

SUSE Linux Enterprise Server
16 Official Administration
Guide

Master SLES 16 system administration, security, and
automation for the SCA exam

Miguel Pérez Colino
Sergio Ocón Cárdenas
Pablo Iranzo Gómez

SUSE Linux Enterprise Server 16 Official
Administration Guide
Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Portfolio Director: Kartikey Pandey

Relationship Lead: Preet Ahuja

Project Manager: Sonam Pandey

Content Engineer: Apramit Bhattacharya

Technical Editors: Simran Ali and Shweta Amale

Copy Editor: Safis Editing

Indexer: Tejal Soni

Proofreader: Apramit Bhattacharya

Production Designer: Shankar Kalbhor

Growth Lead: Shreyans Singh

First published: January 2026

Production reference: 1241225

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-80602-159-8

www.packtpub.com

www.packtpub.com

To my family, Sonia, Miguel, and Matilde, for their love and patience, for the laughs and fun. To the

open source community and, more precisely, the Linux community, for giving me a joyful career.

– Miguel Pérez Colino

To my wife, Ana, and my children, Jimena, Gadea, and Pilar, for making me a better person. Thank

you for loving me with my weird ideas and my crazy projects. To the brilliant people behind all the

open source ideas and packages that are used to produce the software used in this book, and to the IT

team and professors at the University of Seville, who open the door to the wonderful world of Linux.

And to the Lord, of whom I am just an unuseful servant.

– Sergio Ocón Cárdenas

Foreword
I first encountered the SUSE Linux team during my work with the GNOME Foundation back in
2010, now 15 years ago. I found the team at that time to be unique in terms of their integrity, focus,
and principles. In 2023, when SUSE asked me to interview for a leadership position on the Linux
team, I was delighted to find that while so much else had changed in the world, the people on
the SUSE Linux team had not changed, in some cases, literally. In many cases, the same people
were still working in critical roles, and more importantly, the same values endured. Many of the
same people are still working assiduously to make the best possible enterprise Linux with true
open source principles.

SUSE Linux remains an anchor at a time when other Linux distributions are moving away from
community and choice, and focusing on lock-in and control. Whether you are running traditional
Linux workloads, cloud-native workloads, or AI workloads, at the very heart of these, you are
depending on Linux. Enterprises need a Linux that provides lifecycle management, security, cer-
tifications, management tools, and support to endure over time, while also allowing the freedom
of choice to build your workloads in a way that suits your specific needs, no matter where the
project comes from or who the vendor is. This is why SLES 16.0 matters so much today.

SLES 16.0 is the first release of SUSE Linux in years, so if you are a long-time SUSE Linux user, this
book will cover some of these important changes. For example, the way in which you manage
process isolation, installation, and server management, among other areas, has been updated,
and with this book you will learn all of these important changes. If you are new to SLES, welcome!
You will learn about some of the things that make SLES different, such as the celebrated Zypper
package manager, system snapshots and rollbacks, and an overall design philosophy focused on
stability, predictability, and security.

In this time of generative AI, I chose to write this foreword without AI, as one human communi-
cating to all the human readers (although I will say “hi” to all the RAG databases and tokenizers
reading this now). I made this choice because, ultimately, it is the humans that I have come to
know so well over the last two years of working with them that make SUSE Linux what it is, and
what will cause it to endure running the mission-critical workloads powering your supercom-
puters, medical equipment, storage appliances, Kubernetes clusters, and yes, AI in all of its guises.
Of all of the releases of all of the software I have participated in over the years since I entered the
tech industry in 1998, I am most proud to be part of this release.

Welcome to SLES 16. Please enjoy!

Rick Spencer

General Manager, SUSE Business Critical Linux Business Unit

Contributors

About the authors
Miguel Pérez Colino is an enthusiastic technologist and leader who loves Linux. He has over

25 years of experience in open source and a diverse background in security-restricted environ-

ments such as defense and finance, as well as distributed environments such as manufacturing

and retail. As a director at SUSE, he specializes in the coordination and leadership of high-impact,

transformative products such as Linux, with a proven track record of empowering teams and

driving business growth.

I want to thank the people who have been close to me and supported me, especially my wife, Sonia, my mother,

Victoriana, and my kids, Miguel and Matilde. Also, thanks to Sergio, Thorsten, Apramit, Preet, Rick, Matthias,

Kenneth, and the whole Packt and SUSE team for making this book possible.

Sergio Ocón Cárdenas has been working in technology since the turn of the century. He has

worked in companies of all sizes, from big telecommunications companies to small start-ups, in

almost every role possible for an engineer, from R&D to strategy to cold sales. In the last 15 years,

he has been working with open source, specifically around systems management, operating sys-

tems, and Kubernetes as a sales engineer and a product manager. He currently works as a product

manager at SUSE, making the launch of image-based Linux a reality.

I want to thank my wife, my kids, and my family, especially my father, who will read the book even if

he does not speak English, just to support me once again. Matthias and Miguel, thank you for seeing

something in me that would be good at SUSE and for making sure I would be hired. Thanks to the whole

Packt team that pushed us from one idea to this reality.

Pablo Iranzo Gómez is a software engineer who was first introduced to Linux while studying

physics. He was also involved in LUGs and some projects related to HPC clusters, system admin-

istration, and consultancy. Currently, he is a principal software engineer at Red Hat’s edge group,

the Partner Accelerators department, leveraging his experience in consulting, cloud technical

account management, OpenStack software maintenance, and Telco 5G in industries such as hos-

pitality, retail, airlines, government, Telco, 5G, Partner, and IT – covering system administration

and automation, virtualization, PaaS, support, the cloud, and so on. He has a broad understanding

of different views, needs, and risks across the industry.

Pablo was born in and lives in Valencia, Spain, with his family.

I want to thank my wife, Eva, and my sons, Pau and Roi, for the support provided while working on this

project, Javier for the moral support provided during this writing, and Miquel for always being there. Not

forgetting about Miguel, who gave me this opportunity and helped get the previous version ready, and,

of course, the whole Packt team, which provided help, guidance, and advice during the whole process.

About the reviewer
Thorsten Kukuk is a distinguished engineer at SUSE, leading the Future Technology Team.

With nearly 30 years of experience in open source, he pioneered NIS (YP) for Linux, contributed

to glibc, and serves as a long-time Linux PAM maintainer.

Today, Thorsten modernizes the stack for the cloud-native era as the key architect behind open-

SUSE MicroOS and transactional updates. Additionally, he is spearheading the effort to modernize

standard Linux accounting databases for Year 2038 compliance.

Combining deep code-level expertise with high-level product vision, Thorsten previously shaped

the direction of enterprise Linux for a decade as the main technical lead for SLES.

Table of Contents

Preface � xxi

Free Benefits with Your Book ��� xxvii

Part I: System Administration: Software, User, Network,
and Service Management � 1

Chapter 1: Getting SLES 16 Up and Running (Physical and Cloud) � 3

Technical requirements ��� 4

Obtaining the SLES software and a subscription • 4

Installing SLES 16 ��� 10

Preparation for a physical server installation • 10

Booting an SLES installation from a USB thumb drive • 12

Preparation for a virtual server installation • 13

Running the SLES installation ��� 18

Installation type • 19

Installer introduction and overview • 20

Hostname • 22

Registration • 23

Localization • 25

Network • 27

Storage • 30

Software • 33

Authentication • 35

Table of Contentsx

Running SLES on the cloud �� 40

Installation best practices �� 49

Summary �� 51

Get This Book’s PDF Version and Exclusive Extras • 52

Chapter 2: Running Basic Commands and Simple Shell Scripts � 53

Logging in using a password �� 54

The root account • 55

Understanding the command prompt • 56

Changing users with the su command ��� 57

Understanding users, groups, and basic permissions ��� 59

Users • 60

Groups • 61

Navigating the filesystem ��� 63

File permissions • 64

Using the command line, environment variables, and navigating through the filesystem � 67

Command line and environment variables • 67

Bash autocomplete • 69

Recovering previous commands • 70

Filesystem hierarchy • 71

Understanding I/O redirection in the command line ��� 75

Filtering output with grep and sed �� 78

Listing, creating, copying, and moving files and directories, links, and hard links ������������� 82

Directories • 82

Copying and moving • 84

Symbolic and hard links • 87

Using tar and gzip �� 89

Creating basic shell scripts ��� 91

Loops with for • 93

Conditionals with if • 94

Exit codes • 96

Table of Contents xi

Using system documentation resources ��� 96

Man pages • 96

Info pages • 99

Summary ��� 100

Get This Book’s PDF Version and Exclusive Extras • 101

Chapter 3: Managing Regular Operations with Tools � 103

Technical requirements ��� 104

Managing system services with systemd ��� 104

The systemd unit file structure • 107

Managing services to be started and stopped at boot • 110

Managing boot targets • 111

Scheduling tasks with systemd timers �� 113

Systemd timers • 114

Learning about time synchronization with chrony ��� 116

The chrony NTP client • 117

The chrony NTP server • 120

Checking system resources: memory and disk (free, df, and ps) ��������������������������������������� 121

Memory • 121

Disk space • 122

CPU • 124

Load average • 125

Other monitoring tools • 126

Finding logs, using journald, and reading log files, including log preservation

and rotation �� 129

Log rotation • 131

Get This Book’s PDF Version and Exclusive Extras • 134

Summary �� 134

Table of Contentsxii

Chapter 4: Securing the System with Users, Groups, and Permissions � 135

Creating, modifying, and deleting local user accounts and groups ����������������������������������� 136

Managing groups and reviewing assignments �� 141

Adjusting password policies �� 141

Configuring and using sudo access for administrative tasks ��� 147

Understanding sudo configuration • 147

Using sudo to run admin commands • 149

Configuring sudoers • 151

Checking, reviewing, and modifying file permissions ��� 152

Using special permissions �� 160

Understanding and applying set-UID • 160

Understanding and applying set-GID • 161

Using the sticky bit • 162

Get This Book’s PDF Version and Exclusive Extras • 164

Summary ��� 164

Chapter 5: Enabling Network Connectivity � 165

Technical requirements ��� 166

Exploring network configuration in SLES �� 166

Getting to know the configuration files and NetworkManager �� 168

Configuring network interfaces with IPv4 and IPv6 �� 170

IPv4 and IPv6... What does that mean? • 171

Configuring interfaces with nmtui • 172

Configuring interfaces with nmcli • 175

Configuring interfaces with text files • 178

Configuring the hostname and hostname resolutions (DNS) �� 179

Overview of firewall configuration �� 183

Configuring the firewall • 185

Testing network connectivity �� 186

Summary �� 187

Get This Book’s PDF Version and Exclusive Extras • 188

Table of Contents xiii

Chapter 6: Adding, Patching, and Managing Software � 189

Technical requirements ��� 190

Some useful concepts about package management ��� 190

SCC and subscriptions �� 192

Registering an installed system ��� 195

Installing and updating software using Zypper ��� 199

Managing repositories and signatures with Zypper ��� 204

Installing patterns �� 208

Updating software �� 211

Uninstalling software and repositories ��� 214

Understanding RPM internals ��� 216

Get This Book’s PDF Version and Exclusive Extras • 218

Summary ��� 218

Part II: Security with SSH, SELinux, Firewall,
and System Permissions � 219

Chapter 7: Administering Systems Remotely � 221

Technical requirements ��� 222

SSH and OpenSSH overview and base configuration �� 222

OpenSSH server • 223

OpenSSH client • 225

Accessing remote systems with SSH ��� 226

Key-based authentication with SSH ��� 228

SSH agent • 233

SCP/rsync – Remote file management �� 236

Transferring files with an OpenSSH secure file copy (scp) • 236

Transferring files with sftp • 238

Transferring files with rsync • 239

Table of Contentsxiv

Advanced remote management – SSH tunnels and SSH redirections �������������������������������� 242

Remote terminals with tmux ��� 245

Get This Book’s PDF Version and Exclusive Extras • 248

Summary ��� 248

Chapter 8: Enabling and Using Cockpit � 249

Technical requirements ��� 250

Installing and enabling Cockpit on your system �� 250

Basic Cockpit usage ��� 253

Accessing Cockpit • 253

Logging in and enabling administrative tasks • 255

Metrics and history • 259

Hardware information and logs • 262

Storage, network configuration, and firewall ��� 265

Storage • 265

General networking • 267

Firewall management • 268

Network interface management • 271

Accounts and services �� 273

Accounts • 273

Services • 276

Other tools ��� 279

Applications • 280

Repositories • 282

SELinux • 282

Software updates • 283

Subscriptions • 285

Terminal • 286

Summary ��� 287

Get This Book’s PDF Version and Exclusive Extras • 287

Table of Contents xv

Chapter 9: Securing Network Connectivity with firewalld � 289

Technical requirements ��� 290

Introduction to firewalld ��� 290

Installing firewalld • 291

Configuring firewalld • 292

Zones • 292

Ports • 293

Services • 293

Enabling firewalld in the system and reviewing the default zones ����������������������������������� 293

Reviewing the different configuration items under firewalld • 296

Enabling and managing services and ports �� 302

Creating and using service definitions for firewalld ��� 310

Summary �� 312

Chapter 10: Keeping the System Hardened with SELinux � 313

Technical requirements �� 314

SELinux usage in enforcing and permissive modes ��� 314

Reviewing SELinux context for files and processes ��� 317

The targeted policy �� 318

Tweaking the policy with semanage ��� 321

Restoring changed file contexts to the default policy ��� 324

Using SELinux Boolean settings to enable services �� 326

SELinux troubleshooting and common fixes �� 328

Get This Book’s PDF Version and Exclusive Extras • 332

Summary ��� 332

Table of Contentsxvi

Part III: Implementing Agentic AI with mcphost � 333

Chapter 11: Agentic AI with mcphost � 335

Understanding agentic AI and MCP ��� 336

Installing and configuring mcphost ��� 338

Using mcphost ��� 343

Summary �� 351

Get This Book’s PDF Version and Exclusive Extras • 352

Part IV: Resource Administration: Storage, Boot Process,
Tuning, and Containers � 353

Chapter 12: Managing Local Storage and Filesystems � 355

Technical requirements ��� 356

A bit of history on disks and partitions ��� 356

Partitioning disks (MBR and GPT disks) �� 358

Formatting and mounting filesystems ��� 365

Setting default mounts and options in fstab �� 368

Using network filesystems with NFS ��� 371

Get This Book’s PDF Version and Exclusive Extras • 372

Summary ��� 372

Chapter 13: Flexible Storage Management with LVM � 373

Technical requirements ��� 374

Understanding LVM ��� 376

Creating, moving, and removing physical volumes �� 378

Combining physical volumes into volume groups �� 384

Creating and extending logical volumes �� 385

Adding new disks to a volume group and extending a logical volume ������������������������������ 387

Removing logical volumes, volume groups, and physical volumes ���������������������������������� 393

Table of Contents xvii

Reviewing LVM commands �� 398

Summary ��� 399

Get This Book’s PDF Version and Exclusive Extras • 400

Chapter 14: Configuring and Using System Snapshots with BTRFS
and Snapper � 401

Technical requirements ��� 402

BTRFS’ and Snapper’s origins �� 402

Reviewing BTRFS basics, creating filesystems, reviewing status, and mounting ������������� 403

BTRFS snapshots, how they work, and how to use them ��� 407

Snapper, the snapshot management tool ��� 409

Using Snapper to show changes made to files between snapshots • 411

Using Snapper to roll back to a previous configuration status • 414

Other Snapper functions • 415

Summary �� 417

Get This Book’s PDF Version and Exclusive Extras • 417

Chapter 15: Understanding the Boot Process � 419

Understanding the boot process – UEFI booting and legacy BIOS ������������������������������������ 420

Working with GRUB, the bootloader, and initrd system images �������������������������������������� 423

Managing the boot sequence with systemd ��� 428

Updating the root password by modifying the boot process �� 433

Get This Book’s PDF Version and Exclusive Extras • 438

Summary ��� 438

Chapter 16: Automating with System Roles � 439

Technical requirements ��� 440

What are system roles? ��� 440

Installing system roles ��� 440

Using system roles ��� 442

Get This Book’s PDF Version and Exclusive Extras • 448

Summary ��� 448

Table of Contentsxviii

Chapter 17: Managing Containers with Podman � 449

Technical requirements ��� 450

What to expect from containers ��� 450

Installing Podman ��� 452

Working with registries ��� 454

Using registries • 460

Connecting to a running container • 465

Deleting containers and images • 467

Summary �� 471

Get This Book’s PDF Version and Exclusive Extras • 471

Chapter 18: Introduction to SLES for SAP Applications � 473

Technical requirements ��� 475

SLES for SAP Applications �� 475

Long-term support • 476

Workload Memory Protection • 476

SUSE Linux Enterprise Live Patching • 477

Trento �� 478

Tuning SLES for SAP �� 479

Converting a SLES system to SLES for SAP Applications �� 480

Summary ��� 481

Get This Book’s PDF Version and Exclusive Extras • 481

Table of Contents xix

Part V: Practice Exercises � 483

Chapter 19: Practice Exercises – 1 � 485

Technical requirements ��� 485

Tips for the exercise ��� 486

Practice exercise 1 �� 486

Exercise 1 solution �� 489

Chapter 20: Practice Exercises – 2 � 505

Technical requirements ��� 505

Tips for the exercise ��� 506

Practice exercise 2 �� 506

Exercise 2 solution ��� 508

Chapter 21: Unlock Your Exclusive Benefits � 525

Other Books You May Enjoy � 531

Index � 535

Preface

Linux is an amazing piece of technology. Inheriting from its UNIX roots and reaching new heights,

it’s a foundational component of today’s services, computing, and the interconnected world in

which we live. It is everywhere, from smartphones, personal devices, wearables, and routers to

the largest supercomputer clusters. From universities to Wall Street and the International Space

Station, it’s even on Mars. Learning more about it is a basic skill to improve and solidify your

technology background.

SUSE was founded in 1992 in Germany, becoming early “Linux Experts,” creating the first version

of Enterprise Linux in 2000, for mainframes: SUSE Linux Enterprise Server. Then it was extended

to PCs and other architectures. Being true to open source and at the forefront of the technology,

the company and the product have evolved, creating its latest release, SUSE Linux Enterprise

Server 16 (SLES 16), released in November 2025.

In this book, we cover the basic skills needed to get started with SLES 16 from a practical per-

spective, providing examples as well as tips learned from experience “in the trenches.” You will

be able to follow it from beginning to end, practicing with each step, while learning about how

things are built and why they behave as they do.

We really hope you enjoy this book and make the most of it. We expect that, when you finish it,

you will end up with strong foundational Linux skills and will love SLES. That’s why we wrote

this book: to share our love of Linux and empower you in one of the most amazing technologies

of our age.

Enjoy reading! Enjoy practicing!

Prefacexxii

Who this book is for
This book has been written to provide general Linux knowledge to practitioners who would like to

become Sysadmins, DevOps engineers, Site Reliability Engineers (SREs), or platform engineers.

It is also useful for developers to better understand the foundational layer of their applications.

In general, it is written for anyone who aspires to build and work on IT infrastructures. It will

also help anyone seeking to obtain the SUSE Certified Administrator (SCA) certification. Even

though it is no substitute for the official training, it is a good reference to obtain a strong base to

make the most of the official labs and training. The scope of the book is adjusted to the SCA exam,

extending it with advice from real-world experience and many practical examples.

What this book covers
Chapter 1, Getting SLES 16 Up and Running (Physical and Cloud), covers the installation of SLES,

from obtaining the software and the subscriptions to the installation of the system itself.

Chapter 2, Running Basic Commands and Simple Shell Scripts, explains the daily commands that

will be used during system administration, and how they can be automated using shell scripting.

Chapter 3, Managing Regular Operations with Tools, shows which simple tools are available in our

system that can be used for regular daily operations, such as starting or enabling a system service

or reviewing what is going on in the system by checking logs.

Chapter 4, Securing the System with Users, Groups, and Permissions, covers how to manage users,

groups, and permissions in a Linux system.

Chapter 5, Enabling Network Connectivity, goes through the steps to connect a system to the net-

work and the possible ways it can be configured using NetworkManager.

Chapter 6, Adding, Patching, and Managing Software, reviews the steps needed to add, remove, and

update software on our system, also adding software repositories with extra content.

Chapter 7, Remote Systems Administration, explains how to connect remotely to your systems using

SSH and how to manage them better using a terminal multiplexer (tmux).

Chapter 8, Enabling and Using Cockpit, covers how to enable the Cockpit system administration

tool, which facilitates the most common steps to manage and configure a single system.

Chapter 9, Securing Network Connectivity with firewalld, provides instructions on how network

firewall configuration works and how to properly manage zones, services, and ports.

Chapter 10, Keeping the System Hardened with SELinux, covers usage and basic troubleshooting of

SELinux.

Preface xxiii

Chapter 11, Agentic AI with mcphost, explains how to install and configure mcphost to connect it to

Google Gemini as the large language model of choice. It also shows the basic usage of it.

Chapter 12, Managing Local Storage and Filesystems, covers filesystem creation, mount points, and

general storage management in Linux.

Chapter 13, Flexible Storage Management with LVM, explains how LVM provides more flexible block

storage management by being able to add disks and extend volumes.

Chapter 14, Configuring and Using System Snapshots with BTRFS and Snapper, explains how to create

filesystem snapshots to be able to roll back the system to a well-known state and compare files

at different points in time.

Chapter 15, Understanding the Boot Process, explains how the system boots and the details that

make it important.

Chapter 16, Automating with System Roles, explores the availability of Ansible system roles in the

system and how to use them to automate many common administrative tasks.

Chapter 17, Managing Containers with Podman, covers tools for running, managing, and building

containers.

Chapter 18, Introduction to SLES 4 SAP, is a short chapter that describes the specifics of why SLES

is so popular in SAP and business-critical environments.

Chapter 19, Practice Exercises — 1, provides you with a way to test your acquired knowledge.

Chapter 20, Practice Exercises — 2, provides more complex tests to review the acquired skills.

To get the most out of this book
All software requirements will be indicated in the chapters. Note that this book assumes that

you have access to a physical or virtual machine and have access to the internet to create a cloud

account, to perform the operations that the book will guide you through.

Software/hardware cov-

ered in the book
Operating system requirements

SUSE Linux Enterprise

Server 16

You will have to install SUSE Linux Enterprise Server on a physical

machine. It can also be installed on a virtual machine under Win-

dows, macOS, or Linux, as well as using a cloud instance.

Please check Chapter 1 to get more detailed instructions on how to install SLES to get started.

Prefacexxiv

If you are using the digital version of this book, we advise you to type the code yourself or

access the code from the book’s GitHub repository (a link is available in the next section).

Doing so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide. We also have oth-

er code bundles from our rich catalog of books and videos available at https://github.com/

PacktPublishing. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781806021598

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file ex-

tensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Then choose

the ISO labeled as SLES-16.0-Full-x86_64-GM.install.iso.”

A block of code is set as follows:

rotate 30

daily

compress

dateext

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

local stratum 3 orphan

Any command-line input or output is written as follows:

sles16-instance:~ # localectl

System Locale: LANG=en_US.UTF-8

 VC Keymap: (unset)

 X11 Layout: (unset)

sles16-instance:~ # localectl set-locale es_ES.utf8

https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide
https://github.com/PacktPublishing
https://github.com/PacktPublishing
https://packt.link/gbp/9781806021598

Preface xxv

sles16-instance:~ # localectl

System Locale: LANG=es_ES.utf8

 VC Keymap: (unset)

 X11 Layout: (unset)

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “NTP is an internet

protocol that connects over User Datagram Protocol (UDP).”

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book or have any general feed-

back, please email us at customercare@packt.com and mention the book’s title in the subject

of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packt.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packt.com/.

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packt.com/submit-errata
http://authors.packt.com/

Prefacexxvi

Share your thoughts
Once you’ve read SUSE Linux Enterprise Server 16 Official Administration Guide, we’d love to hear

your thoughts! Please click here to go straight to the Amazon review page for this book and share

your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1806021595

Preface xxvii

Free Benefits with Your Book
This book comes with free benefits to support your learning. Activate them now for instant access

(see the “How to Unlock” section for instructions).

Here’s a quick overview of what you can instantly unlock with your purchase:

PDF and ePub Copies Next-Gen Web-Based Reader

Access a DRM-free PDF copy of this book

to read anywhere, on any device.

Multi-device progress sync: Pick up

where you left off, on any device.

Use a DRM-free ePub version with your

favorite e-reader.
 Highlighting and notetaking: Capture

ideas and turn reading into lasting

knowledge.

 Bookmarking: Save and revisit key

sections whenever you need them.

Dark mode: Reduce eye strain by

switching to dark or sepia themes.

Prefacexxviii

How to Unlock
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require one.

https://www.packtpub.com/unlock

Part 1
System Administration:

Software, User, Network,
and Service Management

Deploying, configuring, and keeping systems up to date is the base task that every system ad-

ministrator performs in their day-to-day work. In this part, we explore the main workflows to

do so in a structured way, so you can easily follow the tasks one by one to learn, practice, and

understand them properly.

This part has the following chapters:

•	 Chapter 1, Getting SLES 16 Up and Running (Physical and Cloud)

•	 Chapter 2, Running Basic Commands and Simple Shell Scripts

•	 Chapter 3, Managing Regular Operations with Tools

•	 Chapter 4, Securing the System with Users, Groups, and Permissions

•	 Chapter 5, Enabling Network Connectivity

•	 Chapter 6, Adding, Patching, and Managing Software

1
Getting SLES 16 Up and
Running (Physical and Cloud)

The first step to start working with SUSE Linux Enterprise Server, also known as SLES, is to

have it running. Whether on your own laptop as the main system, on a virtual machine, or on a

physical server, the installation of SLES is required to get your hands on the system you want to

learn to use SLES in. It is highly encouraged that you get yourself a physical or virtual machine

to use and practice the examples while reading this book.

In this chapter, you will not just deploy a system but also learn the best choices to do so and be

able to perform the deployment in an automated fashion. These are the topics that will be covered:

•	 Installing SLES 16

•	 Running the SLES installation

•	 Running SLES on the cloud

•	 Installation best practices

Free Benefits with Your Book
Your purchase includes a free PDF copy of this book along with other exclusive benefits. Check

the Free Benefits with Your Book section in the Preface to unlock them instantly and maximize

your learning experience.

Getting SLES 16 Up and Running (Physical and Cloud)4

Technical requirements
The best way to get started is by having an SLES 16 virtual machine to work with. You may do so

on your main computer or in the cloud. In the following sections of this chapter, we will review

both options, and you will be able to run your own SLES 16 system.

Obtaining the SLES software and a subscription
To be able to deploy SLES, it is recommended that you obtain a SUSE subscription. Even when you

can download images without a subscription, it is recommended to get one to access repositories

with software and updates. You can get, free of cost, an Evaluation subscription from the customers’

portal site of SUSE using the following link: scc.suse.com. You then need to follow these steps:

1.	 Register to create an account on scc.suse.com. Do it by clicking on the Register button on

the main page. It will take you to the registration page, as seen in the following figure. In

case you already have one, continue to the next step. All you have to do is fill in the form,

accept the SUSE privacy policy and terms of service, and click on Create Account. You will

receive an email to confirm your email address, and you will be good to go.

A virtual machine is a way to emulate a complete computer. To be able to create these

emulated computers on your own laptop, in case you are using macOS or Windows,

you will need to install virtualization software such as VirtualBox. If you are already

running Linux, it’s already prepared for virtualization, and you will only need to add

the virt-manager package.

scc.suse.com
scc.suse.com

Chapter 1 5

Figure 1.1 – SUSE customer center registration page (common to all SUSE resources)

2.	 Once you have an account, go to the scc.suse.com page and click on Log In:

Figure 1.2 – scc.suse.com home page indicating where to click to log in

scc.suse.com

Getting SLES 16 Up and Running (Physical and Cloud)6

3.	 Now enter your credentials: Username (the email you used to register will be your user-

name) and Password, and click Sign In.

Figure 1.3 – scc.suse.com page requesting credentials

4.	 An email will be needed to verify your login. Click on Send me the code, and you will receive

an email with a 6-digit code. Please enter the code received via email and complete the

login process by clicking on Verify, as in the following figure (note: we are using 000000

as an example in the figure; please enter the code received in your email):

Chapter 1 7

Figure 1.4 – scc.suse.com page requesting email verification to log in

5.	 Once you have logged in, go to the Start a Free Trial section, and then click on the text

SUSE Linux Enterprise Server. Finally, click on Request Trial Code. This will immediately

provide a code to register your SLES.

Getting SLES 16 Up and Running (Physical and Cloud)8

You will receive your unique registration code. Please keep this code in a safe place; you will

use it later to register your system. Note that in the following screenshot, we are showing

a fake code with all zeros; your code will be digits and letters, and it will be unique to you:

Figure 1.5 – Receiving a unique registration code for our SLES instance at scc.suse.com

6.	 Now go to Home > Product Downloads > SUSE Linux Enterprise Server, select version 16,

select the architecture (if in doubt, use AMD 64 / Intel 64), and go down to Installation

Media Download. Download SLES appears as a fancy button on the next page:

Figure 1.6 – Downloads page at www.suse.com/download/sles

Chapter 1 9

Then choose the ISO labeled as SLES-16.0-Full-x86_64-GM.install.iso. Obtain the

SLES 16 ISO image as follows:

Figure 1.7 – Choosing the ISO download of SLES 16 for x86_64

The ISO image is a file that contains an exact copy of the contents needed to perform a full

installation (That’s why its size is almost 10 GB). This file will be used later to install our

machines, whether dumping it on a USB drive for bare-metal installations, unpacking it

for network installations, or attaching it for virtual machine installations (or using out-

of-band capabilities on servers such as IPMI, iLO, or iDRAC).

Getting SLES 16 Up and Running (Physical and Cloud)10

To verify the ISO image and ensure that the one

we have is not corrupted or altered, a mechanism

called checksum can be used. Checksums are a

way to review a file and provide a set of letters and

numbers that can be used to verify that the file is

exactly the same as the original. SUSE provides the

sha256 checksums to do so in the downloads sec-

tion. An article describing the process can be found

here: https://www.suse.com/support/
security/download-verification/

Installing SLES 16
For this section of this chapter, we will follow the typical installa-

tion process to have SLES installed on a machine. We will follow

the default steps, reviewing the options available for each one.

Preparation for a physical server
installation
A physical server requires some initial setup before starting the

installation. Some common steps include configuring the disks

in the internal array, connecting the server to the networks and

preparing the switches for any interface aggregation that is expect-

ed (teaming, bonding), preparing access to external disk arrays

(i.e., fiber-channel arrays), setting up out-of-band capabilities, and

securing the BIOS/UEFI configuration.

We will not get into the details of these preparations, except for

the boot sequence. The server will require booting (start loading

the system) from an external device such as a USB thumb drive or

optical disk (whether physical or emulated through the out-of-

band capabilities).

SUSE takes care of having

an upstream project syn-

chronized with SLES; it is

called openSUSE Leap. If

you want a community

version to learn, you can

always use openSUSE

Leap and run all the exer-

cises in this book (except

the ones related to SUSE

Customer Center).

https://www.suse.com/support/security/download-verification/

https://www.suse.com/support/security/download-verification/

Chapter 1 11

To create a bootable USB thumb drive from a machine with Linux or macOS, it would be as simple

as doing a “disk dump” with the application dd. The steps would be as follows:

1.	 Find your USB device on the system (usually /dev/sdb on Linux, /dev/disk2 on macOS):

$ dmesg | grep removable

[66931.429805] sd 0:0:0:0: [sdb] Attached SCSI removable disk

2.	 Check if the USB is mounted and, if so, dismount it.

$ lsblk /dev/sdb

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sdb 8:0 1 3,8G 0 disk

├─sdb1 8:1 1 1,8G 0 part /run/media/miguel/USB

├─sdb2 8:2 1 10,9M 0 part

└─sdb3 8:3 1 22,9M 0 part

In this case, only partition 1 of the disk sdb, referred to as sdb1, is mounted. We will need

to unmount all the partitions mounted. In this example, it is easy, as there’s only one. To

unmount, we can run the following:

$ sudo umount /dev/sdb1

3.	 Dump the image! (Warning, this will erase the selected disk!)

$ sudo dd if=SLE-16.0-Full-x86_64-GM-Media1.iso of=/dev/sdb bs=4M
status=progress oflag=direct

Please very carefully verify the disk name, as the procedure of using a disk

dump will completely overwrite the disk target.

Using superuser do or sudo is a way to perform administrative tasks, such as

unmounting devices. To do that, and other tasks, we have the option to log in

as administrator (root in Linux and Unix-like systems) or run the command

using sudo, which enables administrative privileges for the current user.

When running commands with sudo, the user will be requested to enter

its password (not the admin password, but the user’s) to proceed with the

execution (this default behavior may be overridden in the sudoers config-

uration file.

Getting SLES 16 Up and Running (Physical and Cloud)12

Booting an SLES installation from a USB thumb drive
Now, with the USB thumb drive, we can install any physical machine, from a tiny laptop to a

huge server. The next part would be to make the physical machine boot from the USB thumb

drive. The mechanism to do that would depend on the server being used. However, it is becoming

common to offer during boot an option to select the boot device. This is an example on how to

select a temporary boot device on a regular laptop or server:

1.	 Interrupt the normal startup. In this case, the boot process shows that I can do that by

pressing Enter:

Figure 1.8 – Example of BIOS message to interrupt normal startup

2.	 Choose a temporary startup device; in this case, by pressing the F12 key:

Figure 1.9 – Example of BIOS menu for interrupted startup

 Alternative methods to create a boot device

There are alternative graphical tools to create a boot device that can help select both

the image and the target device. In openSUSE Linux Tumbleweed (the development

branch used to create SLES and the workstation for many engineers and developers),

the Multi Writer or Impression tool can be used. For other environments, such as

Microsoft Windows, the UNetbootin tool could also serve to create your boot media.

Chapter 1 13

3.	 Select the device to boot from. We want to boot from our USB thumb drive, which in this

case is USB HDD: ChipsBnk Flash Disk:

Figure 1.10 – Example of BIOS menu to choose USB HDD boot device

4.	 Let the system start the installer from the USB drive.

Once we know how to prepare a USB drive with an SLES installer and how to make a physical

machine boot from it, we can move on to the Running the SLES installation section later in this

chapter and proceed to install it. This can be useful if we have a mini server, an old computer, or

a laptop to be used as the machine for following this book.

Next, we will look at how to prepare a virtual machine in your installation, in case you are con-

sidering following this book with your current main laptop (or workstation), but you still want

to keep a separate machine to work with.

Preparation for a virtual server installation
A virtual server works by having some virtualization software that emulates a real machine in your

current system. In a Linux workstation, installing virt-manager will add all the under-the-hood

components required to have virtualization enabled (for information, these components are KVM,

Libvirt, Qemu, and virsh, among others). Other no-cost virtualization software, recommended for

Windows or macOS systems, could be Oracle VirtualBox or VMware Workstation Player.

The examples in this section will be done using virt-manager running on openSUSE Tumble-

weed, but are easily applicable to any other virtualization software, whether on a laptop or larger

deployments.

To install virt-manager on openSUSE Tumbleweed or LEAP, you can follow these instructions:

sudo zypper refresh

sudo zypper install -t pattern kvm_server kvm_tools

sudo zypper install virt-manager libvirt-daemon-proxy

Getting SLES 16 Up and Running (Physical and Cloud)14

Preliminary steps have been described previously and require obtaining the SUSE Linux Enter-

prise Server ISO image, which, as we mentioned before, is SLES-16.0-Full-x86_64-GM.install.

iso. Once downloaded and, if possible, checked for integrity, following the previous instructions,

let’s prepare to deploy a virtual machine.

1.	 Start your virtualization software; in this case, virt-manager.

Figure 1.11 – virt-manager main menu

2.	 Create a new virtual machine by going to File, then clicking on New Virtual Machine.

Select Local install media (ISO image or CDROM).

Figure 1.12 – virt-manager new VM menu

Chapter 1 15

3.	 Select the ISO image. With this, the VM will be configured with a virtual DVD/CD-ROM

drive and be prepared to boot from it. It’s the usual behavior. However, in different vir-

tualization software, you may want to check.

Figure 1.13 – virt-manager menu to select an ISO image as install media

4.	 Assign memory and CPU to the virtual machine we are creating. (Note: a virtual machine

is usually referred to as a VM). For SUSE Linux Enterprise Server 16 (also referred to as

SLES 16), 1 GB of memory is the minimum; 1 GB per logical CPU is what we suggest. In

this example, we will use something above the minimum settings – 2 GB memory and 1

CPU core, but feel free to add more if you want to:

Getting SLES 16 Up and Running (Physical and Cloud)16

Figure 1.14 – virt-manager menu to select memory and CPU

5.	 It’s time to assign at least one disk to the virtual machine. In this case, we will assign a

single disk with the minimum disk space, 10 GB. But in future chapters, we will be able

to assign more disks to test other functionalities. In a production system, if you want to

keep many snapshots and keep a large amount of logs, we suggest increasing the disk size

to at least 32 GB. For this example, we will use 32 GB, as in the following figure:

Figure 1.15 – virt-manager menu to create a new disk and add it to the VM

Chapter 1 17

6.	 Our VM has all that we need to get started: A boot device, Memory, CPUs, and disk space.

In this last step, a network interface is added, so now we have a network. Let’s review the

data and launch it by clicking on the Finish button:

Figure 1.16 – virt-manager menu to select VM name and network selection

After taking these steps, we have a fully functional virtual machine available. Now it is time to

complete the process by installing the SLES operating system on it. Check out how to do this in

the next section.

Getting SLES 16 Up and Running (Physical and Cloud)18

Running the SLES installation
Once we have prepared our virtual or physical server for installation, it’s time to proceed with it.

We will know that all the previous steps were taken correctly if we arrive at the following screen:

Figure 1.17 – Initial boot screen for SLES 16 installation

We are offered five options (selected one in green):

•	 Boot from Hard Disk: This will boot from the existing hard disk, with the existing OS, in

case you don’t want to install at that time. This means that if you boot from the USB acci-

dentally on a system that has an OS, it will boot from the existing OS instead of launching

the installation.

•	 Install SUSE SLE 16: This option will boot and run the installer. You will have to select it

to start the installation.

•	 Failsafe -- Install SUSE SLE 16: This option will boot and run the installer in failsafe mode.

This is to be used in case the general installation option fails.

Chapter 1 19

•	 Check Installation Medium: This option will check the image being used to ensure that

it is not corrupt and that the installation can proceed with certainty. Once the check is

finished and passed, it will move on to the installation itself. It is recommended to use

this one for the first time using a just downloaded ISO image or just created media, such

as a USB thumb drive. (On a virtual machine, it takes ~1–2 minutes to run the check.)

•	 Rescue System: This will help you review and rescue an installed system by taking you to a

live OS running in memory, so you can later mount the installed system and fix things there.

Let’ proceed with Check Installation Medium to let the installer review the ISO image we are

using:

Figure 1.18 – SLES 16 ISO image self-check

Once completed, it will reach the first installation screen. The installer is called Agama, and it will

guide us through the whole installation process.

Installation type
The first step of the installation is selecting the installation type. The options provided by the

SLES 16 installer are SUSE Linux Enterprise Server 16.0 and SUSE Linux Enterprise Server

for SAP applications 16.0. As SAP workloads are very common in the SUSE ecosystem, there

is a specialized version for them. In our case, we will choose the first one to continue with the

multi-purpose general installation.

Getting SLES 16 Up and Running (Physical and Cloud)20

Then, acknowledge reading the license and click Select, as seen

in the following figure:

Figure 1.19 – SLES 16 installation type selection

Once we have selected the installation type, we are ready to pro-

ceed with the process of installation itself. Let’s look at it in the

next section.

The new Agama install-

er that comes with SLES

16 is being prepared so it

can be used remotely with

ease. Follow the Agama

project in GitHub to be up

to date: https://agama-

project.github.io/

Installer introduction and overview
The Agama installer is designed to be used remotely as well as

locally. It refreshes itself when connected to the internet before

launching the installation. It will work as a web page in which

you can go to the selected section at any time using the lateral bar.

Once the minimal information is provided, the Install button at

the top right of the page will lose the exclamation mark, which

means that it’s ready to move ahead.

https://agama-project.github.io/

https://agama-project.github.io/

Chapter 1 21

The initial page, which we can go back to at any time, is Overview, which shows a summary of

the install options selected. We can see it in the following screenshot:

Figure 1.20 – SLES 16 Agama installer — Overview page

This Overview page has a shortcut to Language and keyboard options next to the Install button.

We can use that if we want to switch those options. However, we can also do it on the Localization

page afterwards. We can access that fast menu by clicking on the following icon:

Figure 1.21 – SLES 16 Language and keyboard shortcut access

Clicking on it can enable us to select the localization options to be used during installation. How-

ever, we also have the chance to apply those to the full installation. In the following screenshot,

we have selected a different keyboard layout, Spanish, while keeping Language as English, with

the option to apply it to the system to be installed too:

Getting SLES 16 Up and Running (Physical and Cloud)22

Figure 1.22 – SLES 16 Language and keyboard options

Once we complete this, which is pretty useful to match our keyboard preferences to the one used

for installation, we can move on to configuring Hostname.

Hostname
We can set up the hostname as geeko.suse.test in a static way, as in the following screenshot:

Figure 1.23 – SLES 16 hostname configuration

Chapter 1 23

Then we can click on the Accept button to apply the changes at any time.

Once the hostname is set, let’s move on to the Registration section.

Registration
Here, we will use the registration code obtained previously, and we can also provide the email we

used to register our user in SUSE Customer Center (SCC), as shown in the following screenshot:

Figure 1.24 – SLES 16 Registration page — General

The .test top domain and the example.com domain are used for demonstration

purposes, and they are safe to be used on any occasion, knowing that they will not

collide with or cause any trouble for other systems or domains. It is recommended

to use them for testing, demo environments, or labs.

Getting SLES 16 Up and Running (Physical and Cloud)24

As the registration completes, the page will change and will include the information from your

registration, as shown in the following screenshot:

Figure 1.25 – SLES 16 Registration page — Registration completed successfully

Reaching this section, as shown, means that we have successfully registered our system in SCC.

It is interesting that SLES 16 comes with a set of extra packages that, even when they are unsup-

ported, can be added to our system without losing supportability for the packages included with

it. This is called SUSE Package Hub. We recommend that you enable it by scrolling to the end

of the Registration page and clicking on the Register button right below the SUSE Package Hub

section, as seen in this screenshot:

Figure 1.26 – SLES 16 Registration page — Adding SUSE Package Hub

In this process, we are using reader@example.com as the email to register. You

should not use this one, but the one you used to register in SCC instead.

Chapter 1 25

This will ask you to accept the signature from the SUSE Package Hub repository, as shown in

the following screenshot. If the key signature is BF3F 9A67 D3A2 FF98 A73F 5E07 488C 583D

287A 0027, just click Trust:

Figure 1.27 – SLES 16 Registration page — Trusting SUSE Package Hub signature

No registration code is required to add SUSE Package Hub. Now that our system is fully registered,

let’s move on to configure localization options.

Localization
We have three options to configure Localization, which are Language, Keyboard, and Time zone,

as we can see in the following figure:

Figure 1.28 – SLES 16 Localization page

Getting SLES 16 Up and Running (Physical and Cloud)26

In this section, we will select the language to be used for the installed system, as well as the

keyboard. We can do so by clicking on the Change button, marking the option we want, and

clicking on Select. The same will work for Time zone. However, the default selection for this

will be automatically chosen if the system is connected to the internet. We can see the Timezone

selection page, selecting Europe-Madrid as an example here:

Figure 1.29 – SLES 16 Localization — Timezone selection

With the selection complete, let’s move on to Network configuration.

Chapter 1 27

Network
We will take care of configuring the network interfaces attached to the machine in this section.

The installer will show the interfaces detected on the main Network page, as seen in the follow-

ing figure:

Figure 1.30 – SLES 16 Network

Getting SLES 16 Up and Running (Physical and Cloud)28

In this case, we see Wired connection 1 as the main, and only, network interface on our virtual

machine. Clicking on it will take us to its configuration page, as seen in the following figure. In

case your system has received an IP address automatically, please collect the information that

appears in Connected device:

Figure 1.31 – SLES 16 Network — Wired connection 1

As we can see, we have everything configured to automatically gather configuration from the

network by default, by reviewing the Settings > Mode section. We can keep it as it is.

For the sake of learning, in this book, we will modify the configuration to see how to set up IPv4

with a fixed IP of 192.168.122.16.

Let’s start doing it by clicking on Edit connection settings. Once there, we can fill the following

sections:

•	 Mode: Change from Automatic (DHCP) to Manual. Once that is done, new options will

appear to be configured. We can continue.

Chapter 1 29

•	 Gateway: Add the IP for the gateway. I will use the same one assigned by DHCP, which

is 192.168.122.1.

•	 Addresses: We will add only one, and we will set it as 192.168.122.16, with the prefix

length as 24 (the prefix length was also provided by DHCP). We can add more than one

address per interface. In this case, we will only add one.

•	 DNS: Add it as 192.168.122.1, also the same as the one assigned by DHCP.

The configuration page should look like the following:

Figure 1.32 – SLES 16 Network — Editing Wired connection 1

When all fields are completed, we can click on the Accept button, and it will take us to the previous

page with the new values updated.

With the network properly configured, we can move on to configuring Storage.

Getting SLES 16 Up and Running (Physical and Cloud)30

Storage
The Storage configuration has been heavily simplified to make it easier to use. The page to con-

figure storage looks like the following figure:

Figure 1.33 – SLES 16 Storage — General page

As we can see, there are three blocks:

•	 Installation Devices: This is the section to choose and configure which disk to install the

operating system on. More details on this one later.

•	 Encryption: This is the section to provide a password to encrypt the device where we

will install SLES.

•	 Result: This is the section to explain the steps that will be taken, regarding storage, once

we launch the final stage of the installation.

Let’s review the options under Installation Devices.

Chapter 1 31

The first one is the section stating which disk has been pre-selected for the installation. In our

case, vda (32GiB), which has a button labeled Change with three points next to it. Clicking the

Change button will provide two options, as seen in the following figure:

Figure 1.34 – SLES 16 Storage — Options to change storage device

The first option, Select a disk to install the system, is simple; it will just present a list of devices

discovered by the installer so we can select which one we want to install. In our case, we have

only one disk, so it shows like this:

Figure 1.35 – SLES 16 Storage — Options to change — Selecting a storage device

The only option here is to choose the device and confirm. In servers, it’s common to have more

than one disk, using one for the operating system and the others for data or other utilities.

Regarding the other option, Create LVM volume group on vda, it will create logical volumes

using Logical Volume Manager (LVM), about which we will learn in Chapter 13, Flexible Storage

Management with LVM. In our example, here, we will continue without LVM. It is still important

to take into account that for servers, it is recommended to use LVM, to have more options to

redistribute storage whenever we need to extend a partition or BTRFS subvolume.

Getting SLES 16 Up and Running (Physical and Cloud)32

The button in Installation Devices labeled More devices is a shortcut to help manage many

devices. For now, we will leave it as it is. Once we learn more about using storage, we will under-

stand other options to work with it.

The button in Installation Devices labeled Other options is an interesting and useful one. Let’s

take a look at it in the following figure and check what each option does:

Figure 1.36 – SLES 16 Storage — Options to change — Selecting a storage device

Let’s understand each of these options:

•	 Change boot options helps set up the partitions and software meant to be used to boot

the system. We will learn more about it in Chapter 15, Understanding the Boot Process. For

now, we can explore it, but leave it as it is.

•	 Reset to defaults is an option that brings you back to square zero of storage configuration,

undoing any changes and restoring the recommended defaults. Feel free to play around

with options and use this one to come back to a sensible set of options to install.

•	 Configure iSCSI is the option to add external storage to be used in the system, even to

install the operating system or parts of it. You only need to know that iSCSI is a protocol

to share disks over the network.

•	 Rescan devices helps continue the installation with a new disk you just attached to your

system. It’s not common in simple installations, but it is useful when setting up a server

and then being presented with a new disk from a storage array.

Chapter 1 33

Right now, we are almost ready to continue. Let’s review the options under Encryption first.

Clicking on the Edit button in the section will take us to the following section:

Figure 1.37 – SLES 16 Storage — Encryption settings

We can select, in the dialog shown in the preceding screenshot, to encrypt the full disk. This will

protect the data stored in it. SLES 16 performs what is referred to as Full Disk Encryption (FDE),

which completely seals the disk and requests an unlock password in the very early stages of the

boot process. We will leave this unchecked and let you learn more in more advanced training.

Software
The Software section enables us to select what software will be installed on our system. In SLES

16, groups of packages that have a common use are called patterns. We can take a look at the

pre-selected patterns on the page, as seen in the following screenshot:

Figure 1.38 – SLES 16 Software — Pre-selected patterns

Getting SLES 16 Up and Running (Physical and Cloud)34

It is good to see that the installer is informing us of the space required to perform the installation.

As you can see, there are 2.2 GiB to be consumed in the default install.

At the bottom of the page, there is a Change selection button:

Figure 1.39 – SLES 16 Software — Change selection button

Clicking it will take us to the Software selection page, which has an extensive list of all the pat-

terns available to be installed in SLES 16. Having selected the PackageHub option previously in

Registration, the list is extensive, as we can see in the following screenshot:

Figure 1.40 – SLES 16 Software — Software selection

Chapter 1 35

Feel free to explore it and leave it as the default selection. Then, click the Close button.

Authentication
The Authentication section is the place to add an initial user and configure the account for ad-

ministrative purposes. We can see the page in the following capture:

Figure 1.41 – SLES 16 Authentication

Getting SLES 16 Up and Running (Physical and Cloud)36

The administrative account in Linux is called root. We can add a password to it by clicking on

Edit, as seen next:

Figure 1.42 – SLES 16 Authentication — Root user

We can also add a public SSH key during installation, which will provide a way to connect to the

system without needing passwords. We will learn more about this in Chapter 7, Administering

Systems Remotely. For now, we will leave it blank. We can finish the root user configuration by

clicking on Accept. This will take us back to the Authentication page.

Chapter 1 37

We can now create our first user by clicking on Define user now in the First user section. Let’s

create a user named user, as shown in the following screen capture:

Figure 1.43 – SLES 16 Authentication — Creating first user

This user will have administrative privileges that will be enabled with the tool called sudo. You

will learn more in Chapter 4, Securing the System with Users, Groups, and Permissions.

Clicking on the Accept button will bring us back to the main installer page. On this page, we will

see that the Install button at the top right doesn’t have an exclamation mark anymore, as in the

following screenshot:

Figure 1.44 – SLES 16 Install button ready to complete installation

Getting SLES 16 Up and Running (Physical and Cloud)38

Now it’s time to click on it, which will bring the following confirmation message:

Figure 1.45 – SLES 16 Confirm Installation

Clicking on Continue will finally launch the installation, which will look like this:

Figure 1.46 – SLES 16 Installation process running

Chapter 1 39

Once the installation is complete, we can click on Reboot, and our SLES 16 system will be ready

to be used:

Figure 1.47 – SLES 16 Install — Installation finished

It’s important to remember to detach the ISO image from the virtual machine (or remove the USB

thumb drive from the server) and check that the boot order is properly configured in the system.

Your first SUSE Linux Enterprise Server 16 system is now ready! Congratulations!

As you can see, it is easy to install SLES on a virtual or physical machine and have it ready to be

used for any service we want to run on it. In the cloud, the process is very different, as machines

are instantiated from images to run. In the next section, we will review how to run SLES on a

virtual machine instance in the cloud.

Getting SLES 16 Up and Running (Physical and Cloud)40

Running SLES on the cloud
Deploying SLES on the cloud is slightly different from the process shown before, as cloud pro-

viders produce some of the capabilities on your behalf. Let’s look at what these differences are:

•	 You don’t use an ISO image or Agama for the deployment, but a pre-configured image

that is already prepared and made available by the cloud provider.

•	 The image is customized and adapted to our needs after creation. You will not be able to

choose the configuration details of the system during installation time (i.e., selecting a

time zone), but afterwards, using the first boot configuration.

•	 There is an automated mechanism to perform those change settings, such as adding a

user and credentials to access the system or configuring the network.

•	 The most extended and well-known mechanism used by cloud providers to do so is cloud-

init.

•	 Images delivered by cloud providers include cloud-init software.

•	 Systems are usually accessed remotely using the SSH protocol and SSH keys generated by

the user and uploaded to the cloud provider (please check Chapter 7, Administering Systems

Remotely, for more details on how to access a system).

Cloud providers offer initial getting-started trials to try their services at no cost, and sometimes

offer free monthly services with your subscription. It’s a good way to get started with SLES and

cloud services.

Creating SLES images

It’s possible to create our own images for the cloud or virtualization, and to do so,

there is the SLES image builder. But it is not part of SCA and, therefore, not covered

in this book. We will instead follow the approach of taking the default image and

customizing it.

Chapter 1 41

In this book, we will not detail how to create an account with a cloud provider, but will provide

a brief example of the creation of an instance of SLES 16 and how to update and modify it. To do

so, we will use Google Cloud (it provides, as of December 2025, an initial credit for 90 days that

should be enough for you to test it while you are reading this book). To follow this chapter, the

following steps are required:

1.	 Accessing Google Cloud services requires a Google account. If you do not have a Google

account, you will need to create one (you probably already have one if you use Gmail or

have an Android phone).

2.	 Log in to your Google account at https://console.cloud.google.com. The first time you

use this, you will have the possibility to try Google Cloud with $300 in free credits. Read the

documentation and provide the details of a credit or debit card to activate your free credit.

Figure 1.48 – Google Cloud free credits offered as of December 2025

3.	 Go to the cloud console at https://console.cloud.google.com. In the header, on the left,

you will see a project selection box, perhaps with a project created for you with the name

My first project. Let’s create a new project by clicking on the gray box and selecting New

project.

Figure 1.49 – Select a project to start working

https://console.cloud.google.com

Getting SLES 16 Up and Running (Physical and Cloud)42

4.	 Name it SLES16 and click Create.

Figure 1.50 – SLES 16 in Google Cloud — Organization menu, New project

5.	 Go back to the top-left menu and select the project in the gray box, then click on Compute

Engine and then on VM instances.

Figure 1.51 – SLES 16 in Google Cloud — Accessing VM instances menu

Chapter 1 43

6.	 The first time you try, you will need to enable the Compute Engine API. Click the Enable

button and wait a few minutes until it is ready. Once Compute Engine is ready (it may

take some minutes), click on Create.

Figure 1.52 – SLES 16 in Google Cloud — Creating a new VM instance access

Getting SLES 16 Up and Running (Physical and Cloud)44

7.	 Follow the steps in the left menu to create your VM. Start by selecting the machine con-

figuration.

Figure 1.53 – Left menu steps to create a VM

8.	 Name the instance sles16-instance and select a region from the region selector:

Figure 1.54 – SLES 16 in Google Cloud — Creating a new VM instance, name, and region

Chapter 1 45

9.	 Select the machine configuration as General purpose, e2-medium.

Figure 1.55 – SLES 16 in Google Cloud — Creating a new VM instance, type, and size

Getting SLES 16 Up and Running (Physical and Cloud)46

10.	 Select the second option, OS and storage, click Change to configure the operating system

and storage, and change it to SUSE Linux Enterprise Server. Select the version you want

and the license type as Pay-as-you-go (PAYG). Click Select to store the changes:

Figure 1.56 – SLES 16 in Google Cloud — Creating a new VM instance, image selection,
payment terms, and disk size

11.	 On the right side, you can see your monthly cost estimates for the VM. Continue looking at

the options in the different tabs, and once you are happy with the result, go to the bottom

line and click on the Create button:

Figure 1.57 – SLES 16 in Google Cloud — Creating the VM

12.	 After a while, your instance will be ready. We will learn later how to connect via SSH. For

now, click on the dropdown triangle next to Connect, SSH, and select Open in browser

window:

Chapter 1 47

Figure 1.58 – SLES 16 in Google Cloud — VM instance, access console

13.	 You will be inside your newly deployed SLES 16 instance:

Figure 1.59 – SLES 16 in Google Cloud — VM instance, console

14.	 You can enable remote access using your own SSH key (which will be shown in Chapter 7,

Administering Systems Remotely), but once set up, it’s easy to have a new instance running.

15.	 You can become an administrator easily by running the following command:

Figure 1.60 – Getting administration permissions on the machine

Getting SLES 16 Up and Running (Physical and Cloud)48

16.	 Now you can check the time configuration with timedatectl, and change it:

sles16-instance:~ # timedatectl

 Local time: Sat 2025-11-15 12:08:59 UTC

 Universal time: Sat 2025-11-15 12:08:59 UTC

 RTC time: Sat 2025-11-15 12:08:59

 Time zone: Etc/UTC (UTC, +0000)

System clock synchronized: yes

 NTP service: active

 RTC in local TZ: no

sles16-instance:~ # timedatectl set-timezone Europe/Madrid

sles16-instance:~ # timedatectl

 Local time: Sat 2025-11-15 13:09:28 CET

 Universal time: Sat 2025-11-15 12:09:28 UTC

 RTC time: Sat 2025-11-15 12:09:28

 Time zone: Europe/Madrid (CET, +0100)

System clock synchronized: yes

 NTP service: active

 RTC in local TZ: no

sles16-instance:~ #

17.	 You can also change the language configuration with localectl:

[sles16-instance:~ # localectl

System Locale: LANG=en_US.UTF-8

 VC Keymap: (unset)

 X11 Layout: (unset)

sles16-instance:~ # localectl set-locale es_ES.utf8

sles16-instance:~ # localectl

System Locale: LANG=es_ES.utf8

 VC Keymap: (unset)

 X11 Layout: (unset)

Now you have a machine configured as in the local example, which you can use for the rest of the

book. In case you want to work on your own images for the cloud or replicate installations, an au-

tomated deployment process will be required. Take a look at the next section to see how to do that.

Chapter 1 49

Installation best practices
SLES installations have many options to choose from, and they should be tailored for the use case.

However, some common recommendations apply. Let’s see the most common types.

The first type is blueprints:

•	 Standardize the core installation and create a blueprint for it.

This blueprint shall be minimal enough to serve as the base for all other blueprints and

deployments.

•	 Build a set of blueprints for common cases when needed.

•	 Try to use an automation platform to build extended cases (i.e., Salt or Ansible):

•	 Try to make the cases modular (i.e., app server and database blueprints can be combined

on one single machine).

•	 Be aware of the requirements to apply your templated blueprints and adapt to the envi-

ronments you will use.

The second type is software:

•	 The less software is installed, the smaller the attack surface. Try to keep servers with the

minimal set of packages required to run and operate (i.e., try not to add a graphical user

interface to your servers).

•	 Standardize the installed tools where possible to be able to react quickly in case of an

emergency.

•	 Package your third-party applications to have healthy lifecycle management (whether

with RPM or in containers).

•	 Establish a patching schedule.

The third type is networking:

•	 On virtual machines, try not to overuse the number of network interfaces.

•	 On physical machines, use interface teaming/bonding whenever it is possible. Segment

networks using VLANs.

Getting SLES 16 Up and Running (Physical and Cloud)50

The fourth type is storage:

•	 For servers, use LVM where possible (usually everything but /boot or /boot/efi).

•	 Keep the default boot partition with the default size, and if you change it, do it to enlarge

it (you may need space there during upgrades).

•	 Use BTRFS snapshots with snapper to keep well-known configurations.

•	 The default swap partition is a safe bet, unless the third-party software has specific re-

quirements.

•	 For long-lived systems, have at least separate partitions for /home and consider even a

separate one for /var/log (for ephemeral cloud instances, or short-lived systems, it does

not apply).

The fifth type is security:

•	 Do not disable SELinux. It has been improved a lot in the latest versions, and it’s very likely

that it won’t interfere with your system (if required, set it in permissive mode instead of

fully disabling it).

•	 Do not disable the firewall. Automate port opening with the service deployment.

•	 Redirect logs to a central location whenever possible.

•	 Standardize the security tools and configuration that you want to install to be able to

check system integrity and audit (i.e., AIDE, logwatch, auditd).

•	 Review software install (RPM) gpg keys, as well as ISO images to ensure integrity.

•	 Try to avoid using passwords (especially for the root account), and use strong ones where

needed.

Finally, we will look at the miscellanea type:

•	 Keep system time synchronized.

•	 Review logrotate policies to avoid “disk full” due to logs.

Following these best practices will help you avoid issues and make the installed base more man-

ageable. Now you know how to deploy SLES in a system, in a structured, repeatable manner,

providing services to other teams in a fast, resilient fashion.

Chapter 1 51

Summary
The SUSE Certified System Administrator exam is completely practical, based on real-world ex-

perience. The best way to prepare for it is by practicing as much as possible; that is why this book

starts by providing access to SLES 16 and provides alternatives for how to deploy your own VMs.

There are different scenarios covered for the installation, which are the most common ones, and

include using a physical machine, a virtual machine, or a cloud instance.

When using physical hardware, we focus on the fact that many people like to reuse old hardware,

buy second-hand or cheap mini servers, or even use their laptop as the main installation device/

platform for their Linux experience.

For virtual machines, we think about the people who want to keep all their work on the same laptop

but without messing with their current operating system (which may not even be Linux). This

could also work well with the previous option by having virtual machines on your own mini server.

For cloud instances, we could be consuming virtual machine instances from a public cloud, which

may simplify the consumption and provide enough free credit to prepare for SUSE Certified

Administrator (SCA). Also, once finished with the self-training, the machines can still be used

to provide your own services (i.e., a blog).

Understanding the need to standardize environments and the impact of it is also important

when working with Linux as a professional. It is important to start with a good set of practices

(automating installations, keeping track of installed software, reducing the attack surface, etc.)

from the beginning.

After this chapter, you are ready to go with the rest of the book, having at least an instance of

SUSE Linux Enterprise Server 16 available to work with, and ready to practice.

In the next chapter, Running Basic Commands and Simple Shell Scripts, we will review the basics

of the system to make ourselves comfortable and gain confidence in using the system. We will

learn how to log in, use the command line, navigate the filesystem, and learn the basics of the

SLES operating system.

Happy practicing!

Getting SLES 16 Up and Running (Physical and Cloud)52

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

https://www.packtpub.com/unlock

2
Running Basic Commands and
Simple Shell Scripts

Once you have your SUSE Linux Enterprise Server (SLES) system up and running, it is time to

use it. You need to practice with the system to get comfortable with it. In this chapter, we will

review the basic usage flows to enter the system, navigate through it, and get to know the basic

administration tasks.

The following topics will be covered in this chapter:

•	 Logging in using a password

•	 Changing users with the su command

•	 Understanding users, groups, and basic permissions

•	 Navigating the filesystem

•	 Using the command line, environment variables, and navigating through the filesystem

•	 Understanding I/O redirection in the command line

•	 Filtering output with grep and sed

•	 Listing, creating, copying, and moving files and directories, links, and hard links

•	 Using tar and gzip

•	 Creating basic shell scripts

•	 Using system documentation resources

You will be using the system installed in Chapter 1, Getting SLES 16 Up and Running (Physical and

Cloud) and a terminal emulator installed in your computer, or accessible through the VM interface.

Running Basic Commands and Simple Shell Scripts54

Logging in using a password
In Linux systems, the actions you can do are usually limited. The system needs to know the user

to apply restrictions. Login is the process by which users identify themselves to access the system.

Once you are identified, that identification will be used in all the commands to limit your actions.

There are several mechanisms to provide credentials, the most basic being providing username

and password details.

We are going to access the system using a console. A console is a device that allows the user to

interact with the system using a keyboard and a screen, called a terminal, and receive system mes-

sages, whether you are connecting physically to the system or remotely through a virtual console.

During the installation, we created a user and defined its password. We didn’t install any graphical

interface, so we will need to use a text console to log in. Start the machine and wait for the boot

process to be completed. The system will, by default, enter the multi-user text mode environment,

and it will prompt for our credentials. We will use it to log in to the system. The following screen-

shot shows you the command prompt when you open the console, asking you for your credentials:

Figure 2.1 – Login process, username request

The blinking cursor will let us know that we are ready to enter our username, in this case, user.

You need to press Enter after the username to let the system know that you have finished typing.

Once you press that, a line requesting the password will appear:

Figure 2.2 – Login process, password request

Chapter 2 55

Enter the password now and press Enter again on your keyboard to start the session. Note that

characters are not shown on the screen, so you don’t have to worry about eavesdropping while

entering your password. Now, a message is shown, and your session is running, as shown in the

following figure:

Figure 2.3 – Successful login as user

For security reasons, you will see a message with the last time you logged in to the system, a

configurable message, and a prompt. We are now identified as the user user in a system called

geeko. Acting as user will limit what files and folders we can access, what actions we can do, and

even the space available for our own files. Internally, users are identified by an integer. You can

check your user ID (UID 1,000) by entering id and pressing Enter. Don’t worry about the rest of

the information after uid for now:

user@geeko:~> id

uid=1000(user) gid=1000(user) groups=1000(user),497(wheel) context=unconfi
ned_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

Sometimes you want to have more than one session in parallel, with the same or different users.

SLES, by default, is configured to have six terminals in a system. The default terminal can be

reached by simultaneously pressing the Ctrl, Alt, + F1 keys. As expected, nothing will happen as

we are already in terminal 1. We can change to the second terminal by pressing Ctrl, Alt, + F2, to

the third one by pressing Ctrl, Alt, + F3, and so on up to F6. Using more than one terminal allows

you to use different credentials and type different commands simultaneously.

Input exit to go back to the login prompt and enter other credentials.

The root account
There are strict limits to what users can do. Most of the changes and administrative tasks in a

system, such as creating new users or adding new software, are not available to regular users.

Special users with administrative rights are needed, and the traditional superuser is called root.

The root account is always available in the system, and it has a special identifier (UID 0).

Running Basic Commands and Simple Shell Scripts56

We defined a password for the root account during the installation, so now we are ready to log

in using those credentials.

Note that even though the root account is always created, if you don’t choose a password, the

account will not be accessible in the console until you provide it. The next screenshot shows the

login when you are using the root account:

Figure 2.4 – Successful login, using root credentials

Understanding the command prompt
The system is now waiting for us to specify what we want it to do. Your commands need to be

typed one letter at a time, followed by Enter, in the command prompt. The system will receive

your input, process it to get a result, and give you a response before waiting for the next input.

The following prompt shows some useful information about you and the system:

user@geeko:~>

In the default configuration, it shows your username and the hostname of the system, separat-

ed by an @ symbol and followed by a colon (:), and the simplified description of the path. The ~

symbol represents the shortcut to the user’s home directory (/home/user for the user account

and /root for the root account).

The last part is different:

•	 The $ symbol is used for regular users with no administrative privileges.

•	 The # symbol identifies that the user is privileged, either because the user is root or be-

cause the user has acquired administrative privileges. In color terminals, the prompt is

also red to warn you about the extended privileges.

Chapter 2 57

Once we have identified ourselves in the system, we are logged in and have a running session. It

is time to learn how to change from one user to the other in the next section.

Changing users with the su command
One of the benefits of using a multi-user system is being able to change between users, for in-

stance, to do some maintenance on the system that requires admin rights. Accessing the system

with two users at the same time can be done easily by opening a session for each, but sometimes

it is more convenient to impersonate other users in the same session in which we are.

Linux includes a tool to do exactly that, su, an abbreviation of substitute user.

If you are not sure, you can always ask the system which user is currently logged in by running

the whoami command. Let’s try that in the root session we have open:

geeko:~ # whoami

root

Take notice that the prompt is different for the user, not only the #
sign, but the system name is not shown by default.

Let’s now try to change the user from root to user:

geeko:~ # su user

user@geeko:/root> whoami

user

We have successfully started a session with user. We could finish this session by using the exit

command:

user@geeko:/root> exit

exit

geeko:~ # whoami

root

Be careful when using a prompt with the # symbol. The system won’t stop you from

making changes that damage the system or other user data if you are an administra-

tor. You should avoid working as an administrator unless you really need the rights.

Running Basic Commands and Simple Shell Scripts58

The root user is free to impersonate any other user, without knowing their password. Does it

work the other way around? Can any user impersonate root or any other user? Yes, they can, but

by providing the right credentials:

[user@SLES8 ~]$ su root

Password:

[root@SLES8 user]# whoami

root

Running su without specifying the user is equivalent to specifying root:

user@geeko:~> su

Password:

geeko:/home/user #

Each user can customize the environment, such as defining whether the prompt shows the system

name or not, or their preferred editor. If we want to fully impersonate the other user and take

their preferences (or environment variables), we can do so by adding - after the su command:

user@geeko:~> su -

Password:

geeko:~ #

Also, we can go from root to user:

geeko:~ # su - user

user@geeko:~>

Using su - behaves like a new login, but within the same session.

Let’s now talk about permissions for the different users in the system, as addressed in the next

section.

Changing the user using su does not change the working directory, even if the new

user does not have access to the new one.

Chapter 2 59

Understanding users, groups, and basic permissions
There is a principle in Unix that Linux inherited: Everything is a file. Apart from some corner cases,

it stays true in almost any occasion. A disk is represented as a file in the system (such as /dev/sdb

mentioned in the installation), a process can be represented as a file (under /proc), and many

other components in the system are also represented as files.

The basic security for a multi-user system is to limit access to those files. However, providing a

detailed list of access for all other users in a system could be challenging and hard to maintain,

specifically when new users are constantly being added to the system, so Linux uses some con-

cepts to make this easier:

•	 Groups: Users belong to groups that grant permissions and share resources.

Each user has a primary group and can have many secondary groups. New files created by

the users are, by default, assigned to the primary group.

In SLES, by default, a new primary group with the same name as the username is created

for each user.

•	 Permissions: These are assigned to files and define access rights.

Standard Linux (and Unix/POSIX) permissions differentiate three levels: user (the owner),

group (the same group as the file), and others. Each file defines them independently to allow

access to only the owner, users in the same group as the file, and everybody else (ugo).

The whole system comes with a set of permissions assigned by default to each file and

directory. Be careful when changing them, as changing permissions for system files can

make the system unusable or delete your access to your own files.

POSIX is an acronym for Portable Operating System Interface, a family of stan-

dards specified by the IEEE Computer Society (https://en.wikipedia.org/wiki/

POSIX) that defines the interface for an operating system, ensuring compatibility

and portability.

https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/POSIX

Running Basic Commands and Simple Shell Scripts60

Users
There are many different accounts in a SLES system by default.

Users are a mechanism to provide security limits to files and pro-

grams in a system, so creating new ones is a fairly normal opera-

tion. There are three types of users:

•	 Regular users: These are assigned to individuals and re-

stricted.

•	 Superuser: Also root. This is the main administrative

account in the system, unrestricted, with full access to

everything, including files from other users.

•	 System users: These are accounts used for background

processes or daemons that run without user interaction,

limiting their reach within the system. System users are

not intended to log in to the system.

Users and groups are in-

ternally identified with a

number known as a user

ID (UID) or group ID

(GID).

We used the whoami command before to check the username, but

we can get additional information with the id command:

user@geeko:~> id

uid=1000(user) gid=1000(user)
groups=1000(user),497(wheel)
context=unconfined_u:unconfined_r:unconfined_t:s0

User IDs are not confidential. We can check the information of

other accounts in the system as a regular user, including root:

user@geeko:~> id root

uid=0(root) gid=0(root) groups=0(root)

Let’s examine the information displayed for the user called user

when we run id user:

•	 uid=1000(user): User ID and (username). The ID is the

numeric identifier of the user in the system. In this case, it

is 1000. Identifiers of 1000 and above are used in SLES for

regular users, reserving 999 and below for system users.

•	 gid=1000(user): Group ID, followed by group name in

brackets. This is the numeric identifier and name for the

primary group of the user.

Chapter 2 61

•	 groups=1000(user),497(wheel): Groups that the user belongs to, in this case user with

GID 1000 and wheel with GID 497. The wheel user group is special. It is used in SLES and

many other systems as a group for users that can become administrators by using the

sudo tool (to be explained later).

•	 context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0: This is the SELinux

context for the user. It will define several restrictions in the system by using SELinux (to

be explained in depth in Chapter 10, Keeping the System Hardened with SELinux).

All the ID-related data is stored in the system in the /etc/passwd file. Please note that this file is

very sensitive and is better managed by using the tools related to it. If we want to edit it, we can

do it by using vipw, a tool that will ensure (among other things) that only one admin is editing the

file at a time. The /etc/passwd file contains the info of each user per line. This is the line for user:

user:x:1000:1000:Geeko:/home/user:/bin/bash

Each user is described in one line, with fields separated by a colon (:). Let’s review what they mean:

•	 user: Username assigned to the user. It has to be unique.

•	 x: Field for the encrypted password. In the past, Linux systems included the password

here, but nowadays it is in a separate file that is not directly accessible to regular users

(/etc/shadow).

•	 1000 (first instance): UID value.

•	 1000 (second instance): Principal GID value.

•	 Geeko: Description of the account.

•	 /home/user: Home directory for the user. The default directory where content and pref-

erences for the user will be stored.

•	 /bin/bash: Command interpreter for the user. Bash is the default interpreter in SLES. Other

alternatives, such as tcsh, zsh, or ksh, are available to be installed in SLES.

Groups
Groups allow permissions to be assigned to a subset of users at the same time, so it is easier to

share resources. For instance, the finance team could be interested in getting shared access to

work documents; we could create the finance group and give users of the group permission to

access, read, and write the /srv/finance directory. Any users that are included in the group will

be able to do that, and when the finance team has a new hire, giving access is done just by adding

the new hire to the finance group.

Running Basic Commands and Simple Shell Scripts62

Groups are internally identified using a number called a GID and

a group name for easy access.

Group data is stored in the system in the /etc/group file. To avoid

corruption of data, you should not edit the file using any tool, but

use specific tools included in the distribution as root (such as

vigr). The file contains one group per line with different fields

separated by a colon (:). Let’s take a look at the line for the wheel

group:

wheel:x:497:user

Each field is specific to a different thing:

•	 wheel: This is the name of the group. The wheel group is

used to provide some admin rights to regular users and

is available by default.

•	 x: The group password field. x means that the password is

defined in the gshadow file (which is not present).

•	 497: GID value for the group.

•	 user: The list of users belonging to that group as a second-

ary group (separated by commas, such as user1, user2,

user3).

Groups can be used in many ways in different distributions. To

avoid privacy issues with default group permissions, SLES has

several types of groups:

•	 Primary group: This is the default group, assigned to the

files newly created by the user.

•	 Private group: This is a specific group created for each

user, with the same name as the user. Private groups are

automatically created when a new user account is added.

•	 Supplementary group: Some other groups, created for

specific purposes. For example, the wheel group is used

in SLES to enable admin privileges to users, or the cdrom

group that provides access to CDs and DVD devices in the

system.

It is very common that

“primary group” and “pri-

vate group” are the same.

Chapter 2 63

Navigating the filesystem
Files are organized in directories, a special file that holds a list of other files and folders in a tree

structure, known as the directory tree of the system. In Linux and Unix (macOS is a Unix-like

system), there is a single directory tree that starts with the root directory represented by /. The

rest of the content of the system will hang from that folder, and any other disk or device will be

accessed as a subtree hanging from one of the directories.

For instance, this is the tree structure of the /boot folder:

/boot

├── efi

│ └── EFI

└── grub2

 ├── arm64-efi

 ├── backgrounds

 ├── fonts

 ├── locale

 └── themes

The command line refers to other directories from the working directory. The address of a direc-

tory within the tree can be specified in two ways:

•	 As an absolute path that starts with the root path, /, and specifies every leaf in the tree.

/boot/efi/EFI/sles/grub.cfg refers to the grub.cfg file in the directory that can be

found from root (/), going through boot, efi, and EFI. Absolute paths are unique.

•	 As a relative path that starts without /, and is found by adding the working directory to

the path specified. The same file could be specified as sles/grub.cfg if the working di-

rectory is /boot/efi/EFI/.

The root directory and the home directory for the root user are two different things.

The root user has been assigned by default the home directory, /root, whereas the

root directory is the mother of all directories in each system and is represented by /.

Running Basic Commands and Simple Shell Scripts64

Directories can be differentiated by adding / to the end. You can use . to point to the same directory

: ././././sles/grub.cfg will be the same file. You can use .. to point to the parent directory.

You can use cd to change directories, updating the working directory to the new one.

We can see which directory we are in by running the pwd command:

[user@geeko:~> pwd

/home/user

user@geeko:~> cd /var/tmp

user@geeko:/var/tmp> pwd

/var/tmp

You don’t need to remember your home directory, as there is a shortcut for the home directory

of the current user: ~. We can use that shortcut to go to it without knowing the username or the

parent folder for user accounts:

user@geeko:/var/tmp> cd -

/home/user

user@geeko:~> pwd

/home/user

Some other shortcuts for directories are as follows:

•	 ~: Home directory of the current user

•	 .: Current directory

•	 ..: Parent directory

•	 -: Previously used directory (used to quickly change back)

More details on managing files and directories in Linux and SLES are in the Listing, creating, copying,

moving files and directories, links, and hard links section of this chapter.

File permissions
File access is defined for users, groups, and everybody else. To review file permissions, we are

going to log in to the system as root, and we will use the ls command to list files and show their

permissions. We will learn more about how to change permissions in Chapter 4, Securing the

System with Users, Groups, and Permissions.

Chapter 2 65

Log in to the system as root, and run the ls command:

geeko:~ # ls

.bash_history .docker .gnupg .lesshst .ssh

.viminfo bin

It shows the files present in the root home directory, represent-

ed by ~. We can see different configuration files (files that start

with .) and a bin directory (where you store binaries needed by

the root user).
Files and directories start-

ing with . are typically

hidden for normal listing

to reduce cluttering and

are often used to store

configuration.

We can get additional information by appending -l to ls:

geeko:~ # ls -l

total 12

-rw-------. 1 root root 1123 Mar 29 04:55 .bash_
history

drwxr-xr-x. 1 root root 22 Mar 29 04:51
.docker

drwx------. 1 root root 0 Jan 28 10:27 .gnupg

-rw-------. 1 root root 34 Mar 29 04:52
.lesshst

drwx------. 1 root root 30 Mar 24 13:06 .ssh

-rw-------. 1 root root 735 Mar 29 11:00
.viminfo

drwxr-xr-x. 1 root root 0 Jan 28 10:27 bin

We see the following in the output:

•	 total 12: Total space, in kilobytes (KB), occupied in the

disk by the files. Note that we are using 4 KB blocks, so

every file under that size will occupy a minimum of 4 KB,

and there are 3 directories that do not occupy space in

this folder.

•	 -rw-------.: The permissions assigned to each file or di-

rectory.

•	 The first character signals special permissions for the file.

In a regular file, it will appear as - (no special permissions).

•	 Directories will appear with d. In Linux, everything is a file,

and directories are files with special permissions.

Running Basic Commands and Simple Shell Scripts66

•	 A file can point to another file. Symbolic links will appear with l. These behave like a

shortcut to a file from a different directory and will show the name followed by -> and

the name of the original file.

•	 Some files allow users to execute a file with the permissions of the owner of the executable

instead of the user who launched it. This is useful when there is a need for extra privileges:

•	 The so-called setuid or setgid permissions will appear as s

•	 A special permission so that the owner can only remove or rename the file, called

a sticky bit, will appear as t

•	 We have seen the first character in the permissions of a file represented, for example, as

-rw-------. The next nine characters are the privileges for user/group/others grouped

in three characters for user, three for group, and three for others.

•	 The next three characters, rw-, are the permissions for the user who owns the file:

•	 The first one, r, is the permission to read the file.

•	 The second one, w, is the write permission.

•	 The third one, x, is the execution. It is not present in our case and is thus shown as -.

Directories behave slightly differently:

•	 The read permission allows you to see the content of the directory.

•	 The write permission allows you to modify the contents.

•	 The execute permission allows you to enter and travel through the directory.

•	 setgid means that files are created using the group of the directory and not the primary

group of the users.

•	 The next three characters, ---, define permissions for the group. They work the same way

as the owner permission. The first --- means that no group access is granted.

•	 The last --- are the permissions for others, which means any user and/or group different

from the ones assigned to the file.

•	 1 is the number of links (hard links) to this file. This is intended, among other things, so

we do not delete a file used in another folder.

•	 root (first time) is the owner of the file.

•	 root (second time) is the group assigned to the file.

•	 735 is the size in bytes.

•	 Mar 30 08:57 is the date and time of the last modification of the file.

•	 .bash_history is the filename.

Chapter 2 67

When we list a directory (referred to as a folder), the output will show the contents of the directory

and not the directory itself. We can list the info for the directory with the -d option. Let’s take a

look at /etc, the directory that stores the system-wide configuration:

geeko:~ # ls -l -d /etc

drwxr-xr-x. 1 root root 2564 Mar 29 23:33 /etc

As you can see, it’s quite easy to obtain information about files and directories in the system. Let’s

now learn more about the command line and how to navigate the filesystem in the next section.

Using the command line, environment variables, and
navigating through the filesystem
As we have seen before, once we log in to the system, we have access to the command line. It’s

important to understand the command line and the filesystem well to feel comfortable in the

environment and make the most of it.

Command line and environment variables
The command line is provided by a program also called an interpreter or shell. There are some

differences between them, specifically the advanced use cases, so it can be a matter of preference

which one to use. In this section, we will cover the most widespread shell used in Linux and the

one provided by default in SLES: bash.

A simple trick to know which shell you are using is to run the following:

user@geeko:~> echo $SHELL

/bin/bash

The r and x permissions in directories

It is possible to be able to see the content of a directory with ls (r) but not be able

to enter it (no x), and the opposite. You can allow other users to enter a directory (x)

without allowing users to see what is inside (no r). In that last case, you will have

to know the full path to be able to enter the directory, which will prevent you from

knowing whether there are other folders created by other users.

Running Basic Commands and Simple Shell Scripts68

The echo command will show onscreen the content of its input. The shell will modify some

content in the command line that will be substituted or interpreted. In this case, we are using an

environment variable. Environment variables are automatically updated by the shell or defined

by the user, and are used by adding the $ symbol at the beginning. In this case, we are telling the

system to echo the content of the SHELL variable. Let’s use it for other variables:

geeko:~ # echo $USER

root

geeko:~ # echo $HOME

/root

Let’s check for a different user:

geeko:~ # su - user

user@geeko:~> echo $USER

user

user@geeko:~> echo $HOME

/home/user

As you can see, you can always refer to $USER, and it will be substituted with the current user,

or to $HOME, and it will be substituted by the directory dedicated to the user, also known as the

home directory.

