26 09:45:06 localhost systemd[1]: user@42.service: Deactivated
 successfully.
Jan 26 09:45:06 localhost systemd[1]: Stopped User Manager for UID 42.
Jan 26 09:45:06 localhost systemd[1]: Stopping User Runtime Directory
 /run/user/42...
Jan 26 09:45:06 localhost systemd[1]: run-user-42.mount: Deactivated
 successfully.
Jan 26 09:45:06 localhost systemd[1]: user-runtime-dir@42.service:
 Deactivated successfully.
Jan 26 09:45:06 localhost systemd[1]: Stopped User Runtime Directory
 /run/user/42.
Jan 26 09:45:06 localhost systemd[1]: Removed slice User Slice of
 UID 42.
Jan 26 09:45:06 localhost systemd[1]: user-42.slice: Consumed 3.786s
 CPU time.

Jan 26 09:45:15 localhost systemd[1]: fprintd.service: Deactivated
 successfully..

As you can see in Example 13-2, each line that is logged has

specific elements:

Date and time: Every log message starts with a timestamp.

For filtering purposes, the timestamp is written as military

time.

Host: The host the message originated from. This is relevant

because rsyslogd can be configured to handle remote logging

as well.

Service or process name and PID: The name of the service or

process that generated the message.

Message content: The content of the message, which contains

the exact message that has been logged.

To read the content of a log file, you can use a pager utility, like

less, or you can live monitor what is happening in the log file, as

described in the next section.

Live Log File Monitoring

When you are configuring services on Linux, it might be useful to

see in real time what is happening. You could, for example, open

two terminal sessions at the same time. In one terminal session,

you configure and test the service. In the other terminal session,

you see in real time what is happening. The tail -f <logfile>

command shows in real time which lines are added to the log

file. Exercise 13-1 in the following section shows a small example

in which tail -f is used. When you’re monitoring a log file with

tail -f, the trace remains open until you press Ctrl-C to close it.

Using logger

Most services write information to the log files all by themselves

or through rsyslogd. The logger command enables users to write

messages to rsyslog from the command line or a script. Using this

command is simple. Just type logger, followed by the message

you want to write to the logs. The logger utility, in this way,

offers a convenient solution to write messages from scripts. This

allows you to have a script write to syslog if something goes

wrong.

When using logger, you can also specify the priority and facility

to log to. The command logger -p kern.err hello writes hello to

the kernel facility, for example, using the error priority (priority

and facility are discussed in more detail later in this chapter).

This option enables you to test the working of specific rsyslog

facilities. In Exercise 13-1, you use tail -f to monitor a log file in

real time and use logger to write log messages to a log file.

Exercise 13-1 Using Live Log Monitoring and logger

1. Open a root shell.

2. From the root shell, type tail -f /var/log/messages.

3. Open a second terminal window. In this terminal window,

type su - student to open a subshell as user student.

4. Type su - to open a root shell, but enter the wrong password.

5. Look at the file /var/log/messages. You see an error message

was logged here.

6. From the student shell, type logger hello. You’ll see the

message appearing in the /var/log/messages file in real time.

7. In the tail -f terminal, press Ctrl-C to stop tracing the messages

file.

8. Type tail -20 /var/log/secure. This shows the last 20 lines in

/var/log/secure, which also shows the messages that the su -

password errors have generated previously.

Working with systemd-journald

The systemd-journald service stores log messages in the journal,

a binary file that is temporarily stored in the file /run/log/journal.

This file can be examined using the journalctl command.

Hivanetwork.com

https://hivanetwork.com/

Using journalctl to Find Events

The easiest way to use journalctl is by just typing the command.

It shows that recent events have been written to the journal since

your server last started. The result of this command is shown in

the less pager, and by default you’ll see the beginning of the

journal. Because the journal is written from the moment your

server boots, the start of the output shows boot-related log

messages. If you want to see the last messages that have been

logged, you can use journalctl -f, which shows the last lines of

the messages where new log lines are automatically added. You

can also type journalctl and use (uppercase) G to go to the end of

the journal. Also note that the search options / and ? work in the

journalctl output. Example 13-3 shows a partial result of this

command.

Example 13-3 Watching Log Information Generated by systemd-

journald

Click here to view code image

-- Logs begin at Sat 2019-06-08 04:45:34 EDT, end at Sat 2019-06-08
 04:56:11 EDT. --
Jun 08 04:45:34 server1.example.com kernel: Linux version 4.18.0-80.
 el8.x86_64 (mockbuild@x86-vm-08.b>
Jun 08 04:45:34 server1.example.com kernel: Command line: BOOT_

 IMAGE=(hd0,msdos1)/vmlinuz-4.18.0-80.e>
Jun 08 04:45:34 server1.example.com kernel: Disabled fast string
 operations
Jun 08 04:45:34 server1.example.com kernel: x86/fpu: Supporting XSAVE
 feature 0x001: 'x87 floating po>
Jun 08 04:45:34 server1.example.com kernel: x86/fpu: Supporting XSAVE
 feature 0x002: 'SSE registers'
Jun 08 04:45:34 server1.example.com kernel: x86/fpu: Supporting XSAVE
 feature 0x004: 'AVX registers'
Jun 08 04:45:34 server1.example.com kernel: x86/fpu: Supporting XSAVE
 feature 0x008: 'MPX bounds regi>
Jun 08 04:45:34 server1.example.com kernel: x86/fpu: Supporting XSAVE
 feature 0x010: 'MPX CSR'
Jun 08 04:45:34 server1.example.com kernel: x86/fpu: xstate_offset[2]:
 576, xstate_sizes[2]: 256
Jun 08 04:45:34 server1.example.com kernel: x86/fpu: xstate_offset[3]:
 832, xstate_sizes[3]: 64
Jun 08 04:45:34 server1.example.com kernel: x86/fpu: xstate_offset[4]:
 896, xstate_sizes[4]: 64
Jun 08 04:45:34 server1.example.com kernel: x86/fpu: Enabled xstate
 features 0x1f, context size is 96>

What makes journalctl a flexible command is that its many

filtering options allow you to show exactly what you need.

Exercise 13-2 shows some of the most interesting options.

Exercise 13-2 Discovering journalctl

1. Type journalctl. You’ll see the content of the journal since

your server last started, starting at the beginning of the

journal. The content is shown in less, so you can use common

less commands to walk through the file.

2. Type q to quit the pager. Now type journalctl --no-pager. This

shows the contents of the journal without using a pager.

3. Type journalctl -f. This opens the live view mode of

journalctl, which allows you to see new messages scrolling by

in real time. Press Ctrl-C to interrupt.

4. Type journalctl, press the Spacebar, and then press the Tab

key twice. When prompted to view all possibilities, type y and

then press the Enter key. This shows specific options that can

be used for filtering. Type, for instance, journalctl _UID=1000

to show messages that have been logged for your student user

account.

5. Type journalctl -n 20. The -n 20 option displays the last 20

lines of the journal (just like tail -n 20).

6. Type journalctl -p err. This command shows errors only.

7. If you want to view journal messages that have been written

in a specific time period, you can use the --since and --until

commands. Both options take the time parameter in the

format YYYY-MM-DD hh:mm:ss. Also, you can use yesterday,

today, and tomorrow as parameters. So, type journalctl --

since yesterday to show all messages that have been written

since yesterday.

8. journalctl allows you to combine different options, as well.

So, if you want to show all messages with a priority error that

have been written since yesterday, use journalctl --since

yesterday -p err.

9. If you need as much detail as possible, use journalctl -o

verbose. This shows different options that are used when

writing to the journal (see Example 13-4). All these options can

be used to tell the journalctl command which specific

information you are looking for. Type, for instance, journalctl

_SYSTEMD_UNIT=sshd.service to show more information

about the sshd Systemd unit.

10. Type journalctl --dmesg. This shows kernel-related messages

only. Not many people use this command, as the dmesg

command gives the exact same result.

In the preceding exercise, you typed journalctl -o verbose to

show verbose output. Example 13-4 shows an example of the

verbose output. As you can see, this provides detailed

information for all items that have been logged, including the

PID, the ID of the associated user and group account, the

command that is associated, and more. This verbose information

may help you in debugging specific Systemd units.

Example 13-4 Showing Detailed Log Information with journalctl

-o verbose

Click here to view code image

[root@server1 ~]# journalctl _SYSTEMD_UNIT=sshd.service -o verbose
-- Logs begin at Sat 2019-06-08 04:45:34 EDT, end at Sat 2019-06-08
05:01:40 EDT. --
Sat 2019-06-08 04:45:52.633752 EDT [s=53e57e2481434e078e8306367dc5645c
 ;i=898;b=f35bb68348284f9ead79c3>
 _BOOT_ID=f35bb68348284f9ead79c3c6750adfa1
 _MACHINE_ID=5aa095b495ed458d934c54a88078c165
 _HOSTNAME=server1.example.com
 PRIORITY=6
 _UID=0
 _GID=0
 _SYSTEMD_SLICE=system.slice
 _CAP_EFFECTIVE=3fffffffff
 _TRANSPORT=syslog
 SYSLOG_FACILITY=10
 SYSLOG_IDENTIFIER=sshd
 SYSLOG_PID=1211
 MESSAGE=Server listening on 0.0.0.0 port 22.
 _PID=1211
 _COMM=sshd
 _EXE=/usr/sbin/sshd
 _CMDLINE=/usr/sbin/sshd -D -oCiphers=aes256-gcm@openssh.com,
 chacha20-poly1305@openssh.com,aes256->
 _SELINUX_CONTEXT=system_u:system_r:sshd_t:s0-s0:c0.c1023

 _SYSTEMD_CGROUP=/system.slice/sshd.service
 _SYSTEMD_UNIT=sshd.service
 _SYSTEMD_INVOCATION_ID=728a7dfecd7d436387dcd6e319c208c7
 _SOURCE_REALTIME_TIMESTAMP=1559983552633752
Sat 2019-06-08 04:45:52.634696 EDT [s=53e57e2481434e078e8306367dc5645c
 ;i=899;b=f35bb68348284f9ead79c3>
 _BOOT_ID=f35bb68348284f9ead79c3c6750adfa1
lines 1-26

There are some more interesting options to use with the

journalctl command. The -b option shows a boot log, which

includes just the messages that were generated while booting.

The -x option adds explanation to the information that is shown.

This explanation makes it easier to interpret specific messages.

You should also consider the -u option, which allows you to see

messages that have been logged for a specific systemd unit only.

Use, for instance, journalctl -u sshd to see all messages that have

been logged for the sshd service. Table 13-3 provides an overview

of the most interesting journalctl options.

Table 13-3 Most Useful journalctl Options

Option Use

-f Shows the bottom of the journal and live adds new

messages that are generated

-b Shows the boot log

-x Adds additional explanation to the logged items

-u Used to filter log messages for a specific unit only

-p Allows for filtering of messages with a specific

priority

Preserving the Systemd Journal

By default, the journal is stored in the file /run/log/journal. The

entire /run directory is used for current process status

information only, which means that the journal is cleared when

the system reboots. To make the journal persistent between

system restarts, you should create a directory /var/log/journal.

Storing the journal permanently requires the Storage=auto

parameter in /etc/systemd/journald.conf, which is set by default.

This parameter can have different values:

Storage=auto The journal will be written on disk if the

directory /var/log/journal exists.

Storage=volatile The journal will be stored only in the

/run/log/journal directory.

Storage=persistent The journal will be stored on disk in the

directory /var/log/journal. This directory will be created

automatically if it doesn’t exist.

Storage=none No data will be stored, but forwarding to other

targets such as the kernel log buffer or syslog will still work.

Even when the journal is written to the permanent file in

/var/log/journal, that does not mean that the journal is kept

forever. The journal has built-in log rotation that will be used

monthly. Also, the journal is limited to a maximum size of 10

percent of the size of the file system that it is on, and it will stop

growing if less than 15 percent of the file system is still free. If

that happens, the oldest messages from the journal are dropped

automatically to make room for newer messages. To change

these settings, you can modify the file /etc/systemd/journald.conf,

as shown in Example 13-5 (along with other parameters you can

set).

Example 13-5 Setting journald Parameters Through

/etc/systemd/journald.conf

Hivanetwork.com

https://hivanetwork.com/

Click here to view code image

[Journal]
#Storage=auto
#Compress=yes
#Seal=yes
#SplitMode=uid
#SyncIntervalSec=5m
#RateLimitIntervalSec=30s
#RateLimitBurst=10000
#SystemMaxUse=
#SystemKeepFree=
#SystemMaxFileSize=
#SystemMaxFiles=100
#RuntimeMaxUse=
#RuntimeKeepFree=
#RuntimeMaxFileSize=
#RuntimeMaxFiles=100
#MaxRetentionSec=
#MaxFileSec=1month
#ForwardToSyslog=no
#ForwardToKMsg=no
#ForwardToConsole=no
#ForwardToWall=yes
#TTYPath=/dev/console
#MaxLevelStore=debug
#MaxLevelSyslog=debug

Making the systemd journal permanent is not hard to do.

Exercise 13-3 shows how to proceed.

Exercise 13-3 Making the systemd Journal Persistent

1. Open a root shell and type mkdir /var/log/journal.

2. Before journald can write the journal to this directory, you

have to set ownership. Type chown root:systemd-journal

/var/log/journal, followed by chmod 2755 /var/log/journal.

3. Use systemctl restart systemd-journal-flush to reload the

new systemd-journald parameters.

4. The Systemd journal is now persistent across reboots.

Configuring rsyslogd

To make sure that the information that needs to be logged is

written to the location where you want to find it, you can

configure the rsyslogd service through the /etc/rsyslog.conf file

and optional drop-in files in /etc/rsyslog.d. In the /etc/rsyslog.conf

file, you find different sections that allow you to specify where

and how information should be written.

Understanding rsyslogd Configuration Files

Like many other services on RHEL, the configuration for rsyslogd

is not defined in just one configuration file. The /etc/rsyslog.conf

file is the central location where rsyslogd is configured. From this

file, the content of the directory /etc/rsyslog.d is included. This

directory can be populated by installing RPM packages on a

server. When looking for specific log configuration, make sure to

always consider the contents of this directory also.

Understanding rsyslog.conf Sections

The rsyslog.conf file is used to specify what should be logged and

where it should be logged. To do this, you’ll find different

sections in the rsyslog.conf file:

MODULES ####: rsyslogd is modular. Modules are

included to enhance the supported features in rsyslogd.

GLOBAL DIRECTIVES ####: This section is used to

specify global parameters, such as the location where

auxiliary files are written or the default timestamp format.

RULES ####: This is the most important part of the

rsyslog.conf file. It contains the rules that specify what

information should be logged to which destination.

Understanding Facilities, Priorities, and Log Destinations

To specify what information should be logged to which

destination, rsyslogd uses facilities, priorities, and destinations:

A facility specifies a category of information that is logged.

rsyslogd uses a fixed list of facilities, which cannot be

extended. This is because of backward compatibility with the

legacy syslog service.

A priority is used to define the severity of the message that

needs to be logged. When you specify a priority, by default all

messages with that priority and all higher priorities are

logged.

A destination defines where the message should be written.

Typical destinations are files, but rsyslog modules can be used

as a destination as well, to allow further processing through a

rsyslogd module.

Example 13-6 shows the RULES section in rsyslog.

Example 13-6 The RULES Section in rsyslog.conf

Click here to view code image

RULES

Log all kernel messages to the console.
Logging much else clutters up the screen.
#kern.* /dev/console

Log anything (except mail) of level info or higher.

Do not log private authentication messages!
*.info;mail.none;authpriv.none;cron.none /var/log/messages

The authpriv file has restricted access.
authpriv.* /var/log/secure

Log all the mail messages in one place.
mail.* -/var/log/maillog

Log cron stuff
cron.* /var/log/cron

Everybody gets emergency messages
.emerg :omusrmsg:

Save news errors of level crit and higher in a special file.
uucp,news.crit /var/log/spooler

In Example 13-6, you can see how different facilities and

priorities are used to define locations where information can be

logged. The available facilities and priorities are fixed and cannot

be added to. Table 13-4 shows which facilities are available, and

Table 13-5 shows a list of all priorities.

Table 13-4 rsyslogd Facilities

Facility Used by

auth/authpriv Messages related to authentication.

cron Messages generated by the crond service.

daemon Generic facility that can be used for

nonspecified daemons.

kern Kernel messages.

lpr Messages generated through the legacy lpd

print system.

mail Email-related messages.

mark Special facility that can be used to write a

marker periodically.

news Messages generated by the NNTP news

system.

security Same as auth/authpriv. Should not be used

anymore.

syslog Messages generated by the syslog system.

user Messages generated in user space.

uucp Messages generated by the legacy UUCP

system.

local0-7 Messages generated by services that are

configured by any of the local0 through

local7 facilities.

When you specify a destination, a file is often used. If the

filename starts with a hyphen (as in -/var/log/maillog), the log

messages will not be immediately committed to the file but

instead will be buffered to make writes more efficient. Device

files can also be used, such as /dev/console. If this device is used,

messages are written in real time to the console. On modern

servers, this often does not make sense, because administrators

often log in remotely and do not see what is happening on the

server console.

The syslog facilities were defined in the 1980s, and to guarantee

backward compatibility, no new facilities can be added. The

result is that some facilities still exist that basically serve no

purpose anymore, and some services that have become relevant

at a later stage do not have their own facility. As a solution, two

specific facility types can be used. The daemon facility is a

generic facility that can be used by any daemon. In addition, the

local0 through local7 facilities can be used.

If services that do not have their own rsyslogd facility need to

write log messages to a specific log file anyway, these services

can be configured to use any of the local0 through local7

facilities. You next have to configure the services to use these

facilities as well. The procedure you follow to do that is specific

to the service you are using. Then you need to add a rule to the

rsyslog.conf file to send messages that come in through that

facility to a specific log file.

To determine which types of messages should be logged, you can

use different severities in rsyslog.conf lines. These severities are

the syslog priorities. Table 13-5 provides an overview of the

available priorities in ascending order.

Hivanetwork.com

https://hivanetwork.com/

Table 13-5 rsyslogd Priorities

Priority Description

debug Debug messages that will give as much

information as possible about service operation.

info Informational messages about normal service

operation.

notice Informational messages about items that might

become an issue later.

warning

(warn)

Something is suboptimal, but there is no real

error yet.

error

(err)

A noncritical error has occurred.

crit A critical error has occurred.

alert Message used when the availability of the service

is about to be discontinued.

emerg

(panic)

Message generated when the availability of the

service is discontinued.

When a specific priority is used, all messages with that priority

and higher are logged according to the specifications used in that

specific rule. If you need to configure logging in a detailed way,

where messages with different priorities are sent to different

files, you can specify the priority with an equal sign (=) in front of

it, as in the following line, which will write all cron messages

with only the debug priority to a specific file with the name

/var/log/cron.debug. The - in front of the line specifies to buffer

writes so that information is logged in a more efficient way.

Click here to view code image

cron.=debug -/var/log/cron.debug

Tip

You don’t need to learn the names of rsyslogd

facilities and priorities by heart. They are all listed

in man 5 rsyslog.conf. On the exam, you have

access to the man pages, so this information will be

easily accessible.

Exercise 13-4 shows how to change rsyslog.conf. You configure

the Apache service to log messages through syslog, and you

create a rule that logs debug messages to a specific log file.

Exercise 13-4 Changing rsyslog.conf Rules

1. By default, the Apache service does not log through rsyslog

but keeps its own logging. You are going to change that. To

start, type dnf install -y httpd to ensure that the Apache

service is installed.

2. After installing the Apache service, open its configuration file

/etc/httpd/conf/httpd.conf and verify it has the following line:

ErrorLog syslog:local1

3. Type systemctl restart httpd.

4. Create a line in the /etc/rsyslog.conf file that will send all

messages that it receives for facility local1 (which is now used

by the httpd service) to the file /var/log/ httpd-error.log. To do

this, include the following line in the #### RULES #### section

of the file:
Click here to view code image

local1.error /var/log/httpd-error.log

5. Tell rsyslogd to reload its configuration, by using systemctl

restart rsyslog.

6. All Apache error messages will now be written to the httpd-

error.log file.

7. From the Firefox browser, go to http://localhost/index.html.

Because no index.html page exists yet, this will be written to

the error log.

8. Create a snap-in file that logs debug messages to a specific file

as well. To do this, type echo "*.debug /var/log/messages-

debug" /etc/rsyslog.d/debug.conf.

9. Again, restart rsyslogd using systemctl restart rsyslog.

10. Use the command tail -f /var/log/messages-debug to open a

trace on the newly created file.

11. From a second terminal, type logger -p daemon.debug

"Daemon Debug Message". You’ll see the debug message

passing by.

12. Press Ctrl-C to close the debug log file.

Rotating Log Files

To prevent syslog messages from filling up your system

completely, you can rotate the log messages. That means that

when a certain threshold has been reached, the old log file is

closed and a new log file is opened. The logrotate utility is started

periodically to take care of rotating log files.

When a log file is rotated, the old log file is typically copied to a

file that has the rotation date in it. So, if /var/log/messages is

rotated on June 8, 2023, the rotated filename will be

/var/log/messages-20230608. As a default, four old log files are

kept on the system. Files older than that period are removed

from the system automatically.

Warning

Log files that have been rotated are not stored

anywhere; they are just gone. If your company

policy requires you to be able to access information

about events that have happened more than five

weeks ago, for example, you should either back up

log files or configure a centralized log server where

logrotate keeps rotated messages for a significantly

longer period.

The default settings for log rotation are kept in the file

/etc/logrotate.conf (see Example 13-7).

Example 13-7 /etc/logrotate.conf Sample Content

Click here to view code image

[root@server1 cron.d]# cat /etc/logrotate.conf
see "man logrotate" for details

global options do not affect preceding include directives

rotate log files weekly
weekly

keep 4 weeks worth of backlogs
rotate 4

create new (empty) log files after rotating old ones
create

use date as a suffix of the rotated file
dateext

uncomment this if you want your log files compressed
#compress

packages drop log rotation information into this directory
include /etc/logrotate.d

system-specific logs may be also be configured here.

The most significant settings used in this configuration file tell

logrotate to rotate files on a weekly basis and keep four old

versions of the file. You can obtain more information about other

parameters in this file through the man logrotate command.

If specific files need specific settings, you can create a

configuration file for that file in /etc/logrotate.d. The settings for

that specific file overwrite the default settings in

/etc/logrotate.conf. You will find that different files exist in this

directory already to take care of some of the configuration files.

Summary

In this chapter, you learned how to configure logging. You read

how the rsyslogd and journald services are used on RHEL to keep

log information, and you learned how to manage logs that are

written by these services. You also learned how to configure log

rotation and make the journal persistent.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 13-6 lists a

reference for these key topics and the page number on which

each is found.

Table 13-6 Key Topics for Chapter 13

Key Topic

Element
Description Page

Paragraph systemd-journald explanation 290

Paragraph rsyslogd explanation 290

Table 13-2 System Log Files Overview 292

Table 13-3 Most Useful journalctl Options 298

Hivanetwork.com

https://hivanetwork.com/

Exercise 13-3 Making the systemd Journal

Persistent

300

Table 13-4 rsyslogd Facilities 302

Table 13-5 rsyslogd Priorities 303

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

systemd-journald

rsyslogd

journalctl

log rotation

facility

priority

destination

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 Which file is used to configure rsyslogd?

 Which log file contains messages related to authentication?

 If you do not configure anything, how long will it take for log

files to be rotated away?

 Which command enables you to log a message from the

command line to the user facility, using the notice priority?

 Which line would you add to write all messages with a priority of

info to the file /var/log/messages.info?

 Which configuration file enables you to allow the journal to grow

beyond its default size restrictions?

 Which command allows you to check the systemd journal for

boot messages, where an explanation is included?

 Which command enables you to see all journald messages that

have been written for PID 1 between 9:00 a.m. and 3:00 p.m.?

 Which command do you use to see all messages that have been

logged for the sshd service?

 Which procedure enables you to make the systemd journal

persistent?

End-of-Chapter Lab

You have now learned how to work with logging on Red Hat

Enterprise Linux 9 and know how to configure rsyslogd and

journald. You can now complete the end-of-chapter lab to

reinforce these newly acquired skills.

Lab 13.1

1. Configure the journal to be persistent across system reboots.

2. Make a configuration file that writes all messages with an info

priority to the file /var/log/messages.info.

3. Configure logrotate to keep ten old versions of log files.

Chapter 14

Managing Storage

The following topics are covered in this chapter:

Understanding MBR and GPT Partitions

Managing Partitions and File Systems

Mounting File Systems

The following RHCSA exam objectives are covered in this

chapter:

List, create, delete partitions on MBR and GPT disks

Configure systems to mount file systems at boot by universally

unique ID (UUID) or label

Add new partitions and logical volumes, and swap to a system

non-destructively

Create, mount, unmount, and use vfat, ext4, and xfs file

systems

Working with storage is an important task for a Linux

administrator. In this chapter, you acquire the first set of

essential storage skills. You learn how to create and manage

partitions, format them with the file system you need to use, and

mount these file systems.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

14-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 14-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding MBR and GPT Partitions 1–2

Managing Partitions and File Systems 3–6

Mounting File Systems 7–10

 Which of the following is not an advantage of using a GUID

partition table over using an MBR partition table?

1. Access time to a directory is quicker.

2. A total amount of 8 ZiB can be addressed by a partition.

3. With GUID partitions, a backup copy of the partition table is

created automatically.

4. There can be up to 128 partitions in total.

 Which of the following statements about GPT partitions is not

true?

1. You can easily convert an existing MBR disk to GPT by using

gdisk.

2. You can use fdisk to write a GPT disk label.

3. Partition types in GPT are four characters instead of two

characters.

4. GPT partitions can be created on MBR as well as EFI systems.

 Which partition type is commonly used to create a swap

partition?

1. 81

2. 82

3. 83

4. 8e

 What is the default disk device name you would expect to see in

KVM virtual machines?

1. /dev/sda

2. /dev/hda

3. /dev/vda

4. /dev/xsda

 Which of the following statements is not true?

1. You should not ever use gdisk on an MBR disk.

2. fdisk offers support to manage GPT partitions as well.

3. Depending on your needs, you can create MBR and GPT

partitions on the same disk.

4. If your server boots from EFI, you must use GPT partitions.

 Which of the following file systems is used as the default in RHEL

9?

1. Ext4

2. XFS

3. btrfs

4. Ext3

 Which command enables you to find current UUIDs set to the file

systems on your server?

1. mount

2. df -h

Hivanetwork.com

https://hivanetwork.com/

3. lsblk

4. blkid

 What would you put in the device column of /etc/fstab to mount a

file system based on its unique ID 42f419c4-633f-4ed7-b161-

519a4dadd3da?

1. 42f419c4-633f-4ed7-b161-519a4dadd3da

2. /dev/42f419c4-633f-4ed7-b161-519a4dadd3da

3. ID=42f419c4-633f-4ed7-b161-519a4dadd3da

4. UUID=42f419c4-633f-4ed7-b161-519a4dadd3da

 Which command can you use to verify the contents of /etc/fstab

before booting?

1. fsck --fstab

2. findmnt --verify

3. mount -a

4. reboot

 While creating a systemd mount unit file, different elements are

required. Which of the following is not one of them?

1. The mount unit filename corresponds to the mount point.

2. An [Install] section is included to set the default runlevel.

3. A what statement is included to indicate what should be

mounted.

4. A where statement is included to indicate where the device

should be mounted.

Foundation Topics

Understanding MBR and GPT Partitions

To use a hard drive, it needs to have partitions. Some operating

systems install everything to one partition, while other operating

systems such as Linux normally have several partitions on one

hard disk. Using more than one partition on a system makes

sense for multiple reasons:

It’s easier to distinguish between different types of data.

Specific mount options can be used to enhance security or

performance.

It’s easier to create a backup strategy where only relevant

portions of the OS are backed up.

If one partition accidentally fills up completely, the other

partitions still are usable and your system might not crash

immediately.

Note

Instead of using multiple different partitions, you

can also use LVM logical volumes or Stratis file

systems. Managing logical volumes and Stratis file

systems is covered in Chapter 15, “Managing

Advanced Storage.”

On recent versions of RHEL, two different partitioning schemes

are available. Before creating your first partition, you should

understand these schemes.

Understanding the MBR Partitioning Scheme

When the personal computer was invented in the early 1980s, a

system was needed to define hard disk layout. This system

became known as the Master Boot Record (MBR) partitioning

scheme. While booting a computer, the Basic Input/Output

System (BIOS) was loaded to access hardware devices. From the

BIOS, the bootable disk device was read, and on this bootable

device, the MBR was allocated. The MBR contains all that is

needed to start a computer, including a boot loader and a

partition table.

When hard disks first came out for PCs in the early 1980s, users

could have different operating systems on them. Some of these

included MS-DOS/PC-DOS, PC/IX (IBM’s UNIX for 8086 PCs),

CPM86, and MPM86. The disk would be partitioned in such a way

that each operating system installed got a part of the disk. One of

the partitions would be made active, meaning the code in the

boot sector in the MBR would read the first sector of that active

partition and run the code. That code would then load the rest of

the OS. This explains why four partitions were deemed “enough.”

The MBR was defined as the first 512 bytes on a computer hard

drive, and in the MBR an operating system boot loader (such as

GRUB 2; see Chapter 17, “Managing and Understanding the Boot

Procedure”) was present, as well as a partition table. The size

that was used for the partition table was relatively small, just 64

bytes, with the result that in the MBR no more than four

partitions could be created. Since partition size data was stored

in 32-bit values, and a default sector size of 512 bytes was used,

the maximum size that could be used by a partition was limited

to 2 TiB (hardly a problem in the early 1980s).

In the MBR, just four partitions could be created. Because many

PC operating systems needed more than four partitions, a

solution was found to go beyond the number of four. In the MBR,

one partition could be created as an extended partition, as

opposed to the other partitions that were created as primary

partitions. Within the extended partition, multiple logical

partitions could be created to reach a total number of 15

partitions that could be addressed by the Linux kernel.

Understanding the Need for GPT Partitioning

Current computer hard drives have become too big to be

addressed by MBR partitions. That is one of the main reasons

why a new partitioning scheme was needed. This partitioning

scheme is the GUID Partition Table (GPT). On computers that

are using the new Unified Extensible Firmware Interface

(UEFI) as a replacement for the old BIOS system, GPT partitions

are the only way to address disks. Also, older computer systems

that are using BIOS instead of UEFI can be configured with

globally unique ID (GUID) partitions, which is necessary if a disk

with a size bigger than 2 TiB needs to be addressed.

Using GUID offers many benefits:

The maximum partition size is 8 zebibyte (ZiB), which is 1024 ×

1024 × 1024 × 1024 gibibytes.

In GPT, up to a maximum number of 128 partitions can be

created.

The 2-TiB limit no longer exists.

Because space that is available to store partitions is much

bigger than 64 bytes, which was used in MBR, there is no

longer a need to distinguish between primary, extended, and

logical partitions.

GPT uses a 128-bit GUID to identify partitions.

A backup copy of the GUID partition table is created by default

at the end of the disk, which eliminates the single point of

failure that exists on MBR partition tables.

Understanding Storage Measurement Units

When talking about storage, we use different measurement

units. In some cases, units like megabyte (MB) are used. In other

cases, units like mebibyte (MiB) are used. The difference between

these two is that a megabyte is a multiple of 1,000, and a

mebibyte is a multiple of 1,024. In computers, it makes sense to

talk about multiples of 1,024 because that is how computers

address items. However, confusion was created when hardware

vendors a long time ago started referring to megabytes instead of

mebibytes.

In the early days of computing, the difference was not that

important. The difference between a kilobyte (KB) and a kibibyte

(KiB) is just 24 bytes. The bigger the numbers grow, the bigger

the difference becomes. A gigabyte, for instance, is 1,000 × 1,000 ×

1,000 bytes, so 1,000,000,000 bytes, whereas a gibibyte is 1,024 ×

1,024 × 1,024 bytes, which makes a total of 1,073,741,824 bytes,

which is over 70 MB larger than 1 GB.

On current Linux distributions, the binary numbers (MiB, not

MB) have become the standard. In Table 14-2, you can see an

overview of the values that are used.

Table 14-2 Disk Size Specifications

Symbol Name Value Symbol Name Value

KB Kilobyte 1000 KiB Kibibyte 1024

MB Megabyte 1000 MiB Mebibyte 1024

GB Gigabyte 1000 GiB Gibibyte 1024

TB Terabyte 1000 TiB Tebibyte 1024

PB Petabyte 1000 PiB Pebibyte 1024

EB Exabyte 1000 EiB Exbibyte 1024

ZB Zettabyte 1000 ZiB Zebibyte 1024

YB Yottabyte 1000 YiB Yobibyte 1024

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

In the past, KB, MB, and so on were used both in decimal and

binary situations; sometimes they were even mixed. For

example, 1-Mbps line speed is one million bits per second. The

once famous “1.44 MB” floppy disk was really 1,440,000 bytes in

size (80 tracks × 2 heads × 9 sectors × 512-byte sectors), creating a

mixed meaning of MB: 1.44 × (decimal K) × (binary K).

Managing Partitions and File Systems

As discussed in the previous section, two different types of

partitions can be used on RHEL. To match the different partition

types, there are also two different partitioning utilities. The fdisk

utility has been around for a long time and can be used to create

and manage MBR as well as GPT partitions. The gdisk utility is

used to create GPT partitions. In this section, you learn how to

use both.

Apart from fdisk and gdisk, there are other partitioning utilities

as well, of which parted is probably the most important. Some

people like it, as it is relatively easy to use, but at the same time it

hides some of the more advanced features. For that reason, this

chapter focuses on working with fdisk and gdisk and introduces

parted only briefly.

Hivanetwork.com

https://hivanetwork.com/

For both MBR and GPT partitions, you need to specify the name

of the disk device as an argument. Use the lsblk command to

print a list of all disk devices available on your system. Table 14-3

shows the most common disk device names that you work with

on RHEL.

Table 14-3 Common Disk Device Types

Device Name Description

/dev/sda A hard disk that uses the SCSI driver. Used

for SCSI and SATA disk devices. Common on

physical servers but also in VMware virtual

machines.

/dev/nvme0n1 The first hard disk on an NVM Express

(NVMe) interface. NVMe is a server-grade

method to address advanced SSD devices.

Note at the end of the device name that the

first disk in this case is referred to as n1

instead of a (as is common with the other

types).

/dev/hda The (legacy) IDE disk device type. You will

seldom see this device type on modern

computers.

/dev/vda A disk in a KVM virtual machine that uses

the virtio disk driver. This is the common

disk device type for KVM virtual machines.

/dev/xvda A disk in a Xen virtual machine that uses

the Xen virtual disk driver. You see this

when installing RHEL as a virtual machine

in Xen virtualization. RHEL 9 cannot be

used as a Xen hypervisor, but you might see

RHEL 9 virtual machines on top of the Xen

hypervisor using these disk types.

As you can see in Table 14-3, almost all disk device names end

with the letter a. The reason is that it is the first disk that was

found in your server. The second SCSI disk, for instance, would

have the name /dev/sdb. If many disks are installed in a server,

you can have up to /dev/sdz and even beyond. After /dev/sdz, the

kernel continues creating devices with names like /dev/sdaa and

/dev/sdab. Notice that on NVMe devices, numbers are used

instead of letters. So the first NVMe disk is nvme0n1, the second

NVMe disk is nvme0n2, and so on.

Creating MBR Partitions with fdisk

To create an MBR disk partition, you have to apply a multiple-

step procedure, as shown in Exercise 14-1.

Exercise 14-1 Creating MBR Partitions with fdisk

This exercise has been written to use an installation of RHEL that

contains an unused disk. You can easily add a second disk to

your environment. This can be a virtual disk that is added

through your virtualization program, or a USB flash drive if

you’re working on a physical installation. In that case, make sure

to replace the device names in this exercise with the device

names that match your hardware.

1. Open a root shell and type lsblk. This lists the block devices

that are available.

2. Open a root shell and run the fdisk command. This command

needs as its argument the name of the disk device where you

want to create the partition. This exercise uses /dev/sdb.

Change that, if needed, according to your hardware.
Click here to view code image

[root@server1 ~]# fdisk /dev/sdb
Welcome to fdisk (util-linux 2.37.4).
Changes will remain in memory only, until you decide to write
 them.
Be careful before using the write command.

Device does not contain a recognized partition table.
Created a new DOS disklabel with disk identifier 0x2c00c707.
Command (m for help):

3. Before you do anything, it is a good idea to check how much

disk space you have available. Press p to see an overview of

current disk allocation:
Click here to view code image

Command (m for help): p
Disk /dev/sdb: 20 GiB, 21474836480 bytes, 41943040 sectors
Disk model: VMware Virtual S
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x2c00c707

In the output of this command, in particular look for the total

number of sectors and the last sector that is currently used. If

the last partition does not end on the last sector, you have

available space to create a new partition. In this case, that

shouldn’t be an issue because you are supposed to use a new

disk in this exercise.

4. Type n to add a new partition:
Click here to view code image

Command (m for help): n
Partition type
 p primary (0 primary, 0 extended, 4 free)
 e extended (container for logical partitions)
Select (default p):

5. Press p to create a primary partition. Accept the partition

number that is now suggested, which should be /dev/sdb1.

6. Specify the first sector on disk that the new partition will start

on. The first available sector is suggested by default, so press

Enter to accept.

7. Type +1G to make this a 1-GiB partition. If you were to just

press Enter, the last sector available on disk would be

suggested. If you were to use that, after this exercise you

would not have any disk space left to create additional

partitions or logical volumes, so you should use another last

sector. To use another last sector, you can do one of the

following:

1. Enter the number of the last sector you want to use.

2. Enter +number to create a partition that sizes a specific

number of sectors.

3. Enter +number(K,M,G) to specify the size you want to

assign to the partition in KiB, MiB, or GiB.
Click here to view code image

Command (m for help): n
Partition type
 p primary (0 primary, 0 extended, 4 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (1-4, default 1):
I/O size (minimum/optimal): 512 bytes / 512 bytes
First sector (2048-41943039, default 2048):
Last sector, +/-sectors or +/-size{K,M,G,T,P} (2048-41943039,
 default 41943039): +1G
Created a new partition 1 of type ‘Linux’ and of size 1 GiB

After you enter the partition’s ending boundary, fdisk will

show a confirmation.

8. At this point, you can define the partition type. By default, a

Linux partition type is used. If you want the partition to be of

any other partition type, use t to change it. For this exercise

there is no need to change the partition type. Common

partition types include the following:

1. 82: Linux swap

2. 83: Linux

3. 8e: Linux LVM

9. If you are happy with the modifications, press w to write them

to disk and exit fdisk.

10. Type lsblk to verify that the new partition has been created

successfully.

Using Extended and Logical Partitions on MBR

In the previous procedure, you learned how to add a primary

partition. If three MBR partitions have been created already,

there is room for one more primary partition, after which the

partition table is completely filled up. If you want to go beyond

four partitions on an MBR disk, you have to create an extended

partition. Following that, you can create logical partitions within

the extended partition.

Using logical partitions does allow you to go beyond the

limitation of four partitions in the MBR; there is a disadvantage

as well, though. All logical partitions exist within the extended

partition. If something goes wrong with the extended partition,

you have a problem with all logical partitions existing within it

as well. If you need more than four separate storage allocation

units, you might be better off using LVM instead of logical

partitions. If you’re on a completely new disk, you might just

want to create GPT partitions instead. In Exercise 14-2 you learn

how to work with extended and logical partitions.

Note

An extended partition is used only for the purpose of

creating logical partitions. You cannot create file

systems directly on an extended partition!

Exercise 14-2 Creating Logical Partitions

1. In a root shell, type fdisk /dev/sdb to open the fdisk interface.

2. Type n to create a new partition. To create a logical partition,

when fdisk prompts which partition type you want to create,

enter e. This allows you to create an extended partition, which

is necessary to later add logical partitions.
Click here to view code image

Command (m for help): n
Partition type
 p primary (1 primary, 0 extended, 3 free)

Hivanetwork.com

https://hivanetwork.com/

 e extended (container for logical partitions)
Select (default p): e

3. If the extended partition is the fourth partition that you are

writing to the MBR, it will also be the last partition that can be

added to the MBR. For that reason, it should fill the rest of

your computer’s hard disk. Press Enter to accept the default

first sector and press Enter again when fdisk prompts for the

last sector (even if this is not the fourth partition yet).
Click here to view code image

Select (default p): e
Partition number (2-4, default 2):
First sector (2099200-41943039, default 2099200):
Last sector, +/-sectors or +/-size{K,M,G,T,P} (2099200-41943039,
default 41943039):

Created a new partition 2 of type 'Extended' and of size 19 GiB.

4. Now that the extended partition has been created, you can

create a logical partition within it. Still from the fdisk

interface, press n again. Because all of the space in the drive

has been allocated to partitions, the utility will by default

suggest adding a logical partition with partition number 5.
Click here to view code image

Command (m for help): n
All space for primary partitions is in use.
Adding logical partition 5
First sector (2101248-41943039, default 2101248):

5. Press Enter to accept the default first sector. When asked for

the last sector, enter +1G:
Click here to view code image

First sector (2101248-41943039, default 2101248):

Last sector, +/-sectors or +/-size{K,M,G,T,P} (2101248-41943039,
default 41943039): +1G

Created a new partition 5 of type 'Linux' and of size 1 GiB.

6. Now that the logical partition has been created, enter w to

write the changes to disk and quit fdisk.

Tip

In some cases, fdisk will print a message after

writing the partitions to disk, stating that it could not

update the partition table. If that happens, you can

try using the partprobe command to manually

update the partition table. Use lsblk to verify that it

now is visible. If this is not the case, use reboot to

restart your system.

Creating GPT Partitions with gdisk

If a disk is configured with a GUID Partition Table (GPT), or if it is

a new disk that does not contain anything yet and has a size that

goes beyond 2 TiB, you need to create GUID partitions. The

easiest way to do so is by using the gdisk utility. This utility has a

lot of similarities with fdisk but also has some differences.

Notice that you can only decide which type of partition table to

create when initializing an unused disk. Once either MBR or GPT

partitions have been created on a disk, you cannot change its

type. The preferred utility for creating GPT partitions is gdisk.

Alternatively, after starting fdisk on a new disk, you can use the

g command to initialize a GPT. Exercise 14-3 shows how to create

partitions in gdisk on a disk that doesn’t have any partitions yet.

Warning!

Do not ever use gdisk on a disk that has been

formatted with fdisk and already contains fdisk

partitions. gdisk will detect that an MBR is present,

and it will convert this to a GPT (see the following

code listing). Your computer most likely will not be

able to boot after doing this! When you see the

following message, use q to quit gdisk immediately,

without saving anything!

Click here to view code image

[root@server1 ~]# gdisk /dev/sda
GPT fdisk (gdisk) version 1.0.7

Partition table scan:
 MBR: MBR only
 BSD: not present
 APM: not present
 GPT: not present

Found invalid GPT and valid MBR; converting MBR to GPT format
in memory. THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by
typing 'q' if you don’t want to convert your MBR partitions
to GPT format!

Warning! Secondary partition table overlaps the last partition by
33 blocks!
You will need to delete this partition or resize it in another
utility.

Command (? for help):

To save you the hassle of going through this, I

verified it does what it says. After converting an

MBR to a GPT, your machine will not start anymore.

Exercise 14-3 Creating GPT Partitions with gdisk

To apply the procedure in this exercise, you need a new disk

device. Do not use a disk that contains data that you want to

keep, because this exercise will delete all data on it. If you are

using this exercise on a virtual machine, you may add the new

disk through the virtualization software. If you are working on a

physical machine, you can use a USB thumb drive as a disk

device for this exercise. Note that this exercise works perfectly

on a computer that starts from BIOS and not EFI; all you need is

a dedicated disk device.

1. To create a partition with gdisk, open a root shell and type

gdisk /dev/sdc. (Replace /dev/sdc with the exact device name

used on your computer.) gdisk will try to detect the current

layout of the disk, and if it detects nothing, it will create the

GPT and associated disk layout.
Click here to view code image

[root@server1 ~]# gdisk /dev/sdc
GPT fdisk (gdisk) version 1.0.7

Partition table scan:
 MBR: not present
 BSD: not present
 APM: not present
 GPT: not present

Creating new GPT entries in memory.

Command (? for help):

2. Type n to enter a new partition. You can choose any partition

number between 1 and 128, but it is wise to accept the default

partition number that is suggested.
Click here to view code image

Command (? for help): n
Partition number (1-128, default 1): 1

3. You now are asked to enter the first sector. By default, the first

sector that is available on disk will be used, but you can

specify an offset as well. This does not make sense, so just

press Enter to accept the default first sector that is proposed.
Click here to view code image

First sector (34-2097118, default = 2048) or {+-}size{KMGTP}:

4. When asked for the last sector, by default the last sector that is

available on disk is proposed (which would create a partition

that fills the entire hard disk). You can specify a different last

sector, or specify the disk size using +, the size, and KMGTP. So

to create a 1-GiB disk partition, use +1G.
Click here to view code image

Partition number (1-128, default 1): 1
First sector (34-41943006, default = 2048) or {+-}size{KMGTP}:
Last sector (2048-41943006, default = 41943006) or {+-}size{KMGTP}:
Current type is 8300 (Linux filesystem)
Hex code or GUID (L to show codes, Enter = 8300):

5. You now are asked to set the partition type. If you do not do

anything, the partition type is set to 8300, which is the Linux

file system partition type. Other options are available as well.

You can press l to show a list of available partition types.
Click here to view code image

Current type is 'Linux filesystem'
Hex code or GUID (L to show codes, Enter = 8300): l
0700 Microsoft basic data 0c01 Microsoft reserved 2700 Windows

 RE
3000 ONIE boot 3001 ONIE config 3900 Plan 9
4100 PowerPC PReP boot 4200 Windows LDM data 4201 Windows
 LDM metadata
4202 Windows Storage Spac 7501 IBM GPFS 7f00 ChromeOS
 kernel
7f01 ChromeOS root 7f02 ChromeOS reserved 8200 Linux
 swap
8300 Linux filesystem 8301 Linux reserved 8302 Linux
 / home
8303 Linux x86 root (/) 8304 Linux x86-64 root (/ 8305 Linux
 ARM64 root (/)
8306 Linux /srv 8307 Linux ARM32 root (/) 8400 Intel
 Rapid Start
8e00 Linux LVM a000 Android bootloader a001 Android
 bootloader 2
a002 Android boot a003 Android recovery a004 Android
 misc
a005 Android metadata a006 Android system a007 Android
 cache
a008 Android data a009 Android persistent a00a Android
 factory
a00b Android fastboot/ter a00c Android OEM a500 FreeBSD
 disklabel
a501 FreeBSD boot a502 FreeBSD swap a503 FreeBSD
 UFS
a504 FreeBSD ZFS a505 FreeBSD Vinum/RAID a580 Midnight
 BSD data

Hivanetwork.com

https://hivanetwork.com/

a581 Midnight BSD boot a582 Midnight BSD swap a583 Midnight
 BSD UFS
a584 Midnight BSD ZFS a585 Midnight BSD Vinum a600 OpenBSD
 disklabel
a800 Apple UFS a901 NetBSD swap a902 NetBSD
 FFS
a903 NetBSD LFS a904 NetBSD concatenated a905 NetBSD
 encrypted
a906 NetBSD RAID ab00 Recovery HD af00 Apple
 HFS/HFS+
af01 Apple RAID af02 Apple RAID offline af03 Apple
 label

The relevant partition types are as follows:

1. 8200: Linux swap

2. 8300: Linux file system

3. 8e00: Linux LVM

Notice that these are the same partition types as the ones that

are used in MBR, with two 0s added to the IDs. You can also

just press Enter to accept the default partition type 8300.

6. The partition is now created (but not yet written to disk). Press

p to show an overview, which allows you to verify that this is

really what you want to use.
Click here to view code image

Command (? for help): p

Disk /dev/sdc: 41943040 sectors, 20.0 GiB
Model: VMware Virtual S
Sector size (logical/physical): 512/512 bytes
Disk identifier (GUID): 49433C2B-16A9-4EA4-9D79-285E3AF7D133
Partition table holds up to 128 entries
Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 41943006
Partitions will be aligned on 2048-sector boundaries
Total free space is 39845821 sectors (19.0 GiB)

Number Start (sector) End (sector) Size Code Name
 1 2048 2099199 1024.0 MiB 8300 Linux
filesystem

Command (? for help):

7. If you are satisfied with the current partitioning, press w to

write changes to disk and commit. This gives a warning which

you can safely ignore by typing Y, after which the new

partition table is written to the GUID partition table.
Click here to view code image

Command (? for help): w

Final checks complete. About to write GPT data. THIS WILL
OVERWRITE EXISTING

PARTITIONS!!

Do you want to proceed? (Y/N): Y
OK; writing new GUID partition table (GPT) to /dev/sdc.

The operation has completed successfully.

8. If at this point you get an error message indicating that the

partition table is in use, type partprobe to update the kernel

partition table.

Creating GPT Partitions with parted

As previously mentioned, apart from fdisk and gdisk, the parted

utility can be used to create partitions. Because it lacks support

for advanced features, I have focused on fdisk and gdisk, but I’d

like to give you a quick overview of working with parted.

To use parted, you need to know that it has an interactive shell

in which you can work with its different options. Exercise 14-4

guides you through the procedure of creating partitions using

parted. This exercise assumes you have a new and unused disk

device /dev/sdd available.

Exercise 14-4 Creating Partitions with parted

You need a new disk to work with this procedure. This exercise

assumes that the new disk name is /dev/sdd.

1. From a root shell, type parted /dev/sdd. This opens the

interactive parted shell.

2. Type help to get an overview of available commands.

3. Type print. You will see a message about an unrecognized

disk label.

4. Type mklabel and press Enter. parted will now prompt for a

disk label type. Press the Tab key twice to see a list of available

disk label types. From the list, select gpt and press Enter.

5. Type mkpart. The utility prompts for a partition name. Type

part1 (the partition name doesn’t really matter).

6. Now the utility prompts for a file system type. This is a very

confusing option, because it suggests that you are setting a file

system type here, but that is not the case. Also, when using

Tab completion, you’ll see a list of file systems that you’ve

probably never used before. In fact, you could just press Enter

to accept the default suggestion of ext2, as the setting isn’t

used anyway, but I suggest using a file system type that comes

close to what you’re going to use on the partition. So type xfs

and press Enter to continue.

7. Now you are prompted for a start location. You can specify the

start location as a number of blocks, or an offset from the start

of the device. Notice that you can type 1M to specify the start

of the partition at 1 megabyte, or type 1 MiB to have it start at

1 MiB. This is confusing, so make sure you specify the

appropriate value here. At this point, type 1MiB and press

Enter.

8. Type 1GiB to specify the end of the partition. After doing so,

type print to print the current partition table, and type quit to

quit the utility and commit your changes.

9. Type lsblk to verify the new partition has been created. It

should show as /dev/sdd1.

10. Use mkfs.ext4 /dev/sdd1 to format this partition with the Ext4

file system.

Creating File Systems

At this point, you know how to create partitions. A partition all

by itself is not very useful. It only becomes useful if you decide to

do something with it. That often means that you have to put a file

system on top of it. In this section, you learn how to do that.

Different file systems can be used on RHEL 9. Table 14-4 provides

an overview of the most common file systems.

Table 14-4 File System Overview

File

System
Description

XFS The default file system in RHEL 9.

Ext4 The default file system in previous versions of

RHEL; still available and supported in RHEL 9.

Ext3 The previous version of Ext4. On RHEL 9, there is

no need to use Ext3 anymore.

Ext2 A very basic file system that was developed in the

early 1990s. There is no need to use this file system

on RHEL 9 anymore.

BtrFS A relatively new file system that is not supported

in RHEL 9.

NTFS A Windows-compatible file system that is not

supported on RHEL 9.

VFAT A file system that offers compatibility with

Windows and macOS and is the functional

equivalent of the FAT32 file system. Useful on USB

thumb drives that exchange data with other

computers but not on a server’s hard disks.

To format a partition with one of the supported file systems, you

can use the mkfs command, using the option -t to specify which

specific file system to use. Alternatively, you can use one of the

file system–specific tools such as mkfs.ext4 to format an Ext4 file

system.

Note

If you use mkfs without any further specification of

which file system you want to format, an Ext2 file

system will be formatted. This is probably not what

you want to use, so do not forget to specify which

file system you want to use.

To format a partition with the default XFS file system, use the

command mkfs.xfs. Example 14-1 shows the output of this

command.

Example 14-1 Formatting a File System with XFS

Click here to view code image

[root@server1 ~]# mkfs.xfs /dev/sdb1
meta-data=/dev/sdb1 isize=512 agcount=4, agsize=65536 blks
 = sectsz=512 attr=2, projid32bit=1
 = crc=1 finobt=1, sparse=1, rmapbt=0
 = reflink=1 bigtime=1 inobtcount=1
data = bsize=4096 blocks=262144, imaxpct=25
 = sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0, ftype=1
log =internal log bsize=4096 blocks=2560, version=2
 = sectsz=512 sunit=0 blks, lazy-count=1
realtime =none extsz=4096 blocks=0, rtextents=0

In Exercise 14-5, you create a file system on the previously

created partition /dev/sdb1.

Exercise 14-5 Creating a File System

In Exercise 14-1, you created a partition /dev/sdb1. In this

exercise, you format it with an XFS file system. This exercise has

one step only.

1. From a root shell, type mkfs.xfs /dev/sdb1

Hivanetwork.com

https://hivanetwork.com/

Changing File System Properties

When working with file systems, you can manage some

properties as well. File system properties are specific for the file

system you are using, so you work with different properties and

different tools for the different file systems.

Managing Ext4 File System Properties

The generic tool for managing Ext4 file system properties is

tune2fs. This tool was developed a long time ago for the Ext2 file

system and is compatible with Ext3 and Ext4 also. When you’re

managing Ext4 file system properties, tune2fs -l is a nice

command to start with. Example 14-2 presents the output of this

command where different file system properties are shown.

Notice that you first have to create an Ext4 file system, using

mkfs.ext4, before you can use tune2fs.

Example 14-2 Showing File System Properties with tune2fs -l

Click here to view code image

[root@server1 ~]# tune2fs -l /dev/sdd1
tune2fs 1.46.5 (30-Dec-2021)

Filesystem volume name: <none>
Last mounted on: <not available>
Filesystem UUID: 5d34b37c-5d32-4790-8364-d22a8b8f88db
Filesystem magic number: 0xEF53
Filesystem revision #: 1 (dynamic)
Filesystem features: has_journal ext_attr resize_inode dir_index filetype extent 64bit flex_bg sparse_super large_file huge_file dir_nlink extra_isize metadata_csum
Filesystem flags: signed_directory_hash
Default mount options: user_xattr acl
Filesystem state: clean
Errors behavior: Continue
Filesystem OS type: Linux
Inode count: 65536
Block count: 262144
Reserved block count: 13107
Overhead clusters: 12949
Free blocks: 249189
Free inodes: 65525
First block: 0
Block size: 4096
Fragment size: 4096
Group descriptor size: 64
Reserved GDT blocks: 127
Blocks per group: 32768
Fragments per group: 32768
Inodes per group: 8192
Inode blocks per group: 512
Flex block group size: 16
Filesystem created: Thu Sep 15 11:56:26 2022

Last mount time: n/a
Last write time: Thu Sep 15 11:56:26 2022
Mount count: 0
Maximum mount count: -1
Last checked: Thu Sep 15 11:56:26 2022
Check interval: 0 (<none>)
Lifetime writes: 533 kB
Reserved blocks uid: 0 (user root)
Reserved blocks gid: 0 (group root)
First inode: 11
Inode size: 256
Required extra isize: 32
Desired extra isize: 32
Journal inode: 8
Default directory hash: half_md4
Directory Hash Seed: ba256a6f-1ebe-4d68-8ff3-7a26064235bf
Journal backup: inode blocks
Checksum type: crc32c
Checksum: 0x49ee65b4

As you can see, the tune2fs -l command shows many file system

properties. One interesting property is the file system label,

which shows as the Filesystem volume name. Labels are used to

set a unique name for a file system, which allows the file system

to be mounted in a consistent way, even if the underlying device

name changes. Also interesting are the file system features and

default mount options.

To change any of the default file system options, you can use the

tune2fs command with other parameters. Some common usage

examples are listed here:

Use tune2fs -o to set default file system mount options. When

set to the file system, the option does not have to be specified

while mounting through /etc/fstab anymore. Use, for instance,

tune2fs -o acl,user_xattr to switch on access control lists and

user-extended attributes. Use a ^ in front of the option to

switch it off again, as in tune2fs -o ^acl,user_xattr.

Ext file systems also come with file system features that may

be enabled as a default. To switch on a file system feature, use

tune2fs -O followed by the feature. To turn a feature off, use a

^ in front of the feature name.

Use tune2fs -L to set a label on the file system. As described in

the section “Mounting File Systems” later in this chapter, you

can use a file system label to mount a file system based on its

name instead of the device name. Instead of tune2fs -L, the

e2label command enables you to set a label on the file system.

Managing XFS File System Properties

The XFS file system is a completely different file system, and for

that reason also has a completely different set of tools to manage

its properties. It does not allow you to set file system attributes

within the file system metadata. You can, however, change some

XFS properties, using the xfs_admin command. For instance, use

xfs_admin -L mylabel to set the file system label to mylabel.

Adding Swap Partitions

You use most of the partitions on a Linux server for regular file

systems. On Linux, swap space is normally allocated on a disk

device. That can be a partition or an LVM logical volume

(discussed in Chapter 15). In case of an emergency, you can even

use a file to extend the available swap space.

Using swap on Linux is a convenient way to improve Linux

kernel memory usage. If a shortage of physical RAM occurs, non-

recently used memory pages can be moved to swap, which

makes more RAM available for programs that need access to

memory pages. Most Linux servers for that reason are

configured with a certain amount of swap. If swap starts being

used intensively, you could be in trouble, though, and that is why

swap usage should be closely monitored.

Sometimes, allocating more swap space makes sense. If a

shortage of memory occurs, this shortage can be alleviated by

allocating more swap space in some situations. This is done

through a procedure where first a partition is created with the

swap partition type, and then this partition is formatted as swap.

Exercise 14-6 describes how to do this.

Exercise 14-6 Creating a Swap Partition

1. Type fdisk /dev/sdb to open your disk in fdisk.

2. Press n to add a new partition. Specify start cylinder and size

to create a 1-GiB partition.

3. Type t to change the partition type. If you are using fdisk, type

swap to set the swap partition type to 82. If you are using

gdisk, use partition type 8200. Press w to write and exit.

4. Use mkswap to format the partition as swap space. Use, for

instance, mkswap /dev/sdb6 if the partition you have just

created is /dev/sdb6.

5. Type free -m. You see the amount of swap space that is

currently allocated. This does not include the swap space you

have just created, as it still needs to be activated.

6. Use swapon to switch on the newly allocated swap space. If,

for instance, the swap device you have just created is

/dev/sdb6, use swapon /dev/sdb6 to activate the swap space.

7. Type free -m again. You see that the new swap space has been

added to your server.

8. Open the file /etc/fstab with an editor and, on the last line, add

the following to ensure the swap space is also available after a

reboot: /dev/sdb6 none swap defaults 0 0

Adding Swap Files

If you do not have free disk space to create a swap partition and

you do need to add swap space urgently, you can use a swap file

as well. From a performance perspective, it does not even make

that much difference if a swap file is used instead of a swap

device such as a partition or a logical volume, and it may help

you fulfill an urgent need in a timely manner.

To add a swap file, you need to create the file first. The dd

if=/dev/zero of=/swapfile bs=1M count=100 command would

add 100 blocks with a size of 1 MiB from the /dev/zero device

(which generates 0s) to the /swapfile file. The result is a 100-MiB

file that can be configured as swap. To do so, you can follow the

same procedure as for swap partitions. First use mkswap

/swapfile to mark the file as a swap file, and then use swapon

/swapfile to activate it. Also, put it in the /etc/fstab file so that it

will be initialized automatically, using a line that looks as

follows:

Click here to view code image

/swapfile none swap defaults 0 0

Mounting File Systems

Just creating a partition and putting a file system on it is not

enough to start using it. To use a partition, you have to mount it

as well. By mounting a partition (or better, the file system on it),

you make its contents accessible through a specific directory.

To mount a file system, some information is needed:

What to mount: This information is mandatory and specifies

the name of the device that needs to be mounted.

Where to mount it: This is also mandatory information that

specifies the directory on which the device should be

mounted.

What file system to mount: Optionally, you can specify the

file system type. In most cases, this is not necessary. The

mount command will detect which file system is used on the

device and make sure the correct driver is used.

Mount options: Many mount options can be used when

mounting a device. Using options is optional and depends on

the needs you may have for the file system.

Manually Mounting File Systems

Hivanetwork.com

https://hivanetwork.com/

To manually mount a file system, you use the mount command.

To disconnect a mounted file system, you use the umount

command. Using these commands is relatively easy. To mount

the file system that is on /dev/sdb5 on the directory /mnt, for

example, use the following command:

mount /dev/sdb5 /mnt

To disconnect the mount, you can use umount with either the

name of the device or the name of the mount point you want to

disconnect. So, both of the following commands will work:

umount /dev/sdb5
umount /mnt

Using Device Names, UUIDs, or Disk Labels

To mount a device, you can use the name of the device, as in the

command mount/dev/sdb5 /mnt. If your server is used in an

environment where a dynamic storage topology is used, this is

not always the best approach. You may today have a storage

device /dev/sdb5, which after changes in the storage topology can

be /dev/sdc5 after the next reboot of your server. This is why on a

default RHEL 9 installation, universally unique IDs (UUIDs) are

used instead of device names.

Every file system by default has a UUID associated with it—not

just file systems that are used to store files but also special file

systems such as the swap file system. You can use the blkid

command to get an overview of the current file systems on your

system and the UUID that is used by that file system.

Before the use of UUIDs was common, file systems were often

configured to work with labels, which can be set using the

e2label command, the xfs_admin -L command, or, while

creating the file system, the mkfs.xxxx -L command. This has

become more uncommon in recent Linux versions. If a file

system has a label, the blkid command will also show it. In

Example 14-3 you can see an example of blkid output.

Example 14-3 Using blkid to Find Current File System UUIDs

Click here to view code image

[root@server1 ~]# blkid
/dev/mapper/rhel-swap: UUID="3f377db9-7a25-4456-bdd4-0bac9aa50515"
 TYPE="swap"
/dev/sdd1: PARTLABEL="part1" PARTUUID="97ddf1cb-6f5e-407e-a9d1-
 e4345862283d"
/dev/sdb5: UUID="5d34b37c-5d32-4790-8364-d22a8b8f88db" BLOCK_

 SIZE="4096" TYPE="ext4" PARTUUID="e049881b-05"
/dev/sdb1: UUID="1e6b3b75-3454-4e03-b5a9-81e5fa1f0ccd" BLOCK_
 SIZE="512" TYPE="xfs" PARTUUID="e049881b-01"
/dev/sdb6: UUID="b7ada118-3586-4b22-90db-451d821f1fcf" TYPE="swap"
 PARTUUID="e049881b-06"
/dev/sr0: BLOCK_SIZE="2048" UUID="2022-04-19-20-42-48-00" LABEL="RHEL-
 9-0-0-BaseOS-x86_64" TYPE="iso9660" PTUUID="3a60e52f" PTTYPE="dos"
/dev/mapper/rhel-root: UUID="1e9d930d-4c05-4c91-9bca-a1b13b45ee24"
 BLOCK_SIZE="512" TYPE="xfs"
/dev/sdc1: PARTLABEL="Linux filesystem"
 PARTUUID="c021ce85-8a1b-461a-b27f-d911e2ede649"
/dev/sda2: UUID="bKb2nd-kGTl-voHS-h8Gj-AjTD-fORt-X53K9A" TYPE="LVM2_
 member" PARTUUID="908faf3e-02"
/dev/sda1: UUID="6c2b4028-1dcb-44cb-b5b7-c8e52352b06c" BLOCK_
 SIZE="512" TYPE="xfs" PARTUUID="908faf3e-01"

To mount a file system based on a UUID, you use UUID=nnnnn

instead of the device name. So if you want to mount /dev/sdb5

from Example 14-3 based on its UUID, the command becomes as

follows:

Click here to view code image

mount UUID="5d34b37c-5d32-4790-8364-d22a8b8f88db" /mnt

Manually mounting devices using the UUID is not exactly easier.

If mounts are automated as discussed in the next section,

however, using UUIDs instead of device names does make sense.

To mount a file system using a label, you use the mount

LABEL=labelname command. For example, use mount

LABEL=mylabel /mnt to temporarily mount the file system with

the name mylabel on the /mnt directory.

Automating File System Mounts Through /etc/fstab

Normally, you do not want to be mounting file systems manually.

Once you are happy with them, it is a good idea to have them

mounted automatically. The classical way to do this is through

the /etc/fstab file. Example 14-4 shows what the contents of this

file may look like.

Example 14-4 Sample /etc/fstab File Contents

Click here to view code image

[root@server1 ~]# cat /etc/fstab
#
/etc/fstab
Created by anaconda on Thu Sep 1 12:06:40 2022
#
Accessible filesystems, by reference, are maintained under '/dev/

 disk/'.
See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more
 info.
#
After editing this file, run 'systemctl daemon-reload' to update
 systemd
units generated from this file.
#
/dev/mapper/rhel-root / xfs defaults 0 0
UUID=6c2b4028-1dcb-44cb-b5b7-c8e52352b06c /boot xfs
 defaults 0 0.
/dev/mapper/rhel-swap none swap defaults 0 0
/dev/sr0 /repo iso9660 defaults 0 0

In the /etc/fstab file, everything is specified to mount the file

system automatically. For this purpose, every line has six fields,

as summarized in Table 14-5.

Table 14-5 /etc/fstab Fields

Field Description

Device The device that must be mounted. A device

name, UUID, or label can be used.

Mount

Point

The directory or kernel interface where the

device needs to be mounted.

File

System

The file system type.

Mount

Options

Mount options.

Dump

Support

Use 1 to enable support to back up using the

dump utility. This may be necessary for some

backup solutions.

Automatic

Check

This field specifies whether the file system

should be checked automatically when booting.

Use 0 to disable automated check, 1 if this is the

root file system and it has to be checked

automatically, and 2 for all other file systems

that need automatic checking while booting.

Network file systems should have this option

set to 0.

Based on what has previously been discussed about the mount

command, you should have no problem understanding the

Device, Mount Point, and File System fields in /etc/fstab. Notice

that in the mount point not all file systems use a directory name.

Some system devices such as swap are not mounted on a

directory, but on a kernel interface. It is easy to recognize when a

kernel interface is used; its name does not start with a / (and does

not exist in the file system on your server).

The Mount Options field defines specific mount options that can

be used. If no specific options are required, this line will just read

“defaults.” To offer specific functionality, a large number of

mount options can be specified here. Table 14-6 gives an

overview of some of the more common mount options.

Table 14-6 Common Mount Options

Option Use

auto /

noauto

Mounts/does not mount the file system

automatically.

acl Adds support for file system access control lists

(see Chapter 7, “Permissions Management”).

user_xattr Adds support for user-extended attributes (see

Chapter 7).

ro Mounts the file system in read-only mode.

atime /

noatime

Disables/enables access time modifications.

noexec /

exec

Denies/allows execution of program files from

the file system.

The fifth column of /etc/fstab specifies support for the dump

utility, which was developed a long time ago to create file system

backups. On modern file systems this option is not needed, which

is why you will see it set to 0 in most cases.

The last column indicates if the file system integrity needs to be

checked while booting. Enter a 0 if you do not want to check the

file system at all, a 1 if this is the root file system that needs to be

checked before anything else, and a 2 if this is a non-root file

system that needs to be checked while booting. Because file

Hivanetwork.com

https://hivanetwork.com/

system consistency is checked in another way, this option is now

commonly set to the value 0.

After adding mounts to /etc/fstab, it’s a good idea to check that

you didn’t make any errors. If /etc/fstab contains errors, you

won’t be able to boot your system anymore, and on the RHCSA

exam the result could be that you fail the exam. The following

options can be used to verify /etc/fstab contents:

findmnt --verify Verifies /etc/fstab syntax and alerts you if

anything is incorrect.

mount -a Mounts all file systems that have a line in /etc/fstab

and are not currently mounted.

In Exercise 14-7, you learn how to mount partitions through

/etc/fstab by mounting the XFS-formatted partition /dev/sdb5 that

you created in previous exercises.

Exercise 14-7 Mounting Partitions Through /etc/fstab

1. From a root shell, type blkid. Use the mouse to copy the

UUID=“nnnn” part for /dev/sdb5.

2. Type mkdir -p /mounts/data to create a mount point for this

partition.

3. Open /etc/fstab in an editor and add the following line:
Click here to view code image

UUID="nnnn" /mounts/data xfs defaults 0 0

4. Before you attempt an automatic mount while rebooting, it is

a good idea to test the configuration. Type mount -a. This

command mounts everything that is specified in /etc/fstab and

that has not been mounted already.

5. Type df -h to verify that the partition has been mounted

correctly.

Using Systemd Mounts

The /etc/fstab file has been used to automate mounts since the

earliest days of UNIX. In recent RHEL versions it is used as an

input file to create systemd mounts, as ultimately systemd is

responsible for mounting file systems. You can find the files

generated by /etc/fstab in the directory /run/systemd/generator.

In Example 14-5 you can see what its contents may look like.

Example 14-5 Sample Systemd Mount File

Click here to view code image

[root@server1 ~]# cat /run/systemd/generator/repo.mount

Automatically generated by systemd-fstab-generator

[Unit]
Documentation=man:fstab(5) man:systemd-fstab-generator(8)
SourcePath=/etc/fstab
Before=local-fs.target
After=blockdev@dev-sr0.target

[Mount]
What=/dev/sr0
Where=/repo
Type=iso9660

As mounts are taken care of by systemd, you could also choose to

mount your file systems this way. To do so, you need to create a

mount file in /etc/systemd/system, meeting the following

requirements:

The name of the file corresponds to the directory where you

want to mount its device. So if you want to mount on /data, the

file is data.mount.

The file contains a [Mount] section that has the lines What,

Where, and Type.

The file has an [Install] section, containing

WantedBy=some.target. Without this section the mount cannot

be enabled.

In Exercise 14-8 you’ll create a mount file for the /dev/sdc1 device

that was previously created.

Exercise 14-8 Creating a Systemd Mount File

1. Use mkfs.ext4 /dev/sdc1 to format /dev/sdc1 with an Ext4 file

system.

2. Type mkdir /exercise to create the mount point

3. Use vim /etc/systemd/system/exercise.mount and give the

file the following contents:
Click here to view code image

[Unit]
Before=local-fs.target

[Mount]
What=/dev/sdc1
Where=/exercise
Type=ext4

[Install]
WantedBy=multi-user.target

4. Use systemctl enable --now exercise.mount to enable and

start the mount unit.

5. Type mount | grep exercise to verify the mount was created.

6. Use systemctl status exercise.mount to verify the unit file.

Summary

In this important chapter, you learned how to work with

partitions and file systems on RHEL 9. You learned how to create

partitions for MBR and GPT disks and how to put a file system on

top of the partition. You also learned how to mount these

partitions manually and automatically through /etc/fstab or by

using systemd unit files.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 14-7 lists a

reference for these key topics and the page numbers on which

each is found.

Table 14-7 Key Topics for Chapter 14

Key Topic Element Description Page

Table 14-2 Disk Size Specifications 316

Table 14-3 Common Disk Device Types 317

Table 14-4 File System Overview 328

Table 14-5 /etc/fstab Fields 336

Table 14-6 Common Mount Options 337

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

partition

Master Boot Record (MBR)

Basic Input/Output System (BIOS)

extended partition

primary partition

logical partition

GUID Partition Table (GPT)

Unified Extensible Firmware Interface (UEFI)

XFS

Ext4

Ext3

Ext2

BtrFS

VFAT

mount

umount

universally unique ID (UUID)

label

fstab

Review Questions

The questions that follow use an open-ended format that is

meant to help you test your knowledge of concepts and

terminology and the breadth of your knowledge. You can find the

answers to these questions in Appendix A.

 Which tool do you use to create GUID partitions?

 Which tool do you use to create MBR partitions?

 What is the default file system on RHEL 9?

 What is the name of the file that is used to automatically mount

Hivanetwork.com

https://hivanetwork.com/

partitions while booting?

 Which mount option do you use if you want a file system not to

be mounted automatically while booting?

 Which command enables you to format a partition that has type

82 with the appropriate file system?

 You have just added a couple of partitions for automatic

mounting while booting. How can you safely test if this is going

to work without actually rebooting?

 Which file system is created if you use the mkfs command

without any file system specification?

 How do you format an Ext4 partition?

 How do you find UUIDs for all devices on your computer?

End-of-Chapter Lab

To perform this end-of-chapter lab, you’ll need to add a new and

unused disk device. Create this new disk device using the

virtualization software you’re using, or by adding an empty USB

thumb drive.

Lab 14.1

1. Add two partitions to your server. Create both partitions with

a size of 100 MiB. One of these partitions must be configured

as swap space; the other partition must be formatted with an

Ext4 file system.

2. Configure your server to automatically mount these partitions.

Mount the Ext4 partition on /mounts/data and mount the swap

partition as swap space.

3. Reboot your server and verify that all is mounted correctly. In

case of problems, read Chapter 18, “Essential Troubleshooting

Skills,” for tips on how to troubleshoot.

Chapter 15

Managing Advanced Storage

The following topics are covered in this chapter:

Understanding LVM

Creating LVM Logical Volumes

Resizing LVM Logical Volumes

Configuring Stratis

The following RHCSA exam objectives are covered in this

chapter:

Create and remove physical volumes

Assign physical volumes to volume groups

Create and delete logical volumes

Extend existing logical volumes

In Chapter 14, “Managing Storage,” you learned how to manage

partitions on a hard disk. Creating multiple partitions on a disk is

useful because it enables you to keep different data types in

separate partitions, but it does not offer the flexibility that the

advanced storage solutions offer. In this chapter, you learn how

to work with advanced storage solutions, including Logical

Volume Manager (LVM) and Stratis.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

15-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 15-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding LVM 1–2

Creating LVM Logical Volumes 3–5

Resizing LVM Logical Volumes 6–8

Configuring Stratis 9–10

 Which of the following is not a standard component in an LVM

setup?

1. Logical volume

2. File system

3. Volume group

4. Physical volume

 Which of the following is not an LVM feature?

1. Volume resizing

2. Hot replacement of failing disk

3. Copy on write

4. Snapshots

 Which partition type do you need on a GPT partition to mark it

with the LVM partition type?

1. 83

2. 8e

3. 8300

4. 8e00

 Which of the following commands shows correctly how to create

a logical volume that uses 50% of available disk space in the

volume group?

1. vgadd -n lvdata -l +50%FREE vgdata

2. lvcreate lvdata -l 50%FREE vgdata

3. lvcreate -n lvdata -l 50%FREE vgdata

4. lvadd -n lvdata -l 50% FREE /dev/vgdata

 Which commands show an overview of available physical

volumes? (Choose two.)

1. pvshow

2. pvdisplay

3. pvs

4. pvlist

 Which statement about resizing LVM logical volumes is not true?

1. The Ext4 file system can be increased and decreased in size.

2. Use lvextend with the -r option to automatically resize the file

system.

3. The XFS file system cannot be resized.

4. To increase the size of a logical volume, you need allocatable

space in the volume group.

 You want to remove the physical volume /dev/sdd2 from the

volume group vgdata. Which of the following statements about

the removal procedure is not true?

1. The file system must support shrinking.

2. You need the amount of used extents on /dev/sdd2 to be

available on remaining devices.

3. Before you can use vgreduce, you have to move used extents

to the remaining volumes.

4. Use pvmove to move used extents.

 You have extended the size of a logical volume without extending

the XFS file system it contains. Which of the following solutions

can you use to fix it?

1. Use lvresize again, but this time with the -r option. The

command will resize just the file system.

2. Bring the logical volume back to its original size and then use

lvresize -r again.

3. Use fsresize to resize the file system later.

4. Use xfs_growfs to grow the file system to the size available in

the logical volume.

 How much storage is used in a Stratis file system for metadata

storage?

1. 527 MiB

2. 1 GiB

3. 4 MiB

4. 4 GiB

 Which of the following lines correctly shows how a Stratis file

system should be mounted through /etc/fstab?

1. UUID=abcd /stratis xfs defaults 0 0

2. /dev/stratis/stratis1 /stratis xfs defaults,x-

systemd.requires=stratis.service 0 0

3. UUID=abcd /stratis xfs defaults,x-

systemd.requires=stratis.service 0 0

4. /dev/stratis/stratis1 /stratis xfs defaults 0 0

Foundation Topics

Understanding LVM

In the early days of Linux servers, storage was handled by

creating partitions on disks. Even if this approach does work,

there are some disadvantages, the most important of which is

that partitions are inflexible. That is why the Logical Volume

Manager was introduced. Whereas it is not possible to

dynamically grow a partition that is running out of disk space,

this is possible when working with LVM. LVM offers many other

advantages as well, which you learn about in this chapter.

LVM Architecture

Hivanetwork.com

https://hivanetwork.com/

In the LVM architecture, several layers can be distinguished. On

the lowest layer, the storage devices are used. These can be any

storage devices, such as complete disks, partitions, logical units

(LUNs) on a storage-area network (SAN), and whatever else is

made possible in modern storage topologies. In this chapter you

learn how to use partitions as physical volumes, which is

recommended practice. By using partitions instead of complete

disk devices, it is easy for other tools to recognize that some

storage has already been configured on the block device, which

makes it less likely that misconfigurations are going to occur.

The storage devices need to be flagged as physical volumes,

which makes them usable in an LVM environment and makes

them usable by other utilities trying to gain access to the logical

volume. A storage device that is a physical volume can be added

to the volume group, which is the abstraction of all available

storage. The “abstraction” means that the volume group is not

something that is fixed, but it can be resized when needed, which

makes it possible to add more space on the volume group level

when volumes are running out of disk space. The idea is simple:

If you are running out of disk space on a logical volume, you take

available disk space from the volume group. And if there is no

available disk space in the volume group, you just add it by

adding a physical volume.

On top of the volume group are the logical volumes. Logical

volumes do not act on disks directly but get their disk space from

available disk space in the volume group. That means that a

logical volume may consist of available storage from multiple

physical volumes, which adds an important layer of additional

flexibility to the storage configuration.

Note

It is a good idea to avoid logical volumes from

spanning multiple physical volumes; if one of the

physical volumes breaks, all files on the LVM file

system will become inaccessible.

The actual file systems are created on the logical volumes.

Because the logical volumes are flexible with regard to size, that

makes the file systems flexible as well. If a file system is running

out of disk space, it is relatively easy to extend the file system or

to reduce it if the file system allows that. Note that in order to

resize file systems when logical volumes are resized, the file

systems must offer support for that.

Figure 15-1 gives an overview of the LVM architecture.

Figure 15-1 LVM Architecture Overview

LVM Features

There are several reasons why LVM is great. The most important

reason is that LVM offers a flexible solution for managing

storage. Volumes are no longer bound to the restrictions of

physical hard drives. If additional storage space is needed, the

volume group can easily be extended by adding a new physical

volume, so that disk space can be added to the logical volumes. It

is also possible to reduce the size of a logical volume, but only if

the file system that was created on that volume supports the

feature of reducing the size of the file system. Ext4 supports

growing and shrinking; XFS size can only be increased.

Another important reason why administrators like using LVM is

the support for snapshots. A snapshot keeps the current state of

a logical volume and can be used to revert to a previous situation

or to make a backup of the file system on the logical volume if

the volume is open. Using snapshots is essential in backup

strategies.

LVM snapshots are created by copying the logical volume

administrative data (the metadata) that describes the current

state of files to a snapshot volume. As long as nothing changes,

from the LVM snapshot metadata the original blocks in the

original volume are addressed. When blocks are modified, the

blocks containing the previous state of the file are copied over to

the snapshot volume, which for that reason will grow. Using this

method ensures that, by accessing an LVM snapshot volume, the

exact state of the files as they were when the snapshot was

created can be accessed. Because the snapshot will grow when

files on the original volume change, when planning for

snapshots, you should make sure that a sufficient amount of disk

space is available. Also, snapshots are supposed to be temporary:

once a snapshot has served its purpose, it can be removed.

A third important advantage of using LVM logical volumes is the

option to replace failing hardware easily. If a hard disk is failing,

data can be moved within the volume group (through the

pvmove command), the failing disk can then be removed from

the volume group, and a new hard disk can be added

dynamically, without requiring any downtime for the logical

volume itself.

Creating LVM Logical Volumes

Creating LVM logical volumes involves creating the three layers

in the LVM architecture. You first have to convert physical

devices, such as disks or partitions, into physical volumes (PVs);

then you need to create the volume group (VG) and assign PVs to

it. As the last step, you need to create the logical volume (LV)

itself. In this section, you learn what is involved in creating these

three layers.

Different utilities exist for creating LVM logical volumes. This

chapter focuses on using the command-line utilities. They are

relatively easy to use, and they are available in all environments

(whether you are running a graphical interface or not).

Tip

You absolutely do not need to memorize the

commands discussed in this chapter for the RHCSA

exam. All you really need to remember are pv, vg,

and lv. Open a command line, type pv, and press the

Tab key twice. This will show all commands that

start with pv, which are all commands that are used

for managing physical volumes. After you have

found the command you need, run this command

with the --help option. This shows a usage summary

that lists everything you must do to create the

element you need. Example 15-1 shows an example

of the pvcreate --help command (which is explained

in the next subsection).

Example 15-1 Requesting Help for the pvcreate Command

Click here to view code image

[root@server1 ~]# pvcreate --help
 pvcreate - Initialize physical volume(s) for use by LVM

 pvcreate PV ...
 [-f|--force]

 [-M|--metadatatype lvm2]
 [-u|--uuid String]
 [-Z|--zero y|n]
 [--dataalignment Size[k|UNIT]]
 [--dataalignmentoffset Size[k|UNIT]]
 [--bootloaderareasize Size[m|UNIT]]
 [--labelsector Number]
 [--pvmetadatacopies 0|1|2]
 [--metadatasize Size[m|UNIT]]
 [--metadataignore y|n]
 [--norestorefile]
 [--setphysicalvolumesize Size[m|UNIT]]
 [--reportformat basic|json]
 [--restorefile String]
 [COMMON_OPTIONS]

 Common options for lvm:
 [-d|--debug]
 [-h|--help]
 [-q|--quiet]
 [-v|--verbose]
 [-y|--yes]
 [-t|--test]
 [--commandprofile String]
 [--config String]
 [--driverloaded y|n]
 [--nolocking]
 [--lockopt String]

 [--longhelp]
 [--profile String]
 [--version]
 [--devicesfile String]
 [--devices PV]
 [--nohints]
 [--journal String]

 Use --longhelp to show all options and advanced commands.

Creating the Physical Volumes

Before you can use the LVM tools to create physical volumes

(PVs), you should create a partition marked as the LVM partition

type. This is basically the same procedure as described in

Chapter 14, with the only difference being that before writing

changes to disk, you need to change the partition type.

In fdisk and gdisk, you can use t from the menu to change the

type. If you are using an MBR disk, the partition type is 8e. If you

are using a GUID disk, use the partition type 8e00. In fdisk you

can also just type lvm as the partition type to use, as the RHEL 9

version of fdisk supports using aliases. If you are using parted to

create partitions, you need to use the set n lvm on command

from within the parted interface (where n is the number of the

partition you want to mark for use with LVM).

Hivanetwork.com

https://hivanetwork.com/

After creating the partition and flagging it as an LVM partition

type, you need to use pvcreate to mark it as a physical volume.

This writes some metadata to the partition, which allows it to be

used in a volume group. The entire procedure is summarized in

Exercise 15-1, in which you create a physical volume. Also see

Example 15-2 for an overview of this procedure.

Exercise 15-1 Creating a Physical Volume

To do this exercise, you need a hard disk that has free

(unpartitioned) disk space available. The recommended method

to make disk space available is to add a new hard disk in your

virtual machine environment. In this exercise, I use a clean

/dev/sdd device to create the partition. You may have to change

the device name to match your configuration.

1. Open a root shell and type fdisk /dev/sdd

2. Type p. This will show the current partition table layout.

There should be none at this point.

3. Type g to create a GPT partition table.

4. Type n to create a new partition. Press Enter when asked for

the partition number, as well as when asked for the first

sector.

5. When prompted for the last sector, type +1G to create a 1-GiB

partition.

6. Type t to change the partition type. As you only have one

partition at the moment, this partition is automatically

selected. When prompted for the partition type, enter lvm.

7. Press p to verify the partition was created successfully.

8. Repeat this procedure to create three other 1-GiB LVM

partitions for future use.

9. Press w to write the new partitions to disk and quit fdisk.

10. Use the lsblk command to verify that the new partitions were

created successfully.

11. Type pvcreate /dev/sdd1 to mark the new partition as an

LVM physical volume (see Example 15-3).

12. Type pvs to verify that the physical volume was created

successfully.

Example 15-2 Creating an LVM Partition in fdisk

Click here to view code image

[root@
[root@server1 ~]# fdisk /dev/sdd

Welcome to fdisk (util-linux 2.37.4).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help): g
Created a new GPT disklabel (GUID:
 3BCE8E49-EFDF-9144-ACD5-290F4FCCDA07).

Command (m for help): n
Partition number (1-128, default 1):
First sector (2048-41943006, default 2048):
Last sector, +/-sectors or +/-size{K,M,G,T,P} (2048-41943006, default
 41943006): +1G

Created a new partition 1 of type 'Linux filesystem' and of size 1
GiB.

Command (m for help): t
Selected partition 1
Partition type or alias (type L to list all): lvm
Changed type of partition 'Linux filesystem' to 'Linux LVM'.

Command (m for help): p
Disk /dev/sdd: 20 GiB, 21474836480 bytes, 41943040 sectors
Disk model: VMware Virtual S
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: 3BCE8E49-EFDF-9144-ACD5-290F4FCCDA07

Device Start End Sectors Size Type

/dev/sdd1 2048 2099199 2097152 1G Linux LVM

Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

Example 15-3 Verifying the Physical Volume

Click here to view code image

[root@server1 ~]# pvcreate /dev/sdd1
 Physical volume "/dev/sdd1" successfully created.
[root@server1 ~]# pvs
 PV VG Fmt Attr PSize PFree
 /dev/sda2 rhel lvm2 a-- <19.00g 0
 /dev/sdd1 lvm2 --- 1.00g 1.00g

As an alternative to the pvs command, which shows a summary

of the physical volumes and their attributes, you can use the

pvdisplay command to show more details. Example 15-4 shows

an example of the output of this command.

Example 15-4 Sample pvdisplay Command Output

Click here to view code image

[root@server1 ~]# pvdisplay /dev/sdd1
 "/dev/sdd1" is a new physical volume of "1.00 GiB"
 --- NEW Physical volume ---
 PV Name /dev/sdd1
 VG Name
 PV Size 1.00 GiB
 Allocatable NO
 PE Size 0
 Total PE 0
 Free PE 0
 Allocated PE 0
 PV UUID cjdhpJ-bRh9-fg3B-KlPh-XQzD-unXV-ycVK36

If you want a compact overview of the current storage

configuration on your server, you might also like the lsblk

command. As shown in Example 15-5, this command gives a

hierarchical overview of which disks and partitions are used in

what LVM volume groups and logical volumes.

Example 15-5 Using lsblk for a Compact Overview of the

Current Storage Configuration

Click here to view code image

[root@server1 ~]# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS

sda 8:0 0 20G 0 disk
├─sda1 8:1 0 1G 0 part /boot
└─sda2 8:2 0 19G 0 part
 ├─rhel-root 253:0 0 17G 0 lvm /
 └─rhel-swap 253:1 0 2G 0 lvm [SWAP]
sdb 8:16 0 20G 0 disk
├─sdb1 8:17 0 1G 0 part
├─sdb2 8:18 0 1K 0 part
├─sdb5 8:21 0 1G 0 part
└─sdb6 8:22 0 1G 0 part
sdc 8:32 0 20G 0 disk
└─sdc1 8:33 0 1G 0 part /exercise
sdd 8:48 0 20G 0 disk
└─sdd1 8:49 0 1G 0 part
sr0 11:0 1 8G 0 rom /repo
nvme0n1 259:0 0 20G 0 disk

Creating the Volume Groups

Now that the physical volume has been created, you can assign it

to a volume group (VG). It is possible to add a physical volume

to an existing volume group (which is discussed later in this

chapter), but here you learn how to create a new volume group

and add the physical volume to it. This is a simple one-command

procedure. Just type vgcreate followed by the name of the

volume group you want to create and the name of the physical

device you want to add to it. So, if the physical volume name is

/dev/sdd1, the complete command is vgcreate vgdata /dev/sdd1.

You are completely free in your choice of name for the volume

group. I like to start all volume group names with vg, which

makes it easy to find the volume groups if there are many, but

you are free to choose anything you like.

Between the previous section and the preceding paragraph, you

have learned how to create a volume group in a two-step

procedure where you first create the physical volume with the

pvcreate command and then add the volume group using the

vgcreate command. You can do this in a one-step procedure as

well (where using a separate pvcreate command will not be

necessary).

The one-step procedure is particularly useful for adding a

complete disk device). If you want to add the disk /dev/sdc, for

instance, just type vgcreate vgdata /dev/sdc to create a volume

group vgdata that contains the /dev/sdc device. When you are

doing this to add a device that has not been marked as a physical

volume yet, the vgcreate utility will automatically flag it as a

physical volume so that you can see it while using the pvs

command.

When you’re creating volume groups, a physical extent size is

used. The physical extent size defines the size of the building

blocks used to create logical volumes. A logical volume always

has a size that is a multiple of the physical extent size. If you

need to create huge logical volumes, it is more efficient to use a

big physical extent size. If you do not specify anything, a default

extent size of 4 MiB is used. The physical extent size is always

specified as a multiple of 2 MiB, with a maximum size of 128 MiB.

Use the vgcreate -s option to specify the physical extent size you

want to use.

Note

When you’re working with LVM, you need to

consider the physical extent size. This is the size of

the basic building blocks used in the LVM

configuration. When you’re working with an ext4

file system, logical extents are used. The extent sizes

on LVM are in no way related to the extent sizes that

are used on the file systems.

After creating the volume group, you can request details about

the volume group using the vgs command for a short summary,

or the vgdisplay command to get more information. Example 15-

6 shows an example of the output of the vgdisplay command.

Hivanetwork.com

https://hivanetwork.com/

Example 15-6 Showing Current Volume Group Properties

Click here to view code image

[root@server1 ~]# vgdisplay vgdata
 --- Volume group ---
 VG Name vgdata
 System ID
 Format lvm2
 Metadata Areas 1
 Metadata Sequence No 1
 VG Access read/write
 VG Status resizable
 MAX LV 0
 Cur LV 0
 Open LV 0
 Max PV 0
 Cur PV 1
 Act PV 1
 VG Size 1020.00 MiB
 PE Size 4.00 MiB
 Total PE 255
 Alloc PE / Size 0 / 0
 Free PE / Size 255 / 1020.00 MiB
 VG UUID KrzkCo-QUFs-quJm-Z6pM-qMh0-ZchJ-c677c2

Creating the Logical Volumes and File Systems

Now that the volume group has been created, you can start

creating one or more logical volumes (LVs) from it. This

procedure is slightly more complicated than the creation of

physical volumes or volume groups because there are more

choices to be made. While creating the logical volume, you must

specify a volume name and a size.

The volume size can be specified as an absolute value using the -

L option. Use, for instance, -L 5G to create an LVM volume with a

5-GiB size. Alternatively, you can use relative sizes with the -l

option. For instance, use -l 50%FREE to use half of all available

disk space. You can also use the -l option to specify the number of

extents that you want the logical volume to be. You’ll further

need to specify the name of the volume group that the logical

volume is assigned to, and optionally (but highly recommended),

you can use -n to specify the name of the logical volume. For

instance, use lvcreate -n lvdata -l 100 vgdata to create a logical

volume with the name lvdata and a size of 100 extents and add

that to the vgdata volume group. Once the logical volume has

been created, you can use the mkfs utility to create a file system

on top of it.

Understanding LVM Device Naming

Now that the logical volume has been created, you can start using

it. To do this, you need to know the device name. LVM volume

device names can be addressed in multiple ways. The simple

method is to address the device as /dev/vgname/lvname. So, for

example, if you have created a volume with the name lvdata,

which gets its available disk space from the vgdata volume

group, the device name would be /dev/vgdata/lvdata, which is in

fact a symbolic link to the device mapper name (which is

explained next).

For naming LVM volumes, another system plays a role: device

mapper. The device mapper (abbreviated as dm) is a generic

interface that the Linux kernel uses to address storage devices.

The device mapper is used by multiple device types, such as LVM

volumes, but also by software RAID and advanced network

storage devices such as multipath devices.

Device mapper devices are generated on detection and use

names that are generated while booting, like /dev/dm-0 and

/dev/dm-1. To make these devices easier to access, the device

mapper creates symbolic links in the /dev/mapper directory that

point to these meaningless device names. The symbolic links

follow the naming structure /dev/mapper/vgname-lvname.

So, the device /dev/vgdata/lvdata would also be known as

/dev/mapper/vgdata-lvdata. When working with LVM logical

volumes, you can use either of these device names. Example 15-7

shows an overview of the different LVM device names as

provided by the device mapper. In Exercise 15-2, you learn how

to create a volume group and logical volumes.

Example 15-7 LVM Device Name Overview

Click here to view code image

[root@server1 ~]# ls -l /dev/mapper/vgdata-lvdata /dev/vgdata/lvdata
lrwxrwxrwx. 1 root root 7 Sep 16 11:34 /dev/mapper/vgdata-lvdata ->
 ../dm-2
lrwxrwxrwx. 1 root root 7 Sep 16 11:34 /dev/vgdata/lvdata -> ../dm-2

Exercise 15-2 Creating the Volume Group and Logical Volumes

In Exercise 15-1, you created a physical volume. In this exercise,

you continue working on that physical volume and assign it to a

volume group. Then you add a logical volume from that volume

group. You can work on this exercise only after successful

completion of Exercise 15-1.

1. Open a root shell. Type pvs to verify the availability of

physical volumes on your machine. You should see the

/dev/sdd1 physical volume that was created previously.

2. Type vgcreate vgdata /dev/sdd1. This will create the volume

group with the physical volume assigned to it.

3. Type vgs to verify that the volume group was created

successfully. Also type pvs. Notice that this command now

shows the name of the physical volumes, with the names of

the volume groups they are assigned to.

4. Type lvcreate -n lvdata -l 50%FREE vgdata. This creates an

LVM logical volume with the name lvdata, which will use 50%

of available disk space in the vgdata volume group.

5. Type lvs to verify that the volume was added successfully.

6. At this point, you are ready to create a file system on top of the

logical volume. Type mkfs.ext4 /dev/vgdata/lvdata to create

the file system.

7. Type mkdir /files to create a folder on which the volume can

be mounted.

8. Add the following line to the bottom of /etc/fstab:
Click here to view code image

/dev/vgdata/lvdata /files ext4 defaults 0 0

9. Type mount -a to verify that the mount works and mount the

file system.

10. Use lsblk to verify that the partition was mounted

successfully.

Table 15-2 summarizes the relevant commands for creating

logical volumes.

Table 15-2 LVM Management Essential Commands

Command Explanation

pvcreate Creates physical volumes

pvs Shows a summary of available physical

volumes

pvdisplay Shows a list of physical volumes and their

properties

pvremove Removes the physical volume signature from a

block device

vgcreate Creates volume groups

vgs Shows a summary of available volume groups

vgdisplay Shows a detailed list of volume groups and

their properties

vgremove Removes a volume group

lvcreate Creates logical volumes

lvs Shows a summary of all available logical

volumes

lvdisplay Shows a detailed list of available logical

volumes and their properties

lvremove Removes a logical volume

Resizing LVM Logical Volumes

One of the major benefits of using LVM is that LVM volumes are

easy to resize, which is very useful if your file system is running

out of available disk space. If the XFS file system is used, a

volume can be increased, but not decreased, in size. Other file

systems such as Ext4 support decreasing the file system size also.

You can decrease an Ext4 file system offline only, which means

that you need to unmount it before you can resize it. In this

section, you learn how to increase the size of an LVM logical

volume. To increase the size of a logical volume, you need to

have disk space available in the volume group, so we address

that first.

Resizing Volume Groups

The most important feature of LVM flexibility lies in the fact that

it is so easy to resize the volume groups and the logical volumes

that are using disk space from the volume groups. The vgextend

command is used to add storage to a volume group, and the

vgreduce command is used to take physical volumes out of a

volume group. The procedure to add storage to a volume group is

relatively easy:

1. Make sure that a physical volume or device is available to be

added to the volume group.

2. Use vgextend to extend the volume group. The new disk space

will show immediately in the volume group.

After extending a volume group, you can use the vgs command

to verify that a physical volume has been added to the volume

group. In Example 15-8, you can see that the vgdata VG contains

two physical volumes, as indicated in the #PV column.

Hivanetwork.com

https://hivanetwork.com/

Example 15-8 Verifying VG Resize Operations with vgs

Click here to view code image

[root@server1 ~]# vgs
 VG #PV #LV #SN Attr VSize VFree
 centos 1 2 0 wz--n- <19.00g 0
 vgdata 2 1 0 wz--n- 1020.00m 512.00m

Resizing Logical Volumes and File Systems

Like volume groups can be extended with the vgextend

command, logical volumes can be extended with the lvextend

command. This command has a very useful option -r to take care

of extending the file systems on the logical volume at the same

time; it is recommended to use this option and not the alternative

approach that separately extends the logical volumes and the file

systems on top of the logical volumes. Most file system resizing

operations can be done online if the file system needs to be

extended without unmounting it.

To grow the logical volume size, use lvextend or lvresize,

followed by the -r option to resize the file system used on it. Then

specify the size you want the resized volume to be. The easiest

and most intuitive way to do that is by using -L followed by a +

sign and the amount of disk space you want to add, as in lvresize

-L +1G -r /dev/vgdata/lvdata. An alternative way to resize the

logical volume is by using the -l option. This option is followed

either by the number of extents that are added to the logical

volume or by the absolute or relative percentage of extents in the

volume group that will be used. You can, for example, use the

following commands to resize the logical volume:

lvresize -r -l 75%VG /dev/vgdata/lvdata Resizes the logical

volume so that it will take 75% of the total disk space in the

volume group. Notice that if currently the logical volume is

using more than 75% of the volume group disk space, this

command will try to reduce the logical volume size!

lvresize -r -l +75%VG /dev/vgdata/lvdata Tries to add 75% of

the total size of the volume group to the logical volume. This

will work only if currently at least 75% of the volume group is

unused. (Notice the difference with the previous command.)

lvresize -r -l +75%FREE /dev/vgdata/lvdata Adds 75% of all

free disk space to the logical volume.

lvresize -r -l 75%FREE /dev/vgdata/lvdata Resizes the logical

volume to a total size that equals 75% of the amount of free

disk space, which may result in an attempt to reduce the

logical volume size. (Notice the difference with the previous

command.)

A logical extent is the logical building block used when creating

logical volumes, and it maps to a physical extent, the size of

which can be specified when creating a volume group. All resize

operations need to match complete logical extents. You will

sometimes notice that the resize size is rounded up or down to

the logical extent size. You can also specify the number of logical

extents that need to be added or removed directly by using the -l

option with the lvresize command.

As you can see, resizing a logical volume has many options, and

you need to take care to use the right options because it is easy to

make a mistake! In Exercise 15-3, you learn how to resize logical

volumes and the file systems used on top of them.

Note

The size of an XFS file system cannot be decreased; it

can only be increased. If you need a file system that

can be shrunk in size, use Ext4, not XFS.

Exercise 15-3 Resizing Logical Volumes

In Exercises 15-1 and 15-2, you created a physical volume,

volume group, and logical volume. In this exercise, you extend

the size of the logical volume and the file system used on top of

it.

1. Type pvs and vgs to show the current physical volume and

volume group configuration.

2. Use lsblk to verify that you have an unused partition

available that can be added to the volume group. In Exercise

15-1 you created the partition /dev/sdd2 for this purpose.

3. Type vgextend vgdata /dev/sdd2 to extend vgdata with the

total size of the /dev/sdd2 device.

4. Type vgs to verify that the available volume group size has

increased.

5. Type lvs to verify the current size of the logical volume lvdata.

6. Type df -h to verify the current size of the file system on

lvdata.

7. Type lvextend -r -l +50%FREE /dev/vgdata/lvdata to extend

lvdata with 50% of all available disk space in the volume

group.

8. Type lvs and df -h again to verify that the added disk space

has become available.

Reducing Volume Groups

If a volume group consists of multiple PVs, a PV can be removed

from the VG if the remaining PVs have sufficient free space to

allocate the extents it currently uses. This procedure will not

work if the remaining PVs are fully used already. Removing a PV

from a VG is a two-step procedure. First, use pvmove to move

used extents from the PV that you want to remove to any of the

remaining volumes. Next, use vgreduce to complete the PV

removal. In Exercise 15-4 you can practice this.

Exercise 15-4 Removing a VG from a PV

1. Use fdisk to create two partitions with a size of 2 GiB each,

and set the type to lvm. In the remainder of this exercise, I’ll

assume you’re using the partitions /dev/sdd3 and dev/sdd4 for

this purpose.

2. Use vgcreate vgdemo /dev/sdd3 to create a volume group.

3. Type lvcreate -L 1G -n lvdemo /dev/vgdemo to create a

logical volume with a size of 1 GiB. Notice that it is essential

not to use all of the available disk space!

4. Type vgextend vgdemo /dev/sdd4 to extend the volume

group.

5. Use pvs to verify extent usage on /dev/sdd3 and /dev/sdd4. You

should see that sdd3 is using about half of its extents, and all

extents on /dev/sdd4 are still unused.

6. Now type lvextend -L +500M /dev/vgdemo/lvdemo /dev/sdd4

to grow the lvdemo logical volume. Notice that you have to

add /dev/sdd4 to ensure that free extents will be taken from

the sdd4 device.

7. Type pvs to verify current extent usage on the devices.

8. Create a file system, using mkfs.ext4 /dev/vgdemo/lvdemo

9. Temporarily mount the logical volume, using mount

/dev/vgdemo/lvdemo /mnt

10. Use df -h to verify disk space usage.

11. Use dd if=/dev/zero of=/mnt/bigfile bs=1M count=1100. The

size ensures that file data is on both PVs.

12. Now you can prepare sdd4 for removal. As a first step, you

need to move all extents it uses to unused extents on sdd1.

Type the following to do so: pvmove -v /dev/sdd4 /dev/sdd3.

This can take a minute or two to complete.

13. Type pvs, which will show that /dev/sdd4 is now unused.

14. At this point you can remove the unused physical volume,

using vgreduce vgdemo /dev/sdd4

Configuring Stratis

In RHEL 9, Red Hat is offering Stratis as an advanced storage

solution. Stratis is a so-called volume-managing file system, and it

introduces advanced storage features that were not available

prior to RHEL 8. By doing so, Red Hat intends to offer an

alternative to the Btrfs and ZFS file systems that are used in other

environments. The following features are offered by Stratis:

Thin provisioning: This feature enables a Stratis file system to

present itself to users as much bigger than it really is. This is

useful in many environments, such as virtual desktops, where

each user may see 20 GiB of available storage in total although

a much lower amount is actually provisioned to each user.

Snapshots: A Stratis snapshot allows users to take a “picture”

of the current state of a file system. This snapshot makes it

easy to revert to the previous state of a file system, rolling back

any changes that have been made.

Cache tier: Cache tier is a Ceph storage feature that ensures

that data can be stored physically closer to the Ceph client,

which makes data access faster.

Programmatic API: The programmatic API ensures that

storage can easily be configured and modified through API

access. This is particularly interesting in cloud environments,

where setting up storage directly from cloud-native

applications is extremely useful.

Monitoring and repair: Whereas older file systems need tools

like fsck to verify the integrity of the file system, Stratis has

built-in features to monitor the health of the file system and

repair it if necessary.

Understanding Stratis Architecture

The lowest layer in the Stratis architecture is the pool. From a

functional perspective, the Stratis pool is comparable to an LVM

volume group. A pool represents all the available storage and

consists of one or more storage devices, which in a Stratis

environment are referred to as blockdev. These block devices

may not be thin provisioned at the underlying hardware level.

Stratis creates a /dev/stratis/poolname directory for each pool.

From the Stratis pool, XFS file systems are created. Note that

Stratis only works with XFS, and the XFS file system it uses is

integrated with the Stratis volume. When a file system is created,

no size is specified, and each file system can grow up to the size

of all the available storage space in the pool. Stratis file systems

are always thin provisioned. The thin volume automatically

grows as more data is added to the file system.

Creating Stratis Storage

Creating Stratis volumes is a multistep process. This section

provides a high-level overview, and then Exercise 15-5 in the

following section guides you through the procedure. You start by

creating a pool. Once the pool has been added, you can create file

systems from it. Before you begin, make sure that the block

devices you’re going to use in Stratis have a minimal size of 5

Hivanetwork.com

https://hivanetwork.com/

GiB. Each Stratis file system occupies a minimum of 527 MiB of

disk space, even if no data has been copied to the file system.

1. Install the Stratis software using dnf by installing the stratis-

cli and stratisd packages.

2. Start and enable the user-space daemon, using systemctl

enable --now stratisd.

3. Once the daemon is running, use the stratis pool create

command to create the pool that you want to work with. For

instance, use stratis pool create mypool /dev/sde to create a

pool that is based on the block device /dev/sdd. You can add

additional block devices later, using stratis pool add-data

poolname blockdevname, as in stratis pool add-data

mypool /dev/sde.

4. Once you have created the pool, add a file system using stratis

fs create poolname fsname.

5. To verify that all was created successfully, use the stratis fs

list command.

6. After creating the file system, you can mount it. To mount a

Stratis file system through /etc/fstab, you must use the UUID;

using the device name is not supported. Also, when mounting

the Stratis volume through /etc/fstab, include the mount option

x-systemd.requires=stratisd.service to ensure that the

Systemd waits to activate this device until the stratisd service

is loaded. Without this option you won’t be able to boot your

system anymore.

Managing Stratis

After creating the Stratis file system, you can perform several

different management tasks. To start with, you can dynamically

extend the pool, using stratis pool add-data. Also, you need to

monitor Stratis volumes using Stratis-specific tools, as the

traditional Linux tools cannot handle the thin-provisioned

volumes. The following commands are available:

stratis blockdev: Shows information about all block devices

that are used for Stratis.

stratis pool: Gives information about Stratis pools. Note in

particular the Physical Used parameter, which should not

come too close to the Physical Size parameter.

stratis filesystem: Enables you to monitor individual file

systems.

Another Stratis feature that you may want to manage is the

snapshot. A snapshot contains the state of the file system at the

moment the snapshot was created. After creation, the snapshot

can be modified. It’s also good to know that the snapshot and its

origin are not linked, which allows the snapshot to live longer

than the file system it was created from. This is fundamentally

different from, for instance, LVM snapshots, which cannot stay

alive if the volume they are linked to is removed.

In Exercise 15-5, you set up an environment with Stratis volumes.

Exercise 15-5 Managing Stratis Volumes

You need one dedicated disk with a minimal size of 5 GiB to

perform the steps in this exercise. In this exercise, the disk name

/dev/sde is used as an example. Replace this name with the disk

device name that is presented on your hardware.

1. Type dnf install stratisd stratis-cli to install all the required

packages.

2. Type systemctl enable --now stratisd to enable the Stratis

daemon.

3. Type stratis pool create mypool /dev/sde to add the entire

disk /dev/sde to the storage pool.

4. Type stratis pool list to verify successful creation of the pool.

5. Type stratis fs create mypool stratis1 to create the first

Stratis file system. Note that you don’t have to specify a file

system size.

6. Type stratis fs list to verify the creation of the file system.

7. Type mkdir /stratis1 to create a mount point for the Stratis

file system.

8. Type stratis fs list to find the Stratis volume UUID.

9. Add the following line to /etc/fstab to enable the volume to be

mounted automatically. Make sure to use the UUID name that

is used by your Stratis file system.
Click here to view code image

UUID=xxx /stratis1 xfs defaults,x-systemd.requires=stratisd.
service 0 0

10. Type mount -a to mount the Stratis volume. Use the mount

command to verify that this procedure worked successfully.

11. Type cp /etc/[a-f]* /stratis1 to copy some files to the Stratis

volume.

12. Type stratis filesystem snapshot mypool stratis1 stratis1-

snap to create a snapshot of the volume you just created. Note

that this command may take up to a minute to complete.

13. Type stratis filesystem list to get statistics about current file

system usage.

14. Type rm -f /stratis1/a* to remove all files that have a name

starting with a.

15. Type mount /dev/stratis/mypool/stratis1-snap /mnt and

verify that the files whose names start with a are still

available in the /mnt directory.

16. Reboot your server. After reboot, verify that the Stratis

volume is still automatically mounted.

Summary

In this chapter, you learned how to work with advanced storage

on RHEL 9. First, you read how LVM is used to bring flexibility to

storage. By using LVM, you get the advantages of volumes that

can be resized easily and multidevice logical volumes. Next, you

were introduced to Stratis, the volume-managing file system.

Stratis brings next-generation storage features to RHEL 9, and by

default creates thin-provisioned file systems.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 15-3 lists a

reference for these key topics and the page number on which

each is found.

Table 15-3 Key Topics for Chapter 15

Key Topic

Element
Description Page

Figure 15-1 LVM Architecture Overview 347

Table 15-2 LVM Management Essential

Commands

357

List LVM lvresize commands 359

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

snapshot

physical volume (PV)

volume group (VG)

physical extent

logical volume (LV)

device mapper

logical extent

Stratis

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 Which partition type is used on a GUID partition that needs to be

used in LVM?

 Which command enables you to create a volume group with the

name vgroup that contains the physical device /dev/sdb3 and

uses a physical extent size of 4 MiB?

 Which command shows a short summary of the physical

volumes on your system as well as the volume group to which

these belong?

 What do you need to do to add an entire hard disk /dev/sdd to the

volume group vgroup?

 Which command enables you to create a logical volume lvvol1

with a size of 6 MiB?

 Which command enables you to add 100 MB to the logical

volume lvvol1, assuming that the disk space is available in the

volume group?

 Which two commands do you use to remove a physical volume

from a volume group?

 When working with Stratis, what line would you add to /etc/fstab

to mount the Stratis volume?

 Which command do you use to create a Stratis pool that is based

Hivanetwork.com

https://hivanetwork.com/

on the block device /dev/sdd?

 How do you format a Stratis volume with the Ext4 file system?

End-of-Chapter Labs

To complete the following end-of-chapter labs, you need a

dedicated disk device. Either use a USB thumb drive or add a

new virtual disk to your virtual environment before starting.

Lab 15.1

1. Create a 500-MB logical volume named lvgroup. Format it

with the XFS file system and mount it persistently on /groups.

Reboot your server to verify that the mount works.

2. After rebooting, add another 250 MB to the lvgroup volume

that you just created. Verify that the file system resizes as well

while resizing the volume.

3. Verify that the volume extension was successful.

Lab 15.2

1. Create a Stratis pool with a size of 5 GiB. In this pool, create

two Stratis file systems and ensure that they are automatically

mounted.

2. Add an additional block device to the Stratis pool and verify

that the size of the pool was successfully extended.

3. Ensure that the new Stratis device is automatically mounted

on the directory /stratis while rebooting.

Part III

Performing Advanced System
Administration Tasks

Chapter 16

Basic Kernel Management

The following topics are covered in this chapter:

Understanding the Role of the Linux Kernel

Working with Kernel Modules

Upgrading the Linux Kernel

The Linux kernel is the heart of the Linux operating system. It

takes care of many things, including hardware management. In

this chapter, you learn all you need to know about the Linux

kernel from an RHCSA perspective. In fact, you even learn a bit

more. The topics covered in this chapter are not included in the

current RHCSA exam objectives, but any serious Linux

administrator should be able to deal with issues related to the

kernel, so I address them in this chapter.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

16-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 16-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding the Role of the Linux Kernel 1–4

Working with Kernel Modules 5–9

Upgrading the Linux Kernel 10

 What causes a tainted kernel?

1. A kernel driver that is not available as an open source driver

2. A driver that was developed for a different operating system

but has been ported to Linux

3. A driver that has failed

4. An unsupported driver

 Which command shows kernel events since booting?

1. logger

2. dmesg

3. klogd

4. journald

 Which command enables you to find the actual version of the

kernel that is used?

1. uname -r

2. uname -v

3. procinfo -k

4. procinfo -l

 Which command shows the current version of RHEL you are

using?

1. uname -r

2. cat /proc/rhel-version

3. cat /etc/redhat-release

4. uname -k

 What is the name of the process that helps the kernel to initialize

hardware devices properly?

1. systemd-udevd

2. hwinit

3. udev

4. udevd

 Where does your system find the default rules that are used for

initializing new hardware devices?

1. /etc/udev/rules.d

2. /usr/lib/udev/rules.d

3. /usr/lib/udev.d/rules

4. /etc/udev.d/rules

 Which command should you use to unload a kernel module,

including all of its dependencies?

1. rmmod

2. insmod -r

3. modprobe -r

4. modprobe

 Which command enables you to see whether the appropriate

kernel modules have been loaded for hardware in your server?

1. lsmod

2. modprobe -l

3. lspci -k

4. lspci

 Where do you specify a kernel module parameter to make it

persistent?

1. /etc/modules.conf

2. /etc/modprobe.conf

3. /etc/modprobe.d/somefilename

4. /usr/lib/modprobe.d/somefilename

 Which statements about updating the kernel are not true?

1. The dnf update kernel command will install a new kernel and

not update it.

2. The dnf install kernel command will install a new kernel and

keep the old kernel.

3. The kernel package should be set as a dnf-protected package

to ensure that after an update the old kernel is still available.

4. After you have installed a new kernel version, you must run

the grub2-mkconfig command to modify the GRUB 2 boot

menu so that it shows the old kernel and the newly installed

kernel.

Foundation Topics

Understanding the Role of the Linux Kernel

The Linux kernel is the heart of the operating system. It is the

Hivanetwork.com

https://hivanetwork.com/

layer between the user who works with Linux from a shell

environment and the hardware that is available in the computer

on which the user is working. The kernel manages the I/O

instructions it receives from the software and translates them

into the processing instructions that are executed by the central

processing unit and other hardware in the computer. The kernel

also takes care of handling essential operating system tasks. One

example of such a task is the scheduler that makes sure any

processes that are started on the operating system are handled

by the CPU.

Understanding the Use of Kernel Threads and Drivers

The operating system tasks that are performed by the kernel are

implemented by different kernel threads. Kernel threads are

easily recognized with a command like ps aux. The kernel thread

names are listed between square brackets (see Example 16-1).

Example 16-1 Listing Kernel Threads with ps aux

Click here to view code image

[root@server1 ~]# ps aux | head -n 20
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 1.8 0.6 52980 6812 ? Ss 11:44 0:02 /usr/lib/
systemd/systemd --switched-root --system --deserialize 23

root 2 0.0 0.0 0 0 ? S 11:44 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S 11:44 0:00 [ksoftirqd/0]
root 4 0.0 0.0 0 0 ? S 11:44 0:00 [kworker/0:0]
root 5 0.0 0.0 0 0 ? S< 11:44 0:00 [kworker/0:0H]
root 6 0.0 0.0 0 0 ? S 11:44 0:00 [kworker/u128:0]
root 7 0.1 0.0 0 0 ? S 11:44 0:00 [migration/0]
root 8 0.0 0.0 0 0 ? S 11:44 0:00 [rcu_bh]
root 9 0.0 0.0 0 0 ? S 11:44 0:00 [rcuob/0]
root 10 0.0 0.0 0 0 ? S 11:44 0:00 [rcuob/1]
root 11 0.0 0.0 0 0 ? S 11:44 0:00 [rcuob/2]
root 12 0.0 0.0 0 0 ? S 11:44 0:00 [rcuob/3]
root 13 0.0 0.0 0 0 ? S 11:44 0:00 [rcuob/4]
root 14 0.0 0.0 0 0 ? S 11:44 0:00 [rcuob/5]
root 15 0.0 0.0 0 0 ? S 11:44 0:00 [rcuob/6]
root 16 0.0 0.0 0 0 ? S 11:44 0:00 [rcuob/7]
root 17 0.0 0.0 0 0 ? S 11:44 0:00 [rcuob/8]
root 18 0.0 0.0 0 0 ? S 11:44 0:00 [rcuob/9]
root 19 0.0 0.0 0 0 ? S 11:44 0:00 [rcuob/10]

Another important task of the Linux kernel is hardware

initialization. To make sure that this hardware can be used, the

Linux kernel uses drivers. Every piece of hardware contains

specific features, and to use these features, a driver must be

loaded. The Linux kernel is modular, and drivers are loaded as

kernel modules, which you’ll read more about later in this

chapter.

In some cases, the availability of drivers is an issue because

hardware manufacturers are not always willing to provide open

source drivers that can be integrated well with the Linux kernel.

That can result in a driver that does not provide all the

functionality that is provided by the hardware.

If a manufacturer is not willing to provide open source drivers,

an alternative is to work with closed source drivers. Although

these make it possible to use the hardware in Linux, the solution

is not ideal. Because a driver performs privileged instructions

within the kernel space, a badly functioning driver may crash the

entire kernel. If this happens with an open source driver, the

Linux kernel community can help debug the problem and make

sure that the issue is fixed. If it happens with a closed source

driver, the Linux kernel community cannot do anything. But, a

proprietary driver may provide access to features that are not

provided by its open source equivalent.

To make it easy to see whether a kernel is using closed source

drivers, the concept of the tainted kernel is used. A tainted

kernel is a kernel that contains closed source drivers. The

concept of tainted kernels helps in troubleshooting drivers. If

your RHEL kernel appears to be tainted, Red Hat support can

identify it as a tainted kernel and recognize which driver is

tainting it. To fix the problem, Red Hat might ask you to take out

the driver that is making it a tainted kernel.

Analyzing What the Kernel Is Doing

To help analyze what the kernel is doing, the Linux operating

systems provide some tools:

The dmesg utility

The /proc file system

The uname utility

The first utility to consider if you require detailed information

about the kernel activity is dmesg. This utility shows the contents

of the kernel ring buffer, an area of memory where the Linux

kernel keeps its recent log messages. An alternative method to

get access to the same information in the kernel ring buffer is the

journalctl --dmesg command, which is equivalent to journalctl -

k. In Example 16-2, you can see a part of the result of the dmesg

command.

Example 16-2 Analyzing Kernel Activity Using dmesg

Click here to view code image

[8.153928] sd 0:0:0:0: Attached scsi generic sg0 type 0
[8.154289] sd 0:0:1:0: Attached scsi generic sg1 type 0
[8.154330] sd 0:0:2:0: Attached scsi generic sg2 type 0
[8.154360] sd 0:0:3:0: Attached scsi generic sg3 type 0
[8.154421] sr 4:0:0:0: Attached scsi generic sg4 type 5
[8.729016] ip_tables: (C) 2000-2006 Netfilter Core Team
[8.850599] nf_conntrack version 0.5.0 (7897 buckets, 31588 max)
[8.939613] ip6_tables: (C) 2000-2006 Netfilter Core Team
[9.160092] Ebtables v2.0 registered
[9.203710] Bridge firewalling registered
[9.586603] IPv6: ADDRCONF(NETDEV_UP): eno16777736: link is not ready
[9.587520] e1000: eno16777736 NIC Link is Up 1000 Mbps Full Duplex,
 Flow Control: None
[9.589066] IPv6: ADDRCONF(NETDEV_CHANGE): eno16777736: link becomes
 ready
[10.689365] Rounding down aligned max_sectors from 4294967295 to
 4294967288
[5158.470480] Adjusting tsc more than 11% (6940512 vs 6913395)
[21766.132181] e1000: eno16777736 NIC Link is Down
[21770.391597] e1000: eno16777736 NIC Link is Up 1000 Mbps Full
 Duplex, Flow Control: None
[21780.434547] e1000: eno16777736 NIC Link is Down

In the dmesg output, all kernel-related messages are shown.

Each message starts with a time indicator that shows at which

specific second the event was logged. This time indicator is

relative to the start of the kernel, which allows you to see exactly

how many seconds have passed between the start of the kernel

and a particular event. (Notice that the journalctl -k and

journalctl --dmesg commands show clock time, instead of time

that is relative to the start of the kernel.) This time indicator gives

a clear indication of what has been happening and at which time

it has happened.

Another valuable source of information is the /proc file system.

The /proc file system is an interface to the Linux kernel, and it

contains files with detailed status information about what is

happening on your server. Many of the performance-related

tools mine the /proc file system for more information.

As an administrator, you will find that some of the files in /proc

are very readable and contain status information about the CPU,

memory, mounts, and more. Take a look, for instance, at

/proc/meminfo, which gives detailed information about each

memory segment and what exactly is happening in these

memory segments.

A last useful source of information is the uname command. This

command gives different kinds of information about your

operating system. Type, for instance, uname -a for an overview

of all relevant parameters of uname -r to see which kernel

version currently is used. This information also shows when you

are using the hostnamectl status command, which shows useful

additional information as well (see Example 16-3).

Tip

On some occasions, you might need to know specific

information about the RHEL version you are using.

To get that information, run the cat /etc/redhat-

release command and review its output; it will tell

you which Red Hat version you are using and which

update level is applied.

Example 16-3 Getting More Information About the System

Click here to view code image

[root@server1 ~]# hostnamectl status
 Static hostname: server1.example.com
 Icon name: computer-vm
 Chassis: vm ¬
 Machine ID: d04b1233036748edbcf73adc926c98e3
 Boot ID: 21e4e2e53648413dbe7975f64f570e51
 Virtualization: vmware
Operating System: Red Hat Enterprise Linux 9.0 (Plow)
 CPE OS Name: cpe:/o:redhat:enterprise_linux:9::baseos

 Kernel: Linux 5.14.0-70.13.1.el9_0.x86_64
 Architecture: x86-64
 Hardware Vendor: VMware, Inc.
 Hardware Model: VMware Virtual Platform

Working with Kernel Modules

In the old days of Linux, kernels had to be compiled to include all

drivers that were required to support computer hardware. Other

specific functionality needed to be compiled into the kernel as

well. Since the release of Linux kernel 2.0 in 1996, kernels are no

longer compiled but modular. A modular kernel consists of a

relatively small core kernel and provides driver support through

modules that are loaded when required. Modular kernels are

very efficient, as they include only those modules that really are

needed.

Tip

A kernel module implements specific kernel

functionality. Kernel modules are used to load

drivers that allow proper communications with

hardware devices, but are not limited to loading

hardware drivers alone. For example, file system

Hivanetwork.com

https://hivanetwork.com/

support is loaded as modules. Other kernel features

can be loaded as modules as well.

Understanding Hardware Initialization

The loading of drivers is an automated process that roughly goes

like this:

1. During boot, the kernel probes available hardware.

2. Upon detection of a hardware component, the systemd-udevd

process takes care of loading the appropriate driver and

making the hardware device available.

3. To decide how the devices are initialized, systemd-udevd

reads rules files in /usr/lib/udev/rules.d. These are system-

provided rules files that should not be modified.

4. After processing the system-provided udev rules files,

systemd-udevd goes to the /etc/udev/rules.d directory to read

any custom rules if these are available.

5. As a result, required kernel modules are loaded automatically,

and status about the kernel modules and associated hardware

is written to the sysfs file system, which is mounted on the /sys

directory. The Linux kernel uses this pseudo file system to

track hardware-related settings.

The systemd-udevd process is not a one-time-only process; it

continuously monitors plugging and unplugging of new

hardware devices. To get an impression of how this works, as

root you can type the command udevadm monitor. This lists all

events that are processed while activating new hardware

devices. For instance, if you plug in a USB device while this

command is active, you can see exactly what’s happening. Press

Ctrl-C to close the udevadm monitor output.

Example 16-4 shows output of the udevadm monitor command.

In this command, you can see how features that are offered by

the hardware are discovered automatically by the kernel and

systemd-udevd working together. Each phase of the hardware

probing is concluded by the creation of a file in the /sys file

system. Once the hardware has been fully initialized, you can

also see that some kernel modules are loaded.

Note

Although useful to know, hardware initialization is

not included in the current RHCSA objectives.

Example 16-4 Output of the udevadm monitor Command

Click here to view code image

[root@server2 ~]# udevadm monitor
monitor will print the received events for:
UDEV - the event which udev sends out after rule processing
KERNEL - the kernel uevent

KERNEL[132406.831270] add
 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/usb1/1-1 (usb)
KERNEL[132406.974110] add
 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/usb1/1-1/1-1:1.0 (usb)
UDEV [132406.988182] add
 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/usb1/1-1 (usb)
KERNEL[132406.999249] add /module/usb_storage (module)
UDEV [132407.001203] add /module/usb_storage (module)
KERNEL[132407.002559] add
 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/usb1/1-1/1-1:1.0/
 host33 (scsi)
UDEV [132407.002575] add
 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/usb1/1-1/1-1:1.0 (usb)
KERNEL[132407.002583] add
 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/usb1/1-1/1-1:1.0/
 host33/scsi_host/host33 (scsi_host)
KERNEL[132407.002590] add /bus/usb/drivers/usb-storage (drivers)
UDEV [132407.004479] add /bus/usb/drivers/usb-storage (drivers)
UDEV [132407.005798] add
 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/usb1/1-1/1-1:1.0/
 host33 (scsi)
UDEV [132407.007385] add

 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/usb1/1-1/1-1:1.0/
 host33/scsi_host/host33 (scsi_host)
KERNEL[132408.008331] add
 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/usb1/1-1/1-1:1.0/
 host33/target33:0:0 (scsi)
KERNEL[132408.008355] add
 /devices/pci0000:00/0000:00:11.0/0000:02:04.0/usb1/1-1/1-1:1.0/
 host33/target33:0:0/33:0:0:0 (scsi)
...
KERNEL[132409.381930] add /module/fat (module)
KERNEL[132409.381951] add /kernel/slab/fat_cache (slab)
KERNEL[132409.381958] add /kernel/slab/fat_inode_cache (slab)
KERNEL[132409.381964] add /module/vfat (module)
UDEV [132409.385090] add /module/fat (module)
UDEV [132409.385107] add /kernel/slab/fat_cache (slab)
UDEV [132409.385113] add /kernel/slab/fat_inode_cache (slab)
UDEV [132409.386110] add /module/vfat (module)

Managing Kernel Modules

Linux kernel modules normally are loaded automatically for the

devices that need them, but you will on rare occasions have to

load the appropriate kernel modules manually. A few commands

are used for manual management of kernel modules. Table 16-2

provides an overview.

Table 16-2 Linux Kernel Module Management Overview

Command Use

lsmod Lists currently loaded kernel modules

modinfo Displays information about kernel modules

modprobe Loads kernel modules, including all of their

dependencies

modprobe

-r

Unloads kernel modules, considering kernel

module dependencies

An alternative method of loading kernel modules is through the

/etc/modules-load.d directory. In this directory, you can create

files to load modules automatically that are not already loaded

by the systemd-udevd method. For default modules that should

always be loaded, this directory has a counterpart in

/usr/lib/modules-load.d.

The first command to use when working with kernel modules is

lsmod. This command lists all kernel modules that currently are

used, including the modules by which this specific module is

used. Example 16-5 shows the output of the first ten lines of the

lsmod command.

Example 16-5 Listing Loaded Modules with lsmod

Click here to view code image

[root@server1 ~]# lsmod | head
Module Size Used by
nls_utf8 16384 1
isofs 45056 1
fuse 126976 3
rfcomm 90112 6
xt_CHECKSUM 16384 1
ipt_MASQUERADE 16384 1
xt_conntrack 16384 1
ipt_REJECT 16384 1
nft_counter 16384 16

Tip

Many Linux commands show their output in

different columns, and it is not always clear which

column is used to show which kind of information.

Most of these commands have a header line on the

first line of command output. So, if in the output of

any command you are not sure what you are seeing,

pipe the output of the command through head to see

whether there is a header file, or pipe the command

output to less, which allows you to page up to the

first line of command output easily.

If you want to have more information about a specific kernel

module, you can use the modinfo command. This gives complete

information about specific kernel modules, including two

interesting sections: the alias and the parms. A module alias is

another name that can also be used to address the module. The

parms lines refer to parameters that can be set while loading the

module. (In the section “Managing Kernel Module Parameters”

later in this chapter, you learn how to work with kernel module

parameters.) Example 16-6 shows partial output of the modinfo

e1000 command.

Example 16-6 Showing Module Information with modinfo

Click here to view code image

[root@server1 ~]# modinfo e1000
filename: /lib/modules/5.14.0-70.13.1.el9_0.x86_64/kernel/
 drivers/net/ethernet/intel/e1000/e1000.ko.xz
license: GPL v2
description: Intel(R) PRO/1000 Network Driver
author: Intel Corporation, <linux.nics@intel.com>
rhelversion: 9.0
srcversion: 55BD0A50779C0A80232DEDD
alias: pci:v00008086d00002E6Esv*sd*bc*sc*i*
alias: pci:v00008086d000010B5sv*sd*bc*sc*i*
alias: pci:v00008086d00001099sv*sd*bc*sc*i*
…
depends:
retpoline: Y
intree: Y
name: e1000
vermagic: 5.14.0-70.13.1.el9_0.x86_64 SMP preempt mod_unload
 modversions
sig_id: PKCS#7
signer: Red Hat Enterprise Linux kernel signing key
sig_key: 41:63:79:65:D6:4F:EC:E6:A4:AB:67:F7:77:10:AD:65:DC:C3
 :CA:C6
sig_hashalgo: sha256
signature:
…
parm: TxDescriptors:Number of transmit descriptors (array
 of int)

Hivanetwork.com

https://hivanetwork.com/

parm: RxDescriptors:Number of receive descriptors (array of int)
parm: Speed:Speed setting (array of int)
parm: Duplex:Duplex setting (array of int)
parm: AutoNeg:Advertised auto-negotiation setting (array of
 int)
parm: FlowControl:Flow Control setting (array of int)
parm: XsumRX:Disable or enable Receive Checksum offload
 (array of int)
parm: TxIntDelay:Transmit Interrupt Delay (array of int)
parm: TxAbsIntDelay:Transmit Absolute Interrupt Delay
 (array of int)
parm: RxIntDelay:Receive Interrupt Delay (array of int)
parm: RxAbsIntDelay:Receive Absolute Interrupt Delay (array
 of int)
parm: InterruptThrottleRate:Interrupt Throttling Rate
 (array of int)
parm: SmartPowerDownEnable:Enable PHY smart power down
 (array of int)
parm: copybreak:Maximum size of packet that is copied to a
 new buffer on receive (uint)
parm: debug:Debug level (0=none,...,16=all) (int) (int)

To manually load and unload modules, you can use the

modprobe and modprobe -r commands. On earlier Linux

versions, you may have used the insmod and rmmod

commands. These should no longer be used because they do not

load kernel module dependencies. In Exercise 16-1, you learn

how to manage kernel modules using these commands.

Exercise 16-1 Managing Kernel Modules from the Command Line

1. Open a root shell and type lsmod | less. This shows all kernel

modules currently loaded.

2. Type modprobe vfat to load the vfat kernel module.

3. Verify that the module is loaded by using the lsmod | grep

vfat command. You can see that the module is loaded, as well

as some of its dependencies.

4. Type modinfo vfat to get information about the vfat kernel

module. Notice that it does not have any parameters.

5. Type modprobe -r vfat to unload the vfat kernel module

again.

6. Type modprobe -r xfs to try to unload the xfs kernel module.

Notice that you get an error message because the kernel

module currently is in use.

Checking Driver Availability for Hardware Devices

On modern Linux servers, many hardware devices are

supported. On occasion, you might find that some devices are not

supported properly because their modules are not currently

loaded. The best way to find out whether this is the case for your

hardware is by using the lspci command. If used without

arguments, it shows all hardware devices that have been

detected on the PCI bus. A very useful argument is -k, which lists

all kernel modules that are used for the PCI devices that were

detected. Example 16-7 shows sample output of the lspci -k

command.

Example 16-7 Checking Kernel Module Availability

Click here to view code image

[root@server1 ~]# lspci -k | head
00:00.0 Host bridge: Intel Corporation 440BX/ZX/DX - 82443BX/ZX/DX
 Host bridge (rev 01)
 Subsystem: VMware Virtual Machine Chipset
 Kernel driver in use: agpgart-intel
00:01.0 PCI bridge: Intel Corporation 440BX/ZX/DX - 82443BX/ZX/DX AGP
 bridge (rev 01)
00:07.0 ISA bridge: Intel Corporation 82371AB/EB/MB PIIX4 ISA (rev 08)
 Subsystem: VMware Virtual Machine Chipset
00:07.1 IDE interface: Intel Corporation 82371AB/EB/MB PIIX4 IDE (rev
 01)
 Subsystem: VMware Virtual Machine Chipset
 Kernel driver in use: ata_piix
 Kernel modules: ata_piix, ata_generic
00:07.3 Bridge: Intel Corporation 82371AB/EB/MB PIIX4 ACPI (rev 08)
 Subsystem: VMware Virtual Machine Chipset
 Kernel modules: i2c_piix4

00:07.7 System peripheral: VMware Virtual Machine Communication
 Interface (rev 10)
 Subsystem: VMware Virtual Machine Communication Interface
 Kernel driver in use: vmw_vmci
 Kernel modules: vmw_vmci
00:0f.0 VGA compatible controller: VMware SVGA II Adapter
 Subsystem: VMware SVGA II Adapter
 Kernel driver in use: vmwgfx
 Kernel modules: vmwgfx
00:10.0 SCSI storage controller: LSI Logic / Symbios Logic 53c1030
 PCI-X Fusion-MPT Dual Ultra320 SCSI (rev 01)
 Subsystem: VMware LSI Logic Parallel SCSI Controller
 Kernel driver in use: mptspi
 Kernel modules: mptspi
00:11.0 PCI bridge: VMware PCI bridge (rev 02)
00:15.0 PCI bridge: VMware PCI Express Root Port (rev 01)
 Kernel driver in use: pcieport

If you discover that PCI devices were found for which no kernel

modules could be loaded, you are probably dealing with a device

that is not supported. You can try to find a closed source kernel

module, but you should realize that doing so might endanger the

stability of your kernel. A much better approach is to check with

your hardware vendor that Linux is fully supported before you

purchase specific hardware.

Managing Kernel Module Parameters

Occasionally, you might want to load kernel modules with

specific parameters. To do so, you first need to find out which

parameter you want to use. If you have found the parameter you

want to use, you can load it manually, specifying the name of the

parameter followed by the value that you want to assign. To

make this an automated procedure, you can create a file in the

/etc/modprobe.d directory, where the module is loaded, including

the parameter you want to be loaded. In Exercise 16-2 you see

how to do this using the cdrom kernel module.

Exercise 16-2 Loading Kernel Modules with Parameters

1. Type lsmod | grep cdrom. If you have used the optical drive

in your computer, this module should be loaded, and it should

indicate that it is used by the sr_mod module.

2. Type modprobe -r cdrom. This will not work because the

module is in use by the sr_mod module.

3. Type modprobe -r sr_mod; modprobe -r cdrom. This should

unload both modules, but it will most likely fail. (It won’t fail if

currently no optical device is mounted.)

4. Type umount /dev/sr0 to unmount the mounted cdrom file

system and use modprobe -r sr_mod. This should now work.

5. Type modinfo cdrom. This shows information about the

cdrom module, including the parameters that it supports. One

of these is the debug parameter, which supports a Boolean as

its value.

6. Type modprobe cdrom debug=1. This loads the cdrom

module with the debug parameter set to on.

7. Type dmesg. For some kernel modules, load information is

written to the kernel ring buffer, which can be displayed

using the dmesg command. Unfortunately, this is not the case

for the cdrom kernel module.

8. Create a file with the name /etc/modprobe.d/cdrom.conf and

give it the following contents:
options cdrom debug=1

This enables the parameter every time the cdrom kernel

module loads.

Upgrading the Linux Kernel

From time to time, you need to upgrade the Linux kernel. When

you upgrade the Linux kernel, a new version of the kernel is

installed and used as the default kernel. The old version of the

kernel file will still be available, though. This ensures that your

computer can still boot if the new kernel includes nonsupported

functionality. To install a new version of the kernel, you can use

the command dnf upgrade kernel. The dnf install kernel

command also works. Both commands install the new kernel

beside the old kernel.

The kernel files for the last four kernels that you have installed

on your server will be kept in the /boot directory. The GRUB 2

boot loader automatically picks up all kernels that it finds in this

directory. This allows you to select an older kernel version while

booting, which is useful if the newly installed kernel doesn’t boot

correctly.

Summary

In this chapter, you learned how to work with the Linux kernel.

You learned that the Linux kernel is modular and how working

with kernel modules is important. You also learned how to

manage kernel modules and how kernel modules are managed

automatically while working with new hardware.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 16-3 lists a

reference for these key topics and the page number on which

each is found.

Table 16-3 Key Topics for Chapter 16

Key Topic

Element
Description Page

List Overview of kernel-related tools 373

Table 16-2 Linux Kernel Module Management

Overview

378

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

Hivanetwork.com

https://hivanetwork.com/

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

kernel

tainted kernel

dmesg

/proc

module

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 Which command shows the current version of the kernel that is

used on your computer?

 Where do you find current version information about your RHEL

installation?

 Which command shows a list of kernel modules that currently

are loaded?

 Which command enables you to discover kernel module

parameters?

 How do you unload a kernel module?

 What can you do if you get an error message while trying to

unload a kernel module?

 How do you find which kernel module parameters are

supported?

 Where do you specify kernel module parameters that should be

used persistently?

 Assuming that the cdrom module has a parameter debug, which

must be set to 1 to enable debug mode, which line would you

include in the file that will automatically load that module?

 How do you install a new version of the kernel?

End-of-Chapter Lab

In the end-of-chapter lab, you install a new version of the kernel

and work with kernel modules.

Lab 16.1

1. Find out whether a new version of the kernel is available. If so,

install it and reboot your computer so that it is used.

2. Use the appropriate command to show recent events that have

been logged by the kernel.

3. Locate the kernel module that is used by your network card.

Find out whether it has options. Try loading one of these

kernel module options manually; if that succeeds, take the

required measures to load this option persistently.

Chapter 17

Managing and Understanding the Boot
Procedure

The following topics are covered in this chapter:

Managing Systemd Targets

Working with GRUB 2

The following RHCSA exam objectives are covered in this

chapter:

Configure systems to boot into a specific target automatically

Modify the system bootloader

In this chapter, you learn how the boot procedure on Red Hat

Enterprise Linux is organized. In the first part of this chapter,

you learn about Systemd targets and how you can use them to

boot your Linux system into a specific state. The second part of

this chapter discusses GRUB2 and how to apply changes to the

GRUB 2 boot loader. Troubleshooting is not a topic in this

chapter; it is covered in Chapter 18, “Essential Troubleshooting

Skills.”

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

17-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 17-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Managing Systemd Targets 1–7

Working with GRUB 2 8–10

 Which of the following is the most efficient way to define a

system want?

1. Use the systemctl enable command.

2. Define the want in the unit file [Service] section.

3. Create a symbolic link in the /usr/lib/system/system directory.

4. Create a symbolic link in the unit wants directory in the

/etc/system/system directory.

 Which target is considered the normal target for servers to start

in?

1. graphical.target

2. server.target

3. multi-user.target

4. default.target

 Which of the following is not an example of a systemd target?

1. rescue.target

2. restart.target

3. multi-user.target

4. graphical.target

 Where do you define which target a unit should be started in if it

is enabled?

1. The target unit file

2. The wants directory

3. The systemctl.conf file

4. The [Install] section in the unit file

 To allow targets to be isolated, you need a specific statement in

the target unit file. Which of the following describes that

statement?

1. AllowIsolate

2. Isolate

3. SetIsolate

4. Isolated

 An administrator wants to change the current multi-user.target

to the rescue.target. Which of the following should the admin do?

1. Use the systemctl isolate rescue.target command.

2. Use the systemctl start rescue.target command.

3. Restart the system, and from the GRUB boot prompt specify

that rescue.target should be started.

4. Use the systemctl enable rescue.target --now command.

 To which legacy System V runlevel does multi-user.target

correspond?

1. 2

2. 3

3. 4

4. 5

 What is the name of the file where you should apply changes to

the GRUB 2 configuration?

1. /boot/grub/menu.lst

2. /boot/grub2/grub.cfg

3. /etc/sysconfig/grub

4. /etc/default/grub

 After applying changes to the GRUB 2 configuration, you need to

write those changes. Which of the following commands will do

that for you?

1. grub2 -o /boot/grub/grub.cfg

2. grub2-mkconfig > /boot/grub2/grub.cfg

3. grub2 > /boot/grub2/grub.cfg

4. grub2-install > /boot/grub2/grub.cfg

 What is the name of the GRUB2 configuration file that is

generated on a UEFI system?

1. /boot/efi/redhat/grub.cfg

2. /boot/efi/EFI/redhat/grub.cfg

3. /boot/EFI/grub.cfg

4. /boot/EFI/efi/grub.cfg

Foundation Topics

Hivanetwork.com

https://hivanetwork.com/

Managing Systemd Targets

Systemd is the service in Red Hat Enterprise Linux 9 that is

responsible for starting all kinds of things. Systemd goes way

beyond starting services; other items are started from Systemd as

well. In Chapter 11, “Working with Systemd,” you learned about

the Systemd fundamentals; this chapter looks at how Systemd

targets are used to boot your system into a specific state.

Understanding Systemd Targets

A systemd target is basically just a group of units that belong

together. Some targets are just that and nothing else, whereas

other targets can be used to define the state a system is booting

in, because these targets have one specific property that regular

targets don’t have: they can be isolated. Isolatable targets contain

everything a system needs to boot or change its current state.

Four targets can be used while booting:

emergency.target: In this target only a minimal number of

units are started, just enough to fix your system if something is

seriously wrong. You’ll find that it is quite minimal, as some

important units are not started.

rescue.target: This target starts all units that are required to

get a fully operational Linux system. It doesn’t start

nonessential services though.

multi-user.target: This target is often used as the default

target a system starts in. It starts everything that is needed for

full system functionality and is commonly used on servers.

graphical.target: This target also is commonly used. It starts

all units that are needed for full functionality, as well as a

graphical interface.

Working with Targets

Working with targets may seem complicated, but it is not. It drills

down to three common tasks:

Adding units to be automatically started

Setting a default target

Running a nondefault target to enter troubleshooting mode

In Chapter 11 you learned how to use the systemctl enable and

systemctl disable commands to add services to or remove

services from targets. In this chapter you learn how to set a

default target and how to run a nondefault target to enter

troubleshooting mode. But first let’s take a closer look at the

working of targets under the hood.

Understanding Target Units

Behind a target there is some configuration. This configuration

consists of two parts:

The target unit file

The “wants” directory, which contains references to all unit

files that need to be loaded when entering a specific target

Targets by themselves can have dependencies to other targets,

which are defined in the target unit file. Example 17-1 shows the

definition of the multi-user.target file, which defines the normal

operational state of a RHEL server.

Example 17-1 The multi-user.target File

Click here to view code image

[root@localhost ~]# systemctl cat multi-user.target
/usr/lib/systemd/system/multi-user.target
SPDX-License-Identifier: LGPL-2.1+
#
This file is part of systemd.
#
systemd is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as
 published by

the Free Software Foundation; either version 2.1 of the License,
 or
(at your option) any later version.

[Unit]
Description=Multi-User System
Documentation=man:systemd.special(7)
Requires=basic.target
Conflicts=rescue.service rescue.target
After=basic.target rescue.service rescue.target
AllowIsolate=yes

You can see that by itself the target unit does not contain much. It

just defines what it requires and which services and targets it

cannot coexist with. It also defines load ordering, by using the

After statement in the [Unit] section. The target file does not

contain any information about the units that should be included;

that is, in the individual unit files and the wants (explained in the

upcoming section “Understanding Wants”).

Systemd targets look a bit like runlevels used in older versions of

RHEL, but targets are more than that. A target is a group of units,

and there are multiple different targets. Some targets, such as the

multi-user.target and the graphical.target, define a specific state

that the system needs to enter. Other targets just bundle a group

of units together, such as the nfs.target and the sound.target.

These targets are included from other targets, such as multi-

user.target or graphical.target.

Understanding Wants

Understanding the concept of a want simply requires

understanding the verb want in the English language, as in “I

want a cookie.” Wants in Systemd define which units Systemd

wants when starting a specific target. Wants are created when

Systemd units are enabled using systemctl enable, and this

happens by creating a symbolic link in the /etc/systemd/system

directory. In this directory, you’ll find a subdirectory for every

target, containing wants as symbolic links to specific services

that are to be started. The multi-user.target, for instance,

contains its wants in /etc/systemd/system/multi-

user.target.wants/.

Managing Systemd Targets

As an administrator, you need to make sure that the required

services are started when your server boots. To do this, use the

systemctl enable and systemctl disable commands. You do not

have to think about the specific target a service has to be started

in. Through the [Install] section in the service unit file, the

services know for themselves in which targets they need to be

started, and a want is created automatically in that target when

the service is enabled. The following procedure walks you

through the steps of enabling a service:

1. Type dnf install -y vsftpd, followed by systemctl status

vsftpd. If the service has not yet been enabled, the Loaded line

will show that it currently is disabled:

Click here to view code image

[root@server202 ~]# systemctl status vsftpd
vsftpd.service - Vsftpd ftp daemon
 Loaded: loaded (/usr/lib/systemd/system/vsftpd.service; disabled)
 Active: inactive (dead)

2. Type ls /etc/systemd/system/multi-user.target.wants. You’ll

see symbolic links that are taking care of starting the different

services on your machine. You can also see that the

vsftpd.service link does not exist.

3. Type systemctl enable vsftpd. The command shows you that

it is creating a symbolic link for the file

/usr/lib/systemd/system/vsftpd.service to the directory

/etc/systemd/system/multi-user.target.wants. So basically,

when you enable a Systemd unit file, in the background a

symbolic link is created.

Tip

On the RHCSA exam, you are likely to enable a

couple of services. It is a good idea to read through

the exam questions, identify the services that need

to be enabled, and enable them all at once to make

sure that they are started automatically when you

restart. This prevents your being so focused on

configuring the service that you completely forget to

enable it as well.

Isolating Targets

As already discussed, on Systemd machines there are several

targets. You also know that a target is a collection of units. Some

of those targets have a special role because they can be isolated.

These are also the targets that you can set as the targets to get

into after system start.

By isolating a target, you start that target with all of its

dependencies. Only targets that have the isolate option enabled

can be isolated. We’ll explore the systemctl isolate command

later in this section. Before doing that, let’s take a look at the

default targets on your computer.

To get a list of all targets currently loaded, type systemctl --

type=target. You’ll see a list of all the targets currently active. If

your server is running a graphical environment, this will include

all the dependencies required to install the graphical. target also.

However, this list shows only the active targets, not all the

targets. Type systemctl -t target --all for an overview of all

targets that exist on your computer. You’ll now see inactive

targets also (see Example 17-2).

Example 17-2 Showing System Targets

Click here to view code image

root@localhost ~]# systemctl --type=target --all
 UNIT LOAD ACTIVE SUB
DESCRIPTION
 basic.target loaded active
active Basic System
 bluetooth.target loaded
active active Bluetooth
 cryptsetup.target loaded
active active Local Encrypted Volumes

Hivanetwork.com

https://hivanetwork.com/

 dbus.target not-found
inactive dead dbus.target
 emergency.target loaded
inactive dead Emergency Mode
 getty-pre.target loaded
active active Login Prompts (Pre)
 getty.target loaded active
active Login Prompts
 graphical.target loaded active
active Graphical Interface
 initrd-fs.target loaded inactive
dead Initrd File Systems
 initrd-root-device.target loaded inactive
dead Initrd Root Device
 initrd-root-fs.target loaded inactive
dead Initrd Root File System
 initrd-switch-root.target loaded inactive dead
Switch Root
 initrd.target loaded
inactive dead Initrd Default Target
 local-fs-pre.target loaded
active active Local File Systems (Pre)
 local-fs.target loaded
active active Local File Systems
 multi-user.target loaded
active active Multi-User System
 network-online.target loaded
active active Network is Online

 network-pre.target loaded
active active Network (Pre)
 network.target loaded
active active Network
 nfs-client.target loaded active
active NFS client services
 nss-lookup.target loaded inactive
dead Host and Network Name Lookups
 nss-user-lookup.target loaded active
active User and Group Name Lookups
 paths.target loaded active
active Paths
 remote-fs-pre.target loaded active
active Remote File Systems (Pre)
 remote-fs.target loaded active
active Remote File Systems
 rescue.target loaded
inactive dead Rescue Mode
 rpc_pipefs.target loaded active
active rpc_pipefs. target
 rpcbind.target loaded active active
RPC Port Mapper
 shutdown.target loaded inactive
dead Shutdown
 slices.target loaded active active
Slices
 sockets.target loaded active active
Sockets

 sound.target loaded active active
Sound Card
 sshd-keygen.target loaded active active
sshd-keygen. target
 swap.target loaded active active
Swap sysinit.target loaded active active
System Initialization

Of the targets on your system, a few have an important role

because they can be started (isolated) to determine the state your

server starts in. These are also the targets that can be set as the

default targets. These targets also roughly correspond to

runlevels used on earlier versions of RHEL. These are the

following targets:

poweroff.target runlevel 0

rescue.target runlevel 1

multi-user.target runlevel 3

graphical.target runlevel 5

reboot.target runlevel 6

If you look at the contents of each of these targets, you’ll also see

that they contain the AllowIsolate=yes line. That means that you

can switch the current state of your computer to either one of

these targets using the systemctl isolate command. Exercise 17-1

shows you how to do this.

Exercise 17-1 Isolating Targets

1. From a root shell, go to the directory /usr/lib/systemd/system.

Type grep Isolate *.target. This command shows a list of all

targets that allow isolation.

2. Type systemctl isolate rescue.target. This command

switches your computer to rescue.target. You need to type the

root password on the console of your server to log in.

3. Type systemctl isolate reboot.target. This command restarts

your computer.

Setting the Default Target

Setting the default target is an easy procedure that can be

accomplished from the command line. Type systemctl get-

default to see the current default target and use systemctl set-

default to set the desired default target.

To set the graphical.target as the default target, you need to make

sure that the required packages are installed. If this is not the

case, you can use the dnf group list command to show a list of

all RPM package groups. The “server with GUI” package group

applies. Use dnf group install " server with gui " to install all

GUI packages on a server where they have not been installed yet.

Working with GRUB 2

The GRUB 2 boot loader is one of the first things that needs to be

working well to boot a Linux server. As an administrator, you

will sometimes need to apply modifications to the GRUB 2 boot

loader configuration. This section explains how to do so. The

RHEL 9 boot procedure is discussed in more detail in Chapter 18,

where troubleshooting topics are covered as well.