These are some of the most common and important environment variables for user:

Variable Value for user Usage

EDITOR (unset) Establishes the default text editor for the user

HOME /home/user Home directory for the current user

HOSTNAME geeko.suse.test Hostname of the system we are logged into

LANG en_US.UTF-8 Language configured for the current user; in this case,

American English with the UTF-8 extensions

PATH /home/user/.
local/bin:/usr/
local/bin:/usr/
bin:/bin

Colon-separated list of directories that will be searched in

order to run the command we are typing

PS1 \u@\h:\w> Defines what information will be shown at the prompt, in

this case, user (\u), at hostname (@\h), working directory

(\w), and the prompt symbol: $ for user or # for root (\$)

Chapter 2 69

Variable Value for user Usage

PWD /home/user Path to the working directory; the directory we are

currently in

SHELL /bin/bash Shell in use

USER user Username of the current user, in this case, user

Table 2.1 – Main environment variables

Many environment variables are automatically updated by the shell, such as USER and PWD. Users

can define their own. The configuration for the shell is defined in two hidden files: ~/.profile is

read each time a login shell is started, while ~/.bashrc is read in addition by all other interactive

shells. You can use them to customize your shell to your liking.

Bash autocomplete
Shortcuts are a faster way to reach commonly used directories or relative references to the current

working directory. However, Bash can help you reduce the amount of typing with autocomple-

tion. It relies on the Tab key.

When typing a folder or a file, we can hit the Tab key to complete its name. For example, if we

want to go to the /boot/grub2 folder, we type the following:

user@geeko:~> cd /bo

Then, we hit Tab. It will autocomplete it to /boot/, even adding the final / character as it is a

directory:

[user@geeko:~> cd /boot

Now, we type the first letter of the directory we want to go to, grub2, which is g:

user@geeko:~> cd /boot/g

Then, when we hit Tab. It will autocomplete it to /boot/grub2/:

user@geeko:~> cd /boot/grub2

Now, we can hit Enter to go there.

You can get a full list of environment variables with the env command.

Running Basic Commands and Simple Shell Scripts70

If we press Tab twice during completion, it will show a list of available targets to complete, as in

this example:

user@geeko:~> cd /r

root/ run/

It can also be used to complete commands. We can type a letter, such as h, hit Tab twice, and it

will show all the commands starting with h:

user@geeko:~> h

h2ph hash head hipstopgm host
hostnamectl

h2xs hdifftopam help history hostid hpftodit

hardlink hdisk.pl hexdump hltest hostname hugetop

This capability can be extended to help complete other parts of our commands by installing the

bash-completion package (installed by default):

geeko:~ # zypper install bash-completion -y

Recovering previous commands
Many times, it is great to reuse some command, because commands may be long or complex, or

just because it is hard to remember the right syntax. For all the commands that have been run, the

history command will be available in Bash. Just press the up arrow key (the one with an arrow

pointing up), and the previous commands will appear on the screen.

If there are too many commands in your history, you can quickly search through them. Run the

history command:

user@geeko:~> history

 1 su root

 2 su

 3 su -

 4 id

 5 id root

 6 grep user /etc/passwd

 7 echo $USER

 8 echo $HOME

 9 declare

 10 echo $SHELL

 11 echo EDITOR

Chapter 2 71

 12 echo $EDITOR

 13 grep wheel /etc/gro

 14 grep wheel /etc/group

 15 cat /etc/group

 16 grep nobody /etc/group /etc/passwd

You can run any of those commands again by using the ! command. Just run ! with the number

of the command, and it will be run again. Note that running !! will run the very last command,

no matter what number it is:

user@geeko:~> !5

id root

uid=0(root) gid=0(root) groups=0(root)

Time to enjoy your super-fast command line now. Let’s learn more about the structure of direc-

tories in Linux, to know where to go to find things, in the next section.

Filesystem hierarchy
For many years, Linux has used a standard, maintained by the Linux Foundation, that defines

filesystem hierarchy and is the basis used in many Linux distributions, including SLES. This

standard is known as the Filesystem Hierarchy Standard (FHS). The UAPI Group, getting inspi-

ration from the systemd and libeconf implementations, has proposed a new standard (https://

uapi-group.org/specifications/specs/configuration_files_specification/) that allows

OS vendors to implement the hermetic-OS pattern, where vendor files are shipped in the vendor

tree (/usr/), including system defaults, while allowing overrides for easier management. This is

a requirement for image-based and immutable systems, where the original files and directories

are read-only:

•	 Both /usr and /etc are supported for configuration files. If files are present in /etc, they

take precedence over /usr. Vendor files should be stored in /usr, and customer configu-

ration can then override them in /etc.

•	 Drop-in files and drop-in directories are supported and have higher precedence than

the configuration file they refer to. Drops-in are sorted in lexicographic order using the

filename, and later ones take precedence over previous ones. Drop-in directories have

the .d/ notation. Files in directories will be parsed and combined. Drop-in directories

cannot have directories under them.

•	 Applications can choose to store configuration in /usr/share, /usr/lib, or /usr/etc.

https://uapi-group.org/specifications/specs/configuration_files_specification/
https://uapi-group.org/specifications/specs/configuration_files_specification/

Running Basic Commands and Simple Shell Scripts72

•	 /run is supported for ephemeral overrides.

•	 It is possible to mask a configuration file by creating a symlink to /dev/null or an empty

file (a masked file will not be parsed).

Considering that the following files are present on the filesystem, this would be the order in which

the files are parsed. Note that files with the same name override each other. The configuration in

bar.conf has the lowest priority and is read before a.conf and b.conf. b.conf has the highest

priority:

•	 /usr/lib/foo/bar.conf (overridden by /etc/foo/bar.conf)

•	 /etc/foo/bar.conf

•	 /usr/lib/foo/bar.conf.d/a.conf (overridden by /etc/foo/bar.conf.d/a.conf)

•	 /etc/foo/bar.conf.d/a.conf

•	 /usr/lib/foo/bar.conf.d/b.conf

The following table shows the standard list of directories and their usage:

Directory Stands for Use/purpose
/ Root directory The main directory of the filesystem tree. All other directories

hang from this one.
/bin Binary files A symbolic link to /usr/bin.
/boot Bootable files Files used by the system to boot. In SLES, this is, by default,

part of the partition assigned to the root directory.
/dev Devices Includes files required to access host-specific devices (i.e.,

disks, keyboard, or audio devices).
/etc Etcetera or edit-

able text config-

uration

Host-specific system configuration files. Overrides files pres-

ent in /usr/etc (package-based configuration).

/home Home Directory to include home directories for all users except

root.
/media External media Intended to provide system-wide access to removable media.
/mnt Mount Mount point for temporary filesystems.
/opt Optional Optional application software packages. When building or

installing your own software, you could place it here.
/proc Processes Special virtual filesystem representing the processes running

in the system.

Chapter 2 73

Directory Stands for Use/purpose
/root Root’s home Home folder for the root superuser. It’s not in /home in case

it gets full, so that root can always log into the system.
/run Run Runtime data for processes on tmpfs (in-memory).
/srv Service Holds data for services provided by the system, such as FTP

and HTTP.
/sys System Contains system information related to kernel features and

connected devices.
/usr Unix system re-

sources

Contains the read-only user data, such as libraries, binaries,

headers, sources, and other shared data.
/usr/bin Binaries Generally accessible programs.
/usr/etc Configuration Vendor configuration files. These configuration files should

not be modified directly by the administrator, as they will

possibly be overwritten on package updates.
/usr/lib Libraries Directory to hold the libraries used in the system and vendor

configuration.
/usr/local Local binaries Local data specific to this host. When building local scripts

or binaries for this specific system, host them here, along

with distribution-independent extensions.
/usr/sbin System binaries Directory for the binaries to be used by the superuser only.
/var Variable content Directory to be used to host content to be managed by dif-

ferent programs, from virtual machines to logs.
/tmp Temporary Temporary files on a tmpfs filesystem (in-memory).

Table 2.2 – Standard filesystem hierarchy in SLES 16

When some of these partitions are full, the system degrades, so it is important to think about the

disk space when you are defining the partitions.

Previous versions of SLES followed a different standard for directories. If you fol-

low an old tutorial, make sure you check the differences. For instance, /run now

includes files that were previously stored in /var/lock and /var/run, and /tmp is

now using tmpfs.

Running Basic Commands and Simple Shell Scripts74

This is an example of the allocation values for a minimal installation of SLES 16 and the recom-

mendations:

Directory Used space Recommendation
/ 2.5 GB In SLES, the default installation is a single btrfs partition for /. The

recommended size is 10 GiB for small servers with no snapshots and

32 GiB with snapshots enabled.
/boot 39 MB This will contain booting files, and it will play an important role

when upgrading the system. In many Linux distributions, there is

a separate partition for boot, but not in SLES, in which, by default,

boot is part of the root partition. This way, it is included in snap-

shots and is available for rollback.
/etc 25 MB This hardly ever grows a lot in size (rarely beyond 50 MB for a server).

It is very convenient to leave this folder as part of the root partition

and not create a partition for it.
/home 28 KB This stores the assigned user files. In a workstation, it will hold all

the working data of the user and so it needs to be large. A server is

usually only for admins’ temporary files. You should assign a par-

tition to it. It should have at least 100 MB.
/root 20 KB Home partition for root user again; it hardly ever grows for a healthy

server where the user account does not use root by default. It’s

convenient to keep it within the root partition.
/run 665 KB Mounted usually as a temporary filesystem (tmpfs) in memory, it

does not use disk space. You don’t need to change the default.
/usr 2.4 GB This is the largest folder when installing a machine. It will grow to

more than double the minimum for a full-blown workstation. In

many distributions, it has its own dedicated partition. In SLES, it

is also part of the root partition.
/var 60 MB This initially holds very little data, but once in production, it will

hold most of the data in the system. For servers storing large

amounts of data, it is common to split this partition into several

others, such as /var/log, /var/lib, or even for email servers, /var/

spool.

Table 2.3 – Recommended partitions for a production server

Chapter 2 75

It’s important to become familiar with the main directories in the system. It is recommended to

navigate through the different system directories and look at what’s in them to become comfort-

able with the structure. In the next section, we will look at how to do redirections in the command

line to learn more about command and file interaction.

Understanding I/O redirection in the command line
We have already run several commands to find information about the system, and we saw in the

console the output, such as filenames and file sizes. Unix philosophy, which Linux inherits, is

to make each program do one thing well, and expect the output of that program to become the

input of another program, so it can modify it and produce something new.

There are three sources for output and input:

•	 STDOUT, also known as standard output, is where commands will put their regular

messages to inform of what they are doing. In a terminal, on an interactive shell (such

as the ones we are using so far), this output will show on screen. This will be the main

output managed by us.

•	 STDERR, also known as standard error, is where the commands will put their error mes-

sages to be processed. In our interactive shells, this output will also be shown on screen,

like the standard output, unless we redirect it.

•	 STDIN, also known as standard input, is where the commands get data to be processed.

It can be the keyboard, a file, or the output of another program.

To communicate the output of a program with the input of another, we use the following operators:

•	 |: The pipe operator will use the output of one command as the input of the next command

and will show only the result of the last command. It pipes data from one command to

another to compose more complex commands.

•	 >: The redirect operator is used to put the output of a command into a file. If the file exists,

it will be overwritten.

•	 <: The reverse redirect operator can be applied to use a file as input to a command. Using

it won’t delete the file used as input.

•	 >>: The redirect and add operator is used to append the output of a command to a file. If

the file does not exist, it will be created.

Running Basic Commands and Simple Shell Scripts76

•	 2>: The redirect STDERR operator will only redirect the

output sent to the error message handler.

•	 1>: The redirect STDOUT operator redirects the output

sent to the standard output, but not to the error message

handler.

•	 >&2: The redirect to STDERR operator will redirect the

output to the standard error handler.

•	 >&1: The redirect to STDOUT operator will redirect the

output to the standard output handler.

Let’s make this clearer with some examples.

Let’s get a list of files, separated by commas, and put it in a file.

First, we list the files in /var, using the -m option:

user@geeko:~> ls -m /var/

adm, agentx, cache, crash, lib, lock, log, opt,
run, spool, tmp

Let’s run the command again, redirecting the output to the ~/

var-files.txt file:

user@geeko:~> ls -m /var/ > ~/var-files.txt

user@geeko:~>

There is no output on the screen. We redirected the output to a

file instead, so a file with that name in our home folder should

be available:

user@geeko:~> ls ~

var-files.txt

We can see the content of the file on screen using the cat com-

mand, intended to concatenate the output for several files, but used

regularly for this purpose:

user@geeko:~> cat ~/var-files.txt

adm, agentx, cache, crash, lib, lock, log, opt,
run, spool, tmp

2 and > need to be togeth-

er; if you put a space be-

tween them, it won’t be

recognized as one com-

mand but as two indepen-

dent ones.

Chapter 2 77

We can also add to this file the content of /var/lib, using the >> operator:

user@geeko:~> ls -m /var/lib

alternatives, ca-certificates, chrony, dbus, empty, hardware, lastlog,
misc, net-snmp, NetworkManager, nobody, plymouth, private, rollback, rpm,

selinux, smartmontools, sshd, sudo, systemd, wtmpdb, xkb, YaST2, zypp

user@geeko:~> ls -m /var/lib >> var-files.txt

user@geeko:~> cat var-files.txt

adm, agentx, cache, crash, lib, lock, log, opt, run, spool, tmp

alternatives, ca-certificates, chrony, dbus, empty, hardware, lastlog,
misc,

net-snmp, NetworkManager, nobody, plymouth, private, rollback, rpm,
selinux,

smartmontools, sshd, sudo, systemd, wtmpdb, xkb, YaST2, zypp

The /home/user/var-files.txt file now contains both the comma-separated list for /var and

for /var/lib.

What happens if we try to list a non-existent directory?

user@geeko:~> ls -m /non-existent

ls: cannot access '/non-existent': No such file or directory

The output shown in the console is actually shown in the error handler. We can redirect the

output to a file:

user@geeko:~> ls -m /non-existent > non-listing.txt

ls: cannot access '/non-existent': No such file or directory

user@geeko:~> ls

non-listing.txt var-files.txt

user@geeko:~> cat non-listing.txt

The output is still shown to the console because we didn’t redirect STDERR, only the standard

output, STDOUT. The file has been created anyway, but it is empty. So now we show an empty file

(which contains the output of STDOUT). If we aim to capture the output of STDERR, the error we

need to use is 2>:

user@geeko:~> ls /non-existent 2> error.txt

user@geeko:~> cat error.txt

ls: cannot access '/non-existent': No such file or directory

Running Basic Commands and Simple Shell Scripts78

Let’s count the number of files and directories in /var. We are going to work Unix style, using the

output of ls and feeding it into the wc command, which stands for word count. We will use the -w

option to count words. To do so, we will redirect (or pipe) the output of ls to it:

user@geeko:~> ls -m /var/ | wc -w

11

We can also use it to count entries in /etc:

user@geeko:~> ls -m /etc/ | wc -w

144

Pipes are great for creating more complex commands, reusing the output of one command as

the input to another one. In the next section, we are going to use composition to select only the

important data using a filter.

Filtering output with grep and sed
If you want to find a pattern in a file or the standard input, you use the grep command. This is

extremely useful for system administrators as it allows you to quickly find information when you

need it (such as searching for an error in a log, which will be discussed later). grep uses regular

expressions that describe the text to be found. Regular expressions can be simple, such as the

exact text to be found, or complex, and we will describe them in depth later.

Let’s use find to generate content to be used with grep later on. We can do a recursive search in

/usr and write the list of files in every subdirectory in /home/user/usr-files.txt:

user@geeko:~> find /usr/ > ~/usr-files.txt

find: '/usr/etc/skel/.cache': Permission denied

find: '/usr/etc/skel/.config': Permission denied

find: '/usr/etc/skel/.local': Permission denied

find: '/usr/etc/keys': Permission denied

find: '/usr/etc/sudoers.d': Permission denied

user@geeko:~> ls -lh usr-files.txt

-rw-r--r--. 1 user user 2.6M Mar 31 15:55 usr-files.txt

user@geeko:~> cat usr-files.txt | wc -l

56267

Chapter 2 79

We get some errors (as we are not root), and the output is a file of 2.6 MB and 56,267 lines. If we

want to, for instance, find files in /usr that contain the gzip pattern, it would be error-prone to

do it manually. But it is easy with the following command:

user@geeko:~> grep gzip usr-files.txt

/usr/share/licenses/gzip

/usr/share/licenses/gzip/COPYING

/usr/share/doc/packages/gzip

/usr/share/doc/packages/gzip/AUTHORS

/usr/share/doc/packages/gzip/ChangeLog

/usr/share/doc/packages/gzip/NEWS

/usr/share/doc/packages/gzip/README

/usr/share/doc/packages/gzip/THANKS

/usr/share/doc/packages/gzip/TODO

/usr/share/man/man1/gzip.1.gz

/usr/share/vim/vim91/autoload/gzip.vim

/usr/share/vim/vim91/doc/pi_gzip.txt

/usr/share/vim/vim91/plugin/gzip.vim

/usr/share/info/gzip.info.gz

/usr/share/mime/application/gzip.xml

/usr/share/bash-completion/completions/gzip

/usr/bin/gzip

/usr/lib64/python3.11/pycache/gzip.cpython-311.opt-1.pyc

/usr/lib64/python3.11/pycache/gzip.cpython-311.opt-2.pyc

/usr/lib64/python3.11/pycache/gzip.cpython-311.pyc

/usr/lib64/python3.11/gzip.py

As you can see, we have found all the files with a name that includes gzip under /usr in two steps:

creating a file with all the content of the directory and then searching through it with grep. Is it

possible to do the same without creating the file? Sure, we can, by using a pipe. We can redirect

the output of find to grep and get the same output:

user@geeko:~> find /usr/ 2> /dev/null | grep gzip

/usr/share/licenses/gzip

/usr/share/licenses/gzip/COPYING

/usr/share/doc/packages/gzip

/usr/share/doc/packages/gzip/AUTHORS

/usr/share/doc/packages/gzip/ChangeLog

/usr/share/doc/packages/gzip/NEWS

Running Basic Commands and Simple Shell Scripts80

/usr/share/doc/packages/gzip/README

/usr/share/doc/packages/gzip/THANKS

/usr/share/doc/packages/gzip/TODO

/usr/share/man/man1/gzip.1.gz

/usr/share/vim/vim91/autoload/gzip.vim

/usr/share/vim/vim91/doc/pi_gzip.txt

/usr/share/vim/vim91/plugin/gzip.vim

/usr/share/info/gzip.info.gz

/usr/share/mime/application/gzip.xml

/usr/share/bash-completion/completions/gzip

/usr/bin/gzip

/usr/lib64/python3.11/pycache/gzip.cpython-311.opt-1.pyc

/usr/lib64/python3.11/pycache/gzip.cpython-311.opt-2.pyc

/usr/lib64/python3.11/pycache/gzip.cpython-311.pyc

/usr/lib64/python3.11/gzip.py

We are redirecting the errors to a file called /dev/null, a filesystem that deletes (nullifies) ev-

erything that you write in it, because we don’t care about access errors, and then the standard

output from find is sent to grep to process it. Let’s count the number of instances of files with

wc, but this time, while using the -l option to count the lines:

user@geeko:~> find /usr/ 2> /dev/null | grep gzip | wc -l

21

We have now concatenated two pipes, one to filter the output and another to count the lines. We

will find ourselves doing this kind of plumbing often when searching for and finding information

in the system.

Some very common options of grep are as follows:

•	 -i for ignore case. It will match the pattern, whether it’s uppercase, lowercase, or a mix of

both.

•	 -v for invert match. It will show all entries that do not match the pattern being searched for.

•	 -r for recursive. We can tell grep to search for a pattern in all the files within a directory,

going through all of them (if we have permission).

There is also a way to filter columns in the output provided. Let’s say we have a list of files in our

home directory, and we want to see the size of it. We run the following:

user@geeko:~> ls -l

total 2644

Chapter 2 81

-rw-r--r--. 1 user user 61 Mar 31 15:44 error.txt

-rw-r--r--. 1 user user 0 Mar 31 04:21 non-listing.txt

-rw-r--r--. 1 user user 2698567 Mar 31 15:55 usr-files.txt

-rw-r--r--. 1 user user 279 Mar 31 04:19 var-files.txt

If we need to go beyond search, we need to use tools that are more powerful. awk is a tool that

offers a fully-fledged programming language to process the output. It is very useful to find iden-

tifiers in processes or get a specific list of data from a long output. If we just want to find the size

of content that has files in its name, we can use these awk options:

ls -l | grep files | awk '{ print $9 " " $5}'

usr-files.txt 2698567

var-files.txt 279

Let’s find the users defined in the system by looking at the /etc/passwd file. The file uses a colon (:)

to separate columns, so we will change the separator with the -F option and get only the first one:

user@geeko:~> awk -F: '{ print $1}' /etc/passwd

root

tftp

nobody

man

lp

daemon

messagebus

bin

dnsmasq

systemd-coredump

chrony

systemd-timesync

sshd

user

awk offers functions to manage strings, times, and maths, and it is extremely pow-

erful. We will use just a tiny portion of its capabilities here.

Running Basic Commands and Simple Shell Scripts82

The awk and grep tools are very common processing tools in the life of a Linux sysadmin; it is

important to understand them well to quickly find what you need in any output provided by the

system. We have used very little of them, enough to filter the output by row and column. Let’s

continue learning how to manage files in a system so we can better handle the files we have just

produced.

Listing, creating, copying, and moving files and
directories, links, and hard links
It is quite common to manage files and directories (also known as folders) in a system from the

command line. Linux stores relevant information in files, such as configuration files or data, and

an administrator needs to create, delete, and move those files often.

Directories
Let’s start by creating a directory. The mkdir command, short for make directory, allows us to

create a new one:

user@geeko:~> mkdir mydir

user@geeko:~> ls -l

total 0

drwxr-xr-x. 1 user user 0 Mar 31 16:28 mydir

Creating a folder does not work if the parent folder is not available, but you can use –p to create

all the directories in a hierarchy (very useful for automation), as shown here:

user@geeko:~> mkdir myotherdir/mydir

mkdir: cannot create directory 'myotherdir/mydir': No such file or
directory

user@geeko:~> mkdir -p myotherdir/mydir

user@geeko:~> ls

mydir myotherdir

user@geeko:~> ls myotherdir/

mydir

Folders can be deleted with the rmdir command, short for remove directory:

user@geeko:~> ls -l

total 0

drwxr-xr-x. 1 user user 0 Mar 31 16:34 deleteme

drwxr-xr-x. 1 user user 0 Mar 31 16:28 mydir

Chapter 2 83

drwxr-xr-x. 1 user user 10 Mar 31 16:34 myotherdir

user@geeko:~> rmdir deleteme/

user@geeko:~> ls

mydir myotherdir

user@geeko:~> ls -l

total 0

drwxr-xr-x. 1 user user 0 Mar 31 16:28 mydir

drwxr-xr-x. 1 user user 10 Mar 31 16:34 myotherdir

Note that rmdir will only delete empty directories:

user@geeko:~> rmdir myotherdir/

rmdir: failed to remove 'myotherdir/': Directory not empty

user@geeko:~> rmdir myotherdir/mydir/

user@geeko:~> rmdir myotherdir/

user@geeko:~> ls

mydir

We can delete a file with the rm command. Using rm will not delete directories by default, even if

they are empty. But the –r option can be used to remove them recursively with all the files and

directories they contain. Let’s just create and remove a single file, var-files.txt:

user@geeko:~> ls /var/ > var-files.txt

user@geeko:~> ls

mydir var-files.txt

user@geeko:~> rm var-files.txt

user@geeko:~> ls -l var-files.txt

ls: cannot access 'var-files.txt': No such file or directory

user@geeko:~> rm mydir/

rm: cannot remove 'mydir/': Is a directory

user@geeko:~> rm -r mydir/

user@geeko:~> ls -l

total 0

Be very careful when using recursive mode when deleting, as there is neither a re-

covery command for it nor a trash bin to keep removed files in the command line.

Running Basic Commands and Simple Shell Scripts84

After playing with and learning many of the directory-related commands, let’s review with a

summary of them:

Command Usage
mkdir Create directories
mkdir –p Create directories, including all missing intermediate directories in the path
rmdir Delete empty directories
rm Delete files
rm -r Delete directories that contain files or other directories recursively

Table 2.4 – Directory-related commands

Now we know how to create and delete directories in a Linux system, let’s start copying and

moving content.

Copying and moving
Now, let’s copy some files to play with them using the cp (for copy) command. The cp command

requires the source (one or several files) and the destination (a directory). We are going to copy

some awk examples to a folder in our home directory:

user@geeko:> mkdir myawk user@geeko:> cp /usr/share/awk/* myawk/

user@geeko:> ls myawk | wc -l

29

To copy more than one file at the same time, we have used globbing. We can substitute letters

with signs. The asterisk sign (*) represents any group of letters. In this case, it is alone, so it will

match all files.

We can use * in a more complex pattern. For instance, we can find only those files that start with

s using ls s*:

user@geeko:~/myawk> ls s*

shellquote.awk strtonum.awk

We can also find any file whose name includes time in the middle:

user@geeko:~/myawk> ls *time*

ctime.awk gettime.awk

Chapter 2 85

We can also substitute one single character with ?. Let’s find all files that start with sub and then

follow with gid or uid. ? will match any character in the following command, including tid or

7id. We can also use [] to specify a list of characters to match:

user@geeko:~/myawk> ls /etc/*id*

/etc/machine-id /etc/subgid /etc/subgid- /etc/subuid /etc/subuid-

/etc/blkid.conf.d:

user@geeko:~/myawk> ls /etc/sub?id*

/etc/subgid /etc/subgid- /etc/subuid /etc/subuid-

cp won’t travel down the directory tree. If we want to copy all, we need to specify a recursive copy

with the -r option:

user@geeko:~> mkdir doc

user@geeko:~> cp -r /usr/share/doc/* doc/

user@geeko:~> cd doc

user@geeko:~/doc> ls

ghostscript packages

When copying directories that have files, you can easily forget the –r option and get a copy of the

files, but not the directories and all the files in them. We could also move directories or files easily

with the mv command. Let’s put all our new directories together into a newly created directory

called docs:

user@geeko:~> mv my* docs/

user@geeko:~> ls docs/

myauthselect myawk mysystemd

Moving one folder will move anything contained in it, so there is no recursive option for mv. It

can also be used to rename files and/or directories:

user@geeko:~> cd docs/myawk/

[user@SLES8 mysystemd]$ ls

user@geeko:~/myawk> ls

assert.awk ftrans.awk have_mpfr.awk join.awk ord.awk
readable.awk shellquote.awk zerofile.awk

bits2str.awk getopt.awk inplace.awk libintl.awk passwd.awk
readfile.awk strtonum.awk

cliff_rand.awk gettime.awk intdiv0.awk noassign.awk processarray.
awk rewind.awk tocsv.awk

ctime.awk group.awk isnumeric.awk ns_passwd.awk quicksort.awk

Running Basic Commands and Simple Shell Scripts86

round.awk walkarray.awk

user@geeko:~/myawk> cp tocsv.awk TOCSV.AWK

user@geeko:~/myawk> mv TOCSV.AWK MYFILE.AWK

user@geeko:~/myawk> ls TOCSV.AWK

ls: cannot access 'TOCSV.AWK': No such file or directory

user@geeko:~/myawk> ls MYFILE.AWK

MYFILE.AWK

Sometimes you need to create an empty file. There is a special command to create empty files

called touch:

user@geeko:~> ls -l docs/

total 0

drwxr-xr-x. 1 user user 672 Mar 31 22:10 myawk

drwxr-xr-x. 1 user user 2442 Mar 31 22:13 mysystemd

user@geeko:~> touch docs/mytouch

user@geeko:~> ls -l docs/

total 0

drwxr-xr-x. 1 user user 672 Mar 31 22:10 myawk

drwxr-xr-x. 1 user user 2442 Mar 31 22:13 mysystemd

-rw-r--r--. 1 user user 0 Mar 31 22:13 mytouch

Files nodes store information about the time and date when they were created, updated, or ac-

cessed. When touch is applied to an existing file or folder, it will update its access time to the

current time:

user@geeko:~> ls -l docs/mytouch

-rw-r--r--. 1 user user 0 Mar 31 22:13 docs/mytouch

user@geeko:~> touch docs/mytouch

user@geeko:~> ls -l docs/mytouch

-rw-r--r--. 1 user user 0 Mar 31 22:34 docs/mytouch

In this section, the commands used are as follows:

Command Usage
cp Copy a set of files in the same source directory
rm Delete a set of files in the same directory
cp -r Copy a full directory branch, recursively, to a target directory
touch Create empty files or set the access time of a file to the current time

Chapter 2 87

Command Usage
mv Rename a file or directory
mv Move a full directory branch recursively to a target directory

Table 2.5 – File-related commands

Now we know how to copy, delete, rename, and move files and directories. Let’s take a look at a

different way to work with files, the links.

Symbolic and hard links
We can have the same file in two places using links. There are two types of links:

•	 Hard links: These are two different file descriptors that point to the same data with two

different names or paths. The content is not copied as there is only one copy on the disk.

Hard links cannot be created in two different filesystems, and they are not available for

directories.

•	 Symbolic links: A symbolic link is just a reference to a file or directory in another place in

the system, including other filesystems.

Both are created using the ln (for link) utility.

Let’s create hard links:

user@geeko:~/docs> ln mysystemd/user.conf myuser.conf

user@geeko:~/docs> ls -l

total 4

drwxr-xr-x. 1 user user 672 Mar 31 22:10 myawk

drwxr-xr-x. 1 user user 2442 Mar 31 22:13 mysystemd

-rw-r--r--. 1 user user 0 Mar 31 22:34 mytouch

-rw-r--r--. 2 user user 1771 Mar 31 22:13 myuser.conf

user@geeko:~/docs> ln myuser.conf myuser2.conf

user@geeko:~/docs> ls -la

total 8

drwxr-xr-x. 1 user user 90 Mar 31 22:40 .

drwx------. 1 user user 136 Mar 31 22:11 ..

drwxr-xr-x. 1 user user 672 Mar 31 22:10 myawk

drwxr-xr-x. 1 user user 2442 Mar 31 22:13 mysystemd

-rw-r--r--. 1 user user 0 Mar 31 22:34 mytouch

-rw-r--r--. 3 user user 1771 Mar 31 22:13 myuser2.conf

-rw-r--r--. 3 user user 1771 Mar 31 22:13 myuser.conf

Running Basic Commands and Simple Shell Scripts88

Notice the number of references to the file increasing (in bold in the previous example). The

number 3 in the last listing tells us that 3 copies of the file are available. When you delete a file

with symbolic links, the number of references is updated, but the content is not lost.

Now, let’s create a symbolic link to a directory with ln -s (s is for symbolic):

user@geeko:~/docs> ls -l

total 12

drwxr-xr-x. 1 user user 672 Mar 31 22:10 myawk

drwxr-xr-x. 1 user user 2442 Mar 31 22:13 mysystemd

lrwxrwxrwx. 1 user user 10 Mar 31 22:44 mysystemdlink -> mysystemd/

-rw-r--r--. 1 user user 0 Mar 31 22:34 mytouch

-rw-r--r--. 3 user user 1771 Mar 31 22:13 myuser2.conf

-rw-r--r--. 3 user user 1771 Mar 31 22:13 myuser.conf

The symbolic link looks like a file, but the details are different. It starts with l for link (in bold in

the previous example) instead of d for directory (also in bold in the previous example). The name

also tells us that the file redirects to another file.

Let’s review the commands we learned in this section:

Command Usage

ln Create a hard link for a file in the same filesystem

ln -s Create a symbolic link to a file or directory that could cross different

filesystems

Table 2.6 – Link-related commands

As you can see, creating links and symbolic links is super simple and can help you have access

to the same file or directory from different locations. In the next section, let’s learn how to pack

and compress a set of files and directories.

When in doubt, on whether to use a hard link or a symbolic link, use a symbolic link

as the default choice.

Chapter 2 89

Using tar and gzip
How do we move files and directories outside of your system? There is a command that can help

aggregate files into a single one to move it more easily. It is tar (for tape archive), and was origi-

nally created to back up data into file tapes.

Let’s start backing up the /etc directory. As many files are restricted, we will have to do it as the

root user:

geeko:~ # mkdir tmp

geeko:~ # cd tmp

geeko:~/tmp # tar -cf etc-backup.tar /etc

tar: Removing leading `/' from member names

geeko:~/tmp # ls -lh etc-backup.tar

-rw-r--r--. 1 root root 23M Mar 31 23:37 etc-backup.tar

Let’s check the options used:

•	 -c (for create): tar can put together files or add files to an existing one (-r)

•	 -f: The file name that will be used

•	 /etc: The directory we are backing up

We can try to unpack the file we just created:

geeko:~/tmp # mkdir tmp

geeko:~/tmp # cd tmp

geeko:~/tmp/tmp # tar -xf ../etc-backup.tar

geeko:~/tmp/tmp # ls

etc

Let’s check the new option used: -x (for extract). This unpacks a tar file.

We created a directory named tmp to make sure that we don’t extract files into a directory that

is already full of files, but the backup creates another directory inside ./etc. We pointed to the

parent directory of tmp by using the .. shortcut.

We can optimize storage so we don’t need to send or copy a huge file. Most of the content is text

that can be compressed, and gzip is the tool to do so. We can copy /etc/services and compress it:

geeko:~/tmp # cp /usr/etc/services .

geeko:~/tmp # ls

etc-backup.tar services tmp

Running Basic Commands and Simple Shell Scripts90

geeko:~/tmp # ls -l services

-rw-r--r--. 1 root root 868252 Mar 31 23:47 services

geeko:~/tmp # gzip services

geeko:~/tmp # ls

etc-backup.tar services.gz tmp

geeko:~/tmp # ls -l services.gz

-rw-r--r--. 1 root root 203158 Mar 31 23:47 services.gz

gzip modifies the files. It will compress the specified file, adding the .gz extension to it and deleting

the original file. Also, be aware that the newly created file is a quarter of the size of the original file.

The companion tool for gzip is gunzip:

geeko:~/tmp # ls

etc-backup.tar services.gz tmp

geeko:~/tmp # gunzip services.gz

geeko:~/tmp # ls

etc-backup.tar services tmp

geeko:~/tmp # ls -lh services

-rw-r--r--. 1 root root 848K Mar 31 23:47 services

The tar command is smart enough to be able to pack and compress in one step:

geeko:~/tmp # tar -czf etc-backup.tar.gz /etc/

tar: Removing leading `/' from member names

geeko:~/tmp # ls -lh etc

geeko:~/tmp # ls -lh etc-backup.tar.gz

-rw-r--r--. 1 root root 3.5M Mar 31 23:59 etc-backup.tar.gz

We now have a new option: -z. This compresses the newly created tar file with gzip. It is also

applicable to decompressing (when using x):

geeko:~/tmp # rm -rf etc

geeko:~/tmp # tar -xzf etc-backup.tar.gz

geeko:~/tmp # ls

etc etc-backup.tar.gz

Uncompressing a gzipped file does not delete the original file. There are other available compres-

sion methods with higher ratios, such as bzip2 or xz, that you may want to try, too.

Now, let’s move on to combining all the commands that we have learned by creating shell scripts

that can be reused.

Chapter 2 91

Creating basic shell scripts
As a system administrator (sysadmin), you will have a set of commands that you run all the

time. You can do it manually, running every command one by one each time. But there is a more

efficient way to do so: by creating a shell script.

A shell script is nothing else than a text file with a list of commands to be run, and a reference to

the shell that will interpret it. The shell reads the file and interprets the commands like you have

typed them in the console in an automated way.

In this book, we will not cover how to use a text editor. However, we provide three recommen-

dations for text editors in Linux that could help:

•	 Nano: This is probably the easiest text editor to use for beginners. Lean, simple, and

straightforward, you may want to start by installing it and giving it a try.

•	 Vi or Vim: Vi is the default text editor available in SLES, included even in the minimal

installation, like many other Linux distributions. Even if you are not going to use it every

day, it’s good to get the basics of it, as it will be present in almost any Linux system you

will use. Vim means Vi-improved.

•	 Emacs: This is probably the most advanced and complex text editor ever. It can do ev-

erything and beyond, including reading email or helping with a bit of psychoanalysis via

Emacs Doctor.

We can create our first shell script by editing a new file called hello.sh with the following line

as its content:

echo "hello world!"

Then, we can run it by using the bash command interpreter with the following line:

user@geeko:~> bash hello.sh

hello world!

As different interpreters differ slightly, it can be convenient to specify the shell that should interpret

the file, and it reduces the number of strokes as you don’t need to type bash. To do so, we add an

initial line referencing the interpreter, so the file content for hello.sh looks like this:

#!/bin/bash

echo "hello world!"

Running Basic Commands and Simple Shell Scripts92

We need to make it executable:

user@geeko:~> ls -l hello.sh

-rw-r--r--. 1 user user 35 Apr 1 02:03 hello.sh

user@geeko:~> chmod +x hello.sh

user@geeko:~> ls -l hello.sh

-rwxr-xr-x. 1 user user 35 Apr 1 02:03 hello.sh

Running it is just done by calling its name:

user@geeko:~> ./hello.sh

hello world!

The shell looks and executes commands in the folders listed by the $PATH variable, separated by

colons. The working or current directory is not in the path, so you need to specify the full path

(and we do that by adding ./ at the beginning):

user@geeko:~> echo $PATH

/home/user/.local/bin:/usr/local/bin:/usr/bin:/bin

We can also use variables. Defining a variable is as simple as writing its name and the value we

want for it, separated by the = symbol. Let’s try changing the word world for a variable. To use it,

we prepend the $ symbol to the name of the variable, and the interpreter will substitute it for its

value. The new script will look like this:

#!/bin/bash

PLACE="world"

echo "hello $PLACE!"

We can run it, obtaining the same output as before:

user@geeko:~> ./hello.sh

hello world!

It is a good practice to make it more obvious that we are using a variable by writing its name

between curly braces, {and }.

So, the previous script will now look like this:

#!/bin/bash

PLACE="world"

echo "hello ${PLACE}!"

Chapter 2 93

Now we know how to create a basic script. Let’s find a way to make decisions and control the

logic, starting with loops. Let’s go for it!

Loops with for
What happens if we need to run the same command, changing the variable for a list? That’s what

a for loop is used for. It can help iterate over a set of elements, such as a list or a counter.

The for loop syntax is as follows:

•	 for to specify the iteration

•	 do to specify the action

•	 done to close the loop

We can define a list of places separated by spaces to try it, and iterate through it with our first

for loop:

#!/bin/bash

PLACES_LIST="Madrid Boston Singapore World"

for PLACE in ${PLACES_LIST}; do

echo "hello ${PLACE}!"

done

The output will look like this:

user@geeko:~> ./hello.sh

hello Madrid!

hello Boston!

hello Singapore!

hello World!

Using the for loop is especially useful when the list is generated by an external command. We

can execute the external command by writing it between $(and).

Backticks (`) can also be used to run a command and get its output as a list, but we

will stick to the previous expression for clarity.

Running Basic Commands and Simple Shell Scripts94

An example of the external command to be used can be ls. Let’s create the txtfiles.sh script

with the following content:

#!/bin/bash

for TXTFILE in $(ls *.txt); do

 echo "TXT file ${TXTFILE} found!"

done

Make this script we just created executable and run it:

user@geeko:~> chmod +x txtfiles.sh

user@geeko:~> bash txtfiles.sh

TXT file error.txt found!

TXT file non-listing.txt found!

TXT file usr-files.txt found!

TXT file var-files.txt found!

It is easy to find use cases for this. We could iterate over a set of files and change their names, find

and replace content inside them, or simply make a specific backup of a selection of files.

Now that we have seen how to use a list with the for loop, let’s move to another programmatic

capability in scripts, the conditionals.

Conditionals with if
Sometimes we want to execute something only if some condition is met, or we want to have

different actions for different elements based on that condition. We have the conditional if

statement for that.

The if syntax is as follows:

•	 if to specify the condition. Conditions are usually specified between brackets, [and].

•	 then to specify the action.

•	 fi to signal the end of the actions.

Let’s change our previous hello.sh script to say hello, Madrid in Spanish:

#!/bin/bash

PLACES_LIST="Madrid Boston Singapore World"

for PLACE in ${PLACES_LIST}; do

 if [${PLACE} = "Madrid"]; then

 echo "¡Hola ${PLACE}!"

Chapter 2 95

 fi

done

And then, let’s run this script:

user@geeko:~> bash hello2.sh

¡Hola Madrid!

We have a problem; it only says hello to Madrid. What happens if we want to run the previous

code on the ones that do not match the condition? We can define what happens when the con-

dition is not met using else.

else is used when the condition is not matched.

Here is an example of a conditional statement using else:

#!/bin/bash

PLACES_LIST="Madrid Boston Singapore World"

for PLACE in ${PLACES_LIST}; do

 if [${PLACE} = "Madrid"]; then

 echo "¡Hola ${PLACE}!"

 else

 echo "hello ${PLACE}!"

 fi

done

You can access the script here: https://github.com/PacktPublishing/SUSE-Linux-Enterprise-
Server-16-Official-Administration-Guide/blob/main/chapter-02-running-basic-

commands-and-simple-shell-scripts/hello.sh

And we can run it as follows:

user@geeko:~>./hello.sh

¡Hola Madrid!

hello Boston!

hello Singapore!

hello World!

As you can see, it’s simple to use the conditionals in a script and provide a lot of control over the

conditions under which a command is run. We need to control now when something may not be

running correctly; that’s what the exit codes (or error codes) are for. Let’s go for it.

Running Basic Commands and Simple Shell Scripts96

Exit codes
When a program is run, it provides an exit code specifying whether it ran fine or whether there

was an issue. That exit code is stored in a special variable called $?.

Let’s take a look at it by running ls hello.sh:

user@geeko:~> ls hello.sh

hello.sh

user@geeko:~> echo $?

0

When the program runs fine, the exit code is zero (0).

What happens when we try to list a file that doesn’t exist (or run any other command incorrectly,

or that is having issues)? Let’s try listing a nonexistent file:

user@geeko:~> ls nonexistentfile.txt

ls: cannot access 'nonexistentfile.txt': No such file or directory

user@geeko:~> echo $?

2

You see, the exit code is not zero; something went wrong. Apart from not being zero, there is no

standard on what each error code means; we need to go to the documentation and check there

to understand what the number means.

Exit codes are important in scripts because they allow us to act depending on the results. Let’s

now review where to find further information on the commands, such as exit codes or other

options, in the next section.

Using system documentation resources
Your Linux system includes documentation to help you remember how to do things, the syntax

of the commands, or to guide you to improve your sysadmin skills. This is referred to as system

documentation. Let’s check three different resources available by default in your SLES installa-

tion: man pages, info pages, and other documents.

Man pages
The most common resource used to get documentation is the manual pages, also referred to as

the command used to invoke them: man.

Chapter 2 97

The man command is installed by default, but it is possible that you need to install the content

of the man pages:

user@geeko:~> sudo -i

geeko:~ # zypper install man-pages man-pages-posix

Almost any utility installed in the system has a man page to help you use it (i.e., specifying all the

options for the tool and what they do). You can run man tar and check the output:

user@geeko:~> man tar

TAR(1) GNU TAR Manual
TAR(1)

NAME

 tar - an archiving utility

SYNOPSIS

 Traditional usage

 tar {A|c|d|r|t|u|x}[GnSkUWOmpsMBiajJzZhPlRvwo] [ARG...]

 UNIX-style usage

 tar -A [OPTIONS] ARCHIVE ARCHIVE

 tar -c [-f ARCHIVE] [OPTIONS] [FILE...]

 tar -d [-f ARCHIVE] [OPTIONS] [FILE...]

You can read it using your keyboard (navigate with arrow keys to move up or down one line, the

spacebar to move a full page, and/or page up/down). Exiting is done with the letter q (for quit).

There are sections in the man page on related topics. It is pretty simple to search for those by

using the apropos command or using the –k option in man. Let’s see it for tar:

geeko:~ # apropos tar

bdflush (2) - start, flush, or tune buffer-dirty-flush daemon

dbus-launch (1) - Utility to start a message bus from a shell script

dbus-run-session (1) - start a process as a new D-Bus session

dracut-pre-udev.service (8) - runs the dracut hooks before udevd is
started

erfc (3) - complementary error function

Running Basic Commands and Simple Shell Scripts98

erfcf (3) - complementary error function

erfcl (3) - complementary error function

(...) Some other output

As you can see, it matches not only tar but also start. It is not perfect, but it can help you find

information related to tar, such as gpgtar.

Man pages are distributed into sections. You can find a description for each section using man

intro, which, like other commands, has articles in several sections:

geeko:~ # man intro

Man: find all matching manual pages (set MAN_POSIXLY_CORRECT to avoid
this)

* intro (1)

intro (8)

intro (3)

intro (2)

intro (5)

intro (4)

intro (6)

intro (7)

We can access the page in section 1 to understand the basis:

geeko:~ # man 1 intro

Now, we can see the intro page for section 1:

TAR(5) BSD File Formats Manual
TAR(5)

NAME

 intro - introduction to user commands

DESCRIPTION

 Section 1 of the manual describes user commands and tools, for
example, file manipulation tools, shells, compilers, web browsers, file
and image viewers and editors, and so on.

NOTES

 Linux is a flavor of UNIX, and user commands under UNIX work
similarly under Linux (and lots of other UNIX-like systems too,

Chapter 2 99

like FreeBSD).

 Under Linux, there are GUIs (graphical user interfaces), where
you can point and click and drag, and hopefully get work done without
first reading lots of documentation. The traditional UNIX environment is
a CLI (command line interface), where you type commands to tell the
computer what to do. This is faster and more powerful, but requires
finding out what the commands are and how to use them.

 Below is a bare minimum guide to get you started. ...

You can see that manual pages are a great resource to learn more about the typical commands

being used, and a great resource during the SUSE Certified Administrator (SCA) exam. A recom-

mendation is to review all the manual pages for the commands shown in this chapter, as well as

for the upcoming chapters. We consider man pages as the main information resource that comes

included in the system. Almost every command in SLES has its own man page. Let’s review the

other available information resources next.

Info pages
Info pages are usually more descriptive than man pages and more interactive. They are better if

you want to get started on a topic because they are more detailed and explain more details and

concepts.

We can try to get information for the diff command by running the following:

geeko:~ # Info diff

Next: Invoking diff3, Prev: Invoking cmp, Up: Top

13 Invoking 'diff'

The format for running the 'diff' command is:

diff OPTIONS... FILES...

In the simplest case, two file names FROM-FILE and TO-FILE are given, and
'diff' compares the contents of FROM-FILE and TO-FILE. A file name of '-'
stands for the standard input.

If one file is a directory and the other is not, 'diff' compares the
file in the directory whose name is that of the non-directory. The non-
directory file must not be '-'.

If two file names are given and both are directories, 'diff' compares
corresponding files in both directories, in alphabetical order; this

Running Basic Commands and Simple Shell Scripts100

comparison is not recursive unless the '--recursive' ('-r') option is
given. 'diff' never compares the actual contents of a directory as if it
were a file. The file that is fully specified may not be standard input,
because standard input is nameless and the notion of "file with the same
name" does not apply.

If the '--from-file=FILE' option is given, the number of file names is
arbitrary, and FILE is compared to each named file. Similarly, if the
'--to-file=FILE' option is given, each named file is compared to FILE.

'diff' options begin with '-', so normally file names may not begin with
'-'. However, '--' as an argument by itself treats the remaining arguments
as file names even if they begin with '-'.

An exit status of 0 means no differences were found, 1 means some
differences were found, and 2 means trouble.

Menu:

diff Options:: Summary of options to 'diff'.

Info pages can redirect to other topics that are then shown underlined, and that can be followed

by putting the cursor over them and hitting Enter.

As with man, type q to quit.

Please take some time to review the info pages for the main topics covered in this chapter (info

pages are not so well-maintained, so not every topic is available, even though the ones that are

present are very informative).

With this, we are now ready to find information about the commands and resources in our SLES

system quickly.

Summary
We learned in this chapter how to log in to a system with a normal user or with the root supe-

ruser, and gained an understanding of the basics of permissions and security. We also learned

how to use the command line with autocomplete, navigating through the directories and files

and packing and unpacking them, how to use redirects to parse data and build more complex

commands, and how to automate processes with shell scripts. Moreover, we now know how

to find more information and ways to access documentation on the tools available in any SLES

system. These skills are the basis of the upcoming chapters. Don’t hesitate to revisit this chapter

if you feel stuck or if your progress is not as fast as you thought.

Chapter 2 101

Now, it is time to extend your knowledge into more advanced topics in the upcoming chapters.

The next chapter will look at tools for regular operations, in which we will review the most com-

mon actions taken when managing a system. Enjoy!

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

3
Managing Regular Operations
with Tools

So far, we have a system installed, and we’ve covered some of the scripts we can create to automate

tasks, so we’ve reached the point at which we can focus on the system itself.

Having a properly configured system requires things beyond installation like understanding how

to run tasks at specific times, keep all system services running appropriately, and configure time

synchronization, service management, boot targets (runlevels), and scheduled tasks, all of which

we will be covering in this chapter.

You will learn how to check the status of services, start, stop, and troubleshoot them, and keep

the system clock in sync for your server or your whole network. This will be critical to keep ser-

vices running, a base to automate processes, and also the starting point to troubleshoot issues.

The list of topics that will be covered is as follows:

•	 Managing system services with systemd

•	 Scheduling tasks with systemd timers

•	 Learning about time synchronization with chrony

•	 Checking system resources: Memory and disk (free, df, and ps)

•	 Finding logs, using journald, and reading log files, including log preservation and rotation

Managing Regular Operations with Tools104

Technical requirements
It is possible to continue using the virtual machine created at the beginning of this book. Addi-

tionally, for testing the time synchronization service, it might be useful to have internet access

so public time servers can be reached.

Managing system services with systemd
The skills that you will learn from this section are oriented in a manner that will show you how to

manage system services and runtime targets, and learn about service status with systemd. You

will also learn how to manage system boot targets and services to start at system boot.

systemd (which you can learn more about using the following reference: https://systemd.io)

is defined as a system daemon to manage the system. It came from rethinking the way a system

boots and starts, and the constraints of the traditional approach.

When we think about system starting, we have the initial kernel and RAM disk loaded and in

execution. But right after that, services and scripts take control to make filesystems available and

prepare the services that provide the functionality. There is a more detailed description of the

process in Chapter 15, Understanding the Boot Process. At the end, what we want from our system

is the following:

•	 Hardware detection

•	 Additional filesystem activation

•	 Network initialization (wired, wireless, etc.)

•	 Network services (time sync, remote login, printers, network filesystems, etc.)

•	 User-space setup

However, most of the tools that existed before systemd came into play worked on booting the

system in a sequential way, causing the whole boot process (from machine power-on to user login)

to be lengthy and subject to delays. The unit-oriented approach of systemd solved the problem,

making the whole process easy to parallelize and a lot faster.

https://systemd.io

Chapter 3 105

Rationalizing the startup of services so that only those that are required are initiated is a good

way to accomplish efficiency. For example, there is no need to start Bluetooth, printer, or net-

work services that have no Bluetooth hardware when no one is printing, or when the system is

disconnected. With fewer services needing to be started, the system boot is not delayed by those

waits and focuses on the ones that really need to get attention.

On top of that, parallel execution allows each service to take its required time for being ready,

but not making others wait. So, in general, running services initialization in parallel allows for

maximizing the usage of CPU, disk, and so on, and the wait times for each service are reduced.

systemd does advanced tasks, such as pre-creating the listening network sockets before the actual

service (also known as a daemon) is started. This way, services that have requirements on other

services can be started and be in a wait status until their dependencies are started, but without

losing any messages sent to them. So, when the service is finally started, it will act on all the

pending actions. This way, several dependent services can be started at the same time, and they

will connect to each other when ready.

Let’s learn a bit more about systemd, as it will be required for several operations we’re going to

describe in this chapter.

systemd redesigned the system startup process to focus on simplicity: Start fewer

processes and do more parallel execution. The idea itself sounds easy, but it requires

a lot of redesigning of what was taken for granted in the past to focus on the needs of

a new approach to improve OS performance. This redesign, which has provided a lot

of benefits, also came at a cost: it drastically changed the way systems used to boot,

so there was a lot of controversy over systemd adoption by the different vendors.

However, it finally established itself as the de facto standard.

Managing Regular Operations with Tools106

systemd comes with the concept of units, which are nothing but configuration files. The units can

be categorized into different types, based on the file extension, as highlighted in the following

figure:

Unit type File extension Description

Timer .timer A system timer

Socket .socket An inter-process communication socket

Service .service A system service

Target .target A group of system units

Automount .automount A filesystem automount point

Device .device A device file recognized by the kernel

Scope .scope An externally created process

Slice .slice A group of hierarchical units that manage

system processes

Path .path A file or directory in the system

Mount .mount A mount point in the filesystem

Swap .swap A swap device or swap file definition

Table 3.1 – Units, their types, and file extensions

Of course, the unit files mentioned in Table 3.1 are expected to be found in some specific folders:

Folder Description

/usr/lib/systemd/system/ Units that are distributed with the packages we’ve installed

in our system. They include the default values for all units

and services in the system. This is also a good place to look for

examples on how to configure a systemd unit.

/run/systemd/system/ Units that are created at runtime when systemd starts. It

takes precedence over the ones distributed with the installed

packages.

Don’t feel overwhelmed by the amount of different systemd unit types. In general,

the most common ones are service, timer, socket, and target.

Chapter 3 107

/etc/systemd/system/ This is the directory where your customizations to service

configurations will be.

It takes precedence over the runtime ones as well as over the

ones provided by the installed packages.

Table 3.2 – Units files and their folders

As mentioned already, there are different types of units, all intended to support starting and

running services. As in the example that will be described in Chapter 8, Enabling and Using Cock-

pit, about the use of sockets, unit files for path, bus, and so on, also get activated when a specific

action is happening. For example, when a process or user in a system accesses a specific path, the

services associated with the path unit are started. This adds resource optimization for lowering

system startup times, making certain services only start under defined circumstances.

We have now learned the basics of systemd unit types, helping us have the proper services started

at boot, or even better, when a certain action (i.e., someone connecting to a port or accessing a

path) happens. Now, let’s focus on the file structure of the content for the unit files.

The systemd unit file structure
Let’s get our hands dirty with an example: a system is deployed with sshd enabled, which is the

default in SUSE Linux Enterprise Server 16. It should start running once the network has been

initialized and is properly configured.

As we said, systemd uses unit files, and we can check the aforementioned folders or list them with

the systemctl list-unit-files command. Remember that each file is, in reality, a configura-

tion file that defines what systemd should do. An example of the content included in a unit file

is shown as follows for /usr/lib/systemd/system/sshd.service:

Managing Regular Operations with Tools108

Figure 3.1 – The sshd.service file contents

This file defines not only the traditional program to start, but also the dependencies, the conflicts,

and soft dependencies, giving enough information to systemd to decide the right approach.

About the structure of the content: if you’re familiar with INI files, the structure of this file uses

the same approach. It uses brackets, [and], for sections and then key/value pairs for the settings

under each section.

Section names are case-sensitive; they will not run correctly if the proper naming is not used.

In SUSE Linux Enterprise Server 16, the configuration files follow the UAPI Group

Specifications as stated at:

https://uapi-group.org/specifications/specs/configuration_files_

specification.

The main concept behind this is that default configuration files for system packages

live in /usr/lib, /usr/share, or /usr/etc. The /etc path allows you to override

the configuration defaults by dropping new files directly or in directories ending

with .d, as in this case: /etc/systemd/system/sshd.service.d/.

https://uapi-group.org/specifications/specs/configuration_files_specification
https://uapi-group.org/specifications/specs/configuration_files_specification

Chapter 3 109

Section directives, which are mandatory, are named as follows:

•	 [Unit]: Basic directive. Includes sections such as Description and Documentation, and

other sections to handle the startup order, such as Before, Requires, and Wants.

•	 [Install]: Includes the information needed to install the unit. Used when you run

systemctl enable or systemctl disable. It is used in most of the services, but is not

mandatory; for example, services launched by a socket unit do not require it.

Additional optional entries can be used for each of the different unit types:

•	 [Service]: Used to run services.

•	 [Socket]: Used to create sockets that can connect to a service later. This can also be used

to start a service only when we receive an external connection to a specific port. The

Cockpit service is configured this way.

•	 [Mount]: Used to manage storage and assign storage devices to a directory and mount

them during the startup process.

•	 [Automount]: Used to handle mount points that shall only be mounted under certain

circumstances.

•	 [Swap]: Used to mount swap spaces. These assign part of the disk so it can be used to

extend the memory allocation.

•	 [Path]: Used to monitor a path, or directory, and run services when it is accessed.

•	 [Timer]: Used to run services at a certain point in time or periodically.

•	 [Slice]: Used to assign resources by applying cgroups to services. You can, for example,

limit the amount of memory to assign to a service.

As you can see, in the example in Figure 3.1, the sshd service only needs the Unit, Install, and

Service directives. For a more complex configuration, explore the one for the chronyd service,

used to synchronize the clock in the machine, which is stored in /usr/lib/systemd/system/

chronyd.service.

We have specific sections for each type. Run the man systemd.unit command, and it will give

you examples with all the supported values for the systemd version you’re using. Every type has

a manual page in the system, so you can run man systemd.mount or man systemd.slice for more

info. We can see how manual pages work in the following figure:

Managing Regular Operations with Tools110

Figure 3.2 – The man page of systemd.unit

We have reviewed the file structure for unit files. Now, let’s use

systemctl to actually manage the service’s status.

Remember that in SLES

16 packages come with

configuration defaults

usually in /usr/etc and

that to override those de-

faults you can drop your

own options in a file un-

der /etc.

Managing services to be started and
stopped at boot
Services can be enabled or disabled; that is, the services will be

activated or not activated on system startup.

A service, such as sshd, can be enabled via the following:

systemctl enable sshd

Or it can be disabled via the following:

systemctl disable sshd

This results in creating or removing /etc/systemd/system/

multi-user.target.wants/sshd.service.Note that we have a tar-

get here. We will explain

targets later on in the

chapter.

The previous commands are enabling or disabling the service at

boot, but for executing an immediate action, we need to issue a

different command.

To start the sshd service, use the following:

systemctl start sshd

And to stop it, use the following:

systemctl stop sshd

Chapter 3 111

Of course, we can also check the service status as seen from

systemd via systemctl status sshd, as shown in the following

figure:

Figure 3.3 – Status of the sshd daemon

This status information provides us with details about the unit

file defining the service, the default status at boot, whether it is

running or not, the PID, some other details about the resource

consumption, and some of the most recent log entries for the ser-

vice that are quite useful in debugging simple service start failures.

One important piece to check is the output of systemctl list-

unit-files, as it reports the defined unit files in the system as

well as the current status and the vendor preset for each one.

Once we have covered the start/stop and status check of services,

let’s work on managing the actual system boot status itself.

Managing boot targets
When the system boots, there is a default status preselected,

which usually includes having the network enabled, preparing

to handle several user logins, and, sometimes, having a graphical

environment ready. There are different levels that might not en-

able the graphical interface or even the network (i.e., for repairs).

When enabling or dis-

abling services, you can

make them effective im-

mediately by running the

command with the --now

option. This way, when

you enable a service with

this option, it will also be

started, and when you

disable it, it will also be

stopped.

Managing Regular Operations with Tools112

These levels are traditionally called runlevels. Even when with systemd, we now use targets; let’s

take a look at these runlevels.

A runlevel defines a predefined set of services based on usage, that is, defining which services

will be started or stopped to cover a specific functionality. Each one of those runlevels, as we

mentioned, allows a predefined set of services to be started/stopped. We can switch from one

runlevel to another with the init command. These traditional runlevels are used to define the

following status:

•	 Halt mode: Also known as runlevel 0. It stops all the services and then halts or powers

off the system.

•	 Single-user mode: Also known as runlevel 1. It just starts a shell for one user only. Nor-

mally used to repair things in the system without having any other user accessing it.

•	 Multi-user mode: Also known as runlevel 2. It enables regular user login without a net-

work.

•	 Networked multi-user: Also known as runlevel 3. It’s like multi-user, but with a network.

This is the most used one for servers.

•	 Graphical: Also known as runlevel 5. It is like networked but with a graphical environment

started (i.e., GNOME). You can log in via the display manager (i.e., gdm, for GNOME). It’s

most used for desktops.

•	 Reboot: Also known as runlevel 6. It is like a halt, but at the end of processing services, it

issues a reboot instead of a halt.

You probably realized there is no runlevel 4. This one is left for user customization.

Those runlevels (and the default one when the system booted) used to be defined in /etc/inittab,

but this file is not in the system anymore. However, you can still run the init 6 command to

reboot a machine, as well as to change to other runlevels.

So, with the change to systemd, runlevels are now boot targets. A systemd target is a way to

group different services to enable a defined set of functionalities. It is also a way to switch from

one to the other.

We can find the available system targets via listing this folder:

ls -l /usr/lib/systemd/system/*.target

Or more correctly, via systemctl with the following:

systemctl list-unit-files *.target

Chapter 3 113

When you examine the output when running it on your system, you will find several targets that

are especially important. For example, for regular server usage, the default target will be multi-

user.target when running without a graphical mode, or graphical.target when using it. Then,

we have default.target, which is the one selected to run at boot. We can see which one it is by

running the following:

systemctl get-default

We can modify it by running the following:

systemctl set-default TARGET.target

This brings us to the next question: What does a target definition look like? Let’s examine the output

in the next figure:

Figure 3.4 – Contents of graphical.target from its target unit definition

As you can see, it is set as a dependency of another target (multi-user.target) and has some

requirements on other services such as display-manager.service, and also other conflicts. The

target can only be reached when other targets have been completed.

In this way, systemd can select the proper order of services to start and the dependencies to reach

the configured boot target.

We have covered the services status: started, stopped, and enabled on boot. But there are other

tasks we should execute in our system, in a periodic way. Let’s get further into the topic.

Scheduling tasks with systemd timers
The skills you will learn in this section are to schedule periodic tasks in the system for business

services and maintenance.

Managing Regular Operations with Tools114

For regular system usage, there are tasks that are required to be ex-

ecuted periodically, ranging from temporary folder cleanup, cache

refresh, and check-in with inventory systems, among other things.

The traditional way to set them up was via cron; however, SUSE

Linux Enterprise Server 16 does not include it by default anymore.

All scheduling shall be done via systemd.

The traditional cron dae-

mon is still available in

the repositories for com-

patibility purposes. It can

be installed in the sys-

tem by running zypper

install cron. To learn

more, once installed, you

can run man cron. How-

ever, the recommended

way to handle running

recurrent tasks is by us-

ing timers.

Systemd timers
The systemd feature to handle managing tasks at a specific time,

or with a timely recurrence, is timers. A timer allows you to define,

via a unit file, a job that will be executed.

We can check the ones already available in our system with the

following:

systemctl list-unit-files *.timer

UNIT FILE STATE PRESET

backup-rpmdb.timer enabled enabled

backup-sysconfig.timer enabled enabled

btrfs-balance.timer enabled enabled

...

snapper-boot.timer disabled disabled

snapper-cleanup.timer enabled enabled

snapper-timeline.timer enabled enabled

suse-uptime-tracker.timer disabled disabled

...

Here, we see the list of timer units available in our system and

their status. Let’s see, for example, fstrim.timer, which is used

on SSD drives to perform a block cleanup, also known as trim, at

/usr/lib/systemd/system/fstrim.timer:

[Unit]

Description=Discard unused filesystem blocks
once a week

Documentation=man:fstrim

ConditionVirtualization=!container

ConditionPathExists=!/etc/initrd-release

Chapter 3 115

[Timer]

OnCalendar=weekly

AccuracySec=1h

Persistent=true

RandomizedDelaySec=100min

[Install]

WantedBy=timers.target

A timer unit, as you can see, establishes a set of conditions under which a service is run.

In this case, the timer is intended to run weekly, as stated by the OnCalendar value.

It’s also prepared to run a randomization of 100 minutes, as stated by RandomizedDelaySec, to

make it not predictable. This is also useful if you plan to run a service on a large number of ma-

chines and all will connect to the same server, so they do not overload it.

There are some conditions to run this:

•	 ConditionVirtualization: This is not to be run inside a container

•	 ConditionPathExists: The /etc/initrd-release file should not exist

Please note that the exclamation mark (!) is meant to deny the value of the last condition.

Timers must have an associated service with the same name and a different extension. Let’s see

the associated service located at /usr/lib/systemd/system/fstrim.service :

[Unit]

Description=Discard unused blocks on filesystems from /etc/fstab

Documentation=man:fstrim(8)

ConditionVirtualization=!container

[Service]

Type=oneshot

ExecStart=/usr/sbin/fstrim --listed-in /etc/fstab:/proc/self/mountinfo
--verbose --quiet-unsupported

PrivateDevices=no

PrivateNetwork=yes

PrivateUsers=no

ProtectKernelTunables=yes

Managing Regular Operations with Tools116

ProtectKernelModules=yes

ProtectControlGroups=yes

MemoryDenyWriteExecute=yes

SystemCallFilter=@default @file-system @basic-io @system-service

We can see in this previous service definition that it is executing the /usr/sbin/fstrim --listed-

in /etc/fstab:/proc/self/mountinfo --verbose --quiet-unsupported command just once.

One of the advantages of having the service timers as unit files, similar to the service itself, is that

they can be deployed and updated together.

We have understood a bit more about how to schedule tasks. But to get the whole picture, sched-

uling always requires proper timing, which we’ll be covering next.

Learning about time synchronization with chrony
The skills you will gain in this topic include understanding the importance of time synchroni-

zation and configuring the service.

With connected systems, it is important to keep a source of truth in regard to timing (think

about bank accounts, incoming transfer wires, outgoing payments, etc., that must be correctly

timestamped and sorted). Consider also tracing logs between users connecting, issues happen-

ing, and so on; they all need to be in sync to do proper diagnosis and debugging between all the

different systems involved.

One might think that the system clock, defined when the system is provisioned, should be okay,

but setting the system clock is not enough, as system clocks tend to drift. Internal batteries can

cause the clock to drift or even reset. Even intense CPU activity can affect it. To keep clocks ac-

curate, regular syncing against a reference clock is required to fix the drift and try to anticipate

future drifts before the local clock is compared against the remote reference.

In different operating systems, the internal clock can be synced against a Global Positioning

System (GPS) unit, for example, as in mobile phones, or more easily against other systems that

have connections to more precise clocks (other GPS units, atomic clocks, etc.). For servers, work-

stations, and other systems using Linux, the Network Time Protocol (NTP) is the mechanism

used to keep the clock in sync. NTP is an internet protocol that connects over User Datagram

Protocol (UDP), a transmission protocol used for streaming data, such as Netflix movies, to keep

communication between the clients and the servers.

Chapter 3 117

Clients connect to servers and compare the times received to reduce the effects of network latency.

Let’s see how the NTP client works.

The chrony NTP client
In SUSE Linux Enterprise Server 16, chrony is provided to act both as the server (when enabled)

and as the client (via the chronyc command), and it comes with some features that make it also

suitable for current hardware and user needs, such as fluctuating networks (laptop gets suspended,

resumed, or flaky connections).

One interesting feature is that chrony does not step the clock after initial sync, which means

that the time doesn’t “jump.” But the system clock runs faster or slower, so after a period of time,

it will be in sync with the reference clock it’s using. This makes the time a continuum from the

operating system and applications point of view, even if the seconds are going faster or slower

than they should, until they match the reference clock.

The chrony service is configured via /etc/chrony.conf, and as a client, it connects to servers to

check them for eligibility to be the time source. The time source can be defined by specifying a

server, when we are only going to use only one as the source of time, or the pool directive when

we want to use several servers.

For pool or server directives, there are several options available (described in man chrony.conf),

such as iburst, which enable faster checks with the servers configured to transition quickly into

a synchronized status.

We can ensure that the time synchronization service is operational and started at boot by running

the following:

systemctl enable --now chronyd

Created symlink '/etc/systemd/system/multi-user.target.wants/chronyd.
service' → '/usr/lib/systemd/system/chronyd.service'.

NTP organizes servers by stratum. A stratum 0 device is a GPS device or an atomic

clock that directly sends the signal to a server. A stratum 1 server (primary server) is

connected to a stratum 0 device. Stratum 2 is connected to stratum 1 servers, and so

on. This hierarchy allows us to reduce the usage of higher stratum servers but keep

a reliable time source for our systems.

Managing Regular Operations with Tools118

Actual sources for time can be checked with chronyc sources, as shown in the following figure:

Figure 3.5 – The chronyc sources output

From the Figure 3.5 screenshot status, we know the status of each server based on the first col-

umn (M):

•	 ^ means this is a server

•	 = means this is a peer

From the second column (S), we find out the different statuses for each entry:

•	 - indicates a source valid for synchronization but not being used

•	 * is our current synchronized server

•	 + is another acceptable time source

•	 ? is used to indicate sources with lost network connectivity

•	 x is considered a false ticker (its time is considered inconsistent when compared against

other sources)

•	 ~ indicates a source that has a high variability (it also appears during daemon startup)

So, we see that our system is connected to a server that is considered the reference at time3.

sebhosting.de, which is a stratum 2 server, as can be seen in the Stratum column.

In this case, Stratum means the hops the server must take to get to a system with a clock directly

attached to it (a stratum 1 machine has a GPS device or an atomic clock attached to it).

Chapter 3 119

More detailed information can be checked via the chronyc tracking command:

Figure 3.6 – The chronyc tracking output

This command gives more detailed information about our clock and our reference clock. The

fields in Figure 3.6 have the following meanings:

•	 Reference ID: ID and name/IP of the server that the system is synchronized with.

•	 Stratum: Our stratum level, which means the number of hops we need to take to reach

a stratum 1 clock. In this example, our synchronized server is a stratum 3 clock, because

we are connecting to a stratum 2 server.

•	 Ref time: Time used in the last sync.

•	 System time: When running in normal mode (without time skip), this references how

far the system is away, or behind, from the reference clock.

•	 Last offset: Estimated offset on the last clock update (positive indicates that our local

time was ahead of our source).

•	 RMS offset: Long-term average of the offset value.

•	 Frequency: The rate at which the system clock would be wrong if chronyd were not fixing

it, expressed in parts per million.

•	 Residual freq: Reflects any difference between the measurements for the current ref-

erence clock.

•	 Skew: Estimated error on the frequency.

•	 Root delay: Total of network delays to the stratum 1 synchronized server.

•	 Root dispersion: Total dispersion accumulated through all the computers connected

to the stratum 1 server we’re synchronized to.

Managing Regular Operations with Tools120

•	 Update interval: Interval between the last two clock

updates.

•	 Leap status: Can be Normal, Insert, Delete, or Not

synchronized.

This last part, Leap status, is pretty interesting as it takes care

of adjusting the leap seconds assigned each year to make the

synchronized clock (Universal Time Clock, or UTC for short)

also synchronized with the rotation of the earth. Wikipedia has

a very interesting page about it: https://en.wikipedia.org/

wiki/Leap_second.

Don’t underestimate the

information sources you

have at your fingertips.

Remember that when

preparing for SCA exams,

the information avail-

able in the system can be

checked during the exam:

man pages, documenta-

tion included with the

program (/usr/share/

doc/packages/), and so

on. For example, more de-

tailed information about

each of the aforemen-

tioned fields in the list

can be found via the man

chronyc command.

To configure the client with additional options other than the

ones provided during installation or via the kickstart file, we can

edit the /etc/chrony.conf file.

Let’s see how to convert our system into an NTP server for our

network.

The chrony NTP server
As we introduced earlier, chrony can also be configured as a server

for your network. In this mode, our system will be providing accu-

rate clock information to other hosts without consuming external

bandwidth or resources from higher-stratum servers.

This configuration is performed via the /etc/chrony.conf file as

well, where we will be adding a new directive, allow:

Allow NTP client access from all hosts

allow all

This change enables chrony to listen to all host requests. Alter-

natively, we can define a subnet or a host to listen to, such as

allow 1.1.1.1. More than one directive can be used to define

the different subnets. Alternatively, you can use the deny directive

to block specific hosts or subnets from reaching our NTP server.

Of course, we will also need to add the ntp service in the firewall

to enable connectivity, as you will learn later in Chapter 9, Securing

Network Connectivity with firewalld.

https://en.wikipedia.org/wiki/Leap_second
https://en.wikipedia.org/wiki/Leap_second

Chapter 3 121

Serving time starts from the base that our server is already synchronized with an external NTP

server. But let’s think about an environment without connectivity. In this case, our server will

not be connected to an external source, and it will not serve time. chrony includes a way to define

a fake stratum for our server. This is done via the local directive in the configuration file. This

allows the daemon to get a higher local stratum so that it can serve the time to other hosts, as

in this example:

local stratum 3 orphan

With this directive, we’re setting the local stratum to 3, and additionally, we’re using the orphan

option, which enables a special mode in which all servers with equal local stratum are ignored

unless no other source is selectable, and its reference ID is smaller than the local one. This means

that we can set several NTP servers in our disconnected network, but only one of them will be

the reference.

Now that we have covered time synchronization, we are going to dive into resource monitoring,

and later we’ll check logging. All of it is very related to our time reference for the system.

Checking system resources: memory and disk (free,
df, and ps)
In this section, you will check the availability of system resources such as memory and disk.

Keeping a system running smoothly means using monitoring, so that we can check that the ser-

vices are running and the system provides the resources for them to do their tasks.

There are simple commands to monitor the most basic use cases:

•	 Disk

•	 CPU

•	 Memory

•	 Network

And, of course, that includes several ways of monitoring, such as one-shot monitoring or contin-

uous monitoring, or monitoring only for a period to better diagnose performance.

Memory
Memory can be monitored via the free command. It provides complete details on how much RAM

and swap are available and in use. It also indicates how much memory is free, as well as memory

in use that could be liberated immediately, such as shared buffers or caches.

Managing Regular Operations with Tools122

Linux tends to use all available memory, and it is normal. The unused RAM is directed toward

cache or buffers, and memory pages that are not used are swapped out to disk if available. Let’s

look at an example:

free

 total used free shared buff/cache
available

Mem: 4013924 451868 3306860 4776 482664
3562056

Swap: 2098152 0 2098152

In this output, we see that the system has a total of 4,014 MB of RAM, and it’s using no swap and

some memory for buffers (~4K). This system is not swapping heavily as it’s almost idle (we’ll

check the load average later in this chapter), so we should not be concerned about it.

When RAM usage gets high and there’s no more swap available, the kernel includes a protection

mechanism called OOM-Killer (which stands for Out-of-Memory Killer). It kills processes based

on a set of rules to bring the system to a functional status. The way it determines which processes

shall be killed is based on time in execution, resource usage, and so on. This, however, comes at

a cost, as the kernel just knows about processes that may have gone out of control, but the killer

may kill databases and web servers, and leave the remaining system unstable. For production

servers, it is sometimes usual to either tune the values for some critical process so that those are

not killed or to cause a system crash instead of letting the OOM-Killer start killing processes in

an uncontrolled way.

A system crash is used to collect debug information that can be later analyzed via a dump that is

stored with the information that caused the crash, as well as a memory dump that can be later

diagnosed.

We will review this topic later in the troubleshooting section “Finding logs, using journald, and

reading log files, including log preservation and rotation”. Let’s move on to checking the disk

space in use.

Disk space
Disk space can be checked via the df tool. df provides output with data for each filesystem, indi-

cating the filesystem, size, available space, percentage of utilization, and mount point.

Chapter 3 123

Let’s check it in our example system:

df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/vda2 31447040 2245012 28874636 8% /

devtmpfs 4096 0 4096 0% /dev

tmpfs 2006960 0 2006960 0% /dev/shm

tmpfs 802788 768 802020 1% /run

/dev/vda2 31447040 2245012 28874636 8% /.snapshots

/dev/vda2 31447040 2245012 28874636 8% /boot/grub2/i386-pc

/dev/vda2 31447040 2245012 28874636 8% /opt

/dev/vda2 31447040 2245012 28874636 8% /root

/dev/vda2 31447040 2245012 28874636 8% /srv

/dev/vda2 31447040 2245012 28874636 8% /boot/grub2/x86_64-efi

/dev/vda2 31447040 2245012 28874636 8% /home

/dev/vda2 31447040 2245012 28874636 8% /usr/local

tmpfs 2006964 0 2006964 0% /tmp

/dev/vda2 31447040 2245012 28874636 8% /var

tmpfs 1024 0 1024 0% /run/credentials/getty@
tty1.service

tmpfs 401392 4 401388 1% /run/user/0

tmpfs 1024 0 1024 0% /run/credentials/systemd-
journald.service

Using it, it’s easy to first focus on filesystems with higher utilization and less free space to prevent

issues.

Let’s check CPU consumption next.

If a file is being written, for example, by a process logging its output, removing the

file will just unlink the file from the filesystem, but as the process still has the file

handle open, the space is not reclaimed until the process is stopped. In case of critical

situations where disk space must be made available as soon as possible, it’s better

to empty the file via a redirect, such as echo "" > filename. This will recover the

disk space immediately while the process is still running; doing it otherwise with

rm will require the process to be finalized.

Managing Regular Operations with Tools124

CPU
For monitoring the CPU, we can make use of several tools, such as ps. Let’s run the ps waux |

less command:

Figure 3.7 – Output of the ps aux | less command (every process in the system)

The ps command is the de facto standard for checking which processes we’re running, as well as

some of the resource consumption usage. We are sending the output to the less program to be

able to scroll through it (you can press the arrow keys to scroll or press Q to quit).

As for any other command, we could use lots of pages in this book for all the different command

arguments we could use (so again, check the man page for details), but as a rule, try to learn some

that aid in basic usage or the ones that are more useful for you. For anything else, check the manual.

For example, ps aux provides enough information for normal usage (every process in the system).

As an improvement to the previous tool, the top tool, as shown in Figure 3.8, refreshes the screen

regularly and can sort the output of running processes by several keys, such as CPU usage, mem-

ory usage, and so on.

Chapter 3 125

In addition, top also shows a five-line summary of memory usage, load average, running processes,

and so on, as can be seen here:

Figure 3.8 – The output from executing top on our test system

CPU usage is not the only thing that may keep our system sluggish; let’s learn a bit about load

average indicators.

Load average
The load average is usually provided as a group of three numbers. For example, load average:

1.78, 0.39, 0.13, which is the average calculated for 1, 5, and 15 minutes, respectively, indicates

how busy a system is. The higher it is, the worse it will respond. The values compared for each

time frame give us an idea of whether the system load is increasing (higher values in 1 or 5 min-

utes, and lower in 15), or whether it is going down (higher at 15 minutes, and lower at 5 and 1),

so it becomes a quick way to get an idea of whether something happened or it is ongoing. If a

system usually has a high load average (number over the available cores in the system), it would

be a good idea to dig a bit deeper into the possible causes (too much demand for its power, low

resources available, etc.).

Now that we have covered the basics, let’s move on to the extra checks we can perform on our

system resources usage.

Managing Regular Operations with Tools126

Other monitoring tools
For monitoring network resources, we can check the packages sent/received for each card via

the ip command, for example, by running ip -s link show, and match the values received for

transmitted packages, received, errors, and so on.

When the goal is to perform a more complete monitoring, we should ensure that the sysstat

package is installed. It includes some interactive tools, such as iotop, which can be used to check

disk performance, but the most important thing is that it also sets up a job that will collect sys-

tem performance data on a periodic basis (the default is every 10 minutes) that will be stored in

/var/log/sa/.

To record an evolution of system resources, SUSE Linux Enterprise Server 16 includes Performance

Co-Pilot (pcp and, optionally, pcp-gui packages), which can be set up for more powerful options.

Just bear in mind that pcp requires us to also start the data collector on the system.

SUSE Linux Enterprise Server 16 also includes Cockpit, which is a package providing a set of tools

that enable web management for the system, and it is also part of other products via plugins that

extend the functionality. There are more details about it in Chapter 8, Enabling and Using Cockpit.

The web service provided by Cockpit can be reached at your host IP at port 9090. So, you should

access https://_host_ip_:9090 to get the login screen where we can use our system credentials

to log in.

Chapter 3 127

After logging in, we can see a dashboard with relevant system information and links to other

sections, as shown in the following screenshot:

Figure 3.9 – Cockpit screen after login with a system dashboard

Cockpit, as you can see, includes several tabs that can be used to view the status of the system

and even perform some administration tasks, such as SELinux, Software updates, Subscriptions,

and so on.

Managing Regular Operations with Tools128

For example, we can check the system graphs on performance, as shown in the following screen-

shot:

Figure 3.10 – Cockpit graphs in the dashboard for usage graphs

Cockpit allows checking the service status, package upgrade status, plus other configuration

settings from a graphical interface that can also connect remotely to other systems, so that those

can be selected from the lateral menu on the left.

There are better tools suited for large-deployment monitoring and management, such as SUSE

Multi-Linux Manager, so it is important to get used to the tools we have for troubleshooting

and simple scripts we can build, combining what we’ve learned so far to quickly generate hints

about things that require our attention.

We have covered some of the basics for checking resource usage. Let’s check now on how to find

the information about the running services and errors we can review.

Chapter 3 129

Finding logs, using journald, and reading log files,
including log preservation and rotation
The skills you will learn in this section are intended to help you review system status via logs.

Previously in this chapter, we learned about managing system services via systemd and checking

service status. Now, we need to review its functioning and also review logs for other services.

Traditionally, the different daemons and system components were used to create log files under

the /var/log/ folder. They used the name of the daemon or service as the name of the log file, or

if the service was used to create several logs, do so inside a folder with the name of the service

(for example, httpd or samba).

In SUSE Linux Enterprise Server 16, the system log daemon, syslogd or rsyslogd, has been re-

placed by its systemd partner, named systemd-journald.service, which also stores logs. But

instead of using the traditional plain-text format, it uses a binary format that can be queried via

the journalctl command. Two other loggers, klogd for kernel messages and syslogd for other

services, are still offered in the distribution as complements for log management.

It’s really important to get used to reading the log files, as it’s the basis for troubleshooting, so

let’s get into detail about general logging and how to use it.

Logs contain status information for the services that generate them; they might have some com-

mon formatting and many times can be configured, but tend to use several common elements,

such as the following:

•	 Timestamp

•	 Module generating the entry

•	 Message

Here is an example:

Apr 01 07:36:47 sles16-692807 sshd[50197]: Invalid user admin from
49.232.135.77 port 47694

In this case, we can see that someone attempted to log in to our system as the admin user from

the IP address 49.232.135.77.

Managing Regular Operations with Tools130

We can correlate that event with additional logs, such as the ones for the login subsystem via

journalctl -u systemd-logind. In this example, we cannot find any login for the admin user

(expected as the admin user was not defined in this system).