Understanding GRUB 2

The GRUB 2 boot loader makes sure that you can boot Linux.

GRUB 2 is installed in the boot sector of your server’s hard drive

and is configured to load a Linux kernel and the initramfs:

The kernel is the heart of the operating system, allowing users

to interact with the hardware that is installed in the server.

The initramfs contains drivers that are needed to start your

server. It contains a mini file system that is mounted during

boot. In it are kernel modules that are needed during the rest

of the boot process (for example, the LVM modules and SCSI

modules for accessing disks that are not supported by default).

Normally, GRUB 2 works just fine and does not need much

maintenance. In some cases, though, you might have to change

its configuration. To apply changes to the GRUB 2 configuration,

the starting point is the /etc/default/grub file, which has options

that tell GRUB what to do and how to do it. Example 17-3 shows

the contents of this file after an installation with default settings

of RHEL 9.

Example 17-3 Contents of the /etc/default/grub File

Click here to view code image

[root@localhost ~]# cat /etc/default/grub
GRUB_TIMEOUT=5

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"
GRUB_DEFAULT=saved
GRUB_DISABLE_SUBMENU=true
GRUB_TERMINAL_OUTPUT="console"
GRUB_CMDLINE_LINUX="crashkernel=auto resume=/dev/mapper/rhel-swap
 rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap rhgb quiet"
GRUB_DISABLE_RECOVERY="true"
GRUB_ENABLE_BLSCFG=true

As you can see, the /etc/default/grub file does not contain much

information. The most important part that it configures is the

GRUB_CMDLINE_LINUX option. This line contains boot

arguments for the kernel on your server.

Tip

For the RHCSA exam, make sure that you

understand the contents of the /etc/default/grub file.

That is the most important part of the GRUB 2

configuration anyway.

Apart from the configuration in /etc/default/grub, there are a few

configuration files in /etc/grub.d. In these files, you’ll find rather

complicated shell code that tells GRUB what to load and how to

load it. You typically do not have to modify these files. You also

do not need to modify anything if you want the capability to

select from different kernels while booting. GRUB 2 picks up new

kernels automatically and adds them to the boot menu

automatically, so nothing has to be added manually.

Understanding GRUB 2 Configuration Files

Based on the configuration files mentioned previously, the main

configuration file is created. If your system is a BIOS system, the

name of the file is /boot/grub2/grub.cfg. On a UEFI system the file

is written to /boot/efi/EFI/redhat/grub.cfg on RHEL and

/boot/efi/EFI/centos/grub.cfg on CentOS. After making

modifications to the GRUB 2 configuration, you’ll need to

regenerate the relevant configuration file with the grub2-

mkconfig command, which is why you should know the name of

the file that applies to your system architecture. Do not edit it, as

this file is automatically generated.

Modifying Default GRUB 2 Boot Options

To apply modifications to the GRUB 2 boot loader, the file

/etc/default/grub is your entry point. The most important line in

this file is GRUB_CMDLINE_LINUX, which defines how the Linux

kernel should be started. In this line, you can apply permanent

fixes to the GRUB 2 configuration. Some likely candidates for

Hivanetwork.com

https://hivanetwork.com/

removal are the options rhgb and quiet. These options tell the

kernel to hide all output while booting. That is nice to hide

confusing messages for end users, but if you are a server

administrator, you probably just want to remove these options so

that you can see what happens while booting.

Tip

On the exam, you want to know immediately if

something does not work out well. To accomplish

this, it is a good idea to remove the rhgb and quiet

boot options. Without these you will not have to

guess why your server takes a long time after a

restart; you’ll just be able to see.

Another interesting parameter is GRUB_TIMEOUT. This defines

the amount of time your server waits for you to access the GRUB

2 boot menu before it continues booting automatically. If your

server runs on physical hardware that takes a long time to get

through the BIOS checks, it may be interesting to increase this

time a bit so that you have more time to access the boot menu.

While working with GRUB 2, you need to know a bit about kernel

boot arguments. There are many of them, and most of them

you’ll never use, but it is good to know where you can find them.

Type man 7 bootparam for a man page that contains an

excellent description of all boot parameters that you may use

while starting the kernel.

To write the modified configuration to the appropriate files, you

use the grub2-mkconfig command and redirect its output to the

appropriate configuration file. On a BIOS system, the command

would be grub2-mkconfig -o /boot/grub2/grub.cfg and on a

UEFI system the command would be grub2-mkconfig -o

/boot/efi/EFI/redhat/grub.cfg.

In Exercise 17-2, you learn how to apply modifications to the

GRUB 2 configuration and write them to the /boot/grub2/grub.cfg

configuration file.

Tip

You should know how to apply changes to the GRUB

configuration, but you should also know that the

default GRUB 2 configuration works fine as it is for

almost all computers. So, you will probably never

have to apply any changes at all!

Exercise 17-2 Applying Modifications to GRUB 2

1. Open the file /etc/default/grub with an editor and remove the

rhgb and quiet options from the GRUB_CMDLINE_LINUX line.

2. From the same file, set the GRUB_TIMEOUT parameter to 10

seconds. Save changes to the file and close the editor.

3. From the command line, type grub2-mkconfig >

/boot/grub2/grub.cfg to write the changes to GRUB 2. (Note

that instead of using the redirector > to write changes to the

grub.cfg file, you could use the -o option. Both methods have

the same result.)

4. Reboot and verify that while booting you see boot messages

scrolling by.

Summary

In this chapter you learned how Systemd and GRUB 2 are used to

bring your server into the exact state you desire at the end of the

boot procedure. You also learned how Systemd is organized, and

how units can be configured for automatic start with the use of

targets. Finally, you read how to apply changes to the default

GRUB 2 boot loader. In the next chapter, you learn how to

troubleshoot the boot procedure and fix some common

problems.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 17-2 lists a

reference for these key topics and the page number on which

each is found.

Table 17-2 Key Topics for Chapter 17

Key Topic

Element
Description Page

Section Understanding Target Units 391

Section Managing Systemd Targets 392

Exercise 17-1 Isolating Targets 396

List Explanation of the role of kernel

and initramfs

396

Example 17-3 Contents of the /etc/default/grub

File

397

Exercise 17-2 Applying Modifications to GRUB 2 399

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

Systemd

target

dependency

unit

want

boot loader

GRUB

kernel

initramfs

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 What is a unit?

 Which command enables you to make sure that a target is no

longer eligible for automatic start on system boot?

 Which configuration file should you modify to apply common

changes to GRUB 2?

 Which command should you use to show all service units that

are currently loaded?

 How do you create a want for a service?

 How do you switch the current operational target to the

rescue.target?

 Why can it happen that you get the message that a target cannot

be isolated?

 You want to shut down a Systemd service, but before doing that

you want to know which other units have dependencies to this

service. Which command would you use?

 What is the name of the GRUB 2 configuration file where you

apply changes to GRUB 2?

 After applying changes to the GRUB 2 configuration, which

command should you run?

End-of-Chapter Labs

You have now learned how to work with Systemd targets and the

GRUB 2 boot loader. Before you continue, it is a good idea to

work on some labs that help you ensure that you can apply the

skills that you acquired in this chapter.

Lab 17.1

1. Set the default target to multi-user.target.

2. Reboot to verify this is working as expected.

Lab 17.2

1. Change your GRUB 2 boot configuration so that you will see

boot messages upon startup.

Hivanetwork.com

https://hivanetwork.com/

Chapter 18

Essential Troubleshooting Skills

The following topics are covered in this chapter:

Understanding the RHEL 9 Boot Procedure

Passing Kernel Boot Arguments

Using a Rescue Disk

Fixing Common Issues

The following RHCSA exam objectives are covered in this

chapter:

Boot systems into different targets manually

Interrupt the boot process in order to gain access to a system

In Chapter 17, “Managing and Understanding the Boot

Procedure,” you learned how a RHEL 9 server boots and which

role the boot loader GRUB 2 and Systemd play in that process. In

this chapter, you learn what you can do when common problems

occur while booting your server. This chapter teaches general

approaches that help to fix some of the most common problems

that may occur while booting. Make sure to master the topics

discussed in this chapter well; they might save your

(professional) life one day!

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

18-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 18-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding the RHEL 9 Boot Procedure 1

Passing Kernel Boot Arguments 2–6

Using a Rescue Disk 7

Fixing Common Issues 8–10

 Which of the following comes first in the Red Hat Enterprise

Linux 9 boot procedure?

1. Systemd

2. Kernel

3. GRUB 2

4. Initramfs

 You have just entered a kernel argument on the GRUB 2 boot

prompt. Pressing which key(s) enables you to start with this boot

argument?

1. ZZ

2. Ctrl-X

3. Esc

4. Enter

 Your initramfs seems faulty and cannot initialize the LVM

volumes on your disk. Which configuration file should you check

for options that are used?

1. /etc/dracut.d/dracut.conf

2. /etc/dracut.conf

3. /etc/sysconfig/dracut

4. /etc/mkinitrd.conf

 You do not have the root password and want to reset it. Which

kernel argument offers the recommended way to reset it?

1. init=/bin/bash

2. init=/bin/sh

3. systemd.unit=emergency.target

4. rd.break

 You want to see exactly what is happening on system boot.

Which two boot options should you remove from the GRUB 2

boot prompt? (Choose two.)

1. rhgb

2. logo

3. quiet

4. silent

 You want to enter the most minimal troubleshooting mode

where as few services as possible are loaded. Which boot

argument should you use?

1. systemd.unit=break.target

2. systemd.unit=emergency.target

3. systemd.unit=rescue.target

4. 1

 Which of the following situations can be resolved only by using a

rescue disk?

1. The kernel stops loading.

2. The initramfs stops loading.

3. You never get to a GRUB 2 boot prompt.

4. You are prompted to enter the root password for maintenance

mode.

 You have entered a troubleshooting mode, and disk access is

read-only. What should you do?

1. Restart the troubleshooting mode and pass the rw boot option

to the kernel.

2. Use the rd.break boot argument to manually start into the

initramfs mode.

3. Use mount -o remount,rw /

4. Use mount /

 Your server shows a blinking cursor only while booting. No

GRUB 2 menu is available. What is the first step in

troubleshooting this issue?

1. From a rescue disk, try the Boot from local disk option.

2. Start a rescue environment and reinstall GRUB.

3. Start a rescue environment and re-create the initramfs.

4. Use the rd.break boot argument.

 After resetting the root password from an environment that was

started with the init=/bin/bash kernel boot argument, how can

you restart the system normally?

1. reboot

2. systemctl isolate multi-user.target

3. exec /usr/lib/systemd/system

4. exit

Foundation Topics

Understanding the RHEL 9 Boot Procedure

To fix boot issues, it is essential to have a good understanding of

the boot procedure. If an issue occurs during boot, you need to be

able to judge in which phase of the boot procedure the issue

occurs so that you can select the appropriate tool to fix the issue.

The following steps summarize how the boot procedure happens

on Linux:

1. Performing POST: The machine is powered on. From the

system firmware, which can be the modern Universal

Extended Firmware Interface (UEFI) or the classical Basic

Input/Output System (BIOS), the Power-On Self-Test (POST) is

executed, and the hardware that is required to start the system

is initialized.

2. Selecting the bootable device: Either from the UEFI boot

firmware or from the BIOS, a bootable device is located.

3. Loading the boot loader: From the bootable device, a boot

loader is located. On RHEL, this is usually GRUB 2.

4. Loading the kernel: The boot loader may present a boot

menu to the user or can be configured to automatically start a

default operating system. To load Linux, the kernel is loaded

together with the initramfs. The initramfs contains kernel

modules for all hardware that is required to boot, as well as

the initial scripts required to proceed to the next stage of

booting. On RHEL 9, the initramfs contains a complete

operational system (which may be used for troubleshooting

purposes).

5. Starting /sbin/init: Once the kernel is loaded into memory, the

first of all processes is loaded, but still from the initramfs. This

is the /sbin/init process, which on RHEL is linked to Systemd.

The systemd-udevd daemon is loaded as well to take care of

further hardware initialization. All this is still happening from

the initramfs image.

6. Processing initrd.target: The Systemd process executes all

units from the initrd.target, which prepares a minimal

operating environment, where the root file system on disk is

mounted on the /sysroot directory. At this point, enough is

loaded to pass to the system installation that was written to the

hard drive.

7. Switching to the root file system: The system switches to the

root file system that is on disk and at this point can load the

Systemd process from disk as well.

8. Running the default target: Systemd looks for the default

target to execute and runs all of its units. In this process, a

login screen is presented, and the user can authenticate. Note

that the login prompt can be prompted before all Systemd unit

files have been loaded successfully. So, seeing a login prompt

does not necessarily mean that your server is fully operational

yet; services may still be loaded in the background.

In each of the phases listed, issues may occur because of

misconfiguration or other problems. Table 18-2 summarizes

where a specific phase is configured and what you can do to

troubleshoot if something goes wrong.

Hivanetwork.com

https://hivanetwork.com/

Table 18-2 Boot Phase Configuration and Troubleshooting Overview

Boot Phase Configuring It Fixing It

POST Hardware configuration (F2, Esc,

F10, or another key).

Replace

hardware.

Selecting

the

bootable

device

BIOS/UEFI configuration or

hardware boot menu.

Replace

hardware or use

rescue system.

Loading the

boot loader

grub2-install and edits to

/etc/defaults/grub.

Use the GRUB

boot prompt and

edits to

/etc/defaults/grub,

followed by

grub2-mkconfig

Loading the

kernel

Edits to the GRUB configuration

and /etc/ dracut.conf.

Use the GRUB

boot prompt and

edits to

/etc/defaults/grub,

followed by

grub2-mkconfig

Starting

/sbin/init

Compiled into initramfs. Use the init =

kernel boot

argument,

rd.break kernel

boot argument.

Processing

initrd.target

Compiled into initramfs. Use the dracut

command. (You

won’t often have

to troubleshoot

this.)

Switch to

the root file

system

Edits to the /etc/fstab file. Apply edits to the

/etc/fstab file.

Running

the default

target

Using systemctl set-default to

create the

/etc/systemd/system/default.target

symbolic link.

Start the

rescue.target as a

kernel boot

argument.

Tip

Troubleshooting has always been a part of the

RHCSA exam. If you encounter an issue, make sure

that you can identify in which phase of the boot

procedure it occurs and what you can do to fix it.

In the next section you learn how to apply the different

troubleshooting techniques described in this table.

Passing Kernel Boot Arguments

If your server does not boot normally, the GRUB boot prompt

offers a convenient way to stop the boot procedure and pass

specific options to the kernel while booting. In this section, you

learn how to access the boot prompt and how to pass specific

boot arguments to the kernel while booting.

Accessing the Boot Prompt

When your server boots, you briefly see the GRUB 2 menu. Look

fast because it will last for only a few seconds. From this boot

menu you can type e to enter a mode where you can edit

commands, or c to enter a full GRUB command prompt, as shown

in Figure 18-1. To pass boot options to a starting kernel, use e.

Figure 18-1 Entering the GRUB Boot Prompt

After passing an e to the GRUB boot menu, you’ll see the interface

that is shown in Figure 18-2. From this interface, scroll down to

locate the section that begins with linux ($root)/vmlinuz followed

by a lot of arguments. This is the line that tells GRUB how to start

a kernel, and by default it looks like this:

Figure 18-2 Enter Boot Arguments on the Line That Starts with linux

Click here to view code image

linux ($root)/vmlinuz-{versionnumber].el9.x86_64 root=/dev/mapper/
rhel-root ro crash kernel=[options] resume=/dev/mapper/rhel-swap
rd.lvm.lv=rhel/ root rd.lvm.lv=rhel/swap rhgb quiet

To start, it is a good idea to remove the rhgb and quiet parts

from this line; these arguments hide boot messages for you, and

typically you do want to see what is happening while booting. In

the next section you learn about some troubleshooting options

that you can enter from the GRUB boot prompt.

After entering the boot options you want to use, press Ctrl-X to

start the kernel with these options. Notice that these options are

used one time only and are not persistent. To make them

persistent, you must modify the contents of the /etc/default/grub

configuration file and use grub2-mkconfig -o

/boot/grub2/grub.cfg to apply the modification. (Refer to Chapter

17 for more details about this procedure.)

Starting a Troubleshooting Target

If you encounter trouble when booting your server, you have

several options that you can enter on the GRUB 2 boot prompt:

rd.break: This stops the boot procedure while still in the

initramfs stage. Your system will still be in the initramfs stage

of booting, which means that the root file system is not

mounted on / yet. You’ll have to provide the root password to

enter this mode.

init=/bin/sh or init=/bin/bash: This specifies that a shell

should be started immediately after loading the kernel and

initrd. This option provides the earliest possible access to a

running system. You won’t have to enter the root password,

but notice that only the root file system is mounted and it is

still read-only. Read more about this option in the section

“Resetting the Root Password” later in this chapter.

systemd.unit=emergency.target: This enters a mode that

loads a bare minimum number of Systemd units. It requires a

root password. To see that only a very limited number of unit

files have been loaded, you can type the systemctl list-units

command.

systemd.unit=rescue.target: This starts some more Systemd

units to bring you in a more complete operational mode. It

does require a root password. To see that only a very limited

number of unit files have been loaded, you can type the

systemctl list-units command.

In Exercise 18-1, you learn how to enter the troubleshooting

targets. The other modes listed here are discussed in the

following sections.

Exercise 18-1 Exploring Troubleshooting Targets

1. (Re)start your computer. When the GRUB menu shows, select

the first line in the menu and press e.

2. Scroll down to the line that starts with linux $(root)/vmlinuz.

At the end of this line, type systemd.unit=rescue.target. Also

remove the options rhgb quit from this line. Press Ctrl-X to

boot with these modifications.

3. Enter the root password when you are prompted for it.

4. Type systemctl list-units. This shows all unit files that are

currently loaded. You can see that a basic system environment

has been loaded.

5. Type systemctl show-environment. This shows current shell

environment variables.

6. Type systemctl reboot to reboot your machine.

7. When the GRUB menu appears, press e again to enter the

editor mode. At the end of the line that loads the kernel, type

systemd.unit=emergency.target. Press Ctrl-X to boot with

this option.

8. When prompted for it, enter the root password to log in.

9. After successful login, type systemctl list-units. Notice that

the number of unit files loaded is reduced to a bare minimum.

10. Type reboot to restart your system into the default target.

Using a Rescue Disk

If you are lucky when you encounter trouble, you’ll still be able

to boot from hard disk. If you are a bit less lucky, you’ll just see a

blinking cursor on a system that does not boot at all. If that

happens, you need a rescue disk. The default rescue image for

Red Hat Enterprise Linux is on the installation disk. When

Hivanetwork.com

https://hivanetwork.com/

booting from the installation disk, you’ll see a Troubleshooting

menu item. Select this item to get access to the options you need

to repair your machine.

Restoring System Access Using a Rescue Disk

After selecting the Troubleshooting option, you are presented

with the following options, as shown in Figure 18-3:

Figure 18-3 Starting from a Rescue Disk

Install Red Hat Enterprise Linux 9 in Basic Graphics Mode:

This option reinstalls your machine. Do not use it unless you

want to troubleshoot a situation where a normal installation

does not work and you need a basic graphics mode. Normally,

you should never need to use this option to troubleshoot a

broken installation.

Rescue a Red Hat Enterprise Linux System: This is the most

flexible rescue system. In Exercise 18-2, you can explore it in

detail. This should be the first option of choice when using a

rescue disk.

Run a Memory Test: Run this option if you encounter

memory errors. It allows you to mark bad memory chips so

that your machine can boot normally.

Boot from Local Drive: If you cannot boot from GRUB on

your hard disk, try this option first. It offers a boot loader that

tries to install from your machine’s hard drive, and as such is

the least intrusive option available.

After starting a rescue system, you usually need to enable full

access to the on-disk installation. Typically, the rescue disk

detects your installation and mounts it on the /mnt/sysimage

directory. To fix access to the configuration files and their default

locations as they should be available on disk, use the chroot

/mnt/sysimage command to make the contents of this directory

your actual working environment. If you do not use this chroot

command, many utilities will not work, because if they write to a

configuration file, it will be the version that exists on the read-

only disk. Using the chroot command ensures that all path

references to configuration files are correct.

In Exercise 18-2, you learn how to use the Rescue a Red Hat

Enterprise Linux System option to troubleshoot a system that

does not boot anymore.

Exercise 18-2 Using the Rescue Option

1. Restart your server from the installation disk. Select the

Troubleshooting menu option.

2. From the Troubleshooting menu, select Rescue a Red Hat

Enterprise Linux System. This prompts you to press Enter to

start the installation. Do not worry; this option does not

overwrite your current configuration, it just loads a rescue

system.

3. The rescue system now prompts you that it will try to find an

installed Linux system and mount on /mnt/sysimage. Press 1

to accept the Continue option (see Figure 18-4).

Figure 18-4 The Rescue System Looks for an Installed System Image and Mounts It for
You

4. If a valid Red Hat installation was found, you are prompted

that your system has been mounted under /mnt/sysimage. At

this point, you can press Enter to access the rescue shell.

5. Your Linux installation at this point is accessible through the

/mnt/sysimage directory. Type chroot /mnt/sysimage. At this

point, you have access to your root file system and you can

access all tools that you need to repair access to your system.

6. Type exit to quit the chroot environment, and type reboot to

restart your machine in a normal mode.

Reinstalling GRUB Using a Rescue Disk

One of the common reasons you might need to start a rescue disk

is that the GRUB 2 boot loader breaks. If that happens, you might

need to reinstall it. After you have restored access to your server

using a rescue disk, reinstalling GRUB 2 is not hard to do and

consists of two steps:

Make sure that you have made the contents of the

/mnt/sysimage directory available to your current working

environment, using chroot as described before.

Use the grub2-install command, followed by the name of the

device on which you want to reinstall GRUB 2. So on a KVM

virtual machine, the command to use is grub2-install

/dev/vda, and on a physical server or a VMware or Virtual Box

virtual machine, it is grub2-install /dev/sda.

Re-creating the Initramfs Using a Rescue Disk

Occasionally, the initramfs image may get damaged as well. If

this happens, you cannot boot your server into normal

operational mode. To repair the initramfs image after booting

into the rescue environment, you can use the dracut command.

If used with no arguments, this command creates a new

initramfs for the kernel currently loaded.

Alternatively, you can use the dracut command with several

options to make an initramfs for specific kernel environments.

The dracut configuration is dispersed over different locations:

/usr/lib/dracut/dracut.conf.d/*.conf contains the system default

configuration files.

/etc/dracut.conf.d contains custom dracut configuration files.

/etc/dracut.conf is now deprecated and should not be used

anymore. Put your configuration in files in /etc/dracut.conf.d/

instead.

Tip

According to the RHCSA objectives, you should not

have to work with a rescue disk on the exam.

However, as a Linux administrator, you should

expect the unexpected, which is why it is a good idea

to ensure that you can handle common as well as

less common troubleshooting scenarios.

Fixing Common Issues

In one small chapter such as this, it is not possible to consider all

the possible problems one might encounter when working with

Linux. There are some problems, though, that are more likely to

occur than others. In this section you learn about some of the

more common problems.

Reinstalling GRUB 2

Boot loader code does not disappear just like that, but on

occasion it can happen that the GRUB 2 boot code gets damaged.

In that case, you should know how to reinstall GRUB 2. The exact

approach depends on whether your server is still in a bootable

state. If it is, reinstalling GRUB 2 is fairly easy. Just type grub2-

install followed by the name of the device to which you want to

install it. The command has many different options to fine-tune

what exactly will be installed, but you probably will not need

them because, by default, the command installs everything you

need to make your system bootable again.

Reinstalling GRUB 2 becomes a little bit more complicated if your

machine is in a nonbootable state. If that happens, you first need

to start a rescue system and restore access to your server from

the rescue system. (See Exercise 18-2 for the exact procedure for

how to do that.) After mounting your server’s file systems on

/mnt/sysimage and using chroot /mnt/sysimage to make the

mounted system image your root image, reinstalling is as easy as

described previously: just run grub2-install to install GRUB 2 to

the desired installation device. So, if you are in a KVM virtual

machine, run grub2-install /dev/vda, and if you are on a

physical disk, run grub2-install /dev/sda.

Fixing the Initramfs

In rare cases, the initramfs might get damaged. If you analyze the

boot procedure carefully, you will learn that you have a problem

with the initramfs because you’ll never see the root file system

getting mounted on the root directory, nor will you see any

Systemd units getting started. If you suspect that you are having

a problem with the initramfs, it is easy to re-create it. To re-

create it using all default settings (which is fine in most cases),

you can just run the dracut --force command. (Without --force,

the command will refuse to overwrite your existing initramfs.)

Recovering from File System Issues

If you make a misconfiguration to your file system mounts, the

boot procedure may just end with the message “Give root

password for maintenance.” This message is, in particular,

generated by the fsck command that is trying to verify the

Hivanetwork.com

https://hivanetwork.com/

integrity of the file systems in /etc/fstab while booting. If fsck

fails, manual intervention is required that may result in this

message during boot. Make sure that you know what to do when

this happens to you!

Tip

Make sure to master this topic very well. File

system–related topics have a heavy weight in the

RHCSA objectives, and it is likely that you will need

to create partitions and/or logical volumes and put

them in /etc/fstab for automatic mounting. That also

makes it likely that something will go wrong, and if

that happens on the exam, you’d better make sure

that you know how to fix it!

If a device is referred to that does not exist, or if there is an error

in the UUID that is used to mount the device, for example,

Systemd waits first to see whether the device comes back by

itself. If that does not happen, it gives the message “Give root

password for maintenance” (see Figure 18-5). If that happens,

you should by all means first enter the root password. Then you

can type journalctl -xb as suggested to see whether relevant

messages providing information about what is wrong are written

to the journal boot log. If the problem is file system oriented, type

mount -o remount,rw / to make sure the root file system is

mounted read/write and analyze what is wrong in the /etc/fstab

file and fix it.

Figure 18-5 If You See This, You Normally Have an /etc/fstab Issue

Resetting the Root Password

A common scenario for a Linux administrator is that the root

password has gone missing. If that happens, you need to reset it.

The only way to do that is by booting into minimal mode, which

allows you to log in without entering a password. To do so, follow

these steps:

1. On system boot, press e when the GRUB 2 boot menu is shown.

2. Enter init=/bin/bash as a boot argument to the line that loads

the kernel and press Ctrl-X to boot with this option.

3. Once a root shell is opened, type mount -o remount,rw / to get

read/write access to the root filesystem.

4. Now you can enter passwd and set the new password for the

user root.

5. Because at this very early boot stage SELinux has not been

activated yet, the context type on /etc/shadow will be messed

up. Type touch /.autorelabel to create the autorelabel file in

the root directory. This will make sure that while rebooting the

SELinux security labels are set correctly.

6. Type exec /usr/lib/systemd/systemd to replace /bin/bash

(which is the current PID 1) with Systemd. This will start your

system the normal way. Notice that you cannot use the reboot

command, as /bin/bash is currently PID 1 and the reboot

command requires Systemd as the PID 1.

7. Verify that you can log in as the root user after rebooting.

In the previous procedure you changed the root password from

an init=/bin/bash shell. Getting out of an init=/bin/bash

environment is a bit special, as Systemd is not currently loaded.

Because of this, you cannot just use the reboot command to

restart, as reboot invokes Systemd. Typing exit is also not an

option, as you would exit from the PID 1 and leave the kernel

with no PID 1. Therefore, you have to manually start Systemd.

In this special environment where bash is PID 1, you cannot just

type /usr/lib/systemd/system to start Systemd. That is because

typing a command normally creates a child process to the

current process—a process generically known as “forking.” In

this case that doesn’t work, as Systemd needs to be PID 1. The

solution that was used in the previous procedure was to use exec

/usr/lib/systemd/system. Whereas fork will create a child

process to the current process, exec replaces the current process

with the command that is started this way. This allows Systemd

to be started as PID 1, and that’s exactly what is needed in this

scenario.

Summary

In this chapter, you learned how to troubleshoot the Red Hat

Enterprise Linux 9 boot procedure. You learned in general what

happens when a server boots and at which specific points you

can interfere to fix things that go wrong. You also learned what

to do in some specific cases. Make sure that you know these

procedures well; you are likely to encounter them on the exam.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 18-3 lists a

reference for these key topics and the page number on which

each is found.

Table 18-3 Key Topics for Chapter 18

Key Topic

Element Description Page

List Summary of phases processed while

booting

406

Table 18-2 Boot Phase Configuration and

Troubleshooting Overview

407

List Summary of relevant GRUB 2 boot

options for troubleshooting

409

Section Resetting the Root Password 416

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

initramfs

GRUB

dracut

fork

exec

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 Which key do you need to press to enter the GRUB boot menu

editor mode?

 During startup, the boot procedure is not completed and the

server asks for the root password instead. What is likely to be the

reason for this?

 You want to enter troubleshooting mode, but you do not know

the root password. Which argument would you pass to the kernel

to enter a mode that provides access to most of the machine’s

functionality?

 You start your server and nothing happens. You just see a

blinking cursor and that’s all. What is the first step to

troubleshoot this issue?

 You want to find out which units are available in a specific

troubleshooting environment. Which command would you use?

 You have just changed the root password from the init=/bin/bash

environment. What should you do to start your system the

normal way now?

 How do you ensure that after resetting the root password all files

are provided with the right SELinux context label?

 You are in troubleshooting mode, and you cannot write any file

to the root file system. The root file system was mounted

correctly. What can you do to make it writable again?

 You have applied changes to the GRUB 2 boot loader and want to

save them. How do you do that?

 You do not know the root password on a machine where you

Hivanetwork.com

https://hivanetwork.com/

want to enter the most minimal troubleshooting mode. Which

GRUB 2 boot argument would you use?

End-of-Chapter Lab

Lab 18.1 shows you how to troubleshoot some common

problems.

Lab 18.1

1. Restart your server and change the root password from the

appropriate troubleshooting mode.

2. In /etc/fstab, change one of the device names so that on the

next reboot the file system on it cannot be mounted. Restart

and fix the issue that you encounter.

3. Use a rescue disk to bring your server up in full

troubleshooting mode from the rescue disk.

4. Re-create the initramfs.

Chapter 19

An Introduction to Automation with Bash
Shell Scripting

The following topics are covered in this chapter:

Understanding Shell Scripting Core Elements

Using Variables and Input

Using Conditional Loops

The following RHCSA exam objectives are covered in this

chapter:

Conditionally execute code (use of if, test, [], etc.)

Using Looping constructs (for, etc.) to process file and

command line input

Process script inputs ($1, $2, etc.)

Process output of shell commands within a script

Shell scripting is a science all by itself. You do not learn about all

the nuts and bolts related to this science in this chapter, however.

Instead, you learn how to apply basic shell scripting elements,

which allows you to write a simple shell script and analyze what

is happening in a shell script.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

19-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 19-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding Shell Scripting Core Elements 1–2

Using Variables and Input 3–5

Using Conditional Loops 6–10

 Which line should every Bash shell script start with?

1. /bin/bash

2. #!/bin/bash

3. !#/bin/bash

4. !/bin/bash

 What is the purpose of the exit 0 command that can be used at

the end of a script?

1. It informs the parent shell that the script executed without any

problems.

2. It makes sure the script can be stopped properly.

3. It is required only if a for loop has been used to close the for

loop structure.

4. It is used to terminate a conditional structure in the script.

 How do you stop a script to allow a user to provide input?

1. pause

2. break

3. read

4. stop

 Which line stores the value of the first argument that was

provided when starting a script in the variable NAME?

1. NAME = $1

2. $1 = NAME

3. NAME = $@

4. NAME=$1

 What is the best way to distinguish between different arguments

that have been passed into a shell script?

1. $?

2. $#

3. $*

4. $@

 What is used to close an if loop?

1. end

2. exit

3. stop

4. fi

 What is missing in the following script at the position of the dots?

Click here to view code image

if [-f $1]
then
 echo "$1 is a file"
….. [-d $1]
then

 echo "$1 is a directory"
else
 echo "I do not know what \$1 is"
fi

1. else

2. if

3. elif

4. or

 What is missing in the following script at the position of the dots?

Click here to view code image

for ((counter=100; counter>1; counter--));
 echo $counter
done
exit 0

1. in

2. do

3. run

4. start

 Which command is used to send a message with the subject

“error” to the user root if something didn’t work out in a script?

1. mail error root

2. mail -s error root

3. mail -s error root .

4. mail -s error root < .

 In a case statement, it is a good idea to include a line that applies

to all other situations. Which of the following would do that?

1. *)

2. *

3. else

4. or

Foundation Topics

Understanding Shell Scripting Core Elements

Basically, a shell script is a list of commands that is sequentially

executed, with some optional scripting logic in it that allows code

to be executed under specific conditions only. To understand

complex shell scripts, let’s start by looking at a very basic script,

shown in Example 19-1.

Example 19-1 Basic Script

Click here to view code image

#!/bin/bash
#
This is a script that greets the world
Usage: ./hello

clear
echo hello world

exit 0

This basic script contains a few elements that should be used in

all scripts. To start, there is the shebang. This is the line

#!/bin/bash. When a script is started from a parent shell

environment, it opens a subshell. In this subshell, different

commands are executed. These commands can be interpreted in

any way, and to make it clear how they should be interpreted,

the shebang is used. In this case, the shebang makes clear that

the script is a Bash shell script. Other shells can be specified as

well. For instance, if your script contains Perl code, the shebang

should be #!/usr/bin/perl.

It is good practice to start a script with a shebang; if it is omitted,

the script code will be executed by the shell that is used in the

parent shell as well. Because your scripts may also be executed

by, for instance, users of ksh, using a shebang to call /bin/bash as

Hivanetwork.com

https://hivanetwork.com/

a subshell is important to avoid confusion.

Right after the shebang, there is a part that explains what the

script is about. It is a good idea in every script to include a few

comment lines. In a short script, it is often obvious what the

script is doing. If the script is becoming longer, and as more

people get involved in writing and maintaining the script, it will

often become less clear what the writer of the script intended to

do. To avoid that situation, make sure that you include comment

lines, starting with a #. Include them not only in the beginning of

the script but also at the start of every subsection of the script.

Comments will surely be helpful if you read your script a few

months later and don’t remember exactly what you were trying

to do while creating it! You can also use comments within lines.

No matter in which position the # is used, everything from the #

until the end of the line is comment text.

Next is the body of the script. In Example 19-1, the body is just a

simple script containing a few commands that are sequentially

executed. The body may grow as the script develops.

At the end of the script, I included the statement exit 0. An exit

statement tells the parent shell whether the script was successful.

A 0 means that it was successful, and anything else means that

the script has encountered a problem. The exit status of the last

command in the script is the exit status of the script itself, unless

the exit command is used at the end of the script. But it is good to

know that you can work with exit to inform the parent shell how

it all went. To request the exit status of the last command, from

the parent shell, use the echo $? command. This request can be

useful to determine whether and why something didn’t work out.

After writing a script, make sure that it can be executed. The

most common way to do this is to apply the execute permission

to it. So, if the name of the script is hello, use chmod +x hello to

make it executable. The script can also be executed as an

argument of the bash command, for instance. Use bash hello to

run the hello script. If started as an argument of the bash

command, the script does not need to be executable.

You can basically store the script anywhere you like, but if you

are going to store it in a location that is not included in the

$PATH, you need to execute it with a ./ in front of the script

name. So, just typing hello is not enough to run your script; type

./hello to run it. Note that ./ is also required if you want to run

the script from the current directory, because on Linux the

current directory is not included in the $PATH variable. Or put it

in a standard directory that is included in the $PATH variable,

like /usr/local/bin. In Exercise 19-1 you apply these skills and

write a simple shell script.

Exercise 19-1 Writing a Simple Shell Script

1. Use vim to create a script with the name hello in your home

directory.

2. Give this script the contents that you see in Example 19-1 and

close it.

3. Use ./hello to try to execute it. You’ll get a “permission denied”

error message.

4. Type chmod +x hello and try to execute it again. You’ll see

that it now works.

Using Variables and Input

Linux Bash scripts are much more than just a list of sequentially

executed commands. One of the nice things about scripts is that

they can work with variables and input to make the script

flexible. In this section, you learn how to work with variables

and input.

Using Positional Parameters

When starting a script, you can use arguments. An argument is

anything that you put behind the script command while starting

it. Arguments can be used to make a script more flexible. Take,

for instance, the useradd lisa command. In this example, the

command is useradd, and the argument lisa specifies what

needs to be done. In this case, a user with the name lisa has to be

created. In this example, lisa is the argument to the command

useradd. In a script, the first argument is referred to as $1, the

second argument is referred to as $2, and so on. The script in

Example 19-2 shows how an argument can be used. Go ahead

and try it using any arguments you want to use!

Example 19-2 Script That Uses Arguments

Click here to view code image

#!/bin/bash
run this script with a few arguments
echo The first argument is $1
echo The second argument is $2
echo the third argument is $3

If you tried to run the sample code from Example 19-2, you might

have noticed that its contents are not perfect. If you use three

arguments while using the script, it will work perfectly. If you

use only two arguments, the third echo will print with no value

for $3. If you use four arguments, the fourth value (which would

be stored in $4) will never be used. So, if you want to use

arguments, you’ll be better off using a more flexible approach.

Example 19-3 shows a script that uses a more flexible approach.

Example 19-3 Script That Uses Arguments in a Flexible Way

Click here to view code image

#!/bin/bash
run this script with a few arguments
echo you have entered $# arguments
for i in $@
do
 echo $i
done
exit 0

In Example 19-3, two new items that relate to the arguments are

introduced:

$# is a counter that shows how many arguments were used

when starting the script.

$@ refers to all arguments that were used when starting the

script.

To evaluate the arguments that were used when starting this

script, you can use a conditional loop with for. In conditional

loops with for, commands are executed as long as the condition

is true. In this script, the condition is for i in $@, which means

“for each argument.” Each time the script goes through the loop,

a value from the $@ variable is assigned to the $i variable. So, as

long as there are arguments, the body of the script is executed.

The body of a for loop always starts with do and is closed with

done, and between these two, the commands that need to be

executed are listed. So, the script in Example 19-3 will use echo

to show the value of each argument and stop when no more

arguments are available. In Exercise 19-2, you can try this for

yourself by writing a script that works with positional

parameters.

Exercise 19-2 Working with Positional Parameters

1. Open an editor, create a script named ex192a, and copy the

contents from Example 19-2 into this script.

2. Save the script and make it executable.

3. Run the ./ex192a a b c command. You’ll see that three lines

are echoed.

4. Run the ./ex192a a b c d e f command. You’ll see that three

lines are still echoed.

5. Open an editor to create the script ex192 and copy the

contents from Example 19-3 into this script.

6. Save the script and make it executable.

7. Run the ./ex192 a b c d e command. You’ll see that five lines

are echoed.

8. Run the ./ex192 command without arguments. You’ll see that

the command does not echo any arguments, but it does

indicate that zero arguments are entered.

Working with Variables

A variable is a label that is used to refer to a specific location in

memory that contains a specific value. Variables can be defined

statically by using NAME=value or can be defined in a dynamic

way. There are two solutions to define a variable dynamically:

Use read in the script to ask the user who runs the script for

input.

Use command substitution to use the result of a command and

assign that result to a variable. For example, the date +%d-

%m-%y command shows the current date in day-month-year

format. To assign that date to a variable in a script, you could

use the TODAY=$(date +%d-%m-%y) command.

In command substitution, you just have to enclose in parentheses

the command whose result you want to use, with a dollar sign

preceding the opening parenthesis. As an alternative to this

notation, you can use backquotes. So the TODAY=`date +%d-

%m-%y` command would do exactly the same.

In the previous section about positional parameters, you learned

how to provide arguments when starting a script. In some cases,

a more efficient approach is to ask for information when you

find out that something essential is missing. The script in

Example 19-4 shows how to do this using read.

Example 19-4 Script That Uses the read Command

Click here to view code image

#!/bin/bash
if [-z $1]; then
 echo enter a name
 read NAME
else
 NAME=$1
fi
echo you have entered the text $NAME
exit 0

Hivanetwork.com

https://hivanetwork.com/

In Example 19-4, an if ... then ... else ... fi statement is used to

check whether the argument $1 exists. This is done by using the

test command, which can be written in either of two ways: test

or [...]. In Example 19-4, the line if [-z $1] executes to see if the

test -z $1 is true. The -z test checks whether $1 is nonexistent.

Stated otherwise, the line if [-z $1] checks whether $1 is empty;

if so, it means that no argument was provided when starting this

script. If this is the case, the commands after the then statement

are executed. Notice that when you’re writing the test command

with the square brackets, it is essential to include one space after

the opening bracket and one space before the closing bracket;

without these spaces, the command will not work.

Notice that the then statement immediately follows the test

command. This is possible because a semicolon is used (;). A

semicolon is a command separator and can replace a new line in

a script. In the then statement, two commands are executed: an

echo command that displays a message onscreen and a read

command. The read command stops the script so that user input

can be processed and stored in the variable NAME. So, the line

read NAME puts all user input in the variable NAME, which will

be used later in the script.

In Example 19-4, the next part is introduced by the else

statement. The commands after the else statement are executed

in all other cases, which in this case means “if an argument was

provided.” If that is the case, the variable NAME is defined and

the current value of $1 is assigned to it.

Notice how the variable is defined: directly after the name of the

variable there is an = sign, which is followed by $1. Notice that

you should never use spaces when defining variables.

Then, the if loop is closed with a fi statement. Once the if loop

has been completed, you know for sure that the variable NAME is

defined and has a value. The last line of the script reads the value

of the variable NAME and displays this value to STDOUT via the

echo command. Notice that to request the current value of a

variable, the script refers to the variable name, preceded by a $

sign.

In Exercise 19-3, you can practice working with input.

Exercise 19-3 Working with Input

1. Open an editor and create a script with the name ex193. Enter

the contents of Example 19-4 in this script.

2. Write the script to disk and use chmod +x ex193 to make it

executable.

3. Run the script using ./ex193 and no further arguments. You’ll

see that it prompts for input.

4. Run the script using hello as its argument. It will echo “you

have entered the text hello” to the STDOUT.

Using Conditional Loops

As you have already seen, you can use conditional loops in a

script. These conditional loops are executed only if a certain

condition is true. In Bash the following conditional loops are

often used:

if … then … else: Used to execute code if a specific condition is

true

for: Used to execute commands for a range of values

while: Used to execute code as long as a specific condition is

true

until: Used to execute code until a specific condition is true

case: Used to evaluate specific values, where beforehand a

limited number of values is expected

Working with if … then … else

The if … then … else construction is common to evaluate specific

conditions. You already saw an example with it in Example 19-4.

This conditional loop is often used together with the test

command, which you saw in action earlier to check whether a

file exists. This command enables you to do many other things as

well, such as compare files, compare integers, and much more.

Tip

Look at the man page of the test command.

The basic construction with if is if ... then ... fi. This construction

evaluates one single condition, as in the following example:

Click here to view code image

if [-z $1]
then
 echo no value provided
fi

In Example 19-4 you saw how two conditions can be evaluated

by including else in the statement. Example 19-5 shows how

multiple conditions can be evaluated by contracting else with if

to become elif. This construction is useful if many different

values need to be checked. In Example 19-5 note that multiple

test commands are used as well.

Example 19-5 Script with if … then … else

Click here to view code image

#!/bin/bash
run this script with one argument
the goal is to find out if the argument is a file or a directory
if [-f $1]
then
 echo "$1 is a file"
elif [-d $1]
then
 echo "$1 is a directory"
else
 echo "I do not know what \$1 is"
fi
exit 0

Also note the use of the backslash (\) in Example 19-5. This

character informs the shell that it should not interpret the

following character, which is known as escaping the character.

Obviously, if you wanted the value of $1 to be printed instead of

the string $1, you would need to remove the \.

Using || and &&

Instead of writing full if ... then statements, you can use the

logical operators || and &&. || is a logical OR and will execute

the second part of the statement only if the first part is not true;

&& is the logical AND and will execute the second part of the

statement only if the first part is true. Consider these two one-

liners:

Click here to view code image

[-z $1] && echo no argument provided
ping -c 1 10.0.0.20 2>/dev/null || echo node is not available

In the first example, a test is performed (using the alternative

test command syntax) to see whether $1 is empty. If that test is

true (which basically means that the test command exits with the

exit code 0), the second command is executed.

In the second example, a ping command is used to check the

availability of a host. The logical OR is used in this example to

echo the text “node is not available” in case the ping command

was not successful. You’ll often find that instead of fully written

if … then statements, the && and || constructions are used. In

Exercise 19-4 you can practice some if … then … else skills, using

either if ... then … else or && and ||.

Exercise 19-4 Using if ... then ... else

In this exercise, you work on a script that checks if the argument

is a file, a directory, or neither.

1. Start an editor and create a script using filechk as the name.

2. Copy the contents from Example 19-5 to this script.

3. Run a couple of tests with it, such as

./filechk /etc/hosts

./filechk /usr

./filechk non-existing-file

Applying for

The for conditional provides an excellent solution for processing

ranges of data. In Example 19-6, you can see the first script with

for, where a range is defined and processed as long as there are

unprocessed values in that range.

Example 19-6 Script with for

Click here to view code image

#!/bin/bash
#
for ((COUNTER=100; COUNTER>1; COUNTER--)); do
 echo $COUNTER
done
exit 0

A for conditional statement always starts with for, which is

followed by the condition that needs to be checked. Then comes

do, which is followed by the commands that need to be executed

if the condition is true, and the conditional statement is closed

with done.

In Example 19-6, you can see that the condition is a range of

numbers assigned to the variable COUNTER. The variable first is

initialized with a value of 100, and as long as the value is higher

than 1, in each iteration, 1 is subtracted. As long as the condition

is true, the value of the $COUNTER variable is displayed, using

the echo commands.

Example 19-7 shows one of my favorite one-liners with for. The

range is defined this time as a series of numbers, starting with

100 and moving up to 104.

Example 19-7 One-Liner with for

Hivanetwork.com

https://hivanetwork.com/

Click here to view code image

for i in {100..104}; do ping -c 1 192.168.4.$i >/dev/null && echo
 192.168.4.$i is up; done

Notice how the range is defined: You specify the first number,

followed by two dots and closed with the last number in the

range. With for i in, each of these numbers is assigned to the

variable i. For each of these numbers, a ping command is

executed, where the option -c 1 makes sure that only one ping

request is sent.

In this ping command, it is not the result that counts, which is

why the result is redirected to the /dev/null device. Based on the

exit status of the ping command, the part behind the && is

executed. So, if the host could be reached, a line is echoed

indicating that it is up.

Understanding while and until

Whereas the for statement that you just read about is useful to

work through ranges of items, the while statement is useful if

you want to monitor something like the availability of a process.

In Example 19-8 you can see how while is used to monitor

process activity.

Example 19-8 Monitoring Processes with while

Click here to view code image

#!/bin/bash
#
usage: monitor <processname>
while ps aux | grep $1 | grep -v grep > ~/output.txt
do
 sleep 5
done

clear
echo your process has stopped
logger $1 is no longer present

The script in Example 19-8 consists of two parts. First, there is the

while loop. Second, there is everything that needs to be executed

when the while loop no longer evaluates to true. The core of the

while loop is the ps command, which is grepped for the

occurrence of $1. Notice the use of grep -v grep, which excludes

lines containing the grep command from the result. Keep in

mind that the ps command will include all running commands,

including the grep command that the output of the ps command

is piped to. This can result in a false positive match. The results of

the ps aux command are redirected to the file ~/output.txt. That

makes it possible to read the results later from ~/output.txt if that

is needed, but they do not show by default.

The commands that need to be executed if the statement

evaluates to true follow after the while statements. In this case,

the command is sleep 5, which will basically pause the script for

5 seconds. As long as the while command evaluates to true, it

keeps on running. If it does no longer (which in this case means

that the process is no longer available), it stops and the

commands that follow the while loop can be executed.

The counterpart of while is until, which opens an iteration that

lasts until the condition is true. In Example 19-9, until is used to

filter the output of the users command for the occurrence of $1,

which would be a username. Until this command is true, the

iteration continues. When the username is found in the output of

users, the iteration closes and the commands after the until loop

are executed.

Example 19-9 Monitoring User Login with until

Click here to view code image

#!/bin/bash
#
until users | grep $1 > /dev/null
do
 echo $1 is not logged in yet
 sleep 5
done
echo $1 has just logged in

Understanding case

The last of the important iteration loops is case. The case

statement is used to evaluate a number of expected values. The

case statement in particular is important in Linux startup scripts

that were used to start services in previous versions of RHEL. In

a case statement, you define every specific argument that you

expect, which is followed by the command that needs to be

executed if that argument was used.

In Example 19-10, you can see the blueprint of the case

statement that was used in the service scripts in earlier versions

of RHEL to start almost any service. This statement works on $1,

which is the name of a startup script. Following the name of the

script, the user can type start, stop, restart, and so on.

Example 19-10 Evaluating Specific Cases with case

Click here to view code image

case "$1" in
 start)
 start;;
 stop)
 rm -f $lockfile
 stop;;
 restart)
 restart;;
 reload)
 reload;;
 status)
 status
 ;;
 *)
 echo "Usage: $0 (start|stop|restart|reload|status) "
 ;;
esac

The case statement has a few particularities. To start, the generic

syntax is case item-to-evaluate in. This syntax is followed by a

list of all possible values that need to be evaluated. Each item is

closed with a closing parenthesis. This) is followed by a list of

commands that need to be executed if a specific argument was

used. The list of commands is closed with a double semicolon.

This ;; can be used directly after the last command, and it can be

used on a separate line. Also notice that the *) refers to all other

options not previously specified. It is a “catchall” statement. The

case statement is closed by an esac statement.

Notice that the evaluations in case are performed in order. When

the first match is made, the case statement will not evaluate

anything else. Within the evaluation, wildcard-like patterns can

be used. This shows in the *) evaluation, which matches

everything. But you also could use evaluations like

start|Start|START) to match the use of a different case.

Bash Shell Script Debugging

When a script does not do what you expect it to do, debugging

the script is useful. Try starting it as an argument to the bash -x

command. This command shows you line by line what the script

is trying to do and also shows you specific errors if it does not

work. Example 19-11 shows a script using bash -x where it

becomes immediately clear that the grep command does not

know what it is expected to do; the reason is that it is missing an

argument to work on.

Example 19-11 Using bash -x to Debug Scripts

Click here to view code image

[root@server1 ~]# bash -x 319.sh
+ grep
Usage: grep [OPTION]... PATTERN [FILE]...
Try 'grep --help' for more information.
+ users
+ echo is not logged in yet
is not logged in yet
+ sleep 5

Summary

In this chapter you learned how to write shell scripts. You also

worked through a few examples and are now familiar with some

of the basic elements that are required to create a successful

script.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 19-2 lists a

reference for these key topics and the page number on which

each is found.

Table 19-2 Key Topics for Chapter 19

Key Topic

Element
Description Page

Paragraph Definition of variable 427

List Dynamically defining variables 427

List Conditional loops overview 429

Define Key Terms

Hivanetwork.com

https://hivanetwork.com/

Define the following key terms from this chapter and check your

answers in the glossary:

shebang

parent shell

subshell

variable

conditional loop

OR

AND

iteration

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 What is the effect if a script does not start with a shebang?

 How can you check if a variable VAR has no value?

 What would you use in a script to count the number of

arguments that have been used?

 What would you use to refer to all arguments that have been

used when starting the script?

 How do you process user input in a script?

 What is the simplest way to test whether a file exists and execute

the echo “file does not exist” command if it does not?

 Which test would you perform to find out if an item is a file or a

directory?

 Which construction would you use to evaluate a range of items?

 How do you close an elif statement in a script?

 In a case statement, you evaluate a range of items. For each of

these items, you execute one or more commands. What do you

need to use after the last command to close the specific item?

End-of-Chapter Lab

In this end-of-chapter lab, you apply your scripting skills to write

two simple scripts.

Lab 19.1

1. Write a script that works with arguments. If the argument one

is used, the script should create a file named /tmp/one. If the

argument two is used, the script should send a message

containing the subject “two” to the root user.

2. Write a countdown script. The script should use one argument

(and not more than one). This argument specifies the number

of minutes to count down. It should start with that number of

minutes and count down second by second, writing the text

“there are nn seconds remaining” at every iteration. Use sleep

to define the seconds. When there is no more time left, the

script should echo “time is over” and quit.

Part IV

Managing Network Services

Chapter 20

Configuring SSH

The following topics are covered in this chapter:

Hardening the SSH Server

Using Other Useful sshd Options

Configuring Key-Based Authentication with Passphrases

The following RHCSA exam objective is covered in this chapter:

Configure key-based authentication for SSH

Secure Shell (SSH) is among the most important utilities that

system administrators use. In Chapter 5, “Connecting to Red Hat

Enterprise Linux 9,” you learned how to use SSH to connect to a

server using a password or key-based authentication. In this

chapter, you learn about some of the more advanced

configuration settings.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

20-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 20-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Hardening the SSH Server 1–5

Using Other Useful sshd Options 6–8, 10

Configuring Key-Based Authentication with

Passphrases

9

 Which of the following is not a common approach to prevent

brute-force attacks against SSH servers?

1. Disable X11 forwarding

2. Have SSH listening on a nondefault port

3. Disable password login

4. Allow specific users only to log in

 Which of the following successfully limits SSH server access to

users bob and lisa only?

1. LimitUsers bob,lisa

2. AllowedUsers bob lisa

3. AllowUsers bob lisa

4. AllowedUsers bob,lisa

 Which of the following commands must be used to provide

nondefault port 2022 with the correct SELinux label?

1. semanage ports -m -t ssh_port_t -p 2022

2. semanage port -m -t ssh_port_t -p tcp 2022

3. semanage ports -a -t sshd_port_t -p tcp 2022

4. semanage port -a -t ssh_port_t -p tcp 2022

 Which of the following descriptions is correct for the

MaxAuthTries option?

1. After reaching the number of attempts specified here, the

account will be locked.

2. This option specifies the maximum number of login attempts.

After reaching half the number specified here, additional

failures are logged.

3. After reaching the number of attempts specified here, the IP

address where the login attempts come from is blocked.

4. The number specified here indicates the maximum number of

login attempts per minute.

 Which log file do you analyze to get information about failed SSH

login attempts?

1. /var/log/auth

2. /var/log/authentication

3. /var/log/messages

4. /var/log/secure

 SSH login in your test environment takes a long time. Which of

the following options could be most likely responsible for the

connection time problems?

1. UseLogin

2. GSSAPIAuthentication

3. UseDNS

4. TCPKeepAlive

 Which of the following options is not used to keep SSH

connections alive?

1. TCPKeepAlive

Hivanetwork.com

https://hivanetwork.com/

2. ClientAliveInterval

3. ClientAliveCountMax

4. UseDNS

 Which file on an SSH client computer needs to be added to set

the ServerKeepAliveInterval for an individual user?

1. ~/.ssh/ssh_config

2. ~/.ssh/config

3. /etc/ssh/config

4. /etc/ssh/ssh_config

 Assuming that a passphrase-protected public/private key pair has

already been created, how do you configure your session so that

you have to enter the passphrase once only?

1. Copy the passphrase to the ~/.ssh/passphrase file.

2. Run ssh-add /bin/bash followed by ssh-agent.

3. Run ssh-agent /bin/bash followed by ssh-add.

4. This is not possible; you must enter the passphrase each time a

connection is created.

 The MaxSessions option can be used to tune the maximum

number of sessions that can be open at the same time. Which

value does it have by default?

1. 10

2. 25

3. 100

4. 1000

Foundation Topics

Hardening the SSH Server

SSH is an important and convenient solution that helps you

establish remote connections to servers. It is also a dangerous

solution. If your SSH server is visible directly from the Internet,

you can be sure that sooner or later an intruder will try to

connect to your server, intending to do harm.

Dictionary attacks are common against an SSH server. In a

dictionary attack, the attacker uses common passwords (the

dictionary) that are used to try repeated logins. The attacker uses

the fact that SSH servers usually offer their services on port 22

and that still too many Linux servers have a root account that is

allowed to log in over SSH. Based on that information, it is easy

for an attacker to try to log in as root just by guessing the

password. If the password uses limited complexity, and no

additional security measures have been taken, sooner or later

the intruder will be able to connect. Fortunately, you can take

some measures to protect SSH servers against these kinds of

attacks:

Disable root login

Disable password login

Configure a nondefault port for SSH to listen on

Allow specific users only to log in on SSH

In the following subsections, you learn what is involved in

changing these options.

Limiting Root Access

In past versions of RHEL, the root user was allowed to log in,

locally as well as remotely, through SSH. In RHEL 9 this has been

fixed. The RHEL 9 installer now has an option not to set a

password for the root user, which disables root login. Also, by

default the root user is not allowed to log in through SSH. This is

accomplished by the option PermitRootLogin prohibit-

password, which is set by default. This option allows the root

user to log in only if the user has a valid public/private-key pair,

and it is recommended not to change this.

Even if root login to SSH is disabled, it’s still possible to perform

remote administration tasks. To do so, you’ll first have to log in

remotely as a non-root user, using a command like ssh

student@remoteserver. Once the session to the remote server

has been established, use sudo -i to open a root shell if you’re

using a sudo-enabled user, or su - for non-sudo-enabled users.

This is also the procedure to follow if no root password has been

set.

Configuring Alternative Ports

Many security problems on Linux servers start with a port scan

issued by the attacker. Scanning all of the 65,535 ports that can

potentially be listening takes a lot of time, but most port scans

focus on known ports only, and SSH port 22 is always among the

first ports scanned. Do not underestimate the risk of port scans.

On several occasions, I found that an SSH port listening at port 22

was discovered within an hour after installation of the server.

To protect against port scans, you can configure your SSH server

to listen on another port. By default, the sshd_config file contains

the line Port 22 that tells SSH to listen on privileged port 22. To

have SSH listen on another port, you must change port 22 to

something else. Different ports can be used. You can choose to

use a completely random port like 2022, but it can also be handy

to configure SSH to listen on port 443.

Port 443 by default is assigned to web servers using Transport

Layer Security (TLS) to offer encryption. If the users who want to

access the SSH server are normally behind a proxy that allows

traffic to ports 80 and 443 only, it may make sense to configure

SSH to listen on port 443. You should realize, though, that by

doing so port 443 cannot be used by your web server anymore; a

port can be assigned to one service at a time only! So, do this only

on a machine where you are not planning to run a TLS-enabled

web server!

Tip

To avoid being locked out of your server after

making a change to the SSH listening port while

being connected remotely, it is a good idea to open

two sessions to your SSH server. Use one session to

apply changes and test, and use the other session to

keep your current connection option. Active sessions

will not be disconnected after restarting the SSH

server (unless you fail to restart the SSH server

successfully).

Modifying SELinux to Allow for Port Changes

After changing the SSH port, you also need to configure SELinux

to allow for this change. (See Chapter 22, “Managing SELinux,”

for more details about SELinux.) Network ports are labeled with

SELinux security labels to prevent services from accessing ports

where they should not go. To allow a service to connect to a

nondefault port, you need to use semanage port to change the

label on the target port. Before doing so, it is a good idea to check

whether the port already has a label. You can do this by using the

semanage port -l command.

If the port does not have a security label set yet, use -a to add a

label to the port. If a security label has been set already, use -m to

modify the current security label. Use, for instance, the command

semanage port -a -t ssh_port_t -p tcp 2022 to label port 2022 for

access by sshd. If you want to relabel a port that already was in

use by another service, you have to use semanage port -m to

modify the current port assignment. This is needed if, for

instance, you want SSH to be able to bind to port 443.

Limiting User Access

You can find many options for sshd by just browsing through the

sshd_config file. One of the most interesting options to use is

AllowUsers. This option takes a space-separated list of all users

that will be allowed login through SSH. Notice that this is a

powerful option, limiting login to only these users and excluding

all other users, including the root user.

When you use the AllowUsers parameter, carefully consider

which username you want to allow or deny access. In a scripted

brute-force attack, intruders normally also try common

usernames such as admin, Administrator, and jsmith. It is easy to

add a layer of security by selecting an uncommon username.

Notice the following about the AllowUsers parameter:

The AllowUsers option by default does not appear anywhere

in the default /etc/ssh/sshd_config file.

The AllowUsers option is a better option than PermitRootLogin

because it is more restrictive than just denying root to log in.

If the AllowUsers option does not specify root, you can still

become root by using su - or sudo -i after making a connection

as a normal user.

A parameter that looks promising, but is misleading, is

MaxAuthTries. You might think that this option locks access to

the SSH login prompt after a maximum number of failed login

attempts. Such functionality proves useful when connecting to a

local server (of which configuration can easily be changed if so

required), but on an SSH server with Internet access, it is a rather

dangerous option, making it easy to perform a denial-of-service

attack on the server. An intruder would only have to run a script

that tries to log in as a specific user to block access for that user

for an amount of time. That is why MaxAuthTries does not do

what you might think it would do. It just starts logging failed

login attempts after half the number of successful login attempts

specified here.

Still, the MaxAuthTries option is useful. For analyzing security

events related to your SSH server, it is not that interesting to

know when a user by accident has typed a wrong password one

or two times. It becomes interesting only after multiple failed

attempts. The higher the number of attempts, the more likely it is

that an intruder is trying to get in. SSH writes log information

about failed login attempts to the AUTHPRIV syslog facility. By

default, this facility is configured to write information about

login failures to /var/log/secure.

In Exercise 20-1, you apply the common SSH options that have

been discussed so far.

Exercise 20-1 Configuring SSH Security Options

In this exercise, the sshd process should be configured on

server1. Use a second server, server2, to test access to server1.

1. Open a root shell on server1, and from there, open the sshd

configuration file /etc/ssh/sshd_config in an editor.

2. Find the Port line, and below that line add the line Port 2022.

This tells the sshd process that it should bind to two different

Hivanetwork.com

https://hivanetwork.com/

ports, which ensures that you can still open SSH sessions even

if you have made an error.

3. Add the line AllowUsers student to the SSH configuration file

as well.

4. Save changes to the configuration file and restart sshd, using

systemctl restart sshd. You will see an error message.

5. Type systemctl status -l sshd. You’ll see a “permission

denied” error for SSH trying to connect to port 2022.

6. Type semanage port -a -t ssh_port_t -p tcp 2022 to apply the

correct SELinux label to port 2022.

7. Open the firewall for port 2022 also, using firewall-cmd --

add-port=2022/tcp, followed by firewall-cmd --add-

port=2022/tcp --permanent

8. Type systemctl status -l sshd again. You’ll see that the sshd

process is now listening on two ports.

9. Try to log in to your SSH server from your other server, using

ssh -p 2022 student@server1. After the user shell has opened,

type su - to get root access.

Using Other Useful sshd Options

Apart from the security-related options, there are some useful

miscellaneous options that you can use to streamline SSH

performance. In the next two subsections, you read about some

of the most significant of these options.

Session Options

To start with, there is the UseDNS option. This option is on by

default and instructs the SSH server to look up the remote

hostname and check with DNS that the resolved hostname for the

remote host maps back to the same IP address. Although this

option has some security benefits, it also involves a significant

performance penalty. If client connections are slow, make sure to

set it to no, to switch off client hostname verification completely.

Another session-related option is MaxSessions. This option

specifies the maximum number of sessions that can be opened

from one IP address simultaneously. If you are expecting

multiple users to use the same IP address to log in to your SSH

server, you might need to increase this option beyond its default

value of 10.

Connection Keepalive Options

TCP connections in general are a relatively scarce resource,

which is why connections that are not used for some time

normally time out. You can use a few options to keep inactive

connections alive for a longer period of time.

The TCPKeepAlive option is used to monitor whether the client is

still available. Using this option (which is on by default) ensures

that the connection is released for any machine that is inactive

for a certain period of time. If used by itself, however, it might

lead to a situation where unused connections are released as

well, which is why it makes sense to use the ClientAliveInterval

option. This option sets an interval, in seconds, after which the

server sends a packet to the client if no activity has been

detected. The ClientAliveCountMax parameter specifies how

many of these packets should be sent. If ClientAliveInterval is set

to 30, and ClientAliveCountMax is set to 10, for instance, inactive

connections are kept alive for about five minutes. It is a good

idea to set this to match the amount of time you want to keep

inactive connections open.

The ClientAliveInterval and ClientAliveCountMax options can be

specified on a server only. There is a client-side equivalent to

these options also. If you cannot change the configuration of the

SSH server, use the ServerAliveInterval and

ServerAliveCountMax options to initiate connection keepalive

traffic from the client machine. These options are set in the

/etc/ssh/ssh_config file if they need to be applied for all users on

that machine, or in ~/.ssh/config if applied for individual users.

Table 20-2 provides an overview of the most useful SSH options.

Table 20-2 Most Useful sshd Configuration Options

Option Use

Port Defines the TCP listening port.

PermitRootLogin Indicates whether to allow or

disallow root login.

MaxAuthTries Specifies the maximum number

of authentication tries. After

reaching half of this number,

failures are logged to syslog.

MaxSessions Indicates the maximum number

of sessions that can be open from

one IP address.

AllowUsers Specifies a space-separated list of

users who are allowed to connect

to the server.

PasswordAuthentication Specifies whether to allow

password authentication. This

option is on by default.

TCPKeepAlive Specifies whether or not to clean

up inactive TCP connections.

ClientAliveInterval Specifies the interval, in seconds,

that packets are sent to the client

to figure out if the client is still

alive.

ClientAliveCountMax Specifies the number of client

alive packets that need to be sent.

UseDNS If on, uses DNS name lookup to

match incoming IP addresses to

names.

ServerAliveInterval Specifies the interval, in seconds,

at which a client sends a packet

to a server to keep connections

alive.

ServerAliveCountMax Specifies the maximum number

of packets a client sends to a

server to keep connections alive.

Configuring Key-Based Authentication with
Passphrases

By default, password authentication is allowed on RHEL SSH

servers. If a public/private key pair is used, as explained in

Chapter 5, this key pair is used first. If you want to allow

public/private key-based authentication only and disable

password-based authentication completely, set the

PasswordAuthentication option to no.

When you use public/private keys, a passphrase can be used.

Using a passphrase makes the key pair stronger. Not only does

an intruder have to get access to the private key, but when he

does, he must also know the passphrase to use the key. This is

why for establishing client/server connections with

public/private keys, it is recommended to use passphrases.

Without further configuration, the use of passphrases would

mean that users have to enter the passphrase every time before a

connection can be created, and that is inconvenient.

To make working with passphrases a bit less complicated, you

can cache the passphrase for a session. To do this, you need the

ssh-agent and ssh-add commands. Assuming that the

public/private key pair has already been created, this is an easy

three-step procedure:

Step 1. Type ssh-agent /bin/bash to start the agent for the current

(Bash) shell.

Step 2. Type ssh-add to add the passphrase for the current user’s

private key. The key is now cached.

Step 3. Connect to the remote server. Notice that there is no longer a

need to enter the passphrase.

This procedure needs to be repeated for all new sessions that are

created.

Summary

In this chapter, you learned how to configure the SSH server with

advanced options. You also learned how to set security options

for sshd and how to set specific client options that help in

keeping connections alive for a longer period.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topic in the chapter, noted with the

Key Topic icon in the margin of the page. Table 20-3 lists a

reference for this key topic and the page number on which it is

found.

Table 20-3 Key Topic for Chapter 20

Key Topic

Element
Description Page

Table 20-2 Most Useful sshd Configuration

Options

447

Complete Tables and Lists from Memory

Hivanetwork.com

https://hivanetwork.com/

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

connection

passphrase

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 Which two commands do you need to cache the passphrase that

is set on your private key?

 You want to disallow root login and only allow user lisa to log in

to your server. How would you do that?

 How do you configure your SSH server to listen on two different

ports?

 What is the name of the main SSH configuration file?

 When configuring a cache to store the passphrase for your key,

where will this passphrase be stored?

 What is the name of the file that contains SSH client settings for

all users?

 Which setting should you use to set the maximum number of

concurrent SSH sessions to 10?

 How do you configure SELinux to allow SSH to bind to port 2022?

 How do you configure the firewall on the SSH server to allow

incoming connections to port 2022?

 Which setting could you use if you experience long timeouts

while trying to establish an SSH connection?

End-of-Chapter Lab

In this end-of-chapter lab, you configure SSH for enhanced

security and optimized connection settings. Use server1 to set up

the SSH server, and use server2 as the SSH client.

Lab 20.1

1. Configure your SSH server in such a way that inactive sessions

will be kept open for at least one hour.

2. Secure your SSH server so that it listens on port 2022 only and

that only user lisa is allowed to log in.

3. Test the settings from server2. Make sure that the firewall as

well as SELinux are configured to support your settings.

Chapter 21

Managing Apache HTTP Services

The following topics are covered in this chapter:

Configuring a Basic Apache Server

Understanding Apache Configuration Files

Creating Apache Virtual Hosts

This chapter discusses a subject that is not listed in the RHCSA

objectives. However, for a Red Hat server administrator, it is

important to know how to deal with the Apache web service. In

Chapter 22, “Managing SELinux,” you’ll learn how to configure

SELinux. To learn about SELinux, it is convenient to also know a

bit about services that can be secured with SELinux, which is

why it is useful to know how to configure an Apache server. Also,

in Chapter 11, “Working with Systemd,” you learned how to work

with services in an RHEL environment. Knowing how to

configure a common service like the Apache web service will

surely help you to do so. That is why this chapter explains

Apache web server basics.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

21-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 21-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Configuring a Basic Apache Server 1–4

Understanding Apache Configuration Files 5–7

Creating Apache Virtual Hosts 8–10

 Which command installs the software packages that are needed

to configure an Apache web server?

1. dnf install httpd

2. dnf install web-server

3. dnf install apache

4. dnf install apache2

 What is the name of the main Apache configuration file?

1. /etc/httpd/conf/httpd.conf

2. /etc/httpd/httpd.conf

3. /etc/apache2/apache.conf

4. /etc/httpd/default-server.conf

 Which parameter in the Apache configuration file is used to

specify where Apache will serve its documents from?

1. ServerRoot

2. ServerDocuments

3. DocumentRoot

4. DocumentIndex

 Which parameter in the main Apache configuration file defines

the location where the Apache process looks for its configuration

files?

1. ServerRoot

2. ServerDocuments

3. DocumentRoot

4. DocumentIndex

 Which directory contains the main Apache configuration file?

1. /etc/httpd

2. /etc/httpd/conf

3. /etc/httpd/conf.d

4. /etc/httpd/conf.modules.d

 Which directory contains the configuration files for the different

Apache modules?

1. /etc/httpd

2. /etc/httpd/conf

3. /etc/httpd/conf.d

4. /etc/httpd/conf.modules.d

 Which directory is used to drop configuration files that are

installed from RPMs?

1. /etc/httpd

2. /etc/httpd/conf

3. /etc/httpd/conf.d

4. /etc/httpd/conf.modules.d

 Which virtual host type allows you to run multiple virtual hosts

on the same IP address?

1. Name-based

2. IP-based

3. Configuration-based

4. Default

 Which line is used to start the definition of a virtual host that

listens on port 80 of all IP addresses on the current server?

1. <VirtualHost *:80>

2. <VirtualHost *>

3. <NameHost *:80

4. <NameHost *>

 Which of the following statements about virtual hosts is not

true?

1. When virtual hosts are offered through an httpd process, the

default configuration no longer works.

2. The names of virtual hosts must be resolvable through

/etc/hosts or DNS.

3. To use virtual hosts, the mod_virt package must be installed.

4. Virtual host configurations can be specified in httpd.conf.

Foundation Topics

Configuring a Basic Apache Server

Hivanetwork.com

https://hivanetwork.com/

Configuring a basic Apache server is not hard to do. It consists of

a few easy steps:

Step 1. Install the required software.

Step 2. Identify the main configuration file.

Step 3. Create some web server content.

Installing the Required Software

The Apache server is provided through some different software

packages. The basic package is httpd, which contains everything

that is needed for an operational but basic web server. There are

some additional packages, as well. Use dnf group install "Basic

Web Server" to install all relevant packages in one command.

Identifying the Main Configuration File

The configuration of the Apache web server goes through

different configuration files. The section “Understanding Apache

Configuration Files” later in this chapter provides an overview of

the way these files are organized. The main Apache

configuration file is /etc/httpd/conf/httpd.conf. In this file, many

parameters are specified. The most important parameter to

understand for setting up a basic web server is the

DocumentRoot parameter. This parameter specifies the default

location where the Apache web server looks for its contents.

Another important configuration parameter is the ServerRoot.

This defines the default directory where Apache will look for its

configuration files. By default, the /etc/httpd directory is used for

this purpose, but alternative directories can be used as well.

Many other configuration files are referenced in the httpd.conf

file, a portion of which is shown in Example 21-1. The use of

additional configuration files makes it easy for applications to

install drop-in files that will be included by the Apache server

from RPM packages. The names of all these configuration files

are relative to the ServerRoot /etc/httpd.

Example 21-1 Partial Contents of the /etc/httpd/conf/httpd.conf

Configuration File

Click here to view code image

[root@localhost ~]# grep -v '#' /etc/httpd/conf/httpd.conf

ServerRoot "/etc/httpd"

Listen 80

Include conf.modules.d/*.conf

User apache
Group apache

ServerAdmin root@localhost

<Directory />
 AllowOverride none
 Require all denied
</Directory>

DocumentRoot "/var/www/html"

<Directory "/var/www">
 AllowOverride None
 Require all granted
</Directory>

<Directory "/var/www/html">
 Options Indexes FollowSymLinks

 AllowOverride None

 Require all granted
</Directory>

<IfModule dir_module>
 DirectoryIndex index.html

</IfModule>

<Files ".ht*">
 Require all denied
</Files>

ErrorLog "logs/error_log"

LogLevel warn

<IfModule log_config_module>
 LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%
 {User-Agent}i\"" combined
 LogFormat "%h %l %u %t \"%r\" %>s %b" common

 <IfModule logio_module>
 LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%
 {User-Agent}i\" %I %O" combinedio
 </IfModule>

 CustomLog "logs/access_log" combined
</IfModule>

<IfModule alias_module>

 ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"

</IfModule>

<Directory "/var/www/cgi-bin">
 AllowOverride None
 Options None
 Require all granted
</Directory>

<IfModule mime_module>
 TypesConfig /etc/mime.types

 AddType application/x-compress .Z
 AddType application/x-gzip .gz .tgz

 AddType text/html .shtml
 AddOutputFilter INCLUDES .shtml
</IfModule>
AddDefaultCharset UTF-8

<IfModule mime_magic_module>
 MIMEMagicFile conf/magic
</IfModule>

EnableSendfile on
IncludeOptional conf.d/*.conf

Creating Web Server Content

After identifying the web server DocumentRoot, you know all

you need to know to configure a basic web server. The Apache

web server by default looks for a file with the name index.html

and will present the contents of that document to clients using a

browser to access the web server. It suffices to configure this file

with very basic contents; just a line like “Welcome to my web

server” will do.

To test the web server, you can launch a browser. The Firefox

browser is installed by default on all graphical installations of

RHEL 9. If your server does not run a graphical interface, use dnf

install curl to work with Apache from the command line.

In Exercise 21-1, you learn how to set up a basic Apache web

server—nothing fancy, just enough to get you going and test web

server functionality.

Exercise 21-1 Setting Up a Basic Web Server

1. Type dnf install httpd

2. Open the main Apache configuration file with an editor, and

look up the line that starts with DocumentRoot. This line

identifies the location where the Apache server will look for

the contents it will service. Confirm that it is set to

/var/www/html.

3. In the directory /var/www/html, create a file with the name

index.html. In this file, type the following: Welcome to my

web server.

4. To start and enable the web server, type systemctl enable --

now httpd. This starts the web server and makes sure that it

starts automatically after restarting the server. Use systemctl

status httpd to check that the web server is up and running.

In Example 21-2 you can see what the result of this command

should look like.

5. Type dnf install curl to install the elinks text-based browser.

Type curl http://localhost to connect to the web server and

verify it is working.

Example 21-2 Verifying the Availability of the Apache Web

Server with systemctl status

Click here to view code image

[root@localhost ~]# systemctl status httpd
 httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled;
 vendor preset: disabled)
 Active: active (running) since Fri 2022-07-05 03:06:02 EDT; 2s ago

 Docs: man:httpd.service(8)
 Main PID: 4540 (httpd)
 Status: "Started, listening on: port 443, port 80"
 Tasks: 213 (limit: 11222)
 Memory: 24.2M
 CGroup: /system.slice/httpd.service
 |–4540 /usr/sbin/httpd -DFOREGROUND
 |–4542 /usr/sbin/httpd -DFOREGROUND
 |–4543 /usr/sbin/httpd -DFOREGROUND
 |–4544 /usr/sbin/httpd -DFOREGROUND
 |–4545 /usr/sbin/httpd -DFOREGROUND

Jul 05 03:06:02 localhost.localdomain systemd[1]: Starting The Apache
 HTTP Server...
Jul 05 03:06:02 localhost.localdomain httpd[4540]: AH00558: httpd:
 Could not reliably determine the server’>
Jul 05 03:06:02 localhost.localdomain httpd[4540]: Server configured,
 listening on: port 443, port 80
Jul 05 03:06:02 localhost.localdomain systemd[1]: Started The Apache
 HTTP Server.

Understanding Apache Configuration Files

A default installation of the Apache web server creates a

relatively complex configuration tree in the /etc/httpd directory.

Example 21-3 shows the default contents of this directory. The

Hivanetwork.com

https://hivanetwork.com/

contents of this directory may differ on your server if additional

software has been installed. Apache is modular, and upon

installation of additional Apache modules, different

configuration files might be installed here.

Example 21-3 Default Contents of the /etc/httpd Directory

Click here to view code image

[root@server1 httpd]# ls -l
total 8
drwxr-xr-x. 2 root root 35 Feb 23 03:12 conf
drwxr-xr-x. 2 root root 4096 Feb 25 12:41 conf.d
drwxr-xr-x. 2 root root 4096 Feb 25 12:41 conf.modules.d
lrwxrwxrwx. 1 root root 19 Feb 17 13:26 logs -> ../../var/log/httpd
lrwxrwxrwx. 1 root root 29 Feb 17 13:26 modules -> ../../usr/lib64/
 httpd/modules
lrwxrwxrwx. 1 root root 10 Feb 17 13:26 run -> /run/httpd

The first thing you notice is the presence of three symbolic links

to logs, modules, and a run directory. These are created to allow

Apache to be started in a chroot environment.

A chroot environment provides a fake root directory. This is a

directory in the file system that is presented as the root directory

for the process that is running in the chroot environment. This is

done for security reasons: processes that are running in a chroot

environment can access files in that chroot environment only,

which decreases the risk of security incidents occurring when

intruders manage to get a login shell using the web server

identity and try walking through the file system to do

unauthorized things.

The main configuration files for the Apache web server are in the

/etc/httpd/conf directory. To start, the httpd.conf file contains the

most important configuration parameters. Apart from that, there

is a file with the name magic. This file is used by the browser to

interpret how the contents of the web server should be

displayed. It makes sure that the web server content is shown

correctly in different browsers.

The /etc/httpd/conf.d directory contains files that are included in

the Apache configuration. Files are added by the line Include

conf.d/*.conf in the httpd.conf file. This directory can be used by

RPMs that include Apache drop-in files. As is the case for the

ServerRoot, this approach makes it possible to add configuration

files that define the different web pages without changing the

contents of the /etc/httpd/conf/httpd.conf file.

The last configuration directory is /etc/httpd/conf.modules.d.

Apache is a modular web server. Therefore, the functionality of

the Apache web server can easily be extended by adding

additional modules that enable many different features. If

modules are used, they can use their own module-specific

configuration files, which will be dropped in the

/etc/httpd/conf.modules.d directory. Again, the purpose of this

approach is to keep the configuration in

/etc/httpd/conf/httpd.conf as clean as possible and to make sure

that module-specific configuration is not overwritten if the

Apache generic configuration is updated.

Creating Apache Virtual Hosts

Many companies host more than one website. Fortunately, it is

not necessary to install a new Apache server for every website

that you want to run. Apache can be configured to work with

virtual hosts. A virtual host is a distinct Apache configuration

file or section that is created for a unique hostname. When

you’re working with virtual hosts, the procedure to access the

host is roughly like the following:

1. The client starts a session to a specific virtual host, normally

by starting a browser and entering the URL to the website the

client wants to use.

2. DNS helps resolve the IP address of the virtual host, which is

the IP address of the Apache server that can host different

virtual hosts.

3. The Apache process receives requests for all the virtual hosts it

is hosting.

4. The Apache process reads the HTTP header of each request to

analyze which virtual host this request needs to be forwarded

to.

5. Apache reads the specific virtual host configuration file to find

which document root is used by this specific virtual host.

6. The request is forwarded to the appropriate contents file in

that specific document root.

When you’re working with virtual hosts, there are a few things to

be aware of:

If your Apache server is configured for virtual hosts, all

servers it is hosting should be handled by virtual hosts. To

create a catch-all entry for all HTTP requests that are directed

to this host but that do not have a specific virtual host file, you

can create a virtual host for _default_:80. If you don’t do that,

packets that successfully arrive on your server via DNS name

resolution but don’t find a matching virtual host are sent to the

virtual host whose configuration the Apache process finds

first. That leads to unpredicted results.

Name-based virtual hosting is the most common solution. In

this solution, virtual hosts use different names but the same IP

address.

IP-based virtual hosts are less common but are required if the

name of a web server must be resolved to a unique IP address.

IP-based virtual hosts do require several IP addresses on the

same machine and are common in configurations where the

Apache server uses TLS to secure connections.

Configuring virtual hosts is not an RHCSA objective, but it is

useful to know how to configure them as a Linux administrator.

Therefore, Exercise 21-2 walks you through the procedure.

Exercise 21-2 Configuring Apache Virtual Hosts

In this exercise, you create two virtual hosts. To set up virtual

hosts, you first set up name resolution, after which you create

the virtual hosts’ configuration. Because SELinux has not been

discussed yet, you temporarily switch off SELinux.

Note

I later tell you that you should never switch off

SELinux. For once, I make an exception to this

important security rule. To focus on what needs to

be done on the Apache web server, it is easier to

focus just on Apache and not to configure SELinux

as well.

1. On both server1 and server2, open the file /etc/hosts with an

editor and add two lines that make it possible to resolve the

names of the virtual host you are going to create to the IP

address of the virtual machine:

Click here to view code image

192.168.4.210 server1.example.com server1
192.168.4.220 server2.example.com server2
192.168.4.210 account.example.com account
192.168.4.210 sales.example.com sales

2. On server1, open a root shell and add the following to the

/etc/httpd/conf/httpd.conf file. (You can leave all other settings

as they are.)

<Directory /www/docs>
 Require all granted
 AllowOverride None

</Directory>

3. On server1, open a root shell and create a configuration file

with the name account.example.com.conf in the directory

/etc/httpd/conf.d. Give this file the following content:

Click here to view code image

<VirtualHost *:80>
 ServerAdmin webmaster@account.example.com
 DocumentRoot /www/docs/account.example.com
 ServerName account.example.com
 ErrorLog logs/account.example.com-error_log
 CustomLog logs/account.example.com-access_log common
</VirtualHost>

4. Close the configuration file, and from the root shell type

mkdir -p /www/docs/account.example.com

5. Create a file with the name index.html in the account

document root, and make sure its contents reads as follows:

Welcome to account.

6. Temporarily switch off SELinux using setenforce 0.

7. Use systemctl restart httpd to restart the Apache web server.

8. Use curl http://account.example.com. You should now see

the account welcome page. (You may have to install curl,

using dnf install -y curl.)

9. Back on the root shell, copy the

/etc/httpd/conf.d/account.example.com.conf file to a file with

the name /etc/httpd/conf.d/sales.example.com.conf.

10. Open the sales.example.com.conf file in vi, and use the vi

command : %s/account/sales/g. This should replace all

instances of “account” with “sales.”

11. Create the /www/docs/sales.example.com document root,

and create a file index.html in it, containing the text

“Welcome to the sales server.”

12. Restart httpd and verify that both the account and the sales

servers are accessible.

Summary

In this chapter, you learned about Apache basics. The

information in this chapter helps you configure a basic Apache

web server, which helps with testing advanced topics like

firewall configuration or SELinux configuration that are covered

in subsequent chapters.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Hivanetwork.com

https://hivanetwork.com/

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 21-2 lists a

reference for these key topics and the page number on which

each is found.

Table 21-2 Key Topics for Chapter 21

Key Topic

Element
Description Page

Paragraph chroot environment

explanation

461

List Virtual host explanation 462

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

DocumentRoot

chroot

virtual host

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 Which dnf group can be used to install Apache and relevant

related packages?

 How do you enable the httpd service to be started automatically

when booting?

 What is the default location where RPMs can drop plug-in

configuration files that should be considered by the Apache

server?

 Which command enables you to test a web server from a server

that does not offer a graphical interface?

 What is the name of the default Apache configuration file?

 Which directory is used as the default Apache document root?

 Which file does the Apache process look for by default in the

document root?

 Which command enables you to see whether the Apache web

server is currently running?

 Which location is preferable for storing virtual host

configuration files?

 Names of configuration files and directories in the main Apache

configuration file are relative to the ServerRoot. To which

directory is the ServerRoot set by default?

End-of-Chapter Lab

In this end-of-chapter lab, you install and configure a basic

Apache web server.

Lab 21.1

1. Install the required packages that allow you to run a basic web

server. Make sure that the web server process is started

automatically when your server reboots. Do not use a virtual

server.

2. Use curl to make sure the web server presents a default page

showing “Welcome to my web server.”

3. Type dnf install httpd-manual to install the Apache

documentation.

4. Use a browser to test access to the /manual web page on your

server.

Chapter 22

Managing SELinux

The following topics are covered in this chapter:

Understanding SELinux Working Modes

Understanding Context Settings and the Policy

Restoring Default File Contexts

Managing Port Access

Using Boolean Settings to Modify SELinux Settings

Diagnosing and Addressing SELinux Policy Violations

The following RHCSA exam objectives are covered in this

chapter:

Set enforcing and permissive modes for SELinux

List and identify SELinux file and process context

Restore default file contexts

Use Boolean settings to modify system SELinux settings

Diagnose and address routine SELinux policy violations

Manage SELinux port labels

Since the earliest days of Linux, file permissions have been the

standard method of securing Linux systems. In some cases, file

permissions are just not enough to secure a server fully. Let’s

take a look at an example:

One morning I found out that my server was hacked. An intruder

had broken through a bad script on my web server and had

obtained shell access as the httpd user—this was possible due to

a bug in the shell code that I was using. Using this file access, the

intruder managed to create thousands of little PHP scripts that

were involved in a massive DDoS attack.

From a security perspective, it is interesting that nothing really

was wrong with the security settings on this server. All

permissions were set in a decent way, and the httpd user, like

any other user on a Linux server, does have permissions to

create files in /var/tmp, as in /tmp. So, what would have been a

good solution to prevent this kind of problem?

You could, of course, argue that the administrator of the web

server should have been doing a better job and should have been

watching what the scripts on the server were doing. But that is

not how Linux servers are normally used. The Linux server

administrator does not necessarily have in-depth knowledge of

the internals of all the applications running on the Linux server,

and the application administrator does not understand enough

about Linux to ensure that something like this can never happen.

Another solution is to apply further security measures. For

instance, this specific situation would have been prevented if the

permission to run program files from the /tmp and /var/tmp

directory had been taken away by using the noexec mount

option. But even if that would have worked for this specific

situation, it is not a good overall security solution that prevents

applications from doing things they are not supposed to be doing.

Basically, Linux just needs a default security solution that covers

all settings.

That is why SELinux was invented. SELinux provides mandatory

access control to a Linux server, where every system call is

denied unless it has been specifically allowed. This chapter

explains how to use SELinux to make sure that serious security

incidents will never happen on your server.

Tip

By any means, make sure that at the end of the exam

SELinux is working on your server. If it is not, it will

cost you many points!

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

22-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 22-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding SELinux Working Modes 1–2

Understanding Context Settings and the Policy 3–5

Restoring Default File Contexts 6

Managing Port Access 7

Using Boolean Settings to Modify SELinux Settings 8

Hivanetwork.com

https://hivanetwork.com/

Diagnosing and Addressing SELinux Policy Violations 9–10

 Which of the following allows you to set SELinux in disabled

mode in RHEL 9?

1. From a root shell, use setenforce 0

2. Use the GRUB kernel boot argument selinux=0

3. Set selinux=disabled in /etc/sysconfig/selinux

4. Remove the SELinux packages using dnf remove selinux

 Which of the following commands enable you to see the current

SELinux mode? (Choose two.)

1. sestatus

2. lsmode

3. semode

4. getenforce

 Which of the following items in the context label is the most

significant for SELinux system administration tasks?

1. Type

2. User

3. Role

4. Mission

 Which command-line switch is used with many commands to

display SELinux-related information?

1. -S

2. -X

3. -Z

4. -D

 Which of the following commands should be used to set the

context type of the directory /web to httpd_sys_content_t?

1. chcon -t httpd_sys_content_t /web

2. semanage -t httpd_sys_content_t "/web(/.*)?"

3. semanage fcontext -t httpd_sys_content_t "/web(/.*)?"

4. semanage fcontext -a -t httpd_sys_content_t "/web(/.*)?"

 Which command must you run to ensure that a file has the

appropriate SELinux context after moving the file to another

location?

1. reboot

2. restorecon /new/filename

3. chcon

4. restorecon -R /etc/selinux -v

 While setting a port context using semanage port -a -t

ssh_port_t -p tcp 443, you get an error message telling you that

the port is already defined. Which of the following statements is

true?

1. You cannot change a default port setting like 443, as it is used

already for https.

2. You have already issued the command earlier.

3. You need to use -m to modify the port context, not -a to add it.

4. The syntax you use is incorrect.

 Which command enables you to change a Boolean in a way that

it survives a reboot?

1. chcon boolean -P

2. setsebool -P

3. setsebool

4. semanage boolean

 Which file contains all the information you need to troubleshoot

SELinux messages?

1. /var/log/audit/audit.log

2. /var/log/selinux/selinux.log

3. /var/log/messages

4. /var/log/selinux.log

 You want to grep the audit log for SELinux log messages. Which

of the following strings should you use grep on?

1. selinux

2. deny

3. violation

4. AVC

Foundation Topics

Understanding SELinux Working Modes

If SELinux is enabled and nothing else has been configured, all

system calls are denied. To specify what exactly is allowed, a

policy is used. In this policy, rules define which source domain is

allowed to access which target domain. The source domain is the

object that is trying to access something. Typically, this is a

process or a user. The target domain is the object that is accessed.

Typically, that is a file, a directory, or a network port. To define

exactly what is allowed, context labels are used. Using these

labels is the essence of SELinux because these labels are used to

define access rules. Table 22-2 summarizes the most important

SELinux building blocks.

Table 22-2 SELinux Core Elements

Element Use

Policy A collection of rules that define which source has access to which
target.

Source
domain

The object that is trying to access a target. Typically a user or a
process.

Target
domain

The thing that a source domain is trying to access. Typically a file or
a port.

Context A security label that is used to categorize objects in SELinux.

Rule A specific part of the policy that determines which source domain
has which access permissions to which target domain.

Label Also referred to as context label, defined to determine which source
domain has access to which target domain.

On a Linux system, you can choose to enable or disable SELinux.

When SELinux is enabled, kernel support for SELinux is loaded,

and some applications that are SELinux aware change their

behavior, because specific libraries are used on a system that has

SELinux enabled. If SELinux is disabled, no SELinux activity

happens at all. Changing between SELinux enabled mode and

SELinux disabled mode requires a reboot of your system. The

reason is that SELinux is a feature that is deeply interwoven with

the Linux kernel.

If on a system SELinux is enabled, you can select to put SELinux

in enforcing mode or in permissive mode. In enforcing mode,

SELinux is fully operational and enforcing all SELinux rules in

the policy. If SELinux is in permissive mode, all SELinux-related

activity is logged, but no access is blocked. This makes SELinux

permissive mode an excellent mode to do troubleshooting, but it

also makes your system temporarily insecure. Permissive mode

is also a great way to do something and see the result from an

SELinux perspective by analyzing the messages that are written

to /var/log/audit/audit.log. That can help in building new and

more efficient policies.

To set the default SELinux mode while booting, use the file

/etc/sysconfig/selinux. Example 22-1 shows the content of this file.

Example 22-1 Content of the /etc/sysconfig/selinux File

Click here to view code image

[root@server1 ~]# cat /etc/sysconfig/selinux

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
See also:

https://docs.fedoraproject.org/en-US/quick-docs/getting-started-
 with-selinux/#getting-started-with-selinux-selinux-states-and-modes
#
NOTE: In earlier Fedora kernel builds, SELINUX=disabled would also
fully disable SELinux during boot. If you need a system with
 SELinux
fully disabled instead of SELinux running with no policy loaded,
 you
need to pass selinux=0 to the kernel command line. You can use
 grubby
to persistently set the bootloader to boot with selinux=0:
#
grubby --update-kernel ALL --args selinux=0
#

To revert back to SELinux enabled:
#
grubby --update-kernel ALL --remove-args selinux
#
SELINUX=enforcing
SELINUXTYPE= can take one of these three values:
targeted - Targeted processes are protected,
minimum - Modification of targeted policy. Only selected
 processes are protected.
mls - Multi Level Security protection.
SELINUXTYPE=targeted

As you can see, in this file, which is read while booting, you can

choose to put SELinux in enforcing or permissive mode. On older

versions of RHEL, it was possible to define disabled mode as a

default; in RHEL 9 this can no longer be done. To put SELinux in

disabled mode, use the GRUB kernel boot argument selinux=0.

You can also set permissive mode from the GRUB shell, by

passing the kernel boot option enforcing=0.

On a server that currently has SELinux enabled, you can use the

getenforce command to see whether SELinux currently is in

enforcing mode or in permissive mode. To switch between

permissive mode and enforcing mode, you can use setenforce.

The command setenforce 0 temporarily puts SELinux in

Hivanetwork.com

https://hivanetwork.com/

permissive mode, and setenforce 1 puts SELinux temporarily in

enforcing mode. To change the default mode persistently, you

need to write it to /etc/sysconfig/selinux, or change GRUB kernel

boot arguments.

Another useful command is sestatus. If used with the option -v,

this command shows detailed information about the current

status of SELinux on a server. Example 22-2 shows the output of

the sestatus -v command. It not only shows you which parts of

SELinux are enabled but also shows the current version of the

policy that is loaded and the context labels for some critical parts

of the system.

Example 22-2 Using sestatus -v to Get Detailed Information

About the Current Protection Status

Click here to view code image

[root@server1 ~]# sestatus -v
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed

Memory protection checking: actual (secure)
Max kernel policy version: 33

Process contexts:
Current context: unconfined_u:unconfined_r:unconfined_
 t:s0-s0:c0.c1023
Init context: system_u:system_r:init_t:s0
/usr/sbin/sshd system_u:system_r:sshd_t:s0-s0:c0.
 c1023
File contexts:
Controlling terminal: unconfined_u:object_r:user_devpts_t:s0
/etc/passwd system_u:object_r:passwd_file_t:s0
/etc/shadow system_u:object_r:shadow_t:s0
/bin/bash system_u:object_r:shell_exec_t:s0
/bin/login system_u:object_r:login_exec_t:s0
/bin/sh system_u:object_r:bin_t:s0 ->
 system_u:object_r:shell_exec_t:s0
/sbin/agetty system_u:object_r:getty_exec_t:s0
/sbin/init system_u:object_r:bin_t:s0 ->
 system_u:object_r:init_exec_t:s0
/usr/sbin/sshd system_u:object_r:sshd_exec_t:s0

In Exercise 22-1, you practice working with the different modes.

Exercise 22-1 Manipulating SELinux Modes

1. Open a root console on your server and type getenforce.

You’ll normally see that SELinux is in enforcing mode. If the

output of getenforce shows Disabled, edit the

/etc/default/grub file and add the argument selinux=1 to the

line that starts the Linux kernel (it is the line that starts with

the word linux). Then save the file and use the command

grub2-mkconfig -o /boot/grub2/grub.cfg and reboot the

system before you continue.

2. Type setenforce 0 and type getenforce again. SELinux now

switches to permissive mode.

3. Type setenforce 1 and verify that SELinux is back to

enforcing mode.

4. Type sestatus -v and read current status information about

SELinux.

Note that on real Red Hat servers, SELinux on occasion is set to

be disabled. Putting SELinux in disabled mode certainly makes it

easier for administrators to run their applications. However, it

also makes the server much less secure. Often, ignorance of the

system administrator is the only reason SELinux is put in

disabled mode. If an application vendor tells you that the

application is supported only if SELinux is disabled, that often

simply means the application vendor has no knowledge about

SELinux. Advanced administrators can use sepolicy generate to

allow almost any application to run in an environment where

SELinux is enabled.

A fully enforcing system is especially important if your server is

accessed directly by users from the Internet. If your server

cannot be reached directly from the Internet and is in a safe

internal network, having SELinux enabled is not strictly

necessary (but I recommend always keeping it in enforcing mode

anyway). On the RHCSA exam, however, you must make sure

that SELinux is enabled and fully protecting your server.

Understanding Context Settings and the Policy

Context settings are an important part of SELinux operations.

The context is a label that can be applied to different objects:

Files and directories

Ports

Processes

Users

Context labels define the nature of the object, and SELinux rules

are created to match context labels of source objects (often

referred to as source domains) to the context labels of target

objects (referred to as target domains). So, setting correct context

labels is a very important skill for system administrators. You

learn how to do that later in this chapter.

Note

Managing SELinux context labels is a key skill for

securing systems with SELinux. It is not listed in the

RHCSA exam objectives though. Nevertheless, I’ll

give you a decent explanation of how context labels

work, because a mismatch of context labels can

create lots of SELinux-related problems.

Monitoring Current Context Labels

To see current context settings on the objects in the previous

bulleted list, many commands offer support for the -Z option. In

Example 22-3, you see how ls -Z shows context settings for some

directories in the / file system. Other commands also support the

-Z option to show current context label settings. Some examples

are ps Zaux, which shows a list of all processes, including their

context label, and ss -Ztul, which shows all network ports and

the current context label associated with each port.

Example 22-3 Displaying Context Labels on Files with ls -Z

Click here to view code image

[root@server1 /]# ls -Z
 system_u:object_r:bin_t:s0 bin unconfined_u:object_r:
 default_t:s0 repo
 system_u:object_r:boot_t:s0 boot system_u:object_r:admin_
 home_t:s0 root
 system_u:object_r:device_t:s0 dev system_u:object_r:var_
 run_t:s0 run
 system_u:object_r:etc_t:s0 etc system_u:object_r:bin_t:
 s0 sbin
 system_u:object_r:unlabeled_t:s0 files
 system_u:object_r:var_t: s0 srv
 system_u:object_r:home_root_t:s0 home
 system_u:object_r:root_t: s0 stratis
 system_u:object_r:lib_t:s0 lib system_u:object_r:unlabeled_
 t:s0 stratis1
 system_u:object_r:lib_t:s0 lib64 system_u:object_r:sysfs_t:
 s0 sys
 system_u:object_r:mnt_t:s0 media system_u:object_r:tmp_t:
 s0 tmp
 system_u:object_r:mnt_t:s0 mnt system_u:object_r:usr_t:
 s0 usr
 system_u:object_r:usr_t:s0 opt system_u:object_r:var_t:
 s0 var
 system_u:object_r:proc_t:s0 proc system_u:object_r:
 unlabeled_t:s0 vdo1

Every context label always consists of three different parts:

User: The user can be recognized by _u in the context label; it

is set to system_u on most directories in Example 22-3.

SELinux users are not the same as Linux users, and they are

not important on the RHCSA exam.

Role: The role can be recognized by _r in the context label. In

Example 22-3, most objects are labeled with the object_r role.

In advanced SELinux management, specific SELinux users can

be assigned permissions to specific SELinux roles. For the

RHCSA exam, you do not have to know how to configure roles.

Type: The type context can be recognized by _t in the context

label. In Example 22-3, you can see that a wide variety of

context types are applied to the directories in the / file system.

Make sure that you know how to work with context types,

because they are what the RHCSA exam expects you to know.

Tip

Just to make sure that you are focusing on the parts

that really matter on the RHCSA exam, you need to

work with context types only. You can safely ignore

the user and role parts of the context label.

Setting Context Types

As an administrator, you need to know how to set context types

on target domains. If currently your application is not working as

expected, you can often make it work correctly by setting the

appropriate context on the target domain. In RHCSA, this is the

key SELinux skill that you should master.

You can set context types on files and directories and other

objects such as network ports. Let’s focus on that task first.

There are two commands to set context type:

semanage: This is the command you want to use. The

semanage command writes the new context to the SELinux

policy, from which it is applied to the file system.

chcon: This command is for use in specific cases only and

normally should be avoided. The chcon command writes the

new context to the file system and not to the policy. Everything

that is applied with chcon is overwritten when the file system

is relabeled, or the original context is restored from the policy

to the file system. Do not use this command!

Hivanetwork.com

https://hivanetwork.com/

Note

You might want to know why I bother mentioning

chcon if you should not use it. Well, you’ll see the

chcon command still being referred to in older

documentation, which might give the impression

that it is a useful command. It is not, because if your

file system is relabeled, all changes applied with

chcon are lost. File system relabeling actions can

take you by surprise if you are new to SELinux, and

you will fail your exam if by accident file system

relabeling happens on a file system where you have

applied SELinux context with chcon. So, I repeat: do

not use it.

Tip

The semanage command may not be installed by

default. Fortunately, you can type dnf

whatprovides */semanage to find the

policycoreutils-python-utils RPM package containing

semanage and then install it. Do not learn the

names of all relevant RPMs by heart; just remember

dnf whatprovides. It will find any RPM you need.

See Chapter 9, “Managing Software,” for more

information about the use of the dnf command and

package management in general.

To set context using semanage, you first need to find the

appropriate context (a topic covered in more depth in the next

section, “Finding the Context Type You Need”). An easy way to

find the appropriate context is by looking at the default context

settings on already-existing items. If you want to change the

context for a custom web server DocumentRoot, for example,

type ls -Z /var/www to see the context settings that are set on the

default web server DocumentRoot:

Click here to view code image

[root@server1 /]# ls -Z /var/www
drwxr-xr-x. root root system_u:object_r:httpd_sys_script_exec_t:s0
cgi-bin
drwxr-xr-x. root root system_u:object_r:httpd_sys_content_t:s0 html

As you can see, the context settings on /var/www/html are set to

httpd_sys_content_t. (As a reminder, we’re looking only at the

context type because the user and role are for advanced use

only.) To set this context type to any new directory that you want

to use as the DocumentRoot, use the following command:

Click here to view code image

semanage fcontext -a -t httpd_sys_content_t "/mydir(/.*)?"

In this command, the option -a is used to add a context type. This

is what you need to do for all directories that you have created

manually. Then you use -t to change the context type (as opposed

to user and role). The last part of the command is a regular

expression, which is used to refer to the directory /mydir and

anything that might exist below this directory.

Setting the context in this way is not enough, though, because

you’ll write it only to the policy and not to the file system. To

complete the command, you need to apply the policy setting to

the file system, as follows:

restorecon -R -v /mydir

You’ll see that the new context is now applied, which allows the

httpd process to access the directory.

Tip

The semanage command is not the easiest

command to remember. Fortunately, it has some

excellent man pages. Type man semanage and use

G to go all the way down to the bottom of the man

page. You’ll now see the “See Also” section, which

mentions semanage-fcontext, which is about

managing file context with semanage. Open this

man page using man semanage-fcontext, type

/example, and you’ll see some pretty examples that

mention exactly what you need to know (see

Example 22-4).

Example 22-4 semanage fcontext Usage Example from the man

Page

Click here to view code image

EXAMPLE
 remember to run restorecon after you set the file context
 Add file-context for everything under /web
 # semanage fcontext -a -t httpd_sys_content_t "/web(/.*)?"
 # restorecon -R -v /web

 Substitute /home1 with /home when setting file context
 # semanage fcontext -a -e /home /home1
 # restorecon -R -v /home1

 For home directories under top level directory, for example
 /disk6/home,
 execute the following commands.
 # semanage fcontext -a -t home_root_t "/disk6"
 # semanage fcontext -a -e /home /disk6/home
 # restorecon -R -v /disk6

SEE ALSO
 selinux (8), semanage (8)
AUTHOR
 This man page was written by Daniel Walsh <dwalsh@redhat.com>
 20130617 semanage-fcontext(8)

Now it is time for an exercise. In Exercise 22-2, you learn how to

change the DocumentRoot for the Apache web server and label

the new DocumentRoot in the right way.

Exercise 22-2 Setting a Context Label on a Nondefault Apache

DocumentRoot

1. Open a root shell and type dnf install httpd curl -y.

2. Still from the root shell, type mkdir /web.

3. Type vim /web/index.html and put the following contents in

the file: welcome to my web server.

4. Type vim /etc/httpd/conf/httpd.conf to open the Apache

configuration file and find the DocumentRoot parameter.

Change it so that it reads DocumentRoot "/web".

5. In the same httpd.conf configuration file, add the following

section, as without this section it will be Apache and not

SELinux blocking access to the new DocumentRoot:

<Directory "/web">
 AllowOverride None
 Require all granted
</Directory>

6. Type systemctl enable --now httpd to start and enable the

httpd service. Note that if the httpd service was already

running, you’ll need to use systemctl restart httpd to restart

it so that it can pick up the changes you’ve made to the httpd.

conf configuration file.

7. Type curl http://localhost. You’ll see the default Red Hat web

page and not the contents of the index.html file you have just

created.

8. Type setenforce 0 to switch SELinux to permissive mode.

9. Repeat step 7. You’ll now get access to your custom web page,

which proves that SELinux was doing something to block

access.

10. Type semanage fcontext -a -t httpd_sys_content_t

"/web(/.*)?" to apply the new context label to /web.

11. Type restorecon -R -v /web. The -v (verbose) option ensures

that you see what is happening and that you will see the new

context being applied to /web.

12. Set SELinux back in enforcing mode, using setenforce 1.

13. Type curl http://localhost. You’ll get access to your custom

web page because SELinux now allows access to it.

Finding the Context Type You Need

One of the challenging parts of setting SELinux contexts is

finding the context you need. Roughly, there are three

approaches:

Look at the default environment.

Read the configuration files.

Use man -k _selinux to find SELinux-specific man pages for

your service.

The most powerful way of getting the SELinux information you

need is by using man -k _selinux, which searches the database of

man pages for those that match _selinux in the name or

description of the man page. On RHEL 9, however, these man

pages are not installed by default. To install them, you need to

install the selinux-policy-doc package. In Exercise 22-3 you’ll

learn how to do this and use the SELinux man pages.

Exercise 22-3 Installing SELinux-Specific Man Pages

1. Type man -k _selinux. You’ll probably see just one or two

man pages.

2. Type dnf search selinux. This will show several packages,

including the selinux-policy-doc package.

3. Install this package by using dnf install selinux-policy-doc

4. Type man -k _selinux. You should now see a long list of man

pages.

5. In case that man -k _selinux does not show a list of man

pages, type mandb to update the database that contains

names and descriptions of all man pages that are installed.

6. Once the mandb command has finished (this can take a

minute), type man -k _selinux. You’ll now see a long list of

man pages scrolling by.

7. Type man -k _selinux | grep http to find the man pages that

documents SELinux settings for the httpd service and scroll

through it. Notice that it is a complete list of all that you can

do with SELinux on the httpd service.

Restoring Default File Contexts

In the previous section, you learned how to apply context types

using semanage. You also applied the context settings from the

Hivanetwork.com

https://hivanetwork.com/

policy to the file system using restorecon. The restorecon

command is a useful command because in the policy the default

settings are defined for most files and directories on your

computer. If the wrong context setting is ever applied, you just

have to type restorecon to reapply it from the policy to the file

system.

Using restorecon this way can be useful to fix problems on new

files. Before explaining how to do it, let’s take a look at how new

context settings are applied:

If a new file is created, it inherits the context settings from the

parent directory.

If a file is copied to a directory, this is considered a new file, so

it inherits the context settings from the parent directory.

If a file is moved, or copied while keeping its properties (by

using cp -a), the original context settings of the file are applied.

Especially the latter of these three situations is easily fixed by

using restorecon. Exercise 22-4 simulates this problem, and you

fix it using restorecon.

It is also possible to relabel the entire file system. Doing so

applies all context settings as defined in the policy to the file

system. Because the policy should always be leading and contain

correct context settings, relabeling a file system may be a good

idea. To relabel the file system, you can either use the command

restorecon -Rv / or create a file with the name /.autorelabel. If

the /.autorelabel file exists, the next time your server is restarted,

the file system will automatically be relabeled. Once the file

system has been relabeled, the file /.autorelabel will be removed.

Using /.autorelabel is a good idea if you’re not sure that current

context labels are consistent with the SELinux policy settings.

A relabeling action sometimes occurs spontaneously. If while

troubleshooting a server you have started the server in a mode

where SELinux is disabled, and you have applied modifications

to the file system, SELinux will detect that the file system has

changed without SELinux monitoring it. This will result in an

automatic relabeling of the entire file system. Note that on a

large file system, relabeling the file system can take a significant

amount of time; on a minimal system such as the one that is used

on the RHCSA exam, a complete file system relabeling should be

done in less than 2 minutes.

Exercise 22-4 Using restorecon to Relabel Files

1. From a root shell, type ls -Z /etc/hosts. You’ll see the file has

the net_conf_t context label.

2. Type cp /etc/hosts ~ to copy the file to the root home

directory. Because copying is considered the creation of a new

file, the context setting on the ~/hosts file is set as

admin_home_t. Use ls -Z ~/hosts to verify this.

3. Type mv ~/hosts /etc and confirm that you want to overwrite

the existing file.

4. Type ls -Z /etc/hosts to confirm that the context type is still set

to admin_home_t.

5. Type restorecon -v /etc/hosts to reapply the correct context

type. The -v option shows you what is happening.

6. Type touch /.autorelabel and restart your server. While

restarting, make sure to press the Escape key so that you’ll see

boot messages. You’ll see that the file system is automatically

relabeled.

Managing Port Access

Managing file context is a key skill on the exam, but it is not the

only skill that matters. When services are configured to listen on

a nondefault port, you’ll need to set the appropriate context on

the port or access will be denied.

To set a port label, use semanage port. If, for instance, you want

your Apache web server to offer services on port 8008, use

semanage port -a -t http_port_t -p tcp 8008. After changing the

port label, you don’t have to run the restorecon utility—the

change will be effective immediately. In Exercise 22-5 you’ll learn

how to change a port label.

Exercise 22-5 Changing Port Labels

1. From a root shell, type vim /etc/httpd/conf/httpd.conf. Look

up the line that starts with Listen and change it so that it reads

Listen 82.

2. Use systemctl restart httpd to restart the Apache server with

this new setting. You will see an error message.

3. Type systemctl status httpd. The log messages show

“Permission denied … could not bind to address 0.0.0.0:82.”

4. Use setenforce 0 to set SELinux to permissive mode and

systemctl restart httpd to restart Apache. It will now work,

so you have confirmed that the problems are caused by

SELinux.

5. Type setenforce 1 to switch back to enforcing mode.

6. Type semanage port -a -t http_port_t -p tcp 82 to apply the

correct port label.

7. Use systemctl restart httpd. It will now restart without any

issues.

Using Boolean Settings to Modify SELinux Settings

The SELinux policy includes many rules. Some of these rules

allow specific activity, whereas other rules deny that activity.

Changing rules is not always easy, and that is why SELinux

Booleans are provided to easily change the behavior of a rule. By

applying a Boolean, multiple rules are changed to allow or deny

specific behavior.

An example of a Boolean is ftpd_anon_write, which by default is

set to off. That means that even if you have configured your FTP

server to allow anonymous writes, the Boolean will still deny it,

and the anonymous user cannot upload any files. If a Boolean

denies specific activity, it will always be denied, regardless of the

setting in the configuration file. The opposite is also true though:

if the Boolean allows activity but it is not enabled in the

configuration file, it will still not work.

To get a list of Booleans on your system, type getsebool -a. If you

are looking for Booleans that are set for a specific service, use

grep to filter down the results. In Example 22-5, you can see how

this command is used to show current Booleans that match FTP.

An alternative way to show current Boolean settings is by using

the semanage boolean -l command. This command provides

some more details, because it shows the current Boolean setting

and the default Boolean setting.

Example 22-5 Displaying Boolean Settings

Click here to view code image

root@server1 ~]# getsebool -a | grep ftp
ftp_home_dir --> off
ftpd_anon_write --> off
ftpd_connect_all_unreserved --> off
ftpd_connect_db --> off
ftpd_full_access --> off
ftpd_use_cifs --> off
ftpd_use_fusefs --> off
ftpd_use_nfs --> off
ftpd_use_passive_mode --> off
httpd_can_connect_ftp --> off
httpd_enable_ftp_server --> off
sftpd_anon_write --> off
sftpd_enable_homedirs --> off
sftpd_full_access --> off
sftpd_write_ssh_home --> off
tftp_anon_write --> off
tftp_home_dir --> off

To change a Boolean, you can use setsebool. If you want to

switch the ftpd_anon_write Boolean to allow anonymous writes,

for example, use setsebool ftpd_anon_write on. This changes

the runtime value of the Boolean but does not change it

permanently. To apply permanent changes to a Boolean, use

setsebool -P. Notice that this takes longer, because parts of the

policy need to be recompiled to apply the modification. In

Exercise 22-6, you apply these commands to see how Booleans

are working.

Exercise 22-6 Working with SELinux Booleans

1. From a root shell, type getsebool -a | grep ftp. You’ll see the

ftpd_anon_write Boolean, with its current value set to off.

2. Type setsebool ftpd_anon_write on. This changes the value

in the runtime.

3. Type getsebool ftpd_anon_write. It shows the value of the

Boolean as on.

4. Type semanage boolean -l | grep ftpd_anon. Notice that this

command shows the runtime configuration set to on, but the

permanent setting is still set to off.

5. Use setsebool -P ftpd_anon_write on to switch the runtime

and the default setting for the Boolean to on.

6. Repeat semanage boolean -l | grep ftpd_anon. Notice that it

is now set to on, on.

Diagnosing and Addressing SELinux Policy Violations

Configuring a system with SELinux can be a challenging task. To

make it easier to understand what is happening, SELinux logs

everything it is doing. The primary source to get logging

information is the audit log, which is in /var/log/audit/audit.log.

SELinux messages are logged with type=AVC in the audit log. So,

to see what SELinux is doing, you can use the command grep

AVC /var/log/audit/audit.log. If SELinux messages have been

logged, this command shows a result as in Example 22-6.

Example 22-6 Getting SELinux Messages from audit.log

Click here to view code image

[root@server1 ~]# grep AVC /var/log/audit/audit.log | grep http
type=AVC msg=audit(1559986797.093:185): avc: denied { getattr } for
 pid=32939 comm="httpd" path="/web/index.html" dev="dm-0"
 ino=35321780 scontext=system_u:system_r:httpd_t:s0
 tcontext=unconfined_u:object_r:default_t:s0 tclass=file permissive=0
type=AVC msg=audit(1559986797.093:186): avc: denied { getattr } for
 pid=32939 comm="httpd" path="/web/index.html" dev="dm-0"
 ino=35321780 scontext=system_u:system_r:httpd_t:s0
 tcontext=unconfined_u:object_r:default_t:s0 tclass=file permissive=0
type=AVC msg=audit(1559986815.360:188): avc: denied { getattr } for
 pid=32939 comm="httpd" path="/web/index.html" dev="dm-0"
 ino=35321780 scontext=system_u:system_r:httpd_t:s0

Hivanetwork.com

https://hivanetwork.com/

 tcontext=unconfined_u:object_r:default_t:s0 tclass=file permissive=0
type=AVC msg=audit(1559986815.360:189): avc: denied { getattr } for
 pid=32939 comm="httpd" path="/web/index.html" dev="dm-0"
 ino=35321780 scontext=system_u:system_r:httpd_t:s0
 tcontext=unconfined_u:object_r:default_t:s0 tclass=file permissive=0
type=AVC msg=audit(1559986883.549:192): avc: denied { getattr } for
 pid=33214 comm="httpd" path="/web/index.html" dev="dm-0"
 ino=35321780 scontext=system_u:system_r:httpd_t:s0
 tcontext=unconfined_u:object_r:default_t:s0 tclass=file permissive=0
type=AVC msg=audit(1559986883.550:193): avc: denied { getattr } for
 pid=33214 comm="httpd" path="/web/index.html" dev="dm-0" ino=35321780
 scontext=system_u:system_r:httpd_t:s0 tcontext=unconfined_u:object
 _r:default_t:s0 tclass=file permissive=0
type=AVC msg=audit(1559986927.406:197): avc: denied { getattr } for
 pid=33214 comm="httpd" path="/web/index.html" dev="dm-0"
 ino=35321780 scontext=system_u:system_r:httpd_t:s0
 tcontext=unconfined_u:object_r:default_t:s0 tclass=file permissive=1
type=AVC msg=audit(1559986927.406:198): avc: denied { read } for
 pid=33214 comm="httpd" name="index.html" dev="dm-0" ino=35321780 sco
 ntext=system_u:system_r:httpd_t:s0 tcontext=unconfined_u:object_r:
default_t:s0 tclass=file permissive=1
type=AVC msg=audit(1559986927.406:198): avc: denied { open } for
 pid=33214 comm="httpd" path="/web/index.html" dev="dm-0"
 ino=35321780 scontext=system_u:system_r:httpd_t:s0
 tcontext=unconfined_u:object_r:default_t:s0 tclass=file permissive=1
type=AVC msg=audit(1559986927.406:199): avc: denied { map } for
 pid=33214 comm="httpd" path="/web/index.html" dev="dm-0"
 ino=35321780 scontext=system_u:system_r:httpd_t:s0 tcontext=unconfin

 ed_u:object_r:default_t:s0 tclass=file permissive=1

At first sight, the SELinux log messages look complicated. If you

look a bit closer, though, they are not that hard to understand.

Let’s take a closer look at the last line in the log file:

Click here to view code image

type=AVC msg=audit(1559986927.406:199): avc: denied { map } for
pid=33214 comm="httpd" path="/web/index.html" dev="dm-0" ino=35321780
scontext=system_u:system_r:httpd_t:s0 tcontext= unconfined_u:object_
r:default_t:s0 tclass=file permissive=1

The first relevant part in this line is the text avc: denied { map }.

That means that a map request was denied, so some process has

tried to read attributes of a file and that was denied, because it is

a policy violation. Following that message, we can see

comm=httpd, which means that the command trying to issue the

getattr request was httpd, and we can see

path="web/index.html", which is the file that this process has

tried to access.

In the last part of the log line, we can get information about the

source context and the target context. The source context

(which is the context setting of the httpd command) is set to

http_t, and the target context (which is the context setting of the

/web/index.html file) is set to default_t. And apparently, SELinux

did not like that too much. So, to fix this, you would have to

relabel the file, as discussed earlier in the chapter.

Making SELinux Analyzing Easier

Based on the information you find in the audit.log, you may be

able to decide what you need to do to fix the problem. Because

the information in the audit.log is not easy to understand, the

sealert command is offered to provide simplified messages

about SELinux-related events. You may need to install sealert by

using dnf -y install setroubleshoot-server. After installing it, it is a

good idea to restart your server to make sure that all processes

that are involved are restarted correctly. The next time an

SELinux message is written to the audit log, an easier-to-

understand message is written to the systemd journal. Example

22-7 shows an output example.

Example 22-7 sealert Makes Analyzing SELinux Logs Easier

Click here to view code image

[root@server1 ~]# journalctl | grep sealert
Oct 26 08:21:42 server1.example.com setroubleshoot[36518]: SELinux

 is preventing /usr/sbin/httpd from name_bind access on the tcp_
 socket port 82. For complete SELinux messages run: sealert -l
 fde99ca7-d84d-4956-beec-aa55d0a68044
Oct 26 08:21:43 server1.example.com setroubleshoot[36518]: SELinux
 is preventing /usr/sbin/httpd from name_bind access on the tcp_
 socket port 82. For complete SELinux messages run: sealert -l
 fde99ca7-d84d-4956-beec-aa55d0a68044

To get more details, you should run the command that is

suggested. This will get information from the SELinux event

database, including suggestions on how to fix the problem.

Example 22-8 shows the first lines of the output for the command

that is suggested in Example 22-7.

Example 22-8 Exploring sealert Messages

Click here to view code image

[root@server1 ~]# sealert -l fde99ca7-d84d-4956-beec-aa55d0a68044
SELinux is preventing /usr/sbin/httpd from name_bind access on the
tcp_socket port 82.

***** Plugin bind_ports (99.5 confidence) suggests ****************
If you want to allow /usr/sbin/httpd to bind to network port 82
Then you need to modify the port type.
Do
semanage port -a -t PORT_TYPE -p tcp 82

 where PORT_TYPE is one of the following: http_cache_port_t, http_
 port_t, jboss_management_port_t, jboss_messaging_port_t, ntop_
 port_t, puppet_port_t.
***** Plugin catchall (1.49 confidence) suggests ******************
If you believe that httpd should be allowed name_bind access on the
port 82 tcp_socket by default.
Then you should report this as a bug.
You can generate a local policy module to allow this access.
Do
allow this access for now by executing:
ausearch -c 'httpd' --raw | audit2allow -M my-httpd
semodule -X 300 -i my-httpd.pp

Additional Information:

The useful thing about sealert is that it tries to analyze what has

happened and, based on the analysis, suggests what you need to

do to fix the problem. The not-so-useful part is that in some cases,

hundreds of possible context types are shown, and the

administrator has to choose the right one. So, if you do not know

what you are doing, you risk getting completely lost. In other

cases the output will be very useful, as is the case for the output

in Example 22-8, which is suggesting to run the semanage port

command to fix the issue.

When working with sealert, you can see that different plug-ins

are called, and every plug-in has a confidence score. If, as in the

example in Example 22-8, one plug-in has a 99.5% confidence

score, while the other has only a 1.49% confidence score, it may

be obvious that the former approach is what you should choose.

Unfortunately, however, it is not always that readable.

Tip

If you are not sure what SELinux is trying to tell you,

install the setroubleshoot-server package and

analyze what sealert shows. The information that is

shown by sealert is often a lot more readable.

Sometimes it will not help you at all, whereas

sometimes the information can prove quite helpful.

Summary

This chapter provided an RHCSA-level introduction to SELinux.

You learned why SELinux is needed for security and how

SELinux uses context as the main feature to apply security. You

also learned how to set the default SELinux mode and how to

analyze in case things go wrong.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 22-3 lists a

reference for these key topics and the page number on which

each is found.

Table 22-3 Key Topics for Chapter 22

Key Topic Element Description Page

Table 22-2 SELinux Core Elements 473

List Elements a context label can be applied to 477

List Three parts of a context label 478

List How new context settings are applied 483

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

policy

context

enforcing

permissive

context type

Hivanetwork.com

https://hivanetwork.com/

audit log

source context

target context

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 You want to put SELinux temporarily in permissive mode. Which

command do you use?

 You need a list of all available Booleans. Which command do you

use?

 You do not see any service-specific SELinux man page. What

solution do you need to apply?

 What is the name of the package you need to install to get easy-

to-read SELinux log messages in the audit log?

 What commands do you need to run to apply the

httpd_sys_content_t context type to the directory /web?

 When would you use the chcon command?

 Which file do you need to change if you want to completely

disable SELinux?

 Where does SELinux log all of its messages?

 You have no clue which context types are available for the ftp

service. What command enables you to get more specific

information?

 Your service does not work as expected, and you want to know

whether it is due to SELinux or something else. What is the

easiest way to find out?

End-of-Chapter Lab

You have now learned how SELinux works. To practice

managing this essential service, work through this end-of-

chapter lab about SELinux.

Lab 22.1

1. Change the Apache document root to /web. In this directory,

create a file with the name index.html and give it the content

welcome to my web server. Restart the httpd process and try

to access the web server. This will not work. Fix the problem.

2. In the home directory of the user root, create a file with the

name hosts and give it the following content:
Click here to view code image

192.168.4.200 labipa.example.com
192.168.4.210 server1.example.com
192.168.4.220 server2.example.com

3. Move the file to the /etc directory and do what is necessary to

give this file the correct context.

Chapter 23

Configuring a Firewall

The following topics are covered in this chapter:

Understanding Linux Firewalling

Working with Firewalld

The following RHCSA exam objective is covered in this chapter:

Configure firewall settings using firewall-cmd/firewalld

If a server is connected to the Internet, it needs to be protected

against unauthorized access. SELinux is one part of this

protection, as discussed in Chapter 22, “Managing SELinux,” and

a firewall is the second part. The Linux kernel implements

firewalling via the netfilter framework. To configure which

packets are allowed and which are not, Firewalld is the default

solution in RHEL 9. In this chapter, you learn how a basic

Firewalld configuration is created in an RHEL 9 environment.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

23-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 23-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding Linux Firewalling 1–3, 7

Working with Firewalld 4–6, 8–10

 Which of the following is not a standard Firewalld zone?

1. untrusted

2. trusted

3. external

4. internal

 Which of the following is the name of the firewalling service as

implemented in the Linux kernel?

1. iptables

2. firewalld

3. netfilter

4. firewall-mod

 Which of the following is not an advantage of Firewalld?

1. Rules can be modified through DBus.

2. It has an easy-to-use command-line interface.

3. It has an easy-to-use graphical interface.

4. It can be used to manage the iptables service.

 Which command enables you to list all available Firewalld

services?

1. firewall-cmd --list-services

2. firewall-cmd --list-all

3. firewall-cmd --get-services

4. firewall-cmd --show-services

 What is the name of the GUI tool that enables you to easily

manage Firewalld configurations?

1. system-config-firewall

2. firewall-gtk

3. firewall-config

4. firewall-gui

 Which of the following shows the correct syntax for adding a

port persistently to the current Firewalld configuration?

1. firewall-cmd --addport=2022/tcp --permanent

2. firewall-cmd --add-port=2022/tcp --permanent

3. firewall-cmd --addport=2022/tcp --persistent

4. firewall-cmd --add port=2022/tcp --persistent

 Which zone should you use for an interface that is on a network

where you need minimal firewall protection because every other

computer on that same network is trusted?

1. trusted

2. home

3. work

4. private

 Which of the following statements is true about the --permanent

command-line option when used with firewall-cmd?

1. Configuration that is added using --permanent is activated

immediately and will be activated automatically after

(re)starting Firewalld.

2. Configuration that is added using --permanent is activated

immediately.

3. Configuration that is added using --permanent is not activated

immediately and can be activated only by using systemctl

restart firewalld.

4. To activate configuration that has been added with the --

permanent option, you need to reload the firewall

configuration by using firewall-cmd --reload.

 Which command enables you to get an overview of all the

current firewall configurations for all zones?

1. firewall-cmd --show-current

2. firewall-cmd --list-all

3. firewall-cmd --list-current

4. firewall-cmd --show-all

 How can you easily write the current runtime configuration to

the permanent configuration?

1. When using firewall-cmd, add the --permanent option to all

commands.

2. Only write the permanent configuration, and use systemctl

restart firewalld to activate the permanent configuration in

the runtime as well.

3. Manually edit the firewalld zone file.

Hivanetwork.com

https://hivanetwork.com/

4. Write all options to the runtime configuration, and then use

the firewall-cmd --runtime-to-permanent command to add

these options to the persistent configuration.

Foundation Topics

Understanding Linux Firewalling

You can use a firewall to limit traffic coming in to a server or

going out of the server. Firewalling is implemented in the Linux

kernel by means of the netfilter subsystem. Netfilter allows

kernel modules to inspect every incoming, outgoing, or

forwarded packet and act upon such a packet by either allowing

it or blocking it. So, the kernel firewall allows for inspection of

incoming packets, outgoing packets, and packets that are

traversing from one interface to another if the RHEL server is

providing routing functionality.

Understanding Previous Solutions

To interact with netfilter, different solutions can be used. On

earlier versions of Red Hat Enterprise Linux, iptables was the

default solution to configure netfilter packet filtering. This

solution worked with the command-line utility iptables, which

provided a sophisticated and detailed way of defining firewall

rules, but that also was challenging to use for the occasional

administrator because of the complicated syntax of iptables

commands and because the ordering rules could become

relatively complex.

The iptables service is no longer offered in RHEL. It has been

replaced with nftables, a newer solution with more advanced

options than the ones offered by iptables. The nft command-line

tool offers an advanced interface to write rules directly to

nftables.

Understanding Firewalld

Firewalld is a system service that can configure firewall rules by

using different interfaces. Administrators can manage rules in a

Firewalld environment, but even more important is that

applications can request ports to be opened using the DBus

messaging system, which means that rules can be added or

removed without any direct action required of the system

administrator, which allows applications to address the firewall

from user space.

Firewalld was developed as a completely new solution for

managing Linux firewalls. It uses the firewalld service to manage

the netfilter firewall configuration and the firewall-cmd

command-line utility.

Understanding Firewalld Zones

Firewalld makes firewall management easier by working with

zones. A zone is a collection of rules that are applied to incoming

packets matching a specific source address or network interface.

Firewalld applies to incoming packets only by default, and no

filtering happens on outgoing packets.

The use of zones is particularly important on servers that have

multiple interfaces. On such servers, zones allow administrators

to easily assign a specific set of rules. On servers that have just

one network interface, you might very well need just one zone,

which is the default zone. Every packet that comes into a system

is analyzed for its source address, and based on that source

address, Firewalld analyzes whether or not the packet belongs to

a specific zone. If not, the zone for the incoming network

interface is used. If no specific zone is available, the packet is

handled by the settings in the default zone.

Firewalld works with some default zones. Table 23-2 describes

these default zones.

Table 23-2 Firewalld Default Zones

Zone

Name
Default Settings

block Incoming network connections are rejected with

an “icmp-host-prohibited” message. Only network

connections that were initiated on this system are

allowed.

dmz For use on computers in the demilitarized zone.

Only selected incoming connections are accepted,

and limited access to the internal network is

allowed.

drop Any incoming packets are dropped and there is

no reply.

external For use on external networks with masquerading

(Network Address Translation [NAT]) enabled,

used especially on routers. Only selected

incoming connections are accepted.

home For use with home networks. Most computers on

the same network are trusted, and only selected

incoming connections are accepted.

internal For use in internal networks. Most computers on

the same network are trusted, and only selected

incoming connections are accepted.

public For use in public areas. Other computers in the

same network are not trusted, and limited

connections are accepted. This is the default zone

for all newly created network interfaces.

trusted All network connections are accepted.

work For use in work areas. Most computers on the

same network are trusted, and only selected

incoming connections are accepted.

Understanding Firewalld Services

The second key element while working with Firewalld is the

service. Note that a service in Firewalld is not the same as a

service in Systemd; a Firewalld service specifies what exactly

should be accepted as incoming and outgoing traffic in the

firewall. It typically includes ports to be opened, as well as

supporting kernel modules that should be loaded. Behind all

services are XML files that define the service; these files can be

found in the /usr/lib/firewalld/services directory.

In Firewalld, many default services are defined, which allows

administrators to easily allow or deny access to specific ports on

a server. Behind each service is a configuration file that explains

which UDP or TCP ports are involved and, if so required, which

kernel modules must be loaded. To get a list of all services

available on your computer, you can use the command firewall-

cmd --get-services (see Example 23-1).

Example 23-1 Use firewall-cmd --get-services for a List of All

Available Services

Click here to view code image

[root@server1 ~]# firewall-cmd --get-services
RH-Satellite-6 RH-Satellite-6-capsule amanda-client amanda-k5-client
amqp amqps apcupsd audit bacula bacula-client bb bgp bitcoin bitcoin-
rpc bitcoin-testnet bitcoin-testnet-rpc bittorrent-lsd ceph ceph-
mon cfengine cockpit collectd condor-collector ctdb dhcp dhcpv6
dhcpv6-client distcc dns dns-over-tls docker-registry docker-swarm
dropbox-lansync elasticsearch etcd-client etcd-server finger foreman
foreman-proxy freeipa-4 freeipa-ldap freeipa-ldaps freeipa-replication
freeipa-trust ftp galera ganglia-client ganglia-master git grafana gre
high-availability http https imap imaps ipp ipp-client ipsec irc ircs
iscsi-target isns jenkins kadmin kdeconnect kerberos kibana klogin
kpasswd kprop kshell kube-api kube-apiserver kube-control-plane kube-
controller-manager kube-scheduler kubelet-worker ldap ldaps libvirt
libvirt-tls lightning-network llmnr managesieve matrix mdns memcache
minidlna mongodb mosh mountd mqtt mqtt-tls ms-wbt mssql murmur mysql
nbd netbios-ns nfs nfs3 nmea-0183 nrpe ntp nut openvpn ovirt-imageio
ovirt-storageconsole ovirt-vmconsole plex pmcd pmproxy pmwebapi
pmwebapis pop3 pop3s postgresql privoxy prometheus proxy-dhcp ptp
pulseaudio puppetmaster quassel radius rdp redis redis-sentinel rpc-
bind rquotad rsh rsyncd rtsp salt-master samba samba-client samba-dc
sane sip sips slp smtp smtp-submission smtps snmp snmptrap spideroak-
lansync spotify-sync squid ssdp ssh steam-streaming svdrp svn
syncthing syncthing-gui synergy syslog syslog-tls telnet tentacle tftp

tile38 tinc tor-socks transmission-client upnp-client vdsm vnc-server
wbem-http wbem-https wireguard wsman wsmans xdmcp xmpp-bosh xmpp-
client xmpp-local xmpp-server zabbix-agent zabbix-server

In essence, what it comes down to when working with Firewalld

is that the right services need to be added to the right zones. In

special cases, the configuration may be enhanced with more

specific settings. In the next section, you learn which tools you

can use for that purpose.

To add your own services, custom service XML files can be added

to the /etc/firewalld/services directory and will automatically be

picked up after restarting the Firewalld service.

Example 23-2 shows what the contents of a service file look like.

Example 23-2 Contents of the ftp.xml Service File

Click here to view code image

[root@server1 services]# cat ftp.xml
<?xml version="1.0" encoding="utf-8"?>
<service>
 <short>FTP</short>
 <description>FTP is a protocol used for remote file transfer. If

Hivanetwork.com

https://hivanetwork.com/

 you plan to make your FTP
server publicly available, enable this option. You need the vsftpd
 package installed for this
option to be useful.</description>
 <port protocol="tcp" port="21"/>
 <module name="nf_conntrack_ftp"/>
</service>

Working with Firewalld

In this section, you learn how to configure a firewall with the

Firewalld command-line interface tool, firewall-cmd. The

Firewalld service also offers a GUI version of this tool, firewall-

config, but the RHCSA exam objectives list only firewall-cmd, so

this section focuses on working from the command line.

When working with either of these tools, be aware of where

exactly modifications are made. Both tools work with an in-

memory state of the configuration in addition to an on-disk state

(permanent state) of the configuration. While using either of

these tools, make sure to commit changes to disk before

proceeding.

The firewall-cmd tool is an easily accessible tool that enables

administrators to change the runtime configuration of the

firewall and to write this configuration to disk. Before learning

all the options available with this versatile command, in Exercise

23-1 you work with some of the most important options firewall-

cmd offers.

Exercise 23-1 Managing the Firewall with firewall-cmd

1. Open a root shell. Type firewall-cmd --get-default-zone. This

shows the current default zone, which is set to public.

2. To see which zones are available, type firewall-cmd --get-

zones.

3. Show the services that are available on your server by typing

firewall-cmd --get-services. Notice that the firewall-cmd --

get options show what is available on your server, so basically

you can use firewall-cmd --get-<item> to request information

about a specific item.

4. To see which services are available in the current zone, type

firewall-cmd --list-services. You’ll see a short list containing

a Dynamic Host Configuration Protocol (DHCP) client as well

as Secure Shell (SSH) and the Cockpit web-based management

interface. In the public zone only a limited number of services

are enabled by default.

5. Type firewall-cmd --list-all. Look at the output and compare

the output to the result of firewall-cmd --list-all --

zone=public. Both commands show a complete overview of

the current firewall configuration, as shown in Example 23-3.

Notice that you see much more than just the zone and the

services that are configured in that zone; you also see

information about the interfaces and more advanced items.

Example 23-3 Showing Current Firewall Configuration

Click here to view code image

[root@server1 ~]# firewall-cmd --list-all
public (active)
 target: default
 icmp-block-inversion: no
 interfaces: ens160
 sources:
 services: cockpit dhcpv6-client ssh
 ports:
 protocols:
 masquerade: no
 forward-ports:
 source-ports:
 icmp-blocks:
 rich rules:

6. Type firewall-cmd --add-service=vnc-server to open VNC

server access in the firewall. Verify using firewall-cmd --list-

all.

7. Type systemctl restart firewalld and repeat firewall-cmd --

list-all. Notice that the vnc-server service is no longer listed;

the reason is that the previous command has added the

service to the runtime configuration but not to the persistent

configuration.

8. Add the vnc-server service again, but make it permanent this

time, using firewall-cmd --add-service vnc-server --

permanent.

9. Type firewall-cmd --list-all again to verify. You’ll see that VNC

server service is not listed. Services that have been added to

the on-disk configuration are not added automatically to the

runtime configuration. Type firewall-cmd --reload to reload

the on-disk configuration into the runtime configuration.

10. Type firewall-cmd --add-port=2020/tcp --permanent,

followed by firewall-cmd --reload. Verify using firewall-cmd

--list-all. You’ll see that a port has now been added to the

Firewalld configuration.

Tip

On the exam, work with services as much as

possible. Only use specific ports if no services

contain the ports that you want to open.

In the preceding exercise, you worked with zones and services

and you learned how to add services and ports to the default

zone. You should work with services as much as possible; adding

individual ports is not recommended practice. You have also

learned how working with runtime as well as permanent

configuration can be inefficient. An alternative approach exists:

just write all your configuration to runtime, and next use

firewall-cmd --runtime-to-permanent to make the runtime

configuration permanent.

The firewall-cmd interface offers many more options. Table 23-3

describes some of the most important command-line options.

Table 23-3 Common firewall-cmd Options

firewall-cmd Option Explanation

--get-zones Lists all available zones

--get-default-zone Shows the zone currently set as

the default zone

--set-default-zone=

<ZONE>

Changes the default zone

--get-services Shows all available services

--list-services Shows services currently in use

--add-service=<service-

name> [--zone=<ZONE>]

Adds a service to the current

default zone or the zone that is

specified

--remove-service=

<service-name>

Removes a service from the

configuration

--list-all-zones Shows configuration for all

zones

--add-port=

<port/protocol> [--zone=

<ZONE>]

Adds a port and protocol

--remove-port= Removes a port from the

<port/protocol> [--zone=

<ZONE>]

configuration

--add-interface=

<INTERFACE> [--zone=

<ZONE>]

Adds an interface to the default

zone or a specific zone that is

specified

--remove-interface=

<INTERFACE> [--zone=

<ZONE>]

Removes an interface from a

specific zone

--add-source=

<ipaddress/netmask> [--

zone=<ZONE>]

Adds a specific IP address

--remove-source=

<ipaddress/netmask> [--

zone=<ZONE>]

Removes an IP address from the

configuration

--permanent Writes configuration to disk

and not to runtime

--runtime-to-permanent Adds the current runtime

configuration to the permanent

configuration

--reload Reloads the on-disk

configuration

Summary

In this chapter, you learned how to set up a basic firewall

environment, where Firewalld services are added to Firewalld

zones to allow access to specific services on your computer. You

also learned how to set up a base firewall by using the firewall-

cmd command-line tool.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 23-4 lists a

reference for these key topics and the page number on which

Hivanetwork.com

https://hivanetwork.com/

each is found.

Table 23-4 Key Topics for Chapter 23

Key Topic

Element
Description Page

Paragraph Introduces firewalling in the Linux

kernel

498

Paragraph Introduces netfilter as opposed to

other firewalling tools

498

Paragraph Introduces how Firewalld zones are

used

499

Table 23-2 Firewalld Default Zones 499

Section Understanding Firewalld Services 500

Table 23-3 Common firewall-cmd Options 503

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

firewall

netfilter

iptables

nftables

firewalld

zone

service

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 Which service should be running before you try to create a

firewall configuration with firewall-config?

 Which command adds UDP port 2345 to the firewall

configuration in the default zone?

 Which command enables you to list all firewall configurations in

all zones?

 Which command enables you to remove the vnc-server service

from the current firewall configuration?

 Which firewall-cmd command enables you to activate a new

configuration that has been added with the --permanent option?

 Which firewall-cmd option enables you to verify that a new

configuration has been added to the current zone and is now

active?

 Which command enables you to add the interface eno1 to the

public zone?

 If you add a new interface to the firewall configuration while no

zone is specified, which zone will it be added to?

 Which command enables you to add the source IP address

192.168.0.0/24 to the default zone?

 Which command enables you to list all services that are

currently available in Firewalld?

End-of-Chapter Lab

You have now learned how to work with Firewalld on a Red Hat

Enterprise Linux 9 server. Make sure to master these skills by

working through this end-of-chapter lab.

Lab 23.1

1. Create a firewall configuration that allows access to the

following services that may be running on your server:

1. web

2. ftp

3. ssh

2. Make sure the configuration is persistent and will be activated

after a restart of your server.

Chapter 24

Accessing Network Storage

The following topics are covered in this chapter:

Using NFS Services

Mounting Remote File Systems Through fstab

Using Automount to Mount Remote File Systems

The following RHCSA exam objectives are covered in this

chapter:

Mount and unmount network file systems using NFS

Configure autofs

The RHCSA exam requires that you know how to access network

storage. This encompasses different topics. In this chapter we

discuss accessing network storage that has been provided

through NFS. You learn how to mount network storage through

the fstab file, as well as how to automatically mount this storage

on demand using automount.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

24-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 24-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Using NFS Services 1–5

Mounting Remote File Systems Through fstab 6

Using Automount to Mount Remote File Systems 7–10

 Which command should you use to list shares offered by an NFS

server?

1. lsmount

2. showmount -e

3. lsexport

4. showexport

 Which of the following is not a feature in NFSv4?

1. Integration with Active Directory

2. Kerberized security

3. Services offered on TCP port 2049

4. The root mount

 What is the name of the package that needs to be installed to

mount NFS shares on an NFS client?

1. nfs-client

2. nfs-tools

3. nfs-utils

4. nfs

 You type the command showmount -e to display available

mounts on an NFS server, but you do not get any result. Which of

the following is the most likely explanation?

1. The NFS client software is not running.

2. You are using a UID that does not exist on the server.

3. SELinux is not configured properly.

4. The firewall does not allow showmount traffic.

 What is the name of the systemd service that provides NFS

shares?

1. nfs.service

2. nfs-kernel-server.service

3. nfs-server.service

4. netmount.service

 Which mount option needs to be used in /etc/fstab to mount NFS

shares successfully?

1. _netdev

2. _netfs

3. none

4. nfs

 Which of the following is not a required step in configuring

automount?

1. Identify the name of the automount directory in

/etc/auto.master.

2. Create an indirect file in /etc/auto.something.

3. Start and enable the autofs service.

4. On the local mount point, set the appropriate permissions.

Hivanetwork.com

https://hivanetwork.com/

 Assuming that the name of the directory you want automount to

monitor is /myfiles, what is the recommended name for the

corresponding configuration file?

1. /etc/automount/auto.myfiles

2. /etc/auto.myfiles

3. /etc/myfiles.auto

4. There is no recommended name.

 Which of the following lines correctly identifies the syntax of a

wildcard automount configuration that uses the NFS protocol?

1. &. -rw server:/homes/*

2. &. rw. server:/homes/*

3. * -rw server:/homes/&

4. * rw. server:/homes/&

 What is the name of the service that automount uses?

1. autofs

2. automount

3. autofiles

4. auto

Foundation Topics

Using NFS Services

In previous chapters, you learned how to work with local file

systems and mount them into the file system structure. In this

chapter, you learn how to work with network file systems. The

classic network file system is the Network File System (NFS). It

is a protocol that was developed for UNIX by Sun in the early

1980s, and it has been available on Linux forever. Its purpose is

to make it possible to mount remote file systems into the local file

system hierarchy.

Understanding NFS Security

When NFS was developed in the 1980s, it was often used together

with Network Information Service (NIS), a solution that provides

a network-based authentication server. With the use of NIS, all

servers connected to NIS used the same user accounts, and

security was dealt with by the NIS server. The only thing that

needed to be configured on the NFS server was host access. So,

NFS security by default was limited to allowing and restricting

specific hosts to access it.

Since the 1990s, NIS is not often used any more. NFS, however,

continues to be a very popular service, primarily because it is

fast and easy to configure. Without NIS, the feature that provided

user-based security has been removed, and that may make NFS

seem to be an unsecure solution. Let’s look at an example:

Imagine that on server1, user linda has UID 1001. On server2,

which is the NFS server, UID 1001 is used by user bob. After

successfully connecting from server1 to server2, server1 user

linda would have the same access to server2 resources as user

bob. This obviously is an undesired situation.

To prevent situations like this from happening, you should use

NFS together with a centralized authentication service.

Commonly, a combination of the Lightweight Directory Access

Protocol (LDAP) and Kerberos is used to provide this

functionality. Configuration and integration of NFS with LDAP

and Kerberos are not included in the RHCSA exam objectives,

and for that reason will not be covered here.

RHEL NFS Versions

On Red Hat Enterprise Linux, NFS 4 is the default version of NFS.

If when making an NFS mount the NFS server offers a previous

version of NFS, the client falls automatically back to that version.

From a client, you can also force a specific NFS version to be used

for the mount, by using the mount option nfsvers This technique

can prove useful if you are connecting to a server or a device that

offers NFS 3 only. Fortunately, this type of server or device is

increasingly uncommon nowadays.

Setting Up NFS

Setting up an NFS server is not a part of the RHCSA exam.

However, to practice your NFS-based skills, it’s useful to set up

your own NFS test server. To do so, you need to go through a few

tasks:

1. Create a local directory you want to share.

2. Edit the /etc/exports file to define the NFS share.

3. Start the NFS server.

4. Configure your firewall to allow incoming NFS traffic.

Exercise 24-1 guides you through these steps.

Exercise 24-1 Offering an NFS Share

You need a second server to do this exercise. A RHEL server that

was installed using the minimal server installation pattern is

sufficient. This exercise assumes that a server with the name

server2.example.com is available to offer these services.

1. Type mkdir -p /nfsdata /users/user1 /users/user2 to create

some local directories that are going to be shared.

2. Copy some random files to this directory, using cp /etc/[a-c]*

/nfsdata.

3. Use vim to create the /etc/exports file and give it the

following contents:
/nfsdata *(rw,no_root_squash)
/users *(rw,no_root_squash)

4. Type dnf install -y nfs-utils to install the required packages.

5. Type systemctl enable --now nfs-server to start and enable

the NFS server.

6. Type firewall-cmd --add-service nfs --permanent to add the

nfs service. Also type firewall-cmd --add-service rpc-bind --

permanent and firewall-cmd --add-service mountd --

permanent to add the bind and mountd services.

7. To make the newly added services effective at this point, type

firewall-cmd --reload.

Mounting the NFS Share

To mount an NFS share, you first need to find the names of the

shares. This information can be provided by the administrator,

but it is also possible to find out yourself. To discover which

shares are available, you have multiple options:

If NFSv4 is used on the server, you can use a root mount. That

means that you just mount the root directory of the NFS

server, and under the mount point you’ll only see the shares

that you have access to.

Use the showmount -e nfsserver command to find out which

shares are available.

You’ll practice mounting NFS shares in Exercise 24-2.

Warning

The showmount command may have issues with

NFSv4 servers that are behind a firewall. The reason

is that showmount relies on the portmapper service,

which uses random UDP ports while making a

connection, and the firewalld nfs service opens port

2049 only, which does not allow portmapper traffic.

If the firewall is set up correctly, the mountd and

rpc-bind services need to be added to the firewall as

well. It is very well possible that shares have been

set up correctly on the server, but you cannot see

them because showmount does not get through the

firewall. If you suspect that this is the case, use the

NFS root mount, or just try mounting the NFS share

as explained in Exercise 24-2.

Exercise 24-2 Mounting an NFS Share

1. On server1, type dnf install -y nfs-utils to install the RPM

package that contains the showmount utility.

2. Type showmount -e server2.example.com to see all exports

available from server2.

3. On server1, type mount server2.example.com:/ /mnt. (Note

the space between the slashes in the command.) This

performs an NFSv4 pseudo root mount of all NFS shares.

4. Type mount | grep server2 to verify the mount has

succeeded.

5. Still on server1, type ls /mnt. This shows the subdirectories

data and home, which correspond to the mounts offered by

the NFS server.

Mounting Remote File Systems Through fstab

You now know how to manually mount NFS file systems from the

command line. If a file system needs to be available persistently,

you need to use a different solution. Mounts can be automated

either by using the /etc/fstab file or by using the autofs service. In

this section, you learn how to make the mount through /etc/fstab.

This is a convenient solution if you need the remote file system to

be available permanently.

Mounting NFS Shares Through fstab

As you learned in earlier chapters, the /etc/fstab file is used to

mount file systems that need to be mounted automatically when

a server restarts. Only the user root can add mounts to this

configuration file, thus providing shares that will be available for

all users. The /etc/fstab file can be used to mount the NFS file

system as well as other network-based file systems such as

Samba. To mount an NFS file system through /etc/fstab, make

sure that the following line is included:

Click here to view code image

server1:/share /nfs/mount/point nfs sync 0 0

When making an NFS mount through fstab, you have a few

options to consider:

In the first column, you need to specify the server and share

name. Use a colon after the name of the server to identify the

mount as an NFS share.

The second column has the directory where you want to

mount the NFS share; this is not different from a regular

mount.

The third column contains the NFS file system type.

The fourth column is used to specify mount options and

Hivanetwork.com

https://hivanetwork.com/

includes the sync option. This ensures that modified files are

committed to the remote file system immediately and are not

placed in write buffers first (which would increase the risk of

data getting lost). On older versions of RHEL, this column

should include the _netdev option to ensure that this mount is

only done after the network services are running. Because of

better dependency handling, using this option is no longer

required.

The fifth column contains a zero, which means that no backup

support through the dump utility is requested.

The sixth column also contains a zero, to indicate that no fsck

has to be performed on this file system while booting to check

the integrity of the file system. The integrity of the file system

would need to be checked on the server, not on the client.

Using Automount to Mount Remote File Systems

As an alternative to using /etc/fstab, you can configure

automount to mount the share automatically. Automount can be

used for SMB as well as NFS mounts, and the big difference is

that mounts through automount are affected on demand and not

by default. So, using automount ensures that no file systems are

mounted that are not really needed.

On RHEL 9 there are two solutions for offering automount

services. First, there is the old autofs service, which has been

around for a long time. Second, systemd provides automount

unit files, which are used together with mount unit files to

ensure that a mount is done only when the corresponding

directory is mounted. For purposes of the RHEL 9 RHCSA exam,

you do not have to know about systemd automount, because only

autofs is covered. The main reason is that autofs offers wildcard

mounts, a feature that is not supported by systemd automount.