Additionally, we can see the name of the host (sles16-692807), the service generating it (sshd),

the Program identifier (PID) (50197), and the message logged by that service.

A very interesting function of journalctl is using the --follow option. Running the journalctl

--follow command will show a stream of logs on your screen, until stopped by pressing Ctrl + C:

Figure 3.11 – Excerpt of journalctl --follow

In the preceding example, we can see how the system ran some commands following a similar

output to the initial lines. For example, we can see how the Secure Shell daemon, sshd, has been

stopped and started.

PID is a number that the system assigns to every running process. The kill command

can help you gently or forcefully stop any process in the system. It is very interesting

to play with a system by stopping processes and seeing what happens.

Chapter 3 131

Let’s see a list of important logs that are available in a standard system installation (note that

the filenames are relative to the /var/log folder):

•	 journal: Binary storage for journald files. It can be accessed using journalctl.

•	 boot.log: Stores the messages emitted by the system during boot. It might contain escape

codes used to provide colorized output.

•	 audit/audit.log: Contains the stored messages generated by the kernel audit subsystem.

•	 zypper.log: Logs generated by the zypper package manager, such as cache refreshes,

and so on.

•	 firewalld: Output generated by the firewalld daemon.

•	 mail.info: Logs for the mail subsystem. When enabled, attempts to deliver messages or

to receive them will be stored here. It’s common practice to configure outgoing mail from

servers so that system alerts or script outputs can be delivered.

•	 snapper.log: Keeps logs of the filesystem snapshots. By default, every installation of

software done with zypper will create a snapshot.

Additional log files might exist depending on the services installed, installation method, and so

on. It is very important to get used to the available logs and, of course, to review their contents

to see how the messages are formatted, how many logs are created by day, and what kind of

information is being logged.

Using the kind of information logged and the amount, we will get hints on how to configure each

daemon to adjust the log level between just showing errors or being more verbose for debugging

issues, and configure the required log rotation to avoid risking system stability because all the

space has been consumed by logs.

Log rotation
During regular system operation, a lot of daemons are in use, and the system itself is generating

the logs used for troubleshooting and system checks.

Some services might allow you to define the log file to write to based on the date, but usually,

the standard is to log to a file named like the daemon in the /var/log directory, for example, /

var/log/apache2. Writing to the same file indefinitely will cause the file to grow until the drive

holding the logs is filled, which might not make sense, as after some period (sometimes under

company-defined policies), logs are no longer useful.

Managing Regular Operations with Tools132

The logrotate package provides a script with a logrotate.timer that simplifies the log rotation.

It is configured via /etc/logrotate.d, and the default configuration is in /usr/etc/logrotate.

conf and is executed on a daily basis as follows:

Figure 3.12 – Example listing of logs and rotated logs (using date extension)

If we check the contents of the configuration file, we can see that it includes some file definitions

either directly there or via drop-in files in the /etc/logrotate.d/ folder, allowing each program

to drop its own requirements without affecting others when packages are installed, removed, or

updated.

Why is this important? Because if you remember one of the tips shared earlier in this chapter

(while speaking about disk space), if logrotate were to just delete the files and create a new one,

the actual disk space would not be freed, and the daemon writing to the log would continue to

write to the file it was writing to (via the file handle). To overcome this, each definition file has the

ability to define a post-rotation command that signals the process about the log rotation, so that

it can close and then reopen the files it uses for logging. Some programs might require a signal,

such as kill -SIGHUP PID, or a special parameter on execution, such as chronyc cyclelogs.

With the preceding definitions, logrotate will be able to apply the configuration for each service

and, at the same time, keep the service working in a sane state.

Chapter 3 133

Configuration can also include special directives such as the fol-

lowing:

•	 missingok

•	 nocreate

•	 nopytruncate

•	 notifempty

You can find out more about them (and others) in the man page

for logrotate.conf.

Yes, some packages also

include a man page for the

configuration files. So try

checking man logrotate.

conf to get the full details!The remaining general configuration in the main file allows us to

define some common directives, such as how many days of logs

to keep, whether we want to use the date in the file extension for

the rotated log files, whether we want to use compression on the

rotated logs, how frequently we want to have rotation executed,

and so on.

Let’s see it with some examples.

The following example will rotate on a daily basis, keep 30 rotated

logs, compress them, and use an extension with the date as part

of the trailing filename:

rotate 30

daily

compress

dateext

In this new example, it will keep four logs rotated on a weekly

basis (so four weeks) and will compress the logs, but it will use

a sequence number for each rotated log (that means that each

time a rotation happens, the sequence number is increased for

the previously rotated logs, too):

rotate 4

weekly

compress

Managing Regular Operations with Tools134

One of the advantages of this approach (not using dateext) is that the log naming is predictable,

having daemon.log as the current one, daemon.1.log as the prior one, and so on, making it easier

to script log parsing and processing.

Summary
In this chapter, we learned about systemd and how it takes care of booting system-required

services in an optimized way. Also, we learned how to check service status; enable, disable, start,

and stop the mentioned services; and how to make our system boot into different boot targets

we can define our system to boot into.

Time synchronization was introduced as a must-have feature in our systems to ensure proper

service function, along with how to determine the status of our system clock, and how to act as

a clock server for our network.

We also used system tools to monitor resource usage and to check the logs created by our system

to find out about the functional status of the different tools and how we can ensure that logs are

properly maintained so that older entries are discarded when they are no longer relevant.

In the next chapter, we will dive into securing the system with different users, groups, and per-

missions.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

https://www.packtpub.com/unlock

4
Securing the System with Users,
Groups, and Permissions

Security is a key part of system management. Understanding the concepts well can be the differ-

ence between keeping user data safe and providing unsafe access to resources.

In this chapter, we will review the basics of security in SUSE Linux Enterprise Server 16. We will

add new users and describe their attributes. We will learn about groups and how we manage their

users. We will also see how to handle user passwords, locking and/or restricting user access, and

forcing updates. We will use sudo to achieve admin privileges without sharing the root account

(up to the point where the root account can be disabled). We will also take a deeper look into the

meaning of file permissions and how to change them. We will also learn how to enable users to

run commands as a different user or group and how to simplify group collaboration in directories.

An issue in permissions could mean providing access to parts of the system to an attacker that

could help them escalate privileges. It is important to know how to handle permissions well to

ensure defense-in-depth protection for our systems.

The following topics will be covered:

•	 Creating, modifying, and deleting local user accounts and groups

•	 Managing groups and reviewing assignments

•	 Adjusting password policies

•	 Configuring and using sudo for administrative tasks

•	 Checking, reviewing, and modifying file permissions

•	 Using special permissions

Let’s take our first steps in the world of permissions and security with user accounts and groups.

Securing the System with Users, Groups, and Permissions136

Creating, modifying, and deleting
local user accounts and groups
User accounts are the way the system identifies users of the sys-

tem. One of the first tasks that a system administrator must do

when preparing a system is to create new user accounts for the

people accessing the system. In this section, we will review how

local accounts are created and deleted, as well as how they are

assigned to groups.

Let’s create a new user account in the system. We will use the

useradd command to add user01 to the system:

geeko:~ # useradd user01

geeko:~ # grep user01 /etc/passwd

user01:x:1001:1002::/home/user01:/bin/bash

geeko:~ # id user01

uid=1001(user01) gid=1002(user01)
groups=1002(user01)

geeko:~ # grep user01 /etc/shadow

user01:!:20179:0:99999:7:::

We have now created a new user and a new group for the user. In

this case, their userID and groupID numbers are different (because

there was a group created before with that ID).

To be able to add users, we need administrative

privileges. In the current configuration, we do that

by running the commands as root.

A more portable and in-

dependent way to check

passwd is to run getent

passwd user01, which

will give the same out-

put. For shadow, too, we

can use getent shadow

user01.

Chapter 4 137

The account is created using the default options configured on the system, which are the following:

•	 No password assigned: The new user will not be able to log in using a password (the

password file in the shadow file is !). You can still use the account by switching from root

using su because root does not need to provide the password. We will see how to add a

password to the user in this section.

•	 User ID (UID): The first number over 999 available. In the command we ran before, for

user01, the UID is 1001.

•	 Group ID (GID): The first number available over 999. In this case, the GID is 1002.

•	 Description: We didn’t provide a description, so the field is empty.

•	 Home: A new home directory is created in /home/$USER; in this case, /home/user01. It will

be the default directory for new logins for the user and where personal preferences and

files will be stored. The directory is not empty because initial contents are copied from /

etc/skel and /usr/etc/skel.

•	 Shell: The default shell is bash.

Once the user has been set up, we can add (or change) the password by running, as root, the

passwd command followed by the username:

geeko:~ # passwd user01

New password: suse

BAD PASSWORD: The password is shorter than 8 characters

Retype new password: suse

passwd: password updated successfully

Now the user has a new password assigned. Note two things:

•	 The root user can change the password of any user without knowing the previous one

(a full password reset). This is useful when a user comes back from holidays and doesn’t

remember their password.

•	 The actual password, suse, is not shown on the screen, so nobody looking at it can read

it. The password does not follow the configured rules because it is too short. However, as

root, we can still assign it. A normal user would have this new password rejected.

The command is passwd, not password.

Securing the System with Users, Groups, and Permissions138

You can use different options to customize how users are created.

The useradd command has the following options:

•	 -u or --uid: Assign a specific UID to the user.

•	 -g or --gid: Assign a primary group to the user. It can be

specified by number (GID) or by name. The group needs

to be created first.

•	 -G or --groups: Make the user part of other groups by pro-

viding a comma-separated list of the groups they need to

be part of.

•	 -c or --comment: Provide a description for the user, speci-

fied between quotes (") if you want to use spaces.

•	 -d or --home-dir: Define the home directory for the user.

•	 -s or --shell: Assign a custom shell to the user.

•	 -p or --password: A way to provide a password to the

user. The password should already be encrypted to use

this method.

•	 -r or --system: A way to create a system account instead

of a user account.

It is bad practice to use

the -p option on the

command line because

there are ways to capture

the encrypted password,

and history will show it

as part of the command.

Please use passwd instead.

What if we need to change any of the user’s properties, such as the

description? The tool for that is chfn. Let’s update the description

of user01:

geeko:~ # chfn -f "User 01" user01

geeko:~ # grep user01 /etc/passwd

user01:x:1001:1002:User 01:/home/user01:/bin/
bash

We can also pass all the options to the useradd command so we

don’t need to create users in multiple steps.

Let’s create user02 with options:

geeko:~ # useradd --uid 1002 --groups wheel \

> --comment "user 02" --home-dir /home/user02 \

> --shell /bin/bash user02

geeko:~ # grep user02 /etc/passwd

Chapter 4 139

user02:x:1002:1003:user 02:/home/user02:/bin/
bash

geeko:~ # id user02

uid=1002(user02) gid=1003(user02)
groups=1003(user02),497(wheel)

Groups simplify giving privileges to users. A user is always a mem-

ber of a group, its primary group, and can also be a member of

other groups, which are called secondary groups. The information

about the primary group is stored in /etc/password, with the

user data, and all the information about groups is stored in the /

etc/groups file.

Let’s create a group called finance using the groupadd command

in order to learn more about groups:

geeko:~ # groupadd finance

geeko:~ # grep finance /etc/group

finance:x:1004

We can use usermod to add our user01 and user02 users to the

finance group:

geeko:~ # usermod -aG finance user01

geeko:~ # usermod -aG finance user02

geeko:~ # grep finance /etc/group

finance:x:1004:user01,user02

When the command is too long to fit on a single line,

you can continue on a new line using \ as the last

character on the line, followed by Enter.

We are using the -aG op-

tion to add the user to the

group instead of modify-

ing the groups the user

belongs to. You can also

modify the groups file it-

self using vigr and check

that it was properly edit-

ed using grpck.

We can delete users, updating all secondary groups with the

userdel command:

geeko:~ # userdel user01

geeko:~ # grep user01 /etc/passwd

geeko:~ # id user01

id: 'user01': no such user

Securing the System with Users, Groups, and Permissions140

geeko:~ # grep user01 /etc/group

geeko:~ #

geeko:~ # id user02

uid=1002(user02) gid=1003(user02)
groups=1003(user02),497(wheel),1004(finance)

geeko:~ # ls /home

user user01 user02

geeko:~ # rm -rf /home/user01

We needed to manually delete the home directory and any files created by the user. This way of

removing a user is good if we want to keep their data for future use.

We can automatically delete the home folder using the -r option. Let’s try it with user02:

geeko:~ # su user02

user02@geeko:/tmp> touch user02_data; exit

geeko:~ # userdel -r user02

geeko:~ # ls /home

user

geeko:~ # id user02

id: 'user02': no such user

geeko:~ # ls -l /tmp/user02_data

-rw-r--r--. 1 1002 1003 0 Apr 2 06:49 /tmp/user02_data

We can remove the finance group with the groupdel command:

geeko:~ # groupdel finance

geeko:~ # grep finance /etc/group

We have created and modified users and groups in SLES using the command line. Let’s learn how

to manage groups.

The home directory was deleted, but all other files in the system remain. Notice how

the UID and GID of the files are still the same, even if the username cannot be iden-

tified. Think of what would happen if you created a new user with the same UID

and GID.

Chapter 4 141

Managing groups and reviewing assignments
We have seen how to create a group with groupadd and delete it with groupdel. Let’s now see

how to modify a group with groupmod.

We are going to create a group so we can work with it. Let’s create a group called acounting by

running the following:

geeko:~ # groupadd -g 1099 acounting

geeko:~ # tail -n1 /etc/group

acounting:x:1099:

As you can see, we misspelled the name; it should have been accounting. Let’s fix the name and

add some user accounts. We modify a group using groupmod:

[root@geeko ~]# groupmod -n accounting acounting

[root@geeko ~]# tail -n1 /etc/group

accounting:x:1099:

Now, we’ve seen how to modify a group’s name. We can modify not just the name but also the

GID by using the -g option:

geeko:~ # groupmod -n accounting acounting -g 1100

geeko:~ # tail -n1 /etc/group

accounting:x:1100:

We can see a list of secondary groups assigned to a user by running the groups command:

geeko:~ # groups user

user : user wheel

This should be enough for basic management of users and groups in the system. Let’s move on

and discuss password policies.

Adjusting password policies
As was mentioned in Chapter 2, Running Basic Commands and Simple Shell Scripts, users are stored

in the /etc/passwd file, while the encrypted passwords, or password hashes, are stored in the /

etc/shadow file. This allows the shadow file to have stronger access restrictions.

Securing the System with Users, Groups, and Permissions142

Let’s look at the stored hash for the user in /etc/shadow:

geeko:~ # grep user /etc/shadow

user:$6$1mA1oW2ggLxTTmUu$AxSkeMLi/iPZZ/
sADFEkpxvbtqh3X0.2feKNGZ7vtrllhRwC9uRvsbk/.mU2KK2zILHtCx1N/
mrA2Phullkz0.:20180:0:99999:7:3:19113:

As with the password file, the data stored in /etc/shadow has one entry per line, and the fields

are separated by colons (:):

•	 user: Account name. It must be the same one as in /etc/passwd.

•	 $6$1mA1oW2ggLxTTmUu$AxSkeMLi/iPZZ/sADFEkpxvbtqh3X0.2feKNGZ7vtrllhRwC9uRvs

bk/.mU2KK2zILHtCx1N/mrA2Phullkz0.: Password hash. It contains three parts separated

by $:

•	 $6: The algorithm used to encrypt the file. In this case, the value 6 indicates that

it is SHA-512. The number 1 is for the old, now insecure, MD5 algorithm.

•	 $1mA1oW2ggLxTTmUu: The random salt part. This is a token used to improve pass-

word encryption. It is added to the real password to make sure that the same

password does not generate the same hash.

•	 $AxSkeMLi/iPZZ/sADFEkpxvbtqh3X0.2feKNGZ7vtrllhRwC9uRvsbk/.

mU2KK2zILHtCx1N/mrA2Phullkz0.: The encrypted password hash. Using the salt

and the SHA-512 algorithm, this token is created. When the user validates (i.e.,

when logging in again), the process is run again. If the same hash is generated,

the password is validated, and access is granted.

•	 20180: The time and date when the password was last changed. The format is the number

of days since 1970-01-01 00:00 UTC (this date is also known as the epoch).

A hashing algorithm is a one-way function that generates a precise string of char-

acters, or a hash, from a provided piece of data. The generated hash is the same for

the same data, but the original data is almost impossible to recreate from the hash.

This makes hashes perfect for storing sensitive data that needs to be secure while

allowing validation, such as passwords or the integrity of a downloaded file.

Chapter 4 143

•	 0: Minimum number of days until the user can change the password again.

•	 99999: Maximum number of days until the user has to change the password again. If this

is empty, it won’t expire.

•	 7: Number of days before expiry that the user will be warned that the password is about

to expire.

•	 3: Number of days within which the user can still log in even when the password has

expired.

•	 19113: Date on which the password should expire. If this is empty, it won’t expire on a

specific date.

•	 <empty>: The last colon is left to allow the easy addition of new fields if required.

How do we change the expiration dates for passwords? The tool for this is chage, short for change

age. Let’s first review the options that can be used in the same order as they are stored in /etc/

shadow:

•	 -d or --lastday: The time and date when the password was last changed. The format for

this is YYYY-MM-DD.

•	 -m or --mindays: Minimum number of days until the user can change the password again.

•	 -W or --warndays: Number of days the user will be warned that the password is about to

expire.

•	 -I or --inactive: Number of days, once the password has expired, that will have to pass

before the account is locked.

•	 -E or --expiredate: Date after which the user’s account will be locked. The format for

this is YYYY-MM-DD.

To convert the date field to a human-readable date, you can run the following com-

mand: date -d '1970-01-01 UTC + 20180 days'.

Securing the System with Users, Groups, and Permissions144

Let’s put everything we have learned about how to manage a user to the test. First, we create the

usertest account:

geeko:~ # useradd usertest

geeko:~ # grep usertest /etc/shadow

usertest:!:20180:0:99999:7:::

We have used the defaults. The exclamation mark, !, is not a password hash; it’s the way the

system is signaling that the password is not set. Let’s change the password to see what changes.

Use any password you like:

geeko:~ # passwd usertest

New password:

BAD PASSWORD: The password is shorter than 8 characters

Retype new password:

passwd: password updated successfully

geeko:~ # grep usertest /etc/shadow

usertest:6Y8hnzniOlbGrErkH$gi.jevhrmubLmGOzG4TSn.
KYh.E.iBifTa2OuITejCujPkBfDXLuTJI.IJEKhDdDCRE5jeUxRT9A5CG.
miBA8.:20180:0:99999:7:::

The password hash has been created, and the date for the last change is the current date. Let’s

establish some options:

geeko:~ # grep usertest /etc/shadow

usertest:6Y8hnzniOlbGrErkH$gi.jevhrmubLmGOzG4TSn.
KYh.E.iBifTa2OuITejCujPkBfDXLuTJI.IJEKhDdDCRE5jeUxRT9A5CG.
miBA8.:20180:0:99999:7:3:21914:

geeko:~ # date -d '1970-01-01 UTC + 21915 days'

Tue Jan 1 01:00:00 CET 2030

The changes in /etc/shadow correspond, in fact, with the values specified for chage. We can check

the changes with the –l option of chage:

geeko:~ # chage -l usertest

Last password change					 : Apr 02, 2025

Password expires					 : never

Password inactive					 : never

Account expires						 : Dec 31, 2029

Minimum number of days between password change		 : 0

Maximum number of days between password change		 : 99999

Number of days of warning before password expires	 : 7

Chapter 4 145

We can apply those changes by default by modifying the defaults in a configuration file. Let’s edit

/etc/login.defs and find the section where the most common changes are:

Password aging controls:

#

#	 PASS_MAX_DAYS	 Maximum number of days a password may be used.

#	 PASS_MIN_DAYS	 Minimum number of days allowed between password
changes.

#	 PASS_MIN_LEN	 Minimum acceptable password length.

#	 PASS_WARN_AGE	 Number of days warning given before a password expires.

#

PASS_MAX_DAYS	 99999

PASS_MIN_DAYS	 0

PASS_MIN_LEN	 5

PASS_WARN_AGE	 7

Please take some time to review the options in /etc/login.defs.

How do we lock the account of a user who has temporarily left the company? We could delete the

account and, if we are not careful, also delete the files in its home directory, as well as password

hashes and group info. We would then lose that data forever. We can lock the account instead

with the usermod command and the–L option for lock. Let’s see how it works. First, let’s log in

to the system:

Figure 4.1 – The usertest user account logging in to the system

Securing the System with Users, Groups, and Permissions146

Now, let’s lock the account:

geeko:~ # usermod -L usertest

geeko:~ # grep usertest /etc/shadow

usertest:!6Ffa5p9r7O58yHpkG$c1mAPBGQxtv8sI.yFLdogINCP6pJxfISlIsU/
IKWfXhFtTAAT4B0XKqyssK0W521hHyivyMR4wedbbNqJiIeW.:20185:0:99999:7:3:21914:

Notice that a ! character has been added before the password hash. Through this, we understand

that the hash is incorrect, signaling that the account is locked. Let’s try to log in again:

Figure 4.2 – The usertest user account not being able to log in to the system

The account can be unlocked by using the –U option:

geeko:~ # usermod -U usertest

geeko:~ # grep usertest /etc/shadow

usertest:6Ffa5p9r7O58yHpkG$c1mAPBGQxtv8sI.yFLdogINCP6pJxfISlIsU/
IKWfXhFtTAAT4B0XKqyssK0W521hHyivyMR4wedbbNqJiIeW.:20185:0:99999:7:3:21914:

Now, you can see that the ! character has been removed. Feel free to try logging in again.

Another common use case is when you want users to access resources on the system, such as

having a network shared directory (that is, via NFS or CIFS, as will be explained in Chapter 12,

Managing Local Storage and Filesystems), but you do not want them to be able to run commands

on the system. For that, we can use a very special shell: the nologin shell. Let’s assign that shell

to the usertest user account using usermod:

[root@geeko ~]# usermod -s /sbin/nologin usertest

[root@geeko ~]# grep usertest /etc/passwd

usertest:x:1001:1001::/home/usertest:/sbin/nologin

[root@geeko ~]# su - usertest

To fully lock the account, not just prevent logging in with a password (there are other

mechanisms), you need to set the expiry date to 1.

Chapter 4 147

Last login: sun jan 24 16:18:07 CET 2021 on pts/0

This account is currently not available.

[root@geeko ~]# usermod -s /bin/bash usertest

[root@geeko ~]# su - usertest

Last login: sun jan 24 16:18:15 CET 2021 on pts/0

[usertest@geeko ~]$

Note that we are reviewing the changes in /etc/passwd this time as it is where the modification

is applied.

As you can see, it’s easy to set the values for password aging for any user, lock them, or restrict their

access to the system. Let’s move on to more administrative tasks and how to delegate admin access.

Configuring and using sudo access for administrative
tasks
Sharing the root password so that users can perform administrative tasks is a security risk and

can lead to the password being leaked. There is a way to delegate administrative access to users

in SLES without sharing the password for root. This can be done with a tool called sudo, which

stands for Super User Do.

With sudo, you can specify user privileges to make changes to the system. It can be simply pro-

viding full administrator access or going down to the level of assigning specific commands to

users and/or groups so they can execute some administrative tasks. sudo permissions can be very

granular. It is possible to configure sudo to identify users with their own password, instead of the

one for root, so you don’t need to share the root password with anybody else.

In some install methods, sudo is not included by default. If you want to install it, you can run the

following command as root:

zypper in sudo sudo-policy-wheel-auth-self

Let’s now continue by understanding the default configuration and how to change it.

Understanding sudo configuration
The tool has its main configuration file in /usr/etc/sudoers and the /usr/etc/sudoers.d/

folder. Let’s see what they say:

Defaults targetpw

ask for the password of the target user i.e. root

ALL ALL=(ALL) ALL

Securing the System with Users, Groups, and Permissions148

WARNING! Only use this together with 'Defaults
targetpw'!

User privilege specification

root ALL=(ALL:ALL) ALL

Read drop-in files from /etc/sudoers.d (the #
here does not mean a comment)

The first two lines configure all users to impersonate any other

user, including root, providing the target password and providing

access to every command. There is no restriction on what they

can do as long as they provide the root password when doing so:

ALL	 ALL=(ALL) 	 ALL

targetpw'!

The next line enables the user root to use sudo for any command

that needs to be run:

root ALL=(ALL:ALL) ALL

Inside the /usr/etc/sudoers.d/50-wheel-auth-self folder,

there is a configuration to enable the users in the wheel group to

be able to impersonate root for any command, providing their

own password instead of the password for root:

Defaults:%wheel !targetpw

%wheel ALL = (root) ALL

Please do not disable the

wheel group directive un-

less there is an important

reason to do so. This be-

havior is expected in SLES

by other programs, and

disabling it may cause

some problems.

As you should not change files inside /usr/etc directly, the con-

figuration specifies where to store the configuration if you need to

modify it. These lines enable the /etc/sudoers.d directory and /

usr/etc/sudoers.d as a source for configuration files:

@includedir /usr/etc/sudoers.d

@includedir /etc/sudoers.d

All the lines starting with

are considered com-

ments, and they are ig-

nored by the interpreter.

Chapter 4 149

The easiest way to grant full admin privileges is to add a user to the wheel group. An example of

how to modify the usertest account to make it an admin account is as follows:

[root@geeko ~]# usermod -aG wheel usertest

[root@geeko ~]# groups usertest

usertest : usertest wheel

The basic configuration is stored in the /usr/etc/sudoers file, with some modifications in files

in the /usr/etc/sudoers.d/ directory. You should not modify the files directly. The policy allows

the users in the wheel group to use sudo with their own password, unrestricted, while asking for

the root password from any users who are not part of the group.

Custom configuration must reside in /etc/sudoers.d/. Settings in custom configuration files take

precedence over those in the default files. As modifying configuration files directly is dangerous,

you should use visudo. This is a special tool to make configuration changes that verify that only

one user is editing. It also runs some basic syntax checks before updating files to make sure that

the system is always functional.

Using sudo to run admin commands
We will use the user account in these examples. As you may remember, in Chapter 1, Getting

SLES 16 Up and Running (Physical and Cloud), we enabled the checkbox in which we requested

the account to be the administrator. Under the hood, the account was added to the wheel group.

So, we can start using sudo to run admin commands.

The exception to this last rule is files that end with ~ or contain a . (dot) character.

For cloud instances, the root account does not have a valid password assigned. To

be able to manage the mentioned cloud instance, in some clouds, such as Amazon

Web Services (AWS), a user is created by default and added to the wheel group. In

the case of AWS, the default user account is ec2-user. In other clouds, a custom

user is also created and added to the wheel group.

Securing the System with Users, Groups, and Permissions150

Let’s log in with the user account and try to run an administrative command such as adduser:

geeko:/usr/etc # cd

geeko:~ # su - user

user@geeko:~> adduser john

-bash: adduser: command not found

user@geeko:~> /usr/sbin/useradd john

useradd: Permission denied.

useradd: cannot lock /etc/passwd; try again later.

user@geeko:~> sudo useradd john

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:

#1) Respect the privacy of others.

#2) Think before you type.

#3) With great power comes great responsibility.

For security reasons, the password you type will not be visible.

[sudo] password for user:

user@geeko:~> id john

uid=1002(john) gid=1002(john) groups=1002(john)

The first time you run sudo, you are shown a warning message. Then, we are asked for our own

password – because we are part of the wheel group, the one we have for the user running sudo.

Once the password is correctly typed, the command is run and registered in the system journal:

j Apr 15 10:55:42 geeko.suse.test sudo[12129]: user : TTY=pts/0 ;
PWD=/home/user ; USER=root ; COMMAND=/usr/sbin/useradd john

Sometimes, we want to have an interactive session to be able to type more than one command

without typing sudo again and again. To do that, we add the–i option. Let’s try it:

user@geeko:~> sudo –i

geeko:~ #

Once you have run sudo successfully, it will remember that validation for five minutes

by default, so you don’t have to type your password again and again if you need to run

more than one administrative command in a session. To increase it to 30 minutes, we

can add the following line using visudo: Defaults:USER timestamp_timeout=30.

Chapter 4 151

Now that we know how to use sudo, it would be good to see how to administer privileges in an

easy-to-automate way. For this, we will use the sudoers file.

sudoers is powerful, allowing you to define many things, including the environment variables

that are available when executing a command or the commands that are allowed. Let’s now move

on to customizing the configuration of sudo in the sudoers file.

Configuring sudoers
We saw the details of the default /usr/etc/sudoers file in the previous section. Let’s see a couple

of examples of how to make a more granular configuration.

Let’s start by making sudo run admin commands without requesting a password for the users

in the wheel group. We can run visudo /etc/sudoers/01_wheel_no_password and add the

following line:

%wheel ALL=(ALL:ALL) NOPASSWD: ALL

Save it. Note that there is a commented line in /usr/etc/sudoers with that configuration. Now,

let’s see the impact of the change we just made:

user@geeko:~> sudo useradd ellen

user@geeko:~> id ellen

uid=1003(ellen) gid=1003(ellen) groups=1003(ellen)

You can now create a file, with your favorite editor, to enable the new user account, ellen, to run

admin commands. Let’s create the /etc/sudoers.d/02_ellen_all file with this content:

user@geeko:~> sudo visudo /etc/sudoers.d/02_ellen_all

ellen ALL=(ALL) ALL

We are using the /etc/sudoers.d directory to extend the sudo configuration.

We will review the detailed configuration of sudoers here despite it not being part of the SCA

exam. As you can see, there are three fields, separated by spaces or tabs, to define policies in the

configuration files. Let’s review them:

•	 The first field is to specify who is affected by the policy:

•	 We can add users by simply putting the username in the first field

•	 We can add groups by using the % character before the name of the group in the

first field

•	 We can add # to use the UID, including %# for GIDs

Securing the System with Users, Groups, and Permissions152

•	 The second field is for where the policy applies:

•	 We have so far used ALL=(ALL:ALL) to specify everything

•	 In the first part of this field, we can define a group of computers to be run, such

as SERVERS=10.0.0.0/255.255.255.0

•	 In the second part, we can specify commands such as NETWORK=/usr/sbin/ip

•	 Between parentheses is the user account that can be used to run the command

and the groups, separated by a colon

•	 The third field is to specify which commands are allowed:

•	 The syntax goes like this:

user hosts = (run-as: group-as) commands

Let’s see an example:

Runas_AliasDB = oracle

Host_Alias SERVERS=10.0.0.0/255.255.255.0

Cmnd_Alias NETWORK=/ust/sbin/ip

pete SERVERS=NETWORK

julia SERVERS=(DB)ALL

In this section, we have seen how to provide administrative access to users in SLES and even

learned how to do it in a very granular manner. Let’s move on now to working with file permissions.

Checking, reviewing, and modifying file permissions
We have learned so far how to create users and groups and provide administrative privileges to a

subset of them. It’s time now to see how permissions work at the file and directory level.

As you’ll remember, in Chapter 2, Running Basic Commands and Simple Shell Scripts, we saw how

to see the permissions that are applied to a file. Let’s review them now and dive deeper.

You can get information about permissions using the long option of ls –l. Remember to run this

as root (or directly or by using sudo):

geeko:~ # sudo ls -l /usr/bin/bash

-rwxr-xr-x. 1 root root 1062960 Mar 10 10:38 /usr/bin/bash

geeko:~ # sudo ls -l /etc/passwd

-rw-r--r--. 1 root root 914 Apr 20 19:15 /etc/passwd

geeko:~ # sudo ls -ld /tmp

drwxrwxrwt. 9 root root 180 Apr 21 00:00 /tmp

Chapter 4 153

Remember that in Linux, everything is a file, including directories and special files.

There is a lot of information, but we are focusing on the first column, which describes file per-

missions. Let’s review the five different blocks that are in the output shown right above using /

usr/bin/bash as the example:

-rwxr-xr-x.

The blocks are as follows:

Block 1 Block 2 Block 3 Block 4 Block 5

- rwx r-x r-x .

Table 4.1 – Different permission blocks assigned to a file

Let’s discuss them in more detail:

•	 Block 1 is a type of file:

•	 Regular files with no special permissions are shown as -.

•	 Directories are identifiable by d.

•	 Symbolic links are identified by l. Hard links are still normal files, but with the

number of copies increased.

•	 Character devices are identified by c.

•	 Block devices are identified by b.

•	 Block 2 is the permissions for the user owning the file and consists of three characters:

•	 The first one, r, is the read permission assigned.

•	 The second one, w, is the write permission assigned.

•	 The third one, x, is the executable permission. (Note that the executable permission

for directories means being able to enter them.)

The file can be set up with special permissions for it as a different user or group, called

setuid or setgid, identified by s.

A special permission for directories so that the owner can only remove or rename their

own files and not those from other users, called a sticky bit, will appear as t.

•	 Block 3 is permissions for the group. It consists of the same three characters for read, write,

and execute (rwx). In this case, write is missing.

Securing the System with Users, Groups, and Permissions154

•	 Block 4 is the permissions for others. It also consists of the same three characters for read,

write, and execute (rwx) as before. As in the previous block, write is missing. You can see

that most of the special permissions are applied to this group, like the sticky bit in /tmp.

•	 Block 5 indicates that an SELinux context is being applied to the file. More on this topic

in Chapter 10, Keeping the System Hardened with SELinux.

We can change the permission for a file with the chmod command.

Let’s create a file:

user@geeko:~> touch file.txt

user@geeko:~> ls -l file.txt

-rw-r--r--. 1 user user 0 Apr 21 00:56 file.txt

As you can see, the file is created with your username as the owner, your main group as the group,

and a default set of permissions. The default set of permissions is defined by umask. In SLES, the

defaults for newly created file permissions are as follows:

•	 User: Read and write

•	 Group: Read

•	 Others: Read

The easiest way to change permissions using chmod is to specify the changes with three characters:

•	 The first one is who is affected by the changes:

•	 u: User

•	 g: Group

•	 o: Others

•	 a: All

•	 The second one is whether we want to add or remove permissions:

•	 +: Add

•	 -: Remove

•	 The third one is the permissions modified:

•	 r: Read

•	 w: Write

•	 x: Execute

Chapter 4 155

The third bit can also be a special bit, which is defined as follows:

•	 s: setuid when assigned to the user

•	 s: setgid when assigned to the group

•	 t: Sticky bit

If we want to add write permissions to the group, we can run the following:

user@geeko:~> chmod g+w file.txt

user@geeko:~> ls -l file.txt

-rw-rw-r--. 1 user user 0 Apr 21 00:56 file.txt

We can also remove read permissions from others with the following command:

user@geeko:~> chmod o-r file.txt

user@geeko:~> ls -l file.txt

-rw-rw----. 1 user user 0 Apr 21 00:56 file.txt

Using characters is simple, but it can be easier to define all the permissions for the different groups

in a single command. The permissions are stored in four octal digits (from 0 to 7). This means

that special permissions are stored in a digit, and the same happens for user, group, and others.

Let’s look at some examples:

Alphabetic Octal Description

-rwxr-xr-- 0754 User: read, write, execute

Group: read, execute

Others: read

-rw-r----- 0640 User: read, write

Group: read

Others: nothing

-r-------- 0400 User: read

Group: nothing

Others: nothing

Table 4.2 – Examples of file permissions

Securing the System with Users, Groups, and Permissions156

How does it work? We assign a number (power of 2) for each permission:

•	 Nothing: 0

•	 Execute: 20 = 1

•	 Write: 21 = 2

•	 Read: 22 = 4

When we add these values, we get the following:

rwx = 4 + 2 + 1 = 7 (in binary 111)

rw- = 4 + 2 = 6 (in binary 110)

r-x = 4 + 1 = 5 (in binary 101)

r-- = 4

--- = 0

The first digit is similar to user or group digits but uses 4 for set user ID, 2 for set group ID, and 1

for the sticky bit.

Let’s try it with some different permissions:

user@geeko:~> ls -l file.txt

-rwxr-xr-x. 1 user user 0 Apr 21 00:56 file.txt

user@geeko:~> chmod 0640 file.txt

user@geeko:~> ls -l file.txt

-rw-r-----. 1 user user 0 Apr 21 00:56 file.txt

user@geeko:~> chmod 0600 file.txt

user@geeko:~> ls -l file.txt

-rw-------. 1 user user 0 Apr 21 00:56 file.txt

New files are created with a combination of the permission 0777 for directories and 0666 for files

subtracting the umask. We can see the value as follows:

user@geeko:~> umask

0022

user@geeko:~> umask -S

u=rwx,g=rx,o=rx

Because they are combined, by default, files have the execute permissions removed (1), and all

of them have the write permission removed for everybody except the user. With this umask, 0022,

we are also removing write permissions for group and others (2).

Chapter 4 157

Changing the umask can make some scripts behave strangely and is not recommended, but let’s

see how it works by modifying it. Let’s start by using the most permissive umask, 0000, to see how

all read and write permissions are assigned to newly created files:

user@geeko:~> umask 0000

user@geeko:~> touch file2.txt

user@geeko:~> mkdir dir2

user@geeko:~> ls -ld file2.txt dir2

drwxrwxrwx. 1 user user 0 Apr 21 01:39 dir2

-rw-rw-rw-. 1 user user 0 Apr 21 01:39 file2.txt

The default gives full permissions (files never get executed by default). Let’s change it now to the

more restrictive umask for group and others:

user@geeko:~> umask 0077

user@geeko:~> touch file3.txt ; mkdir dir3

user@geeko:~> ls -ld file3.txt dir3

drwx------. 1 user user 0 Apr 21 01:42 dir3

-rw-------. 1 user user 0 Apr 21 01:42 file3.txt

If we try a higher number, it won’t work and will return an error:

user@geeko:~> umask 0088

-bash: umask: 0088: octal number out of range

Let’s go back to the defaults so we can continue practicing:

user@geeko:~> umask 0022

So far, we have been working with our own files and directories. Sometimes we need to create

a directory for a specific user or group, or to change the owner of a file. There are many times

when a bad option will create files or directories with the wrong permissions, and you need to

update them to make everything work again. chown or chgrp is used to change ownership of a

file to a new user or group. Let’s see how they work. Change into /var/tmp and create the folders

for finance and accounting:

user@geeko:/var/tmp> cd /var/tmp/

user@geeko:/var/tmp> mkdir finance

user@geeko:/var/tmp> mkdir accounting

user@geeko:/var/tmp> ls -ld finance/ accounting/

drwxr-xr-x. 1 user user 0 Apr 21 16:58 accounting/

drwxr-xr-x. 1 user user 0 Apr 21 16:58 finance/

Securing the System with Users, Groups, and Permissions158

Now, let’s create the groups for finance and accounting:

user@geeko:/var/tmp> sudo groupadd finance

user@geeko:/var/tmp> sudo groupadd accounting

groupadd: group 'accounting' already exists

We created the accounting group before, so the command complains, but it is not a problem

because the error was expected. Let’s change the group for each directory with chgrp. First, we

need to add the user to the group and log in again to see the changes:

user@geeko:/var/tmp> sudo usermod -aG accounting user

user@geeko:/var/tmp> chgrp accounting accounting

chgrp: changing group of 'accounting/': Operation not permitted

user@geeko:/var/tmp> exit

logout

Geeko login:

Last login: Mon Apr 21 16:57:49 CEST 2025 from 192.168.66.1 on ssh [root@
geeko tmp]# chgrp finance finance/

user@geeko:/var/tmp> chgrp accounting accounting/

user@geeko:/var/tmp> sudo chgrp finance finance/

user@geeko:/var/tmp> ls -ld accounting/ finance/

drwxr-xr-x. 1 user accounting 0 Apr 21 16:58 accounting/

drwxr-sr-x. 1 user finance 0 Apr 21 16:58 finance/

We need to use sudo for finance because user is not part of finance. Only the root user (the default

administrative user in Linux) can assign a group where it does not belong. We will create users

for sonia and matilde and assign them to finance and accounting, respectively:

geeko:~ # useradd sonia –G finance

geeko:~ # useradd matilde –G accounting

geeko:~ # groups sonia

sonia : sonia finance

geeko:~ # groups matilde

matilde : matilde accounting

Now, we can create a personal folder for sonia and matilde in their group folder:

geeko:/var/tmp/ # cd finance/

geeko:/var/tmp/finance # mkdir personal_sonia

geeko:/var/tmp/finance # chown sonia personal_sonia/

geeko:/var/tmp/finance # ls -l

Chapter 4 159

total 0

drwxr-xr-x. 1 sonia root 0 Apr 21 18:15 personal_sonia

geeko:/var/tmp/finance # chgrp sonia personal_sonia/

geeko:/var/tmp/finance # ls -l

total 0

drwxr-xr-x. 1 sonia sonia 0 Apr 21 18:15 personal_sonia

Instead of using two separate commands, we can specify a user and group in chown using the :

separator. Let’s use it with matilde:

geeko:/var/tmp/finance # cd ../accounting/

geeko:/var/tmp/accounting # mkdir personal_matilde

geeko:/var/tmp/accounting # chown matilde:matilde \

> personal_matilde/

geeko:/var/tmp/accounting # ls -l

total 0

drwxr-xr-x. 1 matilde matilde 0 Apr 21 18:17 personal_matilde

By default, only the specified file or directory is changed. If we want to change the permissions for

the full directory, we can use chown with the –R option, for recursive reach in included directories.

Let’s copy a branch and change its permissions:

geeko:/var/tmp/accounting # cp -rv /usr/share/doc/packages/curl/ personal_
matilde/

'/usr/share/doc/packages/curl/' -> 'personal_matilde/curl'

'/usr/share/doc/packages/curl/BUGS.md' -> 'personal_matilde/curl/BUGS.md'

'/usr/share/doc/packages/curl/CHANGES.md' -> 'personal_matilde/curl/
CHANGES.md'

'/usr/share/doc/packages/curl/FAQ' -> 'personal_matilde/curl/FAQ'

'/usr/share/doc/packages/curl/FEATURES.md' -> 'personal_matilde/curl/
FEATURES.md'

'/usr/share/doc/packages/curl/README' -> 'personal_matilde/curl/README'

'/usr/share/doc/packages/curl/RELEASE-NOTES' -> 'personal_matilde/curl/
RELEASE-NOTES'

'/usr/share/doc/packages/curl/TODO' -> 'personal_matilde/curl/TODO'

'/usr/share/doc/packages/curl/TheArtOfHttpScripting.md' -> 'personal_
matilde/curl/TheArtOfHttpScripting.md'

geeko:/var/tmp/accounting # chown -R matilde:matilde \

> personal_matilde/curl/

geeko:/var/tmp/accounting # ls -l personal_matilde/curl/

Securing the System with Users, Groups, and Permissions160

total 184

-rw-r--r--. 1 matilde matilde 11942 Apr 21 18:19 BUGS.md

-rw-r--r--. 1 matilde matilde 438 Apr 21 18:19 CHANGES.md

-rw-r--r--. 1 matilde matilde 67951 Apr 21 18:19 FAQ

-rw-r--r--. 1 matilde matilde 6163 Apr 21 18:19 FEATURES.md

-rw-r--r--. 1 matilde matilde 1664 Apr 21 18:19 README

-rw-r--r--. 1 matilde matilde 7515 Apr 21 18:19 RELEASE-NOTES

-rw-r--r--. 1 matilde matilde 50192 Apr 21 18:19 TODO

-rw-r--r--. 1 matilde matilde 28627 Apr 21 18:19 TheArtOfHttpScripting.md

With this, we have a good understanding of permissions in SLES, their default behaviors, and how

to work with them. Let’s move on to some more advanced topics about permissions.

Using special permissions
For more advanced use cases, there are special permissions that can be applied to files and di-

rectories, providing support for advanced use cases. Let’s start by reviewing set-UID (or suid)

and set-GUID (or sgid).

Understanding and applying set-UID
Let’s review how set-UID applies to files and directories:

•	 Set-UID permission applied to a file: When set-UID is applied to an executable file, this

file will run as if the owner of the file were running it instead of the user that is executing it

•	 Set-UID permission applied to a directory: No effect

Let’s check a file with set-UID:

geeko:~ # ls -l /etc/shadow

-rw-r-----. 1 root shadow 907 Apr 21 17:13 /etc/shadow

geeko:~ # ls -l /usr/bin/passwd

-rwsr-xr-x. 1 root shadow 142224 Jan 20 11:20 /usr/bin/passwd

Hashed passwords are stored in the /etc/shadow file. The passwd command requires root access

to be able to modify the file. When you execute passwd, the effective user is root, so it can open

and edit the file.

Chapter 4 161

To get this behavior, you can use the chmod command and apply

u+s permissions:

geeko:~ # touch testsuid

geeko:~ # ls -l testsuid

-rw-r--r--. 1 root root 0 Apr 21 20:25 testsuid

geeko:~ # chmod u+s testsuid

geeko:~ # ls -l testsuid

-rwSr--r--. 1 root root 0 Apr 21 20:25 testsuid

Be very careful when as-

signing suid to files as

root. If you provide write

access to the file, it will

be possible for any user

to change its content and

execute anything as root.

Understanding and applying set-GID
Let’s review how set-GID applies to files and directories:

•	 Set-GID permission applied to a file: When applied to

an executable file, this file will run with the group per-

missions of the file

•	 Set-GID permission applied to a directory: New files cre-

ated in that directory will have the group of the directory

applied to them

Let’s check a file with set-GID:

user@geeko:/root> ls -l /usr/bin/chage

-rwxr-sr-x. 1 root shadow 142008 Jan 20 11:20 /
usr/bin/chage

Even if you set up set-UID or set-GID in an execut-

able script, they won’t work. For security reasons,

Linux will only use them for binaries.

Securing the System with Users, Groups, and Permissions162

Let’s see what happens with directories, using our previous example:

user@geeko:/var/tmp> ls -ld accounting/ finance/

drwxrwx---. 1 user accounting 32 Apr 21 18:17 accounting/

drwxrwx---. 1 user finance 28 Apr 21 18:15 finance/

user@geeko:/var/tmp> chmod g+s accounting finance

user@geeko:/var/tmp> ls -l finance/

total 0

drwxr-xr-x. 1 sonia sonia 0 Apr 21 18:15 personal_sonia

user@geeko:/var/tmp> ls -ld finance/

drwxrwx---. 1 user finance 28 Apr 21 18:15 finance/

user@geeko:/var/tmp> chmod g+s accounting finance/

user@geeko:/var/tmp> ls -ld accounting/

drwxrws---. 1 user accounting 32 Apr 21 18:17 accounting/

user@geeko:/var/tmp> cd accounting/

user@geeko:/var/tmp/accounting> ls

personal_matilde

user@geeko:/var/tmp/accounting> touch testaccounting

user@geeko:/var/tmp/accounting> ls -la

total 0

drwxrws---. 1 user accounting 60 Apr 22 04:04 .

drwxrwxrwt. 1 root root 2228 Apr 22 04:03 ..

drwxr-xr-x. 1 matilde matilde 8 Apr 21 18:19 personal_matilde

-rw-r--r--. 1 user accounting 0 Apr 22 04:04 testaccounting

You can see that set-GID is applied to the folders because they display the s permission for the

group (highlighted). Creating new files in those directories will assign the group of the folder

instead of the group of the user that creates it (also highlighted). When properly used, this will

allow any user of the accounting group to be able to access the files inside using the group per-

missions without needing to manually change the group every time.

Using the sticky bit
The last of the special permissions to be used is the sticky bit. It only works on directories, and

what it does is simple: when a user creates a file in a directory with the sticky bit, only that user

can edit or delete that file.

Chapter 4 163

Let’s see an example:

user@geeko:/var/tmp/accounting> ls -ld /tmp

drwxrwxrwt. 9 root root 180 Apr 22 02:57 /tmp

We could apply this principle of sticky bit to the previous example, also with chmod using o+t:

[root@geeko ~]# cd /var/tmp/

[root@geeko tmp]# ls -l

total 0

drwxr-sr-x. 3 root accounting 52 ene 28 05:27 accounting

drwxr-sr-x. 3 root finance 47 ene 28 05:27 finance

[root@geeko tmp]# chmod o+t accounting finance

[root@geeko tmp]# ls -l

total 0

drwxr-sr-t. 3 root accounting 52 ene 28 05:27 accounting

drwxr-sr-t. 3 root finance 47 ene 28 05:27 finance

Let’s give it a try. We will create a file in the /tmp folder with the user user and give write permis-

sions to all users. Then, we will try to delete it with the sonia user. Let’s go:

user@geeko:~> cd /tmp

user@geeko:/tmp> touch teststicky

user@geeko:/tmp> chmod 666 teststicky

user@geeko:/tmp> su - sonia

Password:

sonia@geeko:> cd /tmp

sonia@geeko:/tmp> rm teststicky

rm: cannot remove 'teststicky': Operation not permitted

The numeric values for special permissions are suid = 4, sgid = 2, and sticky bit

= 1.

Securing the System with Users, Groups, and Permissions164

Summary
In this chapter, we have reviewed the traditional permission management system in SLES. We have

learned how to create user accounts and groups and how to manage the life cycle of passwords.

We have also learned how passwords are stored in the system and how to use them to block shell

access to a user. We have created files and folders and used permissions to restrict access so that

only allowed users can collaborate.

In a multi-user system, security is key. You should be very comfortable with access rights to

avoid problems with other users and reduce the impact of a security breach. Misconfiguring

access rights can lead to big security problems, which is why access rights need to be reviewed

carefully. As this is such an important topic, we recommend reviewing this chapter and reading

the man pages for the commands shown, until you don’t have any doubts. It will prevent many

uncomfortable situations in the future.

Now, you are ready to start providing services to users and managing their access, which is what

we will cover in the next chapter.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

5
Enabling Network Connectivity

In the first chapter, as part of the installation, we enabled the network interface with basic con-

figuration. However, network configuration is, or can be, more complex than that.

A server connected to a network might require additional interfaces for configuring additional

networks, for example, reaching backup servers, performing internal services from other servers,

or even accessing networked storage.

Additionally, a server might use redundant network capabilities to ensure that in the event of

a failure in one of the cards, switches, and so on, the server can still be reached and that it can

function properly.

In this chapter, we will learn how to define network configuration for our SUSE Linux Enterprise

Server (SLES) machine using different methods and perform some basic network troubleshooting.

This knowledge will be key since servers are commonly used to provide services to other systems,

and we need networking for that purpose.

In this chapter, we will cover the following topics:

•	 Exploring network configuration in SLES

•	 Getting to know the configuration files and NetworkManager

•	 Configuring network interfaces with IPv4 and IPv6

•	 Configuring the hostname and hostname resolutions (DNS)

•	 Overview of firewall configuration

•	 Testing network connectivity

Let’s get hands-on with networking!

Enabling Network Connectivity166

Technical requirements
You can continue using the virtual machine we created at the beginning of this book in Chapter 1,

Getting SLES 16 Up and Running (Physical and Cloud). Additionally, to test network communica-

tion, it might be useful to create a second virtual machine. You can reuse the one created in the

previous chapters for testing the Network Time Protocol (NTP) configuration if you instantiated

it. Any additional packages that are required will be indicated in the text. Any additional files that

are required for this chapter can be downloaded from https://github.com/PacktPublishing/

SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide.

Exploring network configuration in SLES
A network is made up of different devices that are interconnected so that information and resources

can be shared among them, for example, internet access, printers, or files.

Networks have been present since the beginning of computing. Initially, the most common net-

works were non-IP-based ones, which were generally used for sharing data across computers in

the Local Area Network (LAN). But with the expansion of internet services and the requirement

for applications or remote services, IP networks were expanded, and the concept of an intranet

was introduced, where the Transmission Control Protocol/Internet Protocol (TCP/IP) was used

as transport, and the applications started to be more like internet services (or even based on them).

The migration to IP-based networks has also adapted other protocols such as Network Basic

Input/Output System (NetBIOS) so that these higher-level protocols can run on top of the IP

protocol (in this case, NetBIOS was working on top of NetBIOS Extended User Interface (Net-

BEUI), and even if other networks such as InfiniBand or Remote Direct Memory Access (RDMA)

are still in use, they are not as common as TCP/IP).

TCP/IP, of course, is built on top of other protocols. You can check the Open Systems Interconnec-

tion (OSI) layer definition at https://documentation.suse.com/sles/15-SP6/html/SLES-all/

cha-network.html. However, there are more concepts involved that aren’t discussed there. We will

cover these when we become more familiar with TCP/IP and networks once we finish this chapter.

Before we get into the actual details, we need to clarify a few common keywords pertaining to

TCP/IP and networking that we’ll be using from now on:

•	 IP address: This is the address that’s used for interacting with other devices on the net-

work. It is like your phone number but for machines in a network.

https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-network.html
https://documentation.suse.com/sles/15-SP6/html/SLES-all/cha-network.html

Chapter 5 167

•	 Netmask: This is used to determine which devices are in the neighborhood or not. It can

be expressed via a mask, for example, 255.255.255.0, or via a network size, such as /24.

•	 Gateway: This is the IP address of the device that will get all our traffic when the target

device is outside our network, as defined by our netmask. It is used when we cannot di-

rectly reach our target IP (i.e., of a web server or file server).

•	 DNS: This is the IP address of a server or servers that translate domain names into IP

addresses so that the hosts can connect to them.

•	 MAC address: This is the physical interface address. It is unique for each card and helps

identify the card by the network hardware so that the proper traffic is sent to it.

•	 Network Interface Card (NIC): This card allows our device to connect to the network. It

might be wireless, wired, and so on.

•	 Extended Service Set Identification (ESSID): This is how a wireless network is named.

•	 Virtual Private Network (VPN): This is a virtual network that is created between the client

and the server. Once established, it allows you to have a direct connection to the services

as if they were local, even if the client and the server are in different places. For example,

a VPN is used to allow remote workers to connect to their corporate network using their

regular internet connection.

•	 Virtual Local Area Network (VLAN): This allows us to define virtual networks on top of

the actual wiring. We can then use a specific header field to have them correctly under-

stood and processed by the network equipment.

•	 IPv6: This is the replacement protocol for IPv4, which is still the predominant protocol

in networks today.

In the following sections, we will use some of these terms when we explain how a network is set

up and defined in SLES systems.

In general, when systems are connected, some relationships between the devices on the network

are established. Sometimes, some hosts are providers of services, often called servers, and the

consumers are known as clients.

In the next section, we’ll become familiar with the configuration files and the different approaches

for configuring networking in our system.

Enabling Network Connectivity168

Getting to know the configuration files and
NetworkManager
Now that we have learned about some of the keywords and concepts in networking, it’s time to

look at how they can be used in our system.

Traditionally, network interfaces were configured via Wicked, a network management system

used in previous versions of SLES. In SLES 15, NetworkManager was introduced as an optional

network management system, and since version 16, it has become the default and only choice.

NetworkManager is a utility that was created in 2004 to make network configuration and its

usage easier for desktop users. At that point, all configuration was done via text files, and it was

more or less static. Once a system was connected to a network, the information barely changed

at all. With the adoption of wireless networks, more flexibility was required to automate and ease

the connection to different networks via different profiles, VPNs, and more.

NetworkManager was created to cover the mentioned gaps and aimed to be a component that

would be used in many distributions, but from a new standpoint. For example, it queries the

Hardware Abstraction Layer (HAL) at startup to let you know about available network devices

and their changes.

Imagine a laptop system; it can be connected to a wired cable, disconnected when you’re moving

it to another location or cubicle, connected to a wireless network, and so on. All those events are

relayed to NetworkManager, which takes care of reconfiguring network interfaces and routes and

authenticating to the wireless network, making the user’s life a lot easier.

In the following screenshot, we can see the available packages related to NetworkManager, as

obtained via the zypper search networkmanager command:

The hardware that is connected to the system can be queried with several commands,

depending on how the hardware is connected, for example, via utilities such as

lsusb, lspci, or lshw (provided by installing the usbutils, pciutils, and lshw

packages, respectively).

Chapter 5 169

Figure 5.1 – NetworkManager-related packages available
for installation in an SLES 16 system

The NetworkManager default configuration can be found in /usr/

lib/NetworkManager/, and it can be modified by adding files to

the /etc/NetworkManager folder, especially NetworkManager.

conf and the files available in that folder:

•	 conf.d

•	 dispatcher.d

•	 VPN

•	 system-connections

Can’t remember what a

dispatcher is? Use man

networkmanager to get

details on this!

In SLES 16, the configuration files follow the

UAPI Group Specification, as stated in https://
uapi-group.org/specifications/specs/

configuration_files_specification. The

main concept behind this is that default configu-

ration files for system packages live in /usr/lib or

/usr/etc, and are never changed, and that changes

happen by dropping modification files in th /etc

path, or in directories ending with .d, as in the

case of conf.d or dispatcher.d.

https://uapi-group.org/specifications/specs/configuration_files_specification
https://uapi-group.org/specifications/specs/configuration_files_specification
https://uapi-group.org/specifications/specs/configuration_files_specification

Enabling Network Connectivity170

The man page of NetworkManager explains that those scripts are executed in alphabetical order

based on network events and will receive two arguments: the name of the device for the event

and the action.

Based on the different events that can happen regarding network connectivity (i.e., enabling an

interface or changing the hostname), there are several actions that can be performed to react to

them. These events can be as follows:

•	 pre-up: The interface gets connected to a network but is not activated yet. The script must

be executed before the connection can be notified as activated.

•	 up: The interface has been activated.

•	 pre-down: The interface is being deactivated but hasn’t been disconnected from the net-

work yet. In the case of forced disconnections (lost wireless connection or lost carrier),

this will not be executed.

•	 down: The interface has been deactivated.

•	 vpn-up/vpn-down/vpn-pre-up/vpn-pre-down: Similar to the preceding interfaces but for

VPN connections.

•	 hostname: Hostname has been changed.

•	 dhcp4-change/dhcp6-change: The DHCP lease has changed (renewed, rebounded, and

so on).

•	 connectivity-change: Connectivity transitions such as no connection, the system went

online, and so on.

Now that we have learned a bit about NetworkManager and how it works and was designed, let’s

learn how to configure network interfaces.

Configuring network interfaces with IPv4 and IPv6
There are several approaches to configuring network interfaces and several network configura-

tions. These will help us determine what we need to do and the required parameters and settings.

Let’s look at some examples:

•	 A server might have two or more NICs for redundancy, but only one of them is active at

a time

•	 A server might use a trunk network and require that we define VLANs for it to access or

provide different services in the networks

•	 Two or more NICs might be combined to provide increased output and redundancy via

teaming

Chapter 5 171

Configuration can be performed in several ways too:

•	 nmtui: Text-based interface for configuring a network.

•	 nmcli: The command-line interface for NetworkManager.

•	 cockpit: The server management web interface, which will be covered in Chapter 8, En-

abling and Using Cockpit.

•	 nm-connection-editor: The graphical tool available for graphical environments. As this

book is intended for servers, we will not cover graphical utilities other than web-based

ones such as cockpit.

•	 Editing text configuration files.

Before we move on, let’s learn a bit about IPv4 and IPv6.

IPv4 and IPv6... What does that mean?
IP stands for Internet Protocol, and it helps systems connect to a network, which is often con-

nected to the internet. IP addresses are a set of numbers used to identify a device in a network.

There are two versions used: IPv4, the simple and old one, and IPv6, a more evolved one that is

growing in use.

IPv4 was created in 1983 and uses a 32-bit address space, which provides 2³² unique addresses

(4,294,967,296 ... yes, more than 4 billion), but from those possible ones, large blocks are re-

served for special usage. It is composed of four numbers between 0 and 255 separated by dots

(i.e., 192.168.1.16).

IPv6, ratified as an Internet Standard in 2017, is the latest version at the time of writing and uses a 128-

bit address space instead, that is, 2¹²⁸ (3.4 x 10³⁸ addresses). It is normally represented with eight

blocks of four-digit hexadecimal numbers (i.e., 2032:D450:33FA:3434:0000:0000:0000:0000;

however, the zeros can be abbreviated using two colons, like this 2032:D450:33FA:3434::).

Before editing your network configuration, ensure that you can reach the system

being configured in another way. In the case of a server, this can be done via a remote

management card or physical console access. A mistake in the configuration might

leave the system unreachable.

Enabling Network Connectivity172

Long story short, the number of IPv4 addresses seemed huge at the time, but today, where phones,

tablets, computers, laptops, servers, lightbulbs, smart plugs, and all other smart devices require an

IP address, that number has been depleted for public IP addresses, meaning that it’s not possible

to assign more. This has caused many routers at home to use Network Address Translation (NAT),

in which they use a public IP and provide private IPs for devices connected to them. Some Internet

Service Providers (ISPs) use techniques such as Carrier-Grade Network Address Translation

(CGNAT), similar to what home routers do for private networks, which causes all the traffic from

several devices to appear as coming from only one IP, and having the device interacting on both

networks, to do the proper routing from outgoing and incoming packages to the original requestors.

Why no IPv6, then? The main problem is that IPv4 and IPv6 are not interoperable, and even if

IPv6 was a draft in 1998, not all network equipment is compatible with it and might not have yet

been tested. Check out https://www.ripe.net/support/training/videos/ipv6/transition-

mechanisms for more details.

In the next section, we will learn how to configure network interfaces using a text-based user

interface to NetworkManager named nmtui.

Configuring interfaces with nmtui
nmtui provides a text-based interface for configuration. This is the initial screen you’ll see when

it is executed by running nmtui on a terminal:

Figure 5.2 – nmtui welcome screen showing a menu of possible actions that can be performed

https://www.ripe.net/support/training/videos/ipv6/transition-mechanisms
https://www.ripe.net/support/training/videos/ipv6/transition-mechanisms

Chapter 5 173

Let’s explore the available options for our interface. In this case, let’s select Edit a connection.

On the screen that appears, move down and edit the Wired connection 1 option by selecting it

with the arrow keys and pressing Enter. That will take us to the following screen:

Figure 5.3 – Edit Connection page with the IPv4 options expanded

It will be hard to show screenshots for each step, as one of the advantages of the text interface

is that a lot of options are condensed onto a simple screen. However, the preceding screenshot

makes it easy to see the basic information:

•	 Profile name: Name assigned to the configuration shown on screen.

•	 Device: Network device associated with this configuration. In this case, it’s a physical

device.

We can also understand each of the required parameters:

•	 Addresses: IP address associated with this configuration, including netmask. We can

have more than one.

•	 Gateway: IP address of the device that connects us to other networks. In simple configu-

rations, it is associated with the router.

Enabling Network Connectivity174

•	 DNS servers: IP addresses associated with the systems providing name resolution services

for the network.

•	 Search domains: Domains to be used when reaching a system by its name, and no domain

is specified.

•	 Routing: Specific information on how to reach other networks. Used when more than

one router is available in our network.

As you can see, there are checkboxes for ignoring routes or DNS parameters that are obtained when

the connection is set to Manual. Additionally, there are other options for interfaces: Disabled,

Link-Local, Automatic, and Shared.

Let’s discuss the Automatic option first, as it’s very common to have it configured this way on the

first try. With this option, the interface will be set to autoconfiguration. This is one of the most

common settings for configuration. It does not mean that everything is done magically, though.

Let’s dig into this a bit more.

In a network (corporate, private, and so on), it is typical to have a special service or server providing

the Dynamic Host Configuration Protocol (DHCP). DHCP is a protocol running on top of TCP/IP

that allows you to configure hosts dynamically, using the configuration that was made previously

either by the network administrator or some appliance and its default settings.

DHCP provides several network configuration options automatically to systems connected to the

network, such as IP, netmask, gateway, DNS, search domain, and time server. The configuration

that’s received is given a lease time, which means that it is valid for a period of time. After that, the

system attempts to renew it, or if the system is powered off or disconnected, the lease is released.

Usually, the DHCP configuration is considered to be tied to dynamic IPs, but keep in mind that

a DHCP server can use two different approaches: a pool of IPs that can be reused by different

systems connecting, and fixed mappings of MAC addresses to static IPs.

Let’s, for example, think about a Small Office–Home Office (SOHO) network with a private IP

range in the 192.168.1.0/24 subnet.

We can define our ISP router to be at IP 192.168.1.1 because of the subnet (/24), which means

that the last part of the IPv4 address can range from 0 to 255.

Chapter 5 175

Using that IP range, we can set up hosts to get dynamic configuration and a dynamic IP from a

pool in the last 100 IPs and leave the ones at the beginning for fixed equipment (even if they get

the configuration dynamically), such as printers and storage devices.

As we mentioned previously, we can create reservations for servers, but in general, for devices that

are always going to have the same address, it is also common practice to configure static address-

ing. In this way, if the DHCP server becomes unavailable, the servers will still be reachable from

other services with either a valid lease or other servers/devices with static addresses configured.

Now, let’s move on to a review of nmcli usage in the next section.

Configuring interfaces with nmcli
nmcli is the command-line interface for NetworkManager. It comes installed in the default SLES 16

installation. It allows us to not only check but also configure the network interfaces in our system,

and even if using it might require more memory skills than what nmtui requires, it empowers

users and administrators with scripting capabilities to automate the network setup of our system.

Just a reminder, IP addresses are represented in IPv4 with a dot notation separating

four groups of numbers, such as 192.168.2.12, while in IPv6, numbers are separated

with a colon, for example, 2001:db8:0:1::c000:207.

The Classless Inter-Domain Routing (CIDR) notation adds the netmask value at

the end of the IP, separating it with the / character. The previous examples could

be extended to CIDR notation like this for IPv4: 192.168.2.12/24 and like this for

IPv6: 2001:db8:0:1::c000:207/26.

Most commands allow us to use autocompletion, that is, pressing the Tab key will

use the autocompletion lists on the command line to suggest the syntax. For exam-

ple, typing nmcli dev on the command line and pressing Tab will autocomplete

the command to nmcli device. Autocomplete can be great to avoid mispelling

commands and type faster, although in this case it might not be as critical because

nmcli understands both versions of the command.

Enabling Network Connectivity176

Let’s start checking the available connections in our system with nmcli dev, and then use nmcli

con show to check out its details:

Figure 5.4 – nmcli dev and nmcli con show

When controlling a network connection, for example, when using nmcli con up enp1s0 or

disabling it with nmcli con down enp1s0, we should bear in mind what we explained about

NetworkManager: if the connection is available in the system, NetworkManager might reactivate

it just after being disconnected because the connection and the devices required are available

in our system.

Now, let’s create a new interface to illustrate the process of adding a new connection via IPv4:

nmcli con add con-name test0 type ethernet \

 ifname test0 ipv4.address 192.168.1.2/24 \

ipv4.gateway 192.168.1.254

We can do the same with IPv6:

nmcli con add con-name test1 type ethernet \

 ifname test1 ipv6.address 2001:db8:0:1::c000:207/64 \

 ipv6.gateway 2001:db8:0:1::1

Once the preceding commands have been executed, we can check the network connections that

have been defined with nmcli connection show test0 and validate that the proper settings were

applied (or, of course, we can also verify the configuration via nmtui, cockpit, or the text files that

were created on disk as the information is shared among all these tools and stored in the system).

When we reviewed the output of nmcli connection show test0, the output contained some

keys separated by colons, such as the following:

•	 ipv4.address

•	 ipv4.gateway

•	 ipv6.address

•	 ipv6.gateway

•	 Connection.id

Chapter 5 177

We can use these keys to define new values via nmcli con mod

$key $value, as shown in the following example:

Figure 5.5 – Example of modifying a network connection
to change the IP address

Of course, after doing the preceding tests, we can also remove

the connection to avoid problems in our system with nmcli con

del test0.

The following commands can be used to modify connections with

the nmcli tool:

•	 nmcli con show: Shows the status of the connections.

•	 nmcli con show NAME: Shows the details of the connec-

tion named NAME.

•	 nmcli dev status: Shows the statuses of the devices in

the system. Note that this means devices, not connections

that might be using those devices.

•	 nmcli con add con NAME: Adds a new connection.

•	 nmci con mod NAME: Modifies a connection.

•	 nmcli con up NAME: Brings up a connection.

•	 nmcli con down NAME: Brings down a connection (which

can still be re-enabled by NetworkManager).

•	 nmcli con del NAME: Removes a connection definition

from the system.

Check man nmcli-

examples for more ex-

amples that are included

for the documentation in

the system.

Enabling Network Connectivity178

Configuring interfaces with text files
In prior subsections, we explored how to configure the network using different approaches. But,

in the end, all those configurations end up being written to disk as interface definition files.

Instead of starting with creating an interface definition from scratch, let’s examine what nmcli

did when we created the interface with the following command:

nmcli con add con-name eth0 type ethernet ifname eth0 ipv6.address
2001:db8:0:1::c000:207/64 ipv6.gateway 2001:db8:0:1::1 ipv4.address
192.0.1.3/24 ipv4.gateway 192.0.1.1

The preceding command will generate the /etc/NetworkManager/system-connections/eth0.

nmconnection file, which we can see in the following screenshot:

Figure 5.6 – Contents of the /etc/NetworkManager/system-connections/eth0.nmconnection
connection definition

As we can see, by default, we have specified a [connection] section with id as the name specified,

which is eth0. Then we have a unique identifier, or uuid, which in this case is f382846c-8be7-

4218-9dfe-610ebc04e1e9. We also have, in this section, a connection type of ethernet, and the

interface-name value, which specifies the physical interface assigned to this connection, is eth0.

Finally, we have the [ipv4] and [ipv6] sections to specify IP addressing.

Chapter 5 179

We can edit those files directly, but to make NetworkManager aware of the changes that will be

introduced, we need to execute nmcli con reload. This will update the configuration with the

changes. For example, if you modify the configuration editing the files manually or in an auto-

mated script, they won’t be used until you run the reload command.

Note how, in the following screenshot, the changes don’t appear in nmcli until we issue the

reload command:

Figure 5.7 – The process of editing an interface definition doesn’t show up on nmcli until we
reload the connections

Now that we have reviewed the different ways to configure networking in our system, let’s learn

about naming resolutions.

Configuring the hostname and hostname resolutions
(DNS)
Remembering IP addresses, whether they are IPv4 or IPv6 addresses, can become a nightmare.

To make things easier, a more human-friendly approach has been used for hostnames and the

Domain Name Service (DNS), in that we can translate those easier-to-remember names into the

IP addresses that systems use for connecting.

The physical network interface definition (assigning a name to a physical device) can

become a nightmare as the interface name itself is subject to several rules, such as

the location of the interface in the bus and whether it was previously seen. Generally,

once the network cards have been detected in the system, a custom rule is written

that matches the MAC address of the interface to a custom naming convention.

This happens so that it does not change across reboots or if a new software update

changes the way we must enumerate the cards. You can read more about this topic

by looking at the official documentation at https://documentation.suse.com/

smart/network/html/network-interface-predictable-naming/index.html.

https://documentation.suse.com/smart/network/html/network-interface-predictable-naming/index.html
https://documentation.suse.com/smart/network/html/network-interface-predictable-naming/index.html

Enabling Network Connectivity180

Hostnames are the names we assign to a server (also known as a host) to make it identify itself.

But when they’re used in a network, we use the DNS server, so their hostname can be resolved into

IP addresses. This is useful so that other systems, or hosts, can connect to our host.

We can use the hostname command to see or temporarily modify the current hostname, as shown

in the following screenshot:

Figure 5.8 – Querying and changing the hostname for our host

Bear in mind that this change is only temporary; as long as we restart the server, it will use the

configured one.

To define a new configured hostname, we will use the hostnamectl command, as shown in the

following screenshot:

Figure 5.9 – Checking the previously configured hostname and the definition of a new one
via hostnamectl

Chapter 5 181

Note in the preceding example how we have Transient hostname versus Static hostname, which

refers to the temporary status of the name that was defined with hostname instead of hostnamectl.

When it comes to name resolution, there are several approaches we can take. One, of course, is to

use DNS servers, which we will explain later in this section, but there are other ways.

In general, systems have several resolvers, and those are defined in the /usr/etc/nsswitch.conf

configuration file. Those resolvers are not only for network naming but also for other network

services – for example, for authorizing users, where a corporate LDAP server might be used as the

central storage for users, passwords, and so on. By default, nsswitch.conf instructs our system

to use the following for hosts resolving this entry:

hosts: files dns

This means that we are using the files in our /etc/ directory as our first source. In the case of

hostnames, this refers to the /etc/hosts file. If an entry is defined in that file, the value that was

specified will be used; if not, the /etc/resolv.conf file will determine how to proceed with its

resolution. Those files, and especially resolv.conf, are configured when the system is deployed

and when a connection is activated. NetworkManager takes care of updating the values that

were obtained via DHCP if autoconfiguration was used, or the specified DNS servers if manual

configuration was performed.

In the following screenshot, we can see the entries that have been defined in our /etc/hosts file,

how pinging a host fails because the name does not exist, and how, after manually adding an

entry to the /etc/hosts file, our system is able to reach it:

Figure 5.10 – Adding a static host entry to our local system

Enabling Network Connectivity182

As we mentioned previously, name resolution is done via the configuration at /etc/resolv.conf,

which, by default, contains a search parameter and a nameserver parameter. If we check the man

page of resolv.conf, we can obtain descriptions for the common parameters:

•	 nameserver: Contains the IP of the name server to use. Currently, only a maximum of

three entries (each on its own line) will be used by the resolv library in the system. The

resolution is performed each time, so if one server fails, it will time out, try with the next

one, and so on.

•	 domain: The local domain name. It allows us to use short names for hosts that are relative

to the local domain in our host. If it’s not listed, it’s calculated based on the hostname of

our system (everything after the first .).

•	 search: By default, it contains the local domain name, and it’s the list of domains we can

attempt to use to resolve the short name that’s provided. It’s limited to 6 domains and

256 characters. domain and search are mutually exclusive, and the last parameter in the

configuration will be the only one used, disabling the previous one.

If we want to modify the DNS servers defined for a connection, remember to use nmcli con mod

NAME ipv4.dns IP (or IPv6 equivalent) and use a + symbol beforehand, as in +ipv4.dns, to add

a new entry to the list of DNS servers. Any manual changes to resolv.conf might be overwritten.

Now that we have learned how DNS works and how our system uses it, let’s look at how to secure

system network access.

DNS resolution works by asking special servers (DNS) for the relevant data for a

domain. This happens in a hierarchical way, with the top-most general servers being

called root servers. DNS servers contain not only registers or entries for converting

hostnames into IPs but also information about the mail server to use when send-

ing an email, verification details for security, reverse entries, and more. Also, DNS

servers can be used to block access to services by returning invalid IPs for some

domains, or to speed up internet navigation by using faster DNS servers than the

ones provided by the ISP.

When a domain name is registered, a new entry is created in the root tables for the

domain pointing to the DNS server. This will take care of that domain resolution,

and later, those entries will be populated and cached across the internet for faster

resolution.

Chapter 5 183

Overview of firewall configuration
When a system is connected to a network, many of the services running can be reached from

other systems. That is the goal behind having systems connected. However, we also want to keep

systems secure and away from unauthorized usage.

A firewall is a software layer that sits between the network cards and the services and allows us

to fine-tune what is or isn’t allowed.

We cannot completely block all the incoming connections to our system, as often, the incoming

connection is a response to a request that our system made.

The connections are blocked via a kernel framework named netfilter, which is used by the firewall

software to modify how the packets are processed. nftables is a new filter and packet classifier

subsystem that enhances parts of netfilter code but retains the architecture and provides faster

processing, among other features, using only one interface (nft), thus deprecating old frameworks

such as iptables, ip6tables, ebtables, and arptables.

firewalld is a frontend to the nftables framework. In the vast majority of cases, firewalld

should be able to deal with the requirements for filtering. So, it is the recommended frontend for

editing rules. It comes installed by default on your system. If this is not the case, you can install

it by running zypper install firewalld. It will provide the firewall-cmd command once

installed for interacting with the service.

firewalld uses the concept of zones, which allows us to predefine a set of rules for each of those

zones. These can also be assigned to network connections. This is most relevant, for example, for

laptops that might be roaming across connections, and they might have some default settings for

when you’re using home or corporate connections. However, they will default to a more secure

one when you’re using public Wi-Fi in a cafe.

firewalld also uses predefined services so that the firewall knows what ports and protocols

should be enabled based on the services and zones they have been enabled on.

As we explained earlier in regard to network configuration, a bad configuration in a

firewall can lock you out of the system. So, be extremely careful when you’re setting

some restrictive rules so that you can log in to the system again if you were remotely

accessing it.

Enabling Network Connectivity184

Let’s check out the available zones and some more details about the home zone:

Figure 5.11 – Available zones and configuration for the home zone

As we can see, several zones have been defined:

•	 public: This is the default zone for newly added interfaces. It allows us to connect to

mdns, SSH, samba, and DHCP clients and rejects all incoming traffic not related to the

outgoing traffic.

•	 block: This rejects all incoming traffic unless it’s related to the outgoing traffic.

•	 dmz: This rejects all incoming traffic unless it’s related to outgoing or SSH connections.

•	 drop: This drops all incoming packets that are not related to outgoing ones (not even ping).

•	 docker: This is used for containers running on the host.

•	 external: This blocks all incoming traffic except that related to outgoing traffic. It also

allows SSH, and it masquerades traffic as originating from this interface.

•	 home: In addition to public, it allows smb and mdns.

•	 internal: This is based on the home zone.

•	 trusted: This allows all incoming traffic.

•	 work: This blocks all incoming traffic except that related to outgoing or SSH/cockpit/

DHCP traffic.

Next, we’ll learn how to use those zones when we’re configuring the firewall.

Chapter 5 185

Configuring the firewall
As mentioned in the introduction to this section, a firewall can be configured via the firewall-

cmd command. The most common command options that are used are as follows:

•	 firewall-cmd --get-zones: Lists the available zones

•	 firewall-cmd --get-active-zones: Lists the active zones and interfaces that have been

assigned

•	 firewall-cmd --list-all: Dumps the current configuration

•	 firewall-cmd --add-service: Adds a service to the current zone

•	 firewall-cmd --add-port: Adds a port/protocol to the current zone

•	 firewall-cmd --remove-service: Removes the service from the current zone

•	 firewall-cmd --remove-port: Removes the port/protocol from the current zone

•	 firewall-cmd --reload: Reloads the configuration from the saved data, thus discarding

the runtime configuration

•	 firewall-cmd -get-default-zone: Gets the default zone

•	 firewall-cmd --set-default-zone: Defines the default zone to use

For example, when we install an http server in our system (for serving web pages), port 80 on

the TCP protocol must be enabled.

Let’s try this in our sample system by installing, running, and opening the http port:

zypper -n install apache2

systemctl enable apache2

systemctl start apache2

firewall-cmd --add-service=http

firewall-cmd --add-service=http --permanent

curl localhost

The last command will make a petition to the local http server to grab the results. If you have

access to an additional system, you can try to connect to the IP of the server that we have been

using to remotely access the default web page to be served by the system.

At this point, we have reviewed how to configure some basic firewall rules. So, we are ready to

check the network’s connectivity.

Enabling Network Connectivity186

Testing network connectivity
In the previous sections, we were interacting with network interfaces, addresses, and firewall

rules that define, limit, or allow connections to our system. In this section, we will review some

of the basic tools that can be used to validate that network connectivity exists.

Note that the following commands assume that the firewall is not set to strict mode and that we

can use the Internet Control Message Protocol (ICMP) to reach the servers hosting the service.

In secured networks, the service might be working but not answering to ping – it may only be

answering the service queries themselves.

There are several commands that we can use here, so consider this a suggestion for diagnosing

issues:

1.	 Check the local interface’s IP address, netmask, and gateway.

2.	 Use the ping command with the IP address of the gateway to validate the proper network

configuration.

3.	 Use the ping command to ping the DNS servers in /etc/resolv.conf to see whether

they are reachable. Alternatively, use the host or dig command to query the DNS servers.

4.	 If there’s supposedly external network connectivity, try to reach external DNS servers such

as 8.8.8.8 or 1.1.1.1 or use curl or wget to request some of the web pages of known

services, for example, curl nasa.gov.

This should give you a rough idea of where a problem might be, based on how far you reach into

the tests. Remember that there are other tools, such as tracepath, that will show the hops that

a TCP packet does before reaching the destination. The man pages for each command will give

you hints and examples on their usage.

Chapter 5 187

In the following screenshot, you can see the output of tracepath against one web server:

Figure 5.12 – The output of the tracepath command against the University of Valencia, Spain,
web server

As we can see, there were 11 steps that were performed across different servers until our data

package reached the destination host. This has shown us how a package traverses the internet

to reach target systems.

Summary
In this chapter, we learned about configuring network interfaces using different approaches, ei-

ther via manual interaction or via methods that allow us to script or automate the configuration.

Some troubleshooting for network issues was also introduced to help us find some of the basic

errors that we might encounter.

As we mentioned in this chapter’s introduction, networking is the basis for our system to reach

other services and to provide services to other systems. We also introduced the idea of more

complex network setups that fall outside the scope of this SCA level, but it’s interesting to at least

be familiar with the keywords that will come up in your job.

In the next chapter, we will cover some important topics related to security, such as adding,

patching, and managing the software in our systems.

Enabling Network Connectivity188

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

6
Adding, Patching, and
Managing Software

Software requires maintenance. Installing a system once is not enough if you want it to remain

compatible and secure, as newer versions of the software and their dependencies can include new

functionality and patches to close security issues or bug fixes. Updating and deleting software on

a server is an essential task in production. In this chapter, we will review the capabilities of the

SUSE Customer Center (SCC) for the software life cycle. We will also understand how packages

in SCC are curated and verified.

We will describe subscriptions and entitlements, learn how to use the subscriptions to receive

updates and support, and understand the steps required to configure your system to use them. We

will use an evaluation subscription for these tests and explore the use of a redistribution system.

We will review the RPM package format and its management tool, Zypper, and will provide details

about how packages are found, installed, updated, and deleted from the system.

What we will learn in this chapter will help us to not only keep our system up to date and secure,

but also to add more software to provide services and increase system capabilities.

We will be covering the following topics:

•	 Some useful concepts about package management

•	 SCC and subscriptions

•	 Registering an installed system

•	 Installing and updating software using Zypper

Adding, Patching, and Managing Software190

•	 Managing repositories and signatures with Zypper

•	 Installing patterns

•	 Updating software

•	 Uninstalling software and repositories

•	 Understanding RPM internals

Technical requirements
In this chapter, we will keep using the VM we installed in the Chapter 1, Getting SLES 16 Up and

Running (Physical and Cloud), so no further technical requirements are needed to continue.

Some useful concepts about package management
Linux systems are not usually installed for themselves but to run some applications that deliver

the required functionality or an environment for development. For that reason, installing, up-

dating, configuring, and removing software is one of the most important aspects of managing a

Linux system.