Understanding Automount

Automount is implemented by the autofs service that takes care

of mounting a share when an attempt is made to access it. That

means it is mounted on demand and that it does not have to be

mounted permanently. An important benefit of using automount

is that it works completely in user space and, contrary to mounts

that are made through the mount command, no root permissions

are required.

Defining Mounts in Automount

In automount, mounts are defined through a two-step procedure.

First, you need to edit the master configuration file

/etc/auto.master. In this directory you identify the mount point

(for instance, /nfsdata). Next, and on the same line, you identify

the name of the secondary file, as all further configuration

happens in this secondary file. The line you create could look as

follows:

/nfsdata /etc/auto.nfsdata

In the secondary file you put the name of the subdirectory that

will be created in the mount point directory as a relative

filename. For instance, you start the line with files, to mount

/nfsdata/files. After the name of the subdirectory, you specify NFS

mount options, as well as the server and share name to access

the NFS share. This line could look as follows:

Click here to view code image

files -rw server2:/nfsdata

Configuring Automount for NFS

Configuring an automount solution is a multistep procedure. To

show how it works, Exercise 24-3 lists all steps involved. Follow

the steps in this exercise to see for yourself how to configure

automount.

Exercise 24-3 Configuring Direct and Indirect Maps to Mount

NFS Shares

This exercise is performed on server1. It uses the NFS shares

provided by server2 that you created in Exercise 24-1.

1. Type dnf install -y autofs to install the autofs package.

2. Type showmount -e server2.example.com, which shows you

NFS exports offered by server2.

3. Type vim /etc/auto.master and add the following line:

/nfsdata /etc/auto.nfsdata

4. Type vim /etc/auto.nfsdata and add the following line:

files -rw server2:/nfsdata

5. Type systemctl enable --now autofs to start and enable the

autofs service.

6. Type ls /; notice that there is no /nfsdata directory.

7. Type cd /nfsdata/files to get access to the /nfsdata directory.

8. Type mount and notice the last three lines in the mount

output, created by the autofs service.

Using Wildcards in Automount

In Exercise 24-3, you learned how to perform automounts based

on fixed directory names. In some cases, this is not very useful,

and you are better off using wildcards. This is, for example, the

case for automounting home directories. By using a wildcard,

automount tries to mount a share that matches the name of the

directory that is accessed.

With home directories, a very helpful solution is to have the

home directory of a specific user automounted when that user

logs in. This allows administrators to store home directories on a

central NFS server, instead of on individual workstations. So, for

example, if user linda logs in, she gets access to the NFS exported

directory /home/linda, and when user anna logs in, she gets

access to /home/anna. Using wildcards in automount offers an

excellent tool to do this.

To create a wildcard mount, you will use lines like * -rw

server2:/users/&. In this line, the * represents the local mount

point, which in this case represents anything, and the &

represents the matching item on the remote server.

Obviously, you could also choose to export the /home directory

and mount just the /home directory, but that increases the risk

that user anna gets access to user linda’s home directory. For that

reason, using a wildcard mount is a much cleaner solution, as

demonstrated in Exercise 24-4.

Exercise 24-4 Configuring Wildcard Mounts

This exercise is performed on server1. It uses the NFS shares that

are provided by server2, which you created in Exercise 24-1. On

server2, the directory /users is exported, which simulates an NFS

server that exports home directories. You are going to configure

a wildcard mount, such that when /users/user1 is accessed, that

exact directory is mounted, and when /users/user2 is accessed,

that directory is mounted.

1. Open the file /etc/auto.master and make sure it includes the

following line:

/users /etc/auto.users

2. Create the file /etc/auto.users and give it the following

contents:

* -rw server2:/users/&

3. Type systemctl restart autofs to restart the autofs service.

4. Type cd /users/user1 to get access to the NFS export

/users/user1 on the server2 server.

Summary

In this chapter you learned how to mount remote file systems

and how to configure automount. You first learned how to

manually mount an NFS file system from the command line.

Then you learned how these mounts can be automated through

/etc/fstab or automount.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topic in the chapter, noted with the

Key Topic icon in the margin of the page. Table 24-2 lists a

reference for this key topic and the page number on which it is

found.

Table 24-2 Key Topic for Chapter 24

Key Topic

Element
Description Page

List Options to consider when making an

NFS mount through fstab

515

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

Network File System (NFS)

automount

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 On your NFS server, you have verified that the nfs service is

active, and the firewall allows access to TCP port 2049. A client

uses showmount against your server but doesn’t see any

Hivanetwork.com

https://hivanetwork.com/

exports. What is the most likely explanation?

 Which command enables you to show available NFS mounts on

server1?

 Which command enables you to mount an NFS share that is

available on server1:/share?

 How would you mount all NFS shares that are provided by

nfsserver on the directory /shares?

 Which additional mount option is required in /etc/fstab to ensure

that NFS shares are only mounted after the network services

have been started?

 Which option should you include in /etc/fstab to ensure that

changes to the mounted file system are written to the NFS server

immediately?

 Which autofs feature is not supported by systemd automount?

 What is the name of the main automount configuration file?

 What is the name of the service that implements automount?

 Which ports do you need to open in the firewall of the

automount client?

End-of-Chapter Lab

In this chapter, you learned how to mount remote file systems

and automate those mounts using /etc/fstab or automount. In this

end-of-chapter lab, you practice these skills in a way that is

similar to how you need to perform them on the exam.

Lab 24.1

1. Set up an NFS server that shares the /home directory on

server2.

2. Configure server1 to access the NFS-shared home directory

using automount. You need to do this using wildcard

automount.

Chapter 25

Configuring Time Services

The following topics are covered in this chapter:

Understanding Local Time

Using Network Time Protocol

Managing Time on Red Hat Enterprise Linux

The following RHCSA exam objective is covered in this chapter:

Configure time service clients

An increasing number of services offered through Linux servers

depend on the correct configuration of time on the server. Think

of services such as database synchronization, Kerberos

authentication, and more. In this chapter, you learn how time is

configured on a Linux server.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

25-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 25-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding Local Time 1–2

Using Network Time Protocol 4–5

Managing Time on Red Hat Enterprise Linux 3, 6–10

 When a system is started, where does it initially get the system

time?

1. NTP

2. Software time

3. The hardware clock

4. Network time

 Which of the following statements is not true about local time?

1. Local time is the current time in the current time zone.

2. In local time, DST is considered.

3. System time typically should correspond to the current local

time.

4. Hardware time typically corresponds to the current local time.

 Which is the recommended command in RHEL 9 to set the local

time zone?

1. hwclock

2. tz

3. date

4. timedatectl

 Which clock type would you recommend on a server that is not

connected to any other server but needs to be configured with

the most accurate time possible?

1. RTC

2. UTC

3. An atomic clock

4. NTP

 Which configuration file contains the default list of NTP servers

that should be contacted on RHEL 9?

1. /etc/ntp/ntp.conf

2. /etc/ntp.conf

3. /etc/chrony/chronyd.conf

4. /etc/chrony.conf

 Which of the following shows correct syntax to set the current

system time to 9:30 p.m.?

1. date 9:30

2. date --set 9.30 PM

3. date -s 21:30

4. date 2130

 Which command correctly translates epoch time into human

time?

1. date --date '@1420987251'

2. time --date '$1420987251'

3. time --date '#1420987251'

4. time --date '1420987251'

 Which command do you use to set the system time to the current

hardware time?

1. hwclock --hctosys

2. hwclock --systohc

3. date --set-hc

4. ntpdate

 Which command enables you to show current information that

includes the local time, hardware time, and the time zone the

system is in?

1. timedatectl --all

2. timedatectl --tz

3. timedatectl -ht

4. timedatectl

 Which command can you use to verify that a time client that is

running the chrony service has successfully synchronized?

1. timedatectl

2. chronyc sources

3. systemctl chrony status

4. chronyc status

Foundation Topics

Understanding Local Time

When a Linux server boots, the hardware clock, also referred to

as the real-time clock (RTC), is read. This clock typically resides

in the computer hardware, and the time it defines is known as

hardware time. Generally, the hardware clock is an integrated

circuit on the system board that is completely independent of the

current state of the operating system and keeps running even

when the computer is shut down, as long as the mainboard

battery or power supply feeds it. From the hardware clock, the

system gets its initial time setting.

The time on the hardware clock on Linux servers is usually set to

Coordinated Universal Time (UTC). UTC is a time that is the

same everywhere on the planet, and based on UTC, the current

local time is calculated. (Later in this chapter you learn how this

works.)

System time is maintained by the operating system. Once the

system has booted, the system clock is completely independent of

the hardware clock. Therefore, when system time is changed, the

Hivanetwork.com

https://hivanetwork.com/

new system time is not automatically synchronized with the

hardware clock.

System time maintained by the operating system is kept in UTC.

Applications running on the server convert system time into

local time. Local time is the actual time in the current time zone.

In local time, daylight saving time (DST) is considered so that it

always shows an accurate time for that system. Table 25-2 gives

an overview of the different concepts that play a role in Linux

time.

Table 25-2 Understanding Linux Time

Concept Explanation

Hardware clock The hardware clock that resides on the

main card of a computer system

Real-time clock Same as the hardware clock

System time The time that is maintained by the

operating system

Software clock Similar to system time

Coordinated

Universal Time

(UTC)

A worldwide standard time

Daylight saving

time

Calculation that is made to change time

automatically when DST changes occur

Local time The time that corresponds to the time in

the current time zone

Using Network Time Protocol

As you learned, the current system time is based on a hardware

clock. This hardware clock is typically a part of the computer’s

motherboard, and it might be unreliable. Because of its potential

unreliability, it is a good idea to use time from a more reliable

source. Generally speaking, two solutions are available.

One option is to buy a more reliable hardware clock. This may

be, for instance, a very accurate atomic clock connected directly

to your computer. When such a very reliable clock is used, an

increased accuracy of the system time is guaranteed. Using an

external hardware clock is a common solution to guarantee that

datacenter time is maintained, even if the connection to external

networks for time synchronization temporarily is not available.

Another and more common solution is to configure your server

to use Network Time Protocol (NTP). NTP is a method of

maintaining system time that is provided through NTP servers on

the Internet. It is an easy solution to provide an accurate time to

servers, because most servers are connected to the Internet

anyway.

To determine which Internet NTP server should be used, the

concept of stratum is used. The stratum defines the reliability of

an NTP time source, and the lower the stratum, the more reliable

it is. Typically, Internet time servers use stratum 1 or 2. When

configuring local time servers, you can use a higher stratum

number to configure the local time server as a backup, except

that it will never be used when Internet time is available.

It is good practice, for example, to set stratum 5 on a local time

server with a very reliable hardware clock and stratum 8 on a

local time server that is not very reliable. A setting of stratum 10

can be used for the local clock on every node that uses NTP time.

This enables the server to still have synchronized time when no

external connection is available. Stratum 15 is used by clocks that

want to indicate they should not be used for time

synchronization.

Setting up a server to use NTP time on RHEL 9 is easy if the

server is already connected to the Internet. If this is the case, the

/etc/chrony.conf file is configured with a standard list of NTP

servers on the Internet that should be contacted. The only thing

the administrator has to do is switch on NTP, by using

timedatectl set-ntp 1.

Managing Time on Red Hat Enterprise Linux

Different commands are involved in managing time on Red Hat

Enterprise Linux. Table 25-3 provides an overview.

Table 25-3 Commands Related to RHEL 9 Time Management

Command Short Description

date Manages local time

hwclock Manages hardware time

timedatectl Developed to manage all aspects of time on

RHEL 9

On a Linux system, time is calculated as an offset of epoch time.

Epoch time is the number of seconds since January 1, 1970, in

UTC. In some logs (such as /var/log/audit/audit.log), you’ll find

timestamps in epoch time and not in human time. To convert

such an epoch timestamp to human time, you can use the --date

option, followed by the epoch string, starting with an @:

date --date '@1420987251'

The use of epoch time also creates a potential timing problem on

Linux. On a 32-bit system, the number of seconds that can be

counted in the field that is reserved for time notation will be

exceeded in 2037. (Try setting the time to somewhere in 2050 if

you are on a 32-bit kernel; it will not work.) However, 64-bit

systems can address time until far into the twenty-second

century.

Using date

The date command enables you to manage the system time. You

can also use it to show the current time in different formats.

Some common usage examples of date are listed here:

date: Shows the current system time

date +%d-%m-%y: Shows the current system day of month,

month, and year

date -s 16:03: Sets the current time to 3 minutes past 4 p.m.

Using hwclock

The date command enables you to set and show the current

system time. Using the date command will not change the

hardware time that is used on your system. To manage hardware

time, you can use the hwclock command. The hwclock

command has many options, some of which are of particular

interest:

hwclock --systohc: Synchronizes current system time to the

hardware clock

hwclock --hctosys: Synchronizes current hardware time to the

system clock

Using timedatectl

A command that was introduced in RHEL 7 that enables you to

manage many aspects of time is timedatectl. As shown in

Example 25-1, when used without any arguments, this command

shows detailed information about the current time and date. It

also displays the time zone your system is in, in addition to

information about the use of NTP network time and information

about the use of DST.

Example 25-1 Using timedatectl to Get Detailed Information

About Current Time Settings

Click here to view code image

[root@server1 ~]# timedatectl
 Local time: Mon 2019-06-10 08:27:57 EDT
 Universal time: Mon 2019-06-10 12:27:57 UTC
 RTC time: Mon 2019-06-10 12:27:57
 Time zone: America/New_York (EDT, -0400)
 System clock synchronized: yes
 NTP service: active
 RTC in local TZ: no

The timedatectl command works with commands to perform

time operations. Table 25-4 provides an overview of the relevant

commands.

Table 25-4 timedatectl Command Overview

Command Explanation

status Shows the current time settings

set-time

TIME

Sets the current time

set-timezone

ZONE

Sets the current time zone

list-timezone Shows a list of all time zones

set-local-rtc

[0|1]

Controls whether the RTC (hardware clock)

is in local time

set-ntp [0|1] Controls whether NTP is enabled

The timedatectl command was developed as a generic solution

Hivanetwork.com

https://hivanetwork.com/

to manage time on RHEL. It has some functions that are offered

through other commands, but the purpose of the command is

that eventually it will replace other commands used for

managing time and date settings. When timedatectl is used to

switch on NTP time, it talks to the chronyd process. Exercise 25-1

walks you through some common options to manage time on a

RHEL 9 server.

Exercise 25-1 Managing Local Time

1. Open a root shell and type date.

2. Type hwclock and see whether it shows approximately the

same time as date in step 1.

3. Type timedatectl status to show current time settings.

4. Type timedatectl list-timezones to show a list of all time

zone definitions.

5. Type timedatectl set-timezone Europe/Amsterdam to set

the current time zone to Amsterdam.

6. Type timedatectl show and note the differences with the

previous output.

7. Type timedatectl set-ntp 1 to switch on NTP use. You might

see the error “failed to issue method call.” If you get this

message, type dnf -y install chrony and try again.

8. Open the configuration file /etc/chrony.conf and look up the

server lines. These are used to specify the servers that should

be used for NTP time synchronization.

9. Type systemctl status chronyd and verify that the chrony

service is started and enabled. If this is not the case, use

systemctl start chronyd; systemctl enable chronyd to make

sure that it is operational.

10. Type systemctl status -l chronyd and read the status

information. Example 25-2 shows you what the output of the

command should look like.

Example 25-2 Monitoring Current Time Synchronization Status

Click here to view code image

[root@server1 ~]# systemctl status -l chronyd
 chronyd.service - NTP client/server
 Loaded: loaded (/usr/lib/systemd/system/chronyd.service;
 enabled; vendor preset: enabled)
 Active: active (running) since Mon 2019-06-10 05:22:30 EDT;
 3h 8min ago
 Docs: man:chronyd(8)
 man:chrony.conf(5)
 Main PID: 1062 (chronyd)
 Tasks: 1 (limit: 11365)
 Memory: 1.5M
 CGroup: /system.slice/chronyd.service
 └─1062 /usr/sbin/chronyd
Jun 10 07:21:04 server1.example.com chronyd[1062]: Selected source

 5.200.6.34
Jun 10 07:28:40 server1.example.com chronyd[1062]: Selected source
 213.154.236.182
Jun 10 07:28:42 server1.example.com chronyd[1062]: Source
 149.210.142.45 replaced with 195.242.98.57
Jun 10 07:43:51 server1.example.com chronyd[1062]: Selected source
 5.200.6.34
Jun 10 07:53:35 server1.example.com chronyd[1062]: Selected source
 195.242.98.57
Jun 10 08:16:24 server1.example.com chronyd[1062]: Forward time jump
 detected!
Jun 10 08:16:24 server1.example.com chronyd[1062]: Can’t synchronise:
 no selectable sources
Jun 10 08:20:44 server1.example.com chronyd[1062]: Selected source
 213.154.236.182
Jun 10 08:22:57 server1.example.com chronyd[1062]: Source
 195.242.98.57 replaced with 195.191.113.251
Jun 10 08:25:05 server1.example.com chronyd[1062]: Selected source
 5.200.6.34

Managing Time Zone Settings

Between Linux servers, time is normally communicated in UTC.

This allows servers across different time zones to use the same

time settings, which makes managing time in large organizations

a lot easier. To make it easier for end users, though, the local time

must also be set. To do this, you need to select the appropriate

time zone.

On Red Hat Enterprise Linux 9, you have three approaches to

setting the correct local time zone:

Go to the directory /usr/share/zoneinfo, where you’ll find

different subdirectories containing files for each time zone

that has been defined. To set the local time zone on a server,

you can create a symbolic link with the name /etc/localtime to

the time zone file that is involved. If you want to set local time

to Los Angeles time, for instance, use ln -sf

/usr/share/zoneinfo/America/Los_Angeles /etc/localtime.

Use the tzselect utility. This tool starts the interface shown in

Example 25-3, from which the appropriate region and locale

can be selected.

Use timedatectl to set the time zone information; this is the

recommended method.

Example 25-3 Selecting the Time Zone Using tzselect

Click here to view code image

[root@localhost ~]# tzselect
Please identify a location so that time zone rules can be set
 correctly.

Please select a continent, ocean, "coord", or "TZ".
 1) Africa
 2) Americas
 3) Antarctica
 4) Asia
 5) Atlantic Ocean
 6) Australia
 7) Europe
 8) Indian Ocean
 9) Pacific Ocean
10) coord - I want to use geographical coordinates.
11) TZ - I want to specify the time zone using the Posix TZ format.
#? 1
Please select a country whose clocks agree with yours.
 1) Algeria 20) Gambia 39) Sao Tome & Principe
 2) Angola 21) Ghana 40) Senegal
 3) Benin 22) Guinea 41) Sierra Leone
 4) Botswana 23) Guinea-Bissau 42) Somalia
 5) Burkina Faso 24) Kenya 43) South Africa
 6) Burundi 25) Lesotho 44) South Sudan
 7) Côte d'Ivoire 26) Liberia 45) Spain
 8) Cameroon 27) Libya 46) St Helena
 9) Central African Rep. 28) Madagascar 47) Sudan
10) Chad 29) Malawi 48) Swaziland
11) Comoros 30) Mali 49) Tanzania
12) Congo (Dem. Rep.) 31) Mauritania 50) Togo
13) Congo (Rep.) 32) Mayotte 51) Tunisia
14) Djibouti 33) Morocco 52) Uganda

15) Egypt 34) Mozambique 53) Western Sahara
16) Equatorial Guinea 35) Namibia 54) Zambia
17) Eritrea 36) Niger 55) Zimbabwe
18) Ethiopia 37) Nigeria
19) Gabon 38) Rwanda
#? 54
The following information has been given:

 Zambia
 Central Africa Time

Therefore TZ='Africa/Maputo' will be used.
Selected time is now: Mon Jul 22 12:03:41 CAT 2019.
Universal Time is now: Mon Jul 22 10:03:41 UTC 2019.
Is the above information OK?
1) Yes
2) No
#? 1

You can make this change permanent for yourself by appending the line
 TZ='Africa/Maputo'; export TZ to the file '.profile' in your home
 directory; then log out and log in again.

Here is that TZ value again, this time on standard output so that you
 can use the /usr/bin/tzselect command in shell scripts: Africa/Maputo

Configuring Time Service Clients

By default, the chrony service is configured to get the right time

from the Internet. As a default configuration, the highly reliable

time servers from pool.ntp.org are used to synchronize time.

However, in a corporate environment it is not always desirable

for time clients to go out to the Internet, and local time services

should be used instead. This can be configured by making a

simple modification to the chrony.conf configuration file.

By default, the chrony.conf configuration file contains the line

pool 2.rhel.pool.ntp.org. If you comment out this line by putting a

pound sign in front of it and add the line server

yourtimeserver.example.com, your time server will be used

instead of the servers in pool.ntp.org. Exercise 25-2 explains how

to make this modification. Notice that this exercise requires

access to two servers, in which server1 is configured as the time

server and server2 is configured as the time client.

Exercise 25-2 Configuring an NTP Time Client

1. On server1, open a root shell and use vim /etc/chrony.conf to

edit the chrony main configuration file.

2. Disable the line pool 2.rhel.pool.ntp.org by putting a # sign in

front of it.

3. Include the line allow 192.168.0.0/16 to allow access from all

http://pool.ntp.org
http://ntp.org
http://yourtimeserver.example.com
http://pool.ntp.org

clients that use a local IP address starting with 192.168.

4. Also include the line local stratum 8. This ensures that the

local time server is going to advertise itself with a stratum of

8, which means it will be used by clients, but only if no

Internet time servers are available. Next, close the

configuration file.

5. Use systemctl restart chronyd to restart the chrony process

with the new settings.

6. Still on server1, type firewall-cmd --add-service ntp --

permanent, followed by firewall-cmd --reload. This opens

the firewall for time services.

7. Open a root shell on server2.

8. On server2, open the configuration file /etc/chrony.conf and

disable the line pool 2.rhel.pool.ntp.org.

9. Add the line server server1.example.com. Make sure that

name resolution to server1.example.com is configured, and if

not, use the IP address of server1 instead.

10. Type systemctl restart chronyd to restart the chrony service

with the new settings.

11. On server2, type the command chronyc sources. It should

show the name or IP address of server1, the stratum of 8 that

is advertised, and a synchronization status indicating that

server2 has successfully synchronized its time.

Hivanetwork.com

https://hivanetwork.com/

Summary

In this chapter, you learned how time works on Linux. You read

how your operating system can get its time by using hardware

time, system time, and local time. You also learned how to

manage time using the date, hwclock, and timedatectl

commands.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 25-5 lists a

reference for these key topics and the page number on which

each is found.

Table 25-5 Key Topics for Chapter 25

Key Topic

Element
Description Page

Paragraph Definition of hardware time 526

Paragraph Definition of system time 526

Table 25-2 Understanding Linux Time 526

Paragraph Using NTP time 527

Table 25-3 Commands Related to RHEL 9 Time

Management

528

Paragraph Explanation of epoch time 528

Table 25-4 timedatectl Command Overview 529

Complete Tables and Lists from Memory

Print a copy of Appendix C, “Memory Tables” (found on the

companion website), or at least the section for this chapter, and

complete the tables and lists from memory. Appendix D,

“Memory Tables Answer Key,” includes completed tables and

lists to check your work.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

real-time clock (RTC)

hardware time

Coordinated Universal Time (UTC)

system time

time synchronization

Network Time Protocol (NTP)

stratum

epoch time

network time

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 Which command enables you to set the system time to 4:24 p.m.?

 Which command sets hardware time to the current system time?

 Which command enables you to show epoch time as human-

readable time?

 Which command enables you to synchronize the system clock

with hardware time?

 Which service is used to manage NTP time on RHEL 9?

 Which command enables you to use NTP time on your server?

 Which configuration file contains the list of NTP servers to be

used?

 Which command enables you to list time zones?

 Which command enables you to set the current time zone?

 How do you use chrony to set system time?

End-of-Chapter Lab

In this chapter, you learned how to manage time on Linux

servers. Because it is very important to ensure that a server uses

the correct time, you can now practice some of the most essential

skills you have acquired in this chapter.

Lab 25.1

1. Compare the current hardware time to the system time. If

there is a difference, make sure to synchronize time.

2. Set the time zone to correspond to the current time in Boston

(USA East Coast).

Chapter 26

Managing Containers

The following topics are covered in this chapter:

Understanding Containers

Running a Container

Working with Container Images

Managing Containers

Managing Container Storage

Running Containers as Systemd Services

The following RHCSA exam objectives are covered in this

chapter:

Find and retrieve container images from a remote registry

Inspect container images

Perform container management using commands such as

podman and skopeo

Build a container from a Containerfile

Perform basic container management such as running,

starting, stopping, and listing running containers

Run a service inside a container

Configure a container to start automatically as a systemd

service

Attach persistent storage to a container

Containers have revolutionized datacenter IT. Where services

not so long ago were running directly on top of the server

operating system, nowadays services are often offered as

containers. Red Hat Enterprise Linux 9 includes a complete

platform to run containers. In this chapter you learn how to

work with them.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz enables you to assess

whether you should read this entire chapter thoroughly or jump

to the “Exam Preparation Tasks” section. If you are in doubt

about your answers to these questions or your own assessment

of your knowledge of the topics, read the entire chapter. Table

26-1 lists the major headings in this chapter and their

corresponding “Do I Know This Already?” quiz questions. You

can find the answers in Appendix A, “Answers to the ‘Do I Know

This Already?’ Quizzes and Review Questions.”

Table 26-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Understanding Containers 1, 2

Running a Container 3, 4

Working with Container Images 5, 6

Managing Containers 7

Managing Container Storage 8, 9

Running Containers as Systemd Services 10

 The success of containers depends on different Linux features.

Which of the following is not one of them?

1. Cgroups

2. Semaphores

3. Namespaces

4. SELinux

 What is the name of the Red Hat solution to add enterprise

features such as scalability and availability to containers?

1. OpenStack

2. OpenShift

Hivanetwork.com

https://hivanetwork.com/

3. Kubernetes

4. JBoss

 How do you detach from a running container without shutting it

down?

1. exit

2. quit

3. detach

4. Ctrl-P, Ctrl-Q

 Which command will run an application container in the

background?

1. podman run nginx

2. podman run -d nginx

3. podman run --background nginx

4. podman run -it nginx

 Which command do you use to inspect images that have not yet

been pulled to your local system?

1. podman inspect

2. buildah inspect

3. skopeo inspect

4. docker inspect

 Which command do you use for an overview of the registries

currently in use?

1. podman info

2. podman status

3. podman search

4. podman registries

 There are many ways to figure out whether a container needs

any environment variables. Which of the following can you use?

1. Use podman inspect to inspect the image that you want to

run. Within the image, you’ll often find usage information.

2. Use podman run to run the container. If environment

variables are required, it will fail. You can next use podman

logs to inspect messages that have been logged to STDOUT.

3. Read the documentation provided in the container registry.

4. All of the above.

 Which SELinux context type must be set on host directories that

you want to expose as persistent storage in the container using

bind mounts?

1. container_t

2. container_file_t

3. container_storage_t

4. public_content_rw_t

 Which of the following commands shows correct syntax to

automatically set the correct SELinux context type on a host

directory that should be exposed as persistent storage inside a

container?

1. podman run --name mynginx -v /opt/nginx:/var/lib/nginx

nginx

2. podman run --name mynginx --bind

/opt/nginx:/var/lib/nginx nginx

3. podman run --name mynginx -v /opt/nginx:/var/lib/nginx:Z

nginx

4. podman run --name mynginx --bind

/opt/nginx:/var/lib/nginx:Z nginx

10. What is needed to ensure that a container that user anna has

created can be started as a systemd service at system start, not

just when user anna is logging in?

1. Configure the container as a systemd service.

2. Use loginctl enable-linger anna to enable the linger feature

for user anna.

3. Use systemctl enable-linger anna to enable the linger feature

for user anna.

4. Just use systemctl --user enable to enable the container.

Foundation Topics

Understanding Containers

In the past decade, containers have revolutionized the way

services are offered. Where not so long ago physical or virtual

servers were installed to offer application access, this is now

done by using containers. But what exactly is a container? Let’s

start with an easy conceptual description: a container is just a

fancy way to run an application based on a container image that

contains all dependencies required to run that application.

To install a noncontainerized application on a server, the server

administrator must make sure that not only the application is

installed but also all the other software dependencies required

by the application. This includes, for instance, the right

(supported) version of the underlying operating system. This

makes it difficult for application developers, who need to provide

many versions of their applications to support all current

operating systems.

A container is a complete package that runs on top of the

container engine, an integrated part of the host operating

system. A container is comparable to an application on your

smartphone: you get the complete application package from the

smartphone’s app store and install it on your phone.

To use a container, you run the container from the container

image. This container image is found in the container registry,

which can be compared to the app store that hosts smartphone

applications. The result is the container, which is the runnable

instance of the container image.

To run containers, you need a host operating system that

includes a container engine, as well as some tools used to

manage the containers. On versions of RHEL prior to RHEL 8, this

was supported by Docker. Docker delivered the container engine

as well as the tools to manage the containers. In RHEL 8, Red Hat

replaced Docker with a new solution, which is still used on RHEL

9: CRI-o is the container engine, and Red Hat offers three main

tools to manage the containers:

podman: The main tool, used to start, stop, and manage

containers

buildah: A specialized tool that helps you create custom

images

skopeo: A tool that is used for managing and testing container

images

Container Host Requirements

Sometimes it is said that containers are Linux, and that is true.

This is because containers rely heavily on features that are

offered by the Linux kernel, including the following:

Namespaces for isolation between processes

Control groups for resource management

SELinux for security

Let’s explore each of these features. To start with, containers

need namespaces. A namespace provides isolation for system

resources. To best understand what namespaces are like, let’s

look at the chroot jail, a feature that was introduced in the 1990s.

A chroot jail is a security feature that presents the contents of a

directory as if it is the root directory of your system, so the

process that runs in a chroot jail can’t see anything but the

contents of that directory.

Chroot jails are important for security. When a process is

restricted to just the contents of a chroot jail, there is no risk of it

accessing other parts of the operating system. However, to make

sure this works, all the dependencies required to run the process

must be present in the chroot jail.

Chroot jails still exist, but the functionality is now leveraged and

is a part of what is called the mount namespace. Here’s an

overview of it and some of the other namespaces (note that new

namespaces may be added in the future as well):

Mount: The mount namespace is equivalent to the chroot

namespace. The contents of a directory are presented in such a

way that no other directories can be accessed.

Process: A process namespace makes sure that processes

running in this namespace cannot reach or connect to

processes in other namespaces.

Network: Network namespaces can be compared to VLAN.

Nodes connected to a specific network namespace cannot see

what is happening in other network namespaces, and contact

to other namespaces is possible only through routers.

User: The user namespace can be used to separate user IDs

and group IDs between namespaces. As a result, user accounts

are specific to each namespace, and a user who is available in

one namespace may not be available in another namespace.

Interprocess communication (ipc): Interprocess

communication is what processes use to connect to one

another, and these namespaces ensure that connection can be

made only to processes in the same namespace.

In containers, almost all of the namespaces are implemented to

ensure that the container is a perfectly isolated environment.

Only the network namespace is not enabled by default, to ensure

that communication between containers is not restricted by

default.

The second important Linux component that is required for

running containers is the control group, or cgroup. Cgroups are a

kernel feature that enables resource access limitation. By default,

there is no restriction to the amount of memory or the number of

CPU cycles a process can access. Cgroups make it possible to

create that limitation in such a way that each container has

strictly limited access to available resources.

The last important pillar of containers is implemented on RHEL

by using SELinux. As you’ve learned elsewhere in this book,

SELinux secures access by using resource labels. On RHEL, a

specific context label is added to ensure that containers can

access only the resources they need access to and nothing else.

Hivanetwork.com

https://hivanetwork.com/

Containers on RHEL 9

Since its launch in 2014, Docker has been the leading solution for

running containers. Up to RHEL 7, Docker was the default

container stack used on Red Hat Enterprise Linux. As previously

mentioned, with the release of RHEL 8, Red Hat decided to

discontinue Docker support and offer its own stack. This stack is

based on the CRI-o container runtime and uses Podman as the

main tool to run containers. The new solution offers a few

advantages over the Docker solution:

In Podman, containers can be started by ordinary users that

do not need any elevated privileges. This is called the rootless

container.

When users start containers, the containers run in a user

namespace where they are strictly isolated and not accessible

to other users.

Podman containers run on top of the lightweight CRI-o

container runtime, without needing any daemon to do their

work.

An important benefit of using Podman is the rootless container.

On RHEL 8 and 9, rootless containers are started by non-root

users and don’t require root privileges. This makes running

containers much more secure, but it also does come with some

challenges. Rootless containers cannot access any components on

the host operating system that require root access. For example,

rootless containers do not have an IP address (because it requires

root privileges to allocate an IP address) and can bind only to a

nonprivileged TCP or UDP port. Also, if the rootless container

needs access to host-based storage, the user who runs the

container must be owner of the directory that provides the

storage.

Container Orchestration

The solutions for running containers that are discussed in this

chapter are all about running standalone containers on top of a

single host. If that host goes down, you don’t have any running

containers left anymore. When containers are used to run

mission-critical services, additional features are needed. They

include the following:

Easy connection to a wide range of external storage types

Secure access to sensitive data

Decoupling, such that site-specific data is strictly separated

from the code inside the container environment

Scalability, such that when the workload increases, additional

instances can easily be added

Availability, ensuring that the outage of a container host

doesn’t result in container unavailability

To implement these features, Kubernetes has developed itself as

the industry standard. Kubernetes is open source and, currently,

it is the only solution that matters for adding enterprise features

to containers. Red Hat has its own Kubernetes distribution,

which is called OpenShift. For building a scalable, flexible, and

reliable infrastructure based on containers, you should

investigate the options offered by either Kubernetes or

OpenShift. These topics are outside the scope of the RHCSA exam

and for that reason will not be discussed further here.

Running a Container

To get familiar with containers, let’s start by running some. To

get full access to all tools that RHEL is offering for running

containers, you should start by installing the appropriate

software. You can do this by using sudo dnf install container-

tools. After installing this software, you can start running your

first container by using podman run, which does not require

any root privileges. You can use this command with many

arguments; the only argument that is really required, however, is

the name of the image that you want to run. As we discuss later,

the image is fetched from one of the container registries that is

configured by default. To run your first container, use the

command podman run nginx. This will try to start the nginx

image from one of the known registries. You can see the result of

running this command in Example 26-1.

Example 26-1 Podman May Prompt Which Registry You Want to

Use

Click here to view code image

[root@server1 ~]# podman run nginx
? Please select an image:
 registry.fedoraproject.org/nginx:latest
 registry.access.redhat.com/nginx:latest
 registry.centos.org/nginx:latest
 quay.io/nginx:latest
 docker.io/library/nginx:latest

While using podman run, it may not be clear from which

registry the image you want to run should be started. If that is

the case, the podman command will prompt to make a choice

from one of the available registries, as can be seen in Example

26-1. This can be avoided by including the complete registry

name of the image: if you use podman run

docker.io/library/nginx, Podman knows it needs to fetch the

image from the docker.io registry. Example 26-2 shows how this

works out.

Example 26-2 Running Your First Container with podman run

nginx

Click here to view code image

[root@server1 ~]# podman run docker.io/librarynginx
Resolved "nginx" as an alias (/var/cache/containers/short-name-
 aliases.conf)
Trying to pull docker.io/library/nginx:latest...
Getting image source signatures
Copying blob eef26ceb3309 done
Copying blob 71689475aec2 done
Copying blob 8e3ed6a9e43a done
Copying blob f88a23025338 done
Copying blob 0df440342e26 done
Copying blob e9995326b091 done
Copying config 76c69feac3 done
Writing manifest to image destination
Storing signatures
/docker-entrypoint.sh: /docker-entrypoint.d/ is not empty, will
 attempt to perform configuration
/docker-entrypoint.sh: Looking for shell scripts in /
 docker-entrypoint.d/
/docker-entrypoint.sh: Launching /docker-entrypoint.d/10-listen-on-
 ipv6-by-default.sh
10-listen-on-ipv6-by-default.sh: info: Getting the checksum of /etc/
 nginx/conf.d/default.conf
10-listen-on-ipv6-by-default.sh: info: Enabled listen on IPv6 in /etc/

 nginx/conf.d/default.conf
/docker-entrypoint.sh: Launching /docker-entrypoint.d/20-envsubst-on-
 templates.sh
/docker-entrypoint.sh: Launching /docker-entrypoint.d/30-tune-worker-
 processes.sh
/docker-entrypoint.sh: Configuration complete; ready for start up
2022/10/31 07:27:27 [notice] 1#1: using the "epoll" event method
2022/10/31 07:27:27 [notice] 1#1: nginx/1.23.2
2022/10/31 07:27:27 [notice] 1#1: built by gcc 10.2.1 20210110 (Debian
 10.2.1-6)
2022/10/31 07:27:27 [notice] 1#1: OS: Linux 5.14.0-70.13.1.el9_0.x86_64
2022/10/31 07:27:27 [notice] 1#1: getrlimit(RLIMIT_NOFILE):
 1048576:1048576
2022/10/31 07:27:27 [notice] 1#1: start worker processes
2022/10/31 07:27:27 [notice] 1#1: start worker process 24
2022/10/31 07:27:27 [notice] 1#1: start worker process 25

As you can see in Example 26-2, when running the container,

Podman starts by fetching the container image from the registry

you want to use. Container images typically consist of multiple

layers, which is why you can see that different blobs are copied.

When the image file is available on your local server, the nginx

container is started. As you will also notice, the container runs in

the foreground. Use Ctrl-C to terminate the container.

You typically want to run containers in detached mode (which

runs the container in the background) or in a mode where you

have access to the container console. You can run a container in

detached mode by using podman run -d nginx. Notice that all

options that modify the podman command (podman run in this

case) need to be placed behind the podman command and not

after the name of the image.

When you run a container in detached mode, it really runs like a

daemon in the background. Alternatively, you can run the

container in interactive TTY mode. In this mode, you get access to

the container TTY and from there can work within the container.

However, this makes sense only if the container is configured to

start a shell as its default command. If it does not, you may have

to add /bin/sh to the container image, so that it starts a shell

instead of its default command.

Let’s have a look at how this works:

Step 1. To start the nginx image in interactive TTY mode, use the

command podman run -it nginx.

Step 2. You are now connected to a TTY in which you only have access

to the nginx process output. That doesn’t make sense, so use Ctrl-

C to get out.

Step 3. Now start the container using podman run -it nginx /bin/sh.

This will start the /bin/sh command, instead of the container

default command, which will give you access to a shell. After

starting the container in this way, you have access to the TTY,

and all the commands that you enter are entered in the container

and not on the host operating system.

Tip

Container images are normally created as minimal

environments, and for that reason you may not be

able to run a bash shell. That’s why in the previous

example we used /bin/sh. This is a minimal shell,

and no matter which container image you use, it will

always be there.

When you’re running in interactive mode, there are two ways to

get out of it:

Use exit to exit the TTY mode. If you started the container

using podman run -it nginx /bin/sh, this will stop the

container. That’s because the exit command stops the primary

container command, and once that is stopped the container

has no reason to be around anymore.

Use Ctrl-P, Ctrl-Q to detach. This approach ensures that in all

cases the container keeps on running in the background in

Hivanetwork.com

https://hivanetwork.com/

detached mode. That may not always be very useful though. If

like in the previous example you’ve started the nginx image

with /bin/sh as the default command (instead of the nginx

service), keeping it around might not make much sense

because it isn’t providing any functionality anyway.

To get an overview of currently running containers, you can use

the podman ps command. This will show you only containers

that are currently running. If a container has been started but

has already been stopped, you won’t see it. If you also want to see

containers that have been running but are now inactive, use

podman ps -a. In Example 26-3 you can see the output of the

podman ps -a command.

Example 26-3 podman ps -a Output

Click here to view code image

student@podman ~]$ podman ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
1f6426109d3f docker.io/ sh 6 minutes ago Exited (0) 6
 minutes ago adoring_
 library/
feynman
 busybox: latest
0fa670dc56fe docker.io/ nginx -g 8 minutes ago Up 8

 minutes web1
 library/ daemon o... ago
 nginx:latest
15520f225787 docker.io/ nginx -g 32 minutes ago Exited (0)
 32 minutes ago peaceful_
 library/ daemon o...
visvesvaraya
 nginx:latest

Notice the various columns in the output of the podman ps

command. Table 26-2 summarizes what these columns are used

for.

Table 26-2 podman ps Output Columns Overview

Column Use

CONTAINER_ID The automatically generated container ID;

often used in names of files created for

this container.

IMAGE The complete registry reference to the

image used for this container.

COMMAND The command that was started as the

default command with this container.

CREATED The identifier when the container was

created.

STATUS Current status.

PORTS If applicable, ports configured or

forwarded for this container.

NAMES The name of this container. If no name

was specified, a name will be

automatically generated.

In Exercise 26-1 you can practice running containers and basic

container management.

Exercise 26-1 Running Containers with podman

1. Use sudo dnf install container-tools to install the container

software.

2. Type podman ps -a to get an overview of currently existing

containers. Observe the STATUS field, where you can see

whether the container currently is active.

3. Type podman run -d nginx. This command starts an nginx

container in detached mode.

4. Type podman ps and observe the output. In the CONTAINER

ID field, you’ll see the unique ID that has been generated. Also

observe the NAME field, where you’ll see a name that has

automatically been generated.

5. Type podman run -it busybox. This command runs the

busybox cloud image, a minimized Linux distribution that is

often used as the foundation for building custom containers.

6. Because the busybox container image was configured to run a

shell as the default command, you’ll get access to the shell that

it is running. Type ps aux to see the processes running in this

container namespace. Notice that the ps command works,

which is not the case for all container images you may be

using.

7. Type exit to close the busybox shell.

8. Type podman ps. You won’t see the busybox container

anymore because in the previous step you exited it.

9. Type podman run -it busybox once more, and when you

have access to its interactive shell, press Ctrl-P, Ctrl-Q to

detach.

10. Use podman ps. You’ll notice the busybox container is still

running. Look at the NAME column to find the name for the

container that was automatically generated.

11. Use podman attach <name>, where <name> should be

replaced with the name you found in the preceding step. This

will reconnect you to the shell that is still waiting on the

busybox container.

12. Use Ctrl-P, Ctrl-Q again to detach.

13. Type podman stop <name>. This will stop the busybox

container.

Tip

When you run non-root containers, the container

files are copied to the

~/.local/share/containers/storage directory. Make

sure you have enough storage space in the user

home directory. With an average file size of about 60

MB for each container, disk space will be used fast!

Working with Container Images

The foundation of every container is the container image. The

container is a running instance of the image, where while

running it a writable layer is added to store changes made to the

container. To work with images successfully, you need to know

how to access container registries and how to find the

appropriate image from these registries. Container images are

created in the Docker format. The Docker format has become an

important standard for defining container images, which is why

you can run container images in Docker format without any

problem in RHEL.

Using Registries

Container images are typically fetched from container registries,

which are specified in the /etc/containers/registries.conf

configuration file. A user who runs a rootless container can

create a file ~/.config/containers/registries.conf. In case of

conflict, settings in the user-specific file will override settings in

the generic file.

In the registries.conf file, different registries are in use by

default. Don’t worry too much about the exact names of these

registries, as they tend to change between different versions of

RHEL. Among the registries, you’ll find Red Hat registries that

give access to licensed software. You need to enter your Red Hat

credentials to access these registries. Also, the Docker registry is

used. Docker hosts the biggest container registry currently

available, containing more than 10,000,000 images, and adding

the Docker registry as the last registry will increase your chances

of finding the desired container image.

In the registries.conf file, all container registries are listed as

unqualified-search-registries. This is because Red Hat

recommends the complete image name (including the registry

you want to use it from) to avoid ambiguity. So instead of using

podman run -d nginx, use podman run -d

docker.io/library/nginx.

To see which registries are currently used, you can use the

podman info command. Apart from information about the

registries that are used, this command also shows other useful

information about your current environment. Example 26-4

shows what the output of this command might look like.

Example 26-4 Using podman info to Find Which Registries Are

Used

Click here to view code image

[student@server1 ~]$ podman info | grep -A 10 registries
registries:
 search:
 - registry.fedoraproject.org
 - registry.access.redhat.com
 - registry.centos.org
 - quay.io
 - docker.io
store:

 configFile: /home/student/.config/containers/storage.conf
 containerStore:
 number: 0 OsArch: linux/amd64
 Version: 4.0.2

NOTE

Much of what is happening in containerized

environments is standardized in the Open

Containers Initiative (OCI). All companies involved

in containers are currently making a huge effort to

make their containers OCI compliant. Because of

this, you can use Docker images without any issues

in a podman environment.

Finding Images

To find available images, you can use the podman search

command. If you need to access images from one of the

subscriber-only Red Hat registries as well, you need to log in to

the registry first because the Red Hat registries are accessible

only to users who have a valid Red Hat account. Use podman

login to enter your current Red Hat username and password,

which will give you access to these registries. To log in to a

Hivanetwork.com

https://hivanetwork.com/

registry, you have to specify the name of the registry you want to

log in to. For instance, use podman login

registry.access.redhat.com to log in to that specific registry.

After enabling access to the Red Hat registries that you want to

use, use podman search to find the images you need. Example

26-5 shows the partial result of the podman search mariadb

command output.

Example 26-5 podman search mariadb Partial Result

Click here to view code image

INDEX NAME DESCRIPTION
 STARS OFFICIAL AUTOMATED
docker.io docker.io/panubo/ MariaDB Galera Cluster 23
 [OK]
 mariadb-galera
docker.io docker.io/demyx/ Non-root Docker image running 0
 mariadb Alpine Linux a...
docker.io docker.io/toughiq/ Dockerized Automated MariaDB 41
 [OK]
 mariadb-cluster Galera Cluster ...
docker.io docker.io/bianjp/ Lightweight MariaDB docker 15
 [OK]
 mariadb-alpine image with Alpine...
docker.io docker.io/ MariaDB relational database 2

http://registry.access.redhat.com

 [OK]
 clearlinux/mariadb management syste...
docker.io docker.io/ Fast, simple, and lightweight 2
 [OK]
 jonbaldie/mariadb MariaDB Docker...
docker.io docker.io/ Docker MariaDB server w/ 1
 [OK]
 tiredofit/mariadb S6 Overlay, Zabbix ...

In the output of podman search, different fields are used to

describe the images that were found. Table 26-3 gives an

overview.

Table 26-3 podman search Output Fields

Field Use

INDEX The name of the registry where this image

was found.

NAME The full name of the image.

DESCRIPTION A more verbose description. Use --no-trunc

to see the complete description.

STARS A community appreciation, expressed in

stars.

OFFICIAL Indicates whether this image was provided

by the software vendor.

AUTOMATED Indicates whether this image is

automatically built.

You might notice that in some cases this podman search

command gives a lot of results. To filter down the results a bit,

you can use the --filter option. Use podman search --filter is-

official=true alpine to see only alpine images that are created by

the application vendor, for instance, or podman search --filter

stars=5 alpine to show only alpine images that have been

appreciated with at least five stars. Alpine is a common cloud

image that is used a lot, because it is really small.

Tip

While you’re looking for images, search for the UBI

images in the Red Hat registries. UBI stands for

Universal Base Image, and it’s the image that is used

as the foundation for all of the Red Hat products.

Inspecting Images

Because images are provided by the open source community, it is

important to get more information before you start using them.

This allows you to investigate what exactly the image is doing.

The best way to do so is to use the skopeo inspect command. The

advantage of using skopeo to inspect images is that the

inspection happens directly from the registry without any need

to first pull the image.

Alternatively, you can inspect local images. To do so, use

podman inspect. This command works only on images that are

available on your local system but gives more detailed output

than skopeo inspect. Use podman images for a list of images

that are locally available, and use podman pull to pull an image

first. Example 26-6 shows a partial result of the podman inspect

command.

Example 26-6 Using podman inspect to Verify Image Contents

Click here to view code image

student@podman ~]$ podman inspect busybox
[
 {
 "Id":

"6858809bf669cc5da7cb6af83d0fae838284d12e1be0182f92f6bd96559873e3",
 "Digest": "sha256:d366a4665ab44f0648d7a00ae3fae139d55e32f9712c
 67accd604bb55df9d05a",
 "RepoTags": [
 "docker.io/library/busybox:latest"
],
 "RepoDigests": [
"docker.io/library/busybox@sha256:2ca5e69e244d2da7368f7088ea3ad0653c3ce
 7aaccd0b8823d11b0d5de956002",
"docker.io/library/busybox@sha256:d366a4665ab44f0648d7a00ae3fae139d55e3
 2f9712c67accd604bb55df9d05a"
],
 "Parent": "",
 "Comment": "",
 "Created": "2020-09-09T01:38:02.334927351Z",
 "Config": {
 "Env": [
"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
],
 "Cmd": [
 "sh"
]
 },
 "Version": "18.09.7",
 "Author": "",
 "Architecture": "amd64",
 "Os": "linux",
 "Size": 1454611,

 "VirtualSize": 1454611,
 "GraphDriver": {
 "Name": "overlay",
 "Data": {
 "UpperDir": "/home/student/.
local/share/containers/storage/overlay/
be8b8b42328a15af9dd6af4cba85821aad30adde28d249d1ea03c74690530d1c/diff",
 "WorkDir": "/home/student/.
local/share/containers/storage/overlay/
be8b8b42328a15af9dd6af4cba85821aad30adde28d249d1ea03c74690530d1c/work"
 }
 },
 "RootFS": {
 "Type": "layers",
 "Layers": [
"sha256:be8b8b42328a15af9dd6af4cba85821aad30adde28d249d1ea03c74690530
 d1c"
]
 },
 "Labels": null,
 "Annotations": {},
 "ManifestType": "application/vnd.docker.distribution.manifest.
 v2+json",
 "User": "",
 "History": [
 {
 "created": "2020-09-09T01:38:02.18459328Z",
 "created_by": "/bin/sh -c #(nop) ADD file:72be520892

 d0a903df801c6425de761264d7c1bc7984d5cf285d778147826586 in / "
 },
 {
 "created": "2020-09-09T01:38:02.334927351Z",
 "created_by": "/bin/sh -c #(nop) CMD [\"sh\"]",
 "empty_layer": true
 }
]
 }
]

When you use podman inspect, the most interesting information

that you should be looking for is the command (Cmd). This is the

command that the image runs by default when it is started as a

container. Remember: a container is just a fancy way to start an

application, and the Cmd line will tell you which application that

is.

Tip

To run a container, you can use podman run. This

command first pulls the image, stores it on your

local system, and then runs the container. You can

also use podman pull first to store the image

without running it, and after pulling it, you can still

run it. This second method is more secure because it

allows you to inspect the contents of the image

before running it.

Performing Image Housekeeping

For every container that you have ever started, an image is

downloaded and stored locally. To prevent your system from

filling up, you might want to do a bit of housekeeping every now

and then. To remove container images, use the podman rmi

command. Notice that this command works only if the container

is no longer in use. If podman rmi gives an error message,

ensure that the container has been stopped and removed first.

Exercise 26-2 shows how to manage your container images.

Exercise 26-2 Managing Container Images

1. Type podman info | grep -A 10 registries to check which

registries are currently used.

2. Use podman login registry.access.redhat.com and enter

your Red Hat account credentials to ensure full access to the

Red Hat registries.

3. Use podman search registry.access.redhat.com/ubi to

search only in registry. access.redhat.com for all the UBI

images.

4. Use skopeo inspect

Hivanetwork.com

http://registry.access.redhat.com
http://access.redhat.com
https://hivanetwork.com/

docker://registry.access.redhat.com/ubi9 to show

information about the container image. Do you see which

command is started by default by this image? (Notice that this

information is not revealed using skopeo.)

5. Now use podman pull registry.access.redhat.com/ubi9 to

pull the image.

6. Type podman images to verify the image is now locally

available.

7. Type podman inspect registry.access.redhat.com/ubi9 and

look for the command that is started by default by this image.

You used skopeo inspect in step 4, whereas now you’re using

podman inspect, which shows more details.

Building Images from a Containerfile

Container images provide an easy way to distribute applications.

While using containers, application developers no longer have to

provide an installer file that runs on all common operating

systems. They just have to build a container image, which will

run on any OCI-compliant container engine, no matter if that is

Docker or Podman.

To build container images, generic system images are commonly

used, to which specific applications are added. To make building

images easy, Docker introduced the Dockerfile, which in Podman

is standardized as the Containerfile. In a Containerfile, different

instructions can be used to build custom images, using the

podman build command. In Example 26-7 you’ll find a simple

example of Containerfile contents.

Example 26-7 Example Containerfile Contents

Click here to view code image

FROM registry.access.redhat.com/ubi8/ubi:latest
RUN dnf install nmap
CMD ["/usr/sbin/nmap", "-sn", "192.168.29.0/24"] [

In a Containerfile you may have different lines defining exactly

what needs to be done. Table 26-4 outlines the common

Containerfile directives.

Table 26-4 Common Containerfile Directives

Directive Use

FROM Identifies the base image to use

RUN Specifies commands to run in the base image

while building the custom image

CMD Identifies the default command that should be

started by the custom image

Tip

On the RHCSA exam, you’ll only need to work with

an existing Containerfile; you won’t have to create

one yourself.

To build a custom container image based on a Containerfile, you

use the podman build -t imagename:tag . command. In this

command the dot at the end refers to the current directory.

Replace it with the name of any other directory that may contain

the Containerfile you want to use. The -t option is used to specify

an image tag. The image tag consists of two parts: the name of the

image, which is followed by a specific tag. This specific tag may

be used to provide version information. To build a custom image

based on the Containerfile in Example 26-7, you could, for

instance, use the command podman build -t mymap:1.0 .. After

building the custom image, use the podman images command to

verify that it has been added. In Exercise 26-3 you can practice

working with a Containerfile.

Exercise 26-3 Building Custom Images with a Containerfile

1. Use mkdir exercise264; cd exercise264 to ensure that your

Containerfile is going to be created in a custom directory.

2. Use an editor to create a Containerfile with the following

contents:
Click here to view code image

FROM docker.io/library/alpine
RUN apk add nmap
CMD ["nmap", "-sn", "172.16.0.0/24"]

3. Type podman build -t alpmap:1.0.

4. Verify the image builds successfully. Once completed, use

podman images to verify the image has been added.

5. Use podman run alpmap:1.0 to run the image you’ve just

created. If the nmap command gets stuck, use Ctrl-C to

interrupt it.

In Exercise 26-3 you’ve created your own custom image based on

the alpine image. Alpine is a common cloud image that is used a

lot, because it is really small. Even if you’re running your

containerized applications on top of Red Hat, that doesn’t mean

that you have to use the UBI image, which is provided by Red Hat

as a universal base image. If you want it to be small and efficient,

better to use alpine instead.

Managing Containers

While working with containers, you need to be aware of a few

operational management tasks:

Managing container status

Running commands in a container

Managing container ports

Managing container environment variables

In this section you learn how to perform these tasks.

Managing Container Status

You have already learned how podman ps shows a list of

currently running containers and how you can extend this list to

show containers that have been stopped by using podman ps -a.

But let’s talk about what brings a container to a stopped status.

To understand containers, you need to understand that they are

just a fancy way to run an application. Containers run

applications, including all of the application dependencies, but in

the end, the purpose of a container is to run an application. In

some cases, the application is a process that is meant to be

running all the time. In other cases, the application is just a shell,

or another command that runs, produces its result, and then

exits, as you have seen in Exercise 26-3. Containers in the latter

category are started, run the command, and then just stop

because the command has been executed successfully, and there

is nothing wrong with that.

Before we continue, let me explain where the potential confusion

about the stopped status of containers comes from. Sometimes, a

container is considered to be something like a virtual machine. If

you start an Ubuntu virtual machine, for instance, it starts and

will keep on running until somebody comes and decides to stop

it. Containers are not virtual machines. Every container image is

configured with a default command, and as just discussed, the

container runs the default command and then exits, as it’s done

after running the command. Some containers, however, run

services, which keep running all the time.

For those containers that do keep on running after starting them,

you can use a few commands to stop and start them:

podman stop sends a SIGTERM signal to the container. If that

doesn’t give any result after 10 seconds, a SIGKILL command is

sent.

podman kill immediately sends a SIGKILL command. In most

cases, that’s not necessary because podman stop will send a

SIGKILL after 10 seconds.

podman restart restarts a container that is currently running.

Also, don’t forget that after stopping a container, it is still

available on your local system. That availability is convenient

because it allows you to easily restart a container and maintain

access to modifications that have previously been applied and

stored in the writable layer that has been added to the container

image while running the container. If, however, you’ve been

starting and stopping containers a lot and don’t need to keep the

container files around, use podman rm to remove those

container files. Alternatively, use podman run --rm to run your

container. This command ensures that after it is run, the

container files are automatically cleaned up.

Running Commands in a Container

When a container starts, it executes the container entrypoint

command. This is the default command that is specified to be

started in the container image. In some cases, you may have to

run other commands inside the container as well. To do so, you

can use the podman exec command. This allows you to run a

second command inside a container that has already been

started, provided that this other command is available in the

namespaced container file system (which often is a small file

system that contains only essential utilities).

If a command is not available in a container image, you can

install it, using the image operating system package installer.

However, this doesn’t make sense in many cases. Installing

additional commands will only make the container image

significantly bigger and, for that reason, slower. So, you’re better

off trying to use default facilities that are provided in the

container image.

While running a command, you can run it as a one-shot-only

command command. In that case, the command output is written

to STDOUT. You can also use podman exec in interactive TTY

mode to run several commands inside the container.

For example, you can use podman exec mycontainer uname -r

to run the command and write its output to STDOUT, or podman

exec -it mycontainer /bin/bash to open a Bash shell in the

container and run several commands from there. In Exercise 26-

4 you practice running commands in a container.

Hivanetwork.com

https://hivanetwork.com/

Exercise 26-4 Running Commands in a Container

1. Use podman run -d --rm --name=web2

docker.io/library/nginx

2. Type podman ps to verify that the web2 container is

available.

3. Use podman exec -it web2 /bin/bash to open a Bash shell in

the container.

4. Within the container shell, type ps aux. You will see that there

is no ps command in the nginx container; the reason is that

many containers come without even fundamental standard

tools.

5. Type ls /proc, and notice that a few directories have a

numeric name. These are the PID directories, and if you don’t

have access to the ps command, this is how you can find

process information.

6. Each /proc/<PID> directory has a file with the name cdmline.

Type cat/proc/1/cmdline to find that the nginx process has

been started as PID 1 within the container.

7. Type exit to close the Bash shell you just opened on the

container.

8. Type podman ps to confirm that the web2 container is still

running. It should be running because the exit command you

used in the preceding step only exited the Bash shell, not the

primary command running inside the container.

9. On the container host, type uname -r to confirm the current

kernel version. The el9 part of the kernel name indicates this

is an Enterprise Linux kernel, which you’ll see only on RHEL,

CentOS, and related distributions.

10. Type podman run -it docker.io/library/ubuntu. This will run

the latest Ubuntu image from the Docker registry and give

access to a shell. Because the image has the shell set as the

entrypoint command (the default command it should start),

you don’t need to specify the name of the shell as well.

11. Type cat /etc/os-release to confirm this really is an Ubuntu

container.

12. Type uname -r to see the Enterprise Linux kernel that you

saw previously in step 6. The reason is that containers really

are all running on the same kernel, no matter which Linux

distribution container you’re running on top.

13. Type exit to close the interactive TTY. Does that command

shut down the container?

14. Use podman ps to verify the Ubuntu container is no longer

active. While using exit in step 13, you exited the entrypoint

command running in the container, so there is now nothing

else to be done.

Managing Container Ports

Rootless containers in podman run without a network address

because a rootless container has insufficient privileges to allocate

a network address. Root containers do get a dedicated IP address,

but that’s an IP address on an isolated network that cannot be

accessed directly from external networks. In either case, to make

the service running in the container accessible from the outside,

you need to configure port forwarding, where a port on the

container host is used to access a port in the container

application. Notice that if you are running a rootless container,

you can address only nonprivileged ports on the host: ports 1–

1024 are accessible by the root user only.

Tip

If you do want to run a container that has an IP

address and can bind to a privileged port, you need

to run a root container. Use sudo podman run ... to

run root containers. If you run a root container, you

also need to use sudo podman ps to verify that it is

running. The root container is running in the root

user namespace and therefore is not accessible or

visible by ordinary users. The opposite is also true: if

you type sudo podman ps, you’ll only see root

containers, not the rootless containers that have

been started by users.

To run a container with port forwarding, you add the -p option to

the podman run command. Use podman run --name nginxport

-d -p 8080:80 nginx to run the nginx image as a container and

make the nginx process accessible on host port 8080, which will

be forwarded to the standard http port 80 on which nginx is

offering its services. Don’t forget to use sudo firewall-cmd --add-

port 8080/tcp --permanent; sudo firewall-cmd --reload to open

the port in the firewall as well afterward! After exposing a web

server container on a host port, you can use curl localhost:8080

to verify access. Exercise 26-5 guides you through this procedure.

Exercise 26-5 Managing Container Port Mappings

1. Type podman run --name nginxport -d -p 8080:80 nginx to

run an nginx container and expose it on host port 8080.

2. Type podman ps to verify that the container has been started

successfully with port forwarding enabled.

3. Use sudo firewall-cmd --add-port 8080/tcp --permanent;

sudo firewall-cmd --reload to open this port in the firewall

on the host operating system.

4. Type curl localhost:8080 to verify that you get access to the

default nginx welcome page.

Managing Container Environment Variables

Many containers can be started without providing any additional

information. Some containers need further specification of how

to do their work. This information is typically passed using

environment variables. A well-known example where you have

to pass environment variables to be able to run the container

successfully is mariadb, the database service that needs at least

to know the password for the root user that it is going to use.

If a container needs environment variables to do its work, there

are a few ways to figure this out:

Just run the container without any environment variables. It

will immediately stop, and the main application will generate

an error message. Use podman logs on your container to read

the log for information on what went wrong.

Use podman inspect to see whether there is a usage line in

the container image that tells you how to run the container.

This may not always work, as it depends on whether or not the

image creator has included a usage line in the container

image.

After you’ve found out how to run the container, run it,

specifying the environment variables with the -e option. To run a

mariadb instance, for example, you can use podman run -d -e

MYSQL_ROOT_PASSWORD=password -e MYSQL_USER=anna -

e MYSQL_PASSWORD=password -e MYSQL_DATABASE=mydb

-p 3306:3306 mariadb. Exercise 26-6 guides you through the

procedure of running a container using environment variables.

Exercise 26-6 Managing Container Environment Variables

1. Use podman run docker.io/library/mariadb. It will fail (and

you will see an error message on the STDOUT).

2. Use podman ps -a to see the automatically generated name

for the failing mariadb container.

3. Use podman logs container_name to see the Entrypoint

application error log. Make sure to replace container_name

with the name you found in step 2.

4. Use podman inspect mariadb and look for a usage line. You

won’t see any.

5. Use podman search registry.redhat.io/rhel9/mariadb to

find the exact version number of the mariadb image in the

RHEL registry.

6. Use podman login registry.redhat.io and provide valid

credentials to log in.

7. Use podman run registry.redhat.io/rhel9/mariadb-nnn

(make sure to replace nnn with the version number you found

in step 5). It will also fail but will show much more usage

details on the STDOUT. The reason is that the Red Hat mariadb

image is not the same as the image that was fetched from the

Docker registry in the first step of this procedure.

8. Use podman inspect registry.redhat.io/rhel9/mariadb-nnn

and in the command output search for the usage line. It will

tell you exactly how to run the mariadb image.

9. According to the instructions that you found here, type

podman run -d -e MYSQL_USER=bob -e

MYSQL_PASSWORD=password -e

MYSQL_DATABASE=mydb -e

MYSQL_ROOT_PASSWORD=password -p 3306:3306

registry.redhat.io/rhel9/mariadb-105. (By the time you read

this, the version number may be different, so make sure to

check the version number of the image if you’re experiencing

a failure in running this command.)

10. Use podman ps. You will see the mariadb container has now

been started successfully.

Managing Container Storage

When a container is started from an image, a writable layer is

added to the container. The writable layer is ephemeral:

modifications made to the container image are written to the

writable layer, but when the container is removed, all

modifications that have been applied in the container are

removed also. So if you run an application in a container and

want to make sure that modifications are stored persistently, you

need to add persistent storage.

To add persistent storage to Podman containers, you bind-mount

a directory on the host operating system into the container. A

bind-mount is a specific type of mount, where a directory is

mounted instead of a block device. Doing so ensures that the

contents of the directory on the host operating system are

accessible within the container. So, when files are written within

the container to the bind-mounted directory, they are committed

to the host operating system as well, which ensures that data will

be available beyond the lifetime of the container. For more

advanced storage, you should use an orchestration solution.

When you use OpenShift or Kubernetes, it’s easy to expose

different types of cloud and datacenter storage to the containers.

To access a host directory from a container, it needs to be

prepared:

Hivanetwork.com

https://hivanetwork.com/

The host directory must be writable for the user account that

runs the container.

The appropriate SELinux context label must be set to

container_file_t.

Obviously, the container_file_t context label can be set manually

by a user who has administrator privileges, using semanage

fcontext -a -t container_file_t "/hostdir(/.*)?"; restorecon. It

can also be set automatically, but that works only if the user who

runs the container is the owner of the directory. It is not enough

if the user has write permissions on the directory! For an easy

way to apply the right SELinux context, you should focus on the

automatic solution.

To mount the volume, you use the -v host_dir:container_dir

command. If the user running the container is owner, or the

container is a root container, you can use -v

host_dir:container_dir:Z as an alternative to setting the SELinux

context automatically. So, to make sure that a mariadb database

is started in a way that database files are stored on the host

operating system, you use podman run -d --name mydb -v

/home/$(id -un)/dbfiles:/var/lib/mysql:Z -e MYSQL_USER=user

-e MYSQL_PASSWORD=password -e

MYSQL_DATABASE=mydatabase

registry.redhat.io/rhel9/mariadb-105. In Exercise 26-7 you can

practice running containers with storage attached.

Exercise 26-7 Attaching Storage to Containers

1. Use sudo mkdir /opt/dbfiles; sudo chmod o+w /opt/dbfiles

to create a directory on the host operating system.

2. Use podman login registry.redhat.io and provide valid

credentials to log in.

3. Use podman run -d --name mydbase -v

/opt/dbfiles:/var/lib/mysql:Z -e MYSQL_USER=user -e

MYSQL_PASSWORD=password -e

MYSQL_DATABASE=mydbase

registry.redhat.io/rhel9/mariadb-105. The output of this

command shows “operation not permitted.”

4. Type podman ps -a. You’ll see that starting the container has

failed.

5. Use podman logs mydbase to investigate why it has failed.

Because the error was not related to the container application,

the logs don’t show you anything; the problem is related to

Linux permissions.

6. Remove the failed container by using podman rm mydbase.

7. Type sudo chown $(id -un) /opt/dbfiles.

8. Run the command shown in step 3 again. It will now be

successful.

9. Use ls -ldZ /opt/dbfiles. You’ll see that the container_file_t

SELinux context has automatically been set.

To understand what is really happening while running rootless

containers, it makes sense to investigate a bit more. Rootless

containers are launched in a namespace. For each user, a

namespace is created in which all containers are started. The

namespace provides isolation, which allows the container inside

the namespace to run as the root user, where this root-level

access does not exist outside of the namespace. To make this

work, inside the container namespace different UIDs are used

than those used outside of the namespace.

To ensure that access is working correctly, UIDs are mapped

between the namespace and the host OS. This UID mapping

allows any UID inside the container namespace to be mapped to

a valid UID on the container host. The podman unshare

command can be used to run commands inside the container

namespace, which in some cases is necessary to make sure the

container is started the right way. To start with, as a non-root

user, type podman unshare cat /proc/self/uid_map. This shows

that the root user (UID 0) maps to the current user ID, which in

Example 26-8 is shown as UID 1000.

Example 26-8 Using podman unshare to Show UID Mappings

Click here to view code image

[student@server1 ~]$ podman unshare cat /proc/self/uid_map
 0 1000 1
 1 100000 65536

If you want to set appropriate directory ownership on bind-

mounted directories for rootless containers, additional work is

required:

Step 1. Find the UID of the user that runs the container main

application. In many cases podman inspect imagename will

show this.

Step 2. Use podman unshare chown nn:nn directoryname to set the

container UID as the owner of the directory on the host. Notice

that this directory must be in the rootless user home directory, as

otherwise it wouldn’t be a part of the user namespace.

Step 3. Use podman unshare /cat/proc/self/uid_map to verify the user

ID mapping.

Step 4. Verify that the mapped user is owner on the host by using ls -ld

~/directoryname.

In Exercise 26-8 you’ll practice bind-mounting in rootless

containers

Exercise 26-8 Bind Mounting in Rootless Containers

1. Make sure you’re in a non-root shell.

2. Use podman search mariadb | grep quay. The images in

quay.io are optimized for use in Red Hat environments, and

most of them are rootless by nature.

3. Type podman run -d --name mydb -e

MYSQL_ROOT_PASSWORD=password

quay.io/centos7/mariadb-103-centos7

4. Use podman exec mydb grep mysql /etc/passwd to verify

the UID of the mysql user, which is set to 27.

5. Use podman stop mydb; podman rm mydb, as you’ll now

have to set up the storage environment with the right

permissions before starting the container again.

6. Type mkdir ~/mydb

7. Use podman unshare chown 27:27 mydb to set appropriate

permissions inside the user namespace.

8. Check the UID mapping by typing podman unshare cat

/proc/self/uid_map

9. Use ls -ld mydb to verify the directory owner UID that is used

in the host OS. At this point the UIDs are set correctly.

10. Type podman run -d --name mydb -e

MYSQL_ROOT_PASSWORD=password -v

/home/student/mydb:/var/lib/mysql:Z

quay.io/centos7/mariadb-103-centos7 to start the rootless

mariadb container.

11. Use ls -Z mydb to verify the database files have been created

successfully.

Running Containers as Systemd Services

As containers are becoming increasingly common as the way to

start services, a way is needed to start them automatically. When

you’re using Kubernetes or OpenShift to orchestrate container

usage, this is easy: the orchestration platform ensures that the

container is started automatically, unless you decide this is not

desired behavior. On a standalone platform where containers

are running rootless containers, systemd is needed to autostart

containers.

In systemd, services are easily started and enabled with root

permissions using commands like systemctl enable --now

myservice.service. If no root permissions are available, you

need to use systemctl --user. The --user option allows users to

run the common systemd commands, but in user space only. This

works for any service that can run without root permissions; for

instance, use systemctl --user start myservice.service to start

the myservice service.

By default, when systemctl --user is used, services can be

automatically started only when a user session is started. To

define an exception to that, you can use the loginctl session

manager, which is part of the systemd solution to enable linger

for a specific user account. If you use loginctl enable-linger

myuser, you enable this for the user myuser. When linger is

enabled, systemd services that are enabled for that specific user

will be started on system start, not only when the user is logging

in.

The next step is to generate a systemd unit file to start containers.

Obviously, you can write these files yourself, but a much easier

way is to use podman generate systemd --name mycontainer --

files to do so. Note that this container file must be generated in

the ~/.config/systemd/user/ directory, so you have to create that

directory and change to it before running the podman generate

command.

The podman generate systemd command assumes that a

container with the name mycontainer has already been created

and will result in a unit file that can be enabled using systemctl -

-user enable container-mycontainer.service. In Example 26-9

you can see what such a unit file looks like.

Example 26-9 Podman Autogenerated Container Service File

Click here to view code image

[student@server1 ~]$ cat container-wbe2.service
container-wbe2.service
autogenerated by Podman 4.0.2
Mon Oct 31 10:35:47 CET 2022

[Unit]
Description=Podman container-wbe2.service
Documentation=man:podman-generate-systemd(1)
Wants=network-online.target
After=network-online.target
RequiresMountsFor=/run/user/1000/containers

[Service]
Environment=PODMAN_SYSTEMD_UNIT=%n
Restart=on-failure
TimeoutStopSec=70
ExecStart=/usr/bin/podman start wbe2
ExecStop=/usr/bin/podman stop -t 10 wbe2
ExecStopPost=/usr/bin/podman stop -t 10 wbe2
PIDFile=/run/user/1000/containers/overlay-containers/2a7fe7b225bdbbfd3b
 3deb6488b9c57400530b2e77310fd3294b6d08b8dc630b/userdata/conmon.pid
Type=forking

[Install]
WantedBy=default.target

Hivanetwork.com

https://hivanetwork.com/

In Exercise 26-9 you can practice working with Podman

autogenerated systemd unit files.

Exercise 26-9 Running Containers as Systemd Services

1. Use sudo useradd linda to create user linda.

2. Use sudo passwd linda to set the password for user linda.

3. Type sudo loginctl enable-linger linda to enable the linger

feature for user linda.

4. Use ssh linda@localhost to log in. The procedure doesn’t

work from a su or sudo environment.

5. Type mkdir -p ~/.config/systemd/user; cd

~/.config/systemd/user to create and activate the directory

where the systemd user files will be created.

6. Use podman run -d --name mynginx -p 8081:80 nginx to start

an nginx pod.

7. Type podman ps to verify the nginx pod has been started.

8. Create the systemd user files using podman generate

systemd --name mynginx --files.

9. A systemd unit file with the name container-mynginx.service

is created.

10. Type systemctl --user daemon-reload to ensure that systemd

picks up the changes.

11. Use systemctl --user enable container-mynginx.service to

enable the systemd user service. (Do not try to start it, because

it has already been started!)

12. Type systemctl --user status container-mynginx.service to

verify the service has the state of enabled.

13. Reboot your server, and after rebooting, open a shell as your

regular non-root user.

14. Type ps faux | grep -A3 -B3 mynginx to show that the

mynginx container has successfully been started and is

running as user linda.

Summary

In this chapter you learned about containers. First, you learned

how containers really come forth from the Linux operating

system and then learned all that is needed to run containers. This

includes managing images, managing containers and container

storage, as well as running containers as systemd services.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the

Introduction, you have several choices for exam preparation: the

end-of-chapter labs; the memory tables in Appendix C; Chapter

27, “Final Preparation”; and the practice exams.

Review All Key Topics

Review the most important topics in the chapter, noted with the

Key Topic icon in the margin of the page. Table 26-5 lists a

reference for these key topics and the page numbers on which

each is found.

Table 26-5 Key Topics for Chapter 26

Key Topic

Element
Description Page

List Three main tools to manage

containers

542

List Essential Linux kernel features for

containers

543

List Commands to manage container

state

559

List Finding information about 562

variables to use

List Preparing host storage 563

Complete Tables and Lists from Memory

There are no memory tables or lists in this chapter.

Define Key Terms

Define the following key terms from this chapter and check your

answers in the glossary:

container

container engine

registry

CRI-o

namespace

Docker

Kubernetes

OpenShift

image

orchestration

linger

Review Questions

The questions that follow are meant to help you test your

knowledge of concepts and terminology and the breadth of your

knowledge. You can find the answers to these questions in

Appendix A.

 What is the name of the tool that Red Hat includes with RHEL 9

to work with container images without having to download them

from the registry first?

 What are the three Linux features that are needed in container

environments?

 What is the name of the container engine on RHEL 9?

 Which file defines the registries that are currently used?

 After you start a container, using podman run ubuntu,

executing podman ps doesn’t show it as running. What is

happening?

 What do you need to do to start a rootless container that bind-

mounts a directory in the home directory of the current user

account?

 How can you find the default command that a container image

will use when started?