A standard application normally consists of one or more binary files, and some other accompany-

ing files such as configuration files, data files, icons, and other required files. In Linux, it is quite

common to also use shared libraries – pieces of code that provide some kind of functionality, and

can be called from other applications. Shared libraries reduce the space required to install an ap-

plication, as they can be – as the name suggests – shared between applications. Updating a library

will result in all applications using the new version, thus lowering the chance of some security

updates being overlooked, but the new version can be incompatible with some applications. As

an alternative, you can include the library inside the binary file, using static linking. Some other

applications require an interpreter (such as Python or Ruby) that needs to be installed first.

There are many ways to install an application. For instance, you can download the source code

and build the application yourself (at least for applications in which you have access to the source

code, such as open source projects). You can sometimes download a binary file or a compressed

package and move the files to their required destination manually, or you can use some kind of

installer that performs those steps on your behalf.

Chapter 6 191

For instance, Helm, a package manager for Kubernetes, can be installed by downloading a packed

file that contains the executable and then uncompressing and copying the binary to the right place

in your filesystem, or using curl to download a script that does the same for you after selecting

the right version and verifying that the downloaded components have been downloaded properly:

$ curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/
main/scripts/get-helm-3

$ chmod 700 get_helm.sh

$./get_helm.sh

These methods can be convenient, especially for developers who do not wish to spend time cre-

ating packaged versions for each distribution, but using tar files and scripts has some problems.

First, there is no way (unless the developer produces a removal tool) to find and delete files once

the application is no longer needed. Updates are also complex, especially when you need to find

the dependencies for the application that you must find and install independently. Some con-

figurations (such as adding the directory to the PATH or creating a user) must be done manually.

Package managers were invented to solve these problems. With a package manager, it becomes

easy to find software, install and update it with its dependencies, and delete it once it is no longer

needed.

A package consists of a collection of files and metadata that is used to install, update, and erase

the files, and includes helper tools, file attributes such as ownership, and information about the

package itself and its dependencies.

Packages can be found in a software repository, also called a repo. Repositories serve as a storage

location for packages and can include a table of contents and some additional metadata.

SUSE provides all packages through software repositories. The selection of software and reposito-

ries available in a system will vary depending on the subscriptions attached to the system. You will

need a subscription to be able to use those repositories on a server to install and update packages.

Additional software from other parties can be installed by adding other repositories to the server.

Those third-party repositories are normally not guaranteed to work and are not covered by the

support agreement with SUSE, although the third party can provide support itself or jointly with

SUSE. Let’s see how we can have access to the main SLES repositories using SCC.

Please refer to https://helm.sh/docs/intro/install/ for a more comprehensive

look at this code.

https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3
https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3
https://helm.sh/docs/intro/install/

Adding, Patching, and Managing Software192

SCC and subscriptions
In order to receive updates and patches for your SUSE Linux Enterprise server, you need a sub-

scription. Subscriptions can be purchased directly from the SUSE Shop online (https://www.

suse.com/shop/server/), through public cloud marketplaces, through partners (https://www.

suse.com/partners/find-partner/), or by contacting SUSE directly.

Let’s go to the website for SCC here: http://scc.suse.com.

SCC is shown in the following screen capture:

Figure 6.1 – SCC website

In order to download and update your copy of SLES 16, you need to create a user. Go to Product

Downloads and then select SUSE Linux Enterprise Server > Download and select the right

version for your architecture. The Downloads page will look like this:

https://www.suse.com/shop/server/
https://www.suse.com/shop/server/
https://www.suse.com/partners/find-partner/
https://www.suse.com/partners/find-partner/
http://scc.suse.com

Chapter 6 193

Figure 6.2 – Downloads page for SUSE Linux Enterprise Server

Carefully read the instructions in the box on the left. They include the minimum requirements

(1,024 MiB RAM, 2 GiB HD, and 32 GiB for snapshot/rollback), and recommended system re-

quirements (1 to 8 GiB RAM, 8 GiB HD or 32 GiB for OS rollback, network interface, etc.). There

are different versions available for download, some specific for installation as VMs (including

cloud-init for first boot configuration), and some generic, such as the standard ISO, including

all packages for offline installation, the online installation version, and the source packages ISO

that stores the open source code of all packages.

Here is a shortcut to the SLES Downloads page: https://www.suse.com/download/sles/.

Even if you use the offline installer to test, it is recommended to connect your system

to SCC and update all packages to the latest version after installation to avoid any

day 0 security risk. Keeping the system updated, when possible, will help to alleviate

many of the performance and security concerns.

https://www.suse.com/download/sles/

Adding, Patching, and Managing Software194

Before downloading, we will create our own account. The dialog to do so will look like the fol-

lowing figure:

Figure 6.3 – SCC account creation

Chapter 6 195

Once the fields are filled and complete in the preceding dialog, we

can click Create Account. This will take us to the dialog to accept

the subscription terms, as shown here:

Figure 6.4 – Accepting the terms of use and privacy policy
to create an SCC account

We are going to download SLES-16.0-Online-x86_64-GM.

install.iso, so that we will be downloading the latest version

of the packages during installation. A detailed description of how

to install was included in Chapter 1, Getting SLES 16 Up and Running

(Physical and Cloud).

Now that we have made an account, it’s time to register our sys-

tem.

Registering an installed system
SUSE products are open source and can be used without a license,

but you will need a subscription in order to receive the full benefits

of the distribution and support. A subscription allows you to re-

ceive the software updates and some additional services, including

technical support when you need it. Subscriptions are managed

in SCC. The SCC web page provides you with reports on your en-

titlements and their usage, and information about packages and

patches available for your systems in a convenient way.

Most of the products of-

fered by SUSE have their

counterpart in openSUSE,

the open source commu-

nity project (related to

SUSE but independent)

that is binary compati-

ble with SUSE Linux. You

can upgrade an openSUSE

Leap installation to SLES,

but some packages in-

cluded in openSUSE Leap

are not available in the

SLES repos and will not

receive updates after the

migration.

Adding, Patching, and Managing Software196

You can complete the registration process at any time if you decide to skip the registration during

the installation process, or if you want to re-register your system. It can be handy if you use stan-

dard images pre-installed in a virtual environment or if you clone an existing system.

SLES includes the SUSEConnect tool to manage subscriptions on the command line:

user@geeko:~> sudo SUSEConnect -r <REGISTRATION_CODE> -e <EMAIL_ADDRESS>

Substitute <REGISTRATION_CODE> with the registration code received (or you can find it in SCC),

and <EMAIL_ADDRESS> with the email address of the account used to manage the subscriptions.

SUSE also offers solutions that allow you to work with a local registration server. In that case,

you need to add the URL of the registration server to the command line (an advanced topic not

covered in this chapter):

user@geeko:~> sudo SUSEConnect -r <REGISTRATION_CODE> -e <EMAIL_ADDRESS>
-url "<URL>"

Lastly, you can also use Cockpit to register your system:

Figure 6.5 – Subscriptions tab in Cockpit

Use your user credentials to log in and then switch to Administrative access. You will now be

able to configure the system. The Subscriptions tab allows you to subscribe your system, enter

your registration details, and deregister the system if you no longer want to use your subscription

on the server.

Chapter 6 197

Packages are organized in SLES using a repository. A subscribed system by default has many

repositories available, but only one of them is enabled:

user@geeko:~> sudo zypper repos --show-enabled-only

Repository priorities are without effect. All enabled repositories share
the same priority.

| Alias | Name | Enabled | GPG Check | Refresh

--+---+-----
------------------+---------+-----------+--------

4 | SUSE_Linux_Enterprise_Server_16.0_aarch64:SLE-Product-SLES-16.0 | SLE-
Product-SLES-16.0 | Yes | (r) Yes | Yes

However, there are more repositories available, as we can see in the following figure:

Figure 6.6 – List of default repositories available

Extensions provide advanced and optional capabilities that often require an additional subscrip-

tion. Let’s find out what extensions are available in our SLES machine:

user@geeko:~> sudo SUSEConnect --list-extensions

AVAILABLE EXTENSIONS AND MODULES

SUSE Linux Enterprise High Availability Extension 16.0 aarch64

Activate with: suseconnect -p sle-ha/16.0/aarch64 -r ADDITIONAL REGCODE

SUSE Package Hub 16.0 aarch64

Activate with: suseconnect -p PackageHub/16.0/aarch64

The High Availability extension requires a separate subscription. It provides an integrated suite

of open source clustering technologies that can be installed on top of SLES. The other extension,

Package Hub, includes additional non-supported packages that can be installed safely on SLES

without creating any problems with support.

Adding, Patching, and Managing Software198

Let’s enable the Package Hub extension now:

user@geeko:~> sudo suseconnect -p
PackageHub/16.0/aarch64

Registering system to SUSE Customer Center

Updating system details on https://scc.suse.com
...

Activating PackageHub 16.0 aarch64 ...

-> Adding service to system ...

-> Installing release package ...

Successfully registered system

Once you enable Package Hub, new repositories are enabled:

user@geeko:~> sudo zypper repos --show-enabled-
only Repository priorities are without effect.
All enabled repositories share the same
priority.

| Alias | Name | Enabled | GPG Check | Refresh

---+---------------------------------------
--------------------------+---------------
--------+---------+-----------+-------- 4 |
SUSE_Linux_Enterprise_Server_16.0_aarch64:SLE-
Product-SLES-16.0 | SLE-Product-SLES-16.0 | Yes
| (r) Yes | Yes 7 | SUSE_Package_Hub_16.0_
aarch64:Backports-16.0 | Backports-16.0 | Yes
| (r) Yes | Yes 10 | SUSE_Package_Hub_16.0_
aarch64:PackageHub-16.0 | PackageHub-16.0 | Yes
| (r) Yes | Yes

Previous versions of SLES had modules that defined life cycle

information when it was different from the base package selec-

tion. This concept is no longer applicable to SLES 16. You can use

zypper lifecycle to learn more about the support included for

each package.

SLES includes Package

Hub as a disabled-by-de-

fault extension that you

can enable. Packages in

Package Hub are built

and maintained by the

community using the

Open Build Service. Those

packages are not official-

ly supported by SUSE, but

can be safely installed

while SLES remains sup-

ported and supportable.

For instance, you can find

Elixir (an Erlang-based

programming language

runtime) on Package Hub.

We finally have repositories with software available to be installed

and/or updated. Let’s proceed to use some of the available pack-

ages in the next section.

Chapter 6 199

Installing and updating software using Zypper
Repositories solve three big problems with software installation in the following ways:

•	 Finds and downloads software: There are so many open source projects and packages that

it is hard to select one that will provide what you need, with the level of quality required,

and somebody backing it up to provide updates and fixes for as long as you need it. SUSE

provides a selection of packages that are valuable, maintained by SUSE, and compatible

with each other, so your production is safe.

•	 Installs packages with their dependencies: Some packages require libraries and other

applications to be installed to work properly. Repositories allow the maintainer to specify

those dependencies and the required versions.

•	 Safely updates packages with their dependencies: When a new version of the software

or the dependencies is available, repositories allow you to quickly discover the update,

understand whether it is compatible with the rest of the installation, and update every-

thing needed with a single command.

Repostories are operated through a package management system, which, in SLES, is Zypper.

Let’s see how Zypper helps solve all those problems. We are going to install Elixir, a dynamic,

functional language for building scalable and maintainable applications. Elixir is compiled into

bytecode, an intermediate format that is executed on the BEAM (Erlang VM), an application

VM that is part of the Erlang package. This dependency means that you need Erlang to compile

and run Elixir code. In fact, you can run compiled Elixir code without Elixir if you want, as the

bytecode is directly executable by the BEAM.

Let’s start searching for Elixir:

user@geeko:~> sudo zypper search elixir

Refreshing service 'SUSE_Linux_Enterprise_Server_16.0_aarch64'.

Refreshing service 'SUSE_Package_Hub_16.0_aarch64'. Loading repository
data...

Reading installed packages...

S | Name | Summary | Type

 ---+-----------------------------+---------------------------------------
-----------------------+--------

 | elixir | Functional meta-programming aware language built atop Erlang |
package

Adding, Patching, and Managing Software200

 | elixir-doc | Documentation for elixir | package

 | elixir-hex | Package manager for the Erlang VM | package

 | obs-service-elixir_mix_deps | OBS Source Service for Elixir software
packaging | package

We have four different packages that have Elixir in their name distributed in the two enabled ser-

vices, with one of them being Package Hub. Let’s find out whether the first one is the correct one:

user@geeko:~> sudo zypper info elixir

Refreshing service

Loading repository data...

Reading installed packages...

Information for package elixir:

Repository : Backports-16.0

Name : elixir

Version : 1.18.1-160000.2.3

Arch : noarch

Vendor : SUSE LLC <https://www.suse.com/>

Support Level : unknown

Installed Size : 8.4 MiB

Installed : No

Status : not installed

Source package : elixir-1.18.1-160000.2.3.src

Upstream URL : https://elixir-lang.org

Summary : Functional meta-programming aware language built atop
Erlang

Description :

 Elixir is a functional meta-programming aware language built on top of
the Erlang VM. It is a dynamic language with flexible syntax with macros
support that leverage Erlang's abilities to build concurrent, distributed,
fault-tolerant applications with hot code upgrades.

 Elixir also provides first-class support for pattern matching,
polymorphism via protocols (similar to Clojure's), aliases and associative
data structures (usually known as dicts or hashes in other programming
languages).

 Finally, Elixir and Erlang share the same bytecode and data types.
This means one can invoke Erlang code from Elixir (and vice-versa) without
any conversion or performance impact.

Chapter 6 201

Yes, we can see that the package is indeed the one we were looking for. In the case that we mistyped

it, we will receive an error message stating that the package is not found. zypper info provides

really useful information, such as the upstream URL, the source package used, and a summary

and description that gives you information about the purpose of the package.

We stated that there is a hard requirement to install Erlang. Let’s see what other requirements

have been specified by the package maintainers:

user@geeko:~> zypper info --requires elixir

Loading repository data...

Reading installed packages...

Information for package elixir:

Repository : Backports-16.0

Name : elixir

Version : 1.18.1-160000.2.3

........ Output ommitted]

Requires : [3]

 /bin/sh

 /usr/bin/env

 erlang >= 25

The requirements are quite straightforward. This version of Elixir requires a shell (sh), env, and

Erlang with a version equal to or greater than 25. However, those dependencies can go further.

Let’s find out whether Erlang requires something else (some output omitted):

user@geeko:~> zypper info --requires erlang

Information for package erlang:

Repository : SLE-Product-SLES-16.0

Name : erlang

Version : 27.1.3-160000.2.2

Arch : aarch64

Vendor : SUSE LLC <https://www.suse.com/>

Support Level : Level 3

Installed Size : 50.5 MiB

Installed : No

Status : not installed

Source package : erlang-27.1.3-160000.2.2.src

Adding, Patching, and Managing Software202

Upstream URL : https://www.erlang.org

Summary : General-purpose programming language and runtime
environment

Requires : [31]

 /usr/bin/env

 libodbc.so.2()(64bit)

 erlang-epmd

 libz.so.1(ZLIB_1.2.7.1)(64bit)

Look how simple it is. Erlang requirements are automatically found. It has 31 dependencies de-

scribed. Fortunately, most of them are libraries that are already in the base installation, and

some are shared with Elixir. Zypper takes care of all that, including the compatibility between

the versions required and supported by different applications. Zypper won’t allow you to install

a package if there is no way to satisfy all its requirements and those of the software already in-

stalled at the same time.

Let’s install Elixir now:

user@geeko:~> sudo zypper in elixir

Refreshing service 'SUSE_Linux_Enterprise_Server_16.0_aarch64'.

Refreshing service 'SUSE_Package_Hub_16.0_aarch64'.

Loading repository data...

Reading installed packages...

Resolving package dependencies...

The following 4 NEW packages are going to be installed:

 elixir erlang erlang-epmd libodbc2

The following package has no support information from its vendor:

 elixir

4 new packages to install.

Package download size: 35.7 MiB

Package install size change:

 | 59.4 MiB required by packages that will be
installed

 59.4 MiB | - 0 B released by packages that will be
removed

Backend: classic_rpmtrans

 Continue? [y/n/v/...? shows all options] (y):

Chapter 6 203

Preloading: elixir-1.18.1-160000.2.3.noarch.rpm [done]

Preloading: libodbc2-2.3.12-160000.2.2.aarch64.rpm

[done]

Preloading: erlang-epmd-27.1.3-160000.2.2.aarch64.rpm

[done]

Preloading: erlang-27.1.3-160000.2.2.aarch64.rpm [done]Preload finished.
[success (28.1 MiB/s)] ..
..[done]

Retrieving: libodbc2-2.3.12-160000.2.2.aarch64 (SLE-Product-SLES-16.0).
(1/4), 186.1 KiB

Retrieving: erlang-27.1.3-160000.2.2.aarch64 (SLE-Product-SLES-16.0)
(2/4), 29.5 MiB

Retrieving: erlang-epmd-27.1.3-160000.2.2.aarch64 (SLE-Product-SLES-16.0).
(3/4), 399.9 KiB

Retrieving: elixir-1.18.1-160000.2.3.noarch (Backports-16.0)
(4/4), 5.7 MiB

Checking for file conflicts:[done]

(1/4) Installing: libodbc2-2.3.12-160000.2.2.aarch64
..[done]

(2/4) Installing: erlang-27.1.3-160000.2.2.aarch64
..[done]

/usr/bin/systemd-sysusers --replace=/usr/lib/sysusers.d/epmd-user.conf -

Creating group 'epmd' with GID 473.

Creating user 'epmd' (Erlang Port Mapper Daemon) with UID 473 and GID 473.

(3/4) Installing: erlang-epmd-27.1.3-160000.2.2.aarch64
..[done]

(4/4) Installing: elixir-1.18.1-160000.2.3.noarch
..[done]

Running post-transaction scripts ...
..[done]

Let’s see what happened. First, Zypper found the package we asked for in the list of enabled re-

positories and chose the one with the highest priority (we only have one, but there could be more

than one in different repos). It analyzed all the dependencies and created a list with their allowed

versions (some packages will allow you to choose more than one version of their dependencies,

such as Elixir asking for Erlang version 25 or higher). Then, it tries to find a group of versions that

work together nicely without incompatibilities.

Adding, Patching, and Managing Software204

In this case, Elixir requires Erlang, and Erlang requires a set of dependencies that are already in-

stalled, except for erlang-epmd and libobdc2. Those four packages are then downloaded from the

repo and installed, including running some scripts before and after the binaries and configuration

are copied, allowing the package to create the epmd group required by the configuration. Using

SUSE sources guarantees that the packages are installable, that they are tested and verified to work

properly together, and that they will be updated when a new patch is available without conflicts.

Now that we know how to search for packages and install them, let’s move on to learn more

about repository management.

Managing repositories and signatures with Zypper
As we have seen, after registering the system, we have a set of packages available for it in what

we call a repository. In SLES 16, the main repository will come with the operating system and

all the supported packages, while Package Hub will include unsupported packages that can be

installed in the system without losing support. You can also customize the repositories used to

search for and install packages and even include other repos. Let’s try it:

user@geeko:/etc/zypp/repos.d> sudo zypper addrepo https://download.
opensuse.org/repositories/science/16.0/science.repo

Adding repository 'Software for Scientists and Engineers (16.0)'
..[done]

Repository 'Software for Scientists and Engineers (16.0)' successfully
added

URI : https://download.opensuse.org/repositories/science/16.0/

Enabled : Yes

GPG Check : Yes

Autorefresh : No

Priority : 99 (default priority)

Repository priorities are without effect. All enabled repositories share
the same priority.

user@geeko:/etc/zypp/repos.d> sudo zypper repos --show-enabled-only

Repository priorities are without effect. All enabled repositories share
the same priority.

| Alias | Name | Enabled | GPG Check | Refresh

---+-------+------+---------+-----------+--------

4 | SUSE_Linux_Enterprise_Server_16.0_aarch64:SLE-Product-SLES-16.0 | SLE-

Chapter 6 205

Product-SLES-16.0 | Yes | (r) Yes | Yes

7 | SUSE_Package_Hub_16.0_aarch64:Backports-16.0 | Backports-16.0 | Yes |
(r) Yes | Yes

10 | SUSE_Package_Hub_16.0_aarch64:PackageHub-16.0 | PackageHub-16.0 | Yes
| (r) Yes | Yes

13 | science | Software for Scientists and Engineers (16.0) | Yes | (p)
Yes | No

The first time you try to install packages from a new repo, it will ask you to confirm that the

repository is safe, showing you the signing key for the repo using Gnu Privacy Guard (GPG), an

implementation of cryptographic signatures known as Pretty Good Privacy (PGP). Check that the

key is correct by comparing the downloaded key with the one provided by other means (such as

from the web page), and then accept it so the repo can be trusted. Any later attempt to forge the

repository will fail, as they won’t have the right signature, giving you another level of protection.

We can see an example of Zypper showing a new GPG signature in the following figure:

Figure 6.7 – Installing from a new repo for the first time

The data is stored in a plain text file in the /etc/zypp/repos.d/ folder. Let’s find out what infor-

mation is stored for this science repo:

Figure 6.8 – Content of science.repo

Adding, Patching, and Managing Software206

The format is an INI-like style with keys and values:

•	 section: This provides the unique identifier of the local repository (an alias).

•	 name: This is a long descriptive name for the repository. To be used in the UI.

•	 type: This can be rpm-md, YaST, and so on

•	 enabled: When set to 1, it will be enabled, and when set to 0, it will be disabled.

•	 baseurl: This is the location to find the packages and metadata, as a URL. In this case, it

is a single HTTPS source. It contains the $releasever variable that will be substituted

before being accessed. Other methods are NFS, HTTP, and FTP.

•	 autorefresh: This defines whether the metadata needs to be downloaded and updated

when accessing the repo automatically or manually using zypper refresh.

•	 gpgcheck: When set to 1 (enabled), the metadata of the repo will be checked against the

GPG signature. When that is not available, individual GPG signatures for each package

will be used. Disabling it is not recommended.

•	 gpgkey: This is the GPG key URI.

•	 service: Services are one level above repositories and serve to manage repositories and

perform some specific tasks.

The minimal required options to have a running repository are name, baseurl, and gpgcheck (this

happens only when gpgcheck is set to 0; otherwise, the GPG signature needs to be added too).

When you install a new repo using the URL, the repo will be enabled by default (as expected), but

it won’t be refreshed automatically. You need to manually refresh the metadata to see whether

new versions of the packages are available using refresh:

user@geeko:~> sudo zypper refresh

Repository 'SLE-Product-SLES-16.0' is up to date.

Repository 'Backports-16.0' is up to date.

Repository 'PackageHub-16.0' is up to date.

Repository 'Software for Scientists and Engineers (16.0)' is up to date.

All repositories have been refreshed.

When using manually added repositories, don’t forget to refresh the repo to down-

load the latest metadata when you are checking for new versions of a package. Al-

ternatively, you can modify the repo to auto-update, although that will mean that

the metadata will be checked and downloaded every time you use Zypper.

Chapter 6 207

In a normal installation, there are a few repositories configured but not enabled. The repositories

come in the following types:

•	 Base repos: For example, SLE-Product-SLES-16.0, which contains the packages or rpm.

•	 Source repo: For example, SLE-Product-SLES-16.0-Source. The Source part of the name

implies that the packages inside are source packages, containing the source code used to

build the packages in the equivalent repo.

•	 Debug repo: For example, Backports-16.0-Debug. The Debug part of the name implies

that those packages add debugging information that can be used to help with deep trou-

bleshooting of issues.

Repositories can be added, deleted, and updated. The following table is a list of subcommands

to manage repositories with Zypper:

Command Usage

zypper lr

zypper repos

Shows configured repos

zypper lr --show-enabled-only Shows only enabled repos

zypper addrepo URI

zypper addrepo file

Adds a repository to the list of repositories

zypper removerepo alias|name|#|URI

zypper rr alias|name|#|URI

Removes a new repo with the provided URL

zypper modifyrepo -e alias|name|#|URI

zypper modifyrepo --enable

alias|name|#|URI

Enables the repository (you can use -a for all

repositories, -l for local, and -t for remote)

zypper modifyrepo -d alias|name|#|URI

zypper modifyrepo --disable

alias|name|#|URI

Disables the repository

zypper refresh Refreshes all or specified repositories

Zypper clean Cleans local caches for all or the specified

repositories

Table 6.1 – Zypper repository-related options

Now that we know how to securely manage repositories in SLES, let’s start adding more packages

to our system, updating them, and undoing installations if we need to.

Adding, Patching, and Managing Software208

Installing patterns
Zypper works with several types of resources – different kinds of objects with dependencies on

other objects:

•	 Package: An ordinary RPM file.

•	 Patch: A text file that combines several RPM files with a minimal version to a fix and

also contains additional metadata. It usually updates affected/vulnerable packages to a

version providing the fix. It is intended to provide quick fixes and what we call program

temporary fixes (PTFs) in SUSE, which are fast delivery fixes for customers.

•	 Pattern: A group of packages that are required or recommended to install a functionality.

•	 Product: A group of packages that are necessary to install a product, conveniently iden-

tified as a package with dependencies. It modifies /etc/products.d, used by other tools

get information about the base and add-on products installed, like the date of End Of Life.

Patterns are important because they allow you to install many packages at the same time to

enable some functionality. There are many patterns by default in SLES. Let’s find out what they

are (some output omitted):

user@geeko:~> sudo zypper patterns

Refreshing service 'SUSE_Linux_Enterprise_Server_16.0_aarch64'.

Refreshing service 'SUSE_Package_Hub_16.0_aarch64'.

Loading repository data...

Reading installed packages...

S | Name		 | Version	 | Repository	 | Dependency

--+-------+---------+---------------+-----------

 | apparmor		 | 20241218-bp160.2.2	 | Backports-16.0	 |

 i | base 		 | 20241218-160000.2.2 | SLE-Product-SLES-16.0	
|

 | basic_desktop 	 | 20241218-bp160.2.2 	| Backports-16.0	 |

 | books 		 | 20201106-bp160.1.1 	| Backports-16.0 	 |

...

 | print_server 	 | 20250313-160000.2.2 | SLE-Product-SLES-16.0	
|

 i+ | selinux 		 | 20241218-160000.2.2	| SLE-Product-SLES-16.0	
|

 | sw_management 	 | 20241218-160000.2.2	| SLE-Product-SLES-16.0	
|

Chapter 6 209

 | sway 		 | 20200619-bp160.1.5 	| Backports-16.0 |

 | technical_writing 	 20201106-bp160.1.1	 | Backports-16.0	 |

 | wsl_base 	 | 20240327-bp160.1.10	| Backports-16.0	 |

 | wsl_gui 	 | 20240327-bp160.1.10	| Backports-16.0	 |

 | wsl_systemd	| 20240327-bp160.1.10	|Backports-16.0	 |

 | x11		 | 20241218-bp160.2.2	 | Backports-16.0	 |

 | x11_raspberrypi	 | 20241218-bp160.2.2	 | Backports-16.0	 |

 | xfce | 20230212-bp160.2.2 | Backports-16.0 |

 | xfce_extra | 20230212-bp160.2.2 | Backports-16.0 |

 | xfce_extra_wayland | 20230212-bp160.2.2 | Backports-16.0 |

 | xfce_wayland | 20230212-bp160.2.2 | Backports-16.0 |

The list of patterns tells us the pattern name, the version, the repository that stores them, whether

they are installed or not, and any dependencies. Patterns provide a better way to install complex

applications with many components, such as GNOME (the default graphical interface).

For instance, the pattern to install the Apache HTTPD service (lamp_server) provides a full Li-

nux, Apache, MariaDB, Perl (LAMP) stack and thus also includes a list of ancillary packages and

applications that go beyond the bare server. The pattern for GNOME, which has a few hundred

dependencies and requires ancillary applications, is the safest way to make sure that the instal-

lation includes all expected packages for an optimal user experience. In fact, installing the gnome

package requires the installation of the gnome-gnome pattern as a dependency:

user@geeko:~> sudo zypper info -t pattern lamp_server

Refreshing service 'SUSE_Linux_Enterprise_Server_16.0_aarch64'.

Refreshing service 'SUSE_Package_Hub_16.0_aarch64'.

Loading repository data...

Reading installed packages...

Information for pattern lamp_server:

Repository : SLE-Product-SLES-16.0

Name : lamp_server

Version : 20250313-160000.2.2

Arch : aarch64

Vendor : SUSE LLC <https://www.suse.com/>

Installed : No

Visible to User : Yes

Summary : Web and LAMP Server

Adding, Patching, and Managing Software210

Description :

 Software to set up a Web server that is able to serve static, dynamic,
and interactive content (like a Web shop). This includes Apache HTTP
Server, the database management system MySQL, and scripting languages such
as PHP, Python, Ruby on Rails, or Perl.

Contents	 :

S | Name		 | Type	|Dependency

---+------+-------+------------

 | apache2				 | package 	 | Required

 | patterns-base-basesystem	 | package 	 | Required

 | patterns-server-lamp_server	 | package	 | Required

 | apache2-manual			 | package	 |Recommended

 | apache2-mod_php8			 | package	 |Recommended

 | apache2-prefork			 | package	 |Recommended

 | mariadb				 | package	 |Recommended

i | perl					 | package	 |Recommended

As you can see, installing the LAMP pattern takes care of installing different components, speci-

fying that we want to use a pattern with the -t pattern option:

Figure 6.9 – Installing the lamp_server pattern with the -t pattern option

We have now learned how to install software. It is also important to learn how to keep it up to

date. Let’s see how in the following section.

Chapter 6 211

Updating software
New versions of packages and their dependencies are published daily. Keeping the server updat-

ed, when possible, is one of the best ways to avoid security or performance issues and is a basic

maintenance task. With Zypper, updating a package is as simple as entering a command. Let’s

see what it looks like in the following figure:

Figure 6.10 – Output of Zypper update

Zypper shows you a summary of what is going to happen and asks for verification. Answering yes

here will install the new version and all its dependencies. You can do it automatically by adding

the -y option:

user@geeko:~> sudo zypper up -y

Refreshing service 'SUSE_Linux_Enterprise_Server_16.0_aarch64'.

Refreshing service 'SUSE_Package_Hub_16.0_aarch64'.

Loading repository data...

Adding, Patching, and Managing Software212

Reading installed packages...

The following package update will NOT be installed: SLES-release

The following NEW package is going to be installed: kernel-
default-6.12.0-160000.6.1

The following package requires a system reboot: kernel-
default-6.12.0-160000.6.1

1 new package to install.

Package download size: 108.2 MiB

Package install size change:

		 | 209.8 MiB required by packages that will be installed

209.8 MiB 	 | - 0 B released by packages that will be removed

Note: System reboot required.

Backend: classic_rpmtrans Continue? [y/n/v/...? shows all options] (y): y

Preloading: kernel-default-6.12.0-160000.6.1.aarch64.rpm [done]

Preload finished. [success (17.9 MiB/s)][done]

Retrieving: kernel-default-6.12.0-160000.6.1.aarch64 (SLE-Product-
SLES-16.0) (1/1), 108.2 MiB

Checking for file conflicts:[done]

(1/1) Installing: kernel-default-6.12.0-160000.6.1.aarch64
................[done]

Running post-transaction scripts[done]

user@geeko:~>

The kernel package is special. Normally, a package will be substituted by the new version. In the

case of the kernel and due to its importance, installing a new version of the package will install

the new kernel and make it the default, without deleting the old ones. Also, Zypper checks that the

package modifies a key library or application and will let you know that you need to reboot. You

can actually verify whether that is the case without reading the output with a Zypper command:

user@geeko:~> zypper needs-rebooting

Since the last system boot core libraries or services have been updated.

Reboot is suggested to ensure that your system benefits from these
updates.

There are cases in which a regular package update will not be enough, such as the release of a

new minor version of the operating system (i.e., SLES 16.1). For those cases, the repositories need

to be updated to point to the new code base, and dependencies need to be reevaluated, even

downgrading some packages.

Chapter 6 213

Let’s see the commands used to maintain software in our system in the following table:

Command Usage

zypper info <symbol>

zypper if

Shows detailed information for a specified

package

zypper if -t <type> --provides
--requires --conflicts --obsoletes
--suggests --supplements --enhances
<symbol>

Shows information about a package, including

references to others that the package requires,

conflicts with, makes obsolete, suggests,

supplements, or enhances

zypper search -t <type> -r <repo>

zypper se

Searches for a package in active repositories or

the specific repo for the type

zypper search package Performs a search for packages in the available

repositories

zypper install name|capability

zypper in

Installs or updates a package that can be selected

by name or capability

zypper install file.rpm Installs plain RPM files, trying to satisfy their

dependencies

zypper list-updates

zypper lu

zypper list-patches

zypper lp

Lists available updates/patches that are

installable

zypper update

zypper up

Updates installed packages with newer versions,

where possible

zypper update <package> Updates a single package

zypper patch Installs available patches, aiming for the latest

version; optional patches (optional category or

feature) will not be installed unless we specify

them using the --with-optional option

zypper dist-upgrade

zypper dup

Performs a distribution upgrade

zypper what-provides <capability>

zypper wp

Lists all packages that provide the specified

capability

Table 6.2 – Zypper options related to software maintenance

Adding, Patching, and Managing Software214

We now know how to keep the system up to date. Let’s see how we can remove and clean up

pieces of software in our system.

Uninstalling software and repositories
So far, we have learned how to install and update software from the base repositories included

in the distribution, and also from Package Hub and third-party repositories. But the life cycle of

a package is not complete. We will need to delete (remove) the software. Let’s see how that goes.

We will start by deleting the repo for science. Let’s first check that there is no package installed

from that repo:

user@geeko:~> zypper se -r science --installed-only

Loading repository data...

Reading installed packages...

No matching items found.

 Note: For an extended search including not yet activated remote
resources please use 'zypper

 search-packages'.

user@geeko:~> sudo zypper removerepo science

[sudo] password for user:

Removing repository 'Software for Scientists and Engineers (16.0)'
................................[done]

Repository 'Software for Scientists and Engineers (16.0)' has been
removed.

user@geeko:~> zypper lr

An example of the repos listed by Zypper can be seen in the following figure:

Figure 6.11 – Output of zypper lr

Chapter 6 215

You can also disable a repo. In that case, the repo will still be visible in the list of repositories, but

it won’t be used for search and dependency management:

 user@geeko:~> sudo zypper modifyrepo --disable SUSE_Package_Hub_16.0_
aarch64:Backports-16.0 SUSE_Package_Hub_16.0_aarch64:PackageHub-16.0

Repository 'SUSE_Package_Hub_16.0_aarch64:Backports-16.0' has been
successfully disabled.

Repository 'SUSE_Package_Hub_16.0_aarch64:PackageHub-16.0' has been
successfully disabled.

Let’s now delete Elixir. We are going to try first using the -D modifier to understand what would

happen and see what the result would be:

user@geeko:~> sudo zypper rm -D elixir

Reading installed packages...

Resolving package dependencies...

The following package is going to be REMOVED:

 elixir

1 package to remove.

Package install size change:

 |	 0 B required by packages that will be installed

-8.4 MiB	 | - 8.4 MiB released by packages that will be removed

Backend: classic_rpmtran --dry-run

Continue? [y/n/v/...? shows all options] (y):

Even if we type y, the package will not be uninstalled because it is a dry run. But this is not what

we were trying to do. We don’t need Erlang anymore, so we need to specify that we want to re-

move the package and all its dependencies:

Figure 6.12 – Removing a package and its dependencies

Adding, Patching, and Managing Software216

A list of repository-related options, intended for cleaning up, is shown in the following table:

Command Usage

zypper rr <repo>

zypper removerepo

Removes a repository

zypper if -t <type> --provides
--requires --conflicts --obsoletes
--suggests --supplements --enhances
<symbol>

Shows information about a package, including

references to others that the package requires,

conflicts with, makes obsolete, suggests,

supplements, or enhances

zypper search -t <type> -r <repo>

Zypper se

Searches for a package in active repositories or

the specific repo for the type

zypper modifyrepo --disable <repo> Disables the repo

zypper rm -clean-deps <package>

zypper remove

Removes a package and all its dependencies

Table 6.3 – Repository clean-up options for Zypper

We now know how to manage repositories. It’s time to dive deeper into the RPM tools and format,

which we will do in the following section.

Understanding RPM internals
Zypper is a powerful tool that provides a full life cycle for packages, which works as a wrapper

around RPM Package Manager. All Linux distributions tend to have their own package man-

ager, from Debian with .deb to Pacman in Arch Linux, and some distributions with more exotic

mechanisms. SLES uses RPM, a format that is shared with many distributions such as openSUSE,

Fedora, RHEL, CentOS, and Oracle Linux.

The main command is rpm. RPM can install and update packages, but it does not manage reposi-

tories or resolve dependencies, leaving that up to you, so you will normally use Zypper. However,

knowing a little about RPM can be useful if you find issues or plan to create your own packages

to distribute them.

RPM files are packaged in a special binary format that contains the following:

•	 The files to be installed on the system, stored in CPIO format and compressed

•	 Information on permissions and the assigned owner and group for each file

•	 Dependencies required and provided by each package, and a list of conflicts with other

packages

Chapter 6 217

•	 Script to execute during installation, uninstallation, and

upgrade to make required changes in the system

•	 A signature to guarantee that the package was not mod-

ified

To learn a bit about it, we will show some simple and useful com-

mands:

•	 Commands to check packages:

•	 rpm -qa: Lists all the installed packages in the system

•	 rpm -qf <filename>: Shows the package that in-

stalled that file

•	 rpm -ql <packagefile>: Lists all files included in

an installed or downloaded package

•	 Commands to install, upgrade, and remove:

•	 rpm -i <packagefile>: Installs the package, but

only if the dependencies are already installed. It

won’t update an installed package, even if the new

one is newer.

•	 rpm -F <packagefile>: Updates (freshens) a pack-

age using an rpm file. It will only update if a previous

version is already present.

•	 rpm -U <packagefile>: Updates or installs a pack-

age using an rpm file. It checks for dependencies but

does not manage them.

•	 rpm -e <packagename>: Removes (erases) the pack-

ages specified, keeping the dependencies.

Although the same RPM

format is used in differ-

ent distributions, it is not

possible to install an RPM

from one distribution

in a different one. Meta-

data and dependencies

(including names and

versions) will be slightly

different, so proper func-

tion is not guaranteed.

Only force-install RPM

files into a different dis-

tribution at your own risk.

If you want to understand the problems that the dependency

management system in Zypper solves, try installing packages

with rpm -i.

There is a database that contains the information required by RPM.

It is important to know that all the databases are located in /var/

lib/rpm and can be managed with the rpmdb command.

Adding, Patching, and Managing Software218

Nowadays, it is quite rare to use rpm directly, except in cases of finding a low-level issue or man-

ually installing some package. If you ever need to do that, it’s better to try fixing a broken test

system before having to use it in real life.

This should be enough for managing software in SLES systems.

Summary
In this chapter, we have gone through some basic admin tasks of software management in a SLES

system, from subscriptions to installation and repository management, and other miscellaneous

tips.

SLES uses Zypper for all tasks related to patching, updating, and managing software. Zypper

simplifies managing dependencies, installing the right versions of software, and making sure

that all the software is co-installable and compatible. Installing and updating software is very

common, with daily or weekly new versions of packages that address errors and vulnerabilities.

It is worth dedicating some time to understanding it in depth.

There is still a lot to learn for more advanced certifications on SLES. We haven’t gone into the

process required to create RPM packages and repositories, and the processes involved to manage,

maintain, and distribute internally produced software in your own environments. This is an

advanced topic that is not part of the SCA certification. It is something we recommend you learn

about once you finish this book.

Now that our systems are up to date, let’s move on to learn how to manage them remotely in the

upcoming chapter.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

https://www.packtpub.com/unlock

Part 2
Security with SSH,

SELinux, Firewall, and
System Permissions

Security in production systems is a direct responsibility of systems administrators. To handle that,

SLES 16 includes basic and advanced capabilities such as SELinux, an integrated firewall, and, of

course, the standard system permissions. In this part, we explain the security mechanisms in

SLES in depth so that you can perform the everyday maintenance tasks.

This part has the following chapters:

•	 Chapter 7, Remote Systems Administration

•	 Chapter 8, Enabling and Using Cockpit

•	 Chapter 9, Securing Network Connectivity with firewalld

•	 Chapter 10, Keeping the System Hardened with SELinux

7
Administering Systems
Remotely

When working with systems, once the server has been installed, and often even during the in-

stallation itself in SLES 16 with Agama (the new installer), administration can be performed

remotely. Once a machine has been installed, the tasks that need to be performed during its life

cycle are not that different from the ones that have already been performed.

In this chapter, we will cover (from a connection point of view) how to connect to remote sys-

tems, transfer files, and automate the connection so that it can be scripted and make it resilient if

issues arise with the network link. Administration tasks that can be performed on the system are

the same as the ones we described in previous chapters, such as installing software, configuring

additional networking settings, and even managing users.

Since administering a system requires privileged credentials, we will focus on the available tools

that are considered to be secure to perform such connections, as well as how to use them to en-

capsulate other traffic.

We will cover the following topics:

•	 SSH and OpenSSH overview and base configuration

•	 Accessing remote systems with SSH

•	 Key-based authentication with SSH

•	 SCP/rsync – Remote file management

•	 Advanced remote management – SSH tunnels and SSH redirections

•	 Remote terminals with tmux

Administering Systems Remotely222

By covering these topics, we will be able to master remote system access and bring our admin-

istration skills to the next level.

Let’s start by talking about the SSH protocol and the OpenSSH client and server in the next section.

Technical requirements
You can continue using the virtual machine that we created at the beginning of this book in

Chapter 1, Getting SLES 16 Up and Running (Physical and Cloud). Any additional packages that are

required will be indicated in the text. Any additional files that are required for this chapter can

be downloaded from https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-

16-Official-Administration-Guide.

SSH and OpenSSH overview and base configuration
Secure Shell Host (SSH) is a standard remote login protocol that uses encryption for connecting

to hosts. This way, the credentials that were used for logging in are not transmitted in plain text.

With SSH, a secure channel is created between the client and the target host, even if the connec-

tion is performed over untrusted or insecure networks. Here, the SSH channel that’s created is

secure, and no information is leaked.

There are many implementations of the SSH protocol. In SLES 16, we use OpenSSH, an open source

project managed by the OpenBSD team (https://www.openssh.com/). It provides both a server

and a client part. In SLES 16, the package names are openssh-server and openssh-clients, re-

spectively. They come already installed, configured, and with the firewall rules to access the SSH

port (22), which is opened by the installation we performed so far.

Knowing that not everything is possible, it is really important for SUSE Certified

Administrator (CSA) certifications (and even higher ones, if you followed that path)

to be resourceful. We already know how to install packages and how to check the

manual pages that are installed by them, but we can also use those packages to find

the necessary configuration files. This skill can be used to find the possible configura-

tion files we need to edit to configure a service or a client. Remember to use rpm -ql

[package] to review the list of files provided by a package if you cannot remember

which one to use. For example, running rpm -ql openssh-server will show the

files in the openssh-server package.

https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide
https://www.openssh.com/

Chapter 7 223

To install and configure SSH in our system if it is not already installed or doesn’t come in the

image we are using, we can do it by running the following as root:

zypper install openssh-server openssh-clients

systemctl enable --now sshd

firewall-cmd --add-service ssh

firewall-cmd --add-service ssh --permanent

Now that we are sure the service is properly installed and configured, let’s learn more about the

OpenSSH server component that comes with our SLES system.

OpenSSH server
OpenSSH has become standard in many operating systems, both as a server and as a client, to

make secure connections between them. macOS includes OpenSSH as its default client and server,

as well as SLES and many other Linux distributions.

The main configuration file for the OpenSSH server is located at /usr/etc/ssh/sshd_config

(and you can use man sshd_config to get detailed information about the different options). If

you need to add or change any parameter to the default sshd configuration, create a file with a

.conf extension under /etc/ssh/sshd_config.d/ and reload the service with systemctl reload

sshd.service. Some of the most used options are as follows:

•	 AcceptEnv: Defines which environment variables that have been set by the client will be

used on the remote host (for example, locale, terminal type, and so on).

•	 AllowGroups: A list of system groups that a user should be a member of to get access to

the system. If the user is not a member of any of these groups, access will be denied.

•	 AllowTcpForwarding: Allows us to forward ports using the SSH connection (we will dis-

cuss this later in this chapter, in the Advanced remote management – SSH tunnels and SSH

redirections section).

•	 DisableForwarding: Takes precedence over other forwarding options, making it easier

to restrict the service.

•	 AuthenticationMethods: Defines which authentication methods can be used, such as

disabling password-based access.

•	 Banner: Files to send to the connecting user before authentication is allowed. This defaults

to having no banner, which might also reveal who is running the service that might be

providing too much data to possible attackers.

•	 Ciphers: A list of valid ciphers to use when you’re interacting with the server. You can

use + or - to enable or disable them.

Administering Systems Remotely224

•	 ListenAddress: The hostname or address and port where the sshd daemon should be

listening for incoming connections.

•	 PasswordAuthentication: Defaults to yes and can be disabled to block users from inter-

actively connecting to the system unless a public/private key pair is used.

•	 PermitEmptyPasswords: Allows accounts with no password to access the system. The

default value is no.

•	 PermitRootLogin: Defines how login works for the user root, for example, to prevent

the root user from connecting remotely with a password. The default in SLES 16 for root

login is prohibit-password, which means that root can only log in with an SSH key and

not with a password.

•	 Port: Related to ListenAddress, this defaults to 22. It’s the port number where the sshd

daemon listens for incoming connections.

•	 Subsystem: Configures the command for the external subsystem. For example, it is used

with sftp for file transfers.

•	 X11Forwarding: Defines whether X11 forwarding is permitted so that remote users can

open graphical programs on their local display by tunneling the connection.

The following screenshot shows the options that are installed by our system while we’re remov-

ing comments:

Figure 7.1 – Values at installation time defined in /etc/ssh/sshd_config; this includes the
openssh-server-config-rootlogin package

We’ll check the client part of the configuration in the next section.

Chapter 7 225

OpenSSH client
The client part of OpenSSH has its system-wide defaults in the /usr/etc/ssh/ssh_config file.

You can add system-wide customizations to it in the files in the /etc/ssh/ssh_config.d/ folder.

Users can also have personal configuration in the ~/.ssh/config file.

Usually, the system-wide file just contains some comments, not actual settings, so we will be

focusing on the per-user configuration file and command-line parameters.

One example entry in our ~/.ssh/config file could be as follows:

Host jump

 Hostname jump.example.com

 User root

 Compression yes

 StrictHostKeyChecking no

 ProxyCommand connect-proxy -H squid.example.com:3128 %h %p

 ControlPath ~/.ssh/master-%r@%h:%p

 ControlMaster auto

In the previous example, we defined an entry named jump (which we can use with ssh jump) that

will connect the root username to the jump.example.com host.

This is a basic setting, but we’re also defining that we’ll be using a helper program in ProxyCommand

that will make use of a proxy server on squid.example.com on port 3128 to connect to the %h

host and the %p port to reach our target system. Additionally, we’re making use of Compression to

compress and decompress the data sent and received, and using ControlMaster to share multiple

sessions with one single connection.

One feature that has security implications is StrictHostKeyChecking. When we connect to a host

for the first time, keys are exchanged between the client and the host, and the server identifies

itself with the keys that are used. If they’re accepted, they will be stored in the .ssh/known_hosts

file at the user’s home directory.

The ~ directory is an alias for the user’s home directory. You can identify which one

it is by running echo $HOME. For regular users, it is often a folder with the name of

the user under /home.

Administering Systems Remotely226

If the remote host key is changed, a warning will be printed on the SSH client’s terminal, and

the connection will be refused. However, if we set StrictHostKeyChecking to no, we will accept

any key that’s sent by the server, which might be useful if we’re using a test system that gets

redeployed frequently (and thus, generates a new host key). It is not recommended to be used in

general, since it protects us from a server being replaced and also from someone impersonating

the server we want to connect to with a server that, for example, logs usernames and passwords

to access our system later.

In the next section, we will learn about accessing remote systems with SSH.

Accessing remote systems with SSH
SSH, as we mentioned earlier in this chapter, is a protocol that’s used to securely connect to remote

systems. In general, the syntax, in its most basic form, is just executing the ssh command in your

terminal, adding a hostname or IP address after it, to indicate to which system we should connect.

We can also specify the user we want to use, adding it before the hostname and separating it with

the @ symbol, as in this example:

> ssh user@geeko.suse.test

The SSH client will then initiate a connection to the SSH server on the target host, using the us-

ername provided (or if none is provided, the currently logged-in user by default), and will try to

reach the remote server on port 22/tcp, which is the default for the SSH service.

In the following screenshot, we can connect from our system to localhost, which means we will

be connecting to our own server:

Figure 7.2 – Initiating an SSH connection to localhost

The name localhost is reserved to reference the machine we are working with. It can

be used in many ways, such as in your own laptop to run an application and connect

to it even without any other external network. It has an associated network device

called lo, also known as the loopback device, and associated IPv4 127.0.0.1 and

IPv6 ::1 addresses.

Chapter 7 227

In the preceding screenshot, we can see how the first interaction with the server prints the finger-

print of the server to authenticate it, to ensure that you are connecting to the server you want to

connect to. This is what was discussed in the previous section: that is, StrictHostKeyChecking.

Once accepted, if the host key changes, the connection will be denied until we manually remove

the older key to confirm that we’re aware of the server change.

Let’s add the key and try again, as shown in the following screenshot:

Figure 7.3 – The SSH connection to localhost accepted

On our second attempt, the connection succeeded, and we are in. We might want to avoid be-

ing able to access the system as root. To do so, we can change the content of /etc/ssh/sshd_

config.d/permit-root.conf and set the PermitRootLogin variable to No. Then, reload the sshd

service and try again:

Figure 7.4 – SSH connection as root denied

You can see that after using the right password three times, we finally get a Permission denied

message.

In general, password authentication can be a security risk as the keyboard might be intercepted,

someone might be looking over your shoulder, a brute-force attack might be used against the

accounts, and so on. Due to this, it’s common practice to at least disable it for the root user,

meaning that someone trying to log in to the system should know the username and password,

and from there, use the system tools to become root.

Administering Systems Remotely228

Let’s learn how to log in to remote systems without having to use passwords by using authen-

tication keys.

Key-based authentication with SSH
One big advantage of SSH connections is that commands can be given to be executed on remote

hosts, for example, to grab updated data that can be used for monitoring without requiring a

specific agent on the host. This is the same mechanism used by Ansible to automate tasks, using

SSH as the connection mechanism.

Having to provide login details on each connection is not something that we could consider an

improvement to the user experience, but SSH also allows us to create a key pair that can be used

for authentication to remote systems, so that no password or credential input is required.

The key pairs contain two parts, also referred to as keys: a public key that must be added to each

host we want to connect to, and a private key that must be secured as it will be used to identify

us while we’re trying to connect to remote hosts. Some services, such as GitHub, request that you

upload your public key so you can use it to authenticate and transfer your repository changes.

Never upload your private key anywhere; you have to keep it in the least number of places possible,

as it is the one thing that identifies you.

First of all, let’s create one key pair for authentication.

To create a key pair, we can use the ssh-keygen tool, which has several options for the key we are

creating, as shown in the following screenshot:

It is recommended to have at least one key pair per use case. For example, we can

keep several SSH key pairs to be used in different roles, such as personal systems,

production systems, lab systems, and so on. Having to specify the key pair for con-

necting is an extra security measure: we cannot connect to production systems unless

we use the production key pair.

Chapter 7 229

Figure 7.5 – The ssh-keygen options

When we run ssh-keygen with no arguments provided, by default, it will create a key for the

current user and ask for a password for the key. Let’s do it: use the defaults and provide no values.

Then, hit Enter when you are requested to provide a password; this will provide a blank one. We

will get an output such as the one shown in the following screenshot:

Figure 7.6 – ssh-keygen execution creating an RSA key pair under ~/.ssh/{id_ed25519,id_
ed25519.pub}

Administering Systems Remotely230

From this point on, this system has created a key pair for the root user, and it has stored the two

pieces of it in the same folder, which is .ssh in the user’s home directory by default:

•	 The public key contains the .pub suffix. In this case, it is /root/.ssh/id_ed25519.pub.

This is the file we can share and upload to different hosts and services, such as GitHub.

•	 The private key is the one without a suffix, which, in this case, is /root/.ssh/id_ed25519.

This is the file we must keep private.

How do we use them? If we look inside the .ssh folder in our home directory, we can see several

files, including an authorized_keys file and a known_hosts file, in addition to the key pair we

have just created.

The authorized_keys file will contain one entry per line. This contains the public keys that can

be used to log in to this system for this user.

To simplify how keys are set up on remote systems, we have the ssh-copy-id utility, which con-

nects via SSH to the remote host. This will ask for the SSH password and install the available public

keys on our system. However, this requires the system to have password authentication enabled.

The alternate method consists of manually appending our public key to that file (.ssh/authorized_

keys), as shown in the following screenshot:

The vast range of options that can be used with authorized_keys goes further than

adding just regular keys – you can also define commands to execute, expiry times

for keys, remote hosts that can be used to connect so that only those hosts will be

able to use that key successfully, and many more. Again, the man sshd command

is your friend. So, check out the AUTHORIZED_KEYS FILE FORMAT section there to

learn about more complex setups.

Chapter 7 231

Figure 7.7 – ssh-copy-id running and manual check of public key added to authorized keys

The first command we used is ssh-copy-id, which copies the content of public_key to the sys-

tem we want to connect to the authorized_keys file. In this case, as we are using localhost; it

is the same system, which is easier to compare. Finally, we can now connect to localhost with

SSH and execute a command without having to provide a password.

In the following screenshot, we can see that once we set PasswordAuthentication to No, the

system doesn’t ask for the password. It will rely only on key pairs to provide SSH access. As we

have already uploaded our public key, we can access the system:

Figure 7.8 – Restricting password access to our system; we can still access it using SSH key pairs

The permissions for the .ssh folder and the authorized_keys file must not be too

wide open (for example, everybody can read or write to it). If this is the case, the SSH

daemon will refuse to use it, as someone could have appended new keys and tried

to gain access without really being a legitimate user of the system.

Administering Systems Remotely232

What just happened opens a new world of automation. Using

the keys being exchanged between our system and the remote

hosts, we can now connect remotely to them to run commands

interactively or to script commands to be executed.

Key pair authentication

and passwordless log-

in are the default ways

to function in all major

cloud providers. This

way, you avoid having

an intrusion by someone

attacking your system us-

ing brute-force password

guessing.

We can check the results in our terminal. Let’s consider this

simple script for a system load average check, which is avail-

able at https://github.com/PacktPublishing/SUSE-Linux-
Enterprise-Server-16-Official-Administration-Guide/

tree/main/chapter-07-remote-systems-administration:

#!/usr/bin/bash

for system in host1 host2 host3 host4;

do

 echo "${system}: $(ssh ${system} cat /proc/
loadavg)"

done

In this example, we’re running a loop to connect to four systems

and then outputting the name and the load average of that system,

as shown in the following screenshot:

Figure 7.9 – Passwordless login to four hosts to check their
load average

As we can see, we quickly grabbed the information from four hosts

over SSH. If you want to test this in your environment, you might

want to put into practice what we learned about creating entries

in the /etc/hosts file, which points to 127.0.0.1 for the host-

names we want to try, so that the connection goes to your own

practice system, as we explained in Chapter 5, Enabling Network

Connectivity.

https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/tree/main/chapter-07-remote-systems-administration
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/tree/main/chapter-07-remote-systems-administration
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/tree/main/chapter-07-remote-systems-administration

Chapter 7 233

Now, think about the different options we have for administering our systems remotely:

•	 Check IPs for a range of hosts

•	 Install updates or add/remove one package

•	 Check the local time in case the system has drifted

•	 Restart one service after adding a new user to the system

Many more options exist, but these are the ones we have already learned in this book. Keep this

in mind when moving forward.

Of course, there are more suitable tools for remotely administering systems and ensuring that

errors are detected and handled properly, such as using Ansible. But in this case, for simple tasks,

we are good to go.

Previously, we created a key and replied by pressing “Enter” when we were asked for a password,

which provided a blank one. What if we had typed one in? We’ll look at this in the next section.

SSH agent
If we decide to create an SSH key with a password to protect it (good choice), we will need to input

the password each time we want to use the key. So, in the end, it might be as insecure as having

to type in the password, as someone might be checking over our shoulder. To overcome this, we

can use a program called ssh-agent, which temporarily keeps the password in memory. This is

convenient and reduces the chances of someone watching while you type in your key.

When you’re using a graphical desktop, such as GNOME, as provided by SLES 16, the agent might

already be set up to start at session login. If you’re using a console (local or remote), the agent

must be started manually by executing ssh-agent.

When ssh-agent is executed, it will output some variables that must be set in our environment

so that we can make use of it, as shown in the following screenshot:

Figure 7.10 – ssh-agent being used to set the required variables

Administering Systems Remotely234

As shown in the preceding screenshot, before being executed, or just while we’re executing the

agent, the variables are undefined. However, if we were to execute eval $(ssh-agent), we would

accomplish the goal of having the variables defined and ready to use.

The next step is to add the keys to the agent. This can be accomplished with the ssh-add command,

which can be used without parameters or by specifying the key to be added. If the key requires

a password, we will be prompted for it. Once we’re done, we might be able to use that key to log

in to the systems with the password that’s being cached until we exit the session that executed

the agent, thus clearing the password from memory.

The following screenshot shows the command that was used to generate a new key pair with a

password. Here, we can see that the only difference is that we’re storing it in a file named withpass

rather than what we did earlier in this chapter:

Figure 7.11 – Creating an additional SSH key pair with a password

In the next screenshot, you can see how we connect to localhost. We added the public key

with a password to .ssh/authorized_keys and deleted the one without a password to test the

connection behavior:

Chapter 7 235

Figure 7.12 – Using ssh-agent to remember our password

To make this clearer, let’s analyze what’s happening:

1.	 First, we ssh to the host. Permission is denied as the default key we used was removed

from authorized_keys.

2.	 We ssh again, but while defining the identity file (the key pair) to connect to, as we can

see, we’re asked for the password for the key, not for logging in to the system.

3.	 Then, we log out, and the connection is closed.

4.	 Next, we try to add the key, and we get an error because we have not set the environment

variables for the agent.

5.	 As instructed when we introduced the agent, we execute the command for loading the

environment variables for the agent in the current shell.

6.	 When we try to add the key with ssh-add withpass, the agent asks for our password.

7.	 When we finally ssh to the host, we can connect without a password as the key is in

memory for our key pair.

Here, we have achieved two things: we now have an automated/unattended method to connect

to systems and have ensured that only authorized users will know the password to unlock them.

We’ll learn how to do remote file management in the next section!

Administering Systems Remotely236

SCP/rsync – Remote file management
Several services were replaced with SSH on many systems, and one of them was the insecure

protocol for file transfer known as File Transfer Protocol (FTP). It uses a communication that

transfers data in plain text, and it was a perfect target for intercepting credentials. FTP is hardly

ever used today, and where it is, it is mostly for serving publicly available files on servers that

only allow anonymous access.

SSH by default enables two interfaces for copying files: scp and sftp. The first one is used in a

similar way to the regular cp command, but here, we’re accepting remote hosts as our target or

source, while sftp uses a client approach similar to the traditional ftp command that interacts

with FTP servers. Just remember that in both cases, the connection is encrypted and happens

over port 22/tcp on the target host.

We’ll dig into scp next.

Transferring files with an OpenSSH secure file copy (scp)
The scp command, which is part of the openssh-clients package, allows us to copy files be-

tween systems using the ssh layer for the whole process. This allows us to securely transfer a

file’s contents, plus all the automation capabilities that were introduced by key pair login, to

various systems.

To set up this example, we will use the user created during installation (named user in our sample

system), which will be used to copy over files using the tools described in this section, as shown

in the following screenshot:

Figure 7.13 – Checking and preparing our system with a user to practice file transfers

Chapter 7 237

Once our public key has been added to user@geeko, we can start testing!

Let’s analyze each part of the command using this template:

scp origin target

In our case, origin will be a local file, for example, /etc/hosts.

Our target is a remote host. Here, the username is user, the host is our test system (geeko), and

the folder you should store the files in is the default one, usually the home folder of the user in-

dicated (the one with an empty path after the : symbol).

In the following screenshot, we can see the output of the scp /etc/hosts user@geeko: command

and the validation we can perform later via remote execution:

Figure 7.14 – Copying SCP files to a remote path and validating the files that have been copied

In the preceding screenshot, you can also check that the files that were owned by the root user

are copied. The copied ones are owned by user, so the file’s contents are the same. But since the

creator of the target is user, the ownership of these files is also user.

We can also make more complex copies by indicating remote files first and the local path as targets

so that we download files to our system, or even copy files across remote locations for both the

origin and target (unless we specify the -3 option, they will go directly from origin to target).

Let’s explore the sftp client next.

Time for a reminder! man scp will show you all the available options for the scp

command, but since it is based on SSH, most of the options we use with SSH are

available, as well as the host definitions we made in the .ssh/config file.

Administering Systems Remotely238

Transferring files with sftp
Compared to scp, which can be scripted in the same way we can script with the regular cp com-

mand, sftp has an interactive client for navigating a remote system. However, it can also auto-

matically retrieve files when a path containing files is specified.

To learn about the different commands that are available, you can invoke the help command,

which will list the available options, as shown in the following screenshot:

Figure 7.15 – Available sftp interactive mode commands

Let’s look at an example of using sftp with the help of the following screenshot:

Figure 7.16 – Operation with sftp — Interactive transfer

Chapter 7 239

In this example, we’ve created a local folder to be our work folder, called getfiles. First, we

have invoked sftp localhost, reaching the default remote path. This starts interactive mode.

In this, we can execute several commands, similar to what we can do on a remote shell session.

Finally, using the mget withpass* command with the * wildcard character, we transferred the

files to our local system.

In both cases, the files have been transferred from the remote system to our local system, so our

goal has been accomplished. However, using scp requires knowing the exact path of the files you

want to transfer. On the other hand, it might be a bit more user-friendly to navigate the system

using the ls and cd commands within the sftp interactive client until we reach the files we want

to transfer, if we can’t remember them.

Now, let’s learn how to quickly transfer files and full directory trees with rsync.

Transferring files with rsync
Although we can use the -r option of scp to transfer files recursively, scp only handles the full

copy of the file, which is not ideal if we are just keeping some folders in sync across systems.

In 1996, rsync was launched, and many systems implemented it by using a dedicated server that

was listening to client connections. This was to allow full directory trees to be synchronized with

files. This was done by copying over the differences between the files. Here, we compared parts

of the source and destination to see whether there were differences that should be copied over.

With SSH, and with the rsync package installed on both the client and the server, we can take

advantage of the secure channel that’s created by SSH and the faster synchronization provided

by rsync.

The difference between using the rsync daemon and using SSH is the syntax for the source or

destination, which either uses the rsync:// protocol or :: after the hostname. In other cases, it

will use SSH or even the local filesystem.

To get basic help and info on the schema for URLs, we can run the rsync -help command.

Now, let’s review some of the useful options we can use with rsync:

•	 -v: Provides more verbose output during the transfer

•	 -r: Recurses into directories

•	 -u: Updates – only copies files that are newer than the ones at the target

•	 -a: Archive (this includes several options, such as -rlptgoD)

•	 -X: Preserves extended attributes

Administering Systems Remotely240

•	 -A: Preserves Access Control Lists (ACLs)

•	 -S: Sparse – sequences of nulls will be converted into sparse blocks, which reduces time

and bandwidth usage

•	 --preallocate: Claims the space that’s required for files before transferring them

•	 --delete-during: Deletes files on the target that are not hosted during the copy

•	 --delete-before: Deletes files on the target that are not hosted before the copy

•	 --progress: Shows progress information on the copy (copied files versus total files)

The rsync algorithm breaks the file into chunks and calculates checksums for each that are trans-

mitted to the source, so it can verify that each chunk was transmitted correctly. They are then

compared to the ones for local files. rsync doesn’t check the modification file date and size by

default, only the checksum, unless a check is forced for each file candidate to be transferred.

Let’s look at a basic example.

rsync -avr getfiles/ newfolder/ will copy the files in the local getfiles/ folder to newfolder/

by showing a progress update, but only for the updated files, as shown in the following screenshot:

Figure 7.17 – The rsync operation being used on the same source/destination, repeated to
illustrate transfer optimization

As we can see, the second operation just sent 94 bytes and received 12 bytes. This is because there

was a little checksum operation happening internally to validate across the folders, because the

files hadn’t been changed. The same output can be obtained if we use the remote target approach

with rsync -avr --progress getfiles/ root@localhost:newfolder/. But in this case, SSH

transport will be used.

Chapter 7 241

Let’s get some bigger sample files and compare them by checking out a Git repository at some

point in time, transferring the files, then updating to the latest version to simulate work on the

repository. Then, we will synchronize again.

First, let’s install Git if it’s not installed and check out a sample repository by executing the fol-

lowing code:

geeko:~ # zypper --non-interactive install git

geeko:~ # git clone https://github.com/mmmmmmpc/liberate-formula

geeko:~ # cd liberate-formula

geeko:~/liberate-formula # git reset HEAD~10

geeko:~/liberate-formula # cd ..

At this point, we have a folder cloned from a Git repository with the last 10 changes removed; the

files are ready for transfer. Once we’ve done this, we’ll execute git pull to sync with the latest

changes and use rsync again to copy the differences. Later, we’ll use --delete to remove any

files that no longer exist on the source.

Let’s run rsync -avr --progress liberate-formula localhost:backup/. Check out the se-

quence shown in the following screenshot:

Figure 7.18 – Synchronizing the Git folder to a new folder with rsync

In the preceding screenshot, pay attention to the speedup that’s reported in the latest line of the

command.

Now, let’s execute cd liberate-formula and then git pull to get the 10 changes we were missing,

and repeat rsync again. We will get an output similar to the following:

Administering Systems Remotely242

Figure 7.19 – Using rsync again to copy over the differences

In the preceding screenshot, pay attention to the speedup reported in the last line so that you

can compare it with the previous one.

From this sequence of screenshots, we can check the last numbers for the total bytes that were

sent to see the improvement in transfer, along with some of the files that were received (because

we added the -v modifier to get verbose output and --progress).

The biggest advantage comes when a copy is performed over slower network links, and it’s per-

formed periodically, for example, as a way to copy to an off-site copy for backup purposes. This

is because rsync will only copy the changes, update the newer files that have been modified on

the source, and allow us to use compression over the ssh channel. For example, the Linux kernel

at https://www.kernel.org/ can be mirrored using rsync.

In the next section, we will dig into a very interesting feature of SSH to make connecting to servers

with no direct access easy.

Advanced remote management – SSH tunnels and
SSH redirections
SSH has two really powerful features: SSH tunnels and SSH redirections. When an SSH connection

is established, it can not only be used to send commands to the remote host and let us work on

them as if they were our local system, but we can also create tunnels that interconnect our systems.

Let’s try to imagine a scenario that is common in many companies, where a VPN is used to reach

the internal network with all the services and servers, but with SSH instead of a regular VPN.

So, let’s put some context into this imaginary scenario.

https://www.kernel.org/

Chapter 7 243

We can use a host that gets external traffic for SSH, redirected from our internet router to the

SSH service in that system. So, in brief, our router gets connections on port 22 via TCP, and the

connection is forwarded to our server. We will be naming this server bastion in this exercise.

With this in place, our common sense tells us that we will be able to reach that bastion host via

SSH, even if we can use other tools or even SSH itself to connect to other systems later.

Can we connect directly to other hosts in the internal network? The answer is yes, because, by

default, SSH allows us to use TCP forwarding (the sshd_config setting AllowTcpForwarding),

which empowers us, as remote login users, to create port redirections and even a SOCKS proxy

to be used for our connections.

For example, we can create a tunnel using that bastion host to reach our internal mail server via

Internet Message Access Protocol (IMAP) and Simple Mail Transfer Protocol (SMTP) by just

executing the following code:

ssh -L 10993:imap.example.com:993 -L 10025:smtp.example.com:25 user@
bastionhost

This command will listen on local ports 10993 and 10025. All the connections that are performed

there will be tunneled until bastionhost connects those to imap.example.com at port 993 and

smtp.example.com at port 25. This allows our local system to configure our email account using

those custom ports and use localhost as the server, and still be able to reach those services.

Figure 7.20 – SSH tunnel diagram redirecting port 10993 to port 993 in a remote server in the
same network as the SSH server

Administering Systems Remotely244

When the list of open ports starts to grow, it is better to go back to what we explained at the

beginning of this chapter; the ~/.ssh/config file can hold the host definition, along with the

redirections we want to create, as shown in this example:

Host bastion

 ProxyCommand none

 Compression yes

 User myuser

 HostName mybastion.example.com

 Port 330

 LocalForward 2224 mail.example.com:993

 LocalForward 2025 smtp.example.com:25

 LocalForward 2227 ldap.example.com:389

 DynamicForward 9999

In this example, when we are connecting to our bastion host (via ssh bastion), we are auto-

matically enabling Compression, setting the host to connect to mybastion.example.com at port

330, and defining port forwarding for our imap, smtp, and ldap servers and one dynamic forward

(the SOCKS proxy) at port 9999. If we have different identities (key pairs), we can also define

the one we wish to use via the IdentityFile configuration directive for each host, or even use

wildcards such as Host *.example.com to automatically apply those options to hosts ending in

that domain that have no specific configuration stanza.

Ports under 1024 are considered privileged ports and, usually, only the root user can

bind services to those ports. That’s why we use them for our redirection ports, 10025

and 10093, so that those can be used by a regular user instead of requiring the root

user to perform the SSH connection. Pay attention to SSH messages when you’re

trying to bind to local ports in case those are in use, as the connections might fail.

Additionally, from the target server’s point of view, the connections will appear as

if they originated in the bastion server, as it’s the one effectively performing the

connections.

Chapter 7 245

In the next section, we will learn how to protect ourselves from network issues with our remote

connections and get the most out of our remote terminal connections.

Remote terminals with tmux
tmux is a terminal multiplexer, which means that it allows us to open and access several terminals

within a single screen. A good similitude would be a window manager in a graphical desktop,

which allows us to open several windows so that we can switch context while using only one

monitor.

tmux also allows us to detach and reattach to the sessions, so it’s the perfect tool in case our

connection drops. Think, for example, about performing a software upgrade on a server. If, for

whatever reason, the connection drops, it will be equivalent to abruptly stopping the upgrade

process in whatever status it was at that moment, which can lead to bad consequences. However,

if the upgrade was launched inside tmux, the command will continue executing, and once the con-

nection is restored, the session can be reattached, and the output will be available to be examined.

First of all, let’s install it on our system via zypper --non-interactive install tmux. This line

will download the package and make the tmux command available. Bear in mind that the goal

of tmux is not to install it on our system (even if this is useful), but for it to be available on the

servers we connect to, to get that extra layer of protection in case a disconnection happens. So,

it’s a good habit to get used to installing it on all the servers we connect to.

In the following screenshot, we can see what tmux looks like with the default configuration after

executing tmux on a command line:

Sometimes, while using ssh, scp, or sftp, the goal is to reach a system that is

accessible from a bastion host. Other port forwarding is not needed here – only

reaching those systems is required. In this case, you can use the handy -J com-

mand-line option (equivalent to defining a ProxyJump directive) to use that host

as a jump host to the final target you want to reach. For example, ssh -J bastion

mywebsiteserver.example.com will transparently connect to bastion and jump

from there to mywebsiteserver.example.com.

Administering Systems Remotely246

Figure 7.21 – The tmux default layout after execution

As shown in the preceding screenshot, the view of our terminal

hasn’t changed a lot, except for the status bar in the lower part of

the window. This shows some information about the host, such

as its name, time, date, and the list of open windows, with 0:bash

being the active one, as denoted by the asterisk (*) symbol.

There are lots of combinations for using tmux, so let’s get familiar

with some of them that will cover the initial use case:

•	 Run tmux to create a new session

•	 Run tmux at to attach to a previous session (for example,

after reconnecting to a host)

•	 Run tmux at -d to attach to a previous session and detach

other connections from it

Once we’re inside tmux, there is a whole world of commands we

can use that are preceded by the Ctrl + B keys. Let’s view some

important ones (remember that Ctrl + B must be pressed before

you use the next item in the list):

•	 ?: Displays inline help about the shortcuts to use

•	 c: Creates a new window

•	 n/p: Goes to the next/previous window

•	 d: Detaches the tmux session

•	 0–9: Goes to the window numbered with the pressed

number

•	 ,: Renames windows

•	 “: Splits the pane horizontally

•	 %: Splits the pane vertically

In older versions of SLES,

the tool that was used

for creating virtual mul-

tiplexed terminals was

screen, which has been

marked as deprecated;

however, it is still avail-

able. If you were used to

its key bindings (Ctrl-A

+ <some key>), most of

them are equivalent in

tmux via Ctrl-B + <same

key>.

Chapter 7 247

•	 Spacebar: Switches to the next layout

•	 &: Kills the window

•	 pg down/pg up: Goes higher or lower in the window history

•	 Arrow keys: Select the pane in the direction of the pressed key

Let’s look at an example in action in the following screenshot:

Figure 7.22 – tmux with three panes running different commands inside the same window

As we can see, there are several commands running at the same time – top, journalctl -f, and

ping - so this is a good way to monitor a system while operations are being performed on it.

Additionally, one of the advantages is that tmux can be scripted, so if we are using one layout while

administering systems, we can copy that script and execute it as soon as we connect to them, so

that we can enjoy the same layout and even the commands being executed.

You can find the following code with extra comments and descriptions at https://github.com/
PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/

blob/main/chapter-07-remote-systems-administration/tmux.sh if you want to try it on

your system:

#!/bin/bash

SESSION=$USER

tmux -2 new-session -d -s $SESSION # create new session

tmux select-window -t $SESSION:0 # select first window

tmux rename-window -t $SESSION "monitoring" #rename to monitoring

https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/blob/main/chapter-07-remote-systems-administration/tmux.sh
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/blob/main/chapter-07-remote-systems-administration/tmux.sh
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/blob/main/chapter-07-remote-systems-administration/tmux.sh

Administering Systems Remotely248

tmux split-window -h #split horizontally

tmux split-window -v #split vertically

tmux split-window -h # split again horizontally

tmux select-layout tiled #tile panes

tmux selectp -t1 # select pane 1

tmux send-keys "top" C-m #run top by sending the letters + RETURN

tmux selectp -t2 # select pane 2

tmux send-keys "journalctl -f" C-m # run journalctl

tmux selectp -t3 # select pane 3

tmux send-keys "iostat -x" C-m # run iostat

tmux selectp -t0 #select the pane without commands executed

Once the session with tmux has been set, we can attach the session we’ve just created and con-

figured by executing tmux, which will show a layout similar to the one shown in the preceding

screenshot.

Summary
In this chapter, we covered SSH and how to use it to connect to remote systems, how to use keys

to authenticate with or without a password, and how to take advantage of SSH for automation,

transferring files, and even making services accessible or reachable via port redirection. With tmux,

we learned how to make our administration sessions survive network interruptions and, at the

same time, show important information at a glance by automating the layouts for it.

In the next chapter, we’ll be digging into securing our system network via firewalld to only

expose the services that are required for operation.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

https://www.packtpub.com/unlock

8
Enabling and Using Cockpit

We have seen in previous chapters how to perform common administrative tasks in a system,

locally and remotely, such as exchanging SSH keys and checking on the average load of the sys-

tem. However, having an easy-to-use interface to manage a machine is very useful when it comes

to performing quick tasks easily and having a nice overview of the system status. SUSE Linux

Enterprise Server (SLES) used to include a graphical interface called YaST (which stands for

Yet another Setup Tool), which needed to be installed and was not easy to use remotely. SLES

15 SP6 introduced a tool very common in many other Linux distributions: Cockpit. This tool is

also included in SLES 16 with updates and improvements. In this chapter, we will review how

we can make the most of it.

In this chapter, you will learn an easier and faster way to interact with your SLES servers and

perform quick tasks on them. We will be covering the following main topics:

•	 Installing and enabling Cockpit on your system

•	 Basic Cockpit usage

•	 Storage, network configuration, and firewall

•	 Accounts and services

•	 Other tools

Enabling and Using Cockpit250

Technical requirements
You can continue using the virtual machine that we created at the beginning of this book in

Chapter 1, Getting SLES 16 Up and Running (Physical and Cloud). Any additional packages that are

required will be indicated in the text.

Installing and enabling Cockpit on your system
Cockpit comes included in the default SLES 16 installation as the web administrative interface.

We can quickly check that it is installed by simply running the following:

user@geeko:~> sudo rpm -qa | grep cockpit

patterns-cockpit-16.0-160000.3.1.x86_64

cockpit-subscriptions-8-160000.1.1.noarch

cockpit-networkmanager-334.1-160000.1.1.noarch

cockpit-repos-3-160000.1.1.noarch

cockpit-system-334.1-160000.1.1.noarch

cockpit-bridge-334.1-160000.1.1.x86_64

cockpit-packagekit-334.1-160000.1.1.noarch

cockpit-selinux-policies-334.1-160000.1.1.x86_64

cockpit-334.1-160000.1.1.x86_64

cockpit-storaged-334.1-160000.1.1.noarch

cockpit-selinux-334.1-160000.1.1.noarch

cockpit-ws-334.1-160000.1.1.x86_64

As you can see, a pattern package for Cockpit is included in the distribution. What is that? Simply

described, it is a package with a set of dependencies to install a full application, as described in

Chapter 6, Adding, Patching, and Managing Software. As Cockpit is composed of different packages,

the recommended way to install it is by installing the pattern as root or by using sudo, with the

zypper in -t pattern cockpit command, as seen in the following screenshot:

Chapter 8 251

Figure 8.1 – Installing Cockpit in SLES 16 by using the pattern included in the distro

After running the command and typing y to accept the installation, all the software will already

be available on our system.

However, it will not be running. To run Cockpit, we would need to enable the service. As it is not

used continuously, Cockpit applies a nice trick to save resources: it creates a network socket. A

network socket is a way to wait for a connection to happen by listening on a port number (in this

case, 9090). When we reach out to this port, the socket automatically starts the service for us.

Enabling and Using Cockpit252

To enable the socket, we need to run sudo systemctl enable --now cockpit.socket. The

following screenshots shows the command when is run as root::

Figure 8.2 – Enabling the Cockpit socket and checking that it is properly enabled

Now that we know that the service can be started every time we establish a connection to port 9090,

we need to ensure that the connectivity is possible. In SLES 16, the firewall is enabled by default.

The firewall will filter all connections to our system. So, we need to verify that the connection to

the Cockpit service is allowed. To do so, we shall now check whether the Cockpit service is on

the allow list. We can do this by running the following:

user@geeko:~> sudo firewall-cmd --list-services

cockpit dhcpv6-client ssh

In this case, as we can see, the cockpit service is enabled. If that were not the case, the result

would be as follows:

user@geeko:~> sudo firewall-cmd --list-services

dhcpv6-client ssh

Chapter 8 253

There is an additional required step. As you can see, the cockpit service is not included in the list

of allowed services. We can add it temporarily by running the following command:

user@geeko:~> sudo firewall-cmd --add-service cockpit

success

user@geeko:~> sudo firewall-cmd --list-services

cockpit dhcpv6-client http ssh

This will immediately enable the service, but it will not survive a reboot. To make it permanent,

we shall also run the following:

user@geeko:~> sudo firewall-cmd --add-service cockpit --permanent

success

Now the access to the Cockpit service is not blocked by our system’s firewall and the configuration

will be kept after a reboot. Let’s start using Cockpit in our SLES system.

Basic Cockpit usage
We will start with the basics on how to access and use Cockpit from the UI to perform some

administrative actions.

Accessing Cockpit
To access cockpit, we need to open a browser and point it to an internal web page, using the

HTTPS protocol, to the IP address of our machine, specifying to connect to port 9090.

In the example running in this book, the IP is 192.168.122.16. So, the address we shall use is

https://192.168.122.16:9090.

Figure 8.3 – Pointing our browser to port 9090 and the server IP 192.168.122.16 to access Cockpit

Enabling and Using Cockpit254

Once we press the Enter key, it will connect to the port, but as we will be using the default self-

signed certificate provided, a warning will be raised:

Figure 8.4 – Certificate warning in the browser accessing the default configuration of Cockpit

Clicking on Advanced… and then Accept the Risk and Continue will allow us to access the web UI:

Figure 8.5 – Cockpit interface login page

Chapter 8 255

Let’s now log in using our system credentials, which means using the username and password

we configured during the installation.

Logging in and enabling administrative tasks
Cockpit uses local authentication to validate your credentials. This means you can log in by typ-

ing in the username and password you provided during the installation process, like in a normal

terminal. As you can see in the previous screenshot, we are validating using the username and

password for user. Then, we just need to click on Log in, and we’ll be able to access the main

Cockpit page.

Figure 8.6 – Cockpit interface | Overview page showing a healthy status. Administrative access
is not enabled

Enabling and Using Cockpit256

The main Cockpit page, also called Overview, is a page to receive basic information on the status

of the machine. We will review all of the sections in this chapter.

We can see all of the options available in Cockpit on the left: Overview, Logs, Storage, Networking,

Accounts, Services, Tools, Applications, Repositories, SELinux, Software updates, Subscriptions,

and Terminal. These are the ones that come by default, but there are more extensions that can

be installed, such as VM and Container management.

At the top of the page, we see that we have the possibility of performing administrative tasks and

making changes to the system. We just need to click the Turn on administrative access button

and provide our password.

Figure 8.7 – Turning on administrative access in Cockpit to be able to make changes

When issues are found in the system, some warnings will show up, such as those in the following

screenshot:

To have administrative access, you need to be part of the wheel group. This can be

done as easily as running usermod –aG wheel username as root.

Chapter 8 257

Figure 8.8 – Cockpit interface | Overview page showing an unhealthy status: patches pend-
ing, one service not starting, and time synchronization not working correctly. Administrative

access is enabled

In the Health tile (or card), we can see two important bits of information:

•	 Software updates: In Figure 8.6, we can see that the system is up to date and that no

further updates are required. If there are updates of any kind, such as enhancements or

security, they will be shown here, as you can see in Figure 8.8 If we need to apply updates,

the links will will send us to the Software updates page.

•	 Last login: The system will show the last successful login and provide access to the login

history by sending us to the Accounts page.

On the Usage card, we can see the current memory and CPU usage, and it provides access to

metrics and history, which we will review in the next subsection.

In the System information tile, we will be able to see information on the hardware model, the

machine ID, and the uptime. Clicking on View hardware details will take us to the Hardware

Information page, which we will also see in a coming subsection.