 How do you start an Ubuntu-based container that prints the

contents of /etc/os-release and then exits?

 What do you need to do to run a podman nginx container in such

a way that host port 82 forwards traffic to container port 80?

 Which command do you use to generate a systemd unit file for

the container with the name nginx?

End-of-Chapter Lab

At this point you should be familiar with running containers in a

RHEL environment. You can now complete the end-of-chapter

lab to reinforce these newly acquired skills.

Lab 26.1

1. Ensure that you have logged in to get access to the Red Hat

container registries.

2. Download the mariadb container image to the local computer.

3. Start the mariadb container, meeting the following

requirements:

1. The container must be accessible at port 3206.

2. The MYSQL_ROOT_PASSWORD must be set to “password”

3. A database with the name mydb is created.

4. A bind-mounted directory is accessible: the directory

/opt/mariadb on the host must be mapped to /var/lib/mysql

in the container.

4. Configure systemd to automatically start the container as a

user systemd unit upon (re)start of the computer.

Chapter 27

Final Preparation

Congratulations! You made it through the book, and now it’s time

to finish getting ready for the RHCSA exam. This chapter helps

you get ready to take and pass the exam. In this chapter, you

learn more about the exam process and how to register for the

exam. You also get some useful tips that will help you avoid some

common pitfalls while taking the exam.

General Tips

In this section, you get some general tips about the exam. You

learn how to verify your exam readiness, how to register for the

exam, and what to do on the exam.

Verifying Your Readiness

Register for the exam only when you think that you are ready to

pass it. This book contains a lot of material to help you verify

your exam readiness. To start with, you should be able to answer

all the “Do I Know This Already?” quiz questions, which you find

at the beginning of each chapter. You should also have completed

all the exercises in the chapters successfully, as well as the end-

of-chapter labs. The labs are the first real way of testing your

Hivanetwork.com

https://hivanetwork.com/

readiness because the questions are formulated similarly to the

real exam questions, providing a good way to gauge whether you

are ready for the exam.

Registering for the Exam

There are three ways of taking the RHCSA exam. You can take it

as a kiosk exam provided in a testing center, as part of a Red Hat

training course, or as a home exam. The option to take the exam

from home has made it much easier for candidates around the

world to get certified, and has become the most common way to

take the exam.

A kiosk exam is administered in a test center on an individual

basis, where you work through the exam tasks on a kiosk

computer. This computer is monitored remotely through

multiple cameras while you work on the exam tasks. The good

thing about a kiosk exam is that you schedule the exam for a

time and place that is convenient to you. This also applies to the

home exam.

The home exam can be taken from the convenience of your own

house. You do need to be able to work in a quiet room without

interruptions, and your desk must be clear of everything but

your computer. You also need a valid ID and one internal as well

as an external web cam to register and take the home exam. You

will be monitored through these connected web cams, and you’ll

use them to show your ID and the room in which you are taking

the exam before starting the exam. To start the home exam,

you’ll have to download and run the Red Hat exam environment

on your laptop, which will enable you to log in securely to the

remote exam environment. This environment runs completely

from a USB thumb drive, so you won’t install anything on your

own computer.

The third option to take the exam is as a part of a Red Hat

training course in a classroom. Red Hat offers five-day courses to

prepare for the RHCSA exam. The last day of such a course is

dedicated to taking the exam, and you and your fellow students

will work on the exam, which is administered by a local proctor,

in a classroom.

You can register to take the exam either through Redhat.com

(following the links under the Services & support tab) or through

a training company. Either way, you take the same exam. It

might be easier, though, to get a discount by booking through a

local training company. Booking through Red Hat will be faster

normally, as you have direct access to Red Hat.

On Exam Day

http://Redhat.com

Make sure to bring appropriate identification to the exam or to

have it handy for a home exam. To be allowed to take the exam,

you need an approved government ID. Normally, a passport or

driver’s license will do; other types of proof may be accepted in

your country as well. Do not forget it; without ID, you will not be

allowed to take the exam.

Also, make sure you are on time. For an exam in a test center, it

is a good idea to arrive 30 minutes before the exam’s scheduled

starting time. If you are late, you will normally be allowed to sit

for the exam, but you will not get extra time. So, just make sure

that you are on time. If you’re taking a home exam, I advise you

to start the exam environment 30 minutes before the scheduled

exam time. It will take a while for the environment to load

completely.

After proving your identity, you are introduced to the exam

environment. Because of the nondisclosure agreement that every

test-taker signs with Red Hat, I cannot tell you in detail what the

exam environment looks like. I can tell you, though, that there

will be an environment that consists of one or more servers that

you can access from a graphical desktop environment that runs

Red Hat Linux. There is also a list of tasks that you must perform.

Work your way through the tasks, reading all carefully and

thoroughly, and you will pass the exam if you have prepared

well.

During the Exam

The tasks that you have to work on during the exam are not

necessarily presented in the most logical order. Therefore, it is a

good idea to start reading through all the tasks before you start

working on the first assignment. While reading through all the

tasks, you can decide which is the best order to create the

configurations needed. Determine the best possible order for

yourself, because it may not be obvious.

You have 2 hours and 30 minutes to work through all the exam

assignments. Expect about 17 assignments; you might see a bit

more or less.

Another very important tip is to read carefully, a skill that not

many people have been taught well. IT administrators are very

skilled in scanning web pages to retrieve the information that

they need. That skill will not help you on the exam. Reading skills

do. I cannot stress that enough. I estimate that 40% of all people

who fail the exam do so because they do not read the exam

questions carefully. (They scan instead.) So, let me give you some

tips on how to read the exam questions:

If English is not your native language, you can switch the

language that questions are presented in. Maybe the English-

language question is not clear to you, but the question

translated in another language is. So, if in doubt, read the

translation as well.

Because the questions are originally written in English—the

default language and the preference of most exam candidates

—they tend to be perfect in that form, because Red Hat applies

a tremendous effort to make them perfect. Red Hat must rely

on translators to ensure the questions are translated correctly,

so the quality of the English-language questions is the best.

You are free to use translated questions, but you should use

the English-language questions as your primary source.

To make sure that you do not miss anything, make a task list

for each question. You have scratch paper with you during the

exam. Use it to make a short list of tasks that you have to

accomplish, and work on them one by one. This approach

helps you concentrate on what the exam question is actually

asking.

After you have worked on all assignments, take a short break.

(You are allowed to take a break during the exam.) When you

return, read all questions again to make sure that you did not

miss anything. Taking a short break is important; it allows you

to distance yourself from the exam, after which you should

read the questions as if it is the first time that you have seen

them.

Another important part of the exam is the order in which you

work on the assignments. Regardless of the specific exam

content, some topics need to be addressed before other topics.

Make sure that you deal with those topics first. If you do not, it

will make it more difficult or even impossible to complete the

other assignments. Roughly speaking, here is the order in which

you should work on the exam topics:

1. Make sure that your server boots and you have root access to

it.

2. Configure networking in the way it is supposed to work.

3. Configure any repositories that you need.

4. Install and enable all services that need to be up and running

at the end of the exam.

5. Work on all storage-related tasks.

6. Create all required user and group accounts.

7. Set permissions.

8. Make sure SELinux is working and configured as required.

9. Work on everything else.

The third thing that you need to know about the exam is that you

should reboot at least a couple of times. A successful reboot

allows you to verify that everything is working up to the moment

you have rebooted. Before rebooting, it is a good idea to remove

the rhgb and quiet options from the GRUB boot loader. Removing

them allows you to see what actually happens and makes

troubleshooting a lot easier.

Do not reboot only at the end of the exam, because if at that

moment you encounter an issue, you might not have enough

time to fix it. You should at least make sure to reboot after

working on all storage-related assignments.

The Nondisclosure Agreement

The RHCSA certification is the most sought-after certification that

currently exists in IT. It represents a real value because it

demonstrates that the person who has passed the RHCSA exam is

able to work through a list of realistic assignments and complete

the job successfully. It is in everybody’s interest to help maintain

this high value of the RHCSA certification. The nondisclosure

agreement (NDA) is an important part of that.

The RHCSA exam requires demonstrating real skills because the

content of the exam is not publicly available. Please help keep

these exams valuable by not talking about questions that you

have seen on the exam. Anyone who knows before the exam

which questions will be asked will have an easier exam than you

had, which means that the value of the certification will diminish

and will make your effort less valuable. So, please help protect

what you have worked so hard for and do not talk about exam

content to anyone.

Also, you should realize that there is a penalty for disclosing

exam questions after you have signed the NDA. You will lose

your certification if you have passed the exam, or you will

become barred from retaking it if you did not pass.

Hivanetwork.com

https://hivanetwork.com/

Chapter 28

Theoretical Pre-Assessment Exam

This chapter provides an RHCSA theoretical pre-assessment

exam to help you determine what you know and what you do not

know. This theoretical exam is provided so that you can assess

your skills and determine the best route forward for studying for

the exam.

The RHCSA exam is a 100% practical exam. You work on actual

configuration tasks, and you must deliver a working

configuration at the end of the exam. Therefore, passing this

practical exam requires that you have a working knowledge of

RHEL 9. This chapter helps you check whether you have the

requisite knowledge.

In the following pre-exam theoretical exam, you are asked how

you would approach some essential tasks. The purpose is to

check for yourself whether you are on the right track. You do not

have to provide a detailed step-by-step procedure. You just need

to know what needs to be done. For instance, if the question asks

how to set the appropriate SELinux context type on a nondefault

web server document root, you know what you need to do if you

say “check the semanage-fcontext man page.” If you do not have

the answers to any of these questions, you know that you need to

do additional studying on those topics.

In this theoretical pre-assessment exam, some key elements are

covered. This test is not 100% comprehensive; it just focuses on

some of the most essential skills.

1. You need to create a shared group environment where

members of the group sales can easily share permissions with

one another. Which approach would you suggest?

2. You need to change the hostname of the computer to

something else and do it persistently. How would you do that?

3. On your disk, you have to create a logical volume with a size of

500 MB and the name my_lv. You do not have LVM volumes

yet. List the steps to take to create the logical volume and

mount it as an Ext4 file system on the /data directory. Also

ensure that the extent size this logical volume uses is 8 MiB.

4. While booting, your server gives an error and shows “Enter

root password for maintenance mode.” What is the most likely

explanation for this problem?

5. You need to access a repository that is available on

ftp://server.example.com/pub/repofiles. How would you do

this?

6. You need to schedule a command to be executed automatically

every day at midnight as user bob. How would you do that?

7. How do you create a user who is not allowed to log in?

8. You have configured your web server to listen at port 8082,

and now it doesn’t start anymore. How do you troubleshoot?

9. You have access to the server console, but you do not have the

root password to log in to that server. Describe step by step

what you would do to get access to the server by changing the

password of user root.

10. How do you configure a server to use the best performance

profile?

11. You need to install the RPM package that contains the file

sealert, but you have no clue what the name of this package is.

What is the best way to find the package name?

12. You need to locate all files containing the text “root” in the /etc

directory. How would you do that?

13. You are trying to find relevant man pages that match the

keyword user. You type man -k user but get the “nothing

appropriate” message. How can you fix this?

14. How do you add a user to a new secondary group with the

name sales without modifying the existing (secondary) group

assignments?

15. How would you create a 5-GiB Stratis volume with the name

stratisdata and mount it automatically on /stratisdata?

16. How would you configure time synchronization, such that

your server is synchronizing time with server10.example.com?

17. How do you set up automount in such a way that any user who

accesses their home directory in /home/ldapusers will

automatically mount the matching directory from

nfsserver:/home/ldapuser/?

Part V

RHCSA 9 Practice Exams

RHCSA Practice Exam A

General Notes

Here are some tips to ensure your exam starts with a clean

environment:

You do not need external servers or resources.

Do not register or connect to external repositories.

Install a new VM according to the instructions in each practice

exam.

No sample solutions are provided for these practice exams. On

the real exam, you need to be able to verify the solutions for

yourself as well.

You should be able to complete each exam within two hours.

After applying these tips, you’re ready to get started. Good luck!

1. Install a RHEL 9 virtual machine that meets the following

requirements:

1. 2 GB of RAM

2. 20 GB of disk space using default partitioning

3. One additional 20-GB disk that does not have any partitions

installed

4. Server with GUI installation pattern

2. Create user student with password password, and user root

with password password.

3. Configure your system to automatically mount the ISO of the

installation disk on the directory /repo. Configure your system

to remove this loop-mounted ISO as the only repository that is

used for installation. Do not register your system with

subscription-manager, and remove all references to external

repositories that may already exist.

4. Reboot your server. Assume that you don’t know the root

password, and use the appropriate mode to enter a root shell

that doesn’t require a password. Set the root password to

mypassword.

5. Set default values for new users. Set the default password

validity to 90 days, and set the first UID that is used for new

users to 2000.

6. Create users edwin and santos and make them members of

the group livingopensource as a secondary group

membership. Also, create users serene and alex and make

them members of the group operations as a secondary group.

Ensure that user santos has UID 1234 and cannot start an

interactive shell.

7. Create shared group directories /groups/livingopensource

and /groups/operations, and make sure the groups meet the

following requirements:

1. Members of the group livingopensource have full access to

their directory.

2. Members of the group operations have full access to their

directory.

3. New files that are created in the group directory are group

owned by the group owner of the parent directory.

4. Others have no access to the group directories.

8. Create a 2-GiB volume group with the name myvg, using 8-MiB

physical extents. In this volume group, create a 500-MiB logical

volume with the name mydata, and mount it persistently on

the directory /mydata.

9. Find all files that are owned by user edwin and copy them to

the directory/rootedwinfiles.

10. Schedule a task that runs the command touch /etc/motd every

day from Monday through Friday at 2 a.m.

11. Add a new 10-GiB virtual disk to your virtual machine. On this

disk, add a Stratis volume and mount it persistently.

12. Create user bob and set this user’s shell so that this user can

only change the password and cannot do anything else.

13. Install the vsftpd service and ensure that it is started

automatically at reboot.

14. Create a container that runs an HTTP server. Ensure that it

mounts the host directory /httproot on the directory

/var/www/html.

15. Configure this container such that it is automatically started

Hivanetwork.com

https://hivanetwork.com/

on system boot as a system user service.

16. Create a directory with the name /users and ensure it contains

the subdirectories linda and anna. Export this directory by

using an NFS server.

17. Create users linda and anna and set their home directories to

/home/users/linda and /home/users/anna. Make sure that while

these users access their home directory, autofs is used to

mount the NFS shares /users/linda and /users/anna from the

same server.

RHCSA Practice Exam B

General Notes

Here are some tips to ensure your exam starts with a clean

environment:

You do not need external servers or resources.

Do not register or connect to external repositories.

Install a new VM according to the instructions in each practice

exam.

No sample solutions are provided for these practice exams. On

the real exam, you need to be able to verify the solutions for

yourself as well.

You should be able to complete each exam within two hours.

After applying these tips, you’re ready to get started. Good luck!

1. Install a RHEL 9 virtual machine that meets the following

requirements:

1. 2 GB of RAM

2. 20 GB of disk space using default partitioning

3. One additional 20-GB disk that does not have partitions

installed

4. Server with GUI installation pattern

2. Create user student with password password, and user root

with password password.

3. Configure your system to automatically mount the ISO of the

installation disk on the directory /repo. Configure your system

to remove this loop-mounted ISO as the only repository that is

used for installation. Do not register your system with

subscription-manager, and remove all references to external

repositories that may already exist.

4. Create a 1-GB partition on /dev/sdb. Format it with the vfat file

system. Mount it persistently on the directory /mydata, using

the label mylabel.

5. Set default values for new users. Ensure that an empty file

with the name NEWFILE is copied to the home directory of

each new user that is created.

6. Create users laura and linda and make them members of the

group livingopensource as a secondary group membership.

Also, create users lisa and lori and make them members of the

group operations as a secondary group.

7. Create shared group directories /groups/livingopensource

and /groups/operations and make sure these groups meet the

following requirements:

1. Members of the group livingopensource have full access to

their directory.

2. Members of the group operations have full access to their

directory.

3. Users should be allowed to delete only their own files.

4. Others should have no access to any of the directories.

8. Create a 2-GiB swap partition and mount it persistently.

9. Resize the LVM logical volume that contains the root file

system and add 1 GiB. Perform all tasks necessary to do so.

10. Find all files that are owned by user linda and copy them to

the file /tmp/lindafiles/.

11. Create user vicky with the custom UID 2008.

12. Install a web server and ensure that it is started automatically.

13. Configure a container that runs the

docker.io/library/mysql:latest image and ensure it meets the

following conditions

1. It runs as a rootless container in the user linda account.

2. It is configured to use the mysql root password password.

3. It bind mounts the host directory /home/student/mysql to

the container directory /var/lib/mysql.

4. It automatically starts through a systemd job, where it is not

needed for user linda to log in.

Appendix A

Answers to the “Do I Know This Already?”
Quizzes and Review Questions

Answers to the “Do I Know This Already?” Quizzes

Chapter 1

 A and B. Fedora is an experimental/enthusiast version containing

many components that may or may not make it into the RHEL

distribution tree and onto the RHCSA exam. CentOS Stream is

also not an optimal choice, as it continuously evolves.

 D. All RHEL software updates are made available in CentOS as

well. For the rest, CentOS Stream is an unsupported platform.

 A. In particular, when working with virtual machines, you’ll be

happy to have a GUI at your disposal.

 C. XFS is used as the default file system. When Red Hat decided

which file system to use as the default file system, Btrfs was not

stable enough yet.

 A. The size of an XFS file system cannot be reduced.

 C. The Fedora project tries to make a stable distribution as well.

There are many Fedora users around the globe who use it as a

production distribution.

 D. The Troubleshoot an Existing Installation option is available

when booting from disk, not on the Installation Summary screen.

 D. You are allowed to use an unsecure password; you just have to

confirm it twice.

 D. Language settings can be changed after installation. This is

done easily through the Settings option in the graphical interface.

 B. Even if it makes sense having /var on a dedicated partition,

this is not part of a default installation.

Chapter 2

 B. You first must redirect the standard output to a file, and then

2>&1 is used to specify that errors are to be treated in the same

way.

 B. /etc/bashrc is processed when a subshell is started, and it is

included while starting a login shell as well.

 C. On Linux, the current directory is not set in the $PATH

variable.

 D. A pipe (|) is used to process the output of the first command

and use it as input of the second command.

 D. The command history -c removes the in-memory state from

the history file of current history. That doesn’t just remove the

line that contains the password, but everything. Use history -d

<number> to remove a line with a specific number.

 D. Ctrl-X is not a valid history command.

 D. Bash completion works for commands, files, variables, and

other names if configuration for that has been added (like

hostnames for the SSH command).

 A. You need the command :%s/old/new/g to replace all instances

of old with new. % means that it must be applied on the entire

file. s stands for substitute. The g option is used to apply the

command to not only the first occurrence in a line (which is the

default behavior) but all occurrences in the line.

 B. The /etc/motd file contains messages that are displayed after

user login on a terminal session. If you want to show a message

before users log in, edit the /etc/issue file.

 C. The man -k command uses a database to find the keywords

you are looking for. On RHEL 9, this database is updated with the

mandb command. On older versions of RHEL (prior to RHEL 7),

the makewhatis command was used instead.

Chapter 3

 D. /run is the default location where temporary files are created.

Notice that these can also be created in the /tmp directory, but

within /run a directory structure is created to ensure each

process has its own environment that is not accessible by other

processes, and that makes /run more secure.

 C. The /var directory is used on Linux to store files that may grow

unexpectedly.

 B, C, and D. The nodev option specifies that the mount cannot be

used to access device files. With noexec, executable files cannot

be started from the mount, and nosuid denies the use of the SUID

permission.

 C. The df -h command shows mounted devices and the amount of

disk space currently in use on these devices. The -T option helps

in recognizing real file systems (as opposed to kernel interfaces)

because it shows the file system type as well.

 C. The option -a shows hidden files, -l gives a long listing, -r

reverts the sorting so that newest files are shown last, and -t sorts

Hivanetwork.com

https://hivanetwork.com/

on modification time, which by default shows newest files first.

 C. To copy hidden files as well as regular files, you need to put a .

after the name of the directory the files are in. Answer A copies

hidden files as well, but it creates a subdirectory $USER in the

current directory.

 A. The mv command enables you to move files and rename files.

 D. In hard links, no difference exists between the first hard link

and subsequent hard links.

 C. The option -s is used to create a symbolic link. While creating a

link, you first have to specify the source, and next you specify the

destination.

 D. Use the option -u to update an existing tar archive.

Chapter 4

 A. The head command by default shows the first ten lines in a

text file.

 D. The wc command shows the number of lines, words, and

characters in a file.

 D. When you use less, the G key brings you to the end of the

current file.

 A. The -d option is used to specify the field delimiter that needs to

be used to distinguish different fields in files while using cut.

 A. The sort command can sort files or command output based on

specific keys. If no specific key is mentioned, sorting happens

based on fields. The option -k3 will therefore sort the third field

in the output of the ps aux command.

 D. When used in a regular expression, the ^ sign in front of the

text you are looking for indicates that the text has to be at the

beginning of the line.

 A. The ? regular expression is used to refer to zero or one of the

previous characters. This makes the previous character optional,

which can be useful. If the regular expression is colou?r, for

example, you would get a match on color as well as colour.

 D. + is used to indicate the preceding character should occur one

or more times. Notice that this is an extended regular expression

and most tools need additional options to work with extended

regular expressions.

 D. The awk command first needs to know which field separator

should be used. This is specified with the -F : option. Then, it

needs to specify a string that it should look for, which is /user/.

To indicate that the fourth field of a matching file should be

printed, you need to include the { print $4 } command.

 B. Use grep -v to exclude from the results lines containing the

regular expression.

Chapter 5

 B. The console is the screen you are working from. On the

console, a terminal is started as the working environment. In the

terminal, a shell is operational to interpret the commands you

are typing.

 A. The console is the screen you are working from. On the

console, a terminal is started as the working environment. In the

terminal, a shell is operational to interpret the commands you

are typing.

 C. The console is the screen you are working from. On the

console, a terminal is started as the working environment. In the

terminal, a shell is operational to interpret the commands you

are typing.

 B. The six virtual consoles that are available on Linux by default

are numbered /dev/tty1 through /dev/tty6. The device /dev/pts/6 is

used to refer to the sixth pseudo terminal, which is created by

opening six terminal windows in a graphical environment.

 A and C. A pseudo terminal device is created when opening new

terminals using SSH or from the graphical interface.

 D. Typically, a server reboot is necessary only after making

changes to the kernel and kernel modules that are in use.

Changing the network configuration does not normally require a

reboot, because it is possible to just restart the network service.

 C. Windows has no native support for SSH. You need to install

PuTTY or similar software to remotely connect to Linux using

SSH.

 D. Key fingerprints of hosts that you have previously connected

to are stored in your home directory, in the subdirectory .ssh in a

file with the name known_hosts.

 C. The ForwardX11 option in the /etc/ssh/ssh_config file enables

support for graphical applications through SSH.

 C. To initiate key-based remote authentication, you should copy

the public key to the remote server. The most convenient way to

do so is using the ssh-copy-id command.

Chapter 6

 A and D. The RHEL 9 installation program offers an option to set

no password for user root, which will effectively disable the root

user account. If you want to allow root user login, it’s wise not to

allow this user to log in. You cannot delete the root user, as it is

required for much system functionality.

 D. In the sudo configuration file, all members of the group wheel

by default get access to all administrator tasks.

 B. To define an exception, the exception is listed after the generic

command and not before. Notice that answer C may also be

working, but depends on the current PATH setting and for that

reason should not be used in this way.

 C. To use pipes in the sudo shell, the entire command must be

executed as an argument to the sh -c command. Answer D might

look correct as well, but it is not, because the grep command is

not executed with sudo privileges.

 C. The file /etc/default/useradd is read for default settings when

new user accounts are created. Notice that it only includes some

settings, including the name of the default home directory. Most

user-related settings are in /etc/login.defs.

 A. The chage -l command enables you to manage password

properties.

 B. There is no file /etc/.profile.

 A. The vigr command creates a copy of the /etc/group file so that

changes can be applied safely.

 C and D. The id and groups commands show a list of all groups a

user is a member of.

 C. If a file /etc/nologin exists, only the user root will be allowed to

log in. To display an optional message to users trying to log in,

the message can be included in /etc/nologin.txt.

Chapter 7

 C. The newgrp command is used to set the effective primary

group, which will affect default group ownership on new files

until the current shell session is ended. The chgrp command is

used to set the group owner of an existing file; chgrp is not

related to any user account, and it affects newly created files

only.

 A. The find / -user linda command searches all files that are

owned by user linda. Notice that find also has a -uid option that

allows you to locate files based on a specific UID setting. This

does not allow you to search files based on a username, but it

will let you find files based on the UID of a specific user.

 C. chgrp myfile sales does not set group ownership for the file

myfile. The order in this command is wrong; chgrp first needs

the name of the group, followed by the name of the owner that

needs to be set.

 C. When used in relative mode, the three digits are used to

specify user, group, and others permissions. The value 6 is used

to apply read and write.

 D. The essence to the answer is the use of uppercase X, also

known as “special X.” This changes the permission on the

directory, but not on files.

 C. The chmod g+s /dir command adds (+) the SGID permission to

/dir; chmod u+s /dir adds SUID to the directory; chmod g-s /dir

removes the SGID permission; and the 1 in chmod 1770 /dir

would set the sticky bit and not SGID.

 D. The passwd command needs the SUID permission to be set, to

make it possible to write changes to the /etc/shadow file.

 A. The root user needs a higher level of security, and for that

reason has a different umask than regular users.

 C. The umask 027 will give all permissions to the file owner, read

permissions to the group, and no permissions to others.

 C. The lsattr command shows current attribute settings to files.

The ls command is not capable of showing file attributes, and the

other commands that are listed do not exist.

Chapter 8

 D. Based on the /26 subnet mask, the networks are 192.168.4.0,

192.168.4.64, 192.168.4.128, and 192.168.4.192. That means that IP

addresses II, III, and IV belong to the same network.

 B. The 169.254.0.0 network address does not belong to the private

address ranges, which are 10.0.0.0/8, 172.16.0.0/12, and

192.168.0.0/16. The address 169.254.0.0 is from the APIPA range.

This is a range of IP addresses that can be automatically self-

assigned by a client that is trying to reach an unreachable DHCP

server.

 A, B, or C. On RHEL 9, network device names are generated

automatically, and the exact name you’ll get depends on the

information that is revealed by the kernel driver in use. If no

specific information is revealed by the driver, the legacy name

Hivanetwork.com

https://hivanetwork.com/

eth0 is used.

 D. Use of the ifconfig command is deprecated; use the ip

command instead. The ip addr show command shows

information about the state of the interface as well as the current

IP address assignment.

 A. The network service no longer exists in RHEL 9.

 B. The nmcli-examples man page was created to make working

with the long commands in nmcli a bit easier. Note that nmcli

also has excellent command-line completion features.

 C. On RHEL 9, nmtui is the default utility to set and modify the

network interface.

 D. When the connection is added, you use ip4 and gw4 (without a

v).

 A. You should not set the DNS servers directly in /etc/resolv.conf,

because that file is automatically written by the

NetworkManager service.

 C. The name of the configuration file that contains the hostname

is /etc/hostname. You should use hostnamectl to change its

contents.

Chapter 9

 D. The gpgcheck= line indicates whether to check the integrity of

packages in the repository using a GPG key. Although useful, this

capability is not mandatory in all cases.

 B. If a RHEL system is not registered with Red Hat, no

repositories are available. This is important to realize for the

RHCSA exam, because it means that you need to connect to a

repository before you can install anything.

 C. Use baseurl to specify which URL to use. If the URL is based on

the local file system, it uses the URI file:// followed by the path on

the local file system, which in this case is /repo. This explains

why there are three slashes in the baseurl.

 A, D. GPG package signing is used to set a checksum on packages

so that altered packages can easily be recognized. The main

purpose of signing packages is to make it easy to protect

packages on Internet repositories. For internal repositories that

cannot be accessed by Internet users, the need to add GPG

package signatures is less urgent. If you access a signed

repository for the first time, the dnf command will query to

import the GPG key.

 C, D. Both the commands dnf provides and dnf whatprovides

can be used to search for files within a specific package. While

using dnf whatprovides, the file pattern must be specified as

*/filename or as a full path.

 B. The dnf module application stream allows for working with

different versions of user space software side by side.

 C. To install a specific profile from a dnf module application

stream, add the profile name to the application stream version

using a /.

 A. The dnf install command installs individually downloaded

RPM files while looking for package dependencies in the current

repositories. This is better than using rpm -ivh, which does not

consider the dnf repositories. In earlier versions of RHEL, the

dnf localinstall command was used to install packages that were

downloaded to the local file system, but this command is now

deprecated.

 C. Use the rpm -qf command to find which RPM package a

specific file comes from.

 C. The --scripts option checks whether there are scripts in an

RPM package. If you want to query the package file and not the

database of installed RPMs, you need to add the -p option to the -

q option, which is used to perform RPM queries.

Chapter 10

 B and D. There are two different types of processes that each

request a different management approach. These are shell jobs

and daemons. A cron job and a thread are subdivisions of these

generic categories.

 B. The Ctrl-Z command temporarily freezes a current job, after

which the bg command can be used to resume that job in the

background.

 A. The Ctrl-C command cancels the current job. Ctrl-D sends the

EOF character to the current job, which can result in a stop if this

allows the job to complete properly. The difference with Ctrl-C is

that the job is canceled with no regard to what it was doing. The

Ctrl-Z keystroke freezes the job.

 A and B. Individual threads cannot be managed by an

administrator. Using threads makes working in a multi-CPU

environment more efficient because one process cannot be

running on multiple CPUs simultaneously, unless the process is

using threads.

 A. The ps ef command shows all processes, including the exact

command that was used to start them.

 C. To increase process priority, you need a negative nice value.

Note that -20 is the lowest value that can be used.

 C. Use the renice command to change priority for currently

running processes. To refer to the process you want to renice, use

the -p option.

 B. mkill is not a current command to send signals to processes.

 A. To change the process priority from top, use r for renice.

 B. To set the tuned performance profile, use tuned-adm profile,

followed by the name of the profile you want to set.

Chapter 11

 A. The -t service argument shows all currently loaded services

only.

 C. Wants are specific to a particular system and for that reason

are managed through /etc/systemd/system (not

/usr/lib/systemd/system).

 D. Masking a service makes it impossible to enable it.

 D. Running(dead) is not a valid status for systemd services. You

see Inactive(dead) for units that currently are not active.

 D. Socket units monitor socket activity, which may consist of a

file being accessed or a network port being accessed. They do not

monitor PATH activity. This is done by the path unit type.

 B. udev is not a valid systemd unit type (device is a valid unit

type though). All others are.

 B. Answers A and B are very similar, but answer A uses the

wrong command. You have to use the systemctl command, not

the systemd command.

 C and D. The SYSTEMD_EDITOR variable defines which editor to

use. You need to set a full path name for this editor.

Alternatively, you can use the EDITOR variable to set the default

editor for all commands that need to be able to use an editor.

 D. The Wants dependency type defines that a specific unit is

wanted, without setting a hard requirement.

 A. The word order is wrong. It should be systemctl start unit,

not systemctl unit start.

Chapter 12

 A. In RHEL 9 systemd timers are used as the default solution for

scheduling future jobs.

 B. To specify a starting time using systemd timers, use

OnCalendar.

 D. Use OnStartupSec to specify that a timer should run at a

specific time after starting systemd.

 D. In user systemd services, you use OnStartupSec to specify that

a service should be started a specific time after the user systemd

service has been started.

 C. The fields in cron timing are minute, hour, day of month,

month, and day of week. Answer C matches this pattern to run

the task on the seventh day of the week at 11 a.m.

 A. To launch a job from Monday through Friday, you should use

1-5 in the last part of the time indicator. The minute indicator */5

will launch the job every 5 minutes.

 A and D. You cannot modify user cron files directly, but have to

go through the crontab editor. This editor is started with the

crontab -e command. As the root user, you can use crontab -u

<username> -e to edit a specific user crontab.

 A. The /etc/crontab file should not be edited directly, but only by

using input files that are stored in either the user environment or

in /etc/cron.*/ directories.

 B. The Ctrl-D key sequence sends the end-of-file (EOF) character

to the at shell and closes it.

 C. The atq command queries the at service and provides an

overview of jobs currently scheduled for execution.

Chapter 13

 C. system-journald is not a replacement of rsyslogd. It is an

additional service that logs information to the journal. In RHEL 9,

they are integrated to work together to provide you with the

logging information you need.

 D. Most messages are written to the /var/log/messages file, but

authentication-related messages are written to /var/log/secure.

Check the contents of /etc/rsyslog.conf and look for authpriv to

find out what exactly is happening for this facility.

 C. SELinux events are logged through the audit service, which

maintains its log in /var/log/audit/audit.log.

 D. If systemd-journald has been configured for persistent storage

of the journal, the journal is stored in /var/log/journal. Note that

by default the systemd journal is not stored persistently.

 D. To make the systemd journal persistent, you have to create a

Hivanetwork.com

https://hivanetwork.com/

directory /var/log/journal and ensure it has the appropriate

permissions.

 D. The systemd-journal-flush service will update the systemd

journal to use its current settings.

 A. The rsyslogd configuration file is /etc/rsyslog.conf.

 C. rsyslogd destinations often are files. For further processing,

however, log information can be sent to an rsyslogd module. If

this is the case, the name of the module is referred to as

:modulename:.

 D. The local facilities local0 through local7 can be used to

configure services that do not use rsyslog by default to send

messages to a specific rsyslog destination, which needs to be

further configured in the rsyslog.conf file.

 A. The logrotate service can rotate files based on the maximal

file size. The recommended way to configure this is to drop a file

in /etc/logrotate.d containing parameters for this specific file.

Chapter 14

 A. Using GUI partition tables offers many advantages, but it does

not make access to a directory faster.

 A. There is no easy way to change MBR partitions to GPT.

 B. Partition type 82 is normally used to create Linux partitions.

 C. KVM virtual machines use the virtio driver to address hard

disks. This driver generates the device /dev/vda as the first disk

device.

 C. A disk can have one partition table only. For that reason, it is

not possible to have MBR and GPT partitions on the same disk.

 B. XFS is used as the default file system; partitions can still be

formatted with other file systems, like Ext4.

 D. The blkid command shows all file systems, their UUID, and if

applicable, their label.

 D. To mount a file system based on its UUID, use UUID=nnnn in

the /etc/fstab device column.

 B. The best option to verify the content of /etc/fstab is to use the

findmnt --verify command. This command will complain about

errors in lines, regardless of the current mounted state of a

device. The mount -a command can also be helpful, but it only

works on devices that are not currently mounted.

 B. Although convenient, having an [Install] section is only

required if you want to enable the mount unit file.

Chapter 15

 B. It is common to create a file system on top of a logical volume,

but this is not a requirement. For instance, a logical volume can

be used as a device that is presented as a disk device for a virtual

machine.

 C. Copy on write is a feature that is offered by modern file

systems, such as Btrfs. It copies the original blocks a file was

using before creating a new file, which allows users to easily

revert to a previous state of the file. Copy on write is not an LVM

feature.

 D. On a GPT disk, LVM partitions must be flagged with the

partition type 8e00.

 C. The lvcreate command is used to create logical volumes. Use -

n <name> to specify the name. The option -l 50%FREE will assign

50% of available disk space, and vgdata is the volume group it

will be assigned from.

 B and C. The pvdisplay command is used to show extensive

information about physical volumes. The pvs command shows a

summary of essential physical volume properties only.

 C. You can increase the size of an XFS file system, but it cannot be

decreased.

 A. Reducing a volume group doesn’t always involve reducing the

logical volumes it contains as well, which means that you may be

able to reduce the volume group without reducing the logical

volumes, and in that case file system shrinking is not required.

 D. You can always grow the file system later, using file system–

specific tools.

 A. To write metadata, each Stratis volume requires 527 MiB of

storage.

 C. You need to mount Stratis volumes using the UUID and not the

device name. Also, the option x-

systemd.requires=stratisd.service needs to be included to

ensure that the stratisd.service is loaded before systemd tries to

mount the Stratis volume.

Chapter 16

 A. A tainted kernel is caused by drivers that are not available as

open source drivers. Using these may have an impact on the

stability of the Linux operating system, which is why it is good to

have an option to recognize them easily.

 B. The dmesg utility shows the contents of the kernel ring buffer.

This is the area of memory where the Linux kernel logs

information to, so it gives a clear overview of recent kernel

events. Alternatively, use journalctl -k.

 A. The uname -r command shows the current kernel version.

The uname -v command gives information about the hardware

in your computer, and the procinfo command does not exist.

 C. The /etc/redhat-release version contains information about the

current version of RHEL you are using, including the update

level.

 A. On a systemd-based operating system such as RHEL 9, the

systemd-udevd process takes care of initializing new hardware

devices.

 B. Default rules for hardware initialization are in the directory

/usr/lib/udev/rules.d; custom rules should be stored in

/etc/udev/rules.d.

 C. The modprobe command is the only command that should be

used for managing kernel modules, as it considers kernel module

dependencies as well. Use modprobe to load a kernel module

and modprobe -r to unload it from memory.

 C. The lspci -k command lists devices that are detected on the PCI

bus and supporting kernel modules that have been loaded for

those devices. Alternatively, lspci -v shows more verbose

information about modules that are currently loaded.

 C. The /etc/modprobe.d directory is used for files that create

custom configurations. The files /etc/modules.conf and

modprobe.conf were used for this purpose in the past. On RHEL

9, kernel module parameters are passed through

/usr/lib/modprobe.d if they are used for operating system–

managed permanent parameters.

 C and D. Kernels are not updated, they are installed. You can use

either dnf update kernel or yum install kernel to do so. There

are no additional requirements, which makes answers C and D

false.

Chapter 17

 A. The systemctl enable command creates a want for the

current unit in the target that is listed in the [Install] section in

the service unit file.

 C. Servers typically don’t run a graphical interface and will start

the multi-user. target.

 B. There is no restart.target.

 D. Unit files contain an [Install] section that is used to specify in

which target the unit should be started.

 A. The required statement is AllowIsolate. All other statements

mentioned here are invalid.

 A. To switch from a target with more unit files to a target with

fewer unit files, use systemctl isolate.

 B. The multi-user.target corresponds roughly to runlevel 3 as

used in a System V environment.

 D. Changes to GRUB 2 need to be applied to /etc/default/grub, not

to /boot/grub2/grub.cfg. The /boot/grub2/grub.cfg file cannot be

edited directly; you have to apply changes to /etc/default/grub

and run the grub2-mkconfig command to write them to the

appropriate configuration file.

 B. The grub2-mkconfig command enables you to regenerate the

GRUB 2 configuration. The result, by default, is echoed to the

screen. Use redirection to write it to a file.

 B. The /boot/efi/EFI/redhat/grub.cfg file is used to store the GRUB

2 bootloader on a UEFI system.

Chapter 18

 C. During the boot procedure, the GRUB 2 boot loader gets loaded

first. From here, the kernel with the associated initramfs is

loaded. Once that has completed, systemd can be loaded.

 B. The Ctrl-X key sequence leaves the GRUB 2 shell and continues

booting.

 B. The /etc/dracut.conf file is used for managing the initramfs file

system.

 A and B. The init=/bin/bash GRUB 2 boot option allows you to

open a root shell without having to enter a password.

init=/bin/sh will do the same.

 A and C. The rhgb and quiet boot options make it impossible to

see what is happening while booting.

 B. The emergency.target systemd target gives just a root shell and

not much more than that. All other options that are mentioned

also include the loading of several systemd unit files.

 C. If you do not get to a GRUB 2 boot prompt, you cannot select an

alternate startup mechanism. This situation requires you to use a

rescue disk so that GRUB can be reinstalled. If the kernel or

initramfs cannot load successfully, you might need to use a

Hivanetwork.com

https://hivanetwork.com/

rescue disk also, but in many cases an alternate kernel is

provided by default.

 C. The mount -o remount,rw / option remounts the / file system

in read/write mode.

 A. Because the error occurs before the GRUB 2 menu is loaded,

the only option to fix this is to use a rescue disk.

 C. When you enter the Linux system with the init=/bin/bash

kernel boot option, you don’t have systemd. As answers A and B

need systemd, they won’t work. Also, the exit command won’t

work, as it will close the current shell and leave you with no

working environment. The only option that does work is exec

/usr/lib/systemd/system, which replaces the current bash shell

with systemd.

Chapter 19

 B. The first line of a Bash shell script contains the shebang, which

defines the subshell that should be used for executing the script

code.

 A. The exit 0 statement at the end of a script is an optional one to

inform the parent shell that the script code was executed

successfully.

 C. The read statement stops a script, which allows a user to

provide input. If read is used with a variable name as its

argument, the user input is stored in this variable.

 D. The first argument is referred to as $1. To store $1 in a

variable with the name, use the command NAME=$1. Make sure

that no spaces are included, which is why answer A is incorrect.

 D. Both $@ and $* can be used to refer to all arguments that were

provided when starting a script, but $@ is the preferred method

because it enables the script to distinguish between the different

individual arguments, whereas $* refers to all the provided

arguments as one entity.

 D. A conditional loop that is started with if is closed with fi.

 C. If within an if loop a new conditional check is opened, this

conditional check is started with elif.

 B. After the condition is started in a for loop, do is used to start

the commands that need to be started when the condition is true.

 D. The mail command needs its subject specified with the -s

option. The mail command normally waits until a dot is entered

on an empty line to start sending the message. This dot can be fed

to the mail command using STDIN redirection, using <.

 A. In a case statement, the different options are proposed with a

) behind them. *) refers to all other options (not specified in the

script).

Chapter 20

 A. X11 forwarding applies to sessions that have already been

authorized. Disabling it does not protect against brute-force

attacks.

 C. The AllowUsers parameter can be used to restrict SSH access

to specific users only.

 D. To change the port on which SSH is listening in SELinux, the

port must be allowed as well. To do so, use semanage port. The

context type needs to be set to ssh_port_t.

 B. The MaxAuthTries setting starts logging failed login attempts

after half the number of attempts specified here.

 D. Login-related settings are logged to /var/log/secure.

 C. SSH is trying to do a reverse lookup of the DNS name

belonging to a target IP address. If faulty DNS configuration is

used, this will take a long time.

 D. The UseDNS option has nothing to do with SSH session

keepalive.

 A. SSH client settings that apply to a specific user only can be

stored in ~/.ssh/config.

 C. The ssh-agent command adds an SSH credentials cache to a

shell. Next, you need to run ssh-add to add a specific key to the

cache.

 A. By default, an SSH server can support ten sessions only.

Chapter 21

 A. The httpd package contains the core components of the

Apache web server. It can be installed using yum install httpd.

 A. The default Apache configuration file is

/etc/httpd/conf/httpd.conf.

 C. The DocumentRoot parameter specifies where the Apache

web server will look for its contents.

 A. The ServerRoot parameter defines where Apache will look for

its configuration files. All file references in the httpd.conf

configuration file are relative to this directory.

 B. The /etc/httpd/conf directory contains the main Apache

configuration file httpd.conf.

 D. The /etc/httpd/conf.modules.d directory contains configuration

files that are used by specific Apache modules.

 C. The /etc/httpd/conf.d directory is used by RPMs that can drop

files in that directory without changing the contents of the main

Apache configuration file.

 A. The name-based virtual host is used as the default virtual host

type. It allows multiple virtual hosts to be hosted on the same IP

address.

 A. The VirtualHost parameter is used to open a virtual host

definition. * refers to all IP addresses, and :80 defines the port it

should listen on.

 C. No additional packages need to be installed to enable virtual

hosts. Virtual hosts are supported through the default httpd RPM

package.

Chapter 22

 B. In older versions of Red Hat, the file /etc/sysconfig/selinux

could be modified to contain the setting selinux=disabled. In

RHEL 9 you can start a system in disabled mode only by using the

GRUB boot argument selinux=0.

 A and D. The getenforce command is used to request the current

SELinux mode. The sestatus command can be used also. It shows

the current mode, and some additional security-related

information as well.

 A. For basic SELinux configuration, you need to make sure that

the appropriate context type is set. User and role are for

advanced use only.

 C. The -Z option displays SELinux-related information and can be

used with many commands.

 D. This is the only command that provides correct usage

information about semanage. Remember that chcon should be

avoided at all times.

 B. When you’re moving a file, the original file context is moved

with the file. To ensure that the file has the context that is

appropriate for the new file location, you should use restorecon

on it.

 C. If a port has already been labeled, use semanage port -m to

modify it.

 B. To change Booleans, use setsebool; to make the change

persistent, use -P.

 A. SELinux messages are logged by auditd, which writes the log

messages to /var/log/audit/audit.log. Only if sealert is installed

are messages written to /var/log/messages as well, but that does

not happen by default.

 D. SELinux log messages in audit log always contain the text avc,

which stands for access vector cache.

Chapter 23

 A. On a default configuration, there is no untrusted zone in

firewalld.

 C. Netfilter is the name of the firewall implementation in the

Linux kernel. Different toolsets exist to manage netfilter

firewalls. Iptables has been the default management interface for

a long time, and in Red Hat Enterprise Linux 7, firewalld was

added as an alternative solution to manage firewalls.

 D. Iptables is a legacy service and has been replaced with the

nftables utility. Firewalld is used to provide an easy-to-use

management interface for nftables.

 C. The firewall-cmd --get-services command shows all services

that are available in firewalld.

 C. The name of the GUI tool that can be used to manage firewall

configurations is firewall-config.

 B. Answer B shows the correct syntax.

 A. The trusted zone is provided for interfaces that need minimal

protection.

 D. Configuration that is added with the --permanent option is not

activated immediately and needs either a restart of the firewalld

service or the command firewall-cmd --reload.

 B. The --list-all command without further options shows all

configurations for all zones.

 D. The --runtime-to-permanent option writes all current

configuration to the permanent configuration. Although answer

B would also work, answer D is preferred as it doesn’t require

you to restart the firewalld service.

Chapter 24

 B. The showmount command can be used to get information

about mounts. Use showmount -e to get a list of all mounts that

Hivanetwork.com

https://hivanetwork.com/

have been exported.

 A. NFSv4 does not offer straight integration with Active

Directory. Similar functionality is provided by the option to use

Kerberized security.

 C. The nfs-utils package contains all that is needed to mount NFS

shares.

 D. showmount is using the NFS portmapper, which is using

random UDP ports to make the connection. Portmapper traffic is

not automatically allowed when the nfs service is added to the

firewall because RPC ports that are needed by showmount are

blocked by the firewall. Ensure that the rpc-bind and mountd

services are added to the firewall to enable the showmount

command to work as it should.

 C. The Systemd nfs-server.service file is used to offer NFS

services.

 B. On older RHEL versions, the _netdev mount option needed to

be specified in /etc/fstab to indicate that the network service is

required before starting the NFS service. Because of improved

dependency handling in systemd, on current RHEL no additional

mount options are required.

 D. You do not have to set permissions on the local file system for

automount to be effective.

 B. Each automounted directory should have a configuration file

that has a name that matches the name of the automounted

directory. For /myfiles, that would be /etc/auto.myfiles.

 C. The first element is *, which refers to all directories that may

be accessed in the local directory. The & matches this directory

on the NFS share. The -rw option is used to specify NFS mount

options.

 A. Automount uses the autofs service.

Chapter 25

 C. When booting, a server reads the hardware clock and sets the

local time according to hardware time.

 D. Hardware time on Linux servers typically is set to UTC, but

local administrators may choose to make an exception to that

general habit.

 D. The timedatectl command, introduced as a new solution in

RHEL 7, allows you to manage many aspects of time.

 C. Atomic clocks can be used as a very accurate alternative to the

normal hardware clock.

 D. The /etc/chrony.conf file contains the default list of NTP

servers that should be contacted on RHEL 9.

 C. The -s option is used to set the current time, and to do so,

military time format is the default.

 A. To translate epoch time into human time, you need to put @ in

front of the epoch time string.

 A. Use hwclock --hctosys to synchronize system time with

hardware time.

 D. When used without arguments, timedatectl gives a complete

overview of current time settings on your server.

 B. The chronyc sources command will show all current

synchronization sources, as well as the stratum that was

obtained from these sources.

Chapter 26

 B. Containers are implemented on top of Linux features like

cgroups for resource allocation and limitation, namespaces for

isolation, and SELinux for enhanced security.

 B. Red Hat OpenShift provides a container orchestration

platform that is based on Kubernetes.

 D. From a running container, use Ctrl-P, Ctrl-Q to detach without

exiting the primary container application.

 B. When you’re running a container, it runs in the foreground by

default. To run it in detached mode, use podman run -d, which

starts it in the background.

 C. To inspect images that have not yet been pulled, you can use

skopeo inspect. This command does not give as much result as

podman inspect or buildah inspect after the image has been

pulled.

 A. The podman info command gives information about the

complete podman working environment. It includes a list of

registries currently in use.

 D. If environment variables are required for starting a container,

the environment variables to be used are well documented

within the image, as well as in the documentation on the

container registry. Alternatively, you may just run the container

and read the container logs after it has failed.

 B. The container_file_t SELinux context type must be set on the

host directory that you want to bind-mount to make it available

as storage inside the container.

 C. To perform the bind mount, you must use the -v option with

podman run. To automatically set correct SELinux context, you

must use the :Z option right after the name of the directory

within the container. Also, you must make sure that the user who

runs this command is the owner of the directory on the host

operating system.

 B. After you enable a container with systemctl --user enable,

the container service will be started when the user logs in. To

have the container start when the system starts, enable the linger

feature by using loginctl enable-linger.

Answers to the Review Questions

Chapter 1

 You have different options. The recommended option is to use a

free version of RHEL, as provided through

developers.redhat.com. Alternatively, you can use Rocky Linux

or AlmaLinux.

 The network card might not be enabled. This is dependent on the

environment that you’re using. If the network card is enabled,

http://developers.redhat.com

you’ll automatically obtain configuration from a DHCP server.

 You need 1 GB of RAM to install a minimal system.

 By default, updates and installation of additional software

packages require Internet connectivity.

 Use an ISO image to install a virtual machine on the computer.

 It is easier to open two terminal windows side by side.

 XFS is the default file system on RHEL 9.

 You can install RHEL if you do not have Internet access. But you

cannot register with RHN, so you will not have access to

repositories after the installation has finished and you’ll need to

set up repository access manually.

 Registering your RHEL 9 installation gives access to the RHEL

repositories, so that software packages can be installed and

updated.

 Use the Minimal Install pattern if you have a very limited

amount of disk space available.

Chapter 2

 A variable is a placeholder that contains a specific value and that

can be used in scripts to work with dynamic contents.

. man -k enables you to find the correct man page based on

keyword usage.

 Change /etc/bashrc to ensure a variable is set for every shell that

is started.

 Use pinfo to read the information.

 Bash stores its history in ~/.bash_history.

. mandb updates the database that contains man keywords.

 Use + to undo the last modification you have applied in vim.

 Add 2> /dev/null to a command to ensure that it doesn’t show an

error message.

 Use echo $PATH to read the current contents of the $PATH

variable.

 Press Ctrl-R and type dog.

Chapter 3

 /etc contains configuration files.

. ls -alt displays a list of current directory contents, with the

newest files listed first. (-a also shows files that have a name that

starts with a dot.)

. mv myfile yourfile renames myfile to yourfile.

. rm -rf /directory wipes an entire directory structure, including

all of its contents.

. ln -s /tmp ~ creates in your home directory a link to /tmp.

. cp /etc/[abc]* . copies all files that have a name that starts with a,

b, or c from the directory /etc to your current directory.

. ln -s /etc ~ creates in your home directory a link to /etc.

 Use rm symlink to safely remove a symbolic link to a directory.

If rm is aliased to rm -i and you do not want to answer yes for

every individual file, use \rm instead.

. tar zcvf /tmp/etchome.tgz /etc /home creates a compressed

archive of /etc and /home and writes it to /tmp/etchome.tgz.

. tar xvf /tmp/etchome.tgz /etc/passwd extracts /etc/passwd from

/tmp/etchome.tgz.

Chapter 4

Hivanetwork.com

https://hivanetwork.com/

. ps aux | less shows the results of ps aux in a way that is easily

browsable.

. tail -n 5 ~/samplefile shows the last five lines from ~/samplefile.

. wc ~/samplefile. You might use -w to show only the number of

words.

 Press Ctrl-C to stop showing output.

. grep -v -e '^#' -e '^;' filename excludes all lines that start with

either a # or a ;.

 Use + to match one or more of the preceding characters.

. grep -i text file finds both text and TEXT in a file.

. grep -B 5 '^PATH' filename shows all lines starting with PATH

as well as the preceding five lines.

. sed -n 9p ~/samplefile shows line 9 from ~/samplefile.

. sed -i 's/user/users/g' ~/samplefile replaces the word user with

the word users in ~/samplefile.

Chapter 5

 Typically, the console is the main screen on a Linux server.

 Press Ctrl-Alt-F2 to switch back from a text-based login prompt to

current work on the GUI.

. w or who shows all users who currently have a terminal session

open to a Linux server.

 /dev/pts/0 is the device name that is used by the first SSH session

that is opened to a server where no GUI is operational.

. ssh -v shows detailed information on what SSH is doing while

logging in.

. ssh -X initiates an SSH session with support for graphical

applications.

 ~/.ssh/config needs to be edited to modify SSH client settings.

. scp /etc/hosts lisa@server2:/tmp copies the /etc/hosts file to the

directory /tmp on server2 using the username lisa.

 ~/.ssh/authorized_keys stores public keys for remote users who

want to log in using key-based authentication.

. ssh-keygen generates an SSH public/private key pair.

Chapter 6

 timestamp_timeout, which can be set in the Default configuration

in /etc/sudoers.

. sudo is defined in /etc/sudoers.

 Use visudo to modify a sudo configuration. Or even better, use

an editor to create sudo configuration files in /etc/sudoers.d/

 Use pkexec visudo to run the visudo command with sudo

privileges.

 Just one additional group membership is defined in /etc/group.

 Making a user a member of the wheel group grants the user

access to all admin commands through sudo.

 Use vigr to modify the /etc/group file manually.

. passwd and chage can be used to change user password

information.

 /etc/shadow stores user passwords.

 /etc/group stores group accounts.

Chapter 7

. chown :groupname filename or chown .groupname filename

sets the group owner to a file.

. find / -user username finds all files owned by a specific user.

. chmod -R 770 /data applies read, write, and execute permissions

to all files in /data for the user and group owners while setting no

permissions for others.

 In relative permission mode, use chmod +x file to add the

execute permission to a file that you want to make executable.

 Using chmod g+s /directory ensures that group ownership of all

new files created in a directory is set to the group owner of that

directory.

. chmod +t /directory ensures that users can only delete files of

which they are the owner or files that are in a directory of which

they are the owner.

 The umask 027 should be used. The 7 in the third position

indicates that no default permissions should be granted to

“others.”

 You need to use the append only (a) extended attribute. Use

chattr +a <filename> to set it.

 Use find / -perm +4000. The -perm argument to find searches for

permissions, and the permission mode you’re looking for is 4 at

the first position. By using a + and specifying the other

permissions as a 0, you indicate that any other permissions may

be allowed as well.

 Attributes are not shown by the ls command. Use lsattr instead.

Chapter 8

 213.214.215.96 is the network address in 213.214.215.99/29.

. ip link show shows link status and not the IP address.

 The /etc/resolv.conf file is written automatically by

NetworkManager. After restarting NetworkManager it will be

rewritten, and locally applied changes will have disappeared.

 /etc/hostname contains the hostname in RHEL 9.

. hostnamectl set-hostname enables you to set the hostname

easily.

 NetworkManager stores the connections it creates in

/etc/NetworkManager/

 Change /etc/hosts to enable hostname resolution for a specific IP

address.

 Non-admin users can change NetworkManager settings

according to the permissions that are set. Use nmcli general

permissions for an overview of current permissions.

. systemctl status NetworkManager verifies the service’s current

status.

. nmcli con mod "static" ipv4.addresses "10.0.0.20/24"

10.0.0.100 changes the current IP address and default gateway on

your network connection.

Chapter 9

. createrepo enables you to make a directory containing a

collection of RPM packages a repository.

 The line [some-label] name=some-name

baseurl=http://server.example.com/repo needs to be in the

repository file.

. dnf repolist verifies that a repository is available.

. dnf provides */useradd enables you to search the RPM package

containing the file useradd.

 Using dnf group list followed by dnf group info "Security

Tools" shows the name and contents of the dnf group that

contains security tools.

. dnf module enable php:5.1 ensures that all PHP-related

packages are going to be installed using the older version 5.1,

without actually installing anything yet.

. rpm -pq --scripts packagename enables you to ensure that a

downloaded RPM package does not contain dangerous script

code.

. rpm -qd packagename shows all documentation in an RPM

package.

. rpm -qf /path/to/file shows which RPM package a file comes

from.

. repoquery enables you to query software from the repository.

Chapter 10

. jobs gives an overview of all current shell jobs.

 Press Ctrl-Z and type bg to stop the current shell job to continue

running it in the background.

 Press Ctrl-C to cancel the current shell job.

 Use process management tools such as ps and kill to cancel the

job.

. ps fax shows parent–child relationships between processes.

 Use renice -nn -p PID, where nn is a value between –1 and –20.

Notice that you need to be root in order to increase process

priority.

. killall dd stops all running processes.

. pkill mycommand stops mycommand.

. k is used to kill a process.

 The tuned service must be running to select a performance

profile.

Chapter 11

 A unit is a thing that is started by systemd. There are different

types of units, such as services, mounts, sockets, and many more.

 Use systemctl list-units to show all service units that are

currently loaded.

 Creating a want for a service means that you’ll mark it to be

Hivanetwork.com

https://hivanetwork.com/

automatically started as system boot. You create a want for a

service by using the systemctl enable command.

 Set the SYSTEMD_EDITOR variable in /etc/profile to change the

default editor for systemctl.

 /etc/systemd/system/ contains custom systemd unit files.

 Include Requires to ensure that a unit file will automatically

load another unit file.

. systemctl show httpd shows available configuration options for

the httpd. service unit.

. systemctl list-dependencies --reverse shows all dependencies

for a specific unit.

. systemctl status output indicating that a unit is dead is nothing

serious; it simply means the service is currently not running.

 Using systemctl edit on the unit that you want to modify creates

a systemd override file.

Chapter 12

 A cron job that needs to be executed once every two weeks is

configured as a specific cron file in /etc/cron.d, or tied to a user

account using crontab -e -u username.

 Use a systemd timer that has the OnBoot option to specify how

much time after system boot the corresponding service should be

started.

 If a service should be started by a timer, you have to enable the

timer and not the service. Ensure this is what you’ve done.

 Create a systemd timer that uses the OnUnitActive option to

specify how much time after activation of a service it should be

started again.

 To match a timer to a service, you need to ensure they are using

the same name. So to activate my.service, you need to create

my.timer.

. crontab -e -u lisa enables you to schedule a cron job for user

lisa.

 Create the file /etc/cron.deny and make sure that it includes

username boris.

 Specify the job in /etc/anacrontab and make sure that the

anacron service is operational.

 The atd service must be running to schedule at jobs; use

systemctl status atd to verify.

 Use atq to find out whether any current at jobs are scheduled for

execution.

Chapter 13

 /etc/rsyslog.conf is used to configure rsyslogd.

 /var/log/secure contains messages related to authentication.

 Log files are rotated away by default after five weeks (one week

for the current file, and four weeks for old files).

. logger -p user.notice "some text" logs a message from the

command line to the user facility, using the notice priority.

 Create a file in /etc/rsyslog.d. The name does not really matter.

Give it the following contents: *.=info /var/log/messages.info.

 You can configure the journal to grow beyond its default size

restrictions in /etc/systemd/journald.conf.

. journalctl -xb shows boot messages, including some explanation

that makes interpreting them easier.

. journalctl _PID=1 --since 9:00:00 --until 15:00:00 shows all

journald that have been written for PID 1 between 9:00 a.m. and

3:00 p.m.

 Use journalctl -u sshd to see all messages that have been logged

for the sshd service. Notice that you can see the last messages

that have been logged for this service conveniently by using

systemctl status sshd.

 Making the systemd journal persistent requires the following

four commands, in order: mkdir /var/log/journal; chown

root:systemd-journal /var/log/journal; chmod 2755

/var/log/journal; killall -USR1 systemd-journald.

Chapter 14

 Any tool. GPT can be managed using fdisk, gdisk, or parted.

. fdisk or parted is used to create MBR partitions.

 XFS is the default file system on RHEL 9.

 /etc/fstab is used to automatically mount partitions while

booting.

 The noauto mount option is used to specify that a file system

should not be mounted automatically while booting.

. mkswap enables you to format a partition that has type 82 with

the appropriate file system.

. mount -a enables you to test, without actually rebooting,

whether automatic mounting of the partitions while booting is

going to work. Alternatively, use findmnt --verify.

 Ext2 is created if you use the mkfs command without specifying

a file system.

 Use either mkfs.ext4 or mkfs -t ext4 to format an Ext4 partition.

 Use blkid to find UUIDs for all devices on your computer.

Chapter 15

 The 8e00 partition type is used on a GUID partition that needs to

be used in LVM.

. vgcreate vggroup -s 4MiB /dev/sdb3 creates the specified

volume group.

. pvs shows a short summary of the physical volumes on your

system as well as the volume group to which they belong.

 Just type vgextend vggroup /dev/sdd. You do not have to do

anything on the disk device itself.

 Use lvcreate -L 6M -n lvvol1 vgname. Notice that this works

only if you have created the volume group with a 2-MiB physical

extent size.

. lvextend -L +100M /dev/vgname/lvvol1 adds 100 MB to the

logical volume lvvol1.

 First use pvmove to move used extents to the remaining PVs,

next use vgreduce to remove the PV from the VG.

 Add the line UUID=xxx /stratis1 xfs defaults,x-

systemd.requires=stratisd. service 0 0 to /etc/fstab to mount the

Stratis volume.

. stratis pool create mypool /dev/sdd creates a Stratis pool that is

based on the block device /dev/sdd.

 You can’t. Stratis comes with XFS by default and this cannot be

changed.

Chapter 16

. uname -r shows the current version of the kernel on a computer.

 Current version information about your RHEL installation is

found in /etc/redhat-release.

. lsmod shows a list of currently loaded kernel modules.

. modinfo modulename displays kernel module parameters.

. modprobe -r unloads a kernel module.

 Use lsmod to find out which other kernel modules currently

need this kernel module and unload these kernel modules first.

Note that this will not always work, especially if the considered

hardware currently is in use.

 Use modinfo to find which kernel module parameters are

supported.

 Create a file in /etc/modprobe.d and include the parameters

using an options statement.

 Include options cdrom debug=1 in the file that will

automatically load the cdrom module.

. yum upgrade kernel installs a new version of the kernel.

Chapter 17

 A unit is a thing that is started by systemd. There are different

types of units, such as services, mounts, sockets, and many more.

 Use systemctl mask to make sure that a target is no longer

eligible for automatic start on system boot.

 Modify /etc/default/grub to apply common changes to GRUB 2.

. systemctl --type=service shows all service units that are

currently loaded.

 Create a want for a service by using systemctl enable on that

service.

. systemctl isolate rescue.target switches the current operational

target to the rescue target.

 There are two types of targets: targets that can run

independently and targets that cannot. Check the target unit file

to find out more about this and ensure the target is isolatable

(which means it can run independently).

. systemctl list-dependencies --reverse shows which other units

have dependencies to a systemd service.

 Apply changes to GRUB 2 in /etc/default/grub.

 Run grub2-mkconfig > /boot/grub2/grub.cfg after applying

changes to the GRUB 2 configuration.

Hivanetwork.com

https://hivanetwork.com/

Chapter 18

 Press e to enter the GRUB boot menu editor mode.

 An error in /etc/fstab prevents the fsck command on that file

system from finishing successfully.

 Pass init=/bin/bash to the Grub line that loads the kernel to start

the procedure to reset the root password.

 Start from a rescue system.

. systemctl list-units shows which units are available in a specific

troubleshooting environment.

 Use exec /usr/lib/systemd/system to replace the bin/bash

process with systemd.

. touch /.autorelabel ensures that while rebooting, the SELinux

context labels on all files are restored.

 Use mount -o remount,rw / to make the root file system writable

again.

. grub2-mkconfig -o /boot/grub2/grub.cfg saves changes applied

to the GRUB 2 boot loader.

. systemd.unit=emergency.target enters the most minimal

troubleshooting mode.

Chapter 19

 The script will be interpreted by the same shell as the parent

shell.

. test -z $VAR or [-z $VAR] can be used to check whether a

variable VAR has no value.

 Use $# to count the number of arguments that have been used.

 Use $@ to refer to all arguments that have been used when

starting the script.

 Use read SOMEVAR to process user input in a script.

. [-f filename] || echo file does not exist determines whether

the file exists and, if not, executes the specified command.

. [-e filename] can be used to determine whether an item is a file

or a directory.

 A for statement is typically used to evaluate a range of items.

 You do not; it is a part of the if statement that is closed with fi.

 Using ;; after the last command closes the specific item.

Chapter 20

 Use ssh-agent and ssh-add to cache the passphrase that is set on

your private key.

 Use AllowUsers lisa to disallow root login and allow only user

lisa to log in to your server.

 Specify the Port line twice to configure your SSH server to listen

on two different ports.

 The main SSH configuration file is /etc/ssh/sshd_config.

 The passphrase will be stored in a protected area in memory.

 /etc/ssh/ssh_config contains SSH client settings for all users.

 The MaxSessions parameter that manages this feature is already

set to 10 as a default, so you don’t need to change anything.

. semanage port -a -t ssh_port_t -p tcp 2022 configures SELinux

to allow SSH to bind to port 2022.

. firewall-cmd –add-port 2022/tcp --permanent; firewall-cmd --

reload configure the firewall on the SSH server to allow

incoming connections to port 2022.

 Try UseDNS. This option, which is active by default, uses DNS to

get the name of the target host for verification purposes.

Chapter 21

 The Basic Web Server group contains useful Apache packages.

. systemctl enable --now httpd starts the httpd service

automatically when booting.

 /etc/httpd/conf.d is the default location where RPMs can drop

plug-in configuration files that should be considered by the

Apache server.

. curl enables you to test a web server from a server that does not

offer a graphical interface.

 /etc/httpd/conf/httpd.conf is the default Apache configuration file.

 /var/www/html is used as the default Apache document root.

 The Apache process looks for index.html.

 Use either systemctl status httpd or ps aux| grep http to check

whether the Apache web server is currently running.

 /etc/httpd/conf.d is the preferred location for storing virtual host

configuration files.

 The ServerRoot is set by default to /etc/httpd.

Chapter 22

. setenforce 0 puts SELinux in permissive mode temporarily.

. getenforce -a or semanage boolean -l provides a list of all

available Booleans.

 Install the RPM package that contains the man pages: dnf install

selinux-policy-doc.

 Install setroubleshoot-server to get easy-to-read SELinux log

messages in the audit log.

 Use semanage fcontext -a -t httpd_sys_content_t "/web(/.*)?"

followed by restorecon to apply the httpd_sys_content_t context

type to the directory /web.

 Never!

 Add the argument selinux=0 to the line that configures the

kernel in /etc/default/grub, and next use grub2-mkconfig -o

/boot/grub2/grub.cfg to write the new boot loader configuration.

 SELinux logs all of its messages in /var/log/audit/audit.log.

. man -k _selinux | grep ftp shows which SELinux-related man

pages are available for the FTP service, including ftpd_selinux.

Read it for more information.

 Use setenforce 0 to temporarily switch SELinux to permissive

mode and try again.

Chapter 23

 firewalld should be running before you try to create a firewall

configuration with firewall-config.

. firewall-cmd --add-port=2345/udp adds UDP port 2345 to the

firewall in the default zone.

. firewall-cmd --list-all-zones lists all firewall configurations in

all zones.

. firewall-cmd --remove-service=vnc-server removes the vnc-

server service from the current firewall configuration.

. --reload activates a new configuration added with the --

permanent option.

. --list-all enables you to verify that a new configuration has been

added to the current zone and is now active.

. firewall-cmd --add-interface=eno1 --zone=public adds the

interface eno1 to the public zone.

 The new interface will be added to the default zone.

. firewall-cmd --permanent --add-source=192.168.0.0/24 adds the

source IP address 192.168.0.0/24 to the default zone.

. firewall-cmd --get-services lists all services that are currently

available in firewalld.

Chapter 24

 The showmount command needs the mountd and rpc-bind

services to be opened in the firewall as well.

. showmount -e server1 shows available NFS mounts on server1.

Note that the showmount command does not get through a

firewall.

. mount [-t nfs] server1:/share /somewhere mounts an NFS

share that is available on server1:/share.

 Use an NFS root mount: mount nfsserver:/ /mnt.

 No additional options are needed, because of improved

dependency handling in RHEL 9.

 Include sync in /etc/fstab to ensure that changes to the mounted

file system are written to the NFS server immediately.

 Systemd automount cannot be used for wildcard mounts.

 auto.master is the main automount configuration file.

 autofs implements automount.

 None. You’ll have to open ports on the server, not on the client.

Chapter 25

. date -s 16:24 sets the system time to 4:24 p.m.

. hwclock --systohc sets the hardware time to the current system

time.

. date -d '@nnnnnnn' shows epoch time as human-readable time.

. hwclock --hctosys synchronizes the system clock with the

hardware time.

 chronyd is used to manage NTP time on RHEL 9.

Hivanetwork.com

https://hivanetwork.com/

. timedatectl set-ntp 1 enables you to use NTP time on your

server.

 /etc/chrony.conf contains the list of NTP servers to be used.

 Either timedatectl list-timezones or tzselect can be used to list

time zones.

. timedatectl set-timezone ZONE is used to set the current time

zone.

. timedatectl set-time TIME is used to set the system time.

Chapter 26

 RHEL 9 includes skopeo to work with container images.

 Namespaces, cgroups, and SELinux are needed in container

environments.

 CRI-o is the container engine on RHEL 9.

 The /etc/containers/registries.conf file defines the registries that

are currently used.

 In a container image, a default command is specified. When you

start a container, the default command is executed. After

executing the default command, the container stops. In generic

system images like Ubuntu and Fedora, the default command is

set to /bin/bash, so if you don’t specify anything else, the

container will immediately stop.

 Find the UID used by the container, and use podman unshare to

make that UID the owner of the directory you want to provide

access to.

 Use podman inspect on the image and look for the Cmd.

 Use the podman run ubuntu cat /etc/os-release command.

 You need to run it as a root container by using sudo podman

run -d -p82:80 nginx. Next, you need to open the firewall by

using sudo firewall-cmd --add-port 82/tcp --permanent; sudo

firewall-cmd --reload.

 Use the podman generate systemd --name nginx --files

command.

Appendix B

Red Hat RHCSA 9 Cert Guide: EX200 Exam
Updates

Over time, reader feedback allows Pearson to gauge which topics

give our readers the most problems when taking the exams. To

assist readers with those topics, the authors create new materials

clarifying and expanding on those troublesome exam topics. As

mentioned in the Introduction, the additional content about the

exam is contained in a PDF on this book’s companion website, at

https://www.pearsonITcertification.com/title/9780138096274.

This appendix is intended to provide you with updated

information if Red Hat, Inc. makes minor modifications to the

exam upon which this book is based. When Red Hat, Inc. releases

an entirely new exam, the changes are usually too extensive to

provide in a simple update appendix. In those cases, you might

need to consult the new edition of the book for the updated

content. This appendix attempts to fill the void that occurs with

any print book. In particular, this appendix does the following:

Mentions technical items that might not have been mentioned

elsewhere in the book

Covers new topics if Red Hat, Inc. adds new content to the

https://www.pearsonITcertification.com/title/9780138096274

exam over time

Provides a way to get up-to-the-minute current information

about content for the exam

Always Get the Latest at the Book’s Product Page

You are reading the version of this appendix that was available

when your book was printed. However, given that the main

purpose of this appendix is to be a living, changing document, it

is important that you look for the latest version online at the

book’s companion website. To do so, follow these steps:

Step 1. Browse to www.pearsonITcertification.com/title/9780138096274.

Step 2. Click the Updates tab.

Step 3. If there is a new Appendix B document on the page, download

the latest Appendix B document.

Note

The downloaded document has a version number.

Comparing the version of the print Appendix B

(Version 1.0) with the latest online version of this

appendix, you should do the following:

Same version: Ignore the PDF that you

http://www.pearsonITcertification.com/title/9780138096274

downloaded from the companion website.

Website has a later version: Ignore this

Appendix B in your book and read only the latest

version that you downloaded from the companion

website.

Technical Content

The current Version 1.0 of this appendix does not contain

additional technical coverage.

Glossary

$PATH A variable that contains a list of directories that are

searched for executable files when a user enters a command.

. The current directory. Its value can be requested using the pwd

command.

A

absolute filename A filename that is complete and starts with

the name of the root directory, including all directories up to the

current file or directory.

access control list (ACL) In Linux permissions, a system that

makes it possible to grant permissions to more than one user and

more than one group. Access control lists also allow

administrators to set default permissions for specific directories.

Alma Linux Free open source alternative for Red Hat Enterprise

Linux, which consists of the RHEL source code with all licensing

removed.

anacron A service that ensures that vital cron jobs can be

executed when the server is down at the moment that the job

normally should be executed. Can be considered an extension to

cron.

AND A logical construction that can be used in scripts. In an AND

construction, the second command is executed only after

successful execution of the first command.

application profile A collection of packages that may be used to

install a specific version of software, according to a specific

installation profile.

application stream A specific version of a dnf module that can

be installed as such.

archiving A system that ensures that data can be properly

backed up.

at A service that can be used to schedule future jobs for one-time

execution.

attribute A property that can be set to a file or directory and that

will be enforced no matter which user with access permission

accesses the file. For instance, a file that has the immutable (i)

attribute set cannot be deleted, not even by the root user.

However, the root user does have the capability to change the

attribute, which would allow the root user to delete the file

anyway.

audit log The main log file in /var/log/audit/audit.log, which by

default contains all messages that are logged by the auditd

service.

auditd A service that runs by default on Red Hat Enterprise

Linux and can be configured to log very detailed information

about what is happening on RHEL. Auditing is complementary to

system logging and can be used for compliancy reasons. On

RHEL, the auditing system takes care of logging SELinux-related

messages, which makes it a relatively important system.

autofs A service that takes care of automatically mounting file

systems at the moment that a specific directory is accessed. This

service is very useful to ensure the automatic mounting of home

directories for users in a centralized user management system,

as can be implemented by the LDAP service.

automount The process that is started by the autofs service. See

autofs for more details.

B

background process A process that is running on a system

without actively occupying a console. Processes can be started in

the background by adding a & after the command that starts the

process. See also foreground process.

Hivanetwork.com

https://hivanetwork.com/

backup A copy of important data, which can be restored if at any

point in time the original data gets lost.

Bash The default shell that is used on Red Hat Enterprise Linux.

Basic Input/Output System (BIOS) The first software that is

started when a computer starts on older IBM-compatible

computers. Settings in the BIOS can be changed by using the BIOS

setup program. See also Unified Extensible Firmware Interface

(UEFI).

binary A numbering scheme that is based on bit values that can

be on or off. Binary numbers are 0 and 1. Because binary

numbers are difficult to use, decimal, hexadecimal, or octal

numbers often are used.

BIOS See Basic Input/Output System.

boot loader Program that is started as the very first thing while

starting a computer and that takes care of loading the operating

system kernel and initramfs.

BtrFS A general-purpose Linux file system that is expected to

become the default file system on Red Hat Enterprise Linux in a

future release.

bzip2 A compression utility that can be used as an alternative to

gzip.