Enabling and Using Cockpit258

Finally, in the Configuration tile, we will find the following:

•	 Hostname: Shows the system hostname with the possibility to modify it by clicking on edit.

•	 System time: Shows the current time of the system as well as an icon to show the syn-

chronization status.

•	 Domain: Shows the Active Directory domain to which the system is attached, or if there is

none, the option to install realmd to join an Active Directory domain. This is not available

in the default installation and requires an extension.

•	 Performance profile: Shows the performance profile if one is selected. This is not available

in the default installation.

•	 Cryptographic policy: Shows the policy applied to the system regarding encryption soft-

ware. By clicking on the policy, in this case, Default, we can select a different one. See

Figure 8.9.

•	 Secure shell keys: The SSH protocol enables the machines connecting to identify them-

selves using a fingerprint to avoid man-in-the-middle attacks. Clicking on Show finger-

prints will show us the identification that the server is using and that will also be shown

the first time you connect to it using SSH.

As you can see, we have a good overview of the main system resources on the initial page, with

easy and quick access to modify many of the values. As an example, we can see the different

cryptographic policies:

Figure 8.9 – Different cryptographic profiles available in SLES 16

Chapter 8 259

Now let’s dive into the subsections available from the Overview page of Cockpit.

Metrics and history
The Overview page of Cockpit provides access to basic CPU and memory consumption with a

link to view metrics and history. Clicking on this link will take us to the Metrics and history page,

including instant metrics of the system covering the usual concepts of CPU, memory, disk space,

and network traffic, as we can see in the following screenshot:

Figure 8.10 – Metrics and history page in Cockpit without historical data being kept

Enabling and Using Cockpit260

Historical data is not kept by default; to have it enabled, we need to install the Performance

Co-Pilot, or PCP. There’s an easy way to do this: clicking on the Install PCP support button.

Then we will see a page overlay with a list of packages to be installed, which can be accepted by

clicking on the Install button.

Figure 8.11 – Installing PCP to enable historical metrics in Cockpit

Chapter 8 261

Once the packages are installed, we can start gathering and storing data by enabling the pmlogger

service. This can be done in Cockpit itself by going to the Services page, clicking on the pmlogger

service, and then enabling the toggle to run and activate the service at boot, as can be seen in the

following screenshot:

Figure 8.12 – Enabling the PCP logger service to gather and store metrics data

Enabling and Using Cockpit262

Once it is running, we will be able to see the graphs for previous days and even issues found in

the metrics, such as network peaks or disk storage running out.

Figure 8.13 – Historic metrics showing a very quiet server with very little load

As we can see, the information is captured and stored. It can be easily retrieved to review the status

of the system at any point in time. After reviewing this, let’s move to the next section.

Hardware information and logs
We can review all devices by clicking on the View hardware information link in the System

information tile.

Chapter 8 263

It will display all the basic hardware information in the system, a list of PCI devices, and a list of

memory devices:

Figure 8.14 – Example of a hardware information page from Cockpit

This page is useful for checking all devices connected to the system and reviewing them. One good

example is checking the number of memory modules: number, type, size, and speed.

Once we know how to get the basic hardware information, let’s move on to checking system

logs with Cockpit. To do so, we just need to click on the Logs entry on the left bar of the interface.

This will take us to the page dedicated to the journald logs and boot logs, with the possibility of

filtering them to obtain useful data.

Enabling and Using Cockpit264

Figure 8.15 – Logs page in Cockpit

On the logs page, there are several filters that will show as drop-down menus to be used:

•	 Time/boot: Situated at the top left of the page, without a label, this enables us to select

between the Last 7 days and Last 24 hours options, referring to the history of the journald

logs, which is useful to see the status of the services running on the system. We also have

the choice to select Current boot or Previous boot in the menu, which will show the

boot sequence of the current process to boot and the previous one, which is useful for

checking boot issues.

•	 Priority: This allows us to filter the logs based on their importance. The menu starts with

the most important ones and moves to the least important. The first entry, Only emer-

gency, will only show the most critical issues happening in the system, and it’s usually

empty. The coming entries are filtered by level, which are Alert, Critical, Error, Warning,

Notice, Info, and Debug. The lower the importance, the more logs, as it will include the

selected level and above for all the cases.

•	 Identifier: Logs can be filtered by the service that created them, which is the identifier that

is shown here. Some examples could be the Cockpit session that we are running, kernel

messages, sudo actions, or the auditd daemon.

Chapter 8 265

It is a really good idea to check the logs of the system when it’s running correctly. It will not only

help you understand how the system works but also make it easier for you to understand when

something is going wrong if you already know what it should look like when it works correctly.

Now that we have learned how to obtain basic information from the system and check the logs,

let’s move on to other useful information about the storage and network of our system.

Storage, network configuration, and firewall
Let’s move to storage and network, including the network filtering capabilities that the included

firewall provides in SLES 16.

Storage
The Storage section can be accessed in Cockpit by clicking on the Storage link in the left bar of

the UI. It looks like this:

Figure 8.16 – Storage page in Cockpit

Enabling and Using Cockpit266

It has three sections:

•	 Performance: A couple of graphs showing the read and

write performance of the storage appear at the top of the

page

•	 Partitioning: Labeled as Storage, this shows the partitions

available in the system, including size and usage

•	 Logs: Labeled as Storage logs, this shows all storage-re-

lated entries in the log subsystem or journald

As SLES 16 comes with BTRFS by default, instead of

having different partitions for /var or /opt, it will

use subvolumes, which are a more flexible way to

redistribute the space available on the disk. One of

the main benefits is being able to make filesystem

snapshots, which allows you to be able to roll back

to a previous well-known configuration, as well as

checking on differences made to files in your sys-

tem. This is elaborated on in Chapter 14, Configuring

and Using System Snapshots with BTRFS and Snapper.

SUSE Linux Enterprise

is, at the time of writ-

ing, the only Enterprise

Linux distribution that

includes BTRFS by de-

fault, enabling filesystem

snapshots.

Now we have a basic idea of how the Cockpit section for storage

works. We will need to better understand the concepts behind

storage to be able to use this section of the tool in depth. This

understanding will be developed as we go through Chapter 12,

Managing Local Storage and Filesystems; Chapter 13, Flexible Storage

Management with LVM; and the already-mentioned Chapter 14,

Configuring and Using System Snapshots with BTRFS and Snapper.

For now, we are good with this basic and graphical introduction

to storage. So, we can move on to networking.

Chapter 8 267

General networking
The Networking section can be accessed in Cockpit by clicking on the Networking link in the

left bar of the UI. It looks like this:

Figure 8.17 – Networking page in Cockpit

It has four sections:

•	 Performance: A couple of graphs showing the Transmitting and Receiving network

traffic appear at the top of the page.

•	 Firewall: This shows the number of active zones, which can be edited by clicking on Edit

rules and zones, as well as on the 2 active zones text. More details will be covered later

in the Firewall management section.

•	 Interfaces: This shows the active network interfaces. It enables us to create new ones with

Add VPN, Add bond, Add bridge, and Add VLAN, as well as editing the current interface

by clicking on its name, which in this example is enp1s0.

•	 Logs: Labeled as Network logs, it will show all network-related entries in the log sub-

system or journald.

Enabling and Using Cockpit268

The performance and logs sections are mostly informative, and while you can extend the list of

entries in the Logs tile or change the timeframe for the metrics, there are no further actions that

you can perform. Keep an eye on them to ensure they are working correctly and detect issues

when they happen. Let’s move on to the firewall section.

Firewall management
The firewall section can be accessed, as we mentioned before, by clicking on the 2 active zones

link or on the Edit rules and zones button. It will show the following page:

Figure 8.18 – Firewall page in Cockpit

Chapter 8 269

As we can see, we have at the top of the page the main header tile labeled Firewall, with the toggle

to enable and disable the firewall. There is an Add new zone button as well. By clicking on this

button, we will be able to add a new managed zone to our firewall, with different restriction/trust

levels, and assign it to a network interface in our system.

In the following paragraphs, we will go into details about the different firewall zones, which in

our example are the public zone and Docker zone. This is a pretty simple setup with one public

network interface, enp1s0, and an interface for containers, docker0.

The Docker zone is associated with the docker0 interface and has the entire subnet allowed, but

nothing more. Once we log in to this system, and therefore will be in the same subnet, we will be

able to reach out to every container running on it via the docker0 interface. Once we start running

containers in this host, we can consider adding specific rules to this zone.

The public zone is associated with the network interface, enp1s0, which itself is connected to

public networks and the internet, and it is also associated with the loopback interface, lo. So,

these rules will also apply to local connections. In this case, we are filtering several services that

can be accessed to interact with the system. The services that are allowed are as follows:

•	 ssh: The service to allow remote administration, also called Secure Shell

•	 dhcpv6-client: The client for automated configuration for IP version 6 addresses

•	 cockpit: The web administration interface that we are using

•	 http: The web server installed on the system

Zones are the way we associate a set of filtering rules with a list of network inter-

faces.

Services are a list of network ports and the type of connection, such as UPD or TCP,

associated with providing access to a specific capability in the system.

Enabling and Using Cockpit270

It will be easy to add another service by clicking on the Add services button and selecting the

service we want to add, or even adding our own custom ports, as we can see in the following

screenshot:

Figure 8.19 – Firewall page in Cockpit. Section opened to allow a new service in the public zone

Now we know how to handle rules to allow services to be accessed from other networks. Let’s go

down one level and see how we can modify the interface we have in the system.

Chapter 8 271

Network interface management
The interfaces section enables us to add special interfaces and configure the current ones.

To configure the network interface, we just have to click on its name. For example, let’s click on

the interface we created in Chapter 5, Enabling Network Connectivity, which we called eth0. Let’s

look at it in the Cockpit interface:

Figure 8.20 – Interface page in Cockpit. Section to manage the eth0 network device config-
uration

As you can see in this screenshot, looking at the metrics at the top of the section, there is no traffic

coming through this interface. In the tile below, we can see that the toggle to enable the interface

is not enabled. We can enable the interface, modify the IPv4 and IPv6 addressing, and establish

the Maximum Transmission Unit (MTU) for the packages to be delivered through it.

Let’s play with it and finally delete it by clicking on the Delete button.

Enabling and Using Cockpit272

Taking a look at the enp1s0 interface, the one that connects this system to the rest of the net-

works and the one we are using to connect to the Cockpit web interface, we can see it has traffic,

is enabled, and has manual IPv4 addressing configured as we did in the installation. We can see

it in the following screenshot:

Figure 8.21 – Interface page in Cockpit. Section to manage the enp1s0 network device con-
figuration

We could play around with this configuration; however, we have to take into consideration that

we might block ourselves from accessing our system. In many production systems, we will have

an admin interface to modify the system, which will be the one we will use to access Cockpit. Then,

we will have a service interface to provide services, which we will modify from Cockpit without

locking ourselves out of the system.

We are ready to modify anything required to access the system through the network. Let’s move

on to managing user accounts and services.

Chapter 8 273

Accounts and services
In this section of the chapter, we will take a look at managing user accounts as explained in Chap-

ter 4, Securing the System with Users, Groups, and Permissions, and system services, as we learned

in Chapter 3, Managing Regular Operations with Tools, but we will be doing so from the Cockpit

web interface.

Accounts
We can start this section by going to the Accounts page. We will do so by clicking on the Accounts

link in the left-side bar. The page will look like this:

Figure 8.22 – Accounts page in Cockpit. Section to manage user accounts and groups

Enabling and Using Cockpit274

We can see two sections in it:

•	 Groups: The section to manage user and system groups.

•	 Accounts: The section to manage user accounts. System accounts are filtered.

The Groups section can help us create a new group, using IDs below 1000 for system groups and

IDs equal to or above 1000 for user groups. We have three special system groups:

•	 Group 0, for root: Group assigned to the overall system administrator, the root user.

•	 Group wheel: Group assigned to users who will have administrative access to the system.

In our case, it is a group with ID 497.

•	 Group 65534 for nobody: This group is intended to be the one with the least administra-

tive privileges in the system.

In this Groups section or tile, you will be able to create a new group easily to be assigned to users

and resources.

The Accounts section can help us manage users. The section is not oriented to managing system

accounts; so, any account with a user ID below 1000 will be filtered out of the list, with one ex-

ception for the root user. Let’s check the entries in the section:

•	 User 0, for root: User assigned to the overall system administrator, the root user. It al-

ways has ID 0. As in some configurations, we will allow logging as root. If the root login

is allowed, it is displayed here.

•	 Account for user: The user account, which we created during the installation process,

shows here with ID 1000. We can also see that it is part of the wheel group, so it can per-

form administrative tasks in the system.

•	 User 65534 for nobody: This user is intended to be the one with the least administrative

privileges in the system.

Chapter 8 275

Clicking on the three verticalv points next to any user will show a menu to perform the following

actions:

•	 Edit user: To edit values in the account.

•	 Log user out: To close sessions opened by a user in the system.

•	 Lock account: To prevent the user from being able to create new sessions in the system.

It will not finish the existing ones.

•	 Delete account: To permanently remove the account from the system.

The Edit user page is especially useful, allowing us to perform a nice list of actions. Let’s take a

look at it:

Figure 8.23 – Accounts page in Cockpit. Section to manage user accounts and groups

Enabling and Using Cockpit276

There are three sections on this page:

•	 user: To modify user characteristics

•	 Authorized public SSH keys: A list of public SSH keys that enable access to the account

in the system

•	 Login history: A list of sessions run by the user in the system, including start and end times

Let’s take a deeper look at the information we see in the user tile and what actions we can take:

•	 Full name: The text to identify the user. It is very common to have the official full name

of the person assigned to the account here.

•	 User name: Short text used to identify the account and used to log in. It cannot be mod-

ified from Cockpit.

•	 Groups: A list of groups this user is assigned to. This is very useful to add or remove users

from different groups in the system.

•	 Last login: When did the user last access the system? This can help you decide if the

account has been used recently when you are deciding if you need to remove the account.

•	 Options: Some miscellaneous options related to access methods and account expiration.

•	 Password: A section to manage the user’s password. We can set a new password, which

is useful when the user forgets it, force the user to change the password on the next login,

or set an expiration date for the current password.

•	 Home directory: Default folder for the user’s options and files. It cannot be modified

from Cockpit.

•	 Shell: The shell that the user will run commands on when logging in.

We saw in Chapter 4, Securing the System with Users, Groups, and Permissions, the tasks referred to

in the previous list. However, it is a lot easier to handle them from this interface.

Let’s move on to the Services section.

Services
We can access the Services page by clicking on the Services link on the left-hand side menu. The

page looks like this:

Chapter 8 277

Figure 8.24 – Services page in Cockpit. Section to manage systemd services and other units

We can see here the concepts relating to systemd that we saw in Chapter 3, Managing Regular

Operations with Tools.

The top bar has five sections with the main systemd units: Services, Targets, Sockets, Timers,

and Paths. It’s very good to go through them and get familiar with the list of units available. To

make it easier, on the Services page, there are filters at the top of the list that enable us to filter

by two different topics.

The first topic is Active state, for services that could be running or not running, which is useful

for units we want to start temporarily or check whether they were started properly.

Enabling and Using Cockpit278

The second topic is File state, which helps us filter services depending on the behavior during

boot with Enabled or Disabled, which is useful to check services started at boot. But there are

other options to filter by the nature of the unit, which helps us know whether they are static units,

an alias for another unit, or indirect units.

We can view the details of each unit by clicking on its name. This will show a page that helps

us manage the unit. We can see a toggle button to stop and disable, as well as start and enable.

There is also a three-point menu, next to the toggle, to easily manage the status of the unit to be

able to start, stop, restart, mask, or pin each of them.

Let’s take a look at the chrony service:

Figure 8.25 – Unit page in Cockpit, for chronyd.service

Chapter 8 279

Other sections, such as Targets, Sockets, and Paths, will be explained in depth in Chapter 15,

Understanding the Boot Process.

The Timers section also has a button, Create timer, to help us create a new timer unit, which

makes it very easy to schedule repetitive tasks.

Figure 8.26 – New timer page in Cockpit

We can now easily manage the most important resources in the system using Cockpit, from

storage to performance and networking to logs. But there are still some more resources we can

handle; let’s see those in the coming sections.

Other tools
On the left-hand side menu, we can see two sections: System and Tools. We have seen all the

entries in the first section. Let’s move on to the second one, oriented to software management,

extensions, SELinux, and other tools.

Enabling and Using Cockpit280

Applications
Applications provides options to extend the capabilities within Cockpit, not to add or remove

software from the system. It only covers extensions that were installed via zypper, so you may

see the options grow over time. It looks like this:

Figure 8.27 – Applications page in Cockpit

You can see that we have different extensions already installed by default that cover several sec-

tions in Cockpit: Networking, Repositories, SELinux, Storage, and Subscriptions.

We can click on the Remove button next to each of them to eliminate them from the system, but

we would need to use zypper to reinstall them.

Chapter 8 281

We could search for extra Cockpit modules by running the sudo zypper search cockpit com-

mand:

Figure 8.28 – List of available Cockpit packages

Some of the interesting packages available to add are the following:

•	 cockpit-kdump: The module to configure kdump options and capture kernel dumps in

case of a kernel panic.

•	 cockpit-machines: The module to manage virtual machines on this server. It is very useful

for standalone hypervisors and home labs.

•	 cockpit-packages: The module to install and remove available software packages.

•	 cockpit-podman: The module to manage containers running in the system using podman.

By installing these packages, you can add more capabilities to your Cockpit interface. This can

be done with the sudo zypper install package-name command.

Enabling and Using Cockpit282

Repositories
The Repositories page includes a simple interface to manage the configured repositories in our

system that provide rpm packages for it. It looks like this:

Figure 8.29 – Cockpit Repositories page

Two functions are available here. The first one is available through the Refresh repositories but-

ton to get the latest data from the already-configured repositories. The second one is available

through the Add Repo button, where you can provide a repository Uniform Resource Identifier

(URI) to add it to the system.

SELinux
The SELinux page includes a basic view to control SELinux. It has three sections, as shown in

the following screenshot:

Figure 8.30 – Cockpit SELinux page

Chapter 8 283

The first section is the header and allows us to change SELinux policy from Enforcing mode,

which blocks access to different resources, to Permissive, which doesn’t block anything but will

still log what would be blocked by it. It is very useful to check whether something in our system

is not working due to SELinux.

The second section, System modifications, helps us to make changes to the SELinux behavior by

providing some automation to do it. The two common behaviors we can change are Allow virt to

sandbox use all caps, which allows virtual machines to use all SELinux capabilities, and Allow

virt to use nfs, which allows virtual machines to access NFS shares.

Finally, the third section, as usual, includes the logs, or in this case, the SELinux alerts.

Software updates
The Software updates page is a simple page to check and apply updates to the system.

Figure 8.31 – Cockpit Software updates page

Enabling and Using Cockpit284

The header, labeled Status, will show if we have any updates available to install. We can refresh

the info by clicking on the top-right button with the circle arrow on it.

The section of the page labeled Available updates enables us to apply selected updates or all of

them. Clicking Install all updates will launch the update process with the following interface

to track it:

Figure 8.32 – Cockpit updating the system

Once it finishes, the system will be up to date. We can even select to reboot the system once it

is complete, which is very convenient for non-critical systems to apply changes when updating

critical components such as the kernel.

It is good to know that SLES 16 has made the Live Patching extension available to apply patches

to the kernel and critical user-space components, so that you can have your system properly

updated without having to reboot for up to 12 months.

Also, to handle updates and patches in a distributed fashion, to easily manage a large number of

systems and havefine-grained control over what gets installed, you can count on SUSE Multi-Li-

nux Manager. SUSE Multi-Linux Manager is a tool to manage tens to thousands of systems easily

and distribute patches and updates to them.

Chapter 8 285

Subscriptions
The Subscriptions page helps register the system to SUSE Customer Center (affectionately called

SCC) and check which subscriptions are assigned, as we can see in the following screenshot:

Figure 8.33 – Cockpit updating the system

Using your email and registration code, you can register the system in SCC.

As you can see, we have already registered this system in SCC and have assigned a proper sub-

scription to it. Clicking on De-register will easily remove the assignment of the subscription to

this system. To receive proper support from SUSE, it is very important to have all the systems

properly registered.

Enabling and Using Cockpit286

Terminal
A very interesting and nice section of Cockpit is Terminal. It provides access to the system console,

enabling us to launch commands easily, as can be seen in the following screenshot:

Figure 8.34 – Cockpit updating the system

As an add-on, it is nice and comfortable, but it is very interesting to note that it is also a way to

fully access the system if you mess up the SSH configuration – another good reason to have it

installed on your system.

Chapter 8 287

Summary
In this chapter, we discovered Cockpit and how to use it for the most common administrative use

cases, simplifying many of the tasks we do in our system and providing nice information about

what is going on. It is a really good tool for people starting to administrate systems or to simply

gather data to troubleshoot issues.

In the next chapter, we’ll be digging deeper into securing our system network via firewalld to

only expose the services that are required for operation. Now that you have gone through this

chapter, it will be easier to understand. Let’s go!

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

9
Securing Network Connectivity
with firewalld

We have seen legislation that increases liability for CIOs and companies regarding security inci-

dents of software and hardware that is accessible remotely, such as the 2019 Cybersecurity Act

of the European Union and the 2024 Cyber Resilience Act, which establishes requirements for

products with digital elements connected to the internet or other devices. There are equivalent

laws in the United Kingdom (Product Security and Telecommunications Infrastructure Act, 2022)

and Australia (Cyber Security Act, 2024), and different laws for government use in the US. Cyber-

attacks have become a topic of public interest, and they can cause serious losses of money and

reputation for companies due to loss of business, fines, or theft. Even if it is nearly impossible to

completely secure a system (unless it is completely disconnected and powered off), it is possible

to implement techniques that make it harder for attackers to gain access or privileges.

One of those techniques is to reduce the attack surface using a firewall, restricting the possibil-

ity of unauthorized remote access while still allowing authorized access, as well as filtering and

modifying network packets going in and out. In SUSE Linux Enterprise Server (SLES) 16, the

firewall is configured using an open source package named firewalld that supports IPv4 and IPv6

settings, Ethernet bridges, and network address translation (NAT) operations, and configures

the underlying kernel module, nftables. It also includes a command-line tool called firewall-

cmd and a systemd service unit to simplify its management.

Securing Network Connectivity with firewalld290

In this chapter, we will cover the following topics to provide a deep understanding of the firewall

usage and configuration:

•	 Introduction to firewalld

•	 Enabling firewalld on the system and reviewing the default zones

•	 Enabling and managing services and ports

•	 Creating and using service definitions for firewalld

Technical requirements
We will be using a second server for this chapter, so follow the process in Chapter 1, Getting SLES

16 Up and Running (Physical and Cloud) to create a second machine. If you are using virtual ma-

chines (VMs), make sure that both VMs are in the same network segment and that they are not

isolated so they can reach each other and not just the host.

Introduction to firewalld
SLES integrates a Linux kernel subsystem to provide filtering and classification of network packag-

es, nftables, which replaces the legacy iptables component that was present in previous versions.

There are two traffic-filtering user-space applications:

•	 nft: This is an advanced tool that provides low-level configuration of the nftables frame-

work.

•	 firewalld: This provides a high-level interface for configuration. It also integrates with

other components, such as Podman, libvirt, Docker, and QEMU, to enable their required

dynamic configuration.

We will only explain firewalld in this chapter. nft is only needed for complex configurations

beyond the scope of this book, and the examples here should be enough for the normal operation

of a server.

You can use the nft list ruleset command to see the current configuration for

nft. For my test server, the default is a 552-line-long XML file.

Chapter 9 291

Installing firewalld
firewalld is installed by default in SLES 16. You can see that it is installed and running as a service

using the following commands. firewalld includes a systemd service that runs in the background:

user@geeko:~> rpm -qa "firewalld*"

firewalld-bash-completion-2.1.2-160000.2.3.noarch

firewalld-2.1.2-160000.2.3.noarch

firewalld-lang-2.1.2-160000.2.3.noarchuser@geeko:~> sudo systemctl status
firewalld

● firewalld.service - firewalld - dynamic firewall daemon

 Loaded: loaded (/usr/lib/systemd/system/firewalld.service; enabled;
preset: enabled)

 Active: active (running) since Fri 2025-07-04 14:00:44 CEST; 1 day
17h ago

Invocation: 2fa28e4b3f3746c5afb2dc2e25028c3a

 Docs: man:firewalld(1)

 Main PID: 842 (firewalld)

 Tasks: 2

 CPU: 214ms

 CGroup: /system.slice/firewalld.service

 └─842 /usr/bin/python3.13 /usr/sbin/firewalld --nofork
--nopid

Jul 04 14:00:43 geeko.suse.test systemd[1]: Starting firewalld - dynamic
firewall daemon...

Jul 04 14:00:44 geeko.suse.test systemd[1]: Started firewalld - dynamic
firewall daemon.

If it is not available on the system for any reason, you can install firewalld using zypper. Once it

has been installed, you can use systemctl to enable the service if it is not running to make sure

it is running when you reboot:

user@geeko:~> sudo zypper install firewalld

user@geeko:~> sudo systemctl enable firewalld --now

Securing Network Connectivity with firewalld292

Now that firewalld is enabled and running, let’s configure it so that it allows the right traffic

while filtering out the rest.

Configuring firewalld
firewalld is a stateful, zone-based firewall. Policies and zones are used to organize firewall rules.

It maintains separate runtimes and permanent configurations, allowing runtime-only changes,

as the runtime configuration does not persist after reboots. Once it is installed and running, there

are different ways to configure firewalld:

•	 Use the command-line firewall-cmd tool to change configurations in real time

•	 Add new configuration files under /etc/firewalld (as explained later in this chapter in

the Creating and using service definitions for firewalld section)

•	 Use Cockpit, a web interface that allows you to configure the firewall graphically

We will be focusing on the command line in this chapter, but you can also go to Chapter 8, Enabling

and Using Cockpit, to find out how to use the graphical interface to configure it.

Let’s have a look at the basic concepts for configuration for firewalld. The network is logically

divided into zones, and policies apply firewall rules to traffic between zones. We will now discuss

firewalld zones, ports, and services and learn how they affect the rules that are selected and

applied.

Zones
firewalld is a zone-based firewall. The network is divided into zones so that traffic ingress takes

place through only one zone. Policies are unidirectional too, and, to make it simple, the traffic

return path is implicitly allowed, so you don’t need to define it in your configuration. The rules

can include filtering input and output, forwarding it, or performing NAT.

There are some principles regarding zones:

•	 Traffic enters one and only one zone

•	 Traffic exits one and only one zone

•	 A zone defines a level of trust

•	 Intra-zone traffic (between the same zone) is allowed by default

•	 Inter-zone traffic (between different zones) is denied by default

Chapter 9 293

Ports
The traffic rules take into account the protocol and port that is being filtered, so you can make

more granular rules that specify the traffic in more detail. For instance, you can separate rules

for traffic using Transmission Control Protocol (TCP), User Datagram Protocol (UDP), Stream

Control Transmission Protocol (SCTP), or Datagram Congestion Control Protocol (DCCP).

A firewalld port defines a protocol port number (i.e., 80) or a port range (8080-8082) and a

protocol (TCP, UDP, STCP, or DCCP).

Services
A firewalld service is a port or group of ports configured together to allow a system service to

work properly. Many applications require more than one port to be open simultaneously, and

services allow you to manage them together as a single unit.

Let’s now look at the default configuration and learn how we can start and stop the service when

we need it.

Enabling firewalld in the system and reviewing the
default zones
We have checked that firewalld is enabled by default in the system. However, sometimes the

configuration can be hard to test, and you will need to troubleshoot the connection. Let’s start

looking at how you can manage the system itself, and how you can use systemctl to disable,

re-enable, start, and stop the firewall. Let’s start by learning how to stop the firewalld service:

user@geeko:~> sudo systemctl stop firewalld.service

user@geeko:~> sudo systemctl status firewalld.service

○ firewalld.service - firewalld - dynamic firewall daemon

 Loaded: loaded (/usr/lib/systemd/system/firewalld.service; enabled;
preset: enabled)

 Active: inactive (dead) since Fri 2025-07-11 13:15:25 CEST; 4s ago

 Duration: 9min 4.242s

Invocation: 15d6b2aa17714caba86ede413816d61b

Be aware that a firewall can stop traffic from reaching your application without your

application knowing that the connection is happening. There will be no trace left in

the application logs. Always check the firewall when you have problems connecting

to an application.

Securing Network Connectivity with firewalld294

 Docs: man:firewalld(1)

 Process: 857 ExecStart=/usr/sbin/firewalld --nofork --nopid
$FIREWALLD_ARGS (code=exited, status=0/SUCCESS)

 Main PID: 857 (code=exited, status=0/SUCCESS)

 CPU: 255ms

Jul 11 13:06:20 geeko.suse.test systemd[1]: Starting firewalld - dynamic
firewall daemon...

Jul 11 13:06:21 geeko.suse.test systemd[1]: Started firewalld - dynamic
firewall daemon.

Jul 11 13:15:25 geeko.suse.test systemd[1]: Stopping firewalld - dynamic
firewall daemon...

Jul 11 13:15:25 geeko.suse.test systemd[1]: firewalld.service: Deactivated
successfully.

Jul 11 13:15:25 geeko.suse.test systemd[1]: Stopped firewalld - dynamic
firewall daemon.

We stopped the service, and the last line of the log is telling us that the daemon is no longer run-

ning. Any traffic in or out of the system won’t be modified or filtered, keeping it totally open to

the network. We could also have checked the state of firewalld using firewall-cmd --state:

user@geeko:~> sudo firewall-cmd --state

not running

This command is a great way to check the state of the firewall in a script. In this case, with the

firewall stopped, there are no active rules. Don’t worry! We have not lost our previous configuration.

firewalld differentiates between runtime configuration and permanent configuration, so when

we restart the system or the service, the permanent configuration will be copied in memory to

become the running configuration so that it can be applied. Remember that the running config-

uration does not overwrite the permanent one, so this will not apply to the changes in memory.

We can always see the underlying netfilter rules by running the nft list chains

command. You may want to run it before and after stopping the service to see the

difference.

Chapter 9 295

Let’s restart the service so it is running again and see what happens:

user@geeko:~> sudo systemctl start firewalld

user@geeko:~> sudo systemctl status firewalld

● firewalld.service - firewalld - dynamic firewall daemon

 Loaded: loaded (/usr/lib/systemd/system/firewalld.service; enabled;
preset: enabled)

 Active: active (running) since Fri 2025-07-11 13:34:32 CEST; 4s ago

Invocation: 12d6eb4231ee473586067424d8b04ea7

 Docs: man:firewalld(1)

 Main PID: 1573 (firewalld)

 Tasks: 2

 CPU: 197ms

 CGroup: /system.slice/firewalld.service

 └─1573 /usr/bin/python3.13 /usr/sbin/firewalld --nofork
--nopid

Jul 11 13:34:32 geeko.suse.test systemd[1]: Starting firewalld - dynamic
firewall daemon...

Jul 11 13:34:32 geeko.suse.test systemd[1]: Started firewalld - dynamic
firewall daemon.

Let’s check again whether firewalld is running:

user@geeko:~> sudo firewall-cmd --state

running

If you don’t want to run the service when you reboot, you need to disable the service, directing

systemd not to start it with the next reboot:

user@geeko:~> sudo systemctl disable firewalld

Removed '/etc/systemd/system/multi-user.target.wants/firewalld.service'.

Removed '/etc/systemd/system/dbus-org.fedoraproject.FirewallD1.service'.

Securing Network Connectivity with firewalld296

Like every service for systemd, disabling the service will not stop it. You can see that the service

is still running by running the following commands:

user@geeko:~> sudo systemctl is-active firewalld

active

user@geeko:~> sudo firewall-cmd --state

running

You can do more than enabling and disabling services with systemd using systemctl; you can

find more about the different options in Chapter 8, Enabling and Using Cockpit.

Normally, your network will already have a firewall to limit external traffic, but running a system

without its own firewall is a bad idea. If an attacker finds access to another server, your production

server will immediately be at risk. For that reason, we really want the firewall to be running, and

we need to make sure we configure it appropriately. Let’s make sure it is enabled and running:

user@geeko:~> sudo systemctl enable firewalld --now

Created symlink '/etc/systemd/system/dbus-org.fedoraproject.FirewallD1.
service' → '/usr/lib/systemd/system/firewalld.service'.

Created symlink '/etc/systemd/system/multi-user.target.wants/firewalld.
service' → '/usr/lib/systemd/system/firewalld.service'.

user@geeko:~> sudo firewall-cmd --state

running

Now that we know how to start and stop the firewall, let’s review the steps required to configure

it for both the running and the permanent configuration.

Reviewing the different configuration items under firewalld
As we discussed before, firewalld manages three concepts in its configuration: zones, services,

and ports. It also distinguishes between two types of configuration:

•	 Running: The rules that have currently been applied to the system

•	 Permanent: The rules that have been saved and will be loaded when the service starts

If you want to change the configuration now and permanently, you can use the

--now option. For example, systemctl disable firewalld --now will disable

and stop the firewalld service, and it is possible to enable and start it at the same

time using systemctl enable firewalld --now. If you prefer, you could also start

the service with a second command using systemctl start firewalld --now.

Chapter 9 297

The firewall is configured with a predefined series of zones and rules so it is functional and secure.

Let’s have a look at them in a new server:

user@geeko:~> sudo firewall-cmd --get-zones

block dmz docker drop external home internal nm-shared public trusted work

user@geeko:~> sudo firewall-cmd --get-default-zone

public

We have a list of zones defined by default in any new installation. The default zone, public, will

be assigned to any traffic that can’t be associated with another zone, because all the ingress traffic

needs to be assigned to one and only one zone. Let’s see a description of the default zones and

what they are intended for:

Zone Enabled services Other characteristics

drop N/A Drops all network packages without reply. Only

outgoing connections are possible.

block N/A Rejects all incoming traffic, answering with an ICMP

prohibited message. Only outgoing connections are

possible.

public dhcpv6-client, ssh For public areas where you don’t trust other

computers or networks. Only selected incoming

connections are accepted.

external ssh Accepts incoming traffic related to outgoing

connections. Any IP traffic that’s forwarded through

the interface with this zone assigned will be

masqueraded and look as though it originated from

this machine.

You should think about the running rules as a way to test a new configuration dy-

namically or for troubleshooting. Once you make everything work as expected, you

store them as permanent rules so they get applied on each reboot. Don’t forget to

check that the rules you want in the system have been saved properly so you don’t

lose them.

Securing Network Connectivity with firewalld298

Zone Enabled services Other characteristics

dmz ssh For computers in your demilitarized zone that

are publicly accessible and have limited access to

your internal network. Only selected incoming

connections are accepted.

work ssh and dhcpv6-client For work areas. You mostly trust the other computers

in the network. Accepts incoming traffic related to

outgoing connections.

internal ssh, mdns, samba-client,

and dhcpv6-client

You mostly trust the other computers in the

network. Accepts incoming traffic related to outgoing

connections.

home ssh, mdns, samba-client,

and dhcpv6-client

You mostly trust the other computers in the

network. Accepts incoming traffic related to outgoing

connections.

docker N/A Used for container traffic. Accepts all packages by

default.

trusted N/A Accepts all incoming traffic.

Table 9.1 – Default firewall zones

If you want, you can get detailed information about a zone with the following command:

 user@geeko:/bin> sudo firewall-cmd --info-zone home

home

 target: default

 ingress-priority: 0

 egress-priority: 0

 icmp-block-inversion: no

 interfaces:

You can always access information about these zones, and more, by accessing the

firewalld.zones manual pages in the system by running man firewalld.zones.

It is a good idea to review the man page.

Chapter 9 299

 sources:

 services: dhcpv6-client mdns samba-client ssh

 ports:

 protocols:

 forward: yes

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

user@geeko:~> sudo firewall-cmd --list-all-zones

<output omitted>

The --info-zone command and the --list-all-zones command provide all the configuration

for one or all zones in the system. We will be learning more about what each line means in the

rest of the chapter. In this case, we know that the ICMP packages are accepted (block inversion

will reject ICMP packages not explicitly allowed by default), that it allows the dhcpv6-client,

mdns, samba-client, and ssh services, that it allows for free traffic within interfaces in the zone,

and that no other rules are configured.

Let’s get a better understanding of zones by working with them. We will start by looking at the

default zone and then changing it to home:

user@geeko:~> sudo firewall-cmd --get-active-zones

docker

 interfaces: docker0

public (default)

 interfaces: lo enp0s1

user@geeko:~> sudo firewall-cmd --get-default-zone

public

user@geeko:~> sudo firewall-cmd --set-default-zone=home

success

user@geeko:~> sudo firewall-cmd --get-default-zone

home

Securing Network Connectivity with firewalld300

We have changed the default zone to home. Normally, you use more than one zone to have different

rules applied to different traffic. You define the zones and rules that select the right zone to be

applied to the traffic. For instance, you could apply the home zone to your local network (which

is safer) while keeping all traffic by default in the public zone. Once that is done, it is easy to add

filters for each zone so that some services are only available when the traffic is coming from the

home zone. Let’s do that by listing all the interfaces and their IP addresses so that we can apply

a filter to use the right zone for all the traffic coming from IPs in the local network subsegment:

user@geeko:~> sudo ip -br addr

lo UNKNOWN 127.0.0.1/8 ::1/128

enp0s1 UP 192.168.68.2/24
fde9:22b8:954e:8aca:94bd:6a29:938a:f2ba/64
fde9:22b8:954e:8aca:e899:2bb5:9de9:8e33/64 fe80::3ea2:e26d:719d:a63e/64

user@geeko:> sudo firewall-cmd --set-default-zone=public

Success

user@geeko:> sudo firewall-cmd --permanent --zone=internal\

--add-source=192.168.68.0/24

Success

user@geeko:~> sudo firewall-cmd --reload

success

Let’s get active zones for the docker zone:

user@geeko:~> sudo firewall-cmd --get-active-zones

docker

 interfaces: docker0

internal

 sources: 192.168.68.0/24

public (default)

 interfaces: enp0s1 lo

When you are using the --permanent flag, you don’t actually change the running

configuration. You need to reload the configuration to change those rules and apply

the changes.

Chapter 9 301

Let’s review what we have done. The server had several IP addresses assigned to enp0s1. We used

the IPv4 range as the source for our internal zone, which is identified by the IP range defined. We

also have some traffic that is identified because it comes in the docker0 interface and is assigned to

the docker zone. Everything else, including local traffic coming with an IPv6 address, is assigned

to the public zone, the default, because it will be applied by default and specifically to anything

coming in the interfaces loopback (lo) and enp0s1, the only ones in the server.

Remember that, by default, inter-zone traffic is forbidden. If your traffic comes through one zone,

it will not be able to communicate with other zones. With this configuration, services in your

local network will not be accessible in the public zone (which is the zone for everything else).

You can easily allow all traffic to any service. There is a default zone that allows all traffic to any

server. If you want to do that (this is not advisable in production), you need to assign the internal

IP network (192.268.68.0/24) to the trusted zone so that you will not need to explicitly allow

any service. The virtual network that connects your workstation to the server can sometimes be

safe enough to be worth the risk in exchange for the convenience. Let’s recap the firewall-cmd

options you will often find:

Option Description

--state Checks whether the firewalld daemon is active.

--get-zones Lists the zones that have been configured in the system.

--get-default-zone Shows the zone that will be used by default.

--set-default-zone=<zone> Sets the default zone. This is applied to the running and

permanent configuration.

--get-active-zones Shows zones in use and interfaces and sources used.

--zone=<zone> Used to specify a zone for another option.

--permanent Applies the changes to the saved configuration, without

updating the running configuration.

--reload Reloads the permanent configuration and updates the running

firewall rules. Existing connections are kept, but the running

configuration that is not stored will be lost.

--add-source=<network> Adds a source (network, MAC address, or IP set) to a specified

zone. When the zone is not specified, it uses the default one.

--remove-source=<network> Moves a source network in CIDR format (i.e., 192.168.1.0/24)

to a specified zone. When the zone is not specified, it uses the

default one.

Securing Network Connectivity with firewalld302

Option Description

--add-
interface=<interface>

Routes traffic from an interface to a zone. When the zone is not

specified, it uses the default zone.

--change-
interface=<interface>

Changes the traffic that’s being routed to an interface to a zone.

When the zone is not specified, it uses the default one.

Table 9.2 – firewall-cmd’s most common options

There are many other options available that allow you to create more complex configurations. You

can find the complete list on the manual page for firewall-cmd. Take some time to go through

it, as you will often need it when you’re reconfiguring the firewall.

To make zones useful, we need to configure the rules that apply to them. Let’s learn next how to

manage services and ports.

Enabling and managing services and ports
We defined a firewalld service as a port or group of ports configured together to allow a system

service to work properly. There are many predefined services in a running SLES system. Some

of them are enabled by default in one or more zones, and you can easily add or remove existing

services to zones or define your own services. Let’s review some of them:

•	 ssh: Allows connections to the secure shell (SSH) service for remote access, which provides

a secure remote console for management. Accepts traffic to port 22 on TCP.

•	 mdns: Allows connections to the multicast DNS (MDNS) service. It provides local name

resolution in a local network without a DNS server and is the reason you can find other

systems in your network using the .local suffix. Opens traffic to port 5353 on multicast

address 224.0.0.251 (IPv4) or ff02::fb (IPv6) using UDP.

•	 samba-client: This is a file- and print-sharing client that’s compatible with Microsoft

Windows SMB and Active Directory. It uses ports 137 (netbios-ns) and 138 on UDP.

•	 dhcpv6-client: A Dynamic Host Configuration Protocol (DHCP) for IPv6. Its destination

is the special network fe80::/64, on 546, using UDP.

•	 cockpit: The web graphical interface for servers, using port 9090 on TCP. It is enabled by

default when Cockpit is installed.

To view the firewall-cmd manual page, simply run man firewall-cmd.

Chapter 9 303

As with the default services for MDNS and Samba, a firewalld service can specify more than one

port, port range, target address, and even target network.

Now, let’s review the predefined services in our firewall and the services enabled in the current

zone:

user@geeko:~> sudo firewall-cmd --get-services

<output ommited – 245 services aprox.>

user@geeko:~> sudo firewall-cmd --list-services

dhcpv6-client ssh

user@geeko:~> sudo firewall-cmd --list-services --zone=internal

dhcpv6-client mdns samba-client ssh

We have used firewall-cmd to see the list of all defined services, the ones defined in the default

zone, and the ones defined in a specific zone. When you don’t specify a zone, you are in fact using

the default zone. In this case, without the --zone=<zone> option, you get the list of services you

would get if you used --zone=public. As we have configured more than one zone, access to the

server will depend on the zone applied to the traffic, which may be different from the default.

Let’s check the default zone:

user@geeko:~> sudo firewall-cmd --get-default-zone

public

Let’s configure a different service. We are going to follow the steps to install and enable the

Apache httpd server and configure the firewall so the system can serve web pages. Let’s start by

installing the package:

user@geeko:~> sudo zypper in apache2

Refreshing service ' SUSE_Linux_Enterprise_Server_16.0_aarch64'.

Loading repository data...

Reading installed packages...

Resolving package dependencies...

The following 2 recommended packages were automatically selected:

 apache2-utils w3m

The following 9 NEW packages are going to be installed:

apache2 apache2-prefork apache2-utils libapr1-0 libapr-util1-0
libbrotlienc1 libgc1 system-user-wwwrun w3m

9 new packages to install.

Package download size: 4.9 MiB

Package install size change:

| 15.7 MiB required by packages that will be installed

Securing Network Connectivity with firewalld304

 15.7 MiB 	 | - 0 B released by packages that will be removed

.... OUTPUT OMITTED

[done]

user@geeko:~>

After a couple of pages of information about the different steps required to install the web server,

we are back at the command line. The installation of the apache2 package has an updated list of

services available by default. Let’s see the definition of the apache2 service:

user@geeko:~> sudo firewall-cmd --info-service=apache2

apache2

 ports: 80/tcp

 protocols:

 source-ports:

 modules:

 destination:

 includes:

 helpers:

It is installed but not enabled. Let’s enable the apache2 service in systemd so it is running and

configured to run after reboots:

user@geeko:~> sudo systemctl enable apache2 --now

Created symlink '/etc/systemd/system/httpd.service' → '/usr/lib/systemd/
system/apache2.service'.

Created symlink '/etc/systemd/system/apache.service' → '/usr/lib/systemd/
system/apache2.service'.

Created symlink '/etc/systemd/system/multi-user.target.wants/apache2.
service' → '/usr/lib/systemd/system/apache2.service'.

Let’s make sure that the service is running before we try to change the configuration of the firewall:

Figure 9.1 – Output of the systemctl status for apache2

Chapter 9 305

We can see that the service is enabled and running, and that six parallel threads are waiting for

requests. Now, let’s check that the web service has been configured by default to listen on all the

interfaces. We will use the ss command to investigate the socket:

user@geeko:~> ss -a -t | grep http

LISTEN 0 4096 *:http *:*

user@geeko:~> sudo lsof -i :http

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

httpd-pre 1481 root 4u IPv6 15874 0t0 TCP *:http (LISTEN)

httpd-pre 1495 wwwrun 4u IPv6 15874 0t0 TCP *:http (LISTEN)

httpd-pre 1496 wwwrun 4u IPv6 15874 0t0 TCP *:http (LISTEN)

httpd-pre 1497 wwwrun 4u IPv6 15874 0t0 TCP *:http (LISTEN)

httpd-pre 1498 wwwrun 4u IPv6 15874 0t0 TCP *:http (LISTEN)

httpd-pre 1499 wwwrun 4u IPv6 15874 0t0 TCP *:http (LISTEN)

The first command tells us that there is a configured socket listening on all addresses on the HTTP

port (80), while the second one specifies that httpd-pre is the listening process.

Let’s use a second machine to test that the firewall is doing its work. We expect the test to fail

because the firewall configuration does not allow connections to the HTTP port from that zone.

Let’s connect to a second VM or server and try to connect to our server using curl, a tool for

transferring data from a server providing a URL:

user@geeko2:~> curl 192.168.70.4:80

curl: (7) Failed to connect to 192.168.70.4 port 80 after 1 ms: Could not
connect to server

Connecting from our second server to our web server on the first machine fails. There are many

possible reasons, so let’s do some quick troubleshooting by installing some tools that will allow

us to understand the real issue and rule out a misconfiguration of the firewall.

When you test your firewall rules, it is important to initiate the requests from the

right zone that mimics the actual traffic expected, because what works in one zone

can fail in another. Make an effort to simulate the test connections like a customer

on an external machine.

Securing Network Connectivity with firewalld306

Let’s install nmap, a network exploration tool, on our second machine, and use it to see whether

we can reach the server:

user@geeko2:~> sudo zypper install nmap

[OUTPUT OMITTED]

user@geeko2:~> ping 192.168.70.4

PING 192.168.70.4 (192.168.70.4) 56(84) bytes of data.

64 bytes from 192.168.70.4: icmp_seq=1 ttl=64 time=4.37 ms

^C

--- 192.168.70.4 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 4.365/4.365/4.365/0.000 ms

user@geeko2:~> sudo nmap 192.168.70.4 -p 80

Starting Nmap 7.92 (https://nmap.org) at 2025-07-19 12:14 CEST

Nmap scan report for 192.168.70.4

Host is up (0.00056s latency).

PORT STATE SERVICE

80/tcp filtered http

MAC Address: E6:B2:9F:82:5E:75 (Unknown)

Nmap done: 1 IP address (1 host up) scanned in 0.24 seconds

nmap is reporting that the port is filtered (the packet reaches the port but is being dropped without

any reply to inform the client). Let’s enable the http service on our configured zone in the firewall

of the first server to see whether it fixes the issue:

user@geeko:~> sudo firewall-cmd --add-service apache2 --zone=internal
--permanent

success

user@geeko:~> sudo firewall-cmd --add-service apache2 --zone=public
--permanent

success

user@geeko:~> sudo firewall-cmd --reload

success

Chapter 9 307

We need to reload the configuration because we are only modify-

ing the permanent configuration. If we fail to do so, the running

configuration will not be updated:

user@geeko:~> sudo firewall-cmd --list-services
--zone=public

apache2 dhcpv6-client ssh

user@geeko:~> sudo firewall-cmd --list-services
--zone=internal

apache2 dhcpv6-client mdns samba-client ssh

Let’s use nmap again to check the state of the service and firewall

to make sure that the web server is now reachable:

user@geeko2:~> sudo nmap 192.168.70.4 -p http

Starting Nmap 7.92 (https://nmap.org) at 2025-
07-19 12:57 CEST

Nmap scan report for 192.168.70.4

Host is up (0.00050s latency).

PORT STATE SERVICE

80/tcp open http

8008/tcp filtered http

MAC Address: E6:B2:9F:82:5E:75 (Unknown)

Nmap done: 1 IP address (1 host up) scanned in
0.21 seconds

We have fixed the issue! Port 80 is reachable. We can now use curl

to download the first lines of the default landing page:

user@geeko2:~> curl -s http://192.168.70.4 |
head -n 2

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN"

The definitions of the ser-

vices are stored as inde-

pendent XML files in the

/usr/lib/firewalld/

services directory. Feel

free to check them to learn

more about services. The

best practice is that you

should not modify them

directly, but make a copy

with a different name

in /etc/firewalld/

services and modify the

copy.

Securing Network Connectivity with firewalld308

Imagine now that we want to restrict the web server to internal users. We thus don’t want to

allow access from the public network, while permitting access from the internal zone:

user@geeko:~> sudo firewall-cmd --list-services --zone=public

apache2 dhcpv6-client ssh

user@geeko:~> sudo firewall-cmd --remove-service apache2 --zone=public
--permanent

success

user@geeko:~> sudo firewall-cmd --reload

success

user@geeko:~> sudo firewall-cmd --list-services --zone=public

dhcpv6-client ssh

We can see that the public zone does not include the apache2 service. Connections from that

zone will be rejected again.

You can see that services are really convenient, and predefined services allow us to quickly config-

ure the basic and more common applications, but the list of services can’t include every application

out there. You can directly open ports without using a service:

user@geeko:~> sudo firewall-cmd --list-ports --zone=public

user@geeko:~> sudo firewall-cmd --add-port 80/tcp --zone=public
--permanent

success

user@geeko:~> sudo firewall-cmd --reload

success

user@geeko:~> sudo firewall-cmd --list-ports --zone=public

80/tcp

We have added the port directly, instead of the service. We can see all the configurations in one

go. For instance, let’s see the full configuration for the public zone:

user@geeko:~> sudo firewall-cmd --info-zone public

public (default, active)

 target: default

 ingress-priority: 0

 egress-priority: 0

 icmp-block-inversion: no

 interfaces: enp0s1 lo

 sources:

Chapter 9 309

 services: dhcpv6-client ssh

 ports: 80/tcp

 protocols:

 forward: yes

 masquerade: no

 forward-ports:

 source-ports:

 icmp-blocks:

 rich rules:

This is different; we have not opened the service, only the port. But we don’t want to open the

port to the public zone because our server is only intended for internal traffic. We can easily

clean up the configuration:

user@geeko:~> sudo firewall-cmd --list-ports --zone=public

80/tcp

user@geeko:~> sudo firewall-cmd --remove-port=80/tcp

success

user@geeko:~> sudo firewall-cmd --list-ports --zone=public

user@geeko:~>

Now that we know how to use services and ports and review the configuration, let’s recap those

options for firewall-cmd in a table:

Option Description

--zone=<zone> Used to specify a zone. When no zone is specified, it uses the

default zone.

--list-services Displays the list of services for the specified zone.

--add-service Adds a service to the specified zone.

--remove-service Removes a service from the specified zone.

--list-ports Lists the ports configured in the specified zone.

--add-port Adds a port to the specified zone.

--remove-port Removes a port from the specified zone.

--list-all Lists everything configured or enabled for the zone.

--info-zone <zone> Shows all the information for a zone.

Securing Network Connectivity with firewalld310

Option Description

--permanent Any updates are applied to the permanent configuration, instead

of the runtime configuration. Runtime is not updated.

--reload Reloads the rules from the saved configuration, discarding the

running configuration.

--runtime-to-permanent Stores the runtime configuration as the permanent one.

Table 9.3 – Options to add services and ports to a zone

Opening ports is easy and quick, but if your service is complex or you want to share the configu-

ration file between machines, it is better to use a service. Let’s see how you can define your own

service.

Creating and using service definitions for firewalld
As we said before, you can find all predefined service definitions for firewalld in the /usr/lib/

firewalld/services folder. Let’s start by inspecting a simple service, such as ssh. The config-

uration file is ssh.xml:

<?xml version="1.0" encoding="utf-8"?>

<service>

 <short>SSH</short>

 <description>Secure Shell (SSH) is a protocol for logging into and
executing commands on remote machines. It provides secure encrypted
communications. If you plan on accessing your machine remotely via SSH
over a firewalled interface, enable this option. You need the openssh-
server package installed for this option to be useful.</description>

 <port protocol="tcp" port="22"/>

</service>

A simple XML file with three sections is good enough to define a basic service:

•	 short: A more readable name for a service.

•	 description: What the service does in a longer form so you know how to use it properly.

•	 port: The port or port range in the format portid-portid. It can appear more than once

if you need it.

Chapter 9 311

Imagine you want to install an Oracle database. The database

listens on port 1521 and on TCP. We can create a file called /etc/

firewalld/services/oracledb.xml to define the service:

You must create your con-

figuration file in /etc/

firewalld/services/

and not in /usr/lib/

firewalld/services.

Files in /etc will have

higher precedence than

any in /usr/lib.

<?xml version="1.0" encoding="utf-8"?>

<service>

 <short>OracleDB</short>

 <description>Oracle Database service. It
allows connections to the Oracle Database. You
should install the Oracle database with the
standard configuration to make use of it.</
description>

 <port protocol="tcp" port="1521"/>

</service>

Now that we have defined the service, we need to make it available,

starting by telling the firewall to reload all the configuration so

we can use the service. Once we reload the configuration, it will

behave like any of the default services. Let’s go through the steps:

user@geeko:~> sudo firewall-cmd --reload

success

user@geeko:~> sudo firewall-cmd --add-
service=oracledb

success

user@geeko:~> sudo firewall-cmd --list-services

dhcpv6-client oracledb ssh

Now that the service is enabled in the runtime configuration, you

can add the service to the permanent configuration by writing the

commands again for the permanent configuration or by storing

the saving the runtime configuration:

user@geeko:~> firewall-cmd --add-service
oracledb --permanent

success

user@geeko:~> sudo firewall-cmd --runtime-to-
permanent

success

Securing Network Connectivity with firewalld312

The last command stores all the runtime configuration as the permanent configuration. Be careful

because you could modify other configurations if you have updated them in memory.

Using service definitions simplifies the maintenance of firewall configuration repeatedly. Just copy

these files manually or automatically to a new server during installation, and it will be easier to

understand and maintain the configuration.

Summary
Security is a key part of the responsibility of a sysadmin. However, the firewall can create chal-

lenges because it can prevent your system from communicating with the outside world, and it

needs to be carefully considered. Never disable the firewall on a system, even if you think that

the network is secure, because it will expose your server to external threats.

In this chapter, we have seen how easy it is to configure the Linux firewall using firewalld, a

tool for managing, filtering, and securing the network connections in our system. We used the

command line, although you can use Cockpit to configure it with a web interface.

We have learned about key concepts required by firewalld. We know how to manage zones and

assign them to interfaces. We can adjust zones so that different rules are associated with them, and

we can differentiate the runtime config from the permanent one. We used services and ports to

configure the zones, and we also learned how to define our own services to simplify configuration.

Now, we are ready to learn more about security in SLES, and specifically about process security.

We will see how SELinux enables role-based access control.

On rare occasions, you will need to define more complex services. There are other

options that will allow you to create those complex configurations that have not

been described here. You can find a better description in the firewalld.service

manual page with man firewalld.service.

10
Keeping the System Hardened
with SELinux

In this chapter, we are going to dive deeper into a feature that is new to SLES 16, which is Securi-

ty-Enhanced Linux (SELinux). Previous versions of SLES used AppArmor by default to provide

extended security measures for applications. However, to follow technology and market trends,

SUSE included SELinux in SLES 15 as an option, without the policies, and the full solution as the

default for SUSE Linux Enterprise Micro. SUSE has now applied the lessons learned and made

SELinux the default in SLES 16, too.

Let’s review the origins of SELinux, including what the default modes and policies are, how it

applies to our files, folders, and processes, how to restore them to the system defaults, how to

fine-tune the policies using Booleans, and how to troubleshoot common issues with the help of

the following sections:

•	 SELinux usage in enforcing and permissive modes

•	 Reviewing SELinux context for files and processes

•	 The targeted policy

•	 Tweaking the policy with semanage

•	 Restoring changed file contexts to the default policy

•	 Using SELinux Boolean settings to enable services

•	 SELinux troubleshooting and common fixes

Keeping the System Hardened with SELinux314

We will also have extended explanations on how SELinux works to better understand the way it

operates, even if using it in reality is a lot simpler. We will also use those examples to illustrate

cases where SELinux prevents attacks or misconfigurations.

By the end of this chapter, you will understand how to use SELinux properly and how to benefit

from the additional protection that it provides to your system.

Let’s get hands-on with SELinux!

Technical requirements
You can continue using the virtual machine created at the beginning of this book in Chapter 1,

Getting SLES 16 Up and Running (Physical and Cloud). Any additional packages required will be

indicated in the text. Any additional files required for this chapter can be downloaded from
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-

Administration-Guide and will be indicated in the text.

SELinux usage in enforcing and permissive modes
SELinux was introduced in December 2000 as a project started by the National Security Agency

(NSA) to improve the security of the operating system via mandatory access control (MAC) and

role-based access control (RBAC), as opposed to the traditional discretionary access control

(DAC) (users and permissions) that were already available in the system.

Before SELinux was introduced in the Linux kernel, there was discussion about the proper way

to do it. Finally, a kernel framework named Linux Security Modules (LSM) was introduced, and

SELinux was implemented using it so that other approaches could use it, too.

SELinux provides security improvements to Linux, as access to files made by users, processes, or

even other resources can be controlled in a very granular way.

Let’s look at one example to make it clearer when SELinux comes into play: when a web server

is serving pages from users, it reads files from the user’s home directory (/home/user) inside the

public_html or www folder (the most standard ones). Being able to read files from the user’s home

directory could reveal other contents if the web server process is hijacked by an attacker. This is

where SELinux comes into play, as it will automatically block access to files that should not be

accessible to a web server.

https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide

Chapter 10 315

SELinux confines the processes and services to only perform what

they are supposed to do, and only over resources that are autho-

rized. This is a really important feature that keeps things under

control. Even in the event of software bugs that might lead to

access to unexpected files or resources, SELinux will block them

if they have not been authorized by the active policy.
SELinux permissions al-

ways come after regular

DAC. If a user has no ac-

cess to a file because of

improper file permissions,

SELinux has nothing to do

with it.

By default, the installation of a system sets the configuration of

SELinux to the enforcing mode and uses the targeted policy. It

is possible to check your current system status via the execution

of sestatus:

Figure 10.1 – Output of sestatus for our system

As we can see, our system has SELinux enabled, using the targeted

policy, and is currently in enforcing mode. Let’s learn what that

means.

SELinux works by defining a policy, that is, a set of predefined

rules for granting or denying access to resources. The available

ones can be listed via sudo zypper search selinux-policy

in your system, with targeted, sandbox, and minimum being the

most common ones.

We will focus on the targeted policy, which is the default one

applied to the system.

Keeping the System Hardened with SELinux316

The mode, listed as enforcing, means that the policy is currently being enforced, and all security

measures and restrictions are being applied. On the other hand, we have permissive, which, even

when it is active, will only warn, but not protect.

Why do we have permissive instead of just disabling it? This question is a bit tricky, so let’s

explain a bit more about how this policy works to provide an answer.

SELinux uses extended attributes in the filesystem to store the labels. Each time a file is created

and SELinux is active, a label is assigned based on the policy. This makes disabled different from

permissive because the first one will not create those labels for new files that are created, while

the second one will.

Additionally, SELinux in permissive mode, while not blocking anything, allows us to see the

errors that would be raised if a program has not received a good policy, has bad behavior for it,

or if some file has no proper labels.

It is really easy to switch from enforcing to permissive, and vice versa, via the setenforce

command, while we can use getenforce to retrieve the current status, as we can see in the fol-

lowing figure:

Figure 10.2 – Changing the SELinux enforcing status

It might look basic, and it’s really as easy as that—a matter of running a command. However, if

the status were disabled, it would be a completely different story.

The SELinux status is configured by editing the /etc/selinux/config file, but changes only take

effect after a system reboot. That is, we can switch from enforcing to permissive at any time or

from permissive to enforcing. However, when changing the policy from disabled to enabled,

or vice versa, SELinux will require us to reboot the system.

Chapter 10 317

The general advice is to leave SELinux in the enforcing mode, but if, for whatever reason, it was

disabled, the recommendation is to switch SELinux to permissive as the first step when moving

from disabled. This will allow us to check that the system actually works without being locked

out of it because of the kernel blocking access to files and resources.

Why use disabled instead of setting it to permissive? For example, some software might re-

quire setting SELinux to disabled even if it can later be reenabled for operations, or there might

be other reasons. Bear in mind that SELinux is a security feature that protects your system and

should be kept enabled.

SELinux uses Access Vector Cache (AVC) messages that are logged to the /var/log/audit/audit.

log file as well as system journals. And yes, it’s a cache, so rules are not checked as frequently to

speed up the operations.

Let’s go back to the idea of the filesystem storing labels, and let’s jump into the next section to

see how they relate to processes, files, and RBAC, as provided by SELinux.

Reviewing SELinux context for files and processes
SELinux uses labels, also referred to as a security context attached to each file, and defines several

aspects. Let’s check one example in our home folder with the ls -l command, but with a special

modifier, Z, that will show SELinux attributes as well. We can see these in the following figure:

Figure 10.3 – File listing showing SELinux attributes

During the reboot after switching from disabled to permissive or enforcing,

the system will force a relabeling of the filesystem based on the policy. This is ac-

complished by the creation of a file in the root folder of our filesystem named /

etc/selinux/.autorelabel, which will trigger the process and reboot afterward.

Keeping the System Hardened with SELinux318

Let’s focus on the output for one of the files:

-rw-------. 1 root root unconfined_u:object_r:admin_home_t:s0 15774 Jul 3
20:08 .bash_history

The SELinux attributes are the ones listed as unconfined_u:object_r:admin_home_t:s0. Let’s

understand the attributes:

•	 The first part is the user mapping: unconfined_u

•	 The second part is the role: object_r

•	 The third part is the type: admin_home_t

•	 The fourth part is used for the level: s0 in the multi-level and multi-category security

Something similar happens with processes, and similarly, we can append Z to many of the common

commands to get the contexts, for example, with ps Z, as we can see in the next figure:

Figure 10.4 – The ps output with SELinux contexts

Again, let’s examine one of the lines:

unconfined_u:unconfined_r:unconfined_t:s0 1321 pts/1 S 0:00 -bash

Again, we can see the same approach: user, role, type, and level for multi-level and multi-category

security.

Now that we’ve introduced what it does look like, let’s focus on how it works in the targeted policy.

The targeted policy
The targeted policy allows everything to run as if SELinux were not enabled in the system, except

for the specific services that are targeted by it. This makes a good compromise between security

and usability.

During the development of the policy, new services are added, and others are refined, and many

of the most common services have policies written for protecting them.

Chapter 10 319

SELinux also features something named transitions. A transition allows one process started by

a user with a binary with some specific role to transition via the execution into some other role,

which is used later to define the permissions for it.

As you might imagine, our user also has a SELinux context, and similarly, we can use the id -Z

command to check it:

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

So, going back to one example, Apache HTTP Server is provided by the apache2 package, which

can be installed via zypper install apache2. Once it is installed, let’s start it with systemctl

start apache2 and enable it with systemctl enable apache2. Then, open the firewall with

firewall-cmd --add-service=http and firewall-cmd --add-service=https. Finally, add the

rules as permanent with firewall-cmd --add-service=http --permanent and firewall-cmd

--add-service=https --permanent, as we’ve done with other services in previous chapters.

The aforementioned commands can be found in the script at https://github.com/
PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/

blob/main/chapter-10-selinux/install-apache.sh.

Let’s see how all of this comes into play in this figure:

Figure 10.5 – Web server SELinux contexts

We can see how the executable on disk, located in /usr/sbin, has the httpd_exec_t context,

the process is httpd_t, and the files/folder served by it are httpd_sys_content_t, and it works!

Let’s now create an index.html file in our folder, and let’s move it to the Apache web root folder:

user@geeko:~> echo '<html><head><title>Our test</title></head><body>This
is our test html</body></html>' > index.html

user@geeko:~> sudo cp index.html /srv/www/htdocs/index1.html

user@geeko:~> sudo mv index.html /srv/www/htdocs/index2.html

https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/blob/main/chapter-10-selinux/install-apache.sh
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/blob/main/chapter-10-selinux/install-apache.sh
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/blob/main/chapter-10-selinux/install-apache.sh

Keeping the System Hardened with SELinux320

Let’s see what happens when we try to access the files. Look at the following figure:

Figure 10.6 – Apache httpd service behavior with the generated files

As we can see, one file has one SELinux context and the other has a different one. On top of that,

Apache is denying access to the one we moved (index2.html), but showing the contents for the

one we copied (index1.html).

What has happened here? We copied one file and moved the other out of the same source, but

they have two different SELinux contexts.

We can retry by disabling SELinux temporarily and setting it to the permissive mode, and then

checking what happens. It will be as shown in this figure:

Figure 10.7 – Retrying with SELinux in permissive mode

Chapter 10 321

As we can see in the figure, we are now able to access the file contents, so one could say, “What is

wrong with SELinux that does not allow my site to work?”, but the right way to express it would be

“Look how SELinux has protected us from disclosing personal files on a website.”

If, instead of directly moving a file into Apache’s DocumentRoot directory (/srv/www/htdocs), an

attacker were trying to reach our home folder files, SELinux would have denied access to those, as,

by default, the httpd_t process cannot access the user_home_t context.

A similar thing happens when we try to get Apache, or any other service under the targeted

policy, to listen on a port that is not the one configured by default. The best way to get familiar

with what we can or cannot do is to learn about the semanage utility.

Using semanage, we can list, edit, add, and delete the different values in the SELinux policy, and

even export and import our customizations. So, let’s use it to learn a bit more about it using our

example with httpd.

Let’s learn about semanage in the following section.

Tweaking the policy with semanage
As we introduced earlier, the targeted policy contains some configurations that are enforced

for the services it has defined, allowing the protection of those services while not interfering

with the ones it does not know about. The Apache httpd server is one of the services with the

best-defined SELinux policy.

Still, there are times when we need to adjust certain settings—for example, allowing the http or

ssh daemon to listen on alternate ports, or granting access to specific file types—without losing

the extra layer of protection that SELinux provides. These are uncommon or unexpected behaviors,

but sometimes necessary. First, let’s ensure that policycoreutils, policycoreutils-python,

and policycoreutils-python-utils are installed in our system with sudo zypper install

policycoreutils policycoreutils-python policycoreutils-python-utils, as they provide

the tools we will use in this and the next sections of this chapter.

Let’s learn from an example. Let’s see which ports httpd_t can access with semanage port -l

| grep http:

user@geeko:~> sudo semanage port -l | grep http

http_cache_port_t 	tcp 8080, 8118, 8123, 10001-10010

http_cache_port_t 	udp 3130

http_port_t 		 tcp 80, 81, 443, 488, 8008, 8009, 8443, 9000

http_port_t 		 udp 80, 443

Keeping the System Hardened with SELinux322

pegasus_http_port_t 	 tcp 5988

pegasus_https_port_t 	 tcp 5989

As we can see, the http_port_t used by the Apache daemon, by default, is allowed to use ports

80, 81, 443, 488, 8008, 9009, 8443, and 9000 via tcp.

That means that if we want to run Apache on any of those ports, no changes to the policy will

be required.

If we repeat the command but for ssh, we only see port 22 opened (executing sudo semanage

port -l | grep ssh):

ssh_port_t tcp 22

We might want to add another port, let’s say 2222, to the list of possible ports, so that we hide

the standard one being tested by port scanners. We will be able to do it via sudo semanage port

-a -p tcp -t ssh_port_t 2222 and then validate it with the prior sudo semanage port -l |

grep ssh command, which now shows the following:

ssh_port_t tcp 2222, 22

As we can see, port 2222 has been added to the list of available ports for the ssh_port_t type, which

enables the ssh daemon to start listening on it (this, of course, requires additional configuration

for the ssh daemon configuration and the firewall before we get a working service).

In the same way, some web services require writing to specific folders, for example, for storing

configuration. By default, the context on /srv/www/htdocs is httpd_sys_content_t. This will

mean that SELinux will not allow the Apache httpd server to write to disk in the aforementioned

folder, because of the way it is labeled.

We can check the available file contexts with sudo semanage fcontext -l in a similar way to

what we did with the ports, but the list of files is huge, as a web server might use common loca-

tions such as logs and cgi-bin, as well as filesystem files for certificates, configuration, home

directories, extensions such as php, and so on. When you check the context with the preceding

command, pay attention to the different types that are available and what the structure is for

one listing, as in this example:

user@geeko:~> sudo semanage fcontext -l | grep ^/srv/ | grep www

/srv/([^/]/)?www(/.)? all files system_u:object_r:httpd_sys_content_t:s0

/srv/([^/]/)?www/logs(/.)? all files system_u:object_r:httpd_log_t:s0

Chapter 10 323

As we can see, there is a regular expression that matches the files in the www folder inside the /srv/

www/ path, applying to all files and setting httpd_sys_rw_content_t, which allows read-write

access. There are folders here that can be used by the popular blog software WordPress. So, the

policy is already prepared for covering some of the most popular service folders’ requirements

without requiring system administrators to write them ad hoc.

When invoking semanage, it will output that it has some subcommands we can use, as follows:

•	 import: Allows importing local modifications

•	 export: Allows exporting the local changes

•	 login: Allows managing the login and SELinux user associations

•	 user: Manages SELinux users with roles and levels

•	 port: Manages port definitions and types

•	 ibpkey: Manages InfiniBand definitions

•	 ibendport: Manages end port InfiniBand definitions

•	 interface: Defines network interface definitions

•	 module: Manages policy modules for SELinux

•	 node: Manages the definition of network nodes

•	 fcontext: Manages file context definitions

•	 boolean: Manages Booleans for tweaking policies

•	 permissive: Manages the enforcing mode

•	 dontaudit: Manages the dontaudit rules in the policy

For each one of the aforementioned subcommands, we can use the -h argument to list help and

to learn about the extra arguments that can be used for each one.

For the day-to-day use case, most of the time, we’ll be using port and fcontext, as these will

cover extending or tuning the available services that come with SUSE Linux Enterprise Server,

like the example we have showcased with ssh listening on an additional port.

Keeping the System Hardened with SELinux324

Let’s see how to manually set the context for files and how to restore the defaults in the next section.

Restoring changed file contexts to the default policy
In the previous section, we mentioned that semanage enables us to perform changes to the policy,

which is the recommended way to perform changes and to persist them for future files and folders,

but that is not the only way we can perform operations.

From the command line, we can use the chcon utility to change the context for a file. It will al-

low us to define the user, the role, and the type for the file we want to alter, and similar to other

filesystem utilities such as chmod or chown, we can also affect files recursively, so it’s easy to set a

full folder hierarchy to the desired context.

One feature that we always found very interesting is the ability to use --reference to copy the full

context of an existing file, so that the same context as the referenced file is applied to the target one.

When we were introducing the example of Apache httpd earlier in this chapter, we did a test with

two files, index1.html and index2.html, which were copied and moved to the /srv/www/htdocs

folder. To go deeper into this example, we will make additional copies of index1.html to demon-

strate, in the next figure, the usage of chcon. Bear in mind that creating the files directly in the /

srv/www/htdocs folder will set the files to have the proper context. So, we need to create them in

our home folder, /home/user, and then move to the target folder as we did in previous examples.

For example, let’s generate index3.html in our home folder and move it to the htdocs folder,

then we can fix the SELinux context with chcon, using index1.html as the reference, as in this

screenshot:

Traditionally, SUSE Certified Administrator (SCA) or SUSE Certified Engineer

(SCE) exams had a reboot for validation. This means that for each service that was

installed and started, it was also mandatory to remember to enable it to be active

on the next reboot. A similar thing happens with SELinux; if we are adding a piece

of software that will stay in our system, the best approach is to define, via semanage,

the regexp for the path that will be used. So, if the filesystem is relabeled or restored,

the contexts, as we will see in the next section, will still allow the application to

continue to work.

Chapter 10 325

Figure 10.8 – Demonstrating chcon usage

As we can see, both index1.html and index3.html now have the proper context—in the first case,

using the reference, and in the second, defining the type to use.

Of course, this is not the only method. As we indicated earlier, the recommended way for setting

context for applications is to define the path’s regular expressions via semanage, or better, use

the ones already defined by default. This empowers us to use the restorecon command to apply

the right context to the files, according to the configuration. Let’s check how it operates in the

next figure:

Figure 10.9 – Using restorecon to restore context

As we can see, we used restorecon -vR /srv/www/htdocs/ and it automatically changed the

index2.html file into the httpd_sys_content_t that is defined for that folder, as we saw when

we were testing semanage to list the contexts.

The arguments used, v and R, make the utility report the changes (verbose) and work recursively

on the paths provided.

Keeping the System Hardened with SELinux326

Let’s say we have messed up the system by running chcon over the root filesystem. What would

be the way to fix it? In this case, as we mentioned earlier, we should follow these steps:

1.	 Set the operation mode to permissive to not block further accesses via setenforce 0.

2.	 Put the marker to have the filesystem relabeled via touch /etc/selinux/.autorelabel.

3.	 Modify the /etc/selinux/config file to set the boot mode to permissive.

4.	 Reboot the system to let the relabeling happen.

5.	 Once the system reboots, edit the /etc/selinux/config file again to define the operation

mode as enforcing.

By operating in this way, instead of just running restorecon -R /, we are making sure that the

system is operational and will continue to operate after reboot, and that a full relabel is applied

to the filesystem, so it is left ready to re-enable the enforcing mode safely.

Let’s see the next section on how to tune the policy within itself, using the Booleans to tune how

it works.

Using SELinux Boolean settings to enable services
Many services have a wide range of configuration options for many common cases, but not al-

ways the same ones. For example, an HTTP server should not access user files, but at the same

time, it’s a common way of operation to enable personal websites out of the www or public_html

folder in each user’s home directory.

To overcome that use case and, at the same time, provide enhanced security, the SELinux policy

makes use of Booleans.

A Boolean is a tunable that can be set by the administrator and can enable or disable conditionals

in the policy code. For example, let’s get a list of available Booleans for httpd by executing sudo

getsebool -a|grep ^http (list reduced):

user@geeko:~> sudo getsebool -a | grep ^http

httpd_can_network_connect --> off

httpd_can_network_connect_db --> off

httpd_can_sendmail --> off

httpd_enable_homedirs --> off

httpd_use_nfs --> off

Chapter 10 327

This list is a reduced subset of the available Booleans, but it gives

us an idea of what can be accomplished. For example, by default,

http cannot use the network to connect to other hosts, or send

email (usually done in PHP scripts), and it can’t even access the

home folder for users.

If we want to enable users in a system to publish their personal

web pages from the www folder in their home directory (that is, /

home/user/www/), we will have to enable the httpd_enable_

homedirs Boolean by running the following:

user@geeko:~> sudo setsebool -P httpd_enable_
homedirs=1

This will tweak the policy to enable http to access the user’s home

directory to serve the pages there. If, additionally, the servers will

be stored on an NFS or CIFS mount, additional Booleans will be

required. We’re still using the same targeted policy, but we’ve

enabled the internal conditionals to permit access so that it is not

blocked by SELinux.

The -P parameter after

setseebol is required to

make the change perma-

nent. That means writing

the change so that it per-

sists even after reboots;

without it, the change will

be lost once we restart our

server.As we’ve seen, getsebool and setsebool, respectively, allow us

to query and set the values for the Booleans that tune the policy;

semanage boolean can also help here, as we can see in the next

figure:

Figure 10.10 – Using semanage to manage Booleans

In Figure 10.10, we can see the Boolean we edited using setsebool.

One of the benefits is that semanage, as we introduced, allows

us to export and import the local changes to the policy, so any

customization made can be exported and imported on another

system to ease the setup of similar server profiles.

Keeping the System Hardened with SELinux328

All the possible Booleans in the policy can be checked with sudo semanage boolean -l, as we

did to list the binding ports for applications in our HTTP example.

We have learned about using Booleans to tune how the policy adapts to some specific but pretty

common cases. Next, we will explore what is probably the most used part for administrators—

troubleshooting, but focusing on SELinux.

SELinux troubleshooting and common fixes
One of the main problems getting used to SELinux is that many people who are not familiar with

it blame it for things not working. However, this argument is getting a bit outdated: SELinux was

introduced back in 2005.

Most of the time, issues with SELinux and our system are related to changed file contexts, changing

ports for services, and, less frequently, issues with the policy itself.

First of all, there are several places where we can check for errors, such as the audit log or the

system messages. The first ones, for example, are the /var/log/audit/audit.log file we intro-

duced earlier in this chapter.

Bear in mind that SELinux MAC only plays once we have cleared access from regular DAC. That is,

if we’ve no permission to check a file (for example, mode 400 and our user not being the owner),

it’s highly unlikely that SELinux is blocking the access.

Most of the time, our system will have installed the setroubleshoot-server and setroubleshoot-

plugins packages, which provide several tools such as sealert to query the received SELinux

messages and, many times, also suggest changes.

Let’s cover some of the basics that we should always validate:

•	 Review that all other controls (user and group ownership and permissions) are properly set

•	 Do not disable SELinux

•	 If a program is not working properly and it was shipped with the OS, it might be a bug and

should be reported via the SUSE Customer Center, opening a service request, or via Bugzilla

•	 If a program is not working properly, it might be made to run unconfined, but leaving all

remaining system services protected via the targeted policy

Chapter 10 329

•	 Think about what was done before the error happened, if this was an existing program:

•	 Files moved instead of copied or created on the destination

•	 Changed ports or folders for the software

Having arrived at this point, we should check audit.log for relevant messages. For the example

we mentioned about wrong context with the files in /srv/www/htdocs/, an example audit entry

could be the following:

type=AVC msg=audit(1753017038.500:148): avc: denied { read } for
pid=1149 comm="httpd-prefork" name="index2.html" dev="vda2" ino=263
scontext=system_u:system_r:httpd_t:s0 tcontext=unconfined_u:object_r:user_
home_t:s0 tclass=file permissive=0

It looks strange, but if we check the parameters, we see the path of the affected file, the PID, the

source context (scontext), and the target context (tcontext). So, in brief, we can see that httpd_t

tried to access (get attributes) for a target context (user_home_t) and that was denied.

We can use the ausearch and audit2allow tools to generate a custom policy and enable this

behavior using two commands:

user@geeko:~> sudo ausearch -c 'httpd' --raw | audit2allow -M my-httpd
******************** IMPORTANT *********************** To make this policy
package active, execute:

semodule -i my-httpd.pp

user@geeko:~> sudo semodule -X 300 -i my-httpd.pp

However, this kind of recommendation should be taken with knowledge of what is being done.

That means that the preceding commands will fix httpd_t getting access to the user_admin_t

file. We can learn about what would be done by only running the first command, together with

the audit2allow pipe.

Running ausearch -c 'httpd' --raw | audit2allow -M my-httpd creates several files named

my-httpd in the current folder, one named my-httpd.te and another named my-httpd.pp. The

second command, semodule, which we will not use in production servers, installs the modified

policy. But please, don’t ever do that until you understand what’s going on, as we will see in the

following lines.

Keeping the System Hardened with SELinux330

The interesting file for us is now the my-httpd.te file (te: type

enforcement):

module my-httpd 1.0;

require {

type httpd_t;

type unconfined_service_t;

type user_home_t;

class process signull;

class file { open read };

}

#============= httpd_t ============== allow
httpd_t unconfined_service_t:process signull;

#!!!! This avc can be allowed using the boolean
'httpd_read_user_content' allow httpd_t user_
home_t:file { open read };

From there, we can see that it uses a requirements session for the

types involved, and later, the rule itself, which allows httpd_t ac-

cess to user_home_t files for using the getattr function—nothing

more, nothing less.

Will this fix our file access issue? It will effectively make httpd_t

get access to the index2.html file, so there will no longer be errors,

but this will come at a big cost. From that point, httpd_t could

also read home directory files without any restriction.

Not sure how many times

we should reinstate this,

but before acting on a

system, think twice, act

once. SELinux is a pro-

tection mechanism for in-

creasing the safety of your

system. Do not disable

it; do not blindly accept

audit2allow-created

policies without some

initial investigation and

understanding of what

the issue might be and

what the proposed res-

olution does, as it might

be almost equivalent to

disabling SELinux.

If, at this point, we have installed the module created by us with

ausearch, we can use semodule to do the following:

•	 List: semodule -l

•	 Install: semodule -i $MODULE_NAME

•	 Remove: semodule -r $MODULE_NAME

With the preceding commands, we can check or alter the status

of the policy-loaded modules.

Chapter 10 331

Going back to reviewing system logs, it might happen that we realize that something fails long

after it really started failing. So, using ausearch or passing the full logs to audit2allow should

be used carefully.

In the case of new software being deployed that has no SELinux support, we can do the checks

the other way around, in a test system:

•	 Set SELinux to permissive mode

•	 Deploy the software

•	 Analyze all the alerts received to see whether there are expected things

•	 Contact vendors for the software and open a support case with SUSE to work on a policy

If we’re getting locked out of our system because SELinux is in enforcing mode and we have

really messed up the labels very badly, such as by running a bad chcon command recursively

against our root folder (for example, scripting a context change depending on a variable and

that variable being empty), we still have ways to get out of trouble:

•	 Use setenforce 0 to put SELinux in permissive mode

•	 Run touch /etc/selinux/.autorelabel

•	 Reboot the host so that, at the next boot, SELinux restores the appropriate labels

If we are in a really bad situation, and we cannot use setenforce 0 or the system cannot even

boot or perform the relabeling correctly, there’s still hope, but with some extra steps.

When a system is rebooting, we can see the list of installed kernels at the grub prompt and use

it to edit the kernel boot parameters.

Using the selinux=0 parameter, we completely disable SELinux, and it’s something we don’t want,

but we can use enforcing=0 to accomplish having SELinux enabled but in permissive mode.

Once we have our system booting into permissive mode, we can repeat the previous procedure

to get back to the previous behavior and continue debugging the situation within the system

itself with the prior indications given (checking system logs, etc.).