C

cache In memory management, the area of memory where

recently used files are stored. Cache is an important mechanism

to speed up reads on servers.

capability A specific task that can be performed on Linux. User

root has access to all capabilities; normal users have access to

limited sets of capabilities only.

CentOS A Linux distribution that uses all Red Hat packages but

has removed the Red Hat logo from all these packages to make it

possible to distribute the software for free. CentOS is the best

option for practicing for the RHCSA exam if you do not have

access to RHEL.

certificate In PKI cryptography, contains the public key of the

issuer of the certificate. This public key is signed with the

certificate of a certificate authority, which guarantees its

reliability.

certificate authority (CA) A commonly known organization that

can be used to guarantee the reliability of PKI certificates. The

certificate authority provides a certificate that can be used to

sign public key certificates. Instead of using commonly known

organizations, self-signed certificates can be used for internal

purposes as well.

chrony The service that offers time synchronization services in

Red Hat Enterprise Linux.

chroot An environment where a part of the file system is

presented as if it were the root of the file system. Chroot is used

as a security feature that hides part of the operating system that

is not required by specific services.

CIFS See Common Internet File System.

cloud A computing platform that allows for flexible usage of

hosted computing resources.

Common Internet File System (CIFS) The standardized version

of the Microsoft Server Message Block (SMB) protocol, which is

used to provide access to shared printers, files, and directories in

a way that is compatible with Windows servers and clients. CIFS

has become the de facto standard for file sharing in IT.

compression A technology that is used to reduce the size of files

by analyzing redundant patterns and storing them more

efficiently.

conditional loop In shell scripting, a set of commands that is

executed only if a specific condition has been met.

connection (in network card configuration) A set of network

configuration parameters that is associated to a network

interface.

connection (in network communication) A session between

two parties that has been initialized and will exist until the

moment that the connection is tiered down.

console In Linux, the primary terminal where a user works. It is

also a specific device with the name /dev/console.

container A ready-to-run application that is started from an

image and includes all application dependencies.

container engine The code that allows containers to run on top

of an operating system.

context In SELinux, a label that is used to define the security

attributes of users, processes, ports, and directories. These

contexts are used in the SELinux policy to define security rules.

context switch When the CPU switches from executing one task

to executing another task.

context type In SELinux, a label that identifies the SELinux

properties of users, ports, and processes.

Coordinated Universal Time (UTC) A time standard that is

globally the same, no matter which specific time zone a user is in.

UTC roughly corresponds to Greenwich Mean Time (GMT).

credentials file A file that can be used to mount CIFS file systems

automatically from the /etc/fstab file. The credentials file is

stored in a secure place, like the home directory of user root, and

contains the username and password that are used to mount the

remote file system.

CRI-o The default container engine on RHEL 9. Pronounced CRY-

o.

cron A service that takes care of starting services repeatedly at

specific times.

cryptography A technique used to protect data, often by

converting information to an unreadable state, where keys are

used to decipher the scrambled data. Cryptography is used not

only to protect files while in transit but also to secure the

authentication procedure.

D

deduplication A storage technology that analyzes data to be

stored on disk and takes out duplicate patterns to allow for more

efficient storage.

default route The route that is used by default to forward IP

packets that have a destination on an external network.

dependency Generally, a situation where one item needs

another item. Dependencies occur on multiple levels in Linux. In

RPM package management, a dependency is a software package

that needs to be present for another package to be installed. In

Systemd, a dependency is a Systemd unit that must be loaded

before another unit can be loaded.

dependency hell Situation where for package installation, other

packages are needed, which by themselves could require

dependencies as well. The problem of dependency hell has been

fixed by the introduction of repository-based systems.

destination In rsyslog, the place where log messages should be

sent by the logging system. Destinations are often files, but can

also be input modules, output modules, users, or hosts.

device A peripheral that is attached to a computer to perform a

specific task.

device file A file that is created in the /dev directory and that is

used to represent and interact with a device.

device mapper A service that is used by the Linux kernel to

communicate with storage devices. Device mapper is used by

LVM, multipath, and other devices, but not by regular hard disks.

Device files that are created by device mapper can be found in

the /dev/mapper directory.

directory A folder in the file system that can be used to store

files in an organized manner.

disabled mode The SELinux mode in which SELinux is

completely deactivated.

distribution A Linux version that comes with its own

installation program or which is ready for usage. Because Linux

is a collection of different tools and other components, the Linux

distribution gathers these tools and other components, may or

may not enhance them, and distributes them so that users do not

have to gather all the different components for themselves.

dmesg Utility that can be used to read the kernel ring buffer,

which contains log messages that were generated by the Linux

kernel.

dnf The new software manager that replaces the yum utility in

RHEL 9.

Docker A common solution to run containers. Docker was the

default container solution in RHEL 8 but is no longer supported

and was replaced with CRI-o/podman in RHEL 9.

Domain Name System (DNS) The global system used to match

logical server names to IP addresses.

dracut A utility used to generate the initramfs, an essential part

of the Linux operating system that contains drivers and other

vital files required to start a Linux system.

Dynamic Host Configuration Protocol (DHCP) A protocol used

to ensure that hosts can obtain an IP address and related

information automatically.

dynamic route A network route that is managed by an

automatic routing protocol.

E

enforcing mode The SELinux mode where SELinux is fully

operational and applies all restrictions that have been configured

Hivanetwork.com

https://hivanetwork.com/

for a specific system.

environment The collection of settings that users or processes

are using to do their work.

epoch time In Linux, the number of seconds that have passed

since epoch (corresponds to midnight on January 1, 1970). Some

utilities write epoch time instead of real clock time.

escaping In a shell environment, using special syntax to ensure

that specific characters are not interpreted by the shell. Escaping

may be necessary to show specific characters onscreen or to

ensure that regular expression metacharacters are not

interpreted by the bash shell first.

exec A system call that replaces the current process with another

one. See also fork.

export In NFS, a directory that is shared on an NFS server to

allow access to other servers.

Ext2, Ext3, and Ext4 Three different versions of the Ext file

system. Up to RHEL 6, Ext4 was the default file system. It is now

considered inadequate for modern storage needs, which is why

Ext4 in RHEL 7 was replaced by XFS as the default file system.

extended partition A solution to create more than four

partitions on an MBR disk. On MBR disks, a maximum of four

partitions can be stored in the partition table. To make it possible

to go beyond that number, one of the four partitions can be

created as an extended partition. Within an extended partition,

logical partitions can be created, which will perform just like

regular partitions, allowing system administrators to create more

partitions.

external command A command that exists as a file on disk.

F

facility In rsyslogd, the source where log information comes

from. A strictly limited number of facilities have been defined in

rsyslogd.

Fedora The free and open source Linux distribution that is

sponsored by Red Hat. In Fedora, new features are provided and

tested. Some of these features will be included in later releases of

Red Hat Enterprise Linux.

FHS See Filesystem Hierarchy Standard.

file descriptor A pointer that is used by a Linux process to refer

to files that are in use by the process.

file system A logical structure that is created on a storage device.

In a Linux file system, inodes are used for file system

administration, and the actual data is written to blocks. See also

inode.

Filesystem Hierarchy Standard (FHS) A standard that defines

which Linux directories should be used for which purpose. Read

man 7 file-hierarchy for a specification of the FHS.

firewall A solution that can be used to filter packets on a

network. Firewalls are used to ensure that only authorized traffic

can reach a system. A firewall can be offered through the Linux

kernel netfilter functionality but often is also offered as an

appliance on the network.

firewalld The modern service (replacing iptables) that is used

since RHEL 7 to implement firewalling based on the Linux kernel

firewalling framework.

folder Also referred to as a directory, a structure in the file

system used to organize files that belong together.

foreground process A process that is running on a system and

occupies the console it is running on. Linux processes that are

started by users can be started in the foreground or in the

background. If a process has been started as a foreground

process, no other processes can be started in the same terminal

until it finishes or is moved to the background. See also

background process.

fork A system call that starts a new process as a child of the

current process. This is the default way commands are executed.

See also exec.

fstab A configuration file that is used on Linux to mount file

systems automatically when the system starts.

fully qualified domain name (FQDN) A complete DNS

hostname that contains the name of the host (like myserver), as

well as the DNS domain it is used in (like example.com).

G

GECOS A field in the /etc/passwd file that can be used to store

personal data about a user on the Linux operating system. GECOS

originally stood for General Electric Comprehensive Operating

Supervisor.

globally unique ID (GUID) An identification number that

consists of parts that ensure that it is globally unique.

GPT See GUID Partition Table.

group A collection of items. In user management, a group is used

to assign permissions to multiple users simultaneously. In Linux,

every user is a member of at least one group.

group owner The group that has been set as the owner of a file

or a directory. On Linux, every file and directory has a user

owner and a group owner. Group ownership is set when files are

created, and unless configured otherwise, it is set to the primary

group of the user who creates the file.

GRUB 2 The boot loader that is installed on most systems that

need to start Linux. GRUB 2 provides a boot prompt from which

different kernel boot options can be entered, which is useful if

you need to troubleshoot the boot procedure.

GUID See globally unique ID.

GUID Partition Table (GPT) A modern solution to store

partitions on a hard disk, as opposed to the older MBR partition

table. In GUID partitions, a total of 128 partitions can be created,

and no difference exists between primary, extended, and logical

partitions anymore.

gzip One of the most common utilities that is used for

compression and decompression of files on Linux.

H

hard link A name associated with an inode. Inodes are used to

store Linux files. An inode contains the complete administration

of the file, including the blocks in which the file is stored. A file

that does not have at least one hard link is considered a deleted

file. To increase file accessibility, more than one hard link can be

created for an inode.

hardware time The time that is provided by computer

hardware, typically the BIOS clock. When a Linux system boots, it

sets the software time based on the hardware time. Because

hardware time often is inaccurate, most Linux systems use the

Network Time Protocol (NTP) to synchronize the system time

with a reliable time source.

hexadecimal A 16-based numbering system that is based on

groups of 4 bytes. Hexadecimal numbers start with the range 0

through 9, followed by A through F. Because hexadecimal is

much more efficient in computer technology, hexadecimal

numbers are often used. In IPv6, IP addresses are written as

hexadecimal numbers.

hypervisor A piece of computer software, firmware, or

hardware that creates and runs virtual machines. In Linux, KVM

is used as the common hypervisor software.

I

image The read-only instance from which a container is started.

inheritance In permission management, the situation where

new files that are created in a directory inherit the permission

settings from the parent directory.

init The first process that is started once the Linux kernel and

initramfs have been loaded. From the init process, all other

processes are started. As of RHEL 7, the init process has been

replaced by Systemd.

initramfs The initial RAM file system. Contains drivers and other

files that are needed in the first stages of booting a Linux system.

On Red Hat Enterprise Linux, the initramfs is generated during

installation and can be manually re-created using the dracut

utility.

inode A structure that contains the complete administration of a

file. Every Linux file has an inode, and the inode contains all

properties of the file but not the filename.

input module In rsyslog, a module that allows rsyslog to receive

log messages from specific sources.

interface In Linux networking, the set of configuration

parameters that can be activated for a specific device. Several

interface configurations can exist for a device, but only one

interface can be active at a time for a device.

internal command A command that is a part of the shell and

does not exist as a file on disk.

Internet Protocol (IP) The primary communications protocol

that is used by computers for communication. The Internet

Protocol exists in two versions (IPv4 and IPv6). Apart from node

addressing, it defines routing, which enables nodes to contact

one another.

IP See Internet Protocol.

iptables An older solution to create firewall rules on the Linux

operating system. It interfaces with the netfilter Linux kernel

firewalling functionality and was the default solution to create

software firewalls on earlier versions of RHEL. As of RHEL 7,

iptables has been replaced by firewalld.

IPv4 Version 4 of the Internet protocol. It was developed in the

1970s and introduced in 1981. It allows a theoretical maximum of

Hivanetwork.com

https://hivanetwork.com/

about 4 billion nodes to be addressed by using a 32-bit address

space. It is still the most important IP version in use.

IPv6 Version 6 of the Internet protocol. It was developed in the

1990s to address the shortage in IPv6 addresses. It uses a 128-bit

address space that allows for addressing 3,4e38 nodes and thus is

considered a virtually unlimited address space.

iteration In shell scripting, one time of many that a conditional

loop has been processed until the desired result has been

reached.

J

job In a Linux shell, a task running in the current terminal. Jobs

can be started in the foreground and in the background. Every

job is also visible as a process.

journalctl The command used to manage systemd-journald.

journald See systemd-journald.

K

kernel The central component of the operating system. It

manages I/O requests from software and translates them into

data processing instructions for the hardware in the computer.

kernel ring buffer A part of memory where messages that are

generated by the kernel are stored. The dmesg command enables

you to read the contents of the kernel ring buffer.

kernel space The part of memory that is reserved for running

privileged instructions. Kernel space is typically accessible by the

operating system kernel, kernel extensions, and most device

drivers. Applications normally run in user space, which ensures

that a faulty application cannot crash the computer system.

Kernel-based Virtual Machine (KVM) The Linux kernel module

that acts as a hypervisor and makes it possible to run virtual

machines directly on top of the Linux kernel.

key-based login In SSH, login that uses public/private keys to

prove the identity of the user who wants to log in. Key-based

login is generally considered more secure than password-based

login.

kill A command that can be used to send a signal to a Linux

process. Many signals are defined (see man 7 signal), but only a

few are commonly used, including SIGTERM and SIGKILL, both

of which are used to stop processes.

Kubernetes The standard in container orchestration and also

the foundation of Red Hat OpenShift.

KVM See Kernel-based Virtual Machine.

L

label A name that can be assigned to a file system. Using labels

can be a good idea, because once a label is assigned, it will never

be changed, which guarantees that the file system can still be

mounted, even if other parameters such as the device name have

changed. However, UUIDs are considered safer than labels

because the chance of having a duplicate label by accident is

much higher than the chance of having a duplicate UUID. See

also universally unique ID (UUID).

line anchor In regular expressions, a character that refers to a

specific position in a line.

linger The Systemd feature that is needed to start Systemd user

units at system boot and not at user login.

Linux A UNIX-like operating system that consists of a kernel that

was originally developed by Linus Torvalds (hence the name

Linux). A current Linux operating system consists of a kernel and

lots of open source tools that provide a complete operating

system. Linux is packaged in the form of a distribution.

Currently, Red Hat Enterprise Linux is among the most widely

used Linux distributions.

log rotation A service that ensures that log files cannot grow too

big. Log files are monitored according to specific parameters,

such as a maximum age or size. Once this parameter is reached,

the log file will be closed and a new log file will be opened. Old

log files are kept for a limited period and will be removed, often

after only a couple of weeks.

logical extent The building block that is used in LVM to create

logical volumes. It normally has a size of a few megabytes that

corresponds to the size of the physical extents that are used.

logical partition A partition that is created in an extended

partition. See also extended partition.

logical volume In LVM, the entity on which a file system is

created. Logical volumes are often used on RHEL because they

offer important advantages, such as the option to dynamically

resize the logical volume and the file system that it hosts.

Logical Volume Manager (LVM) The software that makes it

possible to work with logical volumes.

login shell The shell that is opened directly after a user has

logged in.

LVM See Logical Volume Manager.

M

masquerading A solution that enables a private IP address range

that is not directly accessible from outside networks to be

accessed by using one public IP address that is exposed on a

router. This is also referred to as Network Address Translation

(NAT).

Master Boot Record (MBR) On a BIOS system, the first 512 bytes

on the primary hard disk. It contains a boot loader and a

partition table that give access to the different partitions on the

hard disk of that computer.

MBR See Master Boot Record.

module A piece of snap-in code. Modules are used by several

systems on Linux, such as the kernel, GRUB 2, rsyslog, and more.

Via modules, Linux components can be extended easily, and

adding functionality does not require a total rewrite of the

software.

module (in dnf) A collection of software packages that can be

managed as one entity and can contain different versions of a

software solution.

mount A connection that is made between a device and a

directory. To access files on specific storage devices, the storage

device needs to be mounted on a directory. This sets up the

specified directory as the access point to files on the storage

device. Mounts are typically organized by the system

administrator and are not visible to end users.

multiplier In regular expressions, a character that indicates that

multiples of the previous character are referred to.

N

namespace An isolated environment that is created by the Linux

kernel and allows for running containers in complete isolation.

Namespaces exist for multiple aspects of the operating system,

including mounts, processes, users, and more.

netfilter The part of the Linux kernel that implements

firewalling.

netmask See subnet mask.

Network Address Translation (NAT) See masquerading.

Network File System (NFS) A common UNIX solution to export

physical file systems to other hosts on the network. The other

hosts can mount the exported NFS directory in their local file

system.

network time Time that is provided on the network.

Network Time Protocol (NTP) A standard that is used to

provide reliable time to servers in a network. NTP on RHEL 9 is

implemented by the chronyd service.

NFS See Network File System.

nftables The service that manages kernel firewalling. It is a

replacement of the older iptables service.

nice A method to change the priority of Linux processes. A

negative nice value will make the process more aggressive,

giving it a higher priority (which is expressed by a lower priority

number); a positive nice value will make a process less eager so

that it gives priority to other processes.

NTP See Network Time Protocol.

O

octal A numbering scheme that uses the numbers 0 through 7

only. Used when working with Linux permissions using the

umask setting or the chmod command.

OpenShift The Red Hat platform, based on Kubernetes, that is

used for container orchestration.

OR A logical operation where the second command is executed

only if the first command is not able to execute.

orchestration The technique that ensures containers can be

offered in a scalable and redundant way in corporate

environments.

output module In rsyslog, a module that is used to send log

messages to a specific destination. Output modules make

rsyslogd flexible and allow for the usage of log destinations that

are not native to rsyslog.

ownership In file system permissions, the basis of the effective

permissions that a user has. Every file has a user owner and a

group owner assigned to it.

P

package A bundle that is used to distribute software. A package

Hivanetwork.com

https://hivanetwork.com/

typically contains a compressed archive of files and metadata

that includes instructions on how to install those files.

package group A group of packages that can be installed as such

using the dnf groups install command.

package group (in dnf) A group of software packages that can

be installed with a single command.

pager A program that can be used to browse page by page

through a text file. The less utility provides one of the most

common Linux pagers.

parent shell The environment from which a shell script or

program is started. Processes or child scripts will inherit settings

from the parent shell.

partition A subdivision of a hard disk on which a file system can

be created to mount it into the directory structure.

passphrase Basically a password, but is supposed to be longer

and more secure than a password.

password A token that is used in authentication. The password is

a secret word that can be set by individual users and will be

stored in an encrypted way.

path The complete reference to the location of a file.

permissions Attributes that can be set on files or directories to

allow users or groups access to these files or directories.

permissive mode The SELinux mode where nothing is blocked

but everything is logged in the audit log. This mode is typically

used for troubleshooting SELinux issues.

physical extent The physical building block that is used when

creating LVM physical volumes. Typically, the size is multiple

megabytes.

physical volume The foundation building block of an LVM

configuration. The physical volume typically corresponds to a

partition or a complete disk device.

PID See process identification number.

pipe A structure that can be used to forward the output of one

command to be used as input for another command.

policy See SELinux policy.

port A number that is used by a process to offer access to the

process through a network connection.

port forwarding A firewalling technique where traffic that is

coming in on a specific port is forwarded to another port that

may be on the same host or on a different host.

Portable Operating System Interface (POSIX) A standard that

was created to maintain compatibility between operating

systems. The standard mainly applies to UNIX and guarantees

that different flavors of Linux and UNIX are compatible with one

another.

portmapper A Remote Procedure Call service that needs to run

on systems that provide RPC services. Portmapper uses dynamic

ports that do not correspond to specific TCP or UDP ports; the

service will pick a UDP or TCP port that will be used as long as

the process is active. When the process is restarted, chances are

that different ports are used. They need to be mapped to fixed

UDP and TCP ports in order to make it possible to open the

firewall for these ports. Portmapper is still used by components

of the NFS service.

POSIX See Portable Operating System Interface.

primary group The group that is listed in the group membership

field for a user in /etc/passwd. Every Linux user is a member of a

primary group. Apart from that, users can be made a member of

secondary groups as well.

primary partition In MBR, one of a maximum of four partitions

that can be created in the Master Boot Record. See also extended

partition.

priority (in process handling) Specifies the importance of a

process. Process priority is expressed with a number (which can

be modified using nice). Processes with a lower priority number

are serviced before processes with a higher priority number.

priority (in rsyslog) Used to specify the severity of a logged

event. Based on the severity, specific actions can be taken.

private key In public/private key encryption, the key that is used

to generate encrypted data.

privileged user See root.

proc A kernel interface that provides access to kernel

information and kernel tunables. This interface is available

through the /proc file system.

process A task that is running on a Linux machine. Roughly, a

process corresponds to a program, although one program can

start multiple processes.

process identification number (PID) A unique number that is

used to identify a process running on a Linux system.

profile In tuned, a collection of performance settings that can

easily be applied.

protocol A set of rules that is used in computing, such as in

computer networking, to establish communications between two

computers.

public key In cryptography, the key that is typically sent by a

server to a client so that the client can send back encrypted data.

PV See physical volume.

Q

queue In process management, where processes wait before

they can be executed.

R

real-time clock (RTC) The hardware clock that is installed on the

computer motherboard.

reboot The procedure of stopping the computer and starting it

again.

Red Hat Customer Portal The platform that Red Hat offers to

provide patches for customers that have an active subscription.

To provide these patches and updates, Red Hat Network provides

the repositories that are needed for this purpose.

Red Hat Enterprise Linux (RHEL) The name of the software

that Red Hat sells subscriptions for. It is available in a server

edition and a desktop edition.

Red Hat Package Manager (RPM) The name for the package

format that is used on RHEL for software packages and for the

Package Management software. RPM has become the standard

for package management on many other Linux distributions as

well.

reference clock A clock that is used as a time source in an NTP

time configuration. Typically, a reference clock is a highly

reliable clock on the Internet, but it can be an internal clock on

the computer’s motherboard as well.

registry A location where container images are started from.

regular expression A search pattern that allows users to search

text patterns in a flexible way. Not to be confused with shell

metacharacters.

relative filename A filename that is relative to a directory that is

not the root directory.

Remote Procedure Calls (RPC) A method for interprocess

communication that allows a program to execute code in another

address space. Remote Procedure Calls is an old protocol and as

such is still used in the Network File System.

repository An installation source that contains installable

packages and an index that contains information about the

installable packages so that the installation program dnf can

compare the version of packages currently installed with the

version of packages available in the repository.

resident memory Memory pages that are in use by a program.

resolver The DNS client part that contains a list of DNS servers to

contact to resolve DNS queries.

RHEL See Red Hat Enterprise Linux.

rich rules Rules in firewalld that allow the usage of a more

complicated syntax so that more complex rules can be defined.

Rocky Linux Free open source alternative for Red Hat

Enterprise Linux, which consists of the RHEL source code with

all licensing removed.

root The privileged user account that is used for system

administration tasks. User root has access to all capabilities,

which means that permissions do not apply to user root and the

root user account is virtually unlimited.

root directory The starting point of the file system hierarchy,

noted as /.

RPC See Remote Procedure Calls.

RPM See Red Hat Package Manager.

rsyslogd The generic daemon that logs messages.

RTC See real-time clock.

S

Samba The name for the Linux service that implements the SMB

protocol.

SAN See storage-area network.

scheduler The part of the Linux kernel that monitors the queue

of runnable processes and allocates CPU time to these processes.

Hivanetwork.com

https://hivanetwork.com/

secondary group A group that a user is a member of but which

membership is not defined in the /etc/passwd file. When new

files are created, the secondary group will not automatically

become the owner of those files.

Secure Shell (SSH) A solution that allows users to open a shell

on a remote server where security is implemented by using

public/private key cryptography.

Secure Sockets Layer (SSL) See Transport Layer Security (TLS).

SELinux A Linux kernel security module that provides a

mechanism for supporting access control security policies.

SELinux Policy The collection of rules that is used to define

SELinux security.

Server Message Block (SMB) An application-level protocol that

is used to provide shared access to files, printers, and serial ports,

which on Linux is implemented in the Samba server.

service (in firewalld) A configuration of firewall settings that is

used to allow access to specific processes.

services (in Systemd) Processes that need to be started to

provide specific functionality.

share A directory to which remote access is configured using a

remote file system protocol such as NFS or CIFS.

shebang The characters used in a script to indicate which shell

should be used for executing the code in the shell script. If no

shebang is used, the script code will be interpreted by the parent

shell, which may lead to errors in some cases. A shebang starts

with a #, which is followed by a ! and the complete pathname of

the shell, such as #!/bin/bash.

shell The environment from which commands can be executed.

Bash is the default shell on Linux, but other shells exist as well.

shell metacharacters Characters such as *, ?, and [a-z] that

allow users to refer to characters in filenames in a flexible way.

signal An instruction that can be sent to a process. Common

signals exist, such as SIGTERM and SIGKILL, but the Linux kernel

allows a total of 32 different signals to be used. To send a signal

to a process, use the kill command.

SMB See Server Message Block.

snapshot A “photo” of the actual state of a file system.

software time See system time.

source context In SELinux, the context of the processes or users

that initiate an action. A context in SELinux is a label that

identifies allowed operations. Everything in an SELinux

environment has a context.

SSH See Secure Shell.

standard error (STDERR) The default location where a program

sends error messages.

standard input (STDIN) The default location where a program

gets its input.

standard output (STDOUT) The default location where a

program sends its regular output.

star A legacy extended version of tar, which offers support for

extended attributes. Currently no longer required, as all of its

functionality has been integrated in tar.

static route A route that is defined manually by a network

administrator.

STDERR See standard error.

STDIN See standard input.

STDOUT See standard output.

storage-area network (SAN) A solution where disk devices are

shared at a block level over the network. As such, they can be

used in the same way as local disk devices on a Linux system.

iSCSI and Fibre Channel are the common SAN protocols.

Stratis The new volume managing file system that was

introduced in RHEL 8.

stratum In time synchronization, used to indicate the distance

between a server and an authoritative Internet time source.

subnet mask A logical subdivision of an IP network.

subshell A shell that is started from another shell. Typically, a

subshell is started by running a shell script.

symbolic link A special type of file that contains a reference to

another file or directory in the form of an absolute or relative

path.

sysfs The kernel interface that is mounted on the /sys directory

and which is used to provide access to parameters that can be

used for managing hardware settings.

system call A low-level operating system instruction.

system time The time that is maintained by the operating

system. When a Linux system boots, system time is set to the

current hardware time, and while the operating system is

running, it is often synchronized using the Network Time

Protocol (NTP).

Systemd The service manager on RHEL 9. Systemd is the very

first process that starts after the kernel has loaded, and it takes

care of starting all other processes and services on a Linux

system.

systemd-journald The part of Systemd that takes care of logging

information about events that have been happening. The

introduction of journald ensures that information about all

services can be logged, regardless of how the service itself is

configured to deal with information that is to be logged.

T

tainted kernel A kernel in which unsupported kernel modules

have been loaded.

tar The Tape Archiver; the default Linux utility that is used to

create and extract backups.

target In Systemd, a collection of unit files that can be managed

together.

target context The SELinux context that is set to a target object,

such as a port, file, or directory.

terminal Originally, the screen that was used by a user to type

commands on. On modern Linux systems, pseudo terminals can

be used as a replacement. A pseudo terminal offers a shell

window from which users enter the commands that need to be

executed.

thin allocation In storage, an approach that enables the system

to present more storage to the storage user than what is really

available by using smart technologies to store data, like

deduplication.

thread A thread is a subdivision of a process. Many processes are

single threaded, which means that process is basically one entity

that needs to be serviced. On a multicore or multi-CPU computer

system, working with multithreaded processes makes sense. That

way, the different cores can be used to handle the different

threads, which allows a process to benefit from multicore or

multithreaded environments.

time synchronization A system that ensures that multiple

servers are using the exact same time. To accomplish time

synchronization, it is common to use an external time server, as

defined in the Network Time Protocol (NTP).

timer A Systemd unit type that can be used as an alternative to

cron jobs and run units at a specific time.

timestamp An identifier that can be used on files, database

records, and other types of data to identify when the last

modification has been applied. Many services rely on

timestamps. To ensure that timestamp-based systems work

properly, time synchronization needs to be configured.

TLS See Transport Layer Security.

Transport Layer Security (TLS) A cryptographic protocol that is

created to ensure secured communications over a computer

network. In TLS, public and private keys are used, and

certificates authenticate the counterparty. TLS was formerly

known as SSL.

TTY A program that provides a virtual terminal on Linux. Every

terminal still has a TTY name, which is either tty1-6 for virtual

TTYs or /dev/pts/0-nn for pseudo terminals.

tuned A service on RHEL that enables administrators to easily

apply performance settings by using profiles.

U

udev A service that works with the Linux kernel to initialize

hardware.

UEFI See Unified Extensible Firmware Interface.

umask An octal value that defines the default permissions as a

shell property.

umount The command that is used to decouple a file system

from the directory on which it is mounted.

Unified Extensible Firmware Interface (UEFI) A replacement

of the Basic Input/Output System used on older IBM-compatible

computers as the first program that runs when the computer is

started. UEFI is the layer between the operating system and the

computer firmware.

unit An item that is managed by Systemd. Different types of units

exist, including service, path, mount, and target units.

universally unique ID (UUID) An identification number

consisting of a long random hexadecimal number that is globally

unique.

unprivileged user A regular non-root user account to which

Hivanetwork.com

https://hivanetwork.com/

access restrictions apply, as applied by permissions.

user An entity that is used on Linux to provide access to specific

system resources. Users can be used to represent people, but

many services also have a dedicated user account, which allows

the service to run with the specific permissions that are needed

for that service.

user space The area of memory that is accessible by application

software that has been started with non-root privileges.

UTC See Coordinated Universal Time.

UUID See universally unique ID.

V

value The data that is assigned to a specific property, variable, or

record.

variable A label that contains a specific value that can be

changed dynamically. In scripting, variables are frequently used

to allow the script to be flexible.

VFAT The Linux kernel driver that is used to access FAT-based

file systems. FAT is a commonly used file system in Windows

environments. The Linux VFAT driver allows usage of this file

system.

VG See volume group.

virtual host In the Apache web server, a collection of

configuration settings that is used to address a web server. What

makes it a virtual host is that one installation of the Apache web

server can be configured with multiple virtual hosts, which

allows administrators to run multiple websites on one Apache

server.

virtual memory The total amount of addressable memory.

Virtual memory is called virtual memory because it does not

refer to memory that really exists. Its only purpose is to make

sure that Linux programs can set an address pointer that is

unique and not in use by other programs.

volume group (VG) The abstraction layer that in Logical Volume

Manager is used to represent all available storage presented by

physical volumes from which logical volumes can be created.

W

want An indication for a Systemd unit file that it is supposed to

be started from a specific Systemd target.

wildcard The * character, which in a shell environment refers to

an unlimited number of any characters.

X

XFS A high-performance 64-bit file system that was created in

1993 by SGI and which in RHEL 9 is used as the default file

system.

Xz A compression utility that can be used as an alternative to

gzip or bzip2.

Y

Yellowdog Update, Modified The full name for Yum, the meta

package handler that on older versions of RHEL was used to

install packages from yum repositories. Now replaced with dnf.

Yum See Yellowdog Update, Modified.

Z

zombie A process that has lost contact with its parent and for

that reason cannot be managed using regular tools.

zone In firewalld, a collection of one or more network interfaces

that specific firewalld rules are associated with.

Index

Symbols

& (ampersand), 235, 431

* (asterisk), 61, 91–92, 278

\ (backslash), 430–431

#!/bin/bash, 424

^ (caret), 39

$ (dollar sign), 39

. (dot) regular expression, 91–92

= (equal sign), 41, 303

> (greater than symbol), 33

< (less than symbol), 33

&& (logical AND), 431

|| (logical OR), 431

!ls command (vim), 39

:%s/old/new/g command (vim), 39

| (pipe), 33–35, 431

+ (plus sign), 92

:q! command (vim), 38

? (question mark), 61, 92

(…) regular expression, 92

/ (root directory), 56

?text command (vim), 39

^text regular expression, 92

:w filename command (vim), 39

:wq command (vim), 38

\{1,3\} regular expression, 92

\{2\} regular expression, 92

A

a command (vim), 38

absolute filenames, 62–64

accounts

group

creating, 137–138

group properties, 138–139

primary, 137

secondary, 137

user

creating, 132–133, 136

default values, 134–135

normal accounts, 129–132

password properties, 135

system accounts, 129–132

user environment, 135–136

user properties, 134

AccuracySec option (systemd), 275

acl mount option, 337

addresses

broadcast, 172

IP (Internet Protocol), 170–173

MAC (media access control), 173

network

management of, 174

validation of, 175–178

administrators, setting, 16

alert priority, rsyslogd, 303

alias command, 31

aliases, 31

AllowUsers option (SSH), 444–445, 447

AlmaLinux, 8

ampersand (&), 235, 431

anacron service, 281

Apache server configuration

configuration files, 456–459, 460–461

content creation, 459–460

software installation, 456

virtual hosts, 456

Application Stream (AppStream) repository, 205–206

apropos command, 45

archives, 71–73

arguments, 30

asterisk (*), 61, 91, 92, 278

at command, 282–283

atd service, 282–283

atime mount option, 337

atq command, 283

audit log, 487–488

[auo] wildcard, 61

auth/authpriv facility, rsyslogd, 302

authentication, SSH (Secure Shell), 116–117, 447–448

auto mount option, 337

autofs service, 516

automation

with crond service

anacron, 281

cron configuration files, 278–280

cron time/date fields, 278

management of, 276–277

security, 282

of file system mounts, 335–338

with shell scripting

conditional loops, 429–435

core elements of, 424–425

debugging, 435

Hivanetwork.com

https://hivanetwork.com/

variables and input, 426–429

automount, mounting NFS (Network File System) shares from,

516–518

autorelabel file, 417

awk command, 94–96

B

background processes, 234–235

backslash (\), 430–431

balanced profile, 249

baseurl= option, repositories, 202

bash command, 425, 435

Bash shell. See shell

~/.bash_profile file, 41

~/.bashrc file, 41, 136

Basic Graphics Mode, 411

Basic Input/Output System (BIOS), 314, 315, 323, 406

batch command, 283

bg command, 235–237

binary notation, 172–173

bind-mounting in rootless containers, 565–566

/bin/sh, 547

BIOS (Basic Input/Output System), 314, 315, 323, 406

blkid command, 334, 338

block zone, firewalld, 499

blockdev, 362

Boolean settings, SELinux, 485–487

/boot directory, 56, 57–58

boot procedure

GRUB 2 boot loader, 396–399

boot options, 398–399

components of, 396

configuration files, 397–398

reinstalling, 410–414

overview of, 109–110

Systemd targets, 390–396

isolating, 393–396

managing, 392–393

showing list of, 393–396

target units, 391–392

types of, 390

wants, 392

troubleshooting

boot phase configuration, 406–408

boot prompt, accessing, 408–409

file system issues, 415

GRUB 2 reinstallation, 410–414

initramfs, 415

rescue disks, 410–414

root password, resetting, 416–417

troubleshooting targets, 409–410

boot prompt, accessing, 408–409

/boot/efi/EFI/centos/grub.cfg file, 397–398

/boot/efi/EFI/redhat/grub.cfg file, 397–398

/boot/grub2/grub.cfg file, 397–398

broadcast addresses, 172

BtrFS, 328

buildah, 542

bunzip2, 74

bzip2 command, 74

C

cache tier, 362

caret (^), 39

case loops, 434–435

cat command, 84, 85, 375

cd command, 62, 152

CentOS Stream, 7

Cert Guide environment, 9–10

chage command, 135

characters, counting, 88–89

chattr command, 160

chcon command, 479–480

chgrp command, 150

chmod command, 153–154, 156–158

chown command, 149–150

chrony service, 533–534

chronyd process, 529–530

chroot command, 411–413, 414

chroot environment, 461, 543

chvt command, 107

Classless Inter-Domain Routing (CIDR) notation, 171

ClientAliveCountMax option (SSH), 446, 447

ClientAliveInterval option (SSH), 446, 447

clients

SSH options, 446–447

time service, 533–534

clock. See time services

command line

command-line completion, 37

mounting NFS (Network File System) shares from, 514

command mode, vim, 38

commands. See also individual commands

aliases, 31

command-line completion, 37

executing, 30–32

help, 43

internal/external, 31–32

I/O redirection, 32–33

pipes, 34–35

running in containers, 559–560

syntax for, 30

community distributions, 8

compression, file, 74–75

conditional loops, 429–435

&& (logical AND), 431

|| (logical OR), 431

case, 434–435

for, 431–432

if…then…else, 430–431

until, 432–434

while, 432–434

configuration. See also configuration files; installation

Apache server

configuration files, 456–459, 460–461

content creation, 459–460

software installation, 456

virtual hosts, 462–464

boot procedure, 406–408

firewalld

firewall-cmd options, 501–504

overview of, 498

services, 500–501

zones, 499

GRUB 2 boot loader

boot options, 398–399

configuration files, 397–398

network

configuration files, 186–187

hostnames, 187–189

management with nmcli, 180–184, 190

management with nmtui, 184–185, 190

name resolution, 189–191

permissions, 181

validating, 175–180

NFS (Network File System)

automount, 516–518

server setup, 513

servers, 513

shares, mounting, 514–518

root password, 416–417

rsyslogd, 300–304

configuration files, 300

facilities, priorities, and destinations, 301–303

rules, changing, 304

SSH (Secure Shell), 442–448

connection keepalive options, 446–447

hardening, 442–445

key-based authentication, 447–448

most useful options, 447

passphrases, 447–448

session options, 446

Stratis, 361–364

Systemd units, 266–267

time services

clients, 533–534

local time, 526

NTP (Network Time Protocol), 527

time management commands, 527–531

time zones, 531–533

configuration files

Apache, 456–459, 460–461

cron, 278–280

/etc/bashrc, 136

/etc/default/useradd, 134–135

/etc/group, 137–138

/etc/gshadow, 138

/etc/login.defs, 134–135

/etc/passwd, 129–130

/etc/profile, 136

/etc/shadow, 130–132

network, 186–187

rsyslogd, 300

shell environment, 41–43

Conflicts statement, 259

connection keepalive options (SSH), 446–447

consoles, local

booting/rebooting, 109–110

logging in to, 104–105

multiple terminals in

in graphical environment, 105–106

in nongraphical environment, 107–108

pseudo terminal devices, 108–109

shutting down, 109–110

terminals versus, 104

containerfiles, building images from, 556–558

containers

container images, 542

building from containerfiles, 556–558

finding, 552–553

inspecting, 553–555

managing, 556

Hivanetwork.com

https://hivanetwork.com/

registries, 542, 550–551

removing, 556

control group (cgroup), 544

environment variables, 561

host requirements for, 543–544

namespaces, 543–544

Open Containers Initiative (OCI), 551

orchestration, 545, 563, 566

overview of, 542

ports, 561

rootless, 544

running, 545–550

running commands in, 559–560

software solutions for, 542, 544–545

status of, 558–559

storage, 563–566

context settings, SELinux

context labels

monitoring, 477–478

setting, 481–482

context types

finding needed type, 482–483

setting, 479–481

overview of, 477

control group (cgroup), 544

Coordinated Universal Time (UTC), 526

cp command, 64–65

CREATE_HOME, 135

createrepo command, 204

CRI-o, 542, 544

crit priority, rsyslogd, 303

cron facility, rsyslogd, 302

crond service

anacron, 281

cron configuration files, 278–280

cron time/date fields, 278

management of, 276–277

running scheduled tasks through, 282

security, 282

cut command, 84, 87

D

daemons

crond

anacron, 281

cron configuration files, 278–280

cron time/date fields, 278

management of, 276–277

security, 282

definition of, 234

rsyslogd, 302

systemd-udevd, 376, 406

database, rpm, 222–223

date command, 528

date fields, cron, 278

daylight saving time (DST), 526

dd command (vim), 39

debug priority, rsyslogd, 303

debugging shell scripts, 435. See also troubleshooting

default file contexts, SELinux, 483–484

default permissions, 159–160

default shell, 133

default user account values, 134–135

dependencies

repositories and, 198

Systemd targets, 391–392

dependencies, Systemd, 263–265

dependency hell, 221

desktop profile, 249

destination, rsyslogd, 301–303

/dev directory, 56

/dev/hda, 317

device files, 33

device mapper, 356

device names

file system, 334–335

LVM (Logical Volume Manager), 355–356

/dev/mapper directory, 356

/dev/nvme0n1, 317

/dev/sda, 317

/dev/vda, 317

/dev/xvda, 317

df -Th command, 59–61

DHCP (Dynamic Host Configuration Protocol), 174

dictionary attacks, 442

directories. See also individual directories

absolute versus relative pathnames in, 62–64

copying, 64–65

home, 133

listing, 64

moving, 65–66

ownership

changing, 149–150

default, 150–151

displaying, 148–149

structure of, 61–62

table of, 56–57

disk devices, 317–318

distributions, Red Hat Enterprise Linux (RHEL), 7–8

dmesg command, 373–375, 383

dmz zone, firewalld, 499

dnf command

common dnf tasks, 206

overview of, 198

packages

finding, 206–208

installing/removing, 209–211

listing, 211–213

package groups, 214–216

package modules, 217–221

returning information about, 208–209

updating, 213–214

past actions, showing, 216–217

repositories

creating, 204–206

options for, 202

role of, 198–199

security, 203–204

specifying, 200–202

dnf config-manager tool, 201

dnf group install command, 206, 214, 396, 456

dnf group list command, 206, 214–216, 396

dnf history command, 216–217

dnf info command, 206, 208–209

dnf install command, 206, 209–211

dnf install curl command, 459, 464

dnf install httpd command, 459

dnf install kernel command, 383

dnf install vim-enhanced command, 38

dnf list command, 206, 211–213

dnf module command, 217–221

dnf module enable command, 221

dnf module install command, 221

dnf module list command, 217–221

dnf remove command, 206, 211

dnf search command, 206–208

dnf update command, 206, 213–214

dnf upgrade kernel command, 383

dnf whatprovides command, 208, 479

DNS (Domain Name Service), 189–191

Docker, 542, 544

DocumentRoot parameter, Apache, 456–459

dollar sign ($), 39

dot (.) regular expression, 91, 92

dracut command, 413, 415

drivers, kernel, 372–373

drop zone (firewalld), 499

DST (daylight saving time), 526

dump utility, 158, 337, 515

Dynamic Host Configuration Protocol (DHCP), 174

E

e2label command, 331, 334

echo command, 41, 428

editors

vi, 38

vim, 37–40

EFI (Extensible Firmware Interface), 57–58

else statement, 429

emergency.target, 390

emerg/panic priority, rsyslogd, 303

End Of File (EOF) character, 235

enforcing mode, SELinux, 473–475

engine, container, 542

env command, 40

ENV_PATH, 135

environment, shell, 135–136

configuration files, 41–43

definition of, 40

variables, 40–41

environment variables

container, 562–563

shell, 40–41

EPEL (Extra Packages for Enterprise Linux) repositories, 199

epoch time, 528

equal sign (=), 41, 303

err/error priority, rsyslogd, 303

esac statement, 435

escaping, 91, 430–431

/etc directory, 56

/etc/anacrontab file, 281

/etc/bashrc file, 41, 136

/etc/containers/registries.conf file, 550–551

/etc/cron.allow file, 282

/etc/crontab file, 278–280

/etc/default/grub file, 396–397

/etc/default/useradd file, 134–135

/etc/fstab file, 335–338, 515

/etc/group file, 137–138

/etc/gshadow file, 138

/etc/httpd/conf/httpd.conf file, 456–459, 461

/etc/issue file, 42

Hivanetwork.com

https://hivanetwork.com/

/etc/login.defs file, 134–135

/etc/logrotate.conf file, 304–306

/etc/modprobe.d directory, 382

/etc/modules-load.d directory, 378

/etc/motd file, 42

/etc/NetworkManager/system-connections, 186

/etc/passwd file, 129–130

/etc/profile file, 41, 136

/etc/rsyslog.conf file, 300

/etc/rsyslog.d file, 300

/etc/shadow file, 130–132

/etc/sysconfig/network-scripts directory, 186

/etc/sysconfig/selinux file, 474–475

/etc/systemd/system directory, 257

/etc/yum.repos.d directory, 201

exabytes (EB), 316

exam, RHCSA

exam day tips, 574–576

nondisclosure agreement (NDA), 576–577

practice exams, tips for, 581–582, 583–584

registration for, 573–574

theoretical pre-assessment exam, 579–580

updates for, 617–618

verifying readiness for, 573

exec command, 417

exec mount option, 337

execute permissions, 152–154

exit command, 36, 151, 425, 548

expressions, regular. See regular expressions

Ext2, 328

Ext3, 328

Ext4, 328, 329–331

extended partitions, 315, 320–322

extended regular expressions, 91–93

Extensible Firmware Interface (EFI), 57–58

external commands, 31–32

external zone (firewalld), 499

F

facilities, rsyslogd, 301–303

fdisk utility, 317, 318–322, 350–352

Fedora, 8

fg command, 235–237

file command, 73

file descriptors, 33

file systems. See also directories

BtrFS, 328

creating, 328–329

/etc/bashrc, 331–332

Ext2, 328

Ext3, 328

Ext4, 328, 329–331

Filesystem Hierarchy Standard (FHS), 56–57

mounting, 57–61

automating through /etc/fstab, 335–338

device names, 334–335

disk labels, 334–335

manually, 334

requirements for, 333–334

systemd mounts, 338–339

UUIDs, 334–335

NFS

configuration, 513

history of, 512

security, 512

shares, mounting, 514–518

versions of, 512–513

NTFS, 328

swap files, 333

troubleshooting, 415

VFAT, 328

volume-managing, 361

XFS, 328, 331–332, 362

files. See also directories; log files

absolute versus relative filenames, 62–64

archives, 71–73

compression of, 74–75

configuration

Apache, 456–459, 460–461

cron, 278–280

/etc/bashrc, 136

/etc/default/useradd, 134–135

/etc/group, 137–138

/etc/gshadow, 138

/etc/login.defs, 134–135

/etc/passwd, 129–130

/etc/profile, 136

/etc/shadow, 130–132

GRUB 2 boot loader, 397–398

network, 186–187

rsyslogd, 300

shell environment, 41–43

containerfiles, 556–558

copying, 64–65, 114

deleting, 66–67

device, 33

file descriptors, 33

filtering

with cut command, 87

with sort command, 87–88

hidden, 64

links

creating, 69–70

definition of, 68

hard, 68, 71

removing, 70

symbolic (soft), 69, 71

listing, 64

moving, 65–66

multi-user.target, 390, 391–392

ownership

changing, 149–150

default, 150–151

displaying, 148–149

rpm, 222, 223–224, 225

secure file transfers, 115

swap, 333

synchronizing, 115

Systemd, 257–258

text

regular expressions, 89–96

text file-related tools, 84–89

/usr/share/doc, 48–49

wildcards and, 61

filtering text files

with cut command, 87

with sort command, 87–88

find command, 149

findmnt command, 59, 337

firewall-cmd command, 501–504

firewall-config command, 501

firewalls

benefits of, 498

firewalld

configuring, 501–504

overview of, 498

services, 500–501

zones, 499

folders. See directories

for loops, 431–432

foreground processes, 234–235

fork command, 417

forking, 258

forward slash (/), 56

FQDN (fully qualified domain name), 187

free -m command, 332

fsck command, 415

fstab file, 515

ftp.xml file, 501

fully qualified domain name (FQDN), 187

G

gdisk command, 317, 322–326, 350

getenforce command, 474–477

getent hosts command, 191

getsebool -a command, 484

gg command (vim), 39

gigabytes (GB), 316

GLOBAL DIRECTIVES #### section, rsyslog.conf, 300

gpasswd command, 151

GPG key, 203–204

gpgcheck= option, repositories, 202

gpgkey= option, repositories, 202

GPT (GUID Partition Table)

benefits of, 315–316

partitions

creating with gdisk, 322–326

creating with parted, 327

graphical applications, 113–114

graphical environments, multiple terminals in, 105–106

graphical.target, 390

greater than symbol (>), 33

grep command, 36, 93–94, 433, 484

group accounts

creating, 137–138

dnf package groups, 214–216

group properties, 138–139

primary groups, 137

secondary groups, 137

group ownership. See ownership, file/directory

groupadd command, 138

groupmems command, 139

groupmod command, 138–139

groups command, 151

GRUB 2 boot loader, 396–399

boot options, 398–399

components of, 396

configuration files, 397–398

reinstalling, 410–414

grub2-install command, 413, 414

grub2-mkconfig command, 397–398

gunzip utility, 74

Hivanetwork.com

https://hivanetwork.com/

gzip command, 74

H

halt command, 109–110

hard links, 68, 71

hardening, SSH (Secure Shell), 442–445

alternative port configuration, 443

root access, limiting, 442

SELinux, 443

hardware initialization, 376–377

hardware time, 526

head command, 84, 86

help

--help option, 43

/usr/share/doc documentation files, 48–49

hidden files, 64

history

Bash, 35–37

dnf, 216–217

history command, 35–37

home directories, 133

/home directory, 56, 58

home zone (firewalld), 499

host requirements, container, 543–544

hostnamectl set-hostname command, 187–188

hostnamectl status command, 187–188, 375

hostnames, 187–189

hosts, virtual, 170, 462–464

hwclock command, 528

I

i command (vim), 38

id command, 124

if…then…else loops, 430–431

if…then…else…fi statement, 428–429

ifconfig utility, 175

images, container

building from containerfiles, 556–558

finding, 552–553

inspecting, 553–555

managing, 556

registries, 550–551

info command, 47–48

info priority, rsyslogd, 303

inheritance, 152

init=/bin/bash option, 409

init=/bin/sh option, 409

initramfs, 396, 406, 413, 415

initrd.target, 406

inodes, 68

input, shell scripting, 426–429

input mode, vim, 38

installation. See also configuration

Apache server software, 456

GRUB 2, 410–414

Red Hat Enterprise Linux (RHEL)

Cert Guide environment, 9–10

repositories, 8

setup requirements, 9

software options, 7–8

step-by-step process, 10–22

subscriptions, 6–7

SELinux man pages, 483

software packages, 209–211

Installation Source option, 16

Installation Summary screen, 12–21

interactive processes. See shell jobs

interface management, 174

internal commands, 31–32

internal zone, firewalld, 499

interprocess communication (ipc), 543

I/O redirection, 32–33

IP (Internet Protocol) addresses, 170–173

binary notation, 172–173

IPv4 subnet masks, 171–172

IPv6, 171

ip addr command, 175–178, 182

ip link command, 175–178

ip route command, 175–178

ip route show command, 178–179

iptables, 498

isolation of Systemd targets, 393–396

iteration. See loops, conditional

J

jails, chroot, 543

jobs. See shell jobs

jobs command, 235–237

journalctl command, 290–292, 295–298, 373–374, 415

K

KDUMP, 14

Kerberos, 512

kern facility, rsyslogd, 302

kernel. See also GRUB 2 boot loader

analysis of, 373–375

drivers, 372–373

modules, 375–383

checking availability of, 381–382

definition of, 375

dnf, 217–221

hardware initialization, 376–377

management of, 378–383

parameters of, 382–383

role of, 372–375

tainted, 373

threads, 234, 238, 372–373

upgrading, 383

key-based authentication, 116–117, 203–204, 447–448

keyboard settings, 12–14

kibibytes (KiB), 316

kill command, 243–245

killall command, 243–245

kilobytes (KB), 316

Kubernetes, 545, 562

KVM, 9–10

L

[label] option, repositories, 202

labels

file system, 334–335

SELinux context labels

monitoring, 477–478

setting, 481–482

language settings, 12

latency-performance profile, 249

LDAP (Lightweight Directory Access Protocol), 512

less command, 84–85

less than symbol (<), 33

lid command, 139

Lightweight Directory Access Protocol (LDAP), 512

line anchors, 90

lines, counting, 88–89

linger feature, 541, 566–568

links

creating, 69–70

definition of, 68

hard, 68, 71

removing, 70

symbolic (soft), 69, 71

ListenDatagram, 259

ListenStream, 259

list-timezone command, 529

live log ile monitoring, 294

ln command, 69–70

load averages, 247–248

local consoles. See consoles, local

local time, 526

local0–7 facility, rsyslogd, 302

~/.local/share/containers/storage directory, 550

log files, 487–488

audit, 487–488

contents of, 293

direct write, 290

live monitoring, 294

logger, 294

overview of, 290

reading, 292

rotating, 304–306

rsyslogd service, 290–292, 300–304

systemd-journald service

examining with journalctl, 295–298

role of, 290–292

systemd journal, preserving, 298–300

logger, 294

logical AND (&&), 431

logical extent, 354, 359

logical OR (||), 431

logical partitions, 315, 320–322

Logical Volume Manager. See LVM (Logical Volume Manager)

logical volumes

creating, 348–349, 355, 356–357

resizing, 358–360

loginctl session manager, 566–568

logins, local console, 104–105

logrotate command, 305

loops, conditional, 429–435

case, 434–435

for, 431–432

if…then…else, 430–431

logical AND (&&), 431

logical OR (||), 431

until, 432–434

while, 432–434

lpr facility, rsyslogd, 302

ls command, 30, 34–35, 64, 69, 148–149, 477–478

lsattr command, 161

lsblk command, 317–318, 351, 353, 360

lsmod command, 378

lspci command, 381–382

lv command, 348

Hivanetwork.com

https://hivanetwork.com/

lvcreate command, 355, 357, 361

lvdisplay command, 357

lvextend command, 358–360

LVM (Logical Volume Manager), 57–58

architecture, 346–347

benefits of, 346

device mapper, 356

device naming, 355–357

features, 347–348

logical extent, 354, 359

logical volumes

creating, 348–349, 355–357

resizing, 358–360

physical volumes, creating, 350–353

snapshots, 347–348

volume groups (VGs)

creating, 353–357

physical extent, 354

reducing, 360–361

resizing, 358

lvremove command, 357

lvresize command, 358–360

lvs command, 357, 360

M

MAC (media access control) addresses, 173

mail facility, rsyslogd, 302

man command, 43–47, 398, 482–483

man logrotate command, 305

man pages, 44–47, 480, 483

man semanage command, 480

mandb command, 46

mark facility, rsyslogd, 302

Master Boot Record partitions. See MBR (Master Boot Record)

partitions

MaxAuthTries option (SSH), 447

MaxSessions option (SSH), 447

MBR (Master Boot Record) partitions

creating with fdisk, 318–320

extended and logical partitions, 320–322

overview of, 314–315

measurement units, storage, 316

mebibytes (MiB), 316

/media directory, 56

megabytes (MB), 316

memory tests, 411

Microsoft Hyper-V, 9–10

mirrorlist= option, repositories, 202

mkdir command, 62

mkfs command, 328–329, 355

mklabel command, 327

mkpart command, 327

mkswap command, 332–333

/mnt directory, 56

modes, SELinux, 473–477

modinfo command, 378–380, 383

modprobe command, 378–382

modules, 375–383

checking availability of, 381–382

definition of, 375

dnf, 217–221

hardware initialization, 376–377

management of, 378–383

parameters of, 382–383

MODULES #### section, rsyslog.conf, 300

more command, 85

MOTD_FILE, 134

mount command, 58–59, 333–338, 415, 512–513, 516

mount namespace, 543

mount units, Systemd, 258–259

mounting

file systems

automating through /etc/fstab, 335–338

device names, 334–335

disk labels, 334–335

manually, 334

requirements for, 333

systemd mounts, 338–339

UUIDs, 334–335

NFS (Network File System) shares

with automount, 516–518

from command line, 514

through /etc/fstab file, 515

multipliers in regular expressions, 91

multi-user.target file, 390–392

mv command, 65–66

N

name resolution, 189–191

name= option, repositories, 202

names, device

file system, 334–335

LVM (Logical Volume Manager), 355–356

namespaces, 543–544

nano editor, 266

NAT (Network Address Translation), 171

NDA (nondisclosure agreement), 576–577

netfilter, 498

netstat command, 179–180

Network Address Translation (NAT), 171

network addresses

management of, 174

validation of, 175–178

Network File System. See NFS (Network File System)

Network Information Service (NIS), 512

network masks, IPv4, 171–172

network namespace, 543

Network Time Protocol (NTP), 527

networking

binary notation, 172–173

broadcast addresses, 172

configuration

configuration files, 186–187

hostnames, 187–189

management with nmcli, 180–184, 190

management with nmtui, 184–185, 190

name resolution, 189–191

permissions, 181

validating, 175–180

hostnames, 187–189

interface management, 174

IP (Internet Protocol) addresses, 170–173

binary notation, 172–173

IPv4 subnet masks, 171–172

IPv6, 171

MAC (media access control) addresses, 173

network addresses

management of, 174

validation of, 175–178

NetworkManager, 180

ports, 173, 179–180

protocols, 173

Red Hat Enterprise Linux (RHEL) installation settings, 20

network-latency profile, 249

NetworkManager, 180

network-throughput profile, 249

newgrp command, 150

news facility, rsyslogd, 302

NFS (Network File System)

history of, 512

security, 512

server setup, 513

shares, mounting

with automount, 516–518

from command line, 514

through /etc/fstab file, 515

versions of, 512–513

nfsvers= option (mount command), 512–513

nft command, 498

nftables, 498

nice command, 241–243

NIS (Network Information Service), 512

nmap command, 558

nmcli command, 182–184, 190

nm-connection-editor, 185

nmtui command, 184–185, 190

noatime mount option, 337

noauto mount option, 337

nodes, 170

noexec mount option, 337, 469

nohup command, 237

nondisclosure agreement (NDA), 576–577

nongraphical environments, multiple terminals in, 107–108

normal accounts, 129–132

notice priority, rsyslogd, 303

NTFS, 328

NTP (Network Time Protocol), 527

NVM Express (NVMe) interface, 317

O

o command (vim), 38

OnActiveSec option (systemd), 275

OnBootSec option (systemd), 275

OnCalendar option (systemd), 275

OnStartupSec option (systemd), 275

OnUnitActiveSec option (systemd), 275

Open Containers Initiative (OCI), 551

OpenShift, 545, 562

operators

logical AND (&&), 431

logical OR (||), 431

/opt directory, 56

options, command, 30

Oracle VM VirtualBox, 9–10

orchestration, container, 545, 563, 566

ownership, file/directory

changing, 149–150

default, 150–151

displaying, 148–149

P

p command (vim), 39

Hivanetwork.com

https://hivanetwork.com/

packages, software

managing with dnf, 213–214

common dnf tasks, 206

dnf history, 216–217

dnf package groups, 214–216

dnf package modules, 217–221

finding software packages with, 206–208

installing/removing packages with, 209–211

overview of, 198

returning package information with, 208–209

showing list of packages with, 211–213

updating packages with, 213–214

managing with rpm, 221–225

dependency hell, 221

overview of, 221–222

repoquery, 224–225

rpm database queries, 222–223

rpm filenames, 222

rpm package file queries, 223–225

Red Hat Enterprise Linux registration, 199

repositories

creating, 204–206

options for, 202

role of, 198–199

security, 203–204

specifying, 200–202

subscription management, 200

parent shell, 424

parent-child relationship, 237

parted command, 317, 327, 350

partitions

definition of, 314

disk device types, 317–318

extended, 315

GPT (GUID Partition Table)

benefits of, 315–316

creating with gdisk, 322–326

creating with parted, 327

logical, 315

MBR (Master Boot Record)

creating with fdisk, 318–320

extended and logical partitions, 320–322

overview of, 314–315

primary, 315

storage measurement units, 316

swap, 332–333

PASS_MAX_DAYS, 135

PASS_MIN_DAYS, 135

PASS_WARN_AGE, 135

passphrases, SSH (Secure Shell), 116–117, 447–448

passwd command, 135

PasswordAuthentication option (SSH), 447

passwords

Red Hat Enterprise Linux (RHEL) installation, 15

root password, resetting, 416–417

user accounts, 135

performance optimization, 248–249

permissions

attributes, user-extended, 160–161

default, 159–160

inheritance and, 152

network configuration, 181

read/write/execute, 152–154

set group ID (SGID), 155–159

set user ID (SUID), 155–159

sticky bit, 156–159

permissive mode, SELinux, 473–475

PermitRootLogin option, 447

PermitRootLogin prohibit-password option, 442

persistent modifier, 275

petabytes (PB), 316

pgrep command, 240

physical extent, 354

physical volumes, creating, 350–353

PID (process identification number), 238

pinfo command, 47–48

ping command, 431–432

pipe (|), 33–35, 431

pkexec command, 127

pkill command, 243–245

plus sign (+), 92

Podman, 542, 544

commands, running in container, 559–560

container environment variables, managing, 562–563

container images

building, 556–558

finding, 552–553

inspecting, 553–555

managing, 556

container ports, managing, 561

container status, managing, 558–559

container storage, managing, 563–564

containers, running, 545–550, 555, 566–568

registries, finding, 550–551

podman build command, 556–558

podman exec command, 559–560, 566

podman generate command, 567–568

podman generate systemd command, 567–568

podman info command, 550–551

podman inspect command, 553–555, 562–563

podman kill command, 559

podman login command, 552

podman logs command, 562–564

podman ps command, 548–550, 558–559

podman restart command, 559

podman rm command, 559

podman rmi command, 556

podman run command, 545–550, 555, 559, 561

podman search command, 552–553

podman stop command, 559

podman unshare command, 565

policy violations, SELinux, 487–490

PolicyKit, 127

pool, Stratis, 362–363

port access, SELinux, 484–485

Port option (SSH), 447

ports, 173

container, 561

SSH (Secure Shell), 443

validation of, 179–180

positional parameters, 426–427

poweroff command, 109–110

Power-On Self-Test (POST), 406

powersave profile, 249

practice exams, tips for, 581–584

pre-assessment exam, 579–580

preparation

for Red Hat Enterprise Linux (RHEL) installation

Cert Guide environment, 9–10

distributions, 7–8

setup requirements, 9

step-by-step process, 10–22

subscriptions, 6–7

for RHCSA exam

exam day tips, 574–576

nondisclosure agreement (NDA), 576–577

registration, 573–574

verifying readiness, 573

primary groups, 137

primary partitions, 315

priorities

process, 241–243

management of, 242–243

overview of, 241

relations between slices, 241–242

rsyslogd, 301–303

private keys, 116

privileged users, 124

/proc directory, 56, 373–375

process identification number (PID), 238

process management

command-line tools for

kill command, 243–245

killall command, 243–245

nice command, 241–243

pkill command, 243–245

ps aux | head command, 238

ps command, 239–240

renice command, 241–243

top command, 246–248

tuned command, 248–249

daemons, 234

kernel threads, 234

overview of, 234

performance optimization, 248–249

process priorities, 241–243

management of, 242–243

overview of, 241

relations between slices, 241–242

process states, 247

process types, 238

shell jobs, 234–237

common job management tasks, 235–237

definition of, 234

parent-child relationship, 237

running in foreground/background, 234–235

signals, sending to processes, 243–245

tuned profiles, 248–249

zombies, 245–246

process namespace, 543

~/.profile file, 136

profiles

dnf, 218

setting during Red Hat Enterprise Linux (RHEL)

installation, 14

tuned, 248–249

programmatic API, 362

properties

Ext4 file systems, 329–331

group, 138–139

password, 135

user, 134

Hivanetwork.com

https://hivanetwork.com/

XFS file systems, 331–332

protocols, 173

ps aux command, 88, 238, 245–246, 372

ps command, 239–240

ps Zaux command, 477

pseudo terminal devices, 108–109

public keys, 116

public zone (firewalld), 499

pv command, 348

pvcreate command, 348, 350–352, 354, 357

pvdisplay command, 352–353, 357

pvmove command, 348, 360

pvremove command, 357

pvs command, 351–352, 356–357, 360

pwd command, 34, 62–63

Q

queries

repoquery, 224–225

rpm database, 222–223

rpm package files, 223–225

question mark (?), 61, 92

quiet option, GRUB 2 boot loader, 398

R

rd.break, 409

read command, 427–429

read permissions, 152–154

reading text files

with cat command, 85

with head and tail commands, 86

with less command, 84–85

real-time clock (RTC), 526

reboot command, 109–110, 417

rebooting system, 21–22, 109–110

Red Hat Customer Portal, 6–7, 198

Red Hat Enterprise Linux registration, 199

Red Hat Enterprise Linux (RHEL) installation

Cert Guide environment, 9–10

repositories, 8

setup requirements, 9

software options, 7–8

step-by-step process, 10–22

Begin Installation process, 21

Installation Summary screen, 12–21

Reboot System process, 21–22

Welcome to Red Hat Enterprise Linux 9.0 screen, 11

subscriptions, 6–7

Red Hat Enterprise Linux subscription management, 200

Red Hat Network (RHN), 7

Red Hat Package Manager (RPM), 198. See also rpm command

Red Hat Subscription Management (RHSM) tools, 199

redirection, I/O, 32–33

registration

of Red Hat Enterprise Linux, 199

for RHCSA exam, 573–574

registries, 542, 550–551

regular expressions, 89–96

awk command with, 94–96

definition of, 89

escaping in, 91

examples of, 89–90

extended, 91–93

grep command with, 93–94

line anchors, 90

wildcards and multipliers in, 91

relabeling action, SELinux, 484

relative filenames, 62–64

remote NFS shares, mounting

with automount, 516–518

through /etc/fstab file, 515

remote systems, accessing with SSH (Secure Shell), 110–113

renice command, 241–243

.repo files. See repositories

repoquery, 224–225

repositories, 8

Application Stream (AppStream) repository, 205–206

creating, 204–206

EPEL (Extra Packages for Enterprise Linux) repositories,

199

options for, 202

role of, 198–199

security, 203–204

specifying, 200–202

rescue disks, 410–414

rescue.target, 390

resizing

logical volumes, 358–360

volume groups (VGs), 358

restorecon command, 483–484

restoring SELinux default file contexts, 483–484

RHCSA exam. See exam, RHCSA

RHEL, 274

rhgb option, GRUB 2 boot loader, 398

rm command, 66, 70

rmdir command, 62

Rocky Linux, 8

root access, limiting, 442

root directory (/), 56

root password, 15, 416–417

root users (superusers), 124–125

rootless container, 544

routing, validation of, 179–180

rpm command, 221–225

dependency hell, 221

overview of, 221–222

repoquery, 224–225

rpm database queries, 222–223

rpm filenames, 222

rpm package file queries, 223–225

rsync command, 114–115

rsyslogd

configuration, 300–304

configuration files, 300

facilities, priorities, and destinations, 301–303

rules, changing, 304

role of, 290–292

RTC (real-time clock), 526

rules (rsyslogd), changing, 304

RULES #### section, rsyslog.conf, 300–301

/run directory, 56

/run/log/journal file, 298–300

Running (R) state, 247

run-parts command, 280

/run/systemd/system directory, 257

S

Samba, 515

/sbin/init, 406

scheduling

anacron service, 281

at command, 282–283

atd service, 282–283

batch command, 283

crond service

anacron, 281

cron configuration files, 278–280

cron time/date fields, 278

management of, 276–277

running scheduled tasks through, 282

security, 282

RHEL, 274

systemd timers, 274–276

scp command, 114

scripting, shell

conditional loops, 429–435

case, 434–435

for, 431–432

if…then…else, 430–431

logical AND (&&), 431

logical OR (||), 431

until, 432–434

while, 432–434

core elements of, 424–425

debugging, 435

variables and input, 426–429

sealert command, 489–490

secondary groups, 137–138

security

cron, 282

NFS (Network File System), 512

repositories, 203–204

rsyslogd, 302

security profiles, 14

SELinux, 463–464, 484, 544

Boolean settings, 485–487

context settings

context labels, monitoring, 477–478

context labels, setting, 481–482

context types, finding needed, 482–483

context types, setting, 479–481

overview of, 477

core elements of, 473

default file contexts, restoring, 483–484

man pages, installing, 483

overview of, 469

policy violations, 487–490

port access, managing, 484–485

relabeling action, 484

working modes, 473–477

semanage command, 443–445, 479–482, 484–486, 490, 564

sepolicy generate command, 476

Server with GUI option, 18

ServerAliveCountMax option (SSH), 447

ServerAliveInterval option (SSH), 447

ServerRoot parameter, Apache, 456–459

servers

Apache

software installation, 456–460

virtual hosts, 462–464

booting/rebooting, 109–110

shutting down, 109–110

Hivanetwork.com

https://hivanetwork.com/

session options, SSH (Secure Shell), 446

sestatus command, 475–477

set group ID (SGID) permissions, 155–159

set n lvm on command, 350

set user ID (SUID) permissions, 155–159

setenforce command, 474–477

set-local-rtc command, 529

set-ntp command, 529

setsebool command, 486

set-time command, 529

set-timezone command, 529

sftp command, 115

shares (NFS), mounting

with automount, 516–518

from command line, 514

through /etc/fstab file, 515

shebang, 424

shell

commands. See also individual commands

aliases, 31

command-line completion, 37

executing, 30–32

help, 43

internal/external, 31–32

I/O redirection, 32–33

pipes, 34–35

running in containers, 559–560

syntax for, 30

default, 133

definition of, 30

environment

configuration files, 41–43

definition of, 40

variables, 40–41. See also individual variables

help

--help option, 43

info/pinfo commands, 47–48

man pages, 44–47

/usr/share/doc documentation files, 48–49

history, 35–37

local console connections

booting/rebooting, 109–110

logging in to, 104–105

pseudo terminal devices, 108–109

shutting down, 109–110

switching between terminals, 105–108

terminals versus, 104

parent, 424

shell jobs, 234–237

common job management tasks, 235–237

definition of, 234

parent-child relationship, 237

running in foreground/background, 234–235

shell scripting

conditional loops, 429–435

core elements of, 424–425

debugging, 435

variables and input, 426–429

SSH (Secure Shell)

accessing remote systems with, 110–113

configuration, 442–448, 464

copying files in, 114

file synchronization, 115

graphical applications in, 113–114

key-based authentication for, 116–117, 447–448

passphrases, 460–461

secure file transfers, 115

secure file transfers in, 115

subshells, 41–42, 105, 424

wildcards, 61

shell jobs, 234–237

common job management tasks, 235–237

definition of, 234

parent-child relationship, 237

running in foreground/background, 234–235

showmount command, 514

shutting down system, 109–110

SIGKILL command, 559

SIGTERM signal, 559

skopeo, 542, 553

Sleeping (S) state, 247

slices, 241

management of, 242–243

overview of, 241

relations between, 241–242

snapshots

LVM (Logical Volume Manager), 347–348

Stratis, 362

socket units, Systemd, 259

soft links, 69, 71

software, Red Hat Enterprise Linux (RHEL), 7–8

software clock, 526

software management

with dnf

common dnf tasks, 206

dnf history, 216–217

dnf package groups, 214–216

dnf package modules, 217–221

finding software packages with, 206–208

installing/removing packages with, 209–211

overview of, 198

returning package information with, 208–209

showing list of packages with, 211–213

updating packages with, 213–214

Red Hat Enterprise Linux registration, 199

repositories

creating, 204–206

options for, 202

role of, 198–199

security, 203–204

specifying, 200–202

with rpm, 221–225

dependency hell, 221

overview of, 221–222

repoquery, 224–225

rpm database queries, 222–223

rpm filenames, 222

rpm package file queries, 223–225

subscription management, 200

Software Selection option, RHEL installation, 18

sort command, 84, 87–88

source context, 488

/srv directory, 56

ss command, 179–180, 477

SSH (Secure Shell)

accessing remote systems with, 110–113

configuration, 464

connection keepalive options, 446–447

hardening, 442–445

key-based authentication, 447–448

most useful options, 447

session options, 446

copying files in, 114

file synchronization, 115

graphical applications in, 113–114

key-based authentication for, 116–117, 447–448

passphrases, 460–461

secure file transfers in, 115

ssh command, 110–114

ssh-add command, 448

ssh-agent command, 448

ssh-keygen command, 117

st command, 274

star utility, 73

starting Red Hat Enterprise Linux (RHEL) installation, 21

states, process, 247

status, container, 558–559

status command, 529

STDERR, 32–33

STDIN, 32–33

STDOUT, 32–33

sticky bit, 156–159

Stopped (T) state, 247

storage. See containers; file systems; LVM (Logical Volume

Manager); partitions; Stratis

Stratis, 361–364

architecture, 362

features of, 361–362

management of, 363–364

snapshots, 362

volumes, creating, 362–363

stratis blockdev command, 363

stratis filesystem command, 363

stratis fs create command, 363

stratis fs list command, 363

stratis pool command, 363

stratum, 527

streams, dnf, 218

su command, 125–126

subnet masks, 172–173

subscription management, 200

subscription-manager tool, 199–201

subscriptions, Red Hat Enterprise Linux (RHEL), 6–7

subshells, 41–42, 105, 424

sudo command, 105, 126–128

sudo dnf install container-tools command, 545

sudo podman ps command, 561

sudo podman run command, 561

superusers, 124–125

swap files, 333

swap partitions, 332–333

swapon command, 332–333

symbolic links, 69, 71

synchronization, time, 527, 530–531

/sys directory, 56

syslog facility, rsyslogd, 302

system accounts, 129–132

system logging. See log files

system time, 526

systemctl command, 261–263, 275

systemctl disable command, 392–393

systemctl edit command, 266–267

Hivanetwork.com

https://hivanetwork.com/

systemctl enable command, 260–261, 363, 392–393, 459, 566–568

systemctl --failed -t service command, 263

systemctl get-default command, 396

systemctl halt command, 109–110

systemctl isolate command, 393–396

systemctl list-dependencies command, 260, 263

systemctl list-units command, 263, 275, 410

systemctl poweroff command, 109–110

systemctl reboot command, 109–110

systemctl restart autofs command, 518

systemctl restart httpd command, 464

systemctl set-default command, 396

systemctl show command, 265–267

systemctl start vsftpd command, 261

systemctl status command, 180, 261–263, 276–277, 290–292, 445,

459

systemctl -t help command, 256

systemctl -t service command, 263

systemctl --type=target command, 393–396

systemctl --user command, 566–568

Systemd, 109–110

mounts, 338–339

overview of, 256

systemd-journald

examining with journalctl, 295–298

preserving, 298–300

role of, 290–292

targets, 390–396

isolating, 393–396

managing, 392–393

showing list of, 393–396

target units, 391–392

types of, 390

wants, 392

timers, 274–276

units

changing configuration of, 266–267

definition of, 256

dependencies, 263–265

displaying list of, 256

locations, 256–257

management of, 261–263

mount, 258–259

options for, 265–266

socket, 259

target, 260–261

unit file, 257–258

systemd-udevd daemon, 376, 406

systemd.unit=emergency.target topion, 410

systemd.unit=rescue.target option, 410

T

tail command, 84, 86, 106, 294

tainted kernels, 373

tar command, 72–75

target context, 488

targets, Systemd, 390–396

isolating, 393–396

managing, 392–393

showing list of, 393–396

target units, 260–261, 391–392

troubleshooting, 409–410

types of, 390

wants, 392

task scheduling. See scheduling

TCPKeepAlive option (SSH), 446, 447

terabytes (TB), 316

term command, 105

terminals, 107

consoles versus, 104

multiple

in graphical environment, 105–106

in nongraphical environment, 107–108

pseudo terminal devices, 108–109

test command, 428, 431

/text command (vim), 39

text editors

vi, 38

vim, 37–40

text files

regular expressions, 89–96

awk command with, 94–96

definition of, 89

escaping in, 91

examples of, 89–90

extended, 91–93

grep command with, 93–94

line anchors, 90

wildcards and multipliers in, 91

text file-related tools

cat, 85

cut, 87

head and tail commands, 86

less, 84–85

sort, 87–88

table of, 84

wc, 88–89

text$ regular expression, 92

text-processing tools

awk, 94–96

grep, 93–94

then statement, 428

theoretical pre-assessment exam, 579–580

thin provisioning, 361–362

threads, kernel, 234, 238, 372–373

throughput-performance profile, 249

time services

client configuration, 533–534

epoch time, 528

local time, 526

NTP (Network Time Protocol), 527

RTC (real-time clock), 526

system time, 526

time management commands, 527–531

date, 528

hwclock, 528

time, 32

timedatectl, 529–530

time synchronization, 527, 530–531

time zone settings, 531–533

time/date fields, 278

time/date settings, 14–15

timedatectl command, 527, 529–533

timers, systemd, 274–276

TLS (Transport Layer Security), 443

/tmp directory, 57

top command, 246–248

touch /.autorelabel command, 417

Transport Layer Security (TLS), 443

troubleshooting

boot issues

boot phase configuration, 406–408

boot prompt, accessing, 408–409

file system issues, 415

GRUB 2 reinstallation, 414

initramfs, 415

rescue disks, 410–414

root password, resetting, 416–417

troubleshooting targets, 409–410

Red Hat Enterprise Linux (RHEL) installation, 10

shell scripts, debugging, 435

trusted zone (firewalld), 499

tune2fs command, 329–331

tuned command, 248–249

type command, 31

tzselect utility, 531–533

U

u command (vim), 39

udevadm monitor command, 376–377

UEFI (Unified Extensible Firmware Interface), 315, 406

UID_MIN, 135

umask command, 159–160

umount command, 334

uname utility, 373–375

Unified Extensible Firmware Interface (UEFI), 315

Uninterruptible sleep (D) state, 247

units, Systemd

changing configuration of, 266–267

definition of, 256

dependencies, 263–265

displaying list of, 256

locations, 256–257

management of, 261–263

mount, 258–259

options for, 265–266

socket, 259

target, 260–261, 391–392

unit file, 257–258

Universal Extended Firmware Interface (UEFI), 406

universally unique IDs (UUIDs), 334–335

UNIX, 512. See also NFS (Network File System)

unprivileged users, 124

until loops, 432–434

updates

exam, 617–618

software packages, 213–214

upgrades, Linux kernel, 383

uptime command, 247–248

UseDNS option (SSH), 447

user accounts, switching between, 125–126

User Creation option, RHEL installation, 16

user environment, 135–136

user facility, rsyslogd, 302

user management

group accounts

creating, 137–138

group properties, 138–139

primary groups, 137

secondary groups, 137

user accounts

creating, 132–133, 136

Hivanetwork.com

https://hivanetwork.com/

default values, 134–135

normal accounts, 129–132

password properties, 135

system accounts, 129–132

user environment, 135–136

user properties, 134

user types

PolicyKit, 127

privileged/unprivileged, 124

root users (superusers), 124–125

su command, 125–126

sudo command, 126–128

switching between, 125–126

user namespace, 543

user ownership. See ownership, file/directory

user_xattr mount option, 337

useradd command, 126, 132–133

userdel command, 132

user-extended attributes, 160–161

usermod command, 133–134, 138–139

/usr directory, 57, 58

/usr/lib/modules-load.d directory, 378

/usr/lib/systemd/system directory, 256

UTC (Coordinated Universal Time), 526

uucp facility, rsyslogd, 302

UUIDs (universally unique IDs), 334–335

V

v command (vim), 39

-v host_dir:container_dir command, 564

validation

of network configuration, 175–180

network addresses, 175–178

network settings, 179–180

ports and services, 179

routing, 178–179

/var directory, 57, 58

variables, 40–41

$LANG, 40

$PATH, 31

container environment variables, 561

shell scripting, 426–429

defining, 427–429

positional parameters, 426–427

/var/log directory, 292–293

/var/log/audit/audit.log file, 487–488

Very Secure FTP service, 257

VFAT, 328

vg command, 348

vgcreate command, 353–354, 356–357, 361

vgdisplay command, 354–355, 357

vgextend command, 358, 360

vgreduce command, 358, 360–361

vgremove command, 357

vgs command, 354–355, 357–358, 360

vi editor, 38

vigr command, 132–133, 137–139

vim editor, 37–40

vimtutor command, 38

vipw command, 132–134

virtual hosts, Apache, 462–464

virtual terminals, 107–108

virtual-guest profile, 249

virtual-host profile, 249

visudo command, 127

VMware Workstation, 9–10

volume groups (VGs)

creating, 353–357

physical extent, 354

reducing, 360–361

resizing, 358

volume-managing file systems, 361. See also Stratis

volumes, Stratis, 362–363

W

wants, 260–261, 392

warning/warn priority, rsyslogd, 303

wc command, 88–89

we command, 84

Web server content, creating, 459–460

Welcome to Red Hat Enterprise Linux 9.0 screen, 11

which command, 31, 225

while loops, 432–434

whoami command, 126

wildcards, 61

in automount, 517–518

in regular expressions, 91

words, counting, 88–89

work zone (firewalld), 499

working modes, SELinux, 473–477

write permissions, 152–154

X

Xen virtual machine, 317

XFS file system, 328, 331–332, 362

xfs_admin command, 331–332, 334

xz utility, 74

Y

yottabytes (YB), 316

yumdownloader command, 225

yum-utils package, 225

yy command (vim), 39

Z

zettabytes (ZB), 316

zombies, 245–246, 247

zones, firewalld, 499

Hivanetwork.com

https://hivanetwork.com/

RHCSA Practice Exam C

General Notes

Here are some tips to ensure your exam starts with a clean

environment:

You do not need any external servers or resources.