Keeping the System Hardened with SELinux332

Summary
This chapter introduced SELinux, including how it works, how to check the processes, files, and

ports, and how to tune them either by adding new options or using Booleans, and some initial

troubleshooting skills that we should explore further to gain extra knowledge and experience.

In the next chapter, we will learn about a new feature included in SLES 16, Agentic AI with mcphost,

that allows users to query AI to understand and manage their server state.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

Part 3
Implementing Agentic AI

with mcphost
Model Context Protocol (MCP) is a standard to connect different services and/or systems to

large language models (LLMs) that power artificial intelligence (AI). SLES 16 comes with an

implementation of MCP called mcphost, which enables connecting your operating system to any

AI that supports the protocol, such as Google Gemini, ChatGPT, or even a local LLM. Enabling

system administrators to use this capability is key to increasing operational efficiency and pro-

viding a means to learn more about the system and how to use it.

This part has the following chapter:

•	 Chapter 11, Agentic AI with mcphost

11
Agentic AI with mcphost

SUSE aims to provide the latest technology, and at the time that SUSE Linux Enterprise Server

(SLES) 16 was launched, Artificial Intelligence (AI) was pervasive. Agentic AI capabilities have

been added to SLES 16 in an optional, opt-in, secure manner, so you can use it with confidence

and where you want, on your terms.

AI is well-known thanks to tools such as ChatGPT and Google’s Gemini. These are what we

call Large Language Models (LLMs). You provide a question in natural language (i.e., “What is

slowing down my system?”). Then, it will parse the information available and provide an answer.

Also, and very importantly, AI has been added in a standard way. The Model Context Protocol

(MCP) has been added, which is the standard used to integrate existing services with AI. This

standard enables you to connect your system, in this case SLES, to the LLM of your choice, such

as Gemini.

We will keep this simple, as the topic could be the subject of its own book. We will restrict this

chapter to discussing the following topics:

•	 Understanding agentic AI and MCP

•	 Installing and configuring mcphost

•	 Using mcphost

Again, in this chapter, we will continue to use the VM we installed in the first chapter, so there

are no further technical requirements to continue.

Agentic AI with mcphost336

Understanding agentic AI and MCP
The field of AI has had a dramatic transformation in recent years

(as of the time of writing this book). It was around 2022 that

ChatGPT and other chatbots captured the world’s attention. How-

ever, the underlying theoretical/mathematical and technologi-

cal foundation is far older. It traces its roots back to 1943, when

Warren McCulloch and Walter Pitts created the first mathemat-

ical model of a neuron using Boolean logic. It was later on, when

large computing power started to become available, that neural

networks (technically referred to as convolutional and recurrent

neural networks in case you want to search for more info) started

to blossom in the 1980s and 90s. These breakthroughs paved the

way for pattern recognition (i.e., image recognition) and, later on,

LLMs, which started becoming common in research fields by the

early 2000s and started to be widely used in the 2010s. Howev-

er, the computing power needed to implement natural language

interpretation was not there yet.

The mechanism to build

packages in SUSE and

openSUSE, the Open

Build Service, enables the

community and the com-

pany adopt quickly new

technologies.

How do LLMs work? Well, let’s consider it as if it were an advanced

statistics problem. We can explain it by using image recognition

first. We can provide a large dataset of images of, let’s say, apples

to a neural network and train it to detect apples. For that, we have

to provide sample images of real apples, to be recognized as such,

and things that are not apples, to be recognized as something that

is not an apple. In other words, we can give the model a new apple

image that it hasn’t seen before, and it will be able to tell, with

some level of certainty, whether the image shows an apple, even

if it didn’t have that exact image in the training data.

Chapter 11 337

This is how modern cameras detect faces, and how your phone can even unlock itself with the

camera trained on your face.

The existence of vast amounts of data on the World Wide Web provided huge samples to train

these models. If we extend this training to recognizing letters, then recognizing words, sentences,

and even paragraphs, we develop what are called LLMs. These LLMs use the idea of a token, which

is the fundamental unit of text. For simplicity, we can say that a token is almost the equivalent of

a word. The more tokens an LLM can process, the larger the context it can work with.

Current LLMs used by Gemini and ChatGPT can handle 1 million tokens in each request, in each

conversation. For comparison, the text of a novel such as Don Quijote de la Mancha would com-

prise fewer than 500,000 tokens. This means that we can start asking questions about managing

operating systems and beyond, getting more and more accurate results each time.

So, now we have a set of processing engines for words that allow us to use natural language

(even in different languages), such as ChatGPT, Gemini, Ollama, Claude, and DeepSeek. (By the

time this book is published, there will probably be many new ones that are not in this list.) Many

can be run on our own machines, but many others are available as a service. It is likely that the

company you work for has sanctioned one or two for your use.

Wikipedia is a great resource to learn more about any of these topics. We recommend the

following page to learn more about the basics of neural networks and how they are trained:

https://en.wikipedia.org/wiki/Neural_network_(machine_learning).

Once again, Wikipedia is a great resource. A list of LLMs can be found at the follow-

ing page: https://en.wikipedia.org/wiki/List_of_large_language_models.

https://en.wikipedia.org/wiki/Neural_network_(machine_learning)
https://en.wikipedia.org/wiki/List_of_large_language_models

Agentic AI with mcphost338

The question now is, how can we leverage this power with our

systems and services?

To do so, an open standard was created and introduced by An-

thropic in November 2024 called Model Context Protocol (MCP),

together with an open source framework. What it does is it con-

nects your system or service to an LLM engine. It provides an inter-

face for reading files, executing different functions, and processing

prompts to make requests. The standard was quickly adopted, and

many of the main providers have implemented it (Google, OpenAI,

and DeepMind already support it).

Wikipedia never disappoints. It also has a nice page

on MCP right here: https://en.wikipedia.org/

wiki/Model_Context_Protocol.

In SUSE, we prioritize

choice and openness

for users and customers.

Hence the use of open

standards in our imple-

mentations.

In SLES 16, a tech preview of an implementation of MCP is pro-

vided, so you can connect your system to an LLM and leverage the

capabilities it provides. When using AI to power your machine, as

well as running tasks in it, we refer to it as agentic AI. Let’s get

started on using Agentic AI in the next section.

Installing and configuring mcphost
The way to install software in our SLES system is using zypper.

The implementation of MCP in SLES is called mcphost, and to

install it, we can simply run the following command:

user@geeko:~> sudo zypper install mcphost

Refreshing service 'SUSE_Linux_Enterprise_
Server_16.0_x86_64'.

Loading repository data... Reading installed
packages...

https://en.wikipedia.org/wiki/Model_Context_Protocol
https://en.wikipedia.org/wiki/Model_Context_Protocol

Chapter 11 339

Resolving package dependencies...

The following NEW package is going to be installed:

 mcphost

1 new package to install.

Package download size: 10,6 MiB

Package install size change:

 | 41,7 MiB required by packages that will be installed 41,7 MiB | - 0
B released by packages that will be removed

Backend: classic_rpmtrans Continue?

[y/n/v/...? shows all options] (y): y

Preloading: mcphost-0.31.1-160000.4.1.x86_64.rpm [done] Preload finished.
[success (15,5 KiB/s)][done] Retrieving: mcphost-0.31.1-
160000.4.1.x86_64 (SLE-Product-SLES-16.0) (1/1), 10,6 MiB

Checking for file conflicts:[done] (1/1)
Installing: mcphost-0.31.1-160000.4.1.x86_64 ..[done] Running post-
transaction scripts[done]

In its default configuration, mcphost will not access any LLM or anything in our system. We need to

configure it. The configuration file is located in the user’s home directory. We will use /home/user

or the ~ shortcut to refer to this home directory. We can provide configurations in two formats:

•	 Yet Another Markup Language (YAML)

•	 JavaScript Object Notation (JSON)

In this example, we will use Google Gemini as our LLM of choice. We will need to create a Google

Gemini API key to provide access to it. To do so, we can go to Google AI Studio and select API

Keys, which can be done by entering the following address in our browser: https://aistudio.

google.com/app/api-keys.

https://aistudio.google.com/app/api-keys
https://aistudio.google.com/app/api-keys

Agentic AI with mcphost340

If it is your first time doing this, you will be greeted by the following warning:

Figure 11.1 – Google AI Studio warning

We can proceed by accepting the terms and privacy policy. This will take us to the main page,

which looks like the following:

Figure 11.2 – Google AI Studio

Chapter 11 341

Once there, we can click on the Create API key button in the top-right corner of the page. We will

just have to give a name to the key and select a project. In this example, the key name will be MCP

Host and the project name will be Default Gemini Project. We can see this in the following

screenshot:

Figure 11.3 – Google AI Studio: New key creation

Clicking on Create key in the dialog will take us to the main page with the new key available. We

can see it here:

Figure 11.4 – Google AI Studio: Main page with new key

Agentic AI with mcphost342

On the Google AI Studio main page, seen in the preceding figure, we can find the API key we

just created. We will need to open it by clicking on the key name, which in the figure is shown

as ...MMM. Your page will show whatever the name of your key is. Opening it will show the

following dialog:

Figure 11.5 – Google AI Studio: New key details

In the previous figure, we have changed the API key to a set of MMM...MMM. Your key will have its

own list of characters. Copy it. Clicking on the two-squares icon next to it will copy the key to

your clipboard.

Let’s create our first configuration file for mcphost in our home directory, which in the following

example is /home/user/.mcphost.yml. We’ll add the following content to it:

MCPHost Configuration File

Application settings

model: "google:gemini-2.5-pro"

max-steps: 20

debug: true

Chapter 11 343

API Configuration

provider-api-key: "MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM"

Of course, remember to substitute the MMM...MMM API key with your own. Now we can run mcphost:

Figure 11.6 – mcphost running on SLES 16

This is the most basic configuration, but we can already start asking questions. The current con-

figuration required for us to use our Google account to connect to Gemini is now created. Let’s

see how to use it in the next section.

Using mcphost
Once we have installed mcphost on our machine with SLES 16, obtained an API key to access

Google Gemini, and configured mcphost to use it, we are ready to start.

You can download example content for the configuration file from
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-
16-Official-Administration-Guide/tree/main/chapter-11-agentic-ai-

with-mcphost.

https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/tree/main/chapter-11-agentic-ai-with-mcphost
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/tree/main/chapter-11-agentic-ai-with-mcphost
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/tree/main/chapter-11-agentic-ai-with-mcphost

Agentic AI with mcphost344

The current configuration is the most restrictive one, with no access to the filesystem, logs, or

anything else on our system, and a single simple connection to Google Gemini. However, we can

start doing interesting things with it.

As you know, there is a mechanism in the SLES 16 command line, called bash, that enables us to

pass the content generated by another command to our current execution. We use $(command) to

pass it. For example, if we wanted to create a message that includes the current date, we would

run the following:

user@geeko:~> echo "Today is $(date). Have a great day."

Today is dom 16 nov 2025 09:55:16 CET. Have a great day.

Also, mcphost can accept text directly from the command line using the -p option, as in the fol-

lowing example:

user@geeko:~> mcphost -p "How do I list files in a directory in SLES 16"

The output will start with something similar to the following:

Figure 11.7 – mcphost output explaining how to list files in a directory

This provides a really detailed output about using ls.

Now, if we combine the two previous actions, passing content to mcphost -p using $(command),

we can ask our AI to review the last 100 log lines by running the following:

user@geeko:~> mcphost -p "What can you tell me about the following logs:
$(journalctl -n 100)"

Chapter 11 345

The result will look something similar to this:

Of course. This is an excellent set of logs that tells a clear story about
user activity on a Linux system. Here is a detailed breakdown of what
these logs mean, from a high-level summary to a chronological analysis.

High-Level Summary

These logs show the activity of a user named user on a SUSE Linux test
machine (geeko.suse.test) over several days (Nov 10, 13, 15, 16). The logs
cover three distinct sessions, separated by system reboots.

The user's primary activity involves:

1. Logging into the system, which starts a systemd user session.

2. Using the sudo command to gain root (administrator) privileges.

3. Using the zypper package manager to install, a package named mcphost.

4. Logging out of the system, which cleanly terminates the systemd user
session.

[snip]---8<---8<---8<---[snip]

In the same way, we can pass the process list with the following command:

user@geeko:~> mcphost -p "Give me a brief summary about the following
processes: $(ps -efa)"

This will generate output similar to the following (note that in this case, I’m leaving the full re-

sponse in as it is very interesting to see how the AI explains everything running on our machine):

Of course. This process list shows a snapshot of a running Linux system.
Here is a brief summary broken down into key areas:

This output displays a typical Linux server environment, likely running
as a virtual machine. The processes can be grouped into three main
categories:

1. Kernel Threads (Processes in [brackets])

These are low-level tasks managed directly by the Linux kernel, not
standard user programs. They handle core system functions.

• [kthreadd] (PID 2): The parent process for all other kernel threads.

• [kworker/...]: Generic worker threads that perform background tasks for
the kernel, such as handling I/O, timers, and filesystem operations.

• [kswapd0], [kcompactd0]: Manage system memory, swapping pages to disk
when RAM is low and keeping memory contiguous.

• [btrfs-...]: Specific tasks related to the Btrfs filesystem, which is in
use on this system.

Agentic AI with mcphost346

• [irq/...]: Handle hardware interrupts from devices.

2. System Services / Daemons (Children of PID 1)

These are the essential background services that make the system
functional. They are all started and managed by systemd (PID 1), the main
init process.

• systemd-journald, rsyslogd: Manage system logging.

• NetworkManager, firewalld: Control network connections and the firewall.

• sshd: The Secure Shell daemon, allowing remote logins.

• httpd-prefork: An Apache web server. The main process (PID 1143) has
spawned several child processes (owned by the wwwrun user) to handle
incoming web requests.

• qemu-ga: The QEMU Guest Agent, which strongly indicates this system is
running as a virtual machine.

3. User Session

This section shows a user actively logged into the system.

• A user named user has logged in via SSH (as seen by the sshd-session
processes).

• This login created a shell session (-bash on pts/0).

• The final process, ps -efa, is the very command that was run to generate
this list.

We can improve the output of mcphost by providing a default system prompt. It will be a prompt

to guide all the responses in the future. To do so, we can create the /home/user/system-prompt.

txt file with the following content:

You are an experienced sysadmin, expert in SUSE Linux, that has a profound
focus on security, always interested in keeping your systems running at
its best performance while keeping everything resilient and secure. You
provide clear brief answers to questions with hints on how to improve
the security, resiliency, and performance of the system. You resort to
official SUSE documentation when possible and provide references to it.
You are running a SUSE Linux Enterprise Server 16, please adapt your
responses to this version where possible.

Please take into account that when doing this, we are sharing the information on

processes and logs with our AI of choice. In this example, it is Google Gemini. Do

not share this information unless your company has given you approval to do so.

Chapter 11 347

Then, add to following lines to our configuration file, ~/.mcphost.yml:

#System Prompt

system-prompt: /home/user/system-prompt.txt

It’s likely that by now, our model will be overloaded, and we will get a response like the following:

Generate content failed: Error 503, Message: The model is overloaded.
Please try again later., Status: UNAVAILABLE,

 Details: [].

If you get that message, it’s time to let your AI take a break and come back to it later. As an exercise,

try running the previous examples after adding the default system prompt.

It’s now time to facilitate our mcphost to use system resources directly. To do so, we will create

an mcpserver, which in this case means only modifying the configuration file. We can edit our

~/.mcphost.yml file and add the following lines:

#MCP Servers

mcpServers:

 filesystem_tmp_rw:

 type: builtin

 name: fs

 options:

 allowed_directories:

 - "/tmp"

 allowedTools:

 - "read_file"

 - "write_file"

 - "list_directory"

What do those lines mean? Let’s go through it line by line:

•	 #MCP Servers: This is a comment to make the block visible in our config file.

•	 mcpServers:: We tell the system that we are adding an MCP server. This means we are

adding an “extension” to our mcphost to interact with our system.

•	 filesystem_tmp_rw:: This is how we name our server. We can use any name we want,

but we have to make it descriptive. We named this one to reflect that we are providing

read and write access to /tmp.

Agentic AI with mcphost348

•	 type: builtin: This is the type of server. As this one comes with the implementation of

mcphost, we simply say builtin.

•	 name: fs: Even though this says name, we are specifying the type of server, which in this

case is a filesystem. We use the label fs for it.

•	 options:: Here, we start specifying how the server will interact with the system

•	 allowed_directories:: We provide access to a set of directories

•	 - "/tmp": The directory we are providing access to is /tmp.

•	 allowedTools:: This is where we define the type of access we want to provide.

•	 - "read_file": This defines the permission to read files in the directory.

•	 - "write_file": This defines the permission to write files in the directory.

•	 - "list_directory": This defines the permission to list files in the directory.

With this, we have provided read and write access to /tmp to our mcphost. Let’s use it. This time, we

can simply run mcphost and work within it. As we have debugging enabled in our configuration, it

will show that the MCP server, filesystem_tmp_rw, is active. We can see it in the following figure:

Figure 11.8 – MCPHost showing Fixed we have added an MCP server to it called filesystem_
tmp_rw

Chapter 11 349

Now we can type the following message into the prompt:

Please write an ansible playbook to open port 8888. Put the content in /
tmp/port-8888.yaml

Once we hit Enter, it will provide us with hints (as stated in the system prompt) on security and

performance, as shown in the following screenshot:

Figure 11.9 – MCPHost showing hints regarding opening port 8888

It will notify us that the playbook has been written, as in the following screenshot:

Figure 11.10 – MCPHost showing playbook was written

Agentic AI with mcphost350

Finally, it will provide us with guidance on how to execute it, as in the following figure:

Figure 11.11 – MCPHost providing guidance on how to use the playbook

Now we can quit mcphost and check that the playbook was created:

user@geeko:~> cat /tmp/port-8888.yaml

- hosts: all

 become: true

 tasks:

 - name: Ensure port 8888 is open

 ansible.posix.firewalld:

 port: 8888/tcp

 permanent: true

 state: enabled

 immediate: true

Now, to execute the playbook on our own machine, we can run the following command (note

that we need to be explicit with the connection type and the inventory):

user@geeko:~> sudo ansible-playbook --connection=local
--inventory=127.0.0.1, /tmp/port-8888.yaml

Chapter 11 351

The resulting output will be as follows:

Figure 11.12 – Ansible playbook running complete

We can finally check that the port was opened:

user@geeko:~> sudo firewall-cmd --list-ports

8888/tcp

And with this, we complete our introduction to mcphost.

Summary
By learning the basics of agentic AI with mcphost, we have seen that we can analyze our systems

and even act on them by providing the proper permissions for what can be accessed.

This way, we can use the LLM of our choice as a sidekick to help us go through all the info in our

systems at great speed. It provides hints and even files to be able to act on our systems.

As mcphost is in tech-preview, more extensions will come out during the life cycle of the operating

system, including new features and capabilities. It is a good idea to stay tuned as it will update

frequently.

Let’s move on to learn more about how to manage local storage and filesystems.

Agentic AI with mcphost352

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

Part 4
Resource Administration:
Storage, Boot Process,

Tuning, and Containers
In order to maintain the performance and usability of servers, you need to manage the machines

running SLES following best practices. Understanding the storage, tuning performance (including

the configuration required to make it permanent in the boot process), and automating tasks for

long-term maintainability are key capabilities for a system administrator. Containers can help

maintain a cleaner environment, isolating processes and assigning resources more efficiently,

which are areas in which a system administrator will be involved during their daily work.

This part has the following chapters:

•	 Chapter 12, Managing Local Storage and Filesystems

•	 Chapter 13, Flexible Storage Management with LVM

•	 Chapter 14, Configuring and Using System Snapshots with BTRFS and Snapper

•	 Chapter 15, Understanding the Boot Process

•	 Chapter 16, Automating with System Roles

•	 Chapter 17, Managing Containers with Podman

•	 Chapter 18, Introduction to SLES 4 SAP

12
Managing Local Storage and
Filesystems

In the previous chapters, we learned about security and system administration. In this chapter,

we will focus on the administration of resources, specifically, storage administration.

Storage administration is an important part of keeping a system running: the system logs can eat

into storage space and new applications might require additional storage set up for them (even

on separate disks to improve performance), and such issues may require our action to solve them.

In this chapter, we will learn about the following main topics:

•	 A bit of history on disks and partitions

•	 Partitioning disks (MBR and GPT disks)

•	 Formatting and mounting filesystems

•	 Setting default mounts and options in fstab

•	 Using network filesystems with Network File System (NFS)

This will provide us with basic knowledge to improve our storage administration skills to keep

our systems running.

Let’s get hands-on!

Managing Local Storage and Filesystems356

Technical requirements
You can continue the practice of using the virtual machine (VM) created at the beginning of this

book in Chapter 1, Getting SLES 16 Up and Running (Physical and Cloud). Any additional packages

required for this chapter will be indicated alongside the text. You will also need partitioning disks

(MBR and GPT disks).

A bit of history on disks and partitions
Before we begin, it’s imperative to start with a definition of partition. Partitioning is the logical

division of a storage device, used to distribute the available storage of a device (usually a disk)

into smaller pieces, known as partitions.

To better understand partitioning, let’s learn a bit about the origins of storage.

Let’s start by explaining a bit about the history of personal computers (PCs), the software that

allows them to boot—Basic Input/Output System (BIOS)—and how that influenced storage

formats, use, and administration.

It might sound a bit strange, but initial storage needs, in the 80s when PCs were created, were just

a small amount of kilobytes (KB). For the first hard drives in PCs, storage was just a few megabytes

(MB). PCs also came with a limitation: they had to be compatible, which meant that subsequent

models had to be compatible with the initial International Business Machines (IBM) PC design.

Traditional disk partitioning uses a space at the beginning of disks after the Master Boot Record

(MBR) that allows four partition registers (all of which have the following characteristics: start,

end, size, partition type, active flag), called primary partitions.

When a PC is booting, BIOS will check the partition table of the disk by running a small program

in the MBR, and then it will load the boot area of the active partition and execute it to get the

OS booting.

MBR is a logical structure for disks that was introduced in PC-DOS in 1983 to enable

PCs to load, or boot, the Operating System (OS) from it and also distribute the disk

space into four partitions.

Chapter 12 357

IBM PCs that contained a Disk Operating System (DOS) or compatible version (such as PC-DOS,

MS-DOS, DR-DOS, and FreeDOS) also used a filesystem named a File Allocation Table (FAT). The

FAT contained several structures based on its evolution, known as the cluster addressing size (as

well as some other features).

With a limit on the number of clusters, having bigger disks meant having bigger blocks, so if a file

was using a limited amount of space, the remaining blocks couldn’t be used by other files. Thus, it

became more or less normal to break large hard drives into small logical partitions so that small

files would not consume the available space because of limits.

Some of those limitations were reduced by subsequent versions of FAT sizing, which increased

the maximum supported disk size. Of course, other OSs introduced their own filesystems, but

they used the same partitioning schema (MBR).

Later, to be able to overcome the limit of four partitions per disk, a new partition type was created

for the MBR disks: the extended partition. This used one of the four primary partition slots and

allowed extra partitions to be defined inside it, enabling users to create logical partitions to be

assigned as needed. Additionally, having several primary partitions also allowed the installation,

on the same computer, of different OSs with their own dedicated space that was completely

independent of other OSs.

So, partitions allowed computers to have different OSs, have a better usage of the available storage,

or even logically sort the data by keeping it in different areas, such as keeping OS space separate

from user data so that if a user filled the available space, it would not affect the computer’s op-

eration.

A filesystem is a logical structure that allows users to write files in a partition. The

initial filesystem for PCs was FAT, which was becoming widely popular in the 80s.

Linux supports other filesystems, such as EXT4 and XFS. SUSE Linux Enterprise

Server uses the BTRFS filesystem, which allows filesystem snapshots.

Managing Local Storage and Filesystems358

As we have said, many of those designs came with the compatibility restriction of the original

IBM PC. So, when new computers using the Extensible Firmware Interface (EFI) appeared to

overcome the limitations of traditional BIOS, a new partition table format called Globally Unique

Identifier (GUID) Partition Table (GPT) arrived.

Systems using GPT use 32-bit and 64-bit support rather than the 16-bit support used by BIOS

(inherited from IBM PC compatibility). So, bigger addressing can be used for the disks, as well as

extra features such as extended controller loading.

Now, let’s learn about disk partitioning in the next section.

Partitioning disks (MBR and GPT disks)
As mentioned, using disk partitions allows us to more efficiently use the space available on our

computers and servers.

Let’s dig into disk partitioning by first identifying the disk to act on.

Linux uses different notation for disks based on the way they are connected to the system. So, for

example, you can see disks marked as hda or sda or mmbclk0 depending on the connection being

used. Traditionally, disks connected using the Integrated Drive Electronics (IDE) interface have

disks named hda, hdb, and so on, while disks using the Small Computer System Interface (SCSI)

have disks named sda, sdb, and so on. Also, virtual devices using VirtIO drivers have names like

vda, vdb, and so on.

Once we have learned about what caused disks to be partitioned and the limitations

of this, we should follow one schema or another based on our system specifications,

but bear in mind that EFI requires GPT, and BIOS requires MBR. So, a system support-

ing UEFI but containing a disk partitioned with MBR will have to boot the system

using BIOS compatibility mode.

Chapter 12 359

We can list the available devices with sudo fdisk -l or lsblk, as we can see in the following

screenshot:

Figure 12.1 – lsblk and fdisk -l output

As we can see, our disk named /dev/vda has three partitions: vda1, vda2, and vda3, with vda2

being formatted with a BTRFS filesystem that allows volumes to be created in it.

To demonstrate disk partitioning in a safe way and to make it easier for those of you using a VM

for testing, we will create a fake virtual hard drive (VHD) for testing. However, everything we

do to this disk could also be done to any other disk. In doing so, we will use the tool truncate,

which comes with the coreutil package, and the losetup utility, which comes with the util-

linux package.

Managing Local Storage and Filesystems360

To create a VHD, we will execute the following sequence of commands as they appear in Figure 12.2:

1.	 truncate --s 5G myharddrive.hdd, which will create an empty file with the size we

request

2.	 losetup -f, which will find the next available device

3.	 losetup /dev/loop0 myharddrive.hdd, which will associate loop0 with the file created

4.	 lsblk -fp, which will validate the newly looped disk

5.	 fdisk -l /dev/loop0, which will list the available space in the new disk

The following screenshot shows the output of the preceding sequential commands:

Figure 12.2 – Execution of the indicated commands for creating a fake hard drive

This command creates a 5 GB file, but this will be an empty file, which means

that the file is not really using 5 GB on our disk, just showing that size. Unless

we use it, it will not consume more disk space. This is called a sparse file.

Chapter 12 361

The losetup -f command finds the next available loopback device, which is a device used for

looping back accesses to a backing file. It allows us to use a file as a storage device. This is often

used for mounting ISO files locally, or for accessing a backup of a disk with dd, for example.

With the third command, we use the previously available loopback device to set up a loop con-

nection between the loop0 device and the file we created with the first command.

As we can see, in the remaining commands, the device now appears when running the same

commands we executed in Figure 12.1, showing that we have a 5 GB disk available.

Let’s start creating partitions by executing fdisk /dev/loop0 on our newly created device, as

shown in the following screenshot:

Figure 12.3 – fdisk execution on /dev/loop0

As we can see in Figure 12.3, the just-created disk doesn’t contain a recognized partition table. So,

when running fdisk on it, a new DOS partition disk label is created, but the changes only remain

in memory until they are written back to the disk.

Inside the fdisk command, we can use several options to create a partition. The first one we

should be aware of is m, as indicated in Figure 12.3, which shows the help functionality and the

available commands.

Partitioning operations on disks can be dangerous and can render a system unusable

and in need of restoration or reinstallation. To reduce that chance, the examples in

this chapter will use the device /dev/loop0, which is a fake disk. This way, we will

only be interacting with this fake disk, ensuring we cause no harm to the rest of the

system. Pay attention when performing portioning operations on real volumes or

disks.

Managing Local Storage and Filesystems362

The first thing to take into consideration is our previous explanation about UEFI, BIOS, and so on.

By default, fdisk creates a DOS partition, but as we can see inside the manual (m), we can create

a GPT partition by running the g command inside fdisk.

One important command to remember is p, which prints the current disk layout and partition,

as shown in the next screenshot:

Figure 12.4 – fdisk creating a new partition table

As we can see, the initial disklabel type was dos and now is gpt, which is compatible with EFI/

UEFI.

Let’s review some of the basic commands we can use:

•	 n: Creates a new partition

•	 d: Deletes a partition

•	 m: Shows the manual page (help)

•	 p: Prints the current layout

•	 x: Enters advanced mode (extra functionality intended for experts)

Chapter 12 363

•	 q: Quits without saving

•	 w: Writes changes to disk and exits

•	 g: Creates a new GPT disk label

•	 o: Creates a DOS disk label

•	 a: In DOS mode, sets the bootable flag to one of the primary partitions

Now, the question is, “What is the sequence for creating a new traditional disk partition layout

with a bootable partition for the OS and another one for the user data, with half the disk size each?”

This is the sequence of commands (they are also shown in Figure 12.5):

1.	 Type o and press Enter to create a new DOS disk label.

2.	 Type n and press Enter to create a new partition.

3.	 Press Enter to accept a primary partition type.

4.	 Press Enter to confirm use of the first partition (1).

5.	 Press Enter to accept the initial sector.

6.	 Type +1G and press Enter to indicate 1 GB in size from the first sector.

7.	 Type n and press Enter to create a second new partition.

8.	 Press Enter to accept it as a primary partition type.

9.	 Press Enter to accept the partition number (2).

10.	 Press Enter to accept the first sector as the default proposed by fdisk.

11.	 Press Enter to accept the end sector as the default proposed by fdisk.

12.	 Type a and press Enter to mark a partition as bootable.

13.	 Type 1 and press Enter to mark the first partition.

As you can see, most of the options accept the defaults; the only change was to specify a partition

size of +1G, meaning it should be 1 GB (the disk is 5 GB), and then start with the second partition

with the n command, now not specifying the size as we want to use all the remaining disk space.

The last step is to mark the first partition as active for booting.

Managing Local Storage and Filesystems364

Of course, remember that unless we execute the w command, the changes are not written to disk.

Also, we can use p to review them, as shown in the following screenshot:

Figure 12.5 – Disk partition layout creation and verification before writing it back to disk

To conclude this section, let’s write the changes to disk with the w command, and let’s move on

to discuss filesystems in the next section.

Before that, however, let’s execute partprobe /dev/loop0 to make the kernel update its internal

view on the disk and find the two new partitions. Without this, the special /dev/loop0p1 and /

dev/loop0p2 files might not be created and will not be usable.

Note that some partition modifications will not be updated even after a partprobe execution

and might require the system to be rebooted. This is, for example, happening on disks that have

partitions in use, such as the one holding the root filesystem on our computer.

Chapter 12 365

Formatting and mounting
filesystems
In the previous section, we learned how to logically divide our

disk. But that disk is still not usable for storing data. In order to

enable this to do so, we need to define a filesystem on it as the

first step to make it available to our system.

A filesystem is a logical structure that defines how files, folders,

and more are stored. Different filesystems provide different sets

of features.

The number and types of filesystems supported depend on the

OS version because, during its evolution, new filesystems might

be added, removed, and so on.

Remember that SLES fo-

cuses on stability, so there

are strict controls about

which features are added

or phased out for new re-

leases. The advanced test-

ing and build capabilities

of OpenQA (https://

o p e n q a . o p e n s u s e .

org/) and Open Build

Service (h t t p s : / /

openbuildservice.

org/) enable SUSE to per-

form component updates,

maintaining compatibili-

ty during the whole ma-

jor release, in this case

version 16.

In SLES, the default root filesystem is set to BTRFS to enable

filesystem-level snapshots, which will help you roll back to a well-

known state if you encounter an issue, as described in Chapter 14,

Configuring and Using System Snapshots with BTRFS and Snapper.

For data partitions, SUSE recommends using the eXtended File

System (XFS), but you can see a list of suitable filesystems in the

SLES documentation at https://documentation.suse.com/en-

us/sles/15-SP7/html/SLES-all/cha-filesystems.html (an

updated version of the link was not available when writing this

book; however, this one still applies), and of course, others such

as Fourth Extended Filesystem (EXT4) can be used.

The choice of the filesystem depends on several factors, such as

usage intention and the types of file that are going to be used, be-

cause different filesystems might have performance implications.

For example, both EXT4 and XFS are journaled filesystems that

provide more protection against power failures, but the maxi-

mum filesystem size differs because of other aspects, such as the

likelihood of becoming fragmented.

Before choosing a filesystem, it is a good practice to get an idea of

the kinds of file being deployed and their usage pattern because

choosing the wrong one might affect system performance.

https://openqa.opensuse.org/
https://openqa.opensuse.org/
https://openqa.opensuse.org/
https://openbuildservice.org/
https://openbuildservice.org/
https://openbuildservice.org/
https://documentation.suse.com/en-us/sles/15-SP7/html/SLES-all/cha-filesystems.html
https://documentation.suse.com/en-us/sles/15-SP7/html/SLES-all/cha-filesystems.html

Managing Local Storage and Filesystems366

As we explained in the previous section, with two partitions on our VHD, we can try to create both

XFS and EXT4 filesystems. Again, however, be very careful when performing operations because

filesystem creation is a destructive operation that writes new structures back to the disk, and

when operating as the root user of the system, which is required, selecting the wrong disk can

destroy the available data we have on our system within seconds.

Let’s use the two partitions we created to test with two filesystems, XFS and EXT4, by using the

mkfs.xfs and mkfs.ext4 commands against each one of the partitions created in our fake virtual

disk device. We will create an XFS filesystem on partition one of the loop0 device, which is /dev/

loop0p1, then an EXT4 filesystem on partition two of the loop0 device, which is /dev/loop0p2,

respectively, as follows:

Figure 12.6 – Filesystem creation on the two partitions of the fake virtual hard drive

Remember to check the man page for the commands being used in order to get

familiar with the different recommendations and the options available for each

one. For example, we can run man 5 btrfs to learn about the filesystem or man 8

btrfs to learn more about the tools included for the filesystem. We can also run

man xfs or man ext4.

Chapter 12 367

Note that we have specified the different loop device partition, and we have also specified one -L

parameter for each command. We will look at this again later.

Now that the filesystem has been created, we can run lsblk -fp to verify this, and we can see

both devices, indicating that the filesystem is in use, as well as LABEL and UUID values (the ones

shown when we created the filesystem with mkfs), as we can see in the following screenshot:

Figure 12.7 – Output of lsblk -fp after creating the filesystems

In the preceding output, it’s important to pay attention to the UUID and LABEL values (if you

remember, the value listed is the one we specified in the mkfs command with the -L option), as

we will be using them later in this chapter.

Now that the filesystems have been created, in order to use them, we need to mount them. This

means making the filesystem available on a path (or directory, or folder) in our system so that

every time we store any file inside that path, we will be using that device.

Mounting a filesystem can be done in several ways, but the simplest way is to use autodetection

and specify the device to mount and the local path to mount it at. But more complex mounting

options that allow several options to be defined can be found when checking the man mount help

page.

Mounting and unmounting filesystems require root privileges, so they can be done

using sudo, or switching to a new shell as root, which can be done by running

sudo -i.

Managing Local Storage and Filesystems368

To mount our two created filesystems, we will create two folders and then proceed to mount each

device by executing the following commands as root:

geeko:~ # cd

geeko:~ # mkdir first-dir second-dir

geeko:~ # mount /dev/loop0p1 /root/first-dir/

geeko:~ # mount /dev/loop0p2 /root/second-dir/

geeko:~ # mount | grep loop

/dev/loop0p1 on /root/first-dir type xfs
(rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,noquota)

/dev/loop0p2 on /root/second-dir type ext4 (rw,relatime,seclabel)

At this point, the two filesystems will be available in our home folder (the root user) in the sub-

folders named first-dir and second-dir.

The kernel automatically detects which filesystem is used for each device. It then loads the appro-

priate controller for that filesystem. This process usually works without any manual intervention.

However, sometimes we may want to specify particular options ourselves. For instance, we can

force the filesystem type manually. This was often done in the past when ext2 and ext3 were

common filesystems—to enable or disable journaling. We can also define options to disable cer-

tain built-in features, such as updating file or directory access times. Doing this helps to reduce

disk I/O and can improve overall performance.

All options specified on the command line or filesystems mounted will not be available once the

system is rebooted, as they are only runtime changes. Let’s move on to the next section, which

explains how to define default options and filesystem mounts when the system is being started.

Setting default mounts and options in fstab
In the previous section, we explained how disks and partitions can be mounted so that our services

and users can use them. In this section, we will learn how to make those filesystems available

in a persistent way.

The /etc/fstab file contains the filesystem definitions for our system. It also has a dedicated

manual page, which can be accessed with the man fstab command. This manual provides useful

information about the file’s formatting, fields, and ordering. All these details must be carefully

followed because this file is critical for the smooth operation of the system. We can take a quick

look at it by running cat /etc/fstab.

Chapter 12 369

The file format is defined by several fields separated by tabs or

spaces, with lines starting with a # considered as comments.

For example, we will use this line to look at each field description:

UUID=XXXX-XXXX-XXXX / btrfs defaults 0 0

The first field is device identification, which can be a special block

device, a remote filesystem, or—as we can see in the example

above—a selector made up of LABEL, UUID, the device name (such

as /dev/vda1), or, for GPT systems, also PARTUUID or PARTLABEL.

The man page for mount, blkid, and lsblk provides more infor-

mation about device identifiers. As the name suggests, they are

used to identify which device, and partition/subvolume in it, we

want to use.

BTRFS includes a way to

distribute storage at the

filesystem level by using

a logical concept called

subvolumes, making it

easier to partition devices.

The second field is the mount point for the filesystem, which is

where to make the contents of that filesystem available based on

our system directory hierarchy. Some special devices/partitions,

such as swap areas, have this defined as none, because the contents

are effectively not made available via the filesystem.

The third field is the filesystem type, as supported by the mount

command or swap, for swap partitions.

The fourth field is the mount options supported by the mount or

swapon commands (check their man pages for more details), being

at its default setting an alias for the most common options (read/

write, allow devices, allow execution, automount on boot, async

access, and so on). Other common options are as follows:

•	 noauto, which defines the filesystem but doesn’t mount

at boot (often used with removable devices)

•	 user, which allows users to mount and unmount it

•	 _netdev, which defines remote paths that require network-

ing to be up before attempting the mount

The fifth field is used by the dump backup utility to determine

which filesystems should be used during backups by it—its val-

ue defaults to 0.

Managing Local Storage and Filesystems370

The sixth field is used by fsck to determine the order for filesystems to be checked on boot. The

default is 0, not fsck. Checks, if needed, are performed in parallel to speed up the booting process.

Note that with filesystems that have a journal, the filesystem itself can perform a fast validation

instead of a full one.

The following screenshot shows how it looks in our system with the output of cat /etc/fstab:

Figure 12.8 – fstab example from our system

So, why should we use UUID or LABEL instead of devices such as /dev/sda1?

Disk ordering might change when a system is booting because some kernels might introduce

differences in the way the devices are accessed, for example, causing changes in the enumeration

of the devices. This happens not only for removable devices such as Universal Serial Bus (USB)

devices, but also to internal devices such as network interfaces or hard drives.

When, instead of specifying the devices, we use UUID or LABEL, even in the event of a device re-

ordering, the system will still be able to find the right device to use and boot from it. This was

especially important when systems used to have IDE and Serial Advanced Technology Attach-

ment (SATA) drives or SATA and SCSI drives, or even today, when Internet SCSI (iSCSI) devices

might be connected in a different order than expected, resulting in device name changes and

failures when reaching them.

Using UUID or LABEL allows us to install SLES on a USB drive or an external disk.

Remember to use the blkid or lsblk -fp commands to check the filesystems’ labels and univer-

sally unique identifiers (UUIDs) that could be used when referring to them.

When editing the /etc/fstab file, be extremely careful: altering the mount points

used by the system might render your system unusable. If in doubt, double-check

for any change and be sure to familiarize yourself with system recovery methods

and have rescue media available in case this is needed.

Chapter 12 371

Let’s learn about mounting a remote NFS in the next section.

Using network filesystems with NFS
Mounting a remote NFS is not much different than mounting local devices, but instead of spec-

ifying a local device as we did in the previous section with our /dev/loop0p1 file, we provide

server:export as a device.

We can find a range of options by checking out the manual page via man mount, and this will show

us several of the options and the way the devices in our system look.

When an NFS mount is going to be used, the administrator will need to use the host and the ex-

port name to mount that device—for example, based on the following data about the NFS export:

•	 Server: server.suse.test

•	 Export: /isos

•	 Mount point: /mnt/nfs

With the preceding data, it’s easy to construct the mount command, which will look like this:

mount -t nfs server.suse.test:/isos /mnt/nfs

If we analyze the preceding command, it specifies the type of filesystem to be mounted as nfs.

The nfs service is provided by a server with the hostname server.suse.test. It uses the /isos

NFS export from that server. Locally, this export will be mounted and made available in the /

mnt/nfs folder.

If we want to define this filesystem as available at boot, we should add an entry in /etc/fstab.

But how should we indicate this?

Based on the settings explained during this chapter, the constructed entry would look something

like this:

server.suse.test:/isos /mnt/nfs nfs defaults,_netdev 0 0

The preceding line of code includes the same parameters we specified on the command line. It

also indicates that this resource requires network access before it can be mounted. This is neces-

sary because the system must establish a network connection to reach the NFS server. The same

requirement applies to other types of network-based storage, such as Samba or Windows Share

mounts, iSCSI, and similar technologies.

Managing Local Storage and Filesystems372

Summary
In this chapter, we’ve learned about how a disk is divided logically for optimal use of storage and

how to later create a filesystem on that disk division so that it can be used to actually store data.

Once the filesystem was created, we learned how to make it accessible in our system and how to

ensure that it will be available after the next system restart via modification of the /etc/fstab

configuration file.

Finally, we also learned about using a remote filesystem with NFS, based on the data that was

provided for us, and how to add it to our fstab file to make it persistent.

In the next chapter, we will learn how to make storage even more useful via logical volume man-

agement, which empowers the definition of different logical units that can be resized, combined

to provide data redundancy, and more.

Reinstating the idea of keeping our system bootable, once we make modifications

to the /etc/fstab configuration file, it is recommended to execute mount -a so

that the validation is performed from a running system. If, after the execution, the

new filesystems are available and shown when executing, for example, df, and no

error appears, it should be safe.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

13
Flexible Storage Management
with LVM

In the previous chapter, we learned how to manage local storage, but we were constrained by

hardware limitations, such as the size of available disks. Linux provides an alternative and flexible

logical volume management that creates an abstraction layer on top of the physical storage. The

Logical Volume Manager (LVM) provides advanced configuration of drives, allowing the use of

more than one disk in the same logical volume (the LVM equivalent of a partition), the replica-

tion of data to multiple disks, or taking snapshots of a volume to store copies of the content, all

while the system is running.

In this chapter, we are going to go through the basic usage and configuration of LVM, starting

with the core concepts required to understand how it works. We will prepare disks so they can be

used with LVM and aggregate them into a pool to get additional space. We will then distribute

that aggregated disk space into volumes that will act as dynamic partitions. To do so, we will go

through the following topics:

•	 Understanding LVM

•	 Creating, moving, and removing physical volumes

•	 Combining physical volumes into volume groups

•	 Creating and extending logical volumes

•	 Adding new disks to a volume group and extending a logical volume

•	 Removing logical volumes, volume groups, and physical volumes

•	 Reviewing LVM commands

Flexible Storage Management with LVM374

Technical requirements
We will need two additional disks added to the working machine for this chapter. Depending on

your infrastructure, you have different options:

•	 On a physical machine, you can add a couple of USB drives

•	 On a local VM, you will need to add two new virtual drives

•	 If you are using a cloud instance, you will need to add two new block devices

For example, we can add two new hard drives to a VM. In many cases, the VM definition would

have to be edited, and this will only be possible when the machine is powered off. Edit the char-

acteristics of the VM and add additional drives:

Figure 13.1 – Editing VM properties

We are going to create two virtual drives for the VM. Let’s add two drives of 2 GiB each. Once you

have finished, you should see at least three virtual drives—the original one with the operating

system and the two new ones we have created:

Check the documentation of your virtualization platform to find out how to add new

hardware, as there are slight differences between hypervisors and versions. Don’t

forget to save the changes!

Chapter 13 375

Figure 13.2 – The original drive and the two new ones added to the VM

Let’s power on the VM and find out how the drives are displayed inside the VM:

user@geeko:~> lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS

sr0 11:0 1 1024M 0 rom

vda 254:0 0 64G 0 disk

├─vda1 254:1 0 128M 0 part /boot/efi

├─vda2 254:2 0 61.9G 0 part /var

│ /usr/local

│ /srv

│ /root

│ /opt

│ /boot/grub2/arm64-efi

│ /home

│ /.snapshots

│ /

└─vda3 254:3 0 2G 0 part [SWAP]

vdb 254:16 0 2G 0 disk

vdc 254:32 0 2G 0 disk

Flexible Storage Management with LVM376

The new drives are called vdb and vdc, and their type is disk. However, they are not yet configured

like the system disk on vda. Let’s put the new disks to use.

Understanding LVM
One of the complexities of a new installation of Linux is understanding how to partition the disk

drive. Estimates are hard to get right, and systems that are working for months or years can re-

quire more space in some partitions with new versions of the software, or to make room for logs

and metrics. In some cases, users just put all the data into a large partition to avoid the problem,

even if that could lead to other problems in production.

LVM provides three abstractions to create virtual block devices from physical devices that can

have more advanced characteristics than the physical devices themselves:

•	 Physical volumes (PVs): The base layer of LVM, the actual storage device. A PV can be

either a partition on a disk, or the full raw disk itself, or anything that looks like a hard

disk, such as a hardware RAID (Redundant Array of Inexpensive Devices) array or a Log-

ical Unit Number (LUN).

•	 Volume groups (VGs): Aggregations of physical volumes. They create logical pools of

space from physical volumes. One PV can only be part of a single VG.

•	 Logical volumes (LVs): The third layer of LVM. They distribute the space that the VGs

aggregate.

There is a relationship between the names of devices in Linux and the drivers they

use. Devices attached via SATA or SCSI will get a name that starts with sd followed by

a letter in order of appearance, such as sda or sdb. On the IDE, they will get hd plus

the letter, such as hda or hdb. On VirtIO paravirtualized drivers, the name starts with

vd and a letter, for example, vda or vdb. If you frequently add and remove hardware,

you can avoid name updates using labels or UUID.

You can check out the rules in the /usr/lib/udev/rules.d/60-persistent-

storage.rules file.

You can’t use an unpartitioned disk as the boot partition or where the operating

system is installed. An unpartitioned disk appears unused at the system level and

can be easily overwritten or misused.

Chapter 13 377

We are going to use our two new disks to create LVs, as shown in the following diagram:

Figure 13.3 – LVM example using two disks

Let’s go through the different components of the diagram:

•	 We have two disks, Disk 1 and Disk 2. These are the two virtual disks we added to the VM

at the beginning.

•	 Disk 1 has two logical partitions: Part1 and Part2.

•	 Disk 2 is a raw drive with no partitions.

•	 We are going to create a PV on each one. A PV makes the physical device recognizable by

LVM. We are going to name them PV#:

•	 PV 1, created on the Part1 partition of Disk 1

•	 PV 2, created on the Part2 partition of Disk 1

•	 PV 3, created directly on Disk 2

•	 We are going to create one single VG, VG 1, that aggregates all three physical volumes PV 1,

PV 2, and PV 3. With that, we will consolidate the storage into a single, large unit of space,

which will be available to create LVs.

•	 To distribute the space, we are going to create three LVs – LV 1, LV 2, and LV 3. The LVs do

not use all the space available in the VG, allowing us to create new ones or add space if

some of the LVs run out of space.

Flexible Storage Management with LVM378

In this chapter, we will keep to the basics, but LVM can do much more. For instance, it is possible to

configure LVM drives for thin provisioning, striping (similar to RAID 0), or for creating snapshots.

One of the advantages of using LVM is that you are able to add extra space to any VG without

having to unmount the volume or reboot the machine. With hot swappable hardware, you can

even add new disks. If the filesystem that is using the LV allows it, it is even possible to resize it

without rebooting. This is one of the reasons why LVM is recommended for servers, with very

limited exceptions.

Now that we know the concepts, let’s put them to work.

Creating, moving, and removing physical volumes
In the Technical requirements section, we left our machine ready with two new disks, vdb and vdc.

We are now going to configure LVM to make use of them as we described in Figure 13.3.

Our first step is to partition vdb so it can be used by LVM. We are going to use parted, a tool in-

cluded in SLES to manipulate disk partitions, which supports multiple partition tables:

user@geeko:~> sudo parted /dev/vdb print

Error: /dev/vdb: unrecognised disk label

Model: Virtio Block Device (virtblk)

Disk /dev/vdb: 2147MB

Sector size (logical/physical): 512B/512B

Partition Table: unknown

Disk Flags:

We get an error message because the disk is completely unpartitioned (unrecognised disk

label). As explained in Chapter 12, Managing Local Storage and Filesystems, there are two styles of

partition tables that can be used:

•	 gpt: The default partition style for systems using the Unified Extensible Firmware In-

terface (UEFI) firmware for booting

•	 msdos (also MBR): The only one supported in systems with legacy Basic Input Output

System (BIOS), which supports only four primary partitions for disks up to 2 TB, and is

required by older operating systems

Unless you have a defined use case, you should be using gpt. In parted, partition tables are called

labels. Let’s create one on our disk:

user@geeko:~> sudo parted /dev/vdb mklabel gpt

Chapter 13 379

You may need to update /etc/fstab:

user@geeko:~> sudo parted /dev/vdb print

Model: Virtio Block Device (virtblk)

Disk /dev/vdb: 2147MB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name Flags

Specifying a label does not create partitions but prepares the disk so we can create them. We

wanted two partitions on the disk, so let’s use parted in interactive mode to create the first one:

user@geeko:~> sudo parted /dev/vdb mkpart

Enter a partition name, such as mypart0:

Partition name? []? mypart0

The filesystem type is optional, so let’s go with the default ext2:

File system type? [ext2]? ext2

We need to define a start and an endpoint for the partition. We will use the standard first sector,

which is 2048s:

Start? 2048s

Select a different label if you want to use another partition table. parted supports

several alternatives, including bsd and loop (for raw disk access). For instance, the

command to use MBR is parted /dev/vdb mklabel msdos.

The GPT table is stored at the beginning of the disk, so you can’t create partitions in

sector 0. Defining the first sector as 2048s is a safe way to make sure that the par-

tition is aligned with the physical layout of the hard drive, increasing performance.

You can check the sector size using fdisk -l /dev/vdb.

Flexible Storage Management with LVM380

The final step is setting the endpoint, which can be described as the size of the partition we want

to make (in most systems, the 2048s sector is 1 MB):

End? 256MB

The fdisk command is complete with the following warning, to remind us that we still have

some steps to take to have the partition available for our system:

Information: You may need to update /etc/fstab.

In scripts, when you need to be sure that the partition table is updated before continuing to make

changes, you can wait until the device is generated in /dev with the following command:

user@geeko:~> sudo udevadm settle

We can see the new partition:

user@geeko:~> sudo parted /dev/vdb print

Model: Virtio Block Device (virtblk)

Disk /dev/vdb: 2147MB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name Flags

1 1049kB 256MB 255MB mypart0

To host LVM PVs, we need to change the partition type, which we can do using the set subcom-

mand. We need to update the new partition (partition 1), set up its type to the new one (lvm), and

activate it so it is visible to the operating system (on):

user@geeko:~> sudo parted /dev/vdb set 1 lvm on

Information: You may need to update /etc/fstab.

user@geeko:~> sudo parted /dev/vdb print

Model: Virtio Block Device (virtblk)

Disk /dev/vdb: 2147MB

The full command to run in non-interactive mode is parted /dev/vdb mkpart

mypart0 btrfs 2048s 256MB.

Chapter 13 381

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name Flags

1 1049kB 256MB 255MB mypart0 lvm

The flags have been updated to include lvm.

Let’s add a second partition using the rest of the space, mypart1:

user@geeko:~> sudo parted /dev/vdb mkpart mypart1 xfs \

256MB 100%

Information: You may need to update /etc/fstab.

user@geeko:~> sudo parted /dev/vdb set 2 lvm on

Information: You may need to update /etc/fstab.

user@geeko:~> sudo parted /dev/vdb print

Model: Virtio Block Device (virtblk)

Disk /dev/vdb: 2147MB

Sector size (logical/physical): 512B/512B

Partition Table: gpt

Disk Flags:

Number Start End Size File system Name Flags

1 1049kB 256MB 255MB mypart0 lvm

2 256MB 2146MB 1891MB mypart1 lvm

We are halfway there. The first disk has two partitions that use the full disk. Our storage now

looks like this:

Figure 13.4 – Partitions created in our two new disks

Flexible Storage Management with LVM382

The next step is to create LVM PVs. We will use the new partitions

for that.

First, we will check the available PVs with the pvs command:

 user@geeko:~> sudo pvs

parted is not the only tool for manipulating disk

partition tables. By default, SLES also includes

fdisk. You might find it easier for you, so give it

a try.

The default filesystem

used in SLES is BTRFS,

which includes many

of the features of LVM,

such as snapshots, in the

filesystem itself. Using

LVM and BTRFS together

is not normally needed or

recommended.

The next step is to create the PVs with pvcreate:

user@geeko:~> sudo pvcreate /dev/vdb1

 Physical volume "/dev/vdb1" successfully
created.

 Creating devices file /etc/lvm/devices/system.
devices

user@geeko:~> sudo pvcreate /dev/vdb2

 Physical volume "/dev/vdb2" successfully
created.

Now, the pvs option shows new data:

user@geeko:~> sudo pvs

 PV VG Fmt Attr PSize PFree

 /dev/vdb1 lvm2 --- 243.00m 243.00m

 /dev/vdb2 lvm2 --- 1.76g 1.76g

Notice that PVs do not have their own names, but they inherit the

name of the partition or device:

Chapter 13 383

Figure 13.5 – PVs created in the two new partitions

You can also create PVs on a raw disk device, such as vdc. It will only be possible if the disk has

not been partitioned:

user@geeko:~> sudo pvcreate /dev/vdc

[sudo] password for user:

 Physical volume "/dev/vdc" successfully created.

user@geeko:~> sudo pvs

 PV VG Fmt Attr PSize PFree

 /dev/vdb1 lvm2 --- 243.00m 243.00m

 /dev/vdb2 lvm2 --- 1.76g 1.76g

 /dev/vdc lvm2 --- 2.00g 2.00g

The result is the following:

Figure 13.6 – PVs created in the two new partitions and the new disk device

Now that wehave the PVs, let’s group them using VGs in the next section.

Flexible Storage Management with LVM384

Combining physical volumes into volume groups
Now that all the space is assigned to PV, we can create a VG for them. As before, we are going to

check what VGs are available with the vgs command:

user@geeko:~> sudo vgs

Again, as the root filesystem is BTRFS, it does not use LVM, and the list is empty. We are going to

create a new storage VG with the /dev/vdb1 and /dev/vdb2 PVs using the vgcreate command:

user@geeko:~> sudo vgcreate storage /dev/vdb1 /dev/vdc

 Volume group "storage" successfully created

user@geeko:~> sudo pvs

 PV VG Fmt Attr PSize PFree

 /dev/vdb1 storage lvm2 a-- 240.00m 240.00m

 /dev/vdb2 lvm2 --- 1.76g 1.76g

 /dev/vdc storage lvm2 a-- 2.00g 2.00g

user@geeko:~> sudo vgs

 VG #PV #LV #SN Attr VSize VFree

 storage 2 0 0 wz--n- 2.23g 2.23g

We now have a new VG on top of vdb1 and vdc. The VG’s storage space is the sum of vdb1 and vdc,

even if they belong to different disks, and they are part of the storage VG:

Figure 13.7 – First VG created with two PVs

It is time to create LVs and the filesystems on them. We have partitioned the disks and created

partitions and PVs, and aggregated them all into a VG that acts as a pool of storage. We are ready

to distribute the space.

Chapter 13 385

Creating and extending logical volumes

As we haven’t created any LVs, there are none, but we will be fixing this next. Let’s move to the

next layers and check the LVs with the lvs command:

user@geeko:~> sudo lvs

We had a 2.23 GB VG. Let’s use a 512 MB LV called data, 200 MB in size, on the storage VG:

user@geeko:~> sudo lvcreate --name data --size 512MB \ storage

 Logical volume "data" created.

user@geeko:~> sudo lvs

 LV VG Attr LSize Pool Origin Data% Meta% Move Log
Cpy%Sync Convert

 data storage -wi-a----- 512.00m

Our storage looks like this now:

Figure 13.8 – First LV created on a VG

Advanced management of storage, such as striping or mirroring, is configured at

the LV level. Consider VG a very thin layer that allows you to group PVs so you don’t

need to list all of them every time you do something.

Flexible Storage Management with LVM386

The LV behaves like a partition on a block device. In order to be used, we need to format it with

a filesystem. As we are using LVM, let’s format it using xfs:

user@geeko:~> sudo mkfs.xfs /dev/storage/data

[sudo] password for user:

meta-data=/dev/storage/data isize=512 agcount=4, agsize=32768 blks

 = sectsz=512 attr=2, projid32bit=1

 = crc=1 finobt=1, sparse=1, rmapbt=1

 = reflink=1 bigtime=1 inobtcount=1
nrext64=1

 = exchange=0 metadir=0

data = bsize=4096 blocks=131072, imaxpct=25

 = sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0, ftype=1,
parent=0

log =internal log bsize=4096 blocks=16384, version=2

 = sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

 = rgcount=0 rgsize=0 extents

Discarding blocks...Done.

We are no longer using autogenerated names for partitions, but the ones we used to create the

VG and LV. The LV is ready to be mounted. For instance, we could create the /srv/data directory

and mount it:

user@geeko:~> sudo mkdir /srv/data

user@geeko:~> sudo mount -t xfs /dev/storage/data /srv/data

user@geeko:~> df -h /srv/data

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/storage-data 448M 35M 414M 8% /srv/data

The LV is mounted on /srv/data, and it is ready to be used. However, if you power off or reboot

the system, the configuration will be lost. To make it persistent, you need to add a line to the /

etc/fstab file:

/dev/storage/data /srv/data xfs defaults 0 0

To test that the line has been correctly written, we can run the following commands. First, dis-

mount the filesystem:

user@geeko:~> sudo mount -a

Chapter 13 387

Checking the space again will show that we are now using a different partition:

user@geeko:~> df -h /srv/data

Filesystem Size Used Avail Use% Mounted on

/dev/vda2 62G 2.8G 58G 5% /srv

The output of the df (which stands for disk free) command shows that the space in the /srv/

data/ directory is the same as the partition mounted on /srv. Once we mount it again, the space

will reflect that of the underlying LV. We can refresh and mount all systems in fstab using the

mount command:

user@geeko:~> sudo mount -a

With this command, the system will try to mount all filesystems mentioned in /etc/fstab. Errors

will be shown if there is a problem mounting them (such as a typo in /etc/fstab). Let’s check

that it is mounted:

user@geeko:~> sudo df -h /srv/data

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/storage-data 448M 35M 414M 8% /srv/data

The filesystem is available, properly mounted, and ready to be used, and will be automatically

mounted at each reboot. Let’s move on now to more advanced tasks.

Adding new disks to a volume group and extending
a logical volume
LVM allows us to do things that are not possible with traditional partitions. We can easily extend

our VG by adding new space, for instance, if a new hard drive is available. Let’s add the /dev/

vdb2 partition to the storage VG:

user@geeko:~> sudo pvs

[sudo] password for user:

 PV VG Fmt Attr PSize PFree

 /dev/vdb1 storage lvm2 a-- 240.00m 240.00m

 /dev/vdb2 lvm2 --- 1.76g 1.76g

The /dev/storage/data and /dev/mapper/storage-data devices link to a device

generated by the device mapper. They are completely interchangeable.

Flexible Storage Management with LVM388

 /dev/vdc storage lvm2 a-- 2.00g 1.50g

user@geeko:~> sudo vgs

 VG #PV #LV #SN Attr VSize VFree

 storage 2 1 0 wz--n- 2.23g 1.73g

user@geeko:~> sudo vgextend storage /dev/vdb2

 Volume group "storage" successfully extended

user@geeko:~> sudo vga

sudo: vga: command not found

user@geeko:~> sudo vgs

 VG #PV #LV #SN Attr VSize VFree

 storage 3 1 0 wz--n- 3.99g 3.49g

We are now using all the storage we added in a single VG that is larger than any of the original disks:

Figure 13.9 – Extended VG with three PVs

Let’s now extend the data LV by adding 200 MB to it:

user@geeko:~> sudo lvs

 LV VG Attr LSize Pool Origin Data% Meta% Move Log
Cpy%Sync Convert

 data storage -wi-ao---- 512.00m

user@geeko:~> sudo lvextend --size +600MB /dev/storage/data

Chapter 13 389

 Size of logical volume storage/data changed from 512.00 MiB (128
extents) to 1.09 GiB (278 extents).

 Logical volume storage/data successfully resized.

user@geeko:~> sudo lvs

 LV VG Attr LSize Pool Origin Data% Meta% Move Log
Cpy%Sync Convert

 data storage -wi-ao---- 1.09g

We now have an LV with 1.09 GB of space. However, the filesystem is not aware of the change and

is still showing the old availability:

user@geeko:~> sudo df -h /srv/data

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/storage-data 448M 35M 414M 8% /srv/data

Extending the filesystem depends on the tools available for that specific filesystem. In the case

of xfs, the tool for extending it is xfs_growfs. Let’s do that now:

user@geeko:~> sudo xfs_growfs /dev/storage/data

meta-data=/dev/mapper/storage-data isize=512 agcount=4, agsize=32768
blks

 = sectsz=512 attr=2, projid32bit=1

 = crc=1 finobt=1, sparse=1, rmapbt=1

 = reflink=1 bigtime=1 inobtcount=1
nrext64=1

 = exchange=0 metadir=0

data = bsize=4096 blocks=131072, imaxpct=25

 = sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0, ftype=1,
parent=0

log =internal log bsize=4096 blocks=16384, version=2

 = sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

 = rgcount=0 rgsize=0 extents

data blocks changed from 131072 to 284672

user@geeko:~> df -h /srv/data

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/storage-data 1.1G 47M 1002M 5% /srv/data

Flexible Storage Management with LVM390

As you can see, the filesystem now shows the added space. This can be handy if you run out of

space on an LV, for instance, because you created an LV to store your logs and they have grown

beyond your expectations on the production system. To fix this, you need to have some extra

room available or just add new disks when you need them.

Let’s now create a second LV on the same VG:

user@geeko:~> sudo lvcreate --size 300MB --name img storage

 Logical volume "img" created.

user@geeko:~> sudo lvs

 LV VG Attr LSize Pool Origin Data% Meta% Move Log
Cpy%Sync Convert

 data storage -wi-ao---- 1.09g

 img storage -wi-a----- 300.00m

user@geeko:~> sudo mkfs.xfs /dev/storage/img

meta-data=/dev/storage/img isize=512 agcount=4, agsize=19200 blks

 = sectsz=512 attr=2, projid32bit=1

 = crc=1 finobt=1, sparse=1, rmapbt=1

 = reflink=1 bigtime=1 inobtcount=1
nrext64=1

 = exchange=0 metadir=0

data = bsize=4096 blocks=76800, imaxpct=25

 = sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0, ftype=1,
parent=0

log =internal log bsize=4096 blocks=16384, version=2

 = sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

 = rgcount=0 rgsize=0 extents

In production, it is typical to need the system to keep running without reboots. Sup-

pose that we have resized the filesystem while it was mounted and used by the system,

without the need to reboot. When doing this task, the LV can be mounted and used

by the system. Not all filesystems allow this, and only BTRFS allows shrinking online.

Chapter 13 391

Discarding blocks...Done.

user@geeko:~> sudo mkdir /srv/img

user@geeko:~> sudo mount -t xfs /dev/storage/img /srv/img user@geeko:~>
sudo df /srv/img

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/mapper/storage-img 241664 20304 221360 9% /srv/img

The --size and --extents options for the lvcreate command have several options that can be

used to define the space to be consumed:

•	 Human readable: We can define the size in human-readable units, such as gigabytes (GB),

or megabytes (MB), for example: --size 3GB

•	 Extents: We can use extents as a unit with --extents, for example: --extents 125)

The --size and --extents options also apply to the lvextend command. We can use the options

for lvcreate to define the new size of a logical volume. We can also define increments of space:

•	 Adding space: If we provide the + symbol before the size, lvextend will increase the size

by the amount provided (that is, --size +1GB adds one extra gigabyte to the current LV)

•	 Percentage of free space: We can also provide the percentage of free space to create or

extend using -extents and the percentage of free space to be used, followed by %FREE (to

extend an LV to 10% of the free space use --extents 10%FREE)

Let’s extend img to use all the available space in the VG:

user@geeko:~> sudo lvextend --extents 100%FREE storage/img

 Size of logical volume storage/img changed from 300.00 MiB (75 extents)
to 2.51 GiB (643 extents).

 Logical volume storage/img successfully resized.

user@geeko:~> sudo xfs_growfs /dev/storage/img

meta-data=/dev/mapper/storage-img isize=512 agcount=4, agsize=19200

LVM internally splits the physical and logical space into chunks of data of the same

size, which can vary from 1 KB to 16 GB in powers of 2 (normally 4 KB). They are

called physical extents (for PV) and logical extents (for LV). Having a large number

of extents will slow down the tools, but will have no impact on the I/O performance.

Flexible Storage Management with LVM392

blks

 = sectsz=512 attr=2, projid32bit=1

 = crc=1 finobt=1, sparse=1, rmapbt=1

 = reflink=1 bigtime=1 inobtcount=1
nrext64=1

 = exchange=0 metadir=0

data = bsize=4096 blocks=76800, imaxpct=25

 = sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0, ftype=1,
parent=0

log =internal log bsize=4096 blocks=16384, version=2

 = sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

 = rgcount=0 rgsize=0 extents

data blocks changed from 76800 to 658432

LVM allows more advanced use cases. For instance, you can specify the data to be distributed

among different PVs using stripes. An LV that uses stripes can improve reading and writing per-

formance (such as RAID 0). You can also create LVs that are thinly provisioned, where some of

the space reserved can be used by an arbitrary number of thin volumes, which will be expanded

dynamically when needed. You can also create LVs with several mirrors, ensuring that data is

mirrored into different PVs, with the data being synchronized automatically. Check the manual

pages to find out more about these options.

It is a good practice to run man lvcreate and man lvextend to get familiar with

the syntax for these tools and see other options available.

To make the changes persistent across reboots, you need to add the new partitions

to /etc/fstab.

Chapter 13 393

Our disk space distribution now looks like this:

Figure 13.10 – Extended VG with three PVs

We have gone through the process of creating LVs with filesystems on them, independently of the

distribution of the physical drives. Let’s learn how to adjust sizing by removing some of the pieces.

Removing logical volumes, volume groups, and
physical volumes
We won’t be able to remove components while they are being used by other layers, so we need

to follow the steps in order. Let’s start by checking whether img is mounted:

user@geeko:~> mount | grep img

/dev/mapper/storage-img on /srv/img type xfs
(rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k, noquota)

Let’s unmount it so it is not in use:

user@geeko:~> sudo umount /srv/img

user@geeko:~> mount | grep img

Flexible Storage Management with LVM394

We can’t find a mount point that includes img, so we know that it is no longer mounted. We can

now delete the LV:

user@geeko:~> sudo lvremove /dev/storage/img

Do you really want to remove and DISCARD active logical volume storage/
img? [y/n]: y

 Logical volume "img" successfully removed.

Now, we can also remove the mount point:

user@geeko:~> sudo rmdir /srv/img

Don’t forget to delete the configuration in /etc/fstab if you added the mount point and the LV is

gone. This process is not reversible, so be cautious and make sure you don’t misspell any storage.

We are back to our previous state:

Figure 13.11 – Our VG with the LV removed

The next step is more complicated. We want to remove a PV from a VG. As VGs can expand into

more than one PV and be spread among different disks, you will need to be careful and make sure

you are not losing any data.

Chapter 13 395

Let’s copy some data into data to see how it is done:

user@geeko:~> cd /srv/data/

[user@geeko:/srv/data> sudo curl https://doc.opensuse.org/documentation/
leap/reference/book-reference_en.pdf --output book-reference_en.pdf

 % Total % Received % Xferd Average Speed Time Time Time
Current

 Dload Upload Total Spent Left
Speed

100 5905k 100 5905k 0 0 9299k 0 --:--:-- --:--:-- --:--:--
9315k

user@geeko:/srv/data> ll

total 5908

-rw-r--r--. 1 root root 6047632 Jul 28 17:09 book-reference_en.pdf

user@geeko:/srv/data> sudo pvscan

 PV /dev/vdb1 VG storage lvm2 [240.00 MiB / 240.00 MiB free]

 PV /dev/vdc VG storage lvm2 [2.00 GiB / 832.00 MiB free]

 PV /dev/vdb2 VG storage lvm2 [1.76 GiB / 1.76 GiB free]

 Total: 3 [3.99 GiB] / in use: 3 [3.99 GiB] / in no VG: 0 [0]

Let’s evacuate the data from /dev/vdc using the pvmove command so it is safe to remove it:

user@geeko:/srv/data> sudo pvmove /dev/vdc

 /dev/vdc: Moved: 53.47%

 /dev/vdc: Moved: 100.00%

Now, there is no data stored in /dev/vdc, and it can be safely removed from the VG. We can do

so by using the vgreduce command:

user@geeko:/srv/data> sudo vgreduce storage /dev/vdc

 Removed "/dev/vdc" from volume group "storage"

It is possible that the extents allocated belong to a different PV, in which case you

may receive a message stating no data to move for storage. You can use pvmove

with other devices if that is the case.

https://doc.opensuse.org/documentation/leap/reference/book-reference_en.pdf
https://doc.opensuse.org/documentation/leap/reference/book-reference_en.pdf

Flexible Storage Management with LVM396

The storage VG now has much less available space:

user@geeko:/srv/data> sudo vgs

 VG #PV #LV #SN Attr VSize VFree

 storage 2 1 0 wz--n- 1.99g 828.00m

user@geeko:/srv/data> sudo vgdisplay storage

 --- Volume group ---

 VG Name storage

 System ID

 Format lvm2

 Metadata Areas 2

 Metadata Sequence No 13

 VG Access read/write

 VG Status resizable

 MAX LV 0

 Cur LV 1

 Open LV 1

 Max PV 0

 Cur PV 2

 Act PV 2

 VG Size 1.99 GiB

 PE Size 4.00 MiB

 Total PE 510

 Alloc PE / Size 303 / 1.18 GiB

 Free PE / Size 207 / 828.00 MiB

 VG UUID dv8d0i-oNdI-QZcW-Qmgr-AFqb-Jpfy-MqX4kT

We can also see that the /dev/vdc PV is not attached to any VG:

user@geeko:/srv/data> sudo pvs

 PV VG Fmt Attr PSize PFree

 /dev/vdb1 storage lvm2 a-- 240.00m 240.00m

 /dev/vdb2 storage lvm2 a-- 1.76g 588.00m

 /dev/vdc lvm2 --- 2.00g 2.00g

user@geeko:/srv/data> sudo pvdisplay /dev/vdc

 "/dev/vdc" is a new physical volume of "2.00 GiB"

 --- NEW Physical volume ---

Chapter 13 397

 PV Name /dev/vdc

 VG Name

 PV Size 2.00 GiB

 Allocatable NO

 PE Size 0

 Total PE 0

 Free PE 0

 Allocated PE 0

 PV UUID 4ghcr5-YYtk-d11p-Nb88-OfwF-XnJA-88EIDY

We have not needed to stop or reboot the system to make these changes available in production.

Our disk now looks like this:

Figure 13.12 – Our VG with PVs removed

You can use the vgdisplay, pvdisplay, and lvdisplay commands to show detailed

information on VG, PV, or LV.

Flexible Storage Management with LVM398

We can continue removing components. In order to delete the VG, we need to remove anything

that is using it, and we now have only one LV left. Let’s remove /dev/storage/data, using the

--yes option so we aren’t asked for confirmation (this is especially important if the command is

run in a script):

user@geeko:~> sudo umount /dev/storage/data

user@geeko:~> sudo lvremove --yes /dev/storage/data

 Logical volume "data" successfully removed.

Now that storage is no longer in use, we can delete it:

user@geeko:~> sudo vgremove storage

 Volume group "storage" successfully removed

The final step is to clean the PVs:

user@geeko:~> sudo pvremove /dev/vdb1 /dev/vdb2 /dev/vdc

 Labels on physical volume "/dev/vdb1" successfully wiped.

 Labels on physical volume "/dev/vdb2" successfully wiped.

 Labels on physical volume "/dev/vdc" successfully wiped.

The drives are clean, and we can do whatever we need with them. In the next section, we will

review alternative commands that you should remember when using LVM.

Reviewing LVM commands
The following table contains commands that are used to manage PVs:

Command Usage

pvcreate Initializes a PV on a partition or disk

pvs Shows basic information about the PVs on the system

pvdisplay Shows extended information about the PVs on the system

pvmove Evacuates data from PV, moving it to other available PVs

pvremove Removes PVs

Table 13.1 – LVM commands related to PVs

Chapter 13 399

Now, let’s review the commands used to manage VGs:

Command Usage

vgcreate Creates a VG that aggregates different PVs

vgs Shows basic information about the VGs on the system

vgdisplay Shows extended information about the VGs on the system

vgextend Extends an existing VG by adding new PVs to it

vgreduce Removes PVs from a VG

vgremove Removes a VG

Table 13.2 – LVM commands related to VGs

And finally, let’s review the commands used to manage LVs:

Command Usage

lvcreate Creates an LV on a VG, preparing it to be formatted with a filesystem

lvs Shows basic information about the LVs on the system

lvdisplay Shows extended information about the LVs on the system

lvextend Extends an existing LV by adding available space from the VG to it

lvremove Removes an LV

Table 13.3 – LVM commands related to LVs

Summary
LVM provides advanced capabilities on top of disks, enhancing the flexibility of the solutions

in a live system. Although it is not recommended on BTRFS, the default filesystem, it is highly

recommended on other filesystems, such as XFS, which is widely used in production. LVM gen-

erates pools of storage from physical devices and is capable of using them to manage, reallocate,

distribute, and assign disk space online, without unmounting them or rebooting the system.

Managing storage is a key tool in the system administration toolkit, and enables other capabilities

such as shared storage via iSCSI.

The web administration interface, cockpit, has a user interface for managing stor-

age. It can be installed with the following command: zypper install cockpit-

storaged. You can learn more about LVM by navigating through the storage interface

in cockpit.

Flexible Storage Management with LVM400

It is important to be sure of what you are doing when interacting with storage, as data loss can be

extremely difficult or impossible to recover. LVM will allow you to modify your system without

rebooting, but it cannot protect you from your mistakes.

In this chapter, we have gone through the basic concepts and tasks related to LVM. We have

learned about PVs, VGs, and LVs. We have learned to create and manage them and their relation-

ships. We have practiced creating, extending, and removing LVs, VGs, and PVs, and configured

filesystems that use them.

In the next chapter, we will learn how to configure and use Snapper to create snapshots of your

BTRFS filesystems.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

14
Configuring and Using System
Snapshots with BTRFS and
Snapper

Chapter 14 already! We have learned a lot about disks, partitions, filesystems, the boot process,

and even logical volumes. Now, it’s time to learn about a capability that makes SUSE Linux En-

terprise Server (SLES) pretty special, which is filesystem-level snapshots.

You have probably seen and used other volume/disk-level and even virtual machine (VM)-level

snapshots, which can be very useful. In this case, having a snapshot capability that works inde-

pendently of the system type provides a major advantage. It provides extended functionality and

useful options for your day-to-day administration tasks.

In this chapter, we will cover the following main topics:

•	 BTRFS’ and Snapper’s origins

•	 Reviewing BTRFS basics, creating filesystems, reviewing status, and mounting

•	 BTRFS snapshots, how they work, and how to use them

•	 Snapper, the snapshot management tool

This will help make our systems more resilient and ensure they run correctly, even during major

changes. It also allows us to make those changes with confidence. It’s time to start rolling!

Configuring and Using System Snapshots with BTRFS and Snapper402

Technical requirements
As in previous chapters, you can continue the practice of using the VM created at the beginning

of this book in Chapter 1, Getting SLES 16 Up and Running (Physical and Cloud). Any additional

packages required for this chapter will be indicated alongside the text.

BTRFS’ and Snapper’s origins
Several filesystems are supported in SLES 16, but the one selected to handle the operating system

itself is BTRFS. This filesystem combines two technologies that already exist in other parts of

the ecosystem. On one side, we use copy-on-write (CoW), which enables different programs to

share pieces of data until one of them makes changes to it. This saves resources and makes the

filesystem very efficient, as no private copies are created for each program accessing the data.

This technique comes from memory management and was later applied to filesystems. On the

other hand, we have logical volume management—not Logical Volume Manager (LVM), as

we saw in the previous chapter, but a similar capability built into the filesystem rather than the

block device or disk space.

This combination of techniques allows BTRFS to carry out snapshots, data scrubbing and dedu-

plication, integrity checking, and data compression, among other things.

It is very important to note that BTRFS has been part of the mainline Linux Kernel since 2009,

which means it is maintained and patched as part of it, unlike filesystems such as Reiser or

OpenZFS.

At SUSE, BTRFS was adopted as the default operating system filesystem in 2015 for SLES 12 after

extensive testing. It has been the default filesystem for SLES since then, so it has already had more

than 10 years of production battle testing in this operating system.

To support BTRFS, there is a set of tools for the filesystem that, as with any other filesystem,

helps you create, check, fix, extend, and perform many other operations. You can, as usual, learn

more about it by reading the manual pages by running man 5 btrfs to review topics about the

filesystem or man 8 btrfs to check on the utilities included to manage it.

An added set of tools is included in SLES 16 to manage the filesystem snapshots in a reliable and

easy way. The main tool is called Snapper. As with the filesystem, we can learn more about it

by running man snapper. Whenever you want to do operations with filesystem snapshots, we

recommend that you always use Snapper.

Chapter 14 403

Let’s start working with it now.

Reviewing BTRFS basics, creating filesystems,
reviewing status, and mounting
Our first step will be to create a BTRFS filesystem. To do so, we can reuse the virtual disk drive that

we created in Chapter 12, Managing Local Storage and Filesystems, or recreate it if you have deleted it.

Let’s do it step by step:

1.	 Become root using sudo:

user@geeko:~> sudo -i

geeko:~ #

2.	 Create a virtual hard disk drive:

geeko:~ # truncate -s 5G myharddrive.hdd

3.	 Associate the virtual hard disk drive with a loop device:

geeko:~ # losetup -f

/dev/loop0

geeko:~ # losetup /dev/loop0 myharddrive.hdd

4.	 Check that the device has been created:

geeko:~ # lsblk -fp

NAME FSTYPE FSVER LABEL UUID FSAVAIL FSUSE% MOUNTPOINTS

/dev/loop0

/dev/vda

│ ├─/dev/
vda1

├─/dev/vda2

│ btrfs a510eba8-f6b5-4239-90c5-f43770fab7c1 22.2G 25%

│ /var

│ /usr/local

│ /srv

As usual, it’s great to go to Wikipedia and check out the article on the technology we

are using to extend your knowledge about it. Take a look at https://en.wikipedia.

org/wiki/Btrfs.

https://en.wikipedia.org/wiki/Btrfs
https://en.wikipedia.org/wiki/Btrfs

Configuring and Using System Snapshots with BTRFS and Snapper404

│ /root

│ /opt

│ /home

│ /boot/grub2/x86_64-efi

│ /boot/grub2/i386-pc

│ /.snapshots

│ /

└─/dev/vda3

 swap 1 c49647b8-0dce-4efa-a51f-adb25b941962 [SWAP]

5.	 Create a partition:

geeko:~ # fdisk /dev/loop0

Welcome to fdisk (util-linux 2.41.1).

Changes will remain in memory only, until you decide to write them.

Be careful before using the write command.

Device does not contain a recognized partition table.

Created a new DOS (MBR) disklabel with disk identifier 0x8586f93a.

Command (m for help): n

Partition type

 p primary (0 primary, 0 extended, 4 free)

 e extended (container for logical partitions)

Select (default p): p

Partition number (1-4, default 1): 1

First sector (2048-10485759, default 2048):

Last sector, +/-sectors or +/-size{K,M,G,T,P} (2048-10485759,
default 10485759):

Created a new partition 1 of type 'Linux' and of size 5 GiB.

Command (m for help): w

The partition table has been altered.

Calling ioctl() to re-read partition table.

Re-reading the partition table failed.: Invalid argument

Chapter 14 405

The kernel still uses the old table. The new table will be used at
the next reboot or after you run partprobe(8) or partx(8).

6.	 Refresh the partition table for the kernel:

geeko:~ # partprobe /dev/loop0

7.	 Create a BTRFS filesystem in the partition we just created:

geeko:~ # mkfs.btrfs /dev/loop0p1

btrfs-progs v6.14

See https://btrfs.readthedocs.io for more information.

Performing full device TRIM /dev/loop0p1 (5.00GiB) ...

NOTE: several default settings have changed in version 5.15, please
make sure

 this does not affect your deployments:

 - DUP for metadata (-m dup)

 - enabled no-holes (-O no-holes)

 - enabled free-space-tree (-R free-space-tree)

Label: (null)

UUID: ccb3e628-b894-4d68-a127-31392eaf91d4

Node size: 16384

Sector size: 4096	 (CPU page size: 4096)

Filesystem size: 5.00GiB

Block group profiles:

 Data: single 8.00MiB

 Metadata: DUP 256.00MiB

 System: DUP 8.00MiB

SSD detected: yes

Zoned device: no

Features: extref, skinny-metadata, no-holes, free-space-
tree

Checksum: crc32c

Number of devices: 1

Devices:

 ID SIZE PATH

 1 5.00GiB /dev/loop0p1

Configuring and Using System Snapshots with BTRFS and Snapper406

8.	 Mount the new BTRFS filesystem to access it:

geeko:~ # mount /dev/loop0p1 /mnt/

geeko:~ # df -h /mnt/

Filesystem Size Used Avail Use% Mounted on

/dev/loop0p1 5.0G 5.8M 4.5G 1% /mnt

As you can see, there is nothing special involved in creating a regular BTRFS. However, there is a

set of features that could be interesting for us to use. One of those features, which is used in the

default partitioning for SLES 16, is subvolumes.