Do not register or connect to any external repositories.

Install a new VM according to the instructions in each practice

exam.

No sample solutions are provided for these practice exams. On

the real exam, you need to be able to verify the solutions for

yourself as well.

You should be able to complete each exam within two hours.

After applying these tips, you’re ready to get started. Good luck!

1. Install a RHEL 9 virtual machine that meets the following

requirements:

1. 2 GB of RAM

2. 20 GB of disk space using default partitioning

3. One additional 20-GB disk that does not have any partitions

installed

4. Server with GUI installation pattern

2. Create user student with password password, and user root

with password password.

3. Configure your system to automatically mount the ISO of the

installation disk on the directory /repo. Configure your system

to remove this loop-mounted ISO as the only repository that is

used for installation. Do not register your system with

subscription-manager, and remove all references to external

repositories that may already exist.

4. Reboot your server. Assume that you don’t know the root

password, and use the appropriate mode to enter a root shell

that doesn’t require a password. Set the root password to

mypassword.

5. Set default values for new users. Make sure that any new user

password has a length of at least six characters and must be

used for at least three days before it can be reset.

6. Create users linda and anna and make them members of the

group sales as a secondary group membership. Also, create

users serene and alex and make them members of the group

account as a secondary group.

7. Configure an SSH server that meets the following

requirements:

1. User root is allowed to connect through SSH.

2. The server offers services on port 2022.

8. Create shared group directories /groups/sales and

/groups/account, and make sure these groups meet the

following requirements:

1. Members of the group sales have full access to their

directory.

2. Members of the group account have full access to their

directory.

3. Users have permissions to delete only their own files, but

Alex is the general manager, so user alex has access to

delete all users’ files.

9. Create a 4-GiB volume group, using a physical extent size of 2

MiB. In this volume group, create a 1-GiB logical volume with

the name myfiles, format it with the Ext3 file system, and

mount it persistently on /myfiles.

10. Create a group sysadmins. Make users linda and anna

members of this group and ensure that all members of this

group can run all administrative commands using sudo.

11. Optimize your server with the appropriate profile that

optimizes throughput.

12. Add a new disk to your virtual machine with a size of 10 GiB.

On this disk, create a LVM logical volume with a size of 5 GiB,

configure it as swap, and mount it persistently.

13. Create a directory /users/ and in this directory create the

directories user1 through user5 using one command.

14. Configure a web server to use the nondefault document root

/webfiles. In this directory, create a file index.html that has

the contents hello world and then test that it works.

15. Configure your system to automatically start a mariadb

container. This container should expose its services at port

3306 and use the directory /var/mariadb-container on the host

for persistent storage of files it writes to the /var directory.

16. Configure your system such that the container created in step

15 is automatically started as a Systemd user container.

RHCSA Practice Exam D

General Notes

Here are some tips to ensure your exam starts with a clean

environment:

You do not need any external servers or resources.

Do not register or connect to any external repositories.

Install a new VM according to the instructions in each practice

exam.

No sample solutions are provided for these practice exams. On

the real exam, you need to be able to verify the solutions for

yourself as well.

You should be able to complete each exam within two hours.

After applying these tips, you’re ready to get started. Good luck!

1. Install a RHEL 9 virtual machine that meets the following

requirements:

1. 2 GB of RAM

2. 20 GB of disk space using default partitioning

3. One additional 20-GB disk that does not have any partitions

installed

4. Server with GUI installation pattern

2. Create user student with password password, and user root

with password password.

3. Configure your system to automatically mount the ISO of the

installation disk on the directory /repo. Configure your system

to remove this loop-mounted ISO as the only repository that is

used for installation. Do not register your system with

subscription-manager, and remove all references to external

repositories that may already exist.

4. Create a 500-MiB partition on your second hard disk, and

format it with the Ext4 file system. Mount it persistently on the

directory /mydata, using the label mydata.

5. Set default values for new users. A user should get a warning

three days before expiration of the current password. Also,

new passwords should have a maximum lifetime of 120 days.

6. Create users lori and laura and make them members of the

secondary group sales. Ensure that user lori uses UID 2000 and

user laura uses UID 2001.

7. Create shared group directories /groups/sales and

/groups/data, and make sure the groups meet the following

requirements:

1. Members of the group sales have full access to their

directory.

2. Members of the group data have full access to their

directory.

3. Others has no access to any of the directories.

4. Alex is general manager, so user alex has read access to all

files in both directories and has permissions to delete all

files that are created in both directories.

8. Create a 1-GiB swap partition and mount it persistently.

9. Find all files that have the SUID permission set, and write the

result to the file /root/suidfiles.

10. Create a 1-GiB LVM volume group. In this volume group,

create a 512-MiB swap volume and mount it persistently.

11. Add a 10-GiB disk to your virtual machine. On this disk, create

a Stratis pool and volume. Use the name stratisvol for the

volume, and mount it persistently on the directory /stratis.

12. Install an HTTP web server and configure it to listen on port

8080.

13. Create a configuration that allows user laura to run all

administrative commands using sudo.

14. Create a directory with the name /users and ensure it contains

the subdirectories linda and anna. Export this directory by

using an NFS server.

15. Create users linda and anna and set their home directories to

/home/users/linda and /home/users/anna. Make sure that while

these users access their home directory, autofs is used to

mount the NFS shares /users/linda and /users/anna from the

same server.

Hivanetwork.com

https://hivanetwork.com/

Appendix C

Memory Tables

Chapter 2

Table 2-2 Standard Input, Output, and Error Overview

Name
Default

Destination

Use in

Redirection

File Descriptor

Number

 Computer

keyboard

< (same as

0<)

0

 Computer

monitor

> (same as

1>)

1

STDERR 2> 2

Table 2-3 Common Bash Redirectors

Redirector Explanation

(same as Redirects STDOUT. If redirection is to a file, the

1>) current contents of that file are overwritten.

(same as

1>>)

Redirects STDOUT in append mode. If output is

written to a file, the output is appended to that

file.

 Redirects STDERR.

 Redirects STDERR to the same destination as

STDOUT. Notice that this has to be used in

combination with normal output redirection,

as in ls whuhiu > errout 2>&1.

(same as

0<)

Redirects STDIN.

Table 2-4 vim Essential Commands

vim

Command
Explanation

 Switches from input mode to command mode.

Press this key before typing any command.

 Switches from command mode to input mode

at (i) or after (a) the current cursor position.

 Opens a new line below the current cursor

position and goes to input mode.

 Writes the current file and quits.

 Quits the file without applying any changes.

The ! forces the command to do its work. Add

the ! only if you really know what you are

doing.

 Writes the current file with a new filename.

 Deletes the current line and places the contents

of the deleted line into memory.

 Copies the current line.

 Pastes the contents that have been cut or copied

into memory.

 Enters visual mode, which allows you to select

a block of text using the arrow keys. Use d to

cut the selection or y to copy it.

 Undoes the last command. Repeat as often as

necessary.

 Redoes the last undo. (Cannot be repeated more

than once.)

 Goes to the first line in the document.

 Goes to the last line in the document.

 Searches for text from the current cursor

position forward.

 Searches for text from the current cursor

position backward.

 Goes to the first position in the current line.

 Goes to the last position in the current line.

 Adds the output of ls (or any other command)

in the current file.

 Replaces all occurrences of old with new.

Chapter 3

Table 3-2 FHS Overview

Directory Use

/

/boot

/dev

/etc

/home

/media, /mnt

/opt

/proc

/root

/run

/srv

/sys

/tmp

/usr

/var

Chapter 4

Table 4-2 Essential Tools for Managing Text File Contents

Command Explanation

 Opens the text file in a pager, which allows for

easy reading

 Dumps the contents of the text file on the

screen

 Shows the top of the text file

 Shows the bottom of the text file

 Used to filter specific columns or characters

from a text file

 Sorts the contents of a text file

 Counts the number of lines, words, and

characters in a text file

Table 4-3 Most Significant Regular Expressions

Regular

Expression
Use

 Matches line that starts with specified text.

 Matches line that ends with specified text.

 Wildcard. (Matches any single character.)

 Matches a, b, or c.

 Extended regular expression that matches

zero or one of the preceding character.

 Extended regular expression that matches one

or more of the preceding character.

 Matches zero to an infinite number of the

previous character.

 Matches exactly two of the previous character.

 Matches a minimum of one and a maximum of

three of the previous character.

 Matches zero or one of the previous character.

This makes the previous character optional,

which in this example would match both color

and colour.

 Used to group multiple characters so that the

Hivanetwork.com

https://hivanetwork.com/

regular expression can be applied to the

group.

Table 4-4 Most Useful grep Options

Option Use

 Matches upper- and lowercase letters (i.e., not case

sensitive).

 Shows only lines that do not contain the regular

expression.

 Searches files in the current directory and all

subdirectories.

 Searches for lines matching more than one regular

expression. Use -e before each regular expression

you want to use.

 Interprets the search pattern as an extended

regular expression.

 Shows <number> of lines after the matching

regular expression.

 Shows <number> of lines before the matching

regular expression.

Chapter 5

Table 5-2 Common ssh Options

Option Use

 Verbose; shows in detail what is happening while

establishing the connection

 Enables support for graphical applications

 Used to connect to an SSH service that is not

listening on the default port 22

Table 5-3 Common rsync Options

Option Use

 Synchronizes the entire directory tree

 Copies symbolic links as symbolic links

 Preserves permissions

 Performs only a dry run, not actually

synchronizing anything

 Uses archive mode, thus ensuring that entire

subdirectory trees and all file properties will be

synchronized

 Uses archive mode, and in addition synchronizes

ACLs

 Synchronizes SELinux context as well

Chapter 6

Table 6-2 Methods to Run Tasks with Elevated Permissions

Method Description

 Opens a subshell as a different user, with the

advantage that commands are executed as root

only in the subshell

 Allows authorized users to work with

administrator privileges

 Enables you to set up graphical utilities to run

with administrative privileges

Chapter 7

Table 7-2 Use of Read, Write, and Execute Permissions

Permission Applied to Files Applied to Directories

Read

Write

Execute

Table 7-3 Numeric Representation of Permissions

Permission Numeric Representation

Read

Write

Execute

Table 7-4 Working with SUID, SGID, and Sticky Bit

Permission
Numeric

Value

Relative

Value
On Files

On

Directories

SUID User

executes

file with

permissions

of file

owner.

No

meaning.

SGID User

executes

file with

permissions

of group

owner.

Files

created in

directory

get the

same

group

owner.

Sticky bit No

meaning.

Prevents

users from

deleting

files from

other

users.

Table 7-5 umask Values and Their Result

Value Applied to Files Applied to Directories

0 Everything

1 Read and write

2 Read

3 Read

4 Write

5 Write

6 Nothing

7 Nothing

Chapter 8

Table 8-2 Binary-Decimal Conversion Overview

Binary Value Decimal Value

 0

 32

 64

 96

 128

 160

 192

 224

Chapter 9

Table 9-2 Key Options in .repo Files

Option Explanation

 Contains the label used as an identifier in the

repository file.

 Mandatory option that specifies the name of the

repository.

 Optional parameter that refers to a URL where

information about mirror servers for this server

can be obtained. Typically used for big online

repositories only.

 Mandatory option that refers to the base URL

where the RPM packages are found.

 Set to 1 if a GNU Privacy Guard (GPG) integrity

check needs to be performed on the packages. If set

Hivanetwork.com

https://hivanetwork.com/

to 1, a GPG key is required.

 Specifies the location of the GPG key that is used to

check package integrity.

Table 9-3 Common dnf Tasks

Task Explanation

 Search packages for a string that occurs in the

package name or summary.

 Search packages for a string that occurs in the

package name, summary, or description.

 Perform a deep search in the package to look for

specific files within the package.

 Provide more information about the package.

 Install the package.

 Remove the package.

 List all or installed packages.

 List package groups.

 Install all packages from a group.

 Update packages specified.

 Remove all stored metadata.

Table 9-4 dnf Module Terminology

Item Explanation

 The default package format. Contains files, as well as

metadata that describes how to install the files.

Optionally may contain pre- and post-installation

scripts as well.

 A delivery mechanism to install RPM packages. In a

module, different versions and profiles can be

provided.

 A specific version of the module.

 A collection of packages that are installed together

for a particular use case.

Table 9-5 Common RPM Query Commands

Command Description

 Uses a filename as its argument to find the

specific RPM package a file belongs to.

 Uses the RPM database to provide a list of files

in the RPM package.

 Uses the RPM database to provide package

information (equivalent to yum info).

 Uses the RPM database to show all

documentation that is available in the package.

 Uses the RPM database to show all

configuration files that are available in the

package.

 Uses the RPM database to show scripts that are

used in the package. This is particularly useful

if combined with the -p option.

 The -p option is used with all the previously

listed options to query individual RPM package

files instead of the RPM package database.

Using this option before installation helps you

find out what is actually in the package before

it is installed.

 Shows dependencies for a specific package.

 Shows which parts of a specific package have

been changed since installation.

 Verifies all installed packages and shows which

parts of the package have been changed since

installation. This is an easy and convenient way

to do a package integrity check.

 Lists all packages that are installed on this

server.

Chapter 10

Table 10-2 Job Management Overview

Command Use

 Starts the command immediately in the

background.

 Stops the job temporarily so that it can be

managed. For instance, it can be moved to the

background.

 Sends the EOF character to the current job to

indicate that it should stop waiting for further

input.

 Can be used to cancel the current interactive

job.

 Continues the job that has just been frozen

using Ctrl-Z in the background.

 Brings back to the foreground the last job that

was moved to background execution.

 Shows which jobs are currently running from

this shell. Displays job numbers that can be

used as an argument to the commands bg and

fg.

Table 10-3 Linux Process States Overview

State Meaning

 The process is currently active and using CPU time,

or in the queue of runnable processes waiting to get

services.

 The process is waiting for an event to complete.

 The process is in a sleep state that cannot be stopped.

This usually happens while a process is waiting for

I/O.

 The process has been stopped, which typically has

happened to an interactive shell process, using the

Ctrl-Z key sequence.

 The process has been stopped but could not be

removed by its parent, which has put it in an

unmanageable state.

Table 10-4 tuned Profile Overview

Profile Use

 The best compromise between power usage and

performance

 Based on the balanced profile, but tuned for better

response to interactive applications

 Tuned for maximum throughput

 Based on latency-performance, but with additional

options to reduce network latency

 Based on throughput-performance, optimizes older

CPUs for streaming content

 Tunes for maximum power saving

 Tunes for maximum throughput

 Optimizes Linux for running as a virtual machine

 Optimizes Linux for use as a KVM host

Chapter 11

Table 11-2 Systemd Status Overview

Status Description

 The unit file has been processed and the unit is

active.

 The unit is running with one or more active

processes.

 The unit has successfully completed a one-time run.

 The unit is running and waiting for an event.

 The unit is not running.

Hivanetwork.com

https://hivanetwork.com/

 The unit will be started at boot time.

 The unit will not be started at boot time.

 The unit cannot be enabled but may be started by

another unit automatically.

Table 11-3 systemctl Unit Overview Commands

Command Description

 Shows only service units

 Shows all active service units (same result as

the previous command)

 Shows inactive service units as well as active

service units

 Shows all services that have failed

 Shows detailed status information about

services

Chapter 13

Table 13-2 System Log Files Overview

Log

File
Explanation

 This is the most commonly used log file; it is the

generic log file where most messages are written to.

 Contains kernel log messages.

 Contains authentication-related messages. Look here

to see which authentication errors have occurred on a

server.

 Contains messages that are related to system startup.

 Contains audit messages. SELinux writes to this file.

 Contains mail-related messages.

 Contains log files that are written by the Apache web

server (if it is installed). Notice that Apache writes

messages to these files directly and not through

rsyslog.

Table 13-4 rsyslogd Facilities

Facility Used by

 Messages related to authentication.

 Messages generated by the crond service.

 Generic facility that can be used for nonspecified

daemons.

 Kernel messages.

 Messages generated through the legacy lpd print

system.

 Email-related messages.

 Special facility that can be used to write a marker

periodically.

 Messages generated by the NNTP news system.

 Same as auth/authpriv. Should not be used

anymore.

 Messages generated by the syslog system.

 Messages generated in user space.

 Messages generated by the legacy UUCP system.

 Messages generated by services that are

configured by any of the local0 through local7

facilities.

Table 13-5 rsyslogd Priorities

Priority Description

 Debug messages that will give as much

information as possible about service operation.

 Informational messages about normal service

operation.

 Informational messages about items that might

become an issue later.

 Something is suboptimal, but there is no real

error yet.

 A noncritical error has occurred.

 A critical error has occurred.

 Message used when the availability of the service

is about to be discontinued.

 Message generated when the availability of the

service is discontinued.

Chapter 14

Table 14-3 Common Disk Device Types

Device

Name
Description

/dev/sda A hard disk that uses the SCSI driver. Used for

SCSI and SATA disk devices. Common on physical

servers but also in VMware virtual machines.

 The first hard disk on an NVM Express (NVMe)

interface. NVMe is a server-grade method to

address advanced SSD devices. Note at the end of

the device name that the first disk in this case is

referred to as n1 instead of a (as is common with

the other types).

 The (legacy) IDE disk device type. You will seldom

see this device type on modern computers.

 A disk in a KVM virtual machine that uses the

virtio disk driver. This is the common disk device

type for KVM virtual machines.

 A disk in a Xen virtual machine that uses the Xen

virtual disk driver. You see this when installing

RHEL as a virtual machine in Xen virtualization.

RHEL 9 cannot be used as a Xen hypervisor, but

you might see RHEL 9 virtual machines on top of

the Xen hypervisor using these disk types.

Table 14-4 File System Overview

File

System
Description

 The default file system in RHEL 9.

 The default file system in previous versions of

RHEL; still available and supported in RHEL 9.

 The previous version of Ext4. On RHEL 9, there is

no need to use Ext3 anymore.

 A very basic file system that was developed in the

early 1990s. There is no need to use this file system

on RHEL 9 anymore.

 A relatively new file system that is not supported

in RHEL 9.

 A Windows-compatible file system that is not

supported on RHEL 9.

 A file system that offers compatibility with

Windows and macOS and is the functional

equivalent of the FAT32 file system. Useful on USB

thumb drives that exchange data with other

computers but not on a server’s hard disks.

Table 14-5 /etc/fstab Fields

Field Description

 The device that must be mounted. A device name,

UUID, or label can be used.

 The directory or kernel interface where the device

needs to be mounted.

 The file system type.

 Mount options.

 Use 1 to enable support to back up using the dump

utility. This may be necessary for some backup

solutions.

 This field specifies whether the file system should be

checked automatically when booting. Use 0 to

Hivanetwork.com

https://hivanetwork.com/

disable automated check, 1 if this is the root file

system and it has to be checked automatically, and 2

for all other file systems that need automatic

checking while booting. Network file systems should

have this option set to 0.

Table 14-6 Common Mount Options

Option Use

 Mounts/does not mount the file system

automatically.

 Adds support for file system access control lists

(see Chapter 7, “Permissions Management”).

 Adds support for user-extended attributes (see

Chapter 7).

 Mounts the file system in read-only mode.

 Disables/enables access time modifications.

 Denies/allows execution of program files from the

file system.

Chapter 15

Table 15-2 LVM Management Essential Commands

Command Explanation

 Creates physical volumes

 Shows a summary of available physical

volumes

 Shows a list of physical volumes and their

properties

 Removes the physical volume signature from a

block device

 Creates volume groups

 Shows a summary of available volume groups

 Shows a detailed list of volume groups and

their properties

 Removes a volume group

 Creates logical volumes

 Shows a summary of all available logical

volumes

 Shows a detailed list of available logical

volumes and their properties

 Removes a logical volume

Chapter 16

Table 16-2 Linux Kernel Module Management Overview

Command Use

 Lists currently loaded kernel modules

 Displays information about kernel modules

 Loads kernel modules, including all of their

dependencies

 Unloads kernel modules, considering kernel

module dependencies

Chapter 18

Table 18-2 Boot Phase Configuration and Troubleshooting Overview

Boot

Phase
Configuring It Fixing It

 Hardware configuration (F2, Esc,

F10, or another key).

Replace

hardware.

 BIOS/UEFI configuration or

hardware boot menu.

Replace

hardware or use

rescue system.

 grub2-install and edits to

/etc/defaults/grub.

Use the GRUB

boot prompt and

edits to

/etc/defaults/grub,

followed by

grub2-mkconfig

 Edits to the GRUB configuration

and /etc/ dracut.conf.

Use the GRUB

boot prompt and

edits to

/etc/defaults/grub,

followed by

grub2-mkconfig

 Compiled into initramfs. Use the init=

kernel boot

argument,

rd.break kernel

boot argument.

 Compiled into initramfs. Use the dracut

command. (You

won’t often have

to troubleshoot

this.)

 Edits to the /etc/fstab file. Apply edits to the

/etc/fstab file.

 Using systemctl set-default to

create the

/etc/systemd/system/default.target

symbolic link

Start the

rescue.target as a

kernel boot

argument.

Chapter 20

Table 20-2 Most Useful sshd Configuration Options

Option Use

 Defines the TCP listening port.

 Indicates whether to allow or disallow root login.

 Specifies the maximum number of authentication

tries. After reaching half of this number, failures

are logged to syslog.

 Indicates the maximum number of sessions that

can be open from one IP address.

 Specifies a space-separated list of users who are

allowed to connect to the server.

 Specifies whether to allow password

authentication. This option is on by default.

 Specifies whether or not to clean up inactive TCP

connections.

 Specifies the interval, in seconds, that packets are

sent to the client to figure out if the client is still

alive.

 Specifies the number of client alive packets that

need to be sent.

 If on, uses DNS name lookup to match incoming IP

addresses to names.

 Specifies the interval, in seconds, that a client

sends a packet to a server to keep connections

alive.

 Specifies the maximum number of packets a client

sends to a server to keep connections alive.

Chapter 22

Table 22-2 SELinux Core Elements

Element Use

 A collection of rules that define which source has

access to which target.

 The object that is trying to access a target.

Typically a user or a process.

 The thing that a source domain is trying to access.

Typically a file or a port.

 A security label that is used to categorize objects

in SELinux.

 A specific part of the policy that determines

which source domain has which access

permissions to which target domain.

 Also referred to as context label, defined to

determine which source domain has access to

which target domain.

Hivanetwork.com

https://hivanetwork.com/

Chapter 23

Table 23-2 Firewalld Default Zones

Zone

Name
Default Settings

 Incoming network connections are rejected with an

“icmp-host-prohibited” message. Only network

connections that were initiated on this system are

allowed.

 For use on computers in the demilitarized zone.

Only selected incoming connections are accepted,

and limited access to the internal network is

allowed.

 Any incoming packets are dropped and there is no

reply.

 For use on external networks with masquerading

(Network Address Translation [NAT]) enabled, used

especially on routers. Only selected incoming

connections are accepted.

 For use with home networks. Most computers on

the same network are trusted, and only selected

incoming connections are accepted.

 For use in internal networks. Most computers on

the same network are trusted, and only selected

incoming connections are accepted.

 For use in public areas. Other computers in the

same network are not trusted, and limited

connections are accepted. This is the default zone

for all newly created network interfaces.

 All network connections are accepted.

 For use in work areas. Most computers on the same

network are trusted, and only selected incoming

connections are accepted.

Table 23-3 Common firewall-cmd Options

firewall-

cmd Option Explanation

 Lists all available zones

 Shows the zone currently set as the default

zone

 Changes the default zone

 Shows all available services

 Shows services currently in use

 Adds a service to the current default zone or

the zone that is specified

 Removes a service from the configuration

 Shows configuration for all zones

 Adds a port and protocol

 Removes a port from the configuration

 Adds an interface to the default zone or a

 Adds an interface to the default zone or a

specific zone that is specified

 Removes an interface from a specific zone

 Adds a specific IP address

 Removes an IP address from the

configuration

 Writes configuration to disk and not to

runtime

 Adds the current runtime configuration to the

permanent configuration

 Reloads the on-disk configuration

Chapter 25

Table 25-2 Understanding Linux Time

Concept Explanation

 The hardware clock that resides on the main card

of a computer system

 Same as the hardware clock

 The time that is maintained by the operating

system

 Similar to system time

 A worldwide standard time

 Calculation that is made to change time

automatically when DST changes occur

 The time that corresponds to the time in the

current time zone

Table 25-3 Commands Related to RHEL 9 Time Management

Command Short Description

 Manages local time

 Manages hardware time

 Developed to manage all aspects of time on

RHEL 9

Table 25-4 timedatectl Command Overview

Command Explanation

 Shows current time settings

 Sets the current time

 Sets the current time zone

 Shows a list of all time zones

 Controls whether the RTC (hardware clock) is in

local time

 Controls whether NTP is enabled

Appendix D

Memory Tables Answer Key

Chapter 2

Table 2-2 Standard Input, Output, and Error Overview

Name
Default

Destination

Use in

Redirection

File Descriptor

Number

STDIN Computer

keyboard

< (same as

0<)

0

STDOUT Computer

monitor

> (same as

1>)

1

STDERR Computer

monitor

2> 2

Table 2-3 Common Bash Redirectors

Redirector Explanation

> (same as

1>)

Redirects STDOUT. If redirection is to a file, the

current contents of that file are overwritten.

>> (same

as 1>>)

Redirects STDOUT in append mode. If output is

written to a file, the output is appended to that

file.

2> Redirects STDERR.

2>&1 Redirects STDERR to the same destination as

STDOUT. Notice that this has to be used in

combination with normal output redirection,

as in ls whuhiu > errout 2>&1.

< (same as

0<)

Redirects STDIN.

Table 2-4 vim Essential Commands

vim

Command
Explanation

Esc Switches from input mode to command

mode. Press this key before typing any

Hivanetwork.com

https://hivanetwork.com/

command.

i, a Switches from command mode to input

mode at (i) or after (a) the current cursor

position.

o Opens a new line below the current cursor

position and goes to input mode.

:wq Writes the current file and quits.

:q! Quits the file without applying any changes.

The ! forces the command to do its work.

Add the ! only if you really know what you

are doing.

:w filename Writes the current file with a new filename.

dd Deletes the current line.

yy Copies the current line.

p Pastes the contents that have been cut or

copied into memory.

v Enters visual mode, which allows you to

select a block of text using the arrow keys.

Use d to cut the selection or y to copy it.

u Undoes the last command. Repeat as often

as necessary.

Ctrl-r Redoes the last undo. (Cannot be repeated

more than once.)

gg Goes to the first line in the document.

G Goes to the last line in the document.

/text Searches for text from the current cursor

position forward.

?text Searches for text from the current cursor

position backward.

^ Goes to the first position in the current line.

$ Goes to the last position in the current line.

!ls Adds the output of ls (or any other

command) in the current file.

:%s/old/new/g Replaces all occurrences of old with new.

Chapter 3

Table 3-2 FHS Overview

Directory Use

/ Specifies the root directory. This is where the

file system tree starts.

/boot Contains all files and directories that are needed

to boot the Linux kernel.

/dev Contains device files that are used for accessing

physical devices. This directory is essential

during boot.

/etc Contains configuration files that are used by

programs and services on your server. This

directory is essential during boot.

/home Used for local user home directories.

/media,

/mnt

Contain directories that are used for mounting

devices in the file system tree.

/opt Used for optional packages that may be installed

on your server.

/proc Used by the proc file system. This is a file system

structure that gives access to kernel

information.

/root Specifies the home directory of the root user.

/run Contains process and user-specific information

that has been created since the last boot.

/srv May be used for data by services like NFS, FTP,

and HTTP.

/sys Used as an interface to different hardware

devices that are managed by the Linux kernel

and associated processes.

/tmp Contains temporary files that may be deleted

without any warning during boot.

/usr Contains subdirectories with program files,

libraries for these program files, and

documentation about them.

/var Contains files that may change in size

dynamically, such as log files, mail boxes, and

spool files.

Chapter 4

Table 4-2 Essential Tools for Managing Text File Contents

Command Explanation

less Opens the text file in a pager, which allows for

easy reading

cat Dumps the contents of the text file on the

screen

head Shows the first ten lines of the text file

tail Shows the last ten lines of the text file

cut Used to filter specific columns or characters

from a text file

sort Sorts the contents of a text file

wc Counts the number of lines, words, and

characters in a text file

Table 4-3 Most Significant Regular Expressions

Regular

Expression
Use

^text Matches line that starts with specified text.

text$ Matches line that ends with specified text.

. Wildcard. (Matches any single character.)

[abc] Matches a, b, or c.

? Extended regular expression that matches

zero or one of the preceding character.

+ Extended regular expression that matches one

or more of the preceding character.

* Matches zero to an infinite number of the

previous character.

\{2\} Matches exactly two of the previous character.

\{1,3\} Matches a minimum of one and a maximum of

three of the previous character.

colou?r Matches zero or one of the previous character.

This makes the previous character optional,

which in this example would match both color

and colour.

(…) Used to group multiple characters so that the

regular expression can be applied to the

group.

Table 4-4 Most Useful grep Options

Option Use

-i Matches upper- and lowercase letters (i.e., not

case sensitive).

-v Shows only lines that do not contain the

regular expression.

-r Searches files in the current directory and all

subdirectories.

-e Searches for lines matching more than one

regular expression. Use -e before each regular

expression you want to use.

-E Interprets the search pattern as an extended

regular expression.

-A

<number>

Shows <number> of lines after the matching

regular expression.

-B

<number>

Shows <number> of lines before the matching

regular expression.

Hivanetwork.com

https://hivanetwork.com/

Chapter 5

Table 5-2 Common ssh Options

Option Use

-v Verbose; shows in detail what is happening while

establishing the connection

-Y Enables support for graphical applications

-p

<PORT>

Used to connect to an SSH service that is not

listening on the default port 22

Table 5-3 Common rsync Options

Option Use

-r Synchronizes the entire directory tree

-l Copies symbolic links as symbolic links

-p Preserves permissions

-n Performs only a dry run, not actually

synchronizing anything

-a Uses archive mode, thus ensuring that entire

subdirectory trees and all file properties will be

synchronized

-A Uses archive mode, and in addition synchronizes

ACLs

-X Synchronizes SELinux context as well

Chapter 6

Table 6-2 Methods to Run Tasks with Elevated Permissions

Method Description

su Opens a subshell as a different user, with the

advantage that commands are executed as root

only in the subshell

sudo Allows authorized users to work with

administrator privileges

PolicyKit Enables you to set up graphical utilities to run

with administrative privileges

Chapter 7

Table 7-2 Use of Read, Write, and Execute Permissions

Permission Applied to Files Applied to Directories

Read View file content List contents of

directory

Write Change contents of a

file

Create and delete

files

Execute Run a program file Change to the

directory

Table 7-3 Numeric Representation of Permissions

Permission Numeric Representation

Read 4

Write 2

Execute 1

Table 7-4 Working with SUID, SGID, and Sticky Bit

Permission
Numeric

Value

Relative

Value
On Files

On

Directories

SUID 4 u+s User

executes

file with

permissions

of file

owner.

No

meaning.

SGID 2 g+s User

executes

file with

permissions

of group

owner.

Files

created in

directory

get the

same

group

owner.

Sticky bit 1 +t No

meaning.

Prevents

users from

deleting

files from

other

users.

Table 7-5 umask Values and Their Result

Value Applied to Files Applied to Directories

0 Read and write Everything

1 Read and write Read and write

2 Read Read and execute

3 Read Read

4 Write Write and execute

5 Write Write

6 Nothing Execute

7 Nothing Nothing

Chapter 8

Table 8-2 Binary-Decimal Conversion Overview

Binary Value Decimal Value

00000000 0

00100000 32

01000000 64

01100000 96

10000000 128

10100000 160

11000000 192

11100000 224

Chapter 9

Table 9-2 Key Options in .repo Files

Option Explanation

[label] Contains the label used as an identifier in the

repository file.

name= Mandatory option that specifies the name of

the repository.

mirrorlist= Optional parameter that refers to a URL where

information about mirror servers for this

server can be obtained. Typically used for big

online repositories only.

baseurl= Mandatory option that refers to the base URL

where the RPM packages are found.

gpgcheck= Set to 1 if a GNU Privacy Guard (GPG) integrity

check needs to be performed on the packages.

If set to 1, a GPG key is required.

gpgkey= Specifies the location of the GPG key that is

used to check package integrity.

Table 9-3 Common dnf Tasks

Task Explanation

search Search packages for a string that occurs

in the package name or summary.

search all Search packages for a string that occurs

in the package name, summary, or

description.

[what]provides

*/name

Perform a deep search in the package to

look for specific files within the package.

info Provide more information about the

package.

install Install the package.

remove Remove the package.

list [all | List all or installed packages.

Hivanetwork.com

https://hivanetwork.com/

installed]

group list List package groups.

group install Install all packages from a group.

update Update packages specified.

clean all Remove all stored metadata.

Table 9-4 dnf Module Terminology

Item Explanation

RPM The default package format. Contains files, as

well as metadata that describes how to install

the files. Optionally may contain pre- and

post-installation scripts as well.

Module A delivery mechanism to install RPM

packages. In a module, different versions and

profiles can be provided.

Application A specific version of the module.

stream

Profile A collection of packages that are installed

together for a particular use case.

Table 9-5 Common RPM Query Commands

Command Description

rpm -qf Uses a filename as its argument to find the

specific RPM package a file belongs to.

rpm -ql Uses the RPM database to provide a list of files

in the RPM package.

rpm -qi Uses the RPM database to provide package

information (equivalent to yum info).

rpm -qd Uses the RPM database to show all

documentation that is available in the package.

rpm -qc Uses the RPM database to show all

configuration files that are available in the

package.

rpm -q --

scripts

Uses the RPM database to show scripts that are

used in the package. This is particularly useful

if combined with the -p option.

rpm -qp

<pkg>

The -p option is used with all the previously

listed options to query individual RPM package

files instead of the RPM package database.

Using this option before installation helps you

find out what is actually in the package before

it is installed.

rpm -qR Shows dependencies for a specific package.

rpm -V Shows which parts of a specific package have

been changed since installation.

rpm -Va Verifies all installed packages and shows which

parts of the package have been changed since

installation. This is an easy and convenient way

to do a package integrity check.

rpm -qa Lists all packages that are installed on this

server.

Chapter 10

Table 10-2 Job Management Overview

Command Use

& (used at

the end of

a

command

line)

Starts the command immediately in the

background.

Ctrl-Z Stops the job temporarily so that it can be

managed. For instance, it can be moved to the

background.

Ctrl-D Sends the EOF character to the current job to

indicate that it should stop waiting for further

input.

Ctrl-C Can be used to cancel the current interactive

job.

bg Continues the job that has just been frozen

using Ctrl-Z in the background.

fg Brings back to the foreground the last job that

was moved to background execution.

jobs Shows which jobs are currently running from

this shell. Displays job numbers that can be

used as an argument to the commands bg and

fg.

Table 10-3 Linux Process States Overview

State Meaning

Running (R) The process is currently active and using

CPU time, or in the queue of runnable

processes waiting to get services.

Sleeping (S) The process is waiting for an event to

complete.

Uninterruptible

sleep (D)

The process is in a sleep state that cannot

be stopped. This usually happens while a

process is waiting for I/O.

Stopped (T) The process has been stopped, which

typically has happened to an interactive

shell process, using the Ctrl-Z key

sequence.

Zombie (Z) The process has been stopped but could

not be removed by its parent, which has

put it in an unmanageable state.

Table 10-4 tuned Profile Overview

Profile Use

balanced The best compromise between power usage

and performance

desktop Based on the balanced profile, but tuned for

better response to interactive applications

latency-

performance

Tuned for maximum throughput

network- Based on latency-performance, but with

latency additional options to reduce network

latency

network-

throughput

Based on throughput-performance,

optimizes older CPUs for streaming content

powersave Tunes for maximum power saving

throughput-

performance

Tunes for maximum throughput

virtual-guest Optimizes Linux for running as a virtual

machine

virtual-host Optimizes Linux for use as a KVM host

Chapter 11

Table 11-2 Systemd Status Overview

Status Description

Loaded The unit file has been processed and the

unit is active.

Active(running) The unit is running with one or more

active processes.

Active(exited) The unit has successfully completed a

one-time run.

Active(waiting) The unit is running and waiting for an

event.

Inactive(dead) The unit is not running.

Enabled The unit will be started at boot time.

Disabled The unit will not be started at boot time.

Static The unit cannot be enabled but may be

started by another unit automatically.

Table 11-3 systemctl Unit Overview Commands

Command Description

systemctl -t

service

Shows only service units

Hivanetwork.com

https://hivanetwork.com/

systemctl list-

units -t service

Shows all active service units (same

result as the previous command)

systemctl list-

units -t service --

all

Shows inactive service units as well as

active service units

systemctl --failed

-t service

Shows all services that have failed

systemctl status -l

your.service

Shows detailed status information

about services

Chapter 13

Table 13-2 System Log Files Overview

Log File Explanation

/var/log/messages This is the most commonly used log

file; it is the generic log file where

most messages are written to.

/var/log/dmesg Contains kernel log messages.

/var/log/secure Contains authentication-related

messages. Look here to see which

authentication errors have

occurred on a server.

/var/log/boot.log Contains messages that are related

to system startup.

/var/log/audit/audit.log Contains audit messages. SELinux

writes to this file.

/var/log/maillog Contains mail-related messages.

/var/log/httpd/ Contains log files that are written

by the Apache web server (if it is

installed). Notice that Apache

writes messages to these files

directly and not through rsyslog.

Table 13-4 rsyslogd Facilities

Facility Used by

auth /

authpriv

Messages related to authentication.

cron Messages generated by the crond service.

daemon Generic facility that can be used for nonspecified

daemons.

kern Kernel messages.

lpr Messages generated through the legacy lpd print

system.

mail Email-related messages.

mark Special facility that can be used to write a

marker periodically.

news Messages generated by the NNTP news system.

security Same as auth/authpriv. Should not be used

anymore.

syslog Messages generated by the syslog system.

user Messages generated in user space.

uucp Messages generated by the legacy UUCP system.

local0-7 Messages generated by services that are

configured by any of the local0 through local7

facilities.

Table 13-5 rsyslogd Priorities

Priority Description

debug Debug messages that will give as much

information as possible about service operation.

info Informational messages about normal service

operation.

notice Informational messages about items that might

become an issue later.

warning

(warn)

Something is suboptimal, but there is no real

error yet.

err

(error)

A noncritical error has occurred.

crit A critical error has occurred.

alert Message used when the availability of the service

is about to be discontinued.

emerg

(panic)

Message generated when the availability of the

service is discontinued.

Chapter 14

Table 14-3 Common Disk Device Types

Device Name Description

/dev/sda A hard disk that uses the SCSI driver. Used

for SCSI and SATA disk devices. Common on

physical servers but also in VMware virtual

machines.

/dev/nvme0n1 The first hard disk on an NVM Express

(NVMe) interface. NVMe is a server-grade

method to address advanced SSD devices.

Note at the end of the device name that the

first disk in this case is referred to as n1

instead of a (as is common with the other

types).

/dev/hda The (legacy) IDE disk device type. You will

seldom see this device type on modern

computers.

/dev/vda A disk in a KVM virtual machine that uses

the virtio disk driver. This is the common

disk device type for KVM virtual machines.

/dev/xvda A disk in a Xen virtual machine that uses

the Xen virtual disk driver. You see this

when installing RHEL as a virtual machine

in Xen virtualization. RHEL 9 cannot be

used as a Xen hypervisor, but you might see

RHEL 9 virtual machines on top of the Xen

hypervisor using these disk types.

Table 14-4 File System Overview

File

System
Description

XFS The default file system in RHEL 9.

Ext4 The default file system in previous versions of

RHEL; still available and supported in RHEL 9.

Ext3 The previous version of Ext4. On RHEL 9, there is

no need to use Ext3 anymore.

Ext2 A very basic file system that was developed in the

early 1990s. There is no need to use this file system

on RHEL 9 anymore.

BtrFS A relatively new file system that is not supported

in RHEL 9.

NTFS A Windows-compatible file system that is not

supported on RHEL 9.

VFAT A file system that offers compatibility with

Windows and macOS and is the functional

equivalent of the FAT32 file system. Useful on USB

thumb drives that exchange data with other

computers but not on a server’s hard disks.

Table 14-5 /etc/fstab Fields

Field Description

Device The device that must be mounted. A device

name, UUID, or label can be used.

Mount

Point

The directory or kernel interface where the

device needs to be mounted.

File

System

The file system type.

Mount

Options

Mount options.

Dump

Support

Use 1 to enable support to back up using the

dump utility. This may be necessary for some

backup solutions.

Hivanetwork.com

https://hivanetwork.com/

Automatic

Check

This field specifies whether the file system

should be checked automatically when booting.

Use 0 to disable automated check, 1 if this is the

root file system and it has to be checked

automatically, and 2 for all other file systems

that need automatic checking while booting.

Network file systems should have this option

set to 0.

Table 14-6 Common Mount Options

Option Use

auto /

noauto

Mounts/does not mount the file system

automatically.

acl Adds support for file system access control lists

(see Chapter 7, “Permissions Management”).

user_xattr Adds support for user-extended attributes (see

Chapter 7).

ro Mounts the file system in read-only mode.

atime /

noatime

Disables/enables access time modifications.

noexec /

exec

Denies/allows execution of program files from

the file system.

Chapter 15

Table 15-2 LVM Management Essential Commands

Command Explanation

pvcreate Creates physical volumes

pvs Shows a summary of available physical

volumes

pvdisplay Shows a list of physical volumes and their

properties

pvremove Removes the physical volume signature from a

block device

vgcreate Creates volume groups

vgs Shows a summary of available volume groups

vgdisplay Shows a detailed list of volume groups and

their properties

vgremove Removes a volume group

lvcreate Creates logical volumes

lvs Shows a summary of all available logical

volumes

lvdisplay Shows a detailed list of available logical

volumes and their properties

lvremove Removes a logical volume

Chapter 16

Table 16-2 Linux Kernel Module Management Overview

Command Use

lsmod Lists currently loaded kernel modules

modinfo Displays information about kernel modules

modprobe Loads kernel modules, including all of their

dependencies

modprobe

-r

Unloads kernel modules, considering kernel

module dependencies

Chapter 18

Table 18-2 Boot Phase Configuration and Troubleshooting Overview

Boot Phase Configuring It Fixing It

POST Hardware configuration (F2, Esc,

F10, or another key).

Replace

hardware.

Selecting

the

bootable

device

BIOS/UEFI configuration or

hardware boot menu.

Replace

hardware or use

rescue system.

Loading the

boot loader

grub2-install and edits to

/etc/defaults/grub.

Use the GRUB

boot prompt and

edits to

/etc/defaults/grub,

followed by

grub2-mkconfig

Loading the

kernel

Edits to the GRUB configuration

and /etc/ dracut.conf.

Use the GRUB

boot prompt and

edits to

/etc/defaults/grub,

followed by

grub2-mkconfig

Starting

/sbin/init

Compiled into initramfs. Use the init=

kernel boot

argument,

rd.break kernel

boot argument.

Processing

initrd.target

Compiled into initramfs. Use the dracut

command. (You

won’t often have

to troubleshoot

this.)

Switch to

the root file

system

Edits to the /etc/fstab file. Apply edits to the

/etc/fstab file.

Running

the default

target

Using systemctl set-default to

create the

/etc/systemd/system/default.target

symbolic link

Start the

rescue.target as a

kernel boot

argument.

Chapter 20

Table 20-2 Most Useful sshd Configuration Options

Option Use

Port Defines the TCP listening port.

PermitRootLogin Indicates whether to allow or

disallow root login.

MaxAuthTries Specifies the maximum number

of authentication tries. After

reaching half of this number,

failures are logged to syslog.

MaxSessions Indicates the maximum number

of sessions that can be open from

one IP address.

AllowUsers Specifies a space-separated list of

users who are allowed to connect

to the server.

PasswordAuthentication Specifies whether to allow

password authentication. This

option is on by default.

TCPKeepAlive Specifies whether or not to clean

up inactive TCP connections.

ClientAliveInterval Specifies the interval, in seconds,

that packets are sent to the client

to figure out if the client is still

alive.

ClientAliveCountMax Specifies the number of client

alive packets that need to be sent.

UseDNS If on, uses DNS name lookup to

match incoming IP addresses to

names.

ServerAliveInterval Specifies the interval, in seconds,

that a client sends a packet to a

server to keep connections alive.

ServerAliveCountMax Specifies the maximum number

of packets a client sends to a

server to keep connections alive.

Chapter 22

Table 22-2 SELinux Core Elements

Element Use

Policy A collection of rules that define which source has

access to which target.

Source The object that is trying to access a target.

Hivanetwork.com

https://hivanetwork.com/

domain Typically a user or a process.

Target

domain

The thing that a source domain is trying to access.

Typically a file or a port.

Context A security label that is used to categorize objects

in SELinux.

Rule A specific part of the policy that determines

which source domain has which access

permissions to which target domain.

label Also referred to as context label, defined to

determine which source domain has access to

which target domain.

Chapter 23

Table 23-2 Firewalld Default Zones

Zone

Name
Default Settings

block Incoming network connections are rejected with

an “icmp-host-prohibited” message. Only network

connections that were initiated on this system are

allowed.

dmz For use on computers in the demilitarized zone.

Only selected incoming connections are accepted,

and limited access to the internal network is

allowed.

drop Any incoming packets are dropped and there is

no reply.

external For use on external networks with masquerading

(Network Address Translation [NAT]) enabled,

used especially on routers. Only selected

incoming connections are accepted.

home For use with home networks. Most computers on

the same network are trusted, and only selected

incoming connections are accepted.

internal For use in internal networks. Most computers on

the same network are trusted, and only selected

incoming connections are accepted.

public For use in public areas. Other computers in the

same network are not trusted, and limited

connections are accepted. This is the default zone

for all newly created network interfaces.

trusted All network connections are accepted.

work For use in work areas. Most computers on the

same network are trusted, and only selected

incoming connections are accepted.

Table 23-3 Common firewall-cmd Options

firewall-cmd Option Explanation

--get-zones Lists all available zones

--get-default-zone Shows the zone currently set as

the default zone

--set-default-zone=

<ZONE>

Changes the default zone

--get-services Shows all available services

--list-services Shows services currently in use

--add-service=<service-

name> [--zone=<ZONE>]

Adds a service to the current

default zone or the zone that is

specified

--remove-service=

<service-name>

Removes a service from the

configuration

--list-all-zones Shows configuration for all

zones

--add-port=

<port/protocol> [--zone=

<ZONE>]

Adds a port and protocol

--remove-port=

<port/protocol> [--zone=

<ZONE>]

Removes a port from the

configuration

--add-interface=

<INTERFACE> [--zone=

Adds an interface to the default

zone or a specific zone that is

<ZONE>] specified

--remove-interface=

<INTERFACE> [--zone=

<ZONE>]

Removes an interface from a

specific zone

--add-source=

<ipaddress/netmask> [--

zone=<ZONE>]

Adds a specific IP address

--remove-source=

<ipaddress/netmask> [--

zone=<ZONE>]

Removes an IP address from the

configuration

--permanent Writes configuration to disk

and not to runtime

--runtime-to-permanent Adds the current runtime

configuration to the permanent

configuration

--reload Reloads the on-disk

configuration

Chapter 25

Table 25-2 Understanding Linux Time

Concept Explanation

Hardware clock The hardware clock that resides on the

main card of a computer system

Real-time clock Same as the hardware clock

System time The time that is maintained by the

operating system

Software clock Similar to system time

Coordinated

Universal Time

(UTC)

A worldwide standard time

Daylight saving

time

Calculation that is made to change time

automatically when DST changes occur

Local time The time that corresponds to the time in

the current time zone

Table 25-3 Commands Related to RHEL 9 Time Management

Command Short Description

date Manages local time

hwclock Manages hardware time

timedatectl Developed to manage all aspects of time on

RHEL 9

Table 25-4 timedatectl Command Overview

Command Explanation

status Shows the current time settings

set-time

TIME

Sets the current time

set-timezone

ZONE

Sets the current time zone

list-timezone Shows a list of all time zones

set-local-rtc

[0|1]

Controls whether the RTC (hardware clock)

is in local time

set-ntp [0|1] Controls whether NTP is enabled

Hivanetwork.com

https://hivanetwork.com/

Appendix E Study Planner

Key:

Reading

Review

Element Task Goal

Date

First Date

Completed

Second

Date

Completed

(Optional)

Introduction Read

Introduction

1. Installing Red

Hat Enterprise

Linux

Read

Foundation

Topics

1. Installing Red

Hat Enterprise

Linux

Review Key

Topics using

the book or

companion

website

1. Installing Red

Hat Enterprise

Linux

Define Key

Terms using

the book or

companion

website

1. Installing Red

Hat Enterprise

Linux

Complete

the end-of-

chapter

lab(s) for

this chapter

1. Installing Red

Hat Enterprise

Linux

Repeat

DIKTA

questions

using the

book

2. Using

Essential Tools

Read

Foundation

Topics

2. Using

Essential Tools

Review Key

Topics using

the book or

companion

website

2. Using

Essential Tools

Define Key

Terms using

the book or

companion

website

2. Using

Essential Tools

Complete all

memory

tables in this

chapter

using the

companion

website

2. Using

Essential Tools

Complete

the end-of-

chapter

lab(s) for

this chapter

2. Using

Essential Tools

Repeat

DIKTA

questions

using the

book or PTP

exam engine

3. Essential File

Management

Tools

Read

Foundation

Topics

3. Essential File

Management

Tools

Review Key

Topics using

the book or

companion

website

3. Essential File

Management

Tools

Define Key

Terms using

the book or

companion

website

3. Essential File

Management

Tools

Complete all

memory

tables in this

chapter

using the

companion

website

3. Essential File

Management

Tools

Complete

the end-of-

chapter

lab(s) for

this chapter

3. Essential File

Management

Tools

Repeat

DIKTA

questions

using the

book

4. Working with

Text Files

Read

Foundation

Topics

4. Working with

Text Files

Review Key

Topics using

the book or

companion

website

4. Working with

Text Files

Define Key

Terms using

the book or

companion

website

4. Working with

Text Files

Complete all

memory

tables in this

chapter

using the

companion

website

4. Working with

Text Files

Complete

the end-of-

chapter

lab(s) for

this chapter

4. Working with

Text Files

Repeat

DIKTA

questions

using the

book

5. Connecting to

Red Hat

Enterprise

Linux 9

Read

Foundation

Topics

5. Connecting to

Red Hat

Enterprise

Linux 9

Review Key

Topics using

the book or

companion

website

5. Connecting to

Red Hat

Enterprise

Linux 9

Define Key

Terms using

the book or

companion

website

5. Connecting to

Red Hat

Enterprise

Linux 9

Complete all

memory

tables in this

chapter

using the

companion

website

5. Connecting to

Red Hat

Enterprise

Linux 9

Complete

the end-of-

chapter

lab(s) for

this chapter

5. Connecting to

Red Hat

Enterprise

Linux 9

Repeat

DIKTA

questions

using the

book

6. User and

Group

Management

Read

Foundation

Topics

Hivanetwork.com

https://hivanetwork.com/

6. User and

Group

Management

Review Key

Topics using

the book or

companion

website

6. User and

Group

Management

Define Key

Terms using

the book or

companion

website

6. User and

Group

Management

Complete all

memory

tables in this

chapter

using the

companion

website

6. User and

Group

Management

Complete

the end-of-

chapter

lab(s) for

this chapter

6. User and

Group

Management

Repeat

DIKTA

questions

using the

book

7. Permissions

Management

Read

Foundation

Topics

7. Permissions

Management

Review Key

Topics using

the book or

companion

website

7. Permissions

Management

Define Key

Terms using

the book or

companion

website

7. Permissions

Management

Complete all

memory

tables in this

chapter

using the

companion

website

7. Permissions

Management

Complete

the end-of-

chapter

lab(s) for

this chapter

7. Permissions

Management

Repeat

DIKTA

questions

using the

book

8. Configuring

Networking

Read

Foundation

Topics

8. Configuring

Networking

Review Key

Topics using

the book or

companion

website

8. Configuring

Networking

Define Key

Terms using

the book or

companion

website

8. Configuring

Networking

Complete all

memory

tables in this

chapter

using the

companion

website

8. Configuring

Networking

Complete

the end-of-

chapter

lab(s) for

this chapter

8. Configuring

Networking

Repeat

DIKTA

questions

using the

book

Part I.

Performing

Basic System

Management

Tasks

Complete all

exercises in

Part I

Review

9. Managing

Software

Read

Foundation

Topics

9. Managing

Software

Review Key

Topics using

the book or

companion

website

9. Managing

Software

Define Key

Terms using

the book or

companion

website

9. Managing

Software

Complete all

memory

tables in this

chapter

using the

companion

website

9. Managing

Software

Complete

the end-of-

chapter

lab(s) for

this chapter

9. Managing

Software

Repeat

DIKTA

questions

using the

book

10. Managing

Processes

Read

Foundation

Topics

10. Managing

Processes

Review Key

Topics using

the book or

companion

website

10. Managing

Processes

Define Key

Terms using

the book or

companion

website

10. Managing

Processes

Complete all

memory

tables in this

chapter

using the

companion

website

10. Managing

Processes

Complete

the end-of-

chapter

lab(s) for

this chapter

10. Managing

Processes

Repeat

DIKTA

questions

using the

book

11. Working

with Systemd

Read

Foundation

Topics

11. Working

with Systemd

Review Key

Topics using

the book or

companion

website

Hivanetwork.com

https://hivanetwork.com/

11. Working

with Systemd

Define Key

Terms using

the book or

companion

website

11. Working

with Systemd

Complete all

memory

tables in this

chapter

using the

companion

website

11. Working

with Systemd

Complete

the end-of-

chapter

lab(s) for

this chapter

11. Working

with Systemd

Repeat

DIKTA

questions

using the

book

12. Scheduling

Tasks

Read

Foundation

Topics

12. Scheduling

Tasks

Review Key

Topics using

the book or

companion

website

12. Scheduling

Tasks

Define Key

Terms using

the book or

companion

website

12. Scheduling

Tasks

Complete

the end-of-

chapter

lab(s) for

this chapter

12. Scheduling

Tasks

Repeat

DIKTA

questions

using the

book

13. Configuring

Logging

Read

Foundation

Topics

13. Configuring

Logging

Review Key

Topics using

the book or

companion

website

13. Configuring

Logging

Define Key

Terms using

the book or

companion

website

13. Configuring

Logging

Complete all

memory

tables and

practice

exercises in

this chapter

using the

companion

website

13. Configuring

Logging

Complete

the end-of-

chapter

lab(s) for

this chapter

13. Configuring

Logging

Repeat

DIKTA

questions

using the

book

14. Managing

Storage

Read

Foundation

Topics

14. Managing

Storage

Review Key

Topics using

the book or

companion

website

14. Managing

Storage

Define Key

Terms using

the book or

companion

website

14. Managing

Storage

Complete all

memory

tables and

practice

exercises in

this chapter

using the

companion

website

14. Managing

Storage

Complete

the end-of-

chapter

lab(s) for

this chapter

14. Managing

Storage

Repeat

DIKTA

questions

using the

book

15. Managing

Advanced

Storage

Read

Foundation

Topics

15. Managing

Advanced

Storage

Review Key

Topics using

the book or

companion

website

15. Managing

Advanced

Storage

Define Key

Terms using

the book or

companion

website

15. Managing

Advanced

Storage

Complete all

memory

tables in this

chapter

using the

companion

website

15. Managing

Advanced

Storage

Complete

the end-of-

chapter

lab(s) for

this chapter

15. Managing

Advanced

Storage

Repeat

DIKTA

questions

using the

book

Part II.

Operating

Complete all

exercises in

Running

Systems

Part II

Review

16. Basic Kernel

Management

Read

Foundation

Topics

16. Basic Kernel

Management

Review Key

Topics using

the book or

companion

website

16. Basic Kernel

Management

Define Key

Terms using

the book or

companion

website

16. Basic Kernel

Management

Complete all

memory

tables in this

chapter

using the

Hivanetwork.com

https://hivanetwork.com/

companion

website

16. Basic Kernel

Management

Complete

the end-of-

chapter

lab(s) for

this chapter

16. Basic Kernel

Management

Repeat

DIKTA

questions

using the

book

17. Managing

and

Understanding

the Boot

Procedure

Read

Foundation

Topics

17. Managing

and

Understanding

Review Key

Topics using

the book or

the Boot

Procedure

companion

website

17. Managing

and

Understanding

the Boot

Procedure

Define Key

Terms using

the book or

companion

website

17. Managing

and

Understanding

the Boot

Procedure

Complete

the end-of-

chapter

lab(s) for

this chapter

17. Managing

and

Understanding

the Boot

Procedure

Repeat

DIKTA

questions

using the

book

18. Essential

Troubleshooting

Skills

Read

Foundation

Topics

18. Essential

Troubleshooting

Skills

Review Key

Topics using

the book or

companion

website

18. Essential

Troubleshooting

Skills

Define Key

Terms using

the book or

companion

website

18. Essential

Troubleshooting

Skills

Complete

the end-of-

chapter

lab(s) for

this chapter

18. Essential

Troubleshooting

Skills

Repeat

DIKTA

questions

using the

book

19. An

Introduction to

Automation

with Bash Shell

Scripting

Read

Foundation

Topics

19. An

Introduction to

Automation

with Bash Shell

Scripting

Review Key

Topics using

the book or

companion

website

19. An

Introduction to

Automation

with Bash Shell

Scripting

Define Key

Terms using

the book or

companion

website

19. An

Introduction to

Automation

with Bash Shell

Scripting

Complete

the end-of-

chapter

lab(s) for

this chapter

19. An

Introduction to

Automation

with Bash Shell

Scripting

Repeat

DIKTA

questions

using the

book

Part III.

Performing

Advanced

System

Administration

Tasks

Complete all

exercises in

Part III

Review

20. Configuring

SSH

Read

Foundation

Topics

20. Configuring

SSH

Review Key

Topics using

the book or

companion

website

20. Configuring Define Key

SSH Terms using

the book or

companion

website

20. Configuring

SSH

Complete all

memory

tables in this

chapter

using the

companion

website

20. Configuring

SSH

Complete

the end-of-

chapter

lab(s) for

this chapter

20. Configuring

SSH

Repeat

DIKTA

questions

using the

book

21. Managing

Apache HTTP

Services

Read

Foundation

Topics

21. Managing

Apache HTTP

Services

Review Key

Topics using

the book or

companion

website

21. Managing

Apache HTTP

Services

Define Key

Terms using

the book or

companion

website

21. Managing

Apache HTTP

Services

Complete

the end-of-

chapter

lab(s) for

this chapter

21. Managing

Apache HTTP

Repeat

DIKTA

Services questions

using the

book

22. Managing

SELinux

Read

Foundation

Topics

22. Managing

SELinux

Review Key

Topics using

the book or

companion

website

22. Managing

SELinux

Define Key

Terms using

the book or

companion

website

22. Managing

SELinux

Complete all

memory

tables and

practice

Hivanetwork.com

https://hivanetwork.com/

exercises in

this chapter

using the

companion

website

22. Managing

SELinux

Complete

the end-of-

chapter

lab(s) for

this chapter

22. Managing

SELinux

Repeat

DIKTA

questions

using the

book

23. Configuring

a Firewall

Read

Foundation

Topics

23. Configuring

a Firewall

Review Key

Topics using

the book or

companion

website

23. Configuring

a Firewall

Define Key

Terms using

the book or

companion

website

23. Configuring

a Firewall

Complete all

memory

tables in this

chapter

using the

companion

website

23. Configuring

a Firewall

Complete

the end-of-

chapter

lab(s) for

this chapter

23. Configuring

a Firewall

Repeat

DIKTA

questions

using the

book

24. Accessing

Network

Storage

Read

Foundation

Topics

24. Accessing

Network

Storage

Review Key

Topics using

the book or

companion

website

24. Accessing

Network

Storage

Define Key

Terms using

the book or

companion

website

24. Accessing

Network

Complete

the end-of-

Storage chapter

lab(s) for

this chapter

24. Accessing

Network

Storage

Repeat

DIKTA

questions

using the

book

25. Configuring

Time Services

Read

Foundation

Topics

25. Configuring

Time Services

Review Key

Topics using

the book or

companion

website

25. Configuring

Time Services

Define Key

Terms using

the book or

companion

website

25. Configuring

Time Services

Complete all

memory

tables in this

chapter

using the

companion

website

25. Configuring

Time Services

Complete

the end-of-

chapter

lab(s) for

this chapter

25. Configuring

Time Services

Repeat

DIKTA

questions

using the

book

26. Managing

Containers

Read

Foundation

Topics

26. Managing

Containers

Review Key

Topics using

the book or

companion

website

26. Managing

Containers

Define Key

Terms using

the book or

companion

website

26. Managing

Containers

Complete

the end-of-

chapter

lab(s) for

this chapter

26. Managing

Containers

Repeat

DIKTA

questions

using the

book

Part IV.

Managing

Network

Services

Complete all

exercises in

Part IV

Review

27. Final

Preparation

Read

Chapter

27. Final

Preparation

Review all

Key Topics

in all

chapters or

in the Key

Topics app

using the

companion

website

27. Final

Preparation

Complete all

memory

tables from

Appendix C

27. Final

Preparation

Complete all

exercises in

all chapters

27. Final

Preparation

Complete all

labs in all

chapters

28. Theoretical

Pre-Assessment

Exam

Read

Chapter

28. Theoretical

Pre-Assessment

Exam

Take the

pre-

assessment

exam found

in the

chapter

Final Review Take

Practice

Exam A

found in the

book

Hivanetwork.com

https://hivanetwork.com/

Final Review Take

Practice

Exam B

found in the

book

Final Review Take

Practice

Exam C

found in the

book

Final Review Take

Practice

Exam D

found in the

book

Code Snippets

Many titles include programming code or configuration

examples. To optimize the presentation of these elements, view

the eBook in single-column, landscape mode and adjust the font

size to the smallest setting. In addition to presenting code and

configurations in the reflowable text format, we have included

images of the code that mimic the presentation found in the print

book; therefore, where the reflowable format may compromise

the presentation of the code listing, you will see a “Click here to

view code image” link. Click the link to view the print-fidelity

code image. To return to the previous page viewed, click the Back

button on your device or app.

Hivanetwork.com

https://hivanetwork.com/

Hivanetwork.com

https://hivanetwork.com/

Hivanetwork.com

https://hivanetwork.com/

Hivanetwork.com

https://hivanetwork.com/

Hivanetwork.com

https://hivanetwork.com/

Hivanetwork.com

https://hivanetwork.com/

Hivanetwork.com

https://hivanetwork.com/

Hivanetwork.com

https://hivanetwork.com/

Hivanetwork.com

https://hivanetwork.com/

Hivanetwork.com

https://hivanetwork.com/

Hivanetwork.com

https://hivanetwork.com/

Hivanetwork.com

https://hivanetwork.com/

Hivanetwork.com

https://hivanetwork.com/

	Cover Page
	About This eBook
	Title Page
	Copyright Page
	Pearson’s Commitment to Diversity, Equity, and Inclusion
	Contents at a Glance
	Table of Contents
	About the Author
	Acknowledgments
	About the Technical Reviewers
	We Want to Hear from You!
	Reader Services
	Introduction
	Goals and Methods
	Who Should Read This Book?
	How This Book Is Organized
	How to Use This Book
	Other Features
	Exam Objective to Chapter Mapping
	Where Are the Companion Content Files?
	Figure Credits

	Part I: Performing Basic System Management Tasks
	Chapter 1. Installing Red Hat Enterprise Linux
	“Do I Know This Already?” Quiz
	Foundation Topics
	Preparing to Install Red Hat Enterprise Linux
	Performing an Installation
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 1.1

	Chapter 2. Using Essential Tools
	“Do I Know This Already?” Quiz
	Foundation Topics
	Basic Shell Skills
	Editing Files with vim
	Understanding the Shell Environment
	Finding Help
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 2.1

	Chapter 3. Essential File Management Tools
	“Do I Know This Already?” Quiz
	Foundation Topics
	Working with the File System Hierarchy
	Managing Files
	Using Links
	Working with Archives and Compressed Files
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 3.1

	Chapter 4. Working with Text Files
	“Do I Know This Already?” Quiz
	Foundation Topics
	Using Common Text File–Related Tools
	A Primer to Using Regular Expressions
	Using grep to Analyze Text
	Working with Other Useful Text Processing Utilities
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 4.1

	Chapter 5. Connecting to Red Hat Enterprise Linux 9
	“Do I Know This Already?” Quiz
	Foundation Topics
	Working on Local Consoles
	Using SSH and Related Utilities
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Labs
	Lab 5.1
	Lab 5.2

	Chapter 6. User and Group Management
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Different User Types
	Creating and Managing User Accounts
	Creating and Managing Group Accounts
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Labs
	Lab 6.1
	Lab 6.2

	Chapter 7. Permissions Management
	“Do I Know This Already?” Quiz
	Foundation Topics
	Managing File Ownership
	Managing Basic Permissions
	Managing Advanced Permissions
	Setting Default Permissions with umask
	Working with User-Extended Attributes
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 7.1

	Chapter 8. Configuring Networking
	“Do I Know This Already?” Quiz
	Foundation Topics
	Networking Fundamentals
	Managing Network Addresses and Interfaces
	Validating Network Configuration
	Managing Network Configuration with nmtui and nmcli
	Setting Up Hostname and Name Resolution
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 8.1

	Part II: Operating Running Systems
	Chapter 9. Managing Software
	“Do I Know This Already?” Quiz
	Foundation Topics
	Managing Software Packages with dnf
	Using dnf
	Managing Package Modules
	Managing Software Packages with rpm
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Labs
	Lab 9.1

	Chapter 10. Managing Processes
	“Do I Know This Already?” Quiz
	Foundation Topics
	Introduction to Process Management
	Managing Shell Jobs
	Using Common Command-Line Tools for Process Management
	Using top to Manage Processes
	Using tuned to Optimize Performance
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 10.1

	Chapter 11. Working with Systemd
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Systemd
	Managing Units Through Systemd
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 11.1

	Chapter 12. Scheduling Tasks
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Task Scheduling Options in RHEL
	Using Systemd Timers
	Configuring cron to Automate Recurring Tasks
	Configuring at to Schedule Future Tasks
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 12.1

	Chapter 13. Configuring Logging
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding System Logging
	Working with systemd-journald
	Configuring rsyslogd
	Rotating Log Files
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 13.1

	Chapter 14. Managing Storage
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding MBR and GPT Partitions
	Managing Partitions and File Systems
	Mounting File Systems
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 14.1

	Chapter 15. Managing Advanced Storage
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding LVM
	Creating LVM Logical Volumes
	Resizing LVM Logical Volumes
	Configuring Stratis
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Labs
	Lab 15.1
	Lab 15.2

	Part III: Performing Advanced System Administration Tasks
	Chapter 16. Basic Kernel Management
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding the Role of the Linux Kernel
	Working with Kernel Modules
	Upgrading the Linux Kernel
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 16.1

	Chapter 17. Managing and Understanding the Boot Procedure
	“Do I Know This Already?” Quiz
	Foundation Topics
	Managing Systemd Targets
	Working with GRUB 2
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Review Questions
	End-of-Chapter Labs
	Lab 17.1
	Lab 17.2

	Chapter 18. Essential Troubleshooting Skills
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding the RHEL 9 Boot Procedure
	Passing Kernel Boot Arguments
	Using a Rescue Disk
	Fixing Common Issues
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 18.1

	Chapter 19. An Introduction to Automation with Bash Shell Scripting
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Shell Scripting Core Elements
	Using Variables and Input
	Using Conditional Loops
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 19.1

	Part IV: Managing Network Services
	Chapter 20. Configuring SSH
	“Do I Know This Already?” Quiz
	Foundation Topics
	Hardening the SSH Server
	Using Other Useful sshd Options
	Configuring Key-Based Authentication with Passphrases
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 20.1

	Chapter 21. Managing Apache HTTP Services
	“Do I Know This Already?” Quiz
	Foundation Topics
	Configuring a Basic Apache Server
	Understanding Apache Configuration Files
	Creating Apache Virtual Hosts
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 21.1

	Chapter 22. Managing SELinux
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding SELinux Working Modes
	Understanding Context Settings and the Policy
	Restoring Default File Contexts
	Managing Port Access
	Using Boolean Settings to Modify SELinux Settings
	Diagnosing and Addressing SELinux Policy Violations
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 22.1

	Chapter 23. Configuring a Firewall
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Linux Firewalling
	Working with Firewalld
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 23.1

	Chapter 24. Accessing Network Storage
	“Do I Know This Already?” Quiz
	Foundation Topics
	Using NFS Services
	Mounting Remote File Systems Through fstab
	Using Automount to Mount Remote File Systems
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 24.1

	Chapter 25. Configuring Time Services
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Local Time
	Using Network Time Protocol
	Managing Time on Red Hat Enterprise Linux
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 25.1

	Chapter 26. Managing Containers
	“Do I Know This Already?” Quiz
	Foundation Topics
	Understanding Containers
	Running a Container
	Working with Container Images
	Managing Containers
	Managing Container Storage
	Running Containers as Systemd Services
	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Complete Tables and Lists from Memory
	Define Key Terms
	Review Questions
	End-of-Chapter Lab
	Lab 26.1

	Chapter 27. Final Preparation
	General Tips

	Chapter 28. Theoretical Pre-Assessment Exam

	Part V: RHCSA 9 Practice Exams
	RHCSA Practice Exam A
	General Notes

	RHCSA Practice Exam B
	General Notes

	Appendix A: Answers to the “Do I Know This Already?” Quizzes and Review Questions
	Answers to the “Do I Know This Already?” Quizzes
	Answers to the Review Questions

	Appendix B: Red Hat RHCSA 9 Cert Guide: EX200 Exam Updates
	Always Get the Latest at the Book’s Product Page
	Technical Content

	Glossary
	Index
	RHCSA Practice Exam C
	General Notes

	RHCSA Practice Exam D
	General Notes

	Appendix C: Memory Tables
	Appendix D: Memory Tables Answer Key
	Appendix E: Study Planner
	Code Snippets