Within BTRFS, we can create different subvolumes that will consume the same disk space in the

filesystem; they will have their own set of files and can be mounted in different directories. They

behave as if they are independent filesystems, but they use the same space pool. Let’s create a

couple of subvolumes in our filesystem:

geeko:~ # cd /mnt/

geeko:/mnt # btrfs subvolume create vol0

Create subvolume './vol0'

geeko:/mnt # btrfs subvolume create vol1

Create subvolume './vol1'

geeko:/mnt # btrfs subvolume list .

ID 257 gen 12 top level 5 path vol0

ID 258 gen 12 top level 5 path vol1

Let’s now mount vol0 in a different directory:

geeko:/mnt # mkdir vol0-mnt

geeko:/mnt # mount -o subvol=vol0 /dev/loop0p1 /mnt/vol0-mnt/

geeko:/mnt # mount | grep mnt

/dev/loop0p1 on /mnt type btrfs
(rw,relatime,seclabel,ssd,discard=async,space_
cache=v2,subvolid=5,subvol=/)

/dev/loop0p1 on /mnt/vol0-mnt type btrfs
(rw,relatime,seclabel,ssd,discard=async,space_
cache=v2,subvolid=257,subvol=/vol0)

geeko:/mnt # df -h *

Filesystem Size Used Avail Use% Mounted on

/dev/loop0p1 5.0G 5.9M 4.5G 1% /mnt/vol0-mnt

/dev/loop0p1 5.0G 5.9M 4.5G 1% /mnt/vol0-mnt

- 5.0G 5.9M 4.5G 1% /mnt/vol1

Chapter 14 407

This same structure is used to mount the different volumes in our operating system. Now that we

have learned how to create and mount a BTRFS, we can unmount and discard the virtual disk we

have created and continue with the main disk of the VM where we installed SLES 16.

In this situation, we can list the subvolumes in the root filesystem of our SLES to see how they

are distributed:

geeko:/ # btrfs subvolume list /

ID 256 gen 19 top level 5 path @

ID 257 gen 3754 top level 256 path @/boot/grub2/x86_64-efi

ID 258 gen 5115 top level 256 path @/boot/grub2/i386-pc

ID 259 gen 6093 top level 256 path @/var

ID 260 gen 6065 top level 256 path @/usr/local

ID 261 gen 5052 top level 256 path @/srv

ID 262 gen 6093 top level 256 path @/root

ID 263 gen 3754 top level 256 path @/opt

ID 264 gen 6035 top level 256 path @/home

ID 301 gen 6024 top level 259 path @/var/lib/machines

ID 265 gen 6043 top level 256 path @/.snapshots

ID 266 gen 6086 top level 265 path @/.snapshots/1/snapshot

ID 285 gen 2051 top level 265 path @/.snapshots/20/snapshot

ID 286 gen 2092 top level 265 path @/.snapshots/21/snapshot

D 287 gen 2248 top level 265 path @/.snapshots/22/snapshot

We can see here that mountpoints that used to have their own filesystem, such as /opt, /var,

and /srv, are now mounted as subvolumes. We can also see that the filesystem snapshots also

appear as subvolumes, which means that you can mount them (it is recommended that they are

read-only) and access the data as it was on the system when the snapshot was created. More

about that in the following section.

BTRFS snapshots, how they work, and how to use
them
The BRTFS filesystem is built with CoW as its core principle. Other filesystems overwrite blocks

as soon as they are available. However, BTRFS tries to avoid modifying existing data blocks. It

works at the filesystem level, which means that when a file is modified, instead of overwriting the

content with changes, it pushes the changes to unused blocks. File metadata is then modified to

point to these new blocks. This simple but powerful concept is the magic that makes filesystem

snapshots work.

Configuring and Using System Snapshots with BTRFS and Snapper408

Let’s look at each part of this process:

•	 Shared data blocks: When we create a snapshot, BTRFS doesn’t duplicate the data but

uses the same data with multiple references, one in each snapshot. This means that the

unchanged parts are used by both snapshots and do not need extra space on the disk.

•	 Copy-on-write: When we modify a file, before the changes are written, BTRFS checks

whether the data blocks are being used by any of the snapshots. If they are being used, then

they remain untouched. Then, it writes the modifications to an unused location on the disk

and updates the metadata of the file in the snapshot to point to the newly created blocks.

•	 Keeping the past: The previous snapshot metadata is kept pointing to unchanged data

blocks, preserving the previous state of the file when the snapshot was created. This can

be cleaned, if required, by deleting the snapshot.

•	 Using minimum space: The total amount of space consumed is the space of the original

files plus the changes stored in each of the kept snapshots. This makes the mechanism

very efficient.

You may be wondering, “If I have disk-level snapshots in VMware, AWS, Azure, and Google Cloud,

what makes BTRFS snapshots special?” Let’s see:

•	 File versus block: As we have seen, BTRFS snapshots are file based, meaning that they

work within the logical filesystem structure, whereas other block-based snapshots (and

these include LVM) work at the raw disk level. The BTRFS approach provides more granu-

larity, uses less space, and allows direct access to the content in the snapshots for the user.

•	 Efficient and close to processes: As BTRFS snapshots do not need to copy data, they are

very fast to create. Also, being able to execute at the file/operating system level facilitates

performing other tasks before making the snapshot (such as checking the status of a

process or freezing it before taking action).

•	 A snapshot is a kind of subvolume: It’s important to understand that a snapshot is just

a special type of subvolume. This means you can mount it or browse it like any other

directory. You can compare files in different snapshots to check what changed easily.

Now, to perform many of the tasks to manage snapshots, let’s look at Snapper, a tool that comes

with BTRFS in SLES 16.

Chapter 14 409

Snapper, the snapshot management
tool
Snapper is the main management tool included in SLES to handle

all the management tasks related to BTRFS snapshots.

It is included in the default installation, but if you did a very mini-

mal installation or you are adding it for any other reason, you can

install it by running this command:

user@geeko:~> sudo zypper install snapper

Once Snapper has been installed, we can take a look at the snap-

shots in the system by running sudo snapper list, and we will

get an output like the following:

Figure 14.1 – List of system snapshots

As you can see in the previous screenshot, the system, after some

updates using Zypper, has a list of snapshots that have been cre-

ated.

One of the benefits of having an operating system/filesystem-level

snapshot is that it can be integrated with other operating system

tools. In this case, the software management tool is Zypper. The

default configuration of Snapper is preconfigured with Zypper

integration. It also generates a snapshot every time you update

the system. This way, every change made during upgrades can

be easily rolled back.

As usual, every system utility comes with a manual

that can be accessed using the man command. In

this case, we can see all the options for Snapper by

running man snapper.

The integration of Snap-

per and Zypper is per-

formed by the snapper-

zypp-plugin package

that comes installed and

preconfigured by default

in SLES. It also comes

with a man page that you

can access by running man

snapper-zypp-plugin.

Configuring and Using System Snapshots with BTRFS and Snapper410

As we can also see in the previous screenshot, there are three different types of snapshot:

•	 pre: This is a snapshot that was created before an important task that might modify the

system. It comes coupled with a post snapshot.

•	 post: This is a snapshot that was created after an important task. It comes coupled with

a post snapshot.

•	 single: This is a standalone snapshot that is not related to any other snapshot on the

system.

We can create a new snapshot by running snapper create. When this is run without options, it

will simply create a single snapshot with no description associated with it.

Let’s see how this snapshot was created in the following screenshot:

Figure 14.2 – List of system snapshots, with snapshot number 47, which is new

It is recommended to add a description to the snapshot that provides some information about

why it was created and what function it performs.

Let’s delete the snapshot:

user@geeko:~> sudo snapper delete 47

Now, let’s create a new snapshot with a proper description:

user@geeko:~> sudo snapper create --type single --description "Snapshot to
learn with Packt"

This way, we have a snapshot and we know what it was created for. To avoid consuming more

storage space than needed, we can assign an automated cleanup action. As you can see in the

previous screenshots, there is a column for this stating the default policy for automatically created

snapshots, which is number.

Chapter 14 411

This means that only a certain number of this kind of snapshot will be kept, and the oldest ones

will be removed. As you can see in the previous screenshot, snapshot 1, created during the instal-

lation, is kept even after several system updates in which other pre/post snapshots were created.

So, what is happening now? Well, the automatically created snapshots will be removed when new

ones are created. However, the manually created ones will be kept until we manually clean them

up. This way, we do not risk filling up the disk with snapshots, even when their size is minimal.

Let’s see how else we can use these snapshots in ways that facilitate tasks that, with VM/disk-level

snapshots, would be very difficult, if not impossible.

Using Snapper to show changes made to files between
snapshots
One of the most important things we can do with Snapper is to check differences between snap-

shots. Remember that in BTRFS, a snapshot is a subvolume. So, we could start mounting them

and checking the differences between them with regular Linux tools. However, Snapper provides

some functionality that makes this task a lot easier.

First, let’s check which files were changed between snapshots. To do that, we use the snapper

status command (as root/administrator or using sudo). We select two snapshots to compare and

use their number ID to compare them. You can use sudo snapper list to find your snapshot

numbers. I’ve chosen, for example, two snapshots that were created before (pre) and after (post)

running a zypper update command, which are 43 and 44. This is the command that I will run:

user@geeko:~> sudo snapper status 43..44

c..... /usr/lib/sysimage/rpm/Index.db

c..... /usr/lib/sysimage/rpm/Packages.db

Snapshot 0 is a special one. It refers to the snapshot currently in use and mounted.

Therefore, it cannot be deleted. You can find more information by reading the man

page by running man snapper.

Configuring and Using System Snapshots with BTRFS and Snapper412

As you can see, we have a list of files with a character before each of them. The characters have

the following meanings:

•	 +: The file was added (it exists in the new snapshot but not in the old one)

•	 -: The file was removed (it exists in the old snapshot but not in the new one)

•	 c: The file was changed (content has been modified between snapshots)

•	 t: The file’s type changed (e.g., from file to directory, symlink to file, etc.)

•	 p: The file’s permissions have changed

•	 u: The file’s user ownership has changed

•	 g: The file’s group ownership has changed

•	 x: The file’s extended attribute information has changed

•	 a: The file’s access control list (ACL) has changed

•	 .: The file has not changed

In our example, we can see that the content of two files has been changed (the rpm package index

and package list) but no files have been added or removed.

As the installation created snapshot 1, we can check the differences since the system was installed

by running the following:

user@geeko:~> sudo snapper status 1..43

-..... /boot/config-6.12.0-160000.4-default

c..... /boot/grub2/grub.cfg

c..... /boot/initrd

c..... /boot/initrd-6.12.0-160000.11-default

c..... /boot/initrd-6.12.0-160000.16-default

[snip] ---8<---8<---[snip]

c..... /usr/share/qemu/vgabios-virtio.bin

c..... /usr/share/qemu/vgabios-vmware.bin

c..... /usr/share/selinux/packages/container.pp.bz2

c..... /usr/share/selinux/targeted/modules.lst

c..... /usr/share/selinux/targeted/nonbasemodules.lst

It’s time to find some interesting files for changes. We can filter the output of the previous list by

grabbing only the files that have /etc/ in their path, as this is where the system-wide configu-

ration customization is kept:

user@geeko:~> sudo snapper status 1..43 | grep "/etc/"

....x. /etc/default/grub.old

Chapter 14 413

c..... /etc/selinux/targeted/contexts/files/file_contexts

c..... /etc/selinux/targeted/contexts/files/file_contexts.bin

c..... /etc/selinux/targeted/contexts/files/file_contexts.subs_dist

c..... /etc/selinux/targeted/policy/policy.34

c..... /etc/selinux/targeted/.policy.sha512 +..... /etc/ssl/fips_local.cnf

c..... /etc/sysconfig/kdump

c..... /etc/zypp/services.d/SUSE_Linux_Enterprise_Server_16.0_x86_64.
service

To see the changes in a file, we need to specify two things: the snapshots to be compared and the

names of the files in which we want to see the changes. We have to use the snapper diff command

to see the changes in files, which will be provided in diff format. Here, we can see the changes

made to /etc/selinux/targeted/contexts/files/file_contexts between snapshots 1 and 43:

user@geeko:~> sudo snapper diff 1..43 /etc/selinux/targeted/contexts/
files/file_contexts

--- /.snapshots/1/snapshot/etc/selinux/targeted/contexts/files/file_
contexts 2025-09-14 12:49:27.840224430 +0200

+++ /.snapshots/43/snapshot/etc/selinux/targeted/contexts/files/file_
contexts 2025-08-25 17:38:30.758486774 +0200 @@ -3431,7 +3431,6 @@

 /usr/share/gitolite3/commands(/.)? -- system_u:object_r:bin_t:s0 /var/
lib/buildkit/containerd-.(/.?) system_u:object_r:container_ro_file_t:s0

 /usr/lib/libjavascriptcoregtk[^/].so. -- system_u:object_r:textrel_
shlib_t:s0

-/usr/libexec/salt/salt-minion(-[0-9._-]+)? -- system_u:object_r:salt_
exec_t:s0

 /usr/lib/systemd/user/plasma-..(service|target) -- system_u:object_r:xdm_
unit_file_t:s0

/etc/hotplug.d/default/default. system_u:object_r:bin_t:s0

/usr/lib/systemd/generator/lvm. system_u:object_r:lvm_unit_file_t:s0

During the writing of this book, we were using beta versions, and we can see how the SELinux

policies have been polished, improved, and updated in this example. Several paths have changed

their policies to improve execution and security.

You can find more information about diff running the command and its format if

you run man diff

Configuring and Using System Snapshots with BTRFS and Snapper414

We have seen the utility that BTRFS provides to track changes in our systems. Now it’s time to

use the equivalent of Ctrl + Z in SLES 16.

Using Snapper to roll back to a previous configuration status
Let’s try the rollback mechanism using Snapper. Please take into account that there are other

ways to start a system in a different snapshot than the current one, such as using GRUB during

boot. In this case, however, we will focus on using Snapper on a running system.

As you have seen, multiple pre/post snapshots have been created and cleaned up by the inte-

gration of Zypper with Snapper. We could use them, but we are going to use the one we created

before as a single snapshot.

First, we will find the number of the snapshot we created. To do this, we list all snapshots and

find the one we created by searching for a term we used in the description:

user@geeko:~> sudo snapper list | grep Packt

47 │ single │ │ dom 14 sep 2025 20:32:29 │ root │ 224,00 KiB │
│ Snapshot to learn with Packt │

So, our created snapshot is number 47. Now you can see how useful it is to create a useful descrip-

tion for the snapshot. Now we are going to modify the current system by creating a file in /etc:

user@geeko:~> sudo touch /etc/test_snapshot

Next, we will undo all changes by invoking the rollback using snapper rollback:

user@geeko:~> sudo snapper rollback 47

Ambit is classic.

Creating read-only snapshot of current system. (Snapshot 54.)

Creating read-write snapshot of snapshot 47. (Snapshot 55.)

Setting default subvolume to snapshot 55.

What has happened is that Snapper first creates a snapshot of the current state, snapshot 54. Then,

it reuses the content of snapshot 47, the one we issued to have a rollback point, to create a new

snapshot with that content, in this case, snapshot 55. However, the changes have not yet been

applied, as we can see:

user@geeko:~> ls /etc/test_snapshot

/etc/test_snapshot

Chapter 14 415

We will reboot the system to apply the changes:

user@geeko:~> sudo reboot

The result is that now our system is in the same status as when we created the snapshot:

user@geeko:~> ls /etc/test_snapshot

ls: cannot access '/etc/test_snapshot': No such file or directory

This can be useful when you are making low-level changes and they suddenly don’t behave the

way you expected, or when an update didn’t go as planned (which is very unusual in SLES). Hav-

ing a way to undo changes easily always provides a good and easy way to keep systems running.

This mechanism is used by small and also very large companies, such as Meta, saving them

millions of dollars, as you can see in the following article: https://www.phoronix.com/news/

Btrfs-Saves-Meta-Billions.

Now that we have learned about the main functionality of Snapper and BTRFS, let’s check briefly

on other options available in the tool.

Other Snapper functions
Snapper provides options to support the core capabilities that we have seen so far. The most

important one is Modify, which can be used to change the description, cleanup algorithm, or

user data of an existing snapshot.

With this option, we can change the characteristics of the current snapshot. We could, for example,

take an automatically created snapshot from the cleanup list that we want to keep by running

the following:

user@geeko:~> sudo snapper modify -c ““ 45

To access the content of a snapshot at any time, you can use the automated mount point in

/.snapshots, which is preconfigured by default in SLES 16:

user@geeko:~> sudo ls /.snapshots/45

filelist-44.txt.gz grub-snapshot.cfg info.xml snapshot

user@geeko:~> sudo ls /.snapshots/45/snapshot

bin boot dev	 etc home lib lib64 mnt opt proc root run sbin	
srv sys tmp usr var

https://www.phoronix.com/news/Btrfs-Saves-Meta-Billions
https://www.phoronix.com/news/Btrfs-Saves-Meta-Billions

Configuring and Using System Snapshots with BTRFS and Snapper416

Snapper comes with the mount and umount commands, but having

this default configuration makes them unnecessary.

We have several options to apply, modify, or remove Snapper

configurations:

•	 list-configs: List all Snapper configurations on the sys-

tem

•	 create-config: Create a new Snapper configuration (e.g.,

for another subvolume)

•	 delete-config: Remove an existing Snapper configura-

tion

We can check the default configuration on the system by running

the following:

user@geeko:~> sudo snapper list-configs

Config │ Subvolume

───────┼──────────

root │ /

Each Snapper configuration is located in /etc/snapper/configs/

and can be edited, copied, or removed easily by using the previous

command.

There is an /etc/

sysconfig/snapper

file with the SNAPPER_

CONFIGS variable. This

variable must be in sync

with the content of /etc/

snapper/configs. So, if

you remove or add configs,

the sysconfig file needs

to be adjusted. It is not

recommended to create or

modify configs manually.

Finally, if you want to establish a limit for the amount of space

that snapshots/subvolumes consume, you can use setup-quota,

which allows you to enable or disable BTRFS quota groups for a

configuration.

In the default configuration of SLES 16 for the operating system

filesystem, the mechanism is preconfigured, which we can check:

user@geeko:~> sudo snapper setup-quota

Quota error (qgroup already set).

Now we can limit the space to be consumed by snapshots to 2 GB:

user@geeko:~> sudo snapper -c root set-config
SPACE_LIMIT=2G

Chapter 14 417

Summary
We now know how to use filesystem-level snapshots for the most common use cases in SLES 16,

which can help us make delicate changes with confidence, roll back to a well-known configuration,

and even find and analyze the changes made in our systems quickly and easily.

We now have another important tool in our toolbox to work on our systems, in this case some-

thing very similar to pressing Ctrl + Z on a keyboard in a word processor.

It’s time to move on to better understanding a critical part of the running process of a system, the

boot process, which is explained in the following chapter.

We can also use a percentage, such as SPACE_LIMIT=0.2 for 20% of the total disk

space.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

15
Understanding the Boot Process

The boot process begins when the machine is powered on. It continues until the system is fully

initialized and ready for operation. The server needs to prepare everything and load the operating

system into memory. It consists of four stages: the hardware initialization (UEFI or BIOS), the

bootloader program, the Linux kernel initialization, and the systemd initialization.

In this chapter, we will review these stages and provide you with some tips and tricks that will

help you fix a failing system.

We will be covering the following topics:

•	 Understanding the boot process – UEFI booting and legacy BIOS

•	 Working with GRUB, the bootloader, and initrd system images

•	 Managing the boot sequence with systemd

•	 Updating the root password by modifying the boot process

Even though you won’t usually be making changes in the initial stages of the boot process, it is

helpful to understand the process, specifically to solve issues with new hardware and drivers.

You will find it handy when you are trying to understand why the system is misbehaving in

emergencies, when you’re conducting forensic examinations, or when dealing with major failures.

The last stage, managed by systemd, provides more room for actions and changes to alter which

services will be running by default in the system. Many of the tasks have already been discussed in

previous chapters, but we will be providing a comprehensive review of what can be done with them.

Let’s get started with the first stage.

Understanding the Boot Process420

Understanding the boot process – UEFI booting and
legacy BIOS
Every computer has a motherboard, where you can find different hardware components, such

as the CPU and the memory chips. One of the components is a software program included in

non-volatile memory called the system firmware. The system firmware is traditionally known as

Basic Input Output System (BIOS), even though most x86 computers use a new version called

Unified Extensible Firmware Interface (UEFI). This firmware detects and initializes hardware

and devices such as the memory, keyboard, screen, and other peripherals attached to the system,

and stores which hardware features are enabled (such as pre-boot network execution (PXE)).

The boot process is quite dependent on the hardware architecture in its first stages, so we are

going to focus only on the default boot process on a PC (or x86). SLES 16 uses UEFI by default, and

we will be discussing it in more detail. Support for BIOS is deprecated, but it is still available in

some specific circumstances, such as when upgrading from a SLES 15 system. SUSE recommends

using UEFI for all new installations. You should only avoid it if you have a strong reason to do so.

This recommendation is also meant to prepare for the eventual removal of BIOS support in the

future. Additionally, some versions of SLES, such as SUSE Linux Micro, already only support UEFI.

You won’t notice big differences between booting on a system that uses UEFI and one that uses

BIOS, but they are significant. One of them is that UEFI can perform the boot of the operating

system directly instead of requiring a multiple-stage boot process. For the sysadmin, the main

difference in the boot sequence is that UEFI understands disk partitions directly and that it can

provide capabilities such as Secure Boot. The system boot process follows this workflow:

1.	 When the machine is powered on, the UEFI firmware is loaded and verified.

2.	 The firmware finds and initializes devices, including memory, CPU, buses, and peripherals

such as keyboard, mouse, and local and remote storage.

3.	 UEFI looks for a bootable EFI partition on storage devices and selects the one with the

highest priority. The list of bootable entries is stored in Non-Volatile Random-Access

Memory (NVRAM) as a list of specific entries and utilities.

4.	 Once the storage device is selected, the partitions on it are read from the GUID Partition

Table (GPT). UEFI looks for an EFI System Partition (ESP), which includes bootloader

files. The EFI bootloader in SLES resides in a dedicated partition, which is mounted at /

boot/efi. From there, the EFI bootloader proceeds to load the GRUB bootloader. Specific

drivers are used, defined in .efi files, that are only used until the operating system is

ready with its own optimized drivers.

Chapter 15 421

5.	 GRUB selects and loads the operating system kernel. In

SLES, different kernel versions are stored in files named

Image-<kernel-version>-default. The default kernel

is represented by a symbolic link called Image. Each ker-

nel version also has a corresponding initial RAM filesys-

tem, stored in a file named initrd-<kernel-version>-

default. There is also a symbolic link for the default one,

called initrd. All these files are located in the /boot di-

rectory.

6.	 Now, the kernel can load and start the first process of the

system, named init. This process is responsible for com-

pleting the boot sequence by loading all other services. In

SLES, the init process is systemd.

7.	 systemd loads the rest of the operating system.

UEFI has several advantages over BIOS, enabling new types of

hardware, more complete pre-boot environments, access to

graphics, and other capabilities, such as Secure Boot and GPT

partitions, that can go beyond the 2 TB of master boot record

(MBR) partitions.

initramfs solves a chicken-and-egg prob-

lem. The kernel needs tools and kernel

modules to access all the hardware, but

those files are stored in hardware that

needs to be accessed, so the drivers are

not accessible. initrd is a CPIO archive

that does not need drivers to be loaded into

RAM and acts as a temporary root filesys-

tem until the real filesystem can be ac-

cessed. You need a new initramfs archive

every time drivers are updated, something

that is normally done automatically when

the new package is installed.

GRUB is the default boot-

loader for SLES 16. It is a

stable and feature-rich

bootloader that is used

in many distributions,

but that overlaps in some

capabilities with the fea-

tures provided by UEFI.

Understanding the Boot Process422

We have been discussing /boot and UEFI partitions that hold the kernel and initrd, and the

UEFI binaries. The SLES 16 installer is the one creating the partitions and providing the content

needed for the boot process.

The part of pre-boot that needs to be known for the SUSE Certified System Administrator certi-

fication is how to load the operating system loader from it. Through BIOS or UEFI, we can select

from which storage device the operating system will load and move to the next phase.

When using BIOS, the process has more steps:

1.	 The machine is powered on, and BIOS firmware is loaded.

2.	 The firmware initializes devices such as the keyboard, mouse, storage, and other periph-

erals.

3.	 The firmware reads the configuration in non-volatile memory, including the boot order,

specifying which storage device is the one to continue the boot process with.

4.	 Once the storage device is selected, BIOS will load the MBR on it, reading and loading the

first 512 bytes on the boot disk, which is just enough to read the core operating system

loader. And that includes enough filesystem drivers to read the /boot folder that contains

the rest of the drivers needed by GRUB 2 and the kernel and the initramfs image.

5.	 GRUB loads the configuration and the operating system kernel and initial RAM disk in

the /boot partition.

6.	 The initial boot image will then load systemd.

7.	 systemd loads the rest of the operating system.

There are some hardware limitations in the BIOS process. The disk must have an MBR partition

table, the MBR needs to be present in the first sector, and the partition assigned to /boot must

be marked as bootable.

Now that we know the basics of the process used to boot, let’s go deeper into the details of how

it is implemented in SLES.

The MBR partition table format is very limited, allowing only four primary partitions

and using extensions such as extended partitions to reach beyond this limit. Don’t

use it unless you have a very valid reason to do so.

Chapter 15 423

Working with GRUB, the
bootloader, and initrd system
images
Once the pre-boot execution is completed, the system will be run-

ning the GRUB 2 bootloader. SUSE implements the shim loader,

whose job is to load GRUB 2 and verify it.

In secure implemen-

tations, the loader will

make sure that only ker-

nels signed by a SUSE key

will run. That means that

additional steps are re-

quired to run custom ker-

nels or drivers that do not

come with SLES if Secure

Boot is enabled.

UEFI has its own list of entries that are stored in non-volatile

memory. You can see the list of entries using the efibootmgr

command:

user@geeko:~> sudo efibootmgr

BootCurrent: 0005

Timeout: 3 seconds

BootOrder: 0001,0005,0003,0000,0002,0004

Boot0000* UiApp FvVol(64074afe-340a-4be6-94ba-
91b5b4d0f71e)/FvFile(462caa21-7614-4503-836e-
8ab6f4662331)

Boot0001* UEFI QEMU QEMU USB HARDDRIVE
1-0000:00:04.0-4.1 PciRoot(0x0)/Pci(0x4,0x0)/
USB(7,0)/USB(0,0){auto_created_boot_option}

Boot0002* UEFI Misc Device VenHw(93e34c7e-b50e-
11df-9223-2443dfd72085,00){auto_created_boot_
option}

Boot0003* UEFI Misc Device 2 PciRoot(0x0)/
Pci(0x6,0x0){auto_created_boot_option}

Boot0004* EFI Internal Shell FvVol(64074afe-
340a-4be6-94ba-91b5b4d0f71e)/FvFile(7c04a583-
9e3e-4f1c-ad65-e05268d0b4d1)

Boot0005* sles-secureboot HD(1,GPT,ac15b

The output of the command tells us the following:

•	 Entry 0005 is selected as the default

•	 UEFI waits three seconds to boot

•	 The default order for the entries is
0001,0005,0003,0000,0002,0004

•	 Active entries are labeled with an asterisk, *, after the

name

Understanding the Boot Process424

Normally, you should not need to change your configuration un-

less you are trying to perform some advanced tasks. But some-

times something goes wrong, and you need to fix things manually.

GRUB files are stored in /boot/grub2. The main configuration file

is /boot/grub2/grub.cfg. Anyway, read the file and you will see

a header warning you about modifying the file directly:

user@geeko:~> sudo head -n 6 /boot/grub2/grub.
cfg

#

DO NOT EDIT THIS FILE

#

It is automatically generated by grub2-
mkconfig using templates

from /etc/grub.d and settings from /etc/
default/grub

#

The message lets us know that the file is automatically generated

and that you should not edit it manually. How do we implement

the changes, then? We will do it by following the instructions

mentioned in the grub.cfg file. This means editing the /etc/

default/grub file and/or the contents in the /etc/grub.d/ di-

rectory and then regenerating the GRUB configuration by running

grub2-mkconfig.

Your grub-install must point to the disk used to

boot the system, the one that you configured in the

BIOS/UEFI to boot from.

In SLES, when there is a

new version of the kernel,

the previous one is not

deleted. The new kernel

is installed alongside the

previous one, adding a

new entry to GRUB. Due

to this, you will always

have an easy way to boot

with a previous working

kernel. New versions of

initrd are generated as

needed during the instal-

lation of the new kernel.

Let’s take a look at the current kernel configuration with grub2-

setenv list. The -saved_entry line specifies the default boot

entry:

geeko:~ # grub2-editenv list

env_block=512+1

saved_entry=SLES 16.0

Chapter 15 425

You can list all the available options using grub2-once --list:

geeko:~ # grub2-once --list

 0 SLES 16.0

 1 Advanced options for SLES 16.0>SLES 16.0, with Linux
6.12.0-160000.5-default

 2 Advanced options for SLES 16.0>SLES 16.0, with Linux
6.12.0-160000.5-default (recovery mode)

 3 Start bootloader from a read-only snapshot> SLES16-SP0
(,2025-09-25T09:31,post,zypp(zypper))

 4 Start bootloader from a read-only snapshot> SLES16-SP0
(,2025-09-25T09:31,pre,zypp(zypper))

 5 Start bootloader from a read-only snapshot> SLES16-SP0
(,2025-09-25T09:30,post,zypp(zypper))

 6 Start bootloader from a read-only snapshot> SLES16-SP0
(,2025-09-25T09:30,pre,zypp(zypper))

You can find more information about it by opening the /boot/grub2/grub.cfg file and looking

for your entry:

geeko:/boot/grub2 # grep "menuentry 'SLES 16.0'" -A10 \ grub.cfg

menuentry 'SLES 16.0' --class sles --class gnu-linux --class gnu --class
os $menuentry_id_option 'gnulinux-simple-27d5b027-155f-4622-8baa-
9954252e3bd2' {

	 load_video

	 set gfxpayload=keep

	 insmod gzio

	 insmod part_gpt

	 insmod btrfs

	 search --no-floppy --fs-uuid --set=root 27d5b027-155f-4622-8baa-
9954252e3bd2

	 echo 'Loading Linux 6.12.0-160000.5-default ...'

	 linux /boot/Image-6.12.0-160000.5-default root=UUID=27d5b027-
155f-4622-8baa-9954252e3bd2 ${extra_cmdline} mitigations=auto quiet
security=selinux selinux=1

	 echo 'Loading initial ramdisk ...'

	 initrd /boot/initrd-6.12.0-160000.5-default

Understanding the Boot Process426

You can see the options used in the entry:

•	 linux: The kernel to boot

•	 root: The partition or logical volume that will be assigned to the root / directory and

mounted

•	 initrd: The file containing the RAM disk used at the first phase of the boot process

•	 title: A descriptive title to be shown to the user during the boot process

•	 $menuetry_id_option: The identifier of the boot entry

In a normal boot, you won’t be able to see the log messages as they will pass too fast, and because

of that, the output is limited. To review boot messages, you can use the dmesg command after

booting, whose output will be as follows:

Figure 15.1 – Output of the dmesg command

Chapter 15 427

Let’s move to the next section of the boot process, initrd.

The initrd file, or the initial RAM disk, contains a minimal system that is loaded in memory and

holds the drivers and tools required to access the filesystems where the actual operating system

is stored. We found it as a symbolic link in /boot/initrd, pointing to initrd-6.12.0-160000.5-

default. When you need to have new drivers, you can use the dracut command to generate a

new one. Let’s see an example of how to rebuild the current initrd file:

geeko:~ # dracut --force --verbose

dracut[I]: Executing: /usr/bin/dracut --force --verbose

dracut[I]: Module 'systemd-networkd' will not be installed, because
command 'networkctl' could not be found!

dracut[I]: Module 'systemd-networkd' will not be installed, because
command '/usr/lib/systemd/systemd-networkd' could not be found!

dracut[I]: Module 'systemd-networkd' will not be installed, because
command '/usr/lib/systemd/systemd-networkd-wait-online' could not be
found!

dracut[I]: Module 'systemd-pcrphase' will not be installed, because
command '/usr/lib/systemd/systemd-pcrextend' could not be found[snip]---
8<---8<---8<---[snip]

We can see in the previous output the selection of kernel modules and files that are included

in the initrd file, because they are required for early access. This step can also be useful in the

case of a corrupted initrd file or when you are restoring a system from a backup into different

hardware that requires different storage drivers.

So far, we have learned the basics of the early stages of the boot process so that we can troubleshoot

some boot issues. There is a lot more to learn, and we could fill a full book on this topic, but there

are very limited cases in which you need to do this in your normal day-to-day activities. For cloud

environments, in many cases, troubleshooting is done by rip-and-replace, where a new machine

is created from scratch instead of fixing the one that is running, as the workloads are supposed to

be ephemeral. In any case, the last chapters of the book will include some exercises about fixing

these issues. Let’s move on to the next topic, on how services are managed in SLES with systemd.

You can modify kernel parameters by modifying the GRUB_CMDLINE_LINUX_DEFAULT

variable in the /etc/default/grub file. Don’t forget to run sudo grub2-mkconfig

-o /boot/grub2/grub.cfg to regenerate the configuration once it is done.

Understanding the Boot Process428

Managing the boot sequence with systemd
We have learned how the firmware takes care of pointing at a disk to run the operating system

loader, which in SLES is GRUB. After GRUB loads the kernel and initial RAMdisk to prepare the

system to start, it will start the first process of the system, process 1 or PID 1 (PID stands for

process identifier). This process must take care of loading all the required components of the

system efficiently. In SLES, PID 1 is a program called systemd, a system and service manager that

is responsible for starting the rest of the processes.

We described services and targets in Chapter 3, Managing Regular Operations with Tools. In this

chapter, we will focus on the boot sequence.

Linux systems are known for being capable of running for years without rebooting, but the first

two things we need to learn are how to make systemd reboot the system and how it is used to

power off. We need to use systemctl for that:

geeko:/boot # systemctl reboot

The system will immediately stop all services in order and reboot. You can use the uptime com-

mand to see how long the system has been running since the last reboot:

user@geeko:~> uptime

08:41:06 up 0:01, 1 user, load average: 0.15, 0.09, 0.03

You can completely stop the system using systemctl poweroff:

user@geeko:~> sudo systemctl poweroff

Broadcast message from root@geeko on pts/1 (Fri 2025-09-26 08:41:34 CEST):

The system will power off now!

Power on the machine again to be able to continue.

There is a command that will stop the system, but it will do so without sending the signal to

power the machine off. That command is systemctl halt. You will rarely need to use it, as you

will need to manually switch off the system, but it is good to know that it is there.

Be sure to check that you have a way of powering on the machine again after using

poweroff. For a VM or cloud instance, it is easy, but you can run into trouble if you

are using a remote server in a lab away from your location.

Chapter 15 429

Earlier, we also reviewed how to set a default systemd target with systemctl. However, we can

override the default configuration during boot time by passing the systemd.unit parameter to

the kernel. We can do that by interrupting the boot process while in the initial screen, as shown

in the following screenshot:

Figure 15.2 – The GRUB boot menu on SLES 16

The previously shown commands can be abbreviated to reboot, poweroff, and

shutdown. If you check out the /usr/sbin/reboot and /usr/sbin/poweroff files,

you will see that they are symbolic links to systemctl.

Understanding the Boot Process430

Let’s explore the options in the menu in Figure 15.2:

•	 SLES 16.0: This is the default boot.

•	 Advanced options for SLES 16.0: This contains a list of installed kernels, including the

default. Each one of them is followed by a version that boots in single-user mode, which

is named recovery mode.

•	 UEFI Firmware Settings: If the firmware allows it, this option will allow you to change

some UEFI firmware settings.

•	 Start bootloader from a read-only snapshot: This option allows you to boot into one of

the snapshots provided by Snapper instead of the last one. You can see it in the following

screenshot:

Figure 15.3 – Advanced options for SLES 16 menu

Chapter 15 431

Select the line with the kernel version you want to boot and press e. The configuration is shown

and can be edited. Proceed to edit the kernel line (the one that starts with linux) to add systemd.

unit=rescue.target or systemd.unit=emergency.target at the end.

In the following screenshot, we can see how to edit an entry in the bootloader to boot to the

rescue target:

Figure 15.4 – Editing the menu item

The difference between rescue and emergency is the number of services that run.

rescue will mount only local storage and will start some important services, but

it won’t start normal services such as the network. If the system fails to start even

in that mode, emergency will load the root filesystem in read-only mode and will

activate only essential services.

Understanding the Boot Process432

The system will continue to boot into the target when you press Ctrl + X. GRUB will pass the target

to the kernel, which will pass it over to systemd, which in turn will ignore the default configura-

tion and load the services required for the rescue target.

When it finishes booting, the system will be in emergency mode and will prompt for the root

password to give you control:

Figure 15.5 – SLES system booted in emergency mode

Emergency mode provides a very limited and controlled environment. It is designed to help you

diagnose and fix problems without interference. In this mode, no other users or services are ac-

tive. The root filesystem is mounted as read-only. The network service is not running. The only

available services are login, bash, and system journal.

You can use this mode to check whether a filesystem is broken. Let’s try it with the command for

checking the filesystem, which is brtfs for BTRFS filesystems:

geeko:~ # btrfs check --force /dev/vda2

Opening filesystem to check...

WARNING: filesystem mounted, continuing because of --force

Checking filesystem on /dev/vda2

UUID: 0cfd9b4c-3d83-48b1-9b79-6ee59ebce2f0

[1/8] checking log

[2/8] checking root items

[3/8] checking extents

[4/8] checking free space tree

[5/8] checking fs roots

[6/8] checking only csums items (without verifying data)

[7/8] checking root refs

[8/8] checking quota groups

found 7925678080 bytes used, no error found

total csum bytes: 6945416

total tree bytes: 437895168

Chapter 15 433

total fs tree bytes: 414695424

total extent tree bytes: 13352960

btree space waste bytes: 105018095

file data blocks allocated: 33607614464

referenced 25567031296

The filesystem is fine, but we could run btrfs rescue if the system needed help. We could also

boot from an old snapshot if we know a point in time when the filesystem was fine. --force is

needed because the system is mounted, and the command would fail without it.

rescue mounts the root filesystem as read-write, but you can find yourself with a read-only root

if you are using a snapshot or if there are errors. You can remount it as read-write easily:

geeko:~ # mount -o remount -o rw /

Remember, you can access the manual pages for the command by running man mount. Now, our

root filesystem is mounted in / as read-write. Take into account that in SLES, /boot is a folder in

/. Now, we can do some administrative tasks, such as rebuilding initrd if a new hardware driver

is needed and rebuilding the GRUB message.

In the coming section, we will see how to make a change to boot to a different target. We can

make it a permanent change or a one-time boot only. It can also be done easily during the GRUB

boot sequence.

Updating the root password by modifying the boot
process
The previous options to rescue or modify the system require you to know the root password to

access the system. Sometimes, more often than you expect, you’ve forgotten or lost the password

to the root user, and you still need access to the system.

There is an emergency.target that loads even fewer services in those cases where

rescue does not work. It does not provide anything in sysinit.target. A good

exercise would be to repeat the previous sequence with rescue.target.

Understanding the Boot Process434

You can gain access to the system by passing some parameters to the kernel. To do so, boot the

system, and once the GRUB menu is shown, press any key. GRUB by default waits for a few sec-

onds before booting the default entry, so you can stop the count if you need to by pressing an

arrow key. The GRUB menu is shown in the following screenshot so you can easily recognize it:

Figure 15.6 – GRUB menu to select the kernel

The boot sequence must not have any disk encrypted for it to work, or you will need

the password for the encrypted volumes.

Chapter 15 435

Use the arrow keys to select the first entry and follow the instructions after pressing e. Once you

have done that, the following screen will appear:

Figure 15.7 – GRUB menu to select the kernel

The first lines with load_video, set gfx_payload=keep, insmod gzio, insmod part_gpt, and

insmod btrfs set options for GRUB. The next two options are the ones that are important. Let’s

review them:

•	 linux: Defines the kernel to be loaded and the parameters that will be passed to it, such

as the root partition to use to boot

•	 initrd: Defines where to load the initial RAMdisk and its options

Please note that the linux line is so long that it is wrapped, as we can see by the \

symbols, which mean that the line continues below.

Understanding the Boot Process436

We shall now go to the end of the linux line and add the init=/bin/bash option, as shown in

the following screenshot:

Figure 15.8 – linux kernel line edited with the rd.break option

Follow the instructions to boot the edited line, pressing Ctrl + X. We have booted into the Bash

shell, but we don’t have the init process running; there is no systemd. That also means that there

is no SELinux running, and any change in files could mess up the labels. This is how the boot to

a Bash shell looks when it’s complete:

Figure 15.9 – System booting into a Bash shell directly

Chapter 15 437

So, what is the status now? Let’s review:

•	 The system directly boots into a single shell

•	 The root filesystem, /, is mounted as read-only

•	 No other filesystems are mounted

•	 SELinux is not loaded

Now, we need to make the filesystem for root, which is /, writeable. We can do it by running the

following command:

geeko:/ # mount –o remount,rw /

Our root filesystem is now mounted read-write and can be modified. Now, we need to change

the root user password with the passwd command:

geeko:/ # passwd

New password:

Retype new password:

passwd: all authentication tokens updated successfully

The password for the root user has now been changed, and the /etc/shadow file has been up-

dated. However, it was modified, but SELinux was not running, and therefore the file could have

access problems during the next boot. We can avoid the issue by asking SELinux to fix the labels

during the next boot. You can do that by creating a hidden file in the root folder, /etc/selinux/.

autorelabel, and then rebooting the system:

geeko:/# touch /etc/selinux/.autorelabel

Once the file has been created, reboot the system and use the new password. SELinux contexts

will be used to relabel all files with the proper SELinux labels. You won’t be able to use reboot or

shutdown; you will need to physically power the system off and on. During the next boot, we will

see the SELinux autorelabel happening:

Figure 15.10 – SELinux autorelabel during boot

Now, we can log in with the root user and its new password.

Understanding the Boot Process438

Summary
In this chapter, we have reviewed with some level of detail the boot process for a UEFI system.

Understanding the boot process is important, as failure to boot will make a system unusable,

something that can be quite problematic if you don’t have a way of connecting to the console

remotely. We have learned about GRUB, the different options for a normal system start, and

how to modify the sequence if you need to do so. We now have some knowledge of the main files

required to book, such as the kernel and the RAM disk.

We also learned how to start in rescue mode and how to modify the root password properly if

you have lost it.

We barely scraped the surface. There is still a lot of information about the boot process, UEFI, and

systemd, including alternative boot systems that could possibly be added to future versions of

SLES 16, such as systemd-boot. But now, it is time to dive deeper and learn about kernel tuning

and performance profiles in the next chapter.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

16
Automating with System Roles

Automation has been a critical topic in system management since the early years of Unix. With

the need to handle a greater number of systems and be able to make the tasks repeatable, new

ways of automation have arisen.

In SUSE, we want to provide choice, and to do so, we have the traditional shell scripting in the

operating system with Bash as the default implementation, which was mentioned in Chapter 2,

Running Basic Commands and Simple Shell Scripts. Then, we have SUSE Multi-Linux Manager,

which includes Salt, for performing system automation and management at scale (up to 100,000

systems being managed in production). Finally, we can also use Ansible in several shapes and

forms: one of them is integrating it with SUSE Multi-Linux Manager for distributed management,

and another one, which we will cover here, is the use of system roles.

System roles can be used to configure specific parts of a system using Ansible playbooks locally.

In this chapter, we will cover the following topics:

•	 What are system roles?

•	 Installing system roles

•	 Using system roles

This knowledge will help use system roles as provided by SUSE Linux Enterprise Server (SLES)

to facilitate running administrative tasks in a predictable way, reducing the possibility of making

mistakes. When managing critical systems and/or a large system base, predictability is key, and

system roles increase predictability. Let’s go.

Automating with System Roles440

Technical requirements
As in the previous chapters, you can continue the practice of using the virtual machine (VM)

created at the beginning of this book in Chapter 1, Getting SLES 16 Up and Running (Physical and

Cloud). Any additional packages required for this chapter will be indicated.

What are system roles?
System roles are a simple way to automate the configuration of different components within a

system. They can set up the firewall, time synchronization, or even a database. They are built using

a very common automation technology called Ansible. Therefore, system roles need Ansible to run.

Ansible is an automation engine that helps to configure and run tasks in all kinds of systems.

It is very popular due to the fact that it is very easy to get started with it. In Ansible, we create

playbooks to perform tasks such as enabling services or deploying configuration files. For tasks

that are common and recurring, we create a role, for example, to configure time synchronization.

This way we can reuse roles for our systems and reduce the time needed to automate a task, as

well as ensuring consistency and predictability for its execution.

In SLES 16, both Ansible and Python (the programming language that Ansible is built and based

on) are included with the operating system, although they are not installed by default. With them,

a set of roles built to configure the system is also available. We call these system roles. They can

enable consistent configuration of common parts of the operating system, such as setting certif-

icates or even a high-availability cluster. They are very important for SAP deployments.

Like in previous versions of SLES with YaST, we can quickly set up services in SLES in a repeatable

way. With the launch of the new SLES 16 version, a set of them has been included, but more will

be developed during its life cycle.

Let’s look at how to install system roles.

Installing system roles
To use system roles, we will need Ansible. Since it isn’t included in the default packages in SLES

16, let’s start by installing it using zypper:

user@geeko:~> sudo zypper install ansible

Refreshing service 'SUSE_Linux_Enterprise_Server_16.0_x86_64'.

Loading repository data...

Reading installed packages...

Resolving package dependencies...

Chapter 16 441

The following recommended package was automatically selected: python313-
Babel

The following 9 NEW packages are going to be installed: ansible ansible-
core python313-Babel python313-Jinja2 python313-MarkupSafe python313-
packaging python313-PyYAML python313-resolvelib python313-tzdata

[snip] ---8<---8<--- [snip]

System roles are also not installed by default in SLES 16. To install them, we can use zypper by

simply running the following:

user@geeko:~> sudo zypper install ansible-linux-system-roles

Refreshing service 'SUSE_Linux_Enterprise_Server_16.0_x86_64'. Loading
repository data... Reading installed packages... Resolving package
dependencies...

The following NEW package is going to be installed: ansible-linux-system-
roles

1 new package to install.

[snip] ---8<---8<--- [snip]

These two steps will install system roles, Ansible, and the Python extensions needed to run them

on your system.

There is one important path for system roles. It is the standardized location for them, which

is /usr/share/ansible/roles/. Here, we will find a set of symbolic links pointing to the roles

installed in the system.

To see the roles available for our system, we can run the following command:

user@geeko:~> ls /usr/share/ansible/roles/ | grep ^linux-system-roles

linux-system-roles.aide

linux-system-roles.certificate

linux-system-roles.cockpit

linux-system-roles.crypto_policies

linux-system-roles.firewall

linux-system-roles.ha_cluster

linux-system-roles.journald

A symbolic link, or symlink for short, is a type of file that serves as a pointer or short-

cut to another file or directory.

Automating with System Roles442

linux-system-roles.mssql

linux-system-roles.podman

linux-system-roles.selinux

linux-system-roles.ssh

linux-system-roles.suseconnect

linux-system-roles.systemd

linux-system-roles.timesync

As you can see from the names, these roles help us use pre-crafted

automation to configure several parts of our system.

At SUSE, we have pack-

aged many upstream

system roles intended to

be used for other Linux

versions, so you can take

a look at and learn about

them. They can also be

found in /usr/share/

ansible/roles/. The

system roles you can use

in SLES are the ones that

have the prefix linux-

system-roles.

Now that we have both system roles and Ansible installed on our

system, we are ready to use them. Let’s see how to do that in the

next section.

Using system roles
Let’s start by using the linux-system-roles.timesync system

role on our system.

To do this, we need to create an Ansible playbook file that includes

the mentioned role. In this example, we will use the filename

timesync_config.yml. This file is the one that we will use from

now on to configure time synchronization on our system. In order

for it to use the system role, as we said, its contents are as follows:

- name: Configure time synchronization on SLES
servers

 hosts: localhost

 become: yes

 vars:

 timesync_ntp_servers:

 # Use a list of NTP servers hostnames or
IP addresses

 - hostname: 0.suse.pool.ntp.org

 iburst: true # Recommended for faster
initial sync

 - hostname: 1.suse.pool.ntp.org

Chapter 16 443

 iburst: true

 - hostname: 2.suse.pool.ntp.org

 iburst: true

 # Optional: Force chrony as the provider

 timesync_ntp_provider: chrony

 roles:

 - name: linux-system-roles.timesync

Let’s delve deeper into the sections of this playbook. There are three important parts:

•	 Part one. This is the header:

•	 ---: The header for all YAML files.

•	 - name: A trailing dash to indicate a new block, then the name to identify the

playbook.

•	 hosts: localhost: We are selecting the host to connect to. In system roles, the

logical value is localhost, as they will run locally.

•	 become: yes: This directive is to explain that if we run it as a regular user, it will

use sudo to run the tasks.

•	 Part two. These are the values we will pass to the system role:

•	 timesync_ntp_servers: This starts the section to include the values for NTP serv-

ers.

•	 - hostname: 0.suse.pool.ntp.org: This starts the block for each server to be

configured. Please note the dash (-) at the beginning of it.

•	 iburst: true: This is an option that needs to be added to the server in this block.

This option forces synchronization on start.

•	 timesync_ntp_provider: chrony: This is an optional section to indicate the name

of the provider (or RPM package in this case) to install.

All these variables will help us to configure the service properly.

•	 Part three. This part indicates which system role to use:

•	 roles: The section that specifies the roles to use

•	 - name: linux-system-roles.timesync: This is the block that specifies the name

of the role to be used

Automating with System Roles444

To find out which variable to use, we will look at the README.md file for each role:

user@geeko:~> less /usr/share/ansible/roles/fedora.linux_system_roles.
timesync/README.md

We can see here that we are using YAML format, as it is common in Ansible playbooks.

The extended, yet unsupported, software repository PackageHub contains a package that you

can use to check whether you have created the YAML file, called python3-yamllint, correctly.

Let’s use it.

First, we need to add PackageHub to our system:

user@geeko:~> sudo SUSEConnect --product PackageHub/16.0/x86_64

Registering system to SUSE Customer Center

 Updating system details on https://scc.suse.com ...

 Activating PackageHub 16.0 x86_64 ...

-> Adding service to system ...

-> Installing release package ...

 Successfully registered system

Then, we can install the python3-yamllint package by running the following:

user@geeko:~> sudo zypper in python3-yamllint

[snip]---8<---8<---8<---[snip]

The following 2 NEW packages are going to be installed:

 python313-pathspec python313-yamllint

2 new packages to install.

Package download size: 175,2 KiB

Package install size change:

You can find the file at https://github.com/PacktPublishing/SUSE-Linux-
Enterprise-Server-16-Official-Administration-Guide/tree/main/

chapter-16-automating-with-system-roles, where you can check the spacing

and structure.

Yet Another Markup Language, also known as YAML, is a very common format for

storing machine-parseable data that is also human-readable. To learn more about

it, you can read this Wikipedia article: https://en.wikipedia.org/wiki/YAML.

https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/tree/main/chapter-16-automating-with-system-roles
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/tree/main/chapter-16-automating-with-system-roles
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/tree/main/chapter-16-automating-with-system-roles
https://en.wikipedia.org/wiki/YAML

Chapter 16 445

 584,2 KiB required by packages that will be installed

584,2 KiB| 0 B released by packages that will be removed

[snip]---8<---8<---8<---[snip]

(1/2) Installing: python313-pathspec-0.12.1-160000.2.2.noarch
...................[done]

(2/2) Installing: python313-yamllint-1.36.2-160000.2.2.noarch
...................[done]

Running post-transaction scripts.....................[done]

Then, it is time to run a check on our file with yamllint:

user@geeko:~> yamllint --no-warnings timesync_config.yml

timesync_config.yml

 1:4 error trailing spaces (trailing-spaces)

 2:55 error trailing spaces (trailing-spaces)

 3:19 error trailing spaces (trailing-spaces)

 4:14 error trailing spaces (trailing-spaces)

 5:8 error trailing spaces (trailing-spaces)

 6:26 error trailing spaces (trailing-spaces)

 7:60 error trailing spaces (trailing-spaces)

 8:38 error trailing spaces (trailing-spaces)

 9:59 error trailing spaces (trailing-spaces)

 10:38 error trailing spaces (trailing-spaces)

 11:21 error trailing spaces (trailing-spaces)

 12:38 error trailing spaces (trailing-spaces)

 13:21 error trailing spaces (trailing-spaces)

 14:45 error trailing spaces (trailing-spaces)

 15:34 error trailing spaces (trailing-spaces)

 16:9 error trailing spaces (trailing-spaces)

 17:40 error trailing spaces (trailing-spaces)

Since YAML is strict, it should be written using tabs instead of spaces. That’s why we get the

previous errors. Spaces are commonly accepted. So, if the only error we have here is this one, we

are good to continue.

Automating with System Roles446

Let’s use what we learned in Chapter 14, Configuring and Using System Snapshots with BTRFS and

Snapper, and create a snapshot before running the system role (using the just-created playbook):

user@geeko:~> sudo snapper create --type single --description "Pre-
Playbook"

Let’s check that the playbook has been properly configured:

user@geeko:~> sudo ansible-playbook timesync_config.yml --check

[WARNING]: No inventory was parsed, only implicit localhost is available

[WARNING]: provided hosts list is empty, only localhost is available. Note
that the implicit localhost does not match 'all'

PLAY [Configure time synchronization on SLES servers] ********************

[snip]---8<---8<---8<---[snip]

RUNNING HANDLER [linux-system-roles.timesync : Restart chronyd] **********
** changed: [localhost]

PLAY RECAP ** localhost :
ok=17 changed=3 unreachable=0 failed=0 skipped=30 rescued=0 ignored=0

The result here is clear: 17 tasks have run, there were 3 changes, and 30 were skipped (as they

were not needed).

It will be useful to see whether the service is running as before:

user@geeko:~> sudo systemctl status chronyd.service

Unit chrony.service could not be found.

It’s not running. It’s not even been found! That’s because running the playbook with the --check

option shows all actions to be done but makes no changes. We are now ready to run the playbook

and make the changes:

user@geeko:~> sudo ansible-playbook timesync_config.yml

[WARNING]: No inventory was parsed, only implicit localhost is available

[WARNING]: provided hosts list is empty, only localhost is available. Note
that the implicit localhost does not match 'all'

PLAY [Configure time synchronization on SLES servers] ********************

[snip]---8<---8<---8<---[snip]

RUNNING HANDLER [linux-system-roles.timesync : Restart chronyd] **********
** changed: [localhost]

PLAY RECAP ** localhost :
ok=17 changed=3 unreachable=0 failed=0 skipped=30 rescued=0 ignored=0

Chapter 16 447

The results are the same as in the test we did before. But now, the changes have been applied.

It’s time to verify it:

user@geeko:~> sudo systemctl status chronyd.service

● chronyd.service - NTP client/server

 Loaded: loaded (/usr/lib/systemd/system/chronyd.service; enabled;
preset: enabled)

 Active: active (running) since Sat 2025-09-27 18:49:54 CEST; 3min 33s
ago

[snip]---8<---8<---8<---[snip]

user@geeko:~> cat /etc/chrony.conf | grep -v ^# | grep .

server 0.suse.pool.ntp.org iburst

server 1.suse.pool.ntp.org iburst

server 2.suse.pool.ntp.org iburst

makestep 1.0 3

rtcsync

driftfile /var/lib/chrony/drift

ntsdumpdir /var/lib/chrony

We can see that the service is running and the configuration file is using all the servers we have

included in the configuration file.

It might be interesting to create another snapshot and look at the differences in the system before

and after running the system role:

user@geeko:~> sudo snapper create --type single --description "Post-
Playbook"

user@geeko:~> sudo snapper list

Find the last two snapshots in the list. In my case, the last two snapshots were the numbers 69

and 70. Please check the numbers of your last two snapshots. Let’s proceed with 69 and 70 in the

example, but please replace these numbers with the ones you found:

user@geeko:~> sudo snapper diff 69..70

--- /.snapshots/69/snapshot/etc/chrony.conf	 2025-03-31
18:44:48.552436808 +0200

+++ /.snapshots/70/snapshot/etc/chrony.conf	 2025-09-27
18:49:53.176485538 +0200

@@ -1,55 +1,22 @@

-# Use public servers from the pool.ntp.org project.

-# Please consider joining the pool (https://www.pool.ntp.org/join.html).

Automating with System Roles448

-! pool pool.ntp.org iburst

+#

+# Ansible managed

+#

+# system_role:timesync

Now, we can combine the knowledge we have acquired in different chapters to perform repeat-

able actions easily and then review the impact of those actions in the system, and even be able

to do a rollback on them.

Summary
This chapter discussed the automation that is included with SLES 16: system roles. Now, we can

use pre-built automation to configure common options and services in our system in an easy, fast,

and consistent way. We also learned some of the basics of using Ansible so that we can create

playbooks, run them in check mode to verify actions, and finally, apply them. Extending your

knowledge of automation is very much encouraged. Please check out other Packt materials, such

as the book Learn Ansible by Russ McKendrick or the course Dive Into Ansible – From Beginner to

Expert in Ansible by James Spurin. We can now go a step further in our journey to learn and master

SLES 16 and start learning how to use containers with Podman in the coming chapter.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

17
Managing Containers with
Podman

Containers are presented as an alternative to virtualization, but they are more than just that. They

underpin Kubernetes, the latest trend in IT and the second most popular open source project in

the world based on the number of stars on GitHub, and are one of the key technologies leveraged

by many of the best practices in the industry, such as cloud-native, DevOps, and GitOps. Con-

tainers provide lightweight isolation of applications without simulating hardware, providing

higher density and agility for workloads. Podman is the default container management tool in

SUSE Linux Enterprise Server 16.

This chapter covers the fundamentals of working with containers, starting with an introduction

to what containers are and how they work. It compares Podman and Docker to help you under-

stand their differences and use cases, and explains the role of registries in storing and distributing

container images. You will also learn how to run containers, share data with them, manage and

delete containers and images, inspect container logs, and finally, create your own containers.

Managing Containers with Podman450

We will be covering the following main topics:

•	 What to expect from containers

•	 Installing Podman

•	 Working with registries

Understanding containers is a key requirement for both developers and sysadmins. Many appli-

cations are designed to run as containers in isolation or orchestrated by Kubernetes, and hav-

ing a clear understanding of how to use them and perform basic troubleshooting is a necessity,

especially when some workloads are delivered as containers, and some operating systems add

immutable versions that are designed to run containers up to the point that parts of the operating

system are containers themselves.

SLES does provide a solution specifically designed to run virtualized or containerized workloads,

named SUSE Linux Micro. SLES 16.1 is expected to provide a transactional mode that will be

equivalent to SL Micro, and that will be selectable at installation time.

Technical requirements
It is possible to continue the practice of using the virtual machine created at the beginning of this

book, in Chapter 1, Getting SLES 16 Up and Running (Physical and Cloud). Any additional packages

required will be indicated in the text. You will also need a connection to the internet to download

content from the SUSE registry or configure your own.

What to expect from containers
Containers are everywhere. Kubernetes, an orchestrator for containers, is one of the three most

successful open source projects, with around 4,000 contributors at the time of writing just in the

main repository, and more than 200 projects associated with it. It defines the future of IT today,

and it is important for you to know how to work with containers and understand their limitations.

So, how can we describe containers?

Containers can be seen as two different things:

•	 A standard unit of software that packages up code and all its dependencies

•	 A way of isolating applications running on a host, so that they behave as if they are the

only application running on the system

Chapter 17 451

Containers solve some problems that cause a lot of headaches to developers and sysadmins, such

as the fact that applications could only “run on my machine,” but due to dependencies or manual

configuration steps, run with errors in production, errors that are hard to replicate, or the fact

that some applications become unstable when a dependency gets updated.

Containers are not a new thing. As in many open source technologies, what we use today is the

result of participation from companies such as Google, Virtuozzo, and IBM, interested in improv-

ing how Linux works with processes.

Containers are based on two major additions to the kernel:

•	 Control groups (cgroups): A functionality that allows the kernel to limit and prioritize

the amount of resources (CPU, memory, network, I/O) used by a group of processes

•	 Namespace isolation: A technology that allows the kernel to isolate applications, pro-

viding them with an environment that looks like the application is running as the only

application in the system

A different company, Docker, used all of that to provide an opinionated developer-friendly con-

tainer environment designed to run microservices, and that has a user experience that is easy

and powerful. Docker containers come with a configuration format, the Dockerfile, that allows

you to automate and simplify container builds.

SUSE Linux Enterprise Server recommends the use of Podman as the container runtime for Linux,

as a drop-in alternative to Docker, although both can also be installed if you are more comfortable

doing so. Podman has many advantages, such as the fact that it runs as your user and not as a

privileged daemon, enhancing the security and reliability of your system, as it does not need to

have privileged user access.

Linux Containers (LXC) is another container technology included in the Linux ker-

nel that precedes Docker. It provides more flexible customization and is closer to a

virtual machine, but it is also harder to use and requires deeper knowledge of Linux

and how to use it. One of the good things about Docker containers is that you can

use them without too much experience with Linux.

Managing Containers with Podman452

Installing Podman
Installing Podman is easy, just install the podman package, and it will install the necessary com-

ponents and requirements, including upgrades to the networking components and dns to support

containers and a new interface in Cockpit.

user@geeko:~> sudo zypper in podman Refreshing service 'SUSE_Linux_
Enterprise_Server_16.0_aarch64'. Loading repository data... Reading
installed packages... Resolving package dependencies...

The following 13 NEW packages are going to be installed: aardvark-
dns catatonit cockpit-podman conmon fuse-overlayfs libcontainers-
common libcontainers-default-policy netavark passt passt-selinux podman
registries-conf-suse runc

13 new packages to install.

Package download size: 26.9 MiB

Package install size change: | 98.7 MiB required by packages that will be
installed 98.7 MiB | - 0 B released by packages that will be removed

Backend: classic_rpmtrans Continue? [y/n/v/...? shows all options]

[--- EDITED ---]

 (y): Preloading: conmon-2-common-20250409-160000.2.2.noarch
......[done] (12/13) Installing: podman-5.4.2-160000.2.2.aarch64
......................[done] (13/13) Installing: cockpit-podman-107-
160000.2.2.noarch[done] %posttrans(passt-selinux-
20250415.2340bbf-160000.2.2.noarch) script output: ++ SELINUX=enforcing ++
SELINUXTYPE=targeted Running post-transaction scripts
.....................[done] user@geeko:~>

You can substitute any Docker command with the equivalent Podman command

and it will continue to work. You can even do alias docker=podman so you don’t

need to remember to change it when you are following some tutorial, or install the

podman-docker package, which will create the link for you, and other things, such

as linking the man pages.

Chapter 17 453

Now let’s test that podman has been properly installed:

Figure 17.1 – First lines of the output of podman info

We can see a lot of information, perhaps more than what we need, such as the architecture of the

host, the number of CPUs, the OS type, and information about the version.

SLES supports rootless containers by default. Rootless containers are never run as

root, even if the container application inside is running with PID 1. To be able to run

applications with multiple UIDs and GIDs, subuid is used to map ranges of user IDs

from its namespace into child namespaces.

Managing Containers with Podman454

To check if podman is installed, it is enough to look at the reported

version. We can also find out if the user can run rootless containers

with a couple of commands:

user@geeko:~> podman --version

podman version 5.4.2

user@geeko:~> cat /etc/subuid

user:100000:65536

user@geeko:~> cat /etc/subgid

user:100000:65536

The user with ID user (you could also use a numeric ID) can use

up to 65536 subordinate UIDs and a GID starting with 100000.

You can add subuids and subgids if that is not the case with a

simple command:

user@geeko:~> sudo usermod --add-subuids
100000-165535 --add-subgids 100000-165535 $(id
-nu)

In the next section, we will see how to configure registries and

how they are used to find and download images.

Working with registries
In order to create a container, you need a container image that

will be used as the basis. A container image stores all the bina-

ries, configuration, and dependencies required to run your appli-

cation, ideally with the minimal selection of packages possible.

You can create your images from scratch, but in most cases, it is

more practical to use an existing base image instead. Images are

stored in container registries, and downloading an image from

a registry is called a pull. SLES, by default, is configured to use

only registry.suse.com, a secure registry that includes tested,

updated, and certified SLE Base Container Images. All images in

the SUSE Registry undergo a maintenance process and contain

the latest available updates and fixes.

You can configure Pod-

man to search by default

in other registries like

docker.io, modifying

the /etc/containers/

registry.conf file and

adding the new registries

to the section unquali-

fied-search-registries like

this:

u n q u a l i f i e d -
search-registries =
["registry.suse.com",

"docker.io"].

Chapter 17 455

Many tutorials about the use of containers download containers stored in docker.

io. The quality and security of the images stored there are not guaranteed and there

are some limits on its use. You should be very careful about using them, but it is a

big source of content.

Let’s visit the web interface to registry.suse.com to find a container image to use:

Figure 17.2 – Web page interface to the SUSE container registry

registry.suse.com

Managing Containers with Podman456

There are different types of container images available at registry.suse.com:

•	 SLE Base Container Images: Minimal SLES-based images that you can use to develop,

deploy, and share applications

•	 Redistributable Base Container Images: Used for building custom container images and

for deploying applications

•	 Redistributable Development Container Images: Minimal environments for developing

and deploying applications in specific programming languages

•	 Application Container Images: SLE Base container images that include specific appli-

cations, such as the PostgreSQL database and the Performance Co-Pilot system-level

performance analysis tool

Let’s install and run one application. We are going to create a web server using Nginx.

Go to registry.suse.com and search for PostgreSQL 17:

Figure 17.3 – Search results for postgresql

registry.suse.com
registry.suse.com

Chapter 17 457

Click on the PostgreSQL 17 link (you can also use another version if you prefer to do so):

Figure 17.4 – The web page describing SLE PostgreSQL 17 and its usage

As you can see, selecting one version will show you additional information about the container

(other registries will have a different interface). Let’s see what information is available for us:

There are some things we need to know:

•	 Labels and architecture: Each repository contains different versions of the images, iden-

tified by a digest and one or more labels. You can download any of them. Traditionally,

repositories will include the latest tag, which will be updated every time a newer image

is published.

Using the latest tag is never recommended, as it creates a problem: it is not

reproducible, so it is possible that what was working in one system does

not work in another because the actual image downloaded is different. To

avoid these problems, use digests or labels when you can.

Managing Containers with Podman458

•	 Image data: Information about the date, size, and support levels of the image.

•	 Image details: Information about the image and how to use it.

•	 Packages: All the RPMs that are included in the image, with their version and license.

•	 Vulnerability report: Whether the image has some known vulnerabilities or not.

Let’s now run a web server. Search for Nginx and go to the web page of the container image. Go

to the packages, and you will see why containers are so good for container native development.

At the time of writing, the image contained roughly 160 packages, from tar to perl or libsqlite,

all required to run open source Nginx appropriately. It does not matter if you need a different

version of any of those packages, or if you have already installed them in another container; it

will work as expected if you follow some rules when you create the images or run them.

Let’s follow the instructions to run it:

user@geeko:> mkdir psql_data

user@geeko:> podman run -it --rm -p 5432:5432 -e POSTGRES_
PASSWORD=securepassword -v $PWD/psql_data:/var/lib/pgsql/data:Z registry.
suse.com/suse/postgres:17

Trying to pull registry.suse.com/suse/postgres:17...

Getting image source signatures

Checking if image destination supports signatures

Copying blob db15866adcbe done |

Copying blob d7259433dcae done |

Copying config af957f769c done |

Writing manifest to image destination

Storing signatures

The files belonging to this database system will be owned by user
"postgres". This user must also own the server process.

The database cluster will be initialized with locale "en_US.utf8". The
default database encoding has accordingly been set to "UTF8". The default
text search configuration will be set to "english".

Data page checksums are disabled.

fixing permissions on existing directory /var/lib/pgsql/data ...
ok creating subdirectories ... ok selecting dynamic shared memory
implementation ... posix selecting default "max_connections" ... 100
selecting default "shared_buffers" ... 128MB selecting default time zone
... Etc/UTC creating configuration files ... ok running bootstrap script
... ok performing post-bootstrap initialization ... ok syncing data to

Chapter 17 459

disk ... ok

initdb: warning: enabling "trust" authentication for local connections
initdb: hint: You can change this by editing pg_hba.conf or using the
option -A, or --auth-local and --auth-host, the next time you run initdb.

Success. You can now start the database server using:

pg_ctl -D /var/lib/pgsql/data -l logfile start

waiting for server to start....2025-10-20 13:46:31.344 UTC [46]
LOG: redirecting log output to logging collector process 2025-10-20
13:46:31.344 UTC [46]HINT: Future log output will appear in directory
"log". done server started

/usr/local/bin/docker-entrypoint.sh: ignoring /docker-entrypoint-
initdb.d/*

waiting for server to shut down.... done server stopped

PostgreSQL init process complete; ready for start up.

2025-10-20 13:46:31.567 UTC [1]LOG: redirecting -t log output to logging
collector process 2025-10-20 13:46:31.567 UTC [1]HINT: Future log output
will appear in directory "log".

user@geeko:~> ls -ld psql_data/

drwx------. 1 100498 user 522 Oct 20 15:51 psql_data/

The command will try to run the container from a local copy, and as it is not available, it will

download it from the registry. The container does go through several steps. First, it checks if the

image can be found locally and downloads it if it is not. The image is stored in reusable layers, so

only those layers not present will be transmitted. Then it creates a new read-write layer on top

and runs it. Your changes will be implemented in the new layer, without affecting the other layers.

Let’s look at the commands we used for podman run:

•	 --tty, -t: Connects a terminal so you can interact with the container.

•	 --interactive, -i: Makes stdin available to the container, enabling input.

•	 -e, --env: Allows you to define environment variables in the container. In this case, in-

stead of specifying a default password, the container requires the password as the value

of the POSTGRES_PASSWORD environment variable. If an environment variable is specified

without a value, Podman checks the host environment for a value and sets the variable

only if it is set on the host.

Managing Containers with Podman460

We are stuck in the command line, in interactive mode, and with the terminal connected, so we

won’t be able to go back until we stop it with Ctrl + C. However, we want to run the container as

a daemon; for that, we need to substitute -i and -t for -d:

user@geeko:~> podman run -d --rm -p 5432:5432 -e
POSTGRES_PASSWORD=securepassword -v $PWD/psql_data:/
var/lib/pgsql/data:Z registry.suse.com/suse/postgres:17
449d17709a4f50e677c13105ad5689db6b264ba8569150afff9d2e286e06b29a

The command returns immediately with the identifier for the container. We will use that identifier

to be able to troubleshoot it later.

•	 --volume, -v=[[SOURCE-VOLUME|HOST-DIR:]CONTAINER-DIR[:OPTIONS]]: Allows you to

specify a mount point from your system inside the container. In this case, we are speci-

fying that the psql_data directory in the current folder will be seen inside the container

as /var/lib/pgsql/data.

•	 --publish, -p=[[ip:][hostPort]:]containerPort[/protocol]: Makes a port inside

the container available in the host. Without this, you would find the database running,

expecting connections on port 5432, but it would be impossible to access it from outside.

We ran a couple of containers, downloading them from a registry when it was necessary. In the

next part, we will see more advanced ways of using registries.

Using registries
Images need to be stored locally to be used in a container. Downloading and storing an image

locally is called a pull. Although the image was downloaded automatically before, you can decide

to do it beforehand to speed up the process. docker pull is used to pull an image from a registry

onto the local machine, and digest is used to check the image version.

Defining multiple environmental variables at the same time

As a special case, if an environment variable ending in * is specified without a value,

Podman searches the host environment for variables starting with the prefix and

adds those variables to the container.

You can always specify multiple variables, repeating the parameter several times.

Chapter 17 461

Let’s start by downloading a base SLES image from registry.suse.com:

user@geeko:~> podman pull registry.suse.com/bci/bci-base:15.7

Trying to pull registry.suse.com/bci/bci-base:15.7...

Getting image source signatures

Checking if image destination supports signatures

Copying blob 07355880ecdf [==>--------------------------] 4.5MiB / 45.4MiB
| 322.0 KiB/s

user@geeko:~> podman pull registry.suse.com/bci/bci-base:15.7

Trying to pull registry.suse.com/bci/bci-base:15.7...

Getting image source signatures

Checking if image destination supports signatures

Copying blob 07355880ecdf done |

Copying config 4d0f7d7dc2 done |

Writing manifest to image destination

Storing signatures

4d0f7d7dc2bbcd133cb9d9a05c4b80e9a46f69b01040ec42a72f8320ab2c0f9d

We haven’t created any containers yet, but we have stored the image locally. We can easily list

local images:

user@geeko:~> podman images

REPOSITORY TAG IMAGE ID CREATED
SIZE

registry.suse.com/suse/postgres 17 af957f769cad 10 days ago
411 MB

registry.suse.com/bci/bci-base 15.7 4d0f7d7dc2bb 10 days ago
138 MB

We have two images locally. The one we use to run PostgreSQL, with the tag 17, which was down-

loaded automatically, and the new one with the tag 15.7.

Images are stored in layers. Changes are not written directly in the image, but on a

new layer on top. Images are normally split into several layers, which are stored only

once in registries (including your local copy). Layering makes containers efficient,

avoiding unnecessary data duplication.

registry.suse.com

Managing Containers with Podman462

The container image

comes from the free SLE_

BCI repository, a reposito-

ry that contains a subset

of all packages from SUSE

Linux Enterprise. These

containers and the pack-

ages included are avail-

able free of charge, and

they can be redistributed

freely. However, they are

provided without support,

so it is likely that you will

need a supported version

in production. Check the

SUSE web to see the terms

and conditions of these

images and what alter-

natives are available

Let’s use a different method to create a container, the Dockerfile.

A Dockerfile is a set of instructions to build a container from a

base image in a file. Dockerfiles can be easily stored in a content

management system such as Git and are perfect for replicable

generations of images. A Dockerfile is a text file, so open your pre-

ferred text editor and write the following inside a Dockerfile text

file in a new folder:

FROM registry.suse.com/bci/python:3.10

RUN zypper -n in python3-tools;

EXPOSE 8000

CMD ["python3", "-m", "http.server"]

The Containerfile defines a set of steps to create a custom image

with automation. Dockerfiles are consistent and reproducible and

can be stored in a source control system (such as Git) along with

your application code.

This Containerfile is quite simple. It defines a base container to

modify (BCI Python 3.10 container), runs a command inside the

container that installs a package, exposes port 8000 (where the

Python HTTP server will be listening inside the container, a port

that needs to be mapped to a host port to be usable), and defines

the command that will be used by default.

You can use Podman to build it:

user@geeko:~/simple_python> podman build -t my_
image:latest .

STEP 1/4: FROM registry.suse.com/bci/python:3.10

STEP 2/4: RUN zypper -n in python3-tools;

Refreshing service 'container-suseconnect-zypp'.

Retrieving repository 'SLE_BCI' metadata [.....

Warning: The gpg key signing file 'repomd.xml'
has expired.

 Repository: SLE_BCI

 Key Fingerprint: FEAB 5025 39D8 46DB 2C09 61CA
70AF 9E81 39DB 7C82

 Key Name: SuSE Package

 Signing Key build@suse.de

Chapter 17 463

 Key Algorithm: RSA 2048

 Key Created: Mon Sep 21 08:21:47 2020

 Key Expires: Fri Sep 20 08:21:47 2024 (EXPIRED)

 Rpm Name: gpg-pubkey-39db7c82-5f68629bdone]

Building repository 'SLE_BCI' cache [....done]

Loading repository data...

Reading installed packages...

Resolving package dependencies...

The following 3 NEW packages are going to be installed:

libpython3_6m1_0 python3-base python3-tools

The following 3 packages are not supported by their vendor:

libpython3_6m1_0 python3-base python3-tools

3 new packages to install.

Overall download size: 8.8 MiB. Already cached: 0 B. After the operation,
additional 37.4 MiB will be used.

Continue? [y/n/v/...? shows all options] (y): y

Retrieving: libpython3_6m1_0-3.6.15-150300.10.51.1.aarch64 (SLE_BCI)
(1/3), 851.1 KiB

 Retrieving: libpython3_6m1_0-3.6.15-150300.10.51.1.aarch64.rpm [....done
(159.1 KiB/s)]

Retrieving: python3-base-3.6.15-150300.10.51.1.aarch64 (SLE_BCI) (2/3),
7.5 MiB

Retrieving: python3-base-3.6.15-150300.10.51.1.aarch64.rpm [.......done
(6.4 MiB/s)]

Retrieving: python3-tools-3.6.15-150300.10.51.1.aarch64 (SLE_BCI) (3/3),
498.0 KiB

Retrieving: python3-tools-3.6.15-150300.10.51.1.aarch64.rpm [...done
(223.1 KiB/s)]

Checking for file conflicts: [..done] (1/3) Installing: libpython3_6m1_0-
3.6.15-150300.10.51.1.aarch64 [..done]

(2/3) Installing: python3-base-3.6.15-150300.10.51.1.aarch64 [.......done]

(3/3) Installing: python3-tools-3.6.15-150300.10.51.1.aarch64 [..done] -->
c5f75614d6f5 STEP 3/4: EXPOSE 8000

 --> 628412a31877 STEP 4/4: CMD ["python3", "-m", "http.server"]

COMMIT my_image:latest

 --> 260367012214

Successfully tagged localhost/my_image:latest
260367012214e1b50b93dd26c8a860817893f22b6e7469e7832755173e0d50fa

Managing Containers with Podman464

Remember to specify all commands in the Dockerfile in non-interactive mode, as you won’t

be able to input data during the build. Our new image is ready and stored locally, and we have

labeled it my_image:latest. Running images is easy, but we need to remember to publish the

exposed port so it can be accessed.

user@geeko:~/simple_python> podman run -p 8000:8000 localhost/my_
image:latest

If you want to see the output of the command inside the container, you need to attach the STDIN

and run the command with the -t flag:

user@geeko:~/simple_python> podman run -t -p 8000:8000 localhost/my_
image:latest Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

We can use wget to see that it is running and accessible on port 8000:

user@geeko:> podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 1132e415d2de
localhost/my_image:latest python3 -m http.s... About a minute ago Up About
a minute 0.0.0.0:8000->8000/tcp lucid_swirles

user@geeko:> wget localhost:8000

 Prepended http:// to 'localhost:8000'

--2025-10-25 11:44:57-- http://localhost:8000/

Resolving localhost (localhost)... ::1, 127.0.0.1

Connecting to localhost (localhost)|::1|:8000... connected.

HTTP request sent, awaiting response... Read error (Connection reset by
peer) in headers.

Retrying.

Even if our Python simple web server is available on port 8000 of our localhost, outside of the

container, it is not properly configured, and it does not have content to serve, so it returns an

error. We are not going to configure it, as the steps would be similar to running your application

on a normal server, but remember that you can do the same with your application, with as many

steps as required in the Dockerfile, which can be easily reproduced. Describing Dockerfiles, their

syntax, and best practices for their usage is beyond the scope of this book, but can be found in

the documentation for SLES.

Next, let’s see how to connect to a running container to find information about what is happen-

ing in it.

Chapter 17 465

Connecting to a running container
Sometimes it is necessary to navigate the application inside the container to understand what is

going on. For instance, your container could be failing because your application is not working

properly or because you forgot to expose the proper port. We can connect to a running container

to understand what is going on and test actions using podman exec. In this case, we will flag it

as interactive (-i) and connected to a terminal (-t) because we want to send commands to the

container to be interpreted.

We will use podman ps first to see what containers are running and connect to the right one:

user@geeko:~> podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

 1132e415d2de localhost/my_image:latest python3 -m http.s... 6 minutes ago
Up 6 minutes 0.0.0.0:8000->8000/tcp lucid_swirles

user@geeko:~> podman exec -it lucid_swirles bash

1132e415d2de:/ # ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.3 27424 15852 pts/0 Ss+ 09:42 0:00 python3
-m http.serve

root 7 0.0 0.0 4784 3816 pts/1 Ss 09:50 0:00 bash

root 36 100 0.0 7724 3272 pts/1 R+ 09:51 0:00 ps aux

We run bash as root inside the container. This root user is different because it is only root inside

the container, not in the machine, but for our purposes, it is what we wanted. We can see that

Python is running as root with PID 1, and there is no systemd running. We can look around, find

the problem if there is one, and update our Dockerfile to reflect the changes until we get it right.

Cloud-native applications

In order to run inside a container, many applications need to be updated. For instance,

if you hardcode the IP address during compile time, you will always get the IP ad-

dress of the host where you created the container – something that happened to the

author a few years ago – making it impossible to run your application. Be prepared

to adapt your application so it can be killed at any time, and make intensive use of

environment variables to make the container flexible enough.

Managing Containers with Podman466

Let’s kill the container and clean up a little:

user@geeko:~> podman kill lucid_swirles

lucid_swirles

user@geeko:~> podman ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES

Let’s return to our web server container and see how it is working. We can use the first digits of

the identifier, and if there is no conflict, Podman will know which container we are referring to.

Let’s use it to see the logs:

user@geeko:~> podman logs 449d177

 PostgreSQL Database directory appears to contain a database; Skipping
initialization

 2025-11-27 17:20:22.690 UTC [1]LOG: redirecting log output to logging
collector process

2025-11-27 17:20:22.690 UTC [1]HINT: Future log output will appear in
directory "log".

We can also connect with a terminal to investigate inside the container:

user@geeko:~> podman exec -it 377018c bash

bash-4.4# ls -ld .

dr-xr-xr-x. 1 root root 26 Nov 27 17:25 .

bash-4.4# pg_isready

/run/postgresql:5432 - accepting connections

bash-4.4# exit

exit

user@geeko:~>

Take into account that the container is normally a minimal version of the operating system. In

this container, for instance, you won’t find ps, curl, or zypper, only the binaries installed with

the application, but it is quite important for troubleshooting.

Containers and container images take up space, even if you are not using them. Let’s find out next

how to liberate that space by deleting the images and containers.

Chapter 17 467

Deleting containers and images
There is no container running, but containers are not normally deleted when they stop. You can

see the list of all the containers using the -a flag:

user@geeko:~> podman ps -a

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

88c3cf087115 localhost/my_image:latest python3 -m httpd.... About an hour
ago Exited (1) About an hour ago 0.0.0.0:8000->8000/tcp unruffled_hamilton

035ab7f060b8 localhost/my_image:latest bash About an hour ago Exited (0)
About an hour ago 0.0.0.0:8000->8000/tcp quirky_kirch

d8fe5bd30f68 localhost/my_image:latest python3 -m http.s... 17 minutes ago
Exited (0) 14 minutes ago 0.0.0.0:8000->8000/tcp suspicious_gagarin

1132e415d2de localhost/my_image:latest python3 -m http.s... 14 minutes ago
Exited (137) 2 minutes ago 0.0.0.0:8000->8000/tcp lucid_swirles

Because containers are built using layers, only the changes are stored. Let’s see those layers and

any layers that we have downloaded:

user@geeko:~> podman images

REPOSITORY TAG IMAGE ID CREATED
SIZE

localhost/my_image latest 260367012214 35 minutes ago
309 MB

<none> <none> 338b908d309b About an hour
ago 253 MB

<none> <none> 7e71f69c41a5 About an hour
ago 253 MB

registry.suse.com/bci/bci-base 16.0 eb1bf692b245 11 days ago
105 MB

registry.suse.com/bci/bci-base 15.7 4d0f7d7dc2bb 2 weeks ago
138 MB

registry.suse.com/bci/bci-init 16.0 356a6fd6b214 5 weeks ago
155 MB

registry.suse.com/bci/python 3.10 cd38d8c88797 22 months ago
253 MB

The layers without a name have been created from our steps in the Dockerfile.

Managing Containers with Podman468

Deleting the containers is easy; you just need to specify one container with its name or digest to

the podman rm command:

user@geeko:~> podman ps -a --format "{{.Names}}"

unruffled_hamilton

quirky_kirch

agitated_matsumoto

compassionate_jang

hopeful_hermann

beautiful_vaughan

thirsty_sammet

adoring_gauss

sweet_boyd

suspicious_gagarin

lucid_swirles

user@geeko:~> podman rm sweet_boyd

sweet_boyd

Let’s now delete all remaining containers, as we don’t need them anymore. We can always use

the image to create a new one.

user@geeko:~> podman rm -a

42c3f4d028f4a967b46d930303cd5e45ded66dc84fecf04cbb8c0239d963e735

d8fe5bd30f68e2198f44c872ac397245b4e7af5fff14baf659b7b78d44ce00d1

a5db8cc983a6ece0849d2118e7235fbac6285719a0e182912901569e4311caf2

2133fbd1cc86c62dfda50356f9e89b3fb1ce28dc84642f80b67498f3157d44b8

035ab7f060b8c58377744ef1345f2e2055f8bc1b84e186214410d445e665a9d0

0da9f8d6f09a356f0497be2611d66c8d871704d52c63e8b1b89b56fd1b6de8fe

1132e415d2de4b5d481f0cb5e5a435de65da7b177fa42b4c6b60616fe56205aa

cd373b31878f0b1c670908b6bc7b303f75428547d0bff9be93b89689a2242fb4

9c801b3508fdfda67d0228db3e5535e9a2de05588c3b65b11b741d476d36af2d

88c3cf087115e07f64d929bdd0acc2cc17352756aa11b8bf2b44006754d958d3

Chapter 17 469

We have not deleted the images yet, not even the images we created, so they are stored locally to

be reused. Let’s delete the ones we are not using:

user@geeko:~> podman images --all

REPOSITORY TAG IMAGE ID CREATED
SIZE

<none> <none> 628412a31877 2 days ago
309 MB

localhost/my_image latest 260367012214 2 days ago
309 MB

<none> <none> c5f75614d6f5 2 days ago
309 MB

<none> <none> 338b908d309b 2 days ago
253 MB

<none> <none> 143dd2b3ccfa 2 days ago
253 MB

<none> <none> 7e71f69c41a5 2 days ago
253 MB

registry.suse.com/bci/bci-base 16.0 eb1bf692b245 2 weeks ago
105 MB

registry.suse.com/bci/bci-base 15.7 4d0f7d7dc2bb 2 weeks ago
138 MB

registry.suse.com/bci/bci-init 16.0 356a6fd6b214 5 weeks ago
155 MB

registry.suse.com/bci/python 3.10 cd38d8c88797 22 months ago
253 MB

To delete an image, we use the podman rmi command:

user@geeko:~> podman rmi registry.suse.com/bci/bci-base:15.7

Untagged: registry.suse.com/bci/bci-base:15.7

Deleted: 4d0f7d7dc2bbcd133cb9d9a05c4b80e9a46f69b01040ec42a72f8320ab2c0f9d

user@geeko:~> podman rmi localhost/my_image:latest

Untagged: localhost/my_image:latest

Deleted: 260367012214e1b50b93dd26c8a860817893f22b6e7469e7832755173e0d50fa

Deleted: 628412a31877fcd9e3cb0ba27bb353d8825e7da4e83e2c51ce4b7930c434810d

Deleted: c5f75614d6f5c118349d45f1f5c23479db252709231c9c9fa486ef98bd79f132

Managing Containers with Podman470

We can see now that the images have been deleted:

user@geeko:~> podman images --all

REPOSITORY TAG IMAGE ID CREATED
SIZE

<none> <none> 338b908d309b 2 days ago
253 MB

<none> <none> 143dd2b3ccfa 2 days ago
253 MB

<none> <none> 7e71f69c41a5 2 days ago
253 MB

registry.suse.com/bci/bci-base 16.0 eb1bf692b245 2 weeks ago
105 MB

registry.suse.com/bci/bci-init 16.0 356a6fd6b214 5 weeks ago
155 MB

registry.suse.com/bci/python 3.10 cd38d8c88797 22 months ago
253 MB

Let’s now remove all remaining images. We will use a longer command that is equivalent to

podman rmi . To delete all images, we use the -a flag:

user@geeko:~> podman image rm -a

Untagged: registry.suse.com/bci/bci-base:16.0

Untagged: registry.suse.com/bci/bci-init:16.0

Untagged: registry.suse.com/bci/python:3.10

Deleted: eb1bf692b245784f0418fcd8d38caf4b5264577dfebbcbd470eb1f5f201e5c59

Deleted: 356a6fd6b2146484fc0df27ca9f738bbf055c353415b02e248e39e74578c2435

Deleted: 7e71f69c41a564de9eff39f99b4f1937b3b29fb0af6e6eeb99ebef8c712cc812

Deleted: 338b908d309b664578fd999cd4e79601a0745951b0e4781de5d8efd8c4523da9

user@geeko:~> podman image ls -a

REPOSITORY TAG IMAGE ID CREATED SIZE

You can run containers using podman run -rm, and the containers will be deleted

automatically when they are no longer running. However, you won’t be able to see

logs or investigate anything in the container once it is deleted.

Chapter 17 471

With this, you have a working understanding of containers and Podman. If you want to learn

more about containers, try to go beyond the tutorials that you can find and package your own

application, with configuration and a database. Use Dockerfiles to reproduce the steps, as you will

find that you will have to modify the code and the container many times until it works as expected.

Summary
In this chapter, we reviewed what containers are and the basic use of Podman. You can find and

download images and create containers from them. You learned how to create a Dockerfile to

automate the creation of images, and you went through the steps required to delete images and

containers when you no longer needed.

Containers are a very interesting topic that requires more space and time. Feel free to investigate

further and even start using SUSE Rancher for a full Kubernetes cluster.

In the next chapter, we will learn about SLES for SAP applications, a version of SLES 16 specifically

created to run SAP in production.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

18
Introduction to SLES for SAP
Applications

We are in the final chapters of the book. Until now, we have learned how to install and maintain

a Linux system based on SUSE Linux Enterprise Server (SLES) 16. Perhaps you are wondering

why you should choose one version of Linux over the other, or why you should choose Linux at all.

The answer is complex and depends on whether you want to run Linux on your laptop or want

to install it on a server. For enterprise distributions, the choice is about uptime, security, and

support life cycles.

Enterprise resource planning (ERP) is a kind of business software and technology that allows

companies to automate and computerize their business processes. Organizations can use it to

collect, store, manage, and interpret data from business activities. Many ERP systems also help

to implement best practices and streamline compliance with legal and regulatory requirements,

making them indispensable for big companies that need to collect and process greater amounts

of data, consolidating the results of sales, orders, purchases, and revenues to provide unique in-

sights into the business performance. For big companies, an ERP tool integrated into all systems

is a requirement.

Introduction to SLES for SAP Applications474

If one of your workloads uses an ERP tool, it is quite likely that you are using or will use SAP, and

that you are running it on top of SLES for SAP Applications, a version of SLES that is optimized for

SAP workloads. Let’s see the difference between the standard SLES and SLES for SAP Applications

to understand the improvements for specific workloads. The additional features will also give

some ideas on how to choose the proper Linux distribution for your workloads.

SAP© was one of the first companies in the world to offer standard software for business solu-

tions, specifically in the area of ERP. Many of the world’s largest corporations use SAP products

to manage their day-to-day operations and help with strategic planning, in finance, sales, human

resources, or product planning.

SAP applications handle business-critical data, which is extremely sensitive and important for

their customers’ businesses, requiring fine-tuning and hardening to achieve adequate levels of

performance and availability required by businesses today. SAP applications consolidate busi-

ness and customer data into a single database, enabling advanced use cases but increasing the

requirements on the full production stack, starting with the operating system (OS).

The latest version of the SAP suite for business, SAP S/4HANA, requires the use of the SAP HANA

database and a Linux OS.

You can find more information about SAP and SAP S/4HANA at their website: https://www.sap.

com/.

SAP is likely the most common workload when using SLES, specifically because it is the gold

standard for deploying SAP workloads. The tight integration between engineer teams and addi-

tional tools differentiates it from any other distribution, and the tools included will make your

life as an administrator much easier.

We will be covering the following main topics in this chapter:

•	 SLES for SAP Applications

•	 Trento

•	 Tuning SLES for SAP

•	 Converting a SLES system to SLES for SAP Applications

Let’s get started!

https://www.sap.com/
https://www.sap.com/

Chapter 18 475

Technical requirements
SLES for SAP Applications and its management are part of a different certification and require a

separate license. Don’t worry; this chapter is merely informative, and you won’t need anything

to go through it.

SLES for SAP Applications
As the leading Linux platform for SAP NetWeaver, SAP HANA, and SAP S/4HANA, SLES for SAP

Applications delivers reduced downtime, optimized performance, and faster SAP landscape

deployments. This solution combines SLES and SUSE Linux Enterprise High Availability with

additional software specifically designed to simplify the management and running of SAP ap-

plications. It includes features that secure SAP HANA systems and help systems administrators

ease the transition to SAP S/4HANA.

Additionally, SLES for SAP Applications includes Live Patching, which ensures your systems have

more time online without unplanned downtime by allowing you to update the Linux kernel

without having to restart applications or reboot any server. This section provides an overview of

important product updates, as well as the high-level general features, capabilities, and limitations

of SLES for SAP Applications. You can learn more at the following link: https://www.suse.com/

products/sles-for-sap/.

It also includes SUSE Multi-Linux Manager, an infrastructure management solution that auto-

mates patch and configuration management, reducing the risk of errors, as well as SUSE Linux

Enterprise High Availability and SUSE Linux Enterprise Live Patching.

For highly regulated environments, SLES for SAP Applications inherits the security certifications

of SLES to provide the only Linux OS certified for Common Criteria EAL4+ and FIPS 140-2, as a

testimony of SUSE software supply chain security.

The SLES for SAP Applications life cycle and capabilities have been designed with real use cases

in mind for your SAP workloads. Thus, it includes the extensions and capabilities you need by

default. For instance, by knowing that changes in the OS need to be carefully tested and verified

to follow SAP requirements, it allows you to stay longer in a defined version of SLES, as it includes

long-term support, so you can keep your system updated and secure without requiring a migration

to the newer minor version. Let’s find out what the other capabilities are.

https://www.suse.com/products/sles-for-sap/
https://www.suse.com/products/sles-for-sap/

Introduction to SLES for SAP Applications476

Long-term support
 Customers purchasing subscriptions directly from SUSE or SUSE partners can initiate support

requests through regular SAP escalation channels, with SAP contacting SUSE if the request in-

volves the OS. Each version of SLES for SAP Applications comes with 24x7 support, comprising

1.5 years of full support plus limited support for the remaining 3 years. This coverage eliminates

the need for additional long-term support options and provides the stability required for SAP

deployments, where upgrades require careful planning.

Workload Memory Protection
 One method to increase application availability is running it on more than one server, though

this brings its own problems and limitations because data needs to be synchronized between

machines. You can achieve high availability if you configure systems for real-time availability

of SAP data using Workload Memory Protection. This shields SAP transactional and analytics

data from Linux kernel memory management, ensuring the data remains in memory and is not

written down into the cache, so it is never slowed down.

SUSE High Availability provides flexible, policy-driven clustering to your Linux data center, us-

ing open source technologies such as Pacemaker and Corosync to monitor services and restart

or migrate them when necessary. SUSE High Availability also includes features for simplified

management and data duplication, integrated in Trento.

The following figure shows the architecture of a High Availability deployment using these tech-

nologies:

Chapter 18 477

Figure 18.1 – SLES for SAP Applications High Availability solution

Let’s find out how SLES for SAP Applications helps to increase uptime.

SUSE Linux Enterprise Live Patching
Another way to increase availability is to reduce the downtime. But if you can’t reboot the system,

it is not possible to update some core libraries and the kernel, increasing the chances of running

your systems in production with versions of packages that have known bugs and vulnerabilities.

Included with SLES 16 in all versions, Live Patching allows you to apply critical updates to the

kernel and user-space libraries at runtime with no reboots or restarts. It eliminates the need for

system reboots and application restarts, increasing service availability and allowing you to decide

when you want to reboot.

Support for required features is important, but SLES for SAP Applications is more than documen-

tation or the possibility to open a support case. Next, we will see tools that help maintain day-2

operations of SAP workloads.

Introduction to SLES for SAP Applications478

Trento
Trento is the SAP system administration solution created by SUSE to provide advanced discov-

ery, tuning, monitoring, and housekeeping with an API and a user-friendly web interface. It is

a comprehensive solution that consists of two components: the Trento Server and the Trento

Agent. Trento is used to prevent infrastructural issues by diagnosing common issues, validating

system configurations against best practices, and removing tolls from routine OS tasks on mis-

sion-critical systems.

Trento excels at identifying and fixing errors with high availability configurations and SAP system

monitoring. It provides capabilities that complement the tools included with SAP Applications

to provide a full view of your SAP deployment:

•	 Complements SAP monitoring and checking tools with a focus on infrastructure at the

OS level and high availability of cluster checks

•	 Automatic discovery of SAP system elements

•	 Continuous checking of cloud and server high availability configurations against docu-

mented best practices

•	 Easy access to relevant documentation, including SAP Notes

•	 Recommended fixes

•	 Monitoring and alerting

The Trento Server is an independent, distributed system designed to run on a Kubernetes cluster

or as a systemd service. It provides a web frontend for the application and consists of the follow-

ing components:

•	 The control plane, a web component that renders the UI and is responsible for internal

and external communications

•	 The checks engine (Wanda), which orchestrates the execution of configuration checks

•	 A PostgreSQL database

•	 The RabbitMQ message broker for communications

•	 A Prometheus instance for metric analysis

The Trento Server does not work on its own. In each server, a small application runs to provide

a heartbeat and discovery of information about the target host. The Trento Agent is a systemd

daemon on each monitored host of the SAP infrastructure that communicates with the Trento

Server. Whenever your system stops reporting and updating, it will make sense to check the

daemon log to ensure that it is working properly.

Chapter 18 479

You can find more information about Trento on its GitHub page: https://github.com/trento-

project.

The following picture shows the Trento architecture and components:

Figure 18.2 – Trento architecture

In the next section, we will learn about the tools included in SLES for SAP Applications to get the

maximum performance of your server and application.

Tuning SLES for SAP
Making SAP Applications work properly requires tuning to make sure that the OS can behave with

the high level of performance and stability required to run SAP workloads.

 https://github.com/trento-project
https://github.com/trento-project
https://github.com/trento-project

Introduction to SLES for SAP Applications480

SLES for SAP Applications includes Saptune to tune the OS to the

specific requirements for running SAP workloads. System tuning is

a mandatory step described in various SAP notes. Saptune groups

those notes and offers solutions that address them, ensuring that

no parameter is missed.

There are different solutions available that provide different tun-

ing profiles. Tuning is application-dependent, so you can tune

your system for the appropriate workload, including SAP HANA

database, SAP NetWeaver, SAP BusinessObjects, SAP S/4HANA

Application Server, and more.

You can find more information about Saptune on its GitHub page:

https://github.com/SUSE/saptune.

Because SLES for SAP Applications is built on top of SAP, it is pos-

sible to convert a base SLES system into SLES for SAP Applications.

In the next section, we will see how.

Converting a SLES system to SLES
for SAP Applications
SLES 16 includes a dedicated script to simplify the process of con-

verting an existing SLES system into SLES for SAP Applications. It

is called Migrate_SLES_to_SLES-for-SAP.sh.

The script updates the registration, making sure that it is correct,

and subscribes to the appropriate repositories. However, the script

does not install all packages that are part of a proper installation

(you can install them yourself by installing the patterns-server-

enterprise-sap_server pattern). Be careful with pay-as-you-go

instances in public clouds, as this script migrates the repositories,

but it does not affect the way the system is identified by the cloud

provider, so it can be ineffective.

Remember that the SLES

for SAP Applications sub-

scription is different from

your SLES subscription.

You will need to purchase

a new subscription to

make the transition.

 https://github.com/SUSE/saptune
https://github.com/SUSE/saptune

Chapter 18 481

Summary
SLES for SAP Applications is a SAP-endorsed app, a proven solution to complement and extend

SAP products that delivers value quickly, easily, and with support from SAP. Most of the SAP ap-

plications running on Linux run on SUSE, as SLES for SAP Applications includes extensions that

improve performance, availability, and security.

SLES for SAP Applications includes entitlements and solutions to simplify your SAP deployments’

day 0, 1, and 2 operations, from configuration checks to active monitoring and automated de-

ployment. It includes Trento, along with Live Patching and High Availability extensions, and an

extended life cycle that allows you to confidently deploy and maintain your SAP environment

on-premises or in the cloud.

In the next two chapters, we will finish the book with practice exercises that will put everything

we have learned so far into practice. Make sure to go through them so that you are confident that

you are ready for your test.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

Part 5
Practice Exercises

This part comprises practical exercises to review what was learned in the previous parts. It con-

tains an intermediate practice exercise and a more advanced one, letting you assess your status.

This part has the following chapters:

•	 Chapter 19, Practice Exercises – 1

•	 Chapter 20, Practice Exercises – 2

19
Practice Exercises – 1

In this chapter, we will go through a set of exercises to check the knowledge you’ve acquired

through this book. Unlike in the main chapters, not all steps will be indicated, and it’s left to you

to perform the steps required to accomplish the goals. It is recommended not to check the relevant

chapters for guidance and instead to try to use your memory or the tools available on the system.

This experience will be a key factor when attempting the official SUSE Certified Architect exams.

It is strongly advised to start this exercise with a timer to keep track of the time it takes to complete

it. Execution speed will be key to passing the exam and obtaining the certification.

Technical requirements
All the practice exercises in this chapter require a virtual machine (VM) running SUSE Linux

Enterprise Server 16 installed with the base installation, as described in Chapter 1, Getting SLES 16

Up and Running (Physical and Cloud). Additionally, new virtual drives will be required for storage

operations.

The exercises assume you have the following:

•	 SUSE Linux Enterprise Server 16 installed with Minimal Install selected

•	 Access to the SUSE Customer Center (https://scc.suse.com) with an active subscription

(i.e., a trial subscription)

•	 The VM must be expendable; that is, actions performed on it might render it unusable

and it will need to be reinstalled or rolled back to an earlier snapshot

https://scc.suse.com

Practice Exercises – 1486

Tips for the exercise
This is a list of general recommendations for any test. They are mostly common sense, but it’s

always useful to have them in our minds before taking a test:

•	 Read all the questions carefully before starting. Specific words have specific meanings that

give hints about the requirements or ways to accomplish the goals; that’s why reading

everything carefully first is important.

•	 Make yourself comfortable, install your favorite editor (such as Vim), and define your

keyboard layout. Install and learn the basics of tmux so that you can open new tabs and

name them without requiring extra windows.

•	 Locate dependencies between requests. Some goals depend on others for completion. Find

those dependencies to see how you can build up the solution without having to come

back and redo some steps because of having taken the wrong path.

•	 Use a timer. It’s important to get an idea of which parts of the exercise took longer to

complete to see what can be improved.

•	 Don’t remember specific command lines; learn how to use the documentation available

in the system via man, /usr/share/doc/packages arguments such as --help for the com-

mands, and so on.

•	 Ensure that changes persist and are still active after a reboot. Some changes might be

active while you run them, but they must be persisted, such as firewall rules and services

to start at boot.

•	 Remember that you can use zypper search --provides "*/COMMAND" to find packages

that provide a file that you might be missing.

•	 Visit https://www.suse.com/training/exam/sca-sles-16/ for the official SUSE Certi-

fied Administrator (SCA) exam objectives.

Practice exercise 1

Don’t jump into completing the exercise too early. Try to think and remember what was covered.

By design, in the following exercise, there will be no styles on commands, packages,

and so on. Remember what you’ve learned so far to detect the keywords to see what

needs to be done.

https://www.suse.com/training/exam/sca-sles-16/

Chapter 19 487

Here are the steps of this exercise:

1.	 Configure the time zone to GMT.

2.	 Allow passwordless login to the root user using SSH.

3.	 Create a user named tux that can connect to the machine without a password.

4.	 The user tux should change their password every week, with two days’ warning and one

day of usage once the password has expired.

5.	 The root user must be able to SSH as tux without a password.

6.	 tux should be able to become root without a password and execute commands without

a password too.

7.	 When a user tries to log in over SSH, display a message about not allowing unauthorized

access to our system.

8.	 Make a pre snapshot named pre-ssh.

9.	 SSH must listen on port 2222 instead of the default (22) one.

10.	 Make a post snapshot named post-ssh associated with the snapshot named pre-ssh. Then,

check the files that have changed and add them to /root/ssh-files-changed.txt. Finally,

note the differences and save them to /root/ssh-changes.txt.

11.	 Create a group named devel.

12.	 Make tux a member of devel.

13.	 Store user membership to a file called userids in the home folder for tux.

14.	 tux should be able to connect to localhost via SSH without specifying the port and use

compression by default for the connection.

15.	 Find, as tux, all man page names in the system and put the names into a file named man-

pages.txt in your home directory.

16.	 As root, store usernames for users without login permissions to the system in a file called

/root/nologin.txt.

17.	 Monitor available system resources every five minutes. Do not use cron. Save output as

/root/resources.log.

18.	 Create a script to report the available percentage of free disk space and store it in /root/

freespace.log so that it shows the filesystem and free space.

19.	 Configure the system to only leave three days of logs.

20.	 Configure the log rotation for /root/freespace.log and /root/resources.log.

Practice Exercises – 1488

21.	 Configure time synchronization against pool.ntp.org with fast sync.

22.	 Provide NTP server services for subnet 192.168.122.1/24.

23.	 Configure system stats collection every minute.

24.	 Configure the password length in the system for users to be 12 characters.

25.	 Create a bot user called privacy that has files that are only visible to it by default.

26.	 Create a folder called /shared that can be accessed by all users and, by default, allows all

new files and directories to still be accessible to users of the devel group.

27.	 Configure a network connection with IPv4 and IPv6 addressing named mynic using the

following data:

•	 Ip6: 2001:db8:0:1::c000:207/64 g

•	 gateway 2001:db8:0:1::1

•	 Ipv4 192.0.1.3/24

•	 gateway 192.0.1.1

28.	 Allow the host to use the google hostname to reach www.google.com and the suse host-

name to reach www.suse.com.

29.	 Report the files that are different from what the vendor distributed and store them in /

root/altered.txt.

30.	 Make our system installation media packages available via HTTP at /mirror for other

systems to use it as a mirror, configure the repository in our system, and remove the ker-

nel packages from that mirror so that other systems (even ours) can’t find new kernels.

Ignore the glibc packages from installation from this repository without removing them.

31.	 Check whether our system conforms to the PCI-DSS standard.

32.	 Add a second hard drive with 30 GB of space with LVM to the system, but use only 15 GB

to move the mirror to it, making it available at boot in /mirror/mirror.

33.	 Create a second copy of the mirror in /mirror/mytailormirror, removing all packages start-

ing with the letter k.

34.	 Create a new volume in the remaining space of the added hard drive (15 GB) and use it to

extend the mirror filesystem.

In the next section, we’ll list the goals and provide an explanation below each of them using

proper syntax styles and explanations.

www.google.com
www.suse.com

Chapter 19 489

Exercise 1 solution
1. Configure the time zone to GMT
We can check the current system date by executing date as the very last part of the printed line,

which will show the time zone. To configure it, we can use the timedatectl command or alter

the /etc/localtime symbolic link.

So, to complete this task, we can use either of the following:

•	 timedatectl set-timezone GMT

•	 rm -fv /etc/localtime; ln -s /usr/share/zoneinfo/GMT /etc/localtime

Now, date should report the correct time zone.

2. Allow passwordless login to the root user using SSH
This short goal has several requirements:

•	 SSH must be installed and available (that means installed and started)

•	 The root user should have an SSH key generated and added to the list of authorized keys

First, let’s tackle SSH:

sudo zypper install openssh-server;

sudo systemctl enable --now sshd

Now, let’s generate an SSH key by pressing Enter to accept all of the defaults:

ssh-keygen

Now, let’s add the generated key (/root/.ssh/id_rsa) to the authorized keys:

sudo -i

cd /root/.ssh

cat id_rsa.pub >> authorized_keys

chmod 600 authorized_keys

To validate this, we can execute ssh localhost date, and we will be able to get the current

system date and time without providing a password.

Practice Exercises – 1490

3. Create a user named tux that can connect to the machine
without a password
This requires creating a user and an SSH key that is added to authorized keys, similar to what

we did with the root user. The next options will also be relevant to a user but, for the purpose

of demonstration, we will tackle them as separate tasks. Let’s start by creating the tux user and

impersonating it:

sudo -i

useradd tux

su - tux

Now, let’s generate an SSH key by typing the following and pressing Enter to accept all defaults:

ssh-keygen

Now, let’s add the generated key to the authorized keys:

cd ~/.ssh

cat id_ed255219.pub >> authorized_keys

chmod 600 authorized_keys

To validate this, we can execute ssh tux@localhost whoami, and we will be able to get the current

system date and time without providing a password.

You should enter logout to return to our root user.

4. The user tux should change their password every week,
with two days’ warning and one day of usage once the
password has expired
This requires us to tune the user restrictions:

chage -W 2 tux

chage -I 1 tux

chage -M 7 tux

5. The root user must be able to SSH as tux without a
password
This requires two steps: enabling user with root's authorized key and tuning the sshd daemon:

cat /home/tux/id_ed25519.pub >> /root/.ssh/authorized_keys

Chapter 19 491

6. tux should be able to become root without a password
and execute commands without a password too
This means creating a file called /etc/sudoers.d/tux and adding this line:

tux ALL=(ALL) NOPASSWD:ALL

7. When a user tries to log in over SSH, display a message
about not allowing unauthorized access to our system
Create a file, for example, /etc/ssh/banner, with the message to display, such as Unauthorized

access forbidden. Get out of here. Then create a file called /etc/ssh/sshd_config.d/

banner.conf with the following content:

Banner /etc/ssh/banner

Then, restart the sshd daemon with systemctl restart sshd.

8. Make a pre snapshot named pre-ssh
This is a very simple one. We can become root, the administrative account, by running sudo -i.

Then, we just run snapper create -t pre -d "pre-ssh".

We can then run snapper list to verify that the snapshot has been created properly.

9. SSH must listen on port 2222 instead of the default (22)
one
This is a tricky one. The first task is to create /etc/ssh/sshd_config.d/new-port.conf and define

port 2222. To do that, the content of the file should be as follows:

Port 2222

Once you’ve done this, restart sshd with the following command:

systemctl restart sshd

Let’s check that it’s listening on the right port:

lsof -i -n -P

This, of course, is not enough to be able to connect to ssh via port 2222. Why?

Practice Exercises – 1492

The firewall must be configured:

firewall-cmd --add-port=2222/tcp --permanent

firewall-cmd --add-port=2222/tcp

SELinux must also be configured:

semanage port -a -t ssh_port_t -p tcp 2222

Now, sshd can be restarted:

systemctl restart sshd

10. Make a post snapshot named post-ssh associated with
the snapshot named pre-ssh. Then, check the files that have
changed and add them to /root/ssh-files-changed.txt. Finally,
note the differences and save them to /root/ssh-changes.txt
As root, we can create the snapshot easily by running snapper create. But first, we need to run

snapper list to get the pre snapshot. In this example, the pre snapshot is 81:

geeko:~ # snapper list | grep pre-ssh

81 │ pre │ Sun Oct 19 16:28:46 2025 │ root │ 304.00 KiB │ pre-ssh

Now, we can create the snapshot with the following command:

geeko:~ # snapper create -d "post-ssh" -t post --pre-number 81

We can verify the creation by running snapper list. In this example, the new snapshot is num-

ber 82.

Now it’s time to check the differences. We can do this with snapper status and send the output

to the requested file, /root/ssh-files-changed.txt:

geeko:~ # snapper status 81..82 > /root/ssh-files-changed.txt

To see the differences in content, we use snapper diff:

geeko:~ # snapper diff 81..82 > /root/ssh-changes.txt

And we are done!

Chapter 19 493

11. Create a group named devel
We only need to use groupadd to create this group:

groupadd devel

12. Make tux a member of devel
To make a user a member of a group, we use usermod. Note the -a option, which adds a group

and keeps the rest of the groups assigned to the user as they are. The final command is as follows:

usermod -aG devel tux

13. Store user membership to a file called userids in the
home folder for tux
To get user membership, we use the id command, redirecting the output to a file named userids

in the home directory with the following command:

id tux > /home/tux/userids

14. tux should be able to connect to localhost via SSH
without specifying the port and compression by default for
the connection
We altered the default SSH port to be 2222.

Create a file named .ssh/config for the tux user with the following contents including the new

port and the option Compression set to yes to activate compression by default to the connection:

Host localhost

Port 2222

 Compression yes

15. Find, as tux, all man page names in the system and put
the names into a file named manpages.txt in your home
directory
Become tux if you are root:

su - tux

Practice Exercises – 1494

Man pages are stored in /usr/share/man; so to list all the man pages, we have to run the find

command. Then we redirect the output to the required file as follows:

find /usr/share/man/ -type f > /home/tux/manpages.txt

16. As root, store usernames for users without login
permissions to the system in a file called /root/nologin.txt
We can run a search using grep and create a file with the changes. This can be done with the

following command:

grep nologin /etc/passwd > /root/nologin

The preceding command builds a list of users in the system with the nologin shell.

We can clean up the unneeded information using cut:

grep nologin /etc/passwd | cut -d: -f 1 > /root/nologin

In the preceding command, we use -d to select the delimiter and -f to select the field to keep.

17. Monitor available system resources every five minutes.
Do not use cron. Store as /root/resources.log
An ideal way to monitor something is to use cron, but we’re told not to use it, so this leaves us with

systemd timers (you can check out the files tested at https://github.com/PacktPublishing/
SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/tree/main/chapter-

19-exercises/exercise-17).

Create /etc/systemd/system/monitorresources.service with the following contents:

[Unit]

Description=Monitor system resources

[Service]

Type=oneshot

ExecStart=/root/myresources.sh

Create /etc/systemd/system/monitorresources.timer with the following contents:

[Unit]

Description=Monitor system resources

[Timer]

https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/tree/main/chapter-19-exercises/exercise-17
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/tree/main/chapter-19-exercises/exercise-17
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/tree/main/chapter-19-exercises/exercise-17

Chapter 19 495

OnCalendar=*:0/5

Persistent=true

[Install]

WantedBy=timers.target

Create /root/myresources.sh with the following contents:

#!/bin/bash

df -h > /root/resources.log

Enable the new timer:

systemctl daemon-reload

systemctl enable monitorresources.timer

Does it work? No... journalctl -f will give us some details: SELinux prevents executing a root

file; let’s label it as a binary type and let’s mark it executable too:

chcon -t bin_t /root/myresources.sh

chmod +x /root/myresources.sh

18. Create a script to report the available percentage of
free disk space and store it in /root/freespace.log so that it
shows the filesystem and free space
df reports used disk space and available space, so we need to do some math.

This command will report the mounted location, size, used space, and available space with ; as

the separator:

df|awk '{print $6";"$2";"$3";"$4}'

Bash allows us to do some math operations, but without fractional parts. We will need to do a trick.

We will be looping over the mounted partitions/subvolumes:

for each in $(df|awk '{print $6";"$2";"$3";"$4}'|grep -v "Mounted")

do

 FREE=$(echo $each|cut -d ";" -f 4)

 TOTAL=$(echo $each|cut -d ";" -f 2)

 echo "$each has $((FREE*100/TOTAL)) free"

done

Practice Exercises – 1496

The for loop will check all the available data and grab some specific fields, separate them with ;,

and run the loop for each line that contains the list of partitions/subvolumes, stored in the $each

variable.

We cut the output and we get the fourth field, which is the available space.

We cut the output and we get the second field, which is the total blocks.

As Bash can do integer division, we multiply by 100 and then divide to get the percentage and

add a string as part of the output.

Alternatively, but not as illustrative, we could have discounted to 100 the percentage of used

already given by using the df command.

We also need to store that output in a file, so we can either wrap the whole loop in a redirection

or add it to the echo line so that it is appended to a file.

Create a /root/myfreespace.sh script with the following contents:

for each in $(df|awk '{print $6";"$2";"$3";"$4}'|grep -v "Mounted")

do

 FREE=$(echo $each|cut -d ";" -f 4)

 TOTAL=$(echo $each|cut -d ";" -f 2)

 echo "$each has $((FREE*100/TOTAL)) free"

done

Then, run chmod 755 /root/myfreespace.sh to make it executable.

19. Configure the system to only leave three days of logs
Create a file called /etc/logrotate.d/three-days and add the following contents:

daily

rotate 3

20. Configure the log rotation for /root/freespace.log and /
root/resources.log
Create a file called /etc/logrotate.d/rotateroot with the following contents:

/root/freespace.log {

 missingok

 notifempty

 sharedscripts

Chapter 19 497

 copytruncate

}

/root/resources.log {

 missingok

 notifempty

 sharedscripts

 copytruncate

}

21. Configure time synchronization against pool.ntp.org with
fast sync
Edit /etc/chrony.d/pool.conf and add the following line:

pool pool.ntp.org iburst

Then, run the following:

systemctl restart chronyd

22. Provide NTP server services for subnet
192.168.122.1/24
Edit /etc/chrony.d/subnet.conf and add the following line:

Allow 192.168.122.1/24

Then, run the following:

systemctl restart chronyd

23. Configure system stats collection every minute
Start by installing sysstat:

zypper install sysstat

We now need to modify /usr/lib/systemd/system/sysstat-collect.timer, so let’s create an

override.

Edit in /etc/systemd/system/sysstat-collect.timer.d/ the file override.conf with the fol-

lowing content:

[Timer]

OnCalendar=*:00/1

Practice Exercises – 1498

Then, reload units with this command:

systemctl daemon-reload

24. Configure the password length in the system for users
to be 12 characters
Create /etc/login.defs.d/99-pass-min-len.conf with the following content:

PASS_MIN_LEN 12

25. Create a bot user called privacy that has files that are
only visible to it by default

useradd privacy

su - privacy

echo "umask 0077" >> .bashrc

This solution uses umask to remove permissions from others on all newly created files.

26. Create a folder called /shared that can be accessed by
all users and, by default, allows new files and directories to
still be accessible to users of the devel group
This is a pretty simple one. We start by creating the folder, then change the owner group and

permissions, and finally add the sticky bit to change the default behavior. The commands are

as follows:

mkdir /shared

chown root:devel /shared

chmod 777 /shared

chmod +s /shared

You can also use systemctl edit sysstat-collect.timer to modify the behavior.

Chapter 19 499

27. Configure a network connection with IPv4 and IPv6
addressing named mynic using the given data
Let’s use nmcli for this. We will need to check all the options in the man page and then we will
run the following command:

nmcli con add con-name mynic type ethernet ifname eth0 ipv6.address
2001:db8:0:1::c000:207/64 ipv6.gateway 2001:db8:0:1::1 ipv4.address
192.0.1.3/24 ipv4.gateway 192.0.1.1

Of course, you can also use nmtui or Cockpit.

28. Allow the host to use the google hostname to reach
www.google.com and the suse hostname to reach www.suse.
com
Run the following commands and record the IPs obtained:

ping www.google.com

ping www.suse.com

Then, edit /etc/hosts by adding the following:

IPFORGOOGLE google

IPFORSUSE suse

Save and exit.

As an example, my results were as follows:

172.64.155.66 suse

142.250.185.4 google

Practice Exercises – 1500

29. Report the files that are different from what the vendor
distributed and store them in /root/altered.txt
Checking the options for rpm in the man page will take us to the following command:

rpm -Va > /root/altered.txt

30. Make our system installation media packages available
via HTTP at /mirror for other systems to use it as a mirror,
configure the repository in our system, and remove the
kernel packages from that mirror so that other systems (even
ours) can’t find new kernels. Ignore the glibc packages from
installation from this repository without removing them
This is a complex one, so let’s analyze the request.

Install httpd and enable it:

zypper install httpd

firewall-cmd --add-service=http --permanent

firewall-cmd --add-service=http

systemctl start apache2

systemctl enable apache2

Create a folder under /mirror, copy the source media packages, and make the mentioned folder

available over HTTP:

mkdir /mirror /srv/www/htdocs/mirror

mount /dev/cdrom /mnt

rsync -avr -progress /mnt/ /mirror/

mount -o bind /mirror /srv/www/htdocs/mirror

chcon -R -t httpd_sys_content_t /srv/www/htdocs/mirror/

Remove the kernel packages:

find /mirror -name kernel* -exec rm '{}' \;

Create the repository files’ metadata:

zypper in createrepo

cd /mirror

createrepo .

Chapter 19 501

Now we need to create a repofile using the repository we created and set it up in our system,

ignoring glibc* packages from it.

Edit /etc/zypp/repos.d/mymirror.repo with the following contents:

[mymirror]

name=My SLES16 Mirror

baseurl=http://localhost/mirror/

enabled=1

gpgcheck=0

exclude=glibc*

31. Check whether our system conforms to the PCI-DSS
standard
We can check this with openscap. We will need at least 16 GB of RAM. It can be done with the

following commands:

zypper install openscap scap-security-guide openscap-utils

oscap xccdf eval --fetch-remote-resources --report pci-dss-report.html
--profile pci-dss-4 /usr/share/xml/scap/ssg/content/ssg-sle15-ds.xml

32. Add a second hard drive with 30 GB of space with LVM
to the system, but use only 15 GB to move the mirror to it,
making it available at boot in /mirror/mirror
We need to move the mirror we currently have to a new disk and copy all the content from the

old mirror to the newly created space.

We also need a new drive. You can add it in the VM manager or follow the instructions in Chapter

12, Managing Local Storage and Filesystems.

If we’ve the installed media, we can choose to copy it over and repeat the kernel removal or trans-

fer. To do this, first let’s create the newmirror volume in a partition in our new hard drive (sdb):

fdisk /dev/sdb

n <enter>

p <enter>

1 <enter>

<enter>

+15G <enter>

w <enter>

Practice Exercises – 1502

This will create a partition of 15 GB from the start. Let’s create LVM objects on it:

pvcreate /dev/sdb1

vgcreate newmirror /dev/sdb1

lvcreate -L 15G -n myvol newmirror

mkfs.xfs /dev/newmirror/myvol

Let's umount cdrom if it was still mounted

umount /mnt

Mount newmirror under /mnt and copy files over

mount /dev/newmirror/myvol /mnt

rsync -avr -progress /mirror/ /mnt/mirror/

Delete the original mirror once copy has finished

rm -Rfv /mirror

umount /mnt

mount /dev/newmirror/myvol /mirror

At this point, the old mirror was copied into a folder called mirror on the VDO volume, which is

mounted in /mirror, so we have the original mirror in /mirror/mirror as requested. We might

need to do the following:

•	 Bind mount /mirror to /var/www/html/mirror/ to make the file available

•	 Restore SELinux context to allow httpd access to files in /var/www/html/mirror/

Adjust the repofile we created to point to the new path.

33. Create a second copy of the mirror in /mirror/
mytailormirror, removing all packages starting with the letter
k
We can run synchronization and then clean up. Finally, create indexes. This can be done with

the following commands:

rsync -avr -progress /mirror/mirror/ /mirror/mytailormirror/

find /mirror/mytailormirror/ -name "k*" -type f -exec rm '{}' \;

cd /mirror/mytailormirror/

createrepo .

Chapter 19 503

34. Create a new volume in the remaining space of the
added hard drive (15 GB) and use it to extend the mirror
filesystem
Let’s create the partitions and use the LVM commands to extend the disk:

fdisk /dev/sdb

n <enter>

p <enter>

<enter>

<enter>

w <enter>

pvcreate /dev/sdb2

run vgscan to find out the volume name to use

vgextend newmirror /dev/sdb2

run lvscan to find out the LV storing the root filesystem and pvscan to
find the maximum available space

lvresize -L +15G /dev/newmirror/myvol

That’s it! Let’s move on to some more exercises in the next chapter.

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

20
Practice Exercises – 2

In this second practice exercise chapter, we will go through an exercise to check the knowledge

you have acquired through this book. Unlike in the main chapters, not all steps will be indicated,

and it’s left to you to perform the steps required to accomplish the goals. It is recommended

not to check the relevant chapters for guidance and instead try to use your memory or the tools

available in the system. This experience will be a key factor when attempting the official SUSE

Certified Architect exams.

It is strongly advised to start this exercise with a timer to keep track of the time used to complete

it. Execution speed will be key to passing the exam and obtaining the certification.

Technical requirements
The exercise in this chapter requires a virtual machine (VM) running SUSE Linux Enterprise Server

16 installed with the base installation, as described in Chapter 1, Getting SLES 16 Up and Running

(Physical and Cloud). Additionally, new virtual drives will be required for storage operations.

The exercises assume you have the following:

•	 SUSE Linux Enterprise Server 16 installed with Minimal Install selected

•	 Access to the SUSE Customer Center (https://scc.suse.com) with an active subscription

(i.e., a trial subscription)

•	 The VM must be expendable; that is, actions performed on it might render it unusable

and should be reinstalled or rolled back to an earlier snapshot

https://scc.suse.com

Practice Exercises – 2506

Tips for the exercise
This is a list of general recommendations for any test. They are mostly common sense, but it’s

always useful to have them in our minds before taking a test:

•	 Read all the questions carefully before starting. Specific words have specific meanings that

give hints about the requirements or ways to accomplish the goals; that’s why reading

everything carefully first is important.

•	 Make yourself comfortable, install your favorite editor (such as Vim), and define your

keyboard layout. Install and learn the basics of how to use tmux so that you can open new

tabs and name them without requiring extra windows.

•	 Locate dependencies between requests. Some goals depend on others for completion. Find

those dependencies to see how you can build up the solution without having to come

back and redo some steps because of having taken the wrong path.

•	 Use a timer. It’s important to get an idea of which part of the exercises took longer to

complete to see what can be improved.

•	 Don’t memorize specific command lines. Learn how to use the documentation available

in the system via man, /usr/share/doc/packages arguments such as --help for the com-

mands, and so on.

•	 Ensure that changes persist and are still active after a reboot. Some changes might be

active while you run them, but they must be persisted: firewall rules, services to start at

boot, and so on.

•	 Remember that you can use zypper search --provides "*/COMMAND" to find packages

that provide that file that you might be missing.

•	 Check out https://www.suse.com/training/exam/sca-sles-16/ for the official SCA

exam objectives.

Practice exercise 2

Don’t jump into completing the exercise too early. Try to think and remember what was covered.

By design, in the following exercises, there will be no styles on commands, packages,

and so on. Remember what you’ve learned so far to detect the keywords to see what

needs to be done.

https://www.suse.com/training/exam/sca-sles-16/

Chapter 20 507

Here are the steps of this exercise:

1.	 Download the file from the repository.

2.	 Use the users.txt file to generate users in the system automatically using the values pro-

vided in the following order: username, placeholder, uid, gid, name, home, shell.

3.	 Create a group named susers and add it as the primary group for all users, leaving their

own groups, named for each user, as secondary groups.

4.	 Change the home folders for the users so that they are group-owned.

5.	 Set up an HTTP server and enable a web page for each user with a small introduction text

for each one that is different for each user.

6.	 Allow all users in the susers group to become root without a password.

7.	 Create SSH keys for each user and add each key to root and to the other users so that each

user can SSH as the other users without a password.

8.	 Disable password access to the system with SSH.

9.	 Set each user with a different password using /dev/random and store the passwords in

the second field of the users.txt file.

10.	 If the number of letters in the username is a multiple of 2, add that fact to each user de-

scription web page.

11.	 Create a container that runs the yq Python package as the entry point.

12.	 Configure password ageing for users whose user id is not a multiple of 2 to expiring.

13.	 Configure daily compressed log rotation for a month of logs using date-named files.

14.	 Save all the logs generated during the current day in /root/errors.log.

15.	 Install all available updates for system libraries.

16.	 Repair the broken rpm binary using a previously downloaded package available in the /

root folder.

17.	 Make all processes in execution by user miguel run with a low priority, and the processes

executed by sonia run with a higher priority (+/- 5).

18.	 Make the system run with the highest throughput and performance.

19.	 Change the system network interface to use one higher IP address than it was using. Add

an additional IPv6 address to the same interface.

20.	 Create and add /opt/mysystem/bin/ to the system path for all users.

21.	 Create a firewall zone, assign it to an interface, and make it the default zone.

22.	 Add a repository hosted at https://myserver.com/repo/ with a GPG key at https://

myserver.com/mygpg.key to the system.

https://myserver.com/mygpg.key
https://myserver.com/mygpg.key

Practice Exercises – 2508

Exercise 2 solution
In this section, we’ll discuss each step and provide an explanation using the correct styles and

explanations.

1. Download the file from the repository
This is the repository: https://raw.githubusercontent.com/PacktPublishing/SUSE-Linux-
Enterprise-Server-16-Official-Administration-Guide/refs/heads/main/chapter-20-

exercises/exercise-2/users.txt.

You can download the file using wget, as shown in the following command:

wget https://raw.githubusercontent.com/PacktPublishing/SUSE-Linux-
Enterprise-Server-16-Official-Administration-Guide/refs/heads/main/
chapter-20-exercises/exercise-2/users.txt

2. Use the users.txt file to generate users in the system
automatically using the values provided in the following
order: username, placeholder, uid, gid, name, home, shell
First, let’s examine the users.txt file:

geeko:~ # cat users.txt

sonia;x;1000;1000; Sonia;/home/sonia1; /bin/false

matilde ;x ;1001 ;1001; Mati; /home/mati ;/bin/false

miguel ;x ;1001 ;1001; Miguel; /home/mig ; /bin/csh

sergio ;x ;1011 ;1011; Sergio Jones; /home/sjones ; /bin/rsh

pilgrim ;x ;2011 ;2011; Scott Pilgrim; /home/spilgrim ; /bin/rsh

laverne; x ; 2020;2020; LaVerne;/home/LaVerne;/bin/bash

As described in the request, the fields in that file are username, placeholder, uid, gid, name, home,

and shell. The placeholder is not requested when creating a user (the only field that is usually

requested is the password), so we can work with the other data and ignore that.

As we can also see, each field is separated by at least a ; symbol, but some have extra spaces before

or after it. As we have names with surnames, we can’t just remove all spaces; we need to remove

them only before and after the actual text we want.

Let’s use cut with the field separator of ; to do the work. But first, we need to read it line by line.

https://raw.githubusercontent.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/refs/heads/main/chapter-20-exercises/exercise-2/users.txt
https://raw.githubusercontent.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/refs/heads/main/chapter-20-exercises/exercise-2/users.txt
https://raw.githubusercontent.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/refs/heads/main/chapter-20-exercises/exercise-2/users.txt
https://raw.githubusercontent.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/refs/heads/main/chapter-20-exercises/exercise-2/users.txt
https://raw.githubusercontent.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/refs/heads/main/chapter-20-exercises/exercise-2/users.txt
https://raw.githubusercontent.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/refs/heads/main/chapter-20-exercises/exercise-2/users.txt

Chapter 20 509

We can achieve that with the built-in read Bash function:

cat users.txt|while read -r line; do echo ${line};done

Using this as a base, we can then start building up everything we’re going to need to create the

users. Let’s start by working on the individual steps and later build up the full command line.

For each line we have, we need to define the fields and remove the ending/starting spaces:

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1)

NEWUID=$(echo ${line}|cut -d ";" -f 3)

NEWNAME=$(echo ${line}|cut -d ";" -f 5)

NEWSHELL=$(echo ${line}|cut -d ";" -f 6)

In these examples, we’re echoing each line and cutting on the field specified with -f using a

field delimiter of ; so that we can select the field containing the data we’re looking for. To make

it easier, we store each snippet in a variable so that it’s easier for us to reuse that snippet of code

and still have a clear understanding of what each script will be doing.

The preceding code will work, but it will fail with the spaces, so we need to extend it to capture

the text without the spaces. Let’s use xargs for that:

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

NEWUID=$(echo ${line}|cut -d ";" -f 3|xargs)

NEWNAME=$(echo ${line}|cut -d ";" -f 5|xargs)

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

NEWSHELL=$(echo ${line}|cut -d ";" -f 7|xargs)

The next step is to build the command line for adding a user:

useradd -d "${NEWHOME}" -m -s "${NEWSHELL}" -u "${NEWUID}" -U -c
"${NEWNAME}" "${NEWUSERNAME}"

Great! We’re ready; let’s build the solution:

cat users.txt| while read -r line ; do

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

NEWUID=$(echo ${line}|cut -d ";" -f 3|xargs)

NEWNAME=$(echo ${line}|cut -d ";" -f 5|xargs)

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

NEWSHELL=$(echo ${line}|cut -d ";" -f 7|xargs)

useradd -d "${NEWHOME}" -m -s "${NEWSHELL}" -u "${NEWUID}" -U -c
"${NEWNAME}" "${NEWUSERNAME}"

done

Practice Exercises – 2510

We run this directly in the command line, but we can also create a script named autouseradd.

sh with the #!/bin/bash header and run it from there (do not forget to make it executable with

chmod +x).

To make the previous exercise work, you will need to install the tcsh and fish packages to have

the shells used by users.

An example of the solution can be found here: https://github.com/PacktPublishing/SUSE-
Linux-Enterprise-Server-16-Official-Administration-Guide/blob/main/chapter-20-

exercises/exercise-2/autouseradd.sh.

3. Create a group named susers and add it as the primary
group for all users, leaving their own groups, named for
each user, as secondary groups
In this case, we need to create the groups that we didn’t create in the previous step, so we will

loop over the users once the new group has been created, create new groups for each one, and

then modify each user to join the susers group and add their own group as a secondary group:

groupadd susers

cat users.txt| while read -r line ; do

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

usermod -g susers -G ${NEWUSERNAME} ${NEWUSERNAME}

done

4. Change the home folders for the users so that they are
group-owned
Let’s parse the file users using a while loop, then capture variables, and finally, execute chown:

cat users.txt| while read -r line ; do

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

chown -R ${NEWUSERNAME}:susers ${NEWHOME}/

done

https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/blob/main/chapter-20-exercises/exercise-2/autouseradd.sh
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/blob/main/chapter-20-exercises/exercise-2/autouseradd.sh
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/blob/main/chapter-20-exercises/exercise-2/autouseradd.sh

Chapter 20 511

5. Set up an HTTP server and enable a web page for each
user with a small introduction text for each one that is
different for each user
We start by installing the required software:

zypper install apache2

Check with firewall-cmd -list services to see whether http was added. If not, run the fol-

lowing:

firewall-cmd --add-service=http --permanent

firewall-cmd --reload

Enable the apache2 service:

systemctl enable --now apache2

Now, let’s create the user folders for apache2:

cat users.txt| while read -r line ; do

NEWNAME=$(echo ${line}|cut -d ";" -f 5|xargs)

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

mkdir -p ${NEWHOME}/public_html/

chmod 701 ${NEWHOME}

chmod 755 ${NEWHOME}/public_html/

echo "Hello, my name is ${NEWNAME} and I'm a user of this system" >
${NEWHOME}/public_html/index.html

chmod 644 ${NEWHOME}/public_html/index.html

done

SELinux needs a change to a boolean value in its configuration to enable homedirs:

setsebool -P httpd_enable_homedirs 1

Finally, we’ll need to check that homedirs is enabled by examining /etc/apache2/mod_userdir.

conf and finding the UserDir disabled root line. It is usually configured by default.

To test this, we can access the name of the machine or IP by adding a ~ and the username to the

URL. In my case, it becomes http://192.168.122.16/~sonia/.

http://192.168.122.16/~sonia/

Practice Exercises – 2512

6. Allow all users in the susers group to become root
without a password
This can be done in several ways, but since we have all users in the susers group, we can add that

group to the users with full admin capabilities in sudo:

echo "%susers ALL=(ALL) NOPASSWD: ALL" >> /etc/sudoers.d/susers

7. Create SSH keys for each user and add each key to root
and to the other users so that each user can SSH as the
other users without a password
First, let’s create the keys for each user and add the keys to root:

cat users.txt| while read -r line ; do

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

mkdir -p ${NEWHOME}/.ssh/

chown ${NEWUSERNAME}:susers ${NEWHOME}/.ssh

chmod 700 ${NEWHOME}/.ssh

ssh-keygen -N '' -f ${NEWHOME}/.ssh/id_ed25519

cat ${NEWHOME}/.ssh/id_ed25519.pub >> /root/.ssh/authorized_keys

done

Now, let’s copy the authorized keys for each user:

cat users.txt| while read -r line ; do

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

cp /root/.ssh/authorized_keys ${NEWHOME}/.ssh/

chown -R ${NEWUSERNAME}:users ${NEWHOME}/.ssh/

done

Validate that the user laverne can SSH as any other user:

geeko:~ # su - laverne

laverne@geeko:~> ssh laverne@localhost

The authenticity of host 'localhost (::1)' can't be established.

ED25519 key fingerprint is
SHA256:PQdyVY2iiHkf0G0Dr6kjRfAp1+mnyj1BZrlgjgqsMwY.

This key is not known by any other names.

Chapter 20 513

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Have a lot of fun...

laverne@geeko:~>

The preceding command should work for all the users because we copied authorized_keys, right?

Well, no, as some users have their shell disabled.

8. Disable password access to the system with SSH
Edit /etc/ssh/sshd_config.d/no-password-auth.conf and replace any value of

PasswordAuthentication with no:

echo "PasswordAuthentication no" > /etc/ssh/sshd_config.d/no-password-
auth.conf

Then, restart sshd:

systemctl restart sshd

9. Set each user with a different password using /dev/
random and store the password in the second field of the
users.txt file
From /dev/random, we can get random data, but it’s binary, so it’s probably not valid if we want

to use it for logging in later. We can use a hash function on the data received and use that as the

password.

MYPASS=$(dd if=/dev/urandom count=1024 2>&1|md5sum|awk '{print $1}')

This will be the password without being encrypted.

With passwd, we can define a password from its encrypted seed. So, we will be combining both,

generating a random password and passing it on to the passwd command.

Additionally, we’re told to store the generated password in the users.txt the generated password.

To do that, we will need to edit the file.

But there’s a problem. Editing a specific field in the .txt file might not be easy, but we can just

rewrite it completely:

cat users.txt| while read -r line ; do

MYPASS=$(dd if=/dev/random count=12>&1|md5sum|awk '{print $1}')

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

Practice Exercises – 2514

NEWUID=$(echo ${line}|cut -d ";" -f 3|xargs)

NEWGID=$(echo ${line}|cut -d ";" -f 4|xargs)

NEWNAME=$(echo ${line}|cut -d ";" -f 5|xargs)

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

NEWSHELL=$(echo ${line}|cut -d ";" -f 7|xargs)

echo "${NEWUSERNAME};${MYPASS};${NEWUID};${NEWGID};${NEWNAME};${NEWHOME};
${NEWSHELL}" >> newusers.txt

echo ${MYPASS} | passwd ${NEWUSERNAME} --stdin

done

cp newusers.txt users.txt

In this way, we’ve rewritten the users.txt file to a new file by adding all the fields we had, and

we have overwritten users.txt with our new copy.

The last command in the loop reads the password from the variable and feeds it to the passwd

file, which will encrypt and store it properly, reading it from stdin.

10. If the number of letters in the user name is a multiple of
2, add that fact to each user description web page
Let’s continue from the previous solution and iterate over the users.txt file. This time, we will

generate index files for personal web pages:

cat users.txt| while read -r line ; do

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

LETTERSINNAME=$(($(echo ${NEWUSERNAME}|wc -m) - 1))

if ["$((${LETTERSINNAME} % 2))" == "0"]; then

echo "My name is multiple of 2" >> ${NEWHOME}/public_html/index.htm

fi

done

In this solution, we repeat the same field calculation, but we add the wc command to get the

number of characters and remove one to adjust to the number of letters.

In the comparison, we evaluate the remainder when dividing by 2. So, when there’s no remainder,

it means that our number of letters is a multiple of 2.

Chapter 20 515

11. Create a container that runs the yq Python package
When we read “Python package”, we should think about pip. It is not recommended to use pip

on systems directly because it might alter the system-provided Python libraries. It’s better to use

a virtual environment for it or, alternatively, use a container that will keep it isolated.

As described in Chapter 17, Managing Containers with Podman, the easiest way to build a container

image is by creating a file that defines the container creation steps.

For containers, it will also be required to install the podman package and the required contain-

er-tools modules if you don’t have them in your system.

As this file is a Python package, we require a container that already has Python in it, for example,

https://registry.suse.com/repositories/bci-python313.

So, let’s create a Containerfile with the following contents (available at https://github.com/
PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/

blob/main/chapter-20-exercises/exercise-11/ContainerFile):

FROM registry.suse.com/bci/python:3.13

WORKDIR /app MAINTAINER SLES16 Student student@suse.test

LABEL name="yq image"

maintainer="student AT suse.test"

vendor="Risu"

version="1.0.0"

release="1"

summary="yq execution container"

description="Runs yq"

ENV USER_NAME=risu

USER_UID=10001

LC_ALL=en_US.utf8

RUN pip install --upgrade pip --no-cache-dir &&

pip install --upgrade yq --no-cache-dir

USER 10001

VOLUME /data

ENTRYPOINT ["/usr/local/bin/yq"]

CMD ["-h"]

Then, run this:

podman build -t yq -f ContainerFile .

https://registry.suse.com/repositories/bci-python313
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/blob/main/chapter-20-exercises/exercise-11/ContainerFile
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/blob/main/chapter-20-exercises/exercise-11/ContainerFile
https://github.com/PacktPublishing/SUSE-Linux-Enterprise-Server-16-Official-Administration-Guide/blob/main/chapter-20-exercises/exercise-11/ContainerFile

Practice Exercises – 2516

This command will pull the SUSE Base Container Image (bci) with Python so that we can just

run the pip install command to install yq, which will then be assigned as the entrypoint.

For example, if we define an invalid entrypoint (because we might not know where the program

is installed), we can use podman run -it --entrypoint /bin/bash <podmanid>. We can get the

Podman ID by running podman images and checking the generation date for each of the images

in our system.

The created container can be tested with podman run -it <podmanid>, where it will output the

information about what the yq command does.

Note that yq, as expressed in the project’s repository at https://github.com/kislyuk/yq, requires

the jq command to be installed. We have left it out on purpose to just demonstrate container

creation.

12. Configure password ageing for users whose user id is
not a multiple of 2 to expiring
We can reuse the previous examples to loop over users to make the task easier. We can do one

more loop over the list of users and use chage to apply changes:

cat users.txt| while read -r line ; do

NEWUSERNAME=$(echo ${line}|cut -d ";" -f 1|xargs)

NEWHOME=$(echo ${line}|cut -d ";" -f 6|xargs)

LETTERSINNAME=$(($(echo ${NEWUSERNAME}|wc -m) - 1))

if ["$((${LETTERSINNAME} % 2))" != "0"]; then

chage -M 30 ${NEWUSERNAME}

fi

done

Here, we’ve reused the loop from question 10 but inverted the condition, and as we have no spe-

cific requirement about the kind of password ageing, we just define that the maximum number

of days before a password change is required to be 30.

13. Configure daily compressed log rotation for a month of
logs using date-named files
First, we need to make sure that logrotate is installed:

zypper install logrotate

https://github.com/kislyuk/yq

Chapter 20 517

Once it has been installed, create and edit the /etc/logrotate.d/monthly file so that it contains

the following:

rotate 30

daily

compress

dateext

We need to ensure that no other periodicity is defined (monthly, weekly, and so on).

14. Save all the logs generated during the current day in /
root/errors.log
This has a catch; some programs will log to the journal, and some of them log to *.log files.

The date for today can be obtained with date +%Y-%m-%d. This uses the year-month-day format

commonly used in program logs:

grep "$(date '+%Y-%m-%d')" -Ri /var/log/*.log|grep -i error > /root/
errors.log

journalctl -perr --since "$(date '+%Y-%m-%d')" >> /root/errors.log

In this way, we combine both outputs. We could, of course, try to sort the entries by date so that

they correlate. But bear in mind that the first grep does a recursive search, so the filename is being

prepended, making it harder to sort.

15. Install all available updates for system libraries
Usually, system libraries start with the lib substring. So, the update should be a matter of run-

ning the following:

zypper update $(rpm -qa | grep ^lib)

The rpm -qa command lists all packages in the system, and grep ^lib filters the ones starting

with lib.

We then need to update the most important system library, glibc:

zypper update glibc

As these two commands will ask for confirmation, review the listed packages to be updated to

make sure that no error was made.

Practice Exercises – 2518

16. Repair the broken rpm binary using a previously
downloaded package available in the /root folder
This is tricky, yet it is useful to check your knowledge.

First, let’s make sure we’ve the rpm package available:

zypper download rpm

cp /var/cache/zypp/packages/*/*/rpm*.rpm .

Verify that the file we wanted to download exists with the following command:

ls -l rpm*.rpm

Check the file to make sure we have a way to go back (also, we can use snapper if we have an issue):

rpm -qip rpm*.rpm

Let’s get to the destructive action that will help us validate that we are actually solving the issue:

rm -fv /usr/bin/rpm

From here, it’s like look ma, no hands... we have no RPM available to install the rpm*.rpm package,

but we still need to install it to fix the issue. We can run rpm in the command line to verify that

it’s not working:

geeko:~ # rpm

bash: /usr/bin/rpm: No such file or directory

rpm packages are compressed cpio archives, so what we can do is as follows:

rpm2cpio rpm*.rpm |cpio -idmv

This will extract the compressed rpm contents without running any scripts.

Move the uncompressed rpm back into /usr/bin:

mv usr/bin/rpm /usr/bin/rpm

Verify the rpm installation and operation:

rpm -V rpm

It might complain, saying that the date has changed, but additionally, it might have updated sizes

and md5sum if the downloaded file was newer than the one we had in the system (and we deleted).

Chapter 20 519

Move the system to a sane state by reinstalling the rpm package:

rpm -i rpm*.rpm

It will complain because the package has already been installed (saying that it will overwrite rpm,

rpm2archive, rpm2cpio, rpmdb, rpmkeys, and more).

If the rpm version differs from the one we had in the system (which we deleted), we can just

upgrade it with the following:

rpm -Uvh rpm*.rpm

And then, verify again with the following:

rpm -V rpm

Nothing should be reported as changed compared to what the database contains. If we cannot

upgrade, we can then run the installation with the --force argument to tell rpm that it’s OK to

continue and overwrite the files.

Another approach is to scp the rpm binary from a similar system or to use rescue media.

17. Make all processes in execution by user miguel run with
a low priority, and the processes executed by sonia run with
a higher priority (+/- 5)
We have no way to make this the default, but we can run it once:

pgrep -u sonia|xargs renice -5

pgrep -u miguel|xargs renice +5

This will use pgrep for all the PIDs for users sonia and miguel and feed it via xargs to the renice

process.

Alternatively, we could use something like this as an alternative to the xargs command:

renice +5 $(pgrep -u miguel)

To make it the default for all processes, pam_limits (nice in limits.conf) could do the trick.

Practice Exercises – 2520

18. Make the system run with the highest throughput and
performance
tuned is a system daemon we can install to automatically apply some well-known parameters

for our system that can later become the base for our optimizations:

zypper install tuned

systemctl enable --now tuned

tuned-adm profile throughput-performance

19. Change the system network interface to use one higher
IP address than it was using. Add an additional IPv6
address to the same interface
Using nmcli, check the current system IP address:

nmcli con show

The output is as follows:

Figure 20.1 – Output of nmcli con show

With this, we can find what system interface is being used and connected. Let’s say it’s enp1s0

connected on a connection named Wired connection 1.

Let’s use nmcli con show "Wired connection 1"|grep address to find current addresses.

If our address is, for example, 192.168.122.16, we’ll use the following:

nmcli con mod "Wired connection 1" ipv4.addresses 192.168.122.17

nmcli con mod "Wired connection 1" ipv6.addresses 2001:db8:0:1::c000:207

Verify it with the following:

nmcli con show "Wired Connection"|grep address

Chapter 20 521

20. Create and add /opt/mysystem/bin/ to the system path
for all users
Edit the /etc/profile.d/mysystempath.sh file by adding the following:

export PATH=${PATH}:/opt/mysystem/bin

To validate, create the folder with this:

mkdir -p /opt/mysystem/bin

Logging in again with the user should show the new path when executing the following:

echo ${PATH}

21. Create a firewall zone, assign it to an interface, and
make it the default zone
This is tricky. However, we’ve explained how to query zones in the book and how to change the

default zone, and even shown screenshots of using Cockpit to manage the firewall, so now, as an

experienced user, it shouldn’t be hard.

The first thing to do when we don’t know how to do something is check the manual page:

man firewall-cmd

It doesn’t show a lot of interesting information, but, toward the end of the man pages, there’s a

section called SEE ALSO, where we can find firewalld.zones(5), which means that we need to

go to Section 5 of the manual for firewalld.zones.

We don’t usually specify the section because there might not be duplicates, so we can just run

the following:

man firewalld.zones

It instructs us to check the default zones in /usr/lib/firewalld/zones and /etc/firewalld/

zones. So, let’s go ahead:

cp /usr/lib/firewalld/zones/public.xml /etc/firewalld/zones/dazone.xml

Now, let’s edit the new copied file, /etc/firewalld/zones/dazone.xml, change the name from

Public to dazone, and then reload the firewall:

firewall-cmd --reload

Practice Exercises – 2522

Let’s validate that the new zone is there:

firewall-cmd --get-zones

Let’s make it the default zone:

firewall-cmd --set-default-zone=dazone

Add the default interface (enp1s0) in our case:

firewall-cmd --add-interface=ens3 --zone=dazone

It will fail, as expected, as enp1s0 is already assigned to a zone (public). So, let’s run the following:

firewall-cmd --remove-interface=ens3 --zone=public

firewall-cmd --add-interface=ens3 --zone=dazone

As you can see, even without prior knowledge about creating new zones, we’ve been able to use

our system knowledge about finding information to successfully accomplish this goal.

22. Add a repository hosted at https://myserver.com/repo/
with a GPG key at https://myserver.com/mygpg.key to the
system
If we don’t remember the syntax for adding a repository, we can use one of the examples available

on the system, so go to /etc/zypp/repos.d/myserver.repo, list the available files, and pick one

that we’ll be using to create our myserver.repo file with these contents:

[myserver]

name=My server repository

baseurl=https://myserver.com/repo/

enabled=1

gpgcheck=1

gpgkey=https://myserver.com/mygpg.key

We’re done with the steps!

We hope you have enjoyed this book and gained enough knowledge about SLES 16 to get started

and obtain the SUSE Certified Administrator certification. As we say at SUSE, have a lot of fun!

Chapter 20 523

Get This Book’s PDF Version and
Exclusive Extras
Scan the QR code (or go to packtpub.com/unlock). Search for this

book by name, confirm the edition, and then follow the steps on

the page.

Note: Keep your invoice handy. Purchases made directly from Packt

don’t require an invoice.

http://packtpub.com/unlock

21
Unlock Your Exclusive Benefits

Your copy of this book includes the following exclusive benefits:

•	 Next-gen Packt Reader

•	 DRM-free PDF/ePub downloads

Follow the guide below to unlock them. The process takes only a few minutes and needs to be

completed once.

Unlock this Book’s Free Benefits in 3 Easy Steps
Step 1
Keep your purchase invoice ready for Step 3. If you have a physical copy, scan it using your phone

and save it as a PDF, JPG, or PNG.

For more help on finding your invoice, visit https://www.packtpub.com/unlock-benefits/help.

Note: If you bought this book directly from Packt, no invoice is required. After Step 2,

you can access your exclusive content right away.

https://www.packtpub.com/unlock-benefits/help

Unlock Your Exclusive Benefits526

On the page that opens (similar to Figure 21.1 on desktop), search for this book by name and select

the correct edition.

Figure 21.1 – Packt unlock landing page on desktop

Step 2
Scan the QR code or go to packtpub.com/unlock.

http://packtpub.com/unlock

Chapter 21 527

Step 3
After selecting your book, sign in to your Packt account or create one for free. Then upload your

invoice (PDF, PNG, or JPG, up to 10 MB). Follow the on-screen instructions to finish the process.

Need help?
If you get stuck and need help, visit https://www.packtpub.com/

unlock-benefits/help for a detailed FAQ on how to find your

invoices and more. This QR code will take you to the help page.

Note: If you are still facing issues, reach out to customercare@packt.com.

mailto:customercare%40packt.com?subject=

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range

of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com
www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Red Hat Enterprise Linux 9 Administration

Pablo Iranzo Gómez, Pedro Ibañez Requena, Miguel Pérez Colino, Scott McCarty

ISBN: 978-1-80324-754-0

•	 Become well versed with the fundamentals of RHEL9—from system deployment to user

management

•	 Secure a system by using SELinux policies and configuring firewall rules

•	 Understand LVM to manage volumes and maintain VDO deduplication

•	 Manage a system remotely using SSH and public key authentication

•	 Get the hang of the boot process and kernel tunable to adjust your systems

•	 Automate simple tasks using scripts or Ansible Playbooks

https://www.packtpub.com/en-in/product/red-hat-enterprise-linux-9-administration-9781803247540

Other Books You May Enjoy532

Ansible for Real-Life Automation

Gineesh Madapparambath

ISBN: 978-1-80323-862-3

•	 Explore real-life IT automation use cases and employ Ansible for automation

•	 Develop playbooks with best practices for production environments

•	 Approach different automation use cases with the most suitable methods

•	 Use Ansible for infrastructure management and automate VMWare, AWS, and GCP

•	 Integrate Ansible with Terraform, Jenkins, OpenShift, and Kubernetes

•	 Manage container platforms such as Kubernetes and OpenShift with Ansible

•	 Get to know the Red Hat Ansible Automation Platform and its capabilities

https://www.packtpub.com/en-in/product/ansible-for-real-life-automation-9781803238623

Other Books You May Enjoy 533

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packt.com and apply

today. We have worked with thousands of developers and tech professionals, just like you, to

help them share their insight with the global tech community. You can make a general applica-

tion, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished SUSE Linux Enterprise Server 16 Official Administration Guide, we’d love to

hear your thoughts! If you purchased the book from Amazon, please click here to go straight to

the Amazon review page for this book and share your feedback or leave a review on the site that

you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

authors.packt.com
https://packt.link/r/1806021595
https://packt.link/r/1806021595

Index

A
absolute path 63

Access Control Lists (ACLs) 239

Access Vector Cache (AVC) 317

Accounts page, Cockpit 273-276

Agama installer 20

agentic AI 336-338

AMD 64 / Intel 64 8

Ansible 439, 440

Apache HTTPD service 209

AppArmor 313

Application Container Images 456

Applications page, Cockpit 280, 281

apropos command 97

assignments
reviewing 141

autocompletion 69

autodetection 367

awk 81, 82

B
base repos 207

Bash 439

Bash autocomplete 69, 70

Basic Input Output System
(BIOS) 356, 378, 419, 420

basic shell scripts
creating 91, 92

BIOS/UEFI configuration 10

Boolean 326

boot logs 263

boot process 419-422

boot sequence
managing, with systemd 428-433

boot targets
managing 111-113

BTRFS 266, 402
basics, reviewing 403
filesystem, creating 403-406
mounting 406, 407
reference link 403
snapshots 407, 408
status, reviewing 403-407

C
Carrier-Grade Network Address Translation

(CGNAT) 172

cgroups 109, 451

ChatGPT 337

checksums 10

chrony NTP client 117-120

chrony NTP server 120, 121

Classless Inter-Domain Routing (CIDR)
notation 175

Claude 337

Index536

clients 167

cloud
SLES, running on 40-48

cloud-init software 40

Cockpit 109, 249, 250, 292
accessing 253, 254
Accounts page 273-276
administrative tasks, enabling 255-258
Applications page 280, 281
enabling 251, 252
hardware information and logs 262-264
installing 250
logging in 255-258
Metrics and history page 259-262
Networking section 267, 268
Overview page 259
pattern package 250
Repositories page 282
SELinux page 282, 283
Services page 276-278
Software updates page 283, 284
Storage section 265, 266
Subscriptions page 285
Terminal 286
Timers section 279

command line 67

command prompt 54, 56

configuration files 168

console 54

Containerfile 462

container images 454
Application Container Images 456
Redistributable Base Container Images 456
Redistributable Development Container

Images 456
SLE Base Container Images 456

container registries 454

containers 449-451
deleting 467-470
running container, connecting 465, 466

copy-on-write (CoW) 402, 408

coreutil package 359

cp command 84

CPU 124, 125

D
daemons 60, 105

Datagram Congestion Control Protocol
(DCCP) 293

debug repo 207

DeepSeek 337

device mapper 387

df tool 122

diff command 99

directories 63, 64, 82
/ 72, 74
absolute path 63
/bin 72
/boot 72, 74
/dev 72
/etc 72, 74
/home 72, 74
/media 72
/mnt 72
/opt 72
/proc 72
relative path 63
/root 73, 74
/run 73, 74
shortcuts 64

Index 537

/srv 73
/sys 73
/tmp 73
/usr 74
/usr/bin 73
/usr/etc 73
/usr/lib 73
/usr/local 73
/usr/sbin 73
/var 73, 74

directory-related commands
mkdir 84
mkdir -p 84
rm 84
rmdir 84
rm -r 84

directory tree 63

discretionary access control (DAC) 314

Disk Operating System (DOS) 357

disks 59, 121
history 356-358
partitioning 358-364

disk space 122, 123

Docker 451

Docker CLI 452

Dockerfile 451, 462

docker.io 455

Docker zone 269

Domain Name Service (DNS) 167
configuring 179-182

Dynamic Host Configuration
Protocol (DHCP) 302

E
echo command 68

efibootmgr command 423

EFI System Partition (ESP) 420

Elixir 199, 201
installing 202
searching 199

Emacs 91

Emacs Doctor 91

enterprise resource planning (ERP) 473

env command 69

environment variables 58, 68
EDITOR 68
HOME 68
HOSTNAME 68
LANG 68
PATH 68
PS1 68
PWD 69
SHELL 69
USER 69

Erlang 201

exit code 96

eXtended File System (XFS) 365

extended partition 357

Extended Service Set Identification
(ESSID) 167

Extensible Firmware Interface (EFI) 358

extensions 197

Index538

F
fdisk command 380

File Allocation Table (FAT) 357

file permissions 64-67
checking 152
modifying 154-159
reviewing 152, 153

file-related commands
cp 86
cp -r 86
mv 87
rm 86
touch 86

files 63
copying 84
moving 85
transferring, with OpenSSH secure file copy

(scp) 236, 237
transferring, with rsync 239-242
transferring, with sftp 238, 239

filesystem hierarchy 71, 72

Filesystem Hierarchy Standard (FHS) 71

filesystems 357, 365
formatting 366-368
mounting 366-368

filesystem snapshots 266

File Transfer Protocol (FTP) 236

filtering rules 269

firewall 183, 252
configuring 183-185

firewalld 290
configuring 292
default zones, reviewing 293-296
enabling, in system 293-296
installing 291

ports 293
ports, enabling 302
ports, managing 302-310
ports, reviewing 296-302
service definitions, using 310-312
services 293
services, enabling 302
services, managing 302-310
services, reviewing 296-302
zones 292
zones, reviewing 296-302

firewall management 268-270

firewall zones 269

for loop 93
syntax 93

Fourth Extended Filesystem (EXT4) 365

free command 121

fstab
default mounts and options,

setting 368-370

Full Disk Encryption (FDE) 33

G
gateway 167

Gemini 337

Globally Unique Identifier (GUID) 358

Global Positioning System (GPS) 116

globbing 84

GNOME 233

Gnu Privacy Guard (GPG) 205

Google Cloud 41

gpgtar 98

grep command 78-82

group ID (GID) 60

Index 539

groups 59-62
managing 141
primary group 62
private group 62
supplementary group 62

GRUB 2 422

GRUB bootloader 420-426

GUID Partition Table (GPT) 420

gunzip 90

gzip tool 89

H
hard links 87

creating 87

Hardware Abstraction Layer (HAL) 168

hardware information and logs,
Cockpit 262-264

High Availability extension 197

history command 70

home directory 56, 68

hostname
configuring 179-182

I
if statement 94, 95

syntax 94

images
deleting 467-470

Impression tool 12

InfiniBand 166

info pages 99, 100

INI files 108

initramfs 421

initrd 421, 427

installed system
registering 195-198

Integrated Drive Electronics (IDE) 358

International Business Machines (IBM) 356

Internet Control Message Protocol
(ICMP) 186

Internet Message Access Protocol (IMAP) 243

Internet Protocol (IP) 171

Internet SCSI (iSCSI) 370

Internet Service Providers (ISPs) 172

interpreter 67

I/O redirection
in command line 75-78

IP address 166

ip command 126

iptables 290

IPv4 171

IPv6 167, 171

iSCSI 32

J
journalctl 129, 130

journald logs 263

K
kernel 104

key-based authentication
with SSH 228-233

key pair 228

keys 228

kilobytes (KB) 65, 356

Kubernetes 450

Index540

L
labels 378

Large Language Models (LLMs)
working 336

latest tag 457

LDAP server 181

LEAP 13

leap second
reference link 120

lease time 174

libeconf 71

link-related commands
ln 88
ln -s 88

links 66, 87
hard links 87
symbolic links 87

Linux, Apache, MariaDB, Perl
(LAMP) stack 209

Linux Containers (LXC) 451

Linux Foundation 71

Linux Security Modules (LSM) 314

ln command 87

load average 125

Local Area Network (LAN) 166

logical extents 391

logical partitions 357

Logical Unit Number (LUN) 376

logical volume management 402

Logical Volume Manager
(LVM) 31, 373, 376-378

commands, reviewing 398, 399

logical volumes (LVs) 376
creating 385, 386
extending 387-393
removing 393-398

login process 54, 55

logrotate package 132

log rotation 131-133

logs 129

losetup utility 359

lvcreate command 399

lvdisplay command 399

lvextend command 399

lvremove command 399

lvs command 399

M
MAC address 167

macOS 223

man command 97

mandatory access control (MAC) 314

manual pages 96-99

Master Boot Record (MBR) 356, 421, 422

Maximum Transmission Unit (MTU) 271

mcphost
configuring 339-342
installing 338
using 343-351

megabytes (MB) 356

memory 121, 122

Metrics and history page, Cockpit 259-262

mkdir command 82

Model Context Protocol (MCP) 338
implementation 338

Index 541

modules 198

monitoring tools 126-128

multicast DNS (MDNS) service 302

multi-user system 57

Multi Writer tool 12

mv command 85

N
namespace isolation 451

Nano 91

National Security Agency (NSA) 314

NetBIOS Extended User Interface
(NetBEUI) 166

netfilter 183

netmask 167

Network Address Translation (NAT) 172

Network Basic Input/Output System
(NetBIOS) 166

network configuration
in SLES 166, 167

network connectivity
testing 186

Network File System (NFS)
network filesystems, using with 371, 372

Networking section, Cockpit 267, 268
firewall management 268-270
network interface management 271, 272

Network Interface Card (NIC) 167

network interface management 271

network interfaces 269
configuring, with IPv4 and IPv6 170, 171
configuring, with nmcli 175-177
configuring, with nmtui 172-174
configuring, with text files 178, 179

NetworkManager 168-170

network ports 269

Network Time Protocol (NTP) 116

neural networks 336

nftables 183, 290

nmcli 175
network interfaces,

configuring with 175-177

nmtui 172
network interfaces,

configuring with 172-174

Non-Volatile Random-Access Memory
(NVRAM) 420

O
Ollama 337

OOM-Killer 122

Open Build Service
URL 365

OpenQA
URL 365

OpenSSH 223
options 223, 224
URL 222

OpenSSH client 225, 226

openssh-clients package 222

OpenSSH secure file copy (scp)
files, transferring 236, 237

openssh-server package 222

openSUSE 195

openSUSE Leap 10, 195

Index542

Open Systems Interconnection (OSI) layer
definition

reference link 166

operating system kernel 421

Operating System (OS) 356, 474

P
package 191, 208

Package Hub 197, 198

package management 190

package managers 191

partitioning 356

partitions
history 356-358

Partition Table (GPT) 358

partners, public cloud marketplaces
URL 192

password hashes 141

password policies
adjusting 141-147

patch 208

pattern recognition 336

patterns 33, 208
installing 208-210

Performance Co-Pilot 126, 260

permissions 59

personal computers (PCs) 356

physical extents 391

physical volumes (PVs) 376
combining, into volume groups (VGs) 384
creating 378-383
moving 378-383
removing 378-398

pipe operator 75

pipes 78

playbooks 440

Podman 449, 451
installing 452-454

Podman CLI 452

policy
file contexts, restoring to default 324-326
tweaking, with message 321-323

Portable Operating System Interface (POSIX)
reference link 59

pre-boot network execution (PXE) 420

Pretty Good Privacy (PGP) 205

previous commands
restoring 70, 71

primary group 62

primary partitions 356, 357

private group 62

private key 228

process 59

process identifier (PID) 428

product 208

Program identifier (PID) 130

program temporary fixes (PTFs) 208

ps command 124

public key 228

public zone 269

pvcreate command 398

pvdisplay command 398

pvmove command 398

pvremove command 398

pvs command 398

Index 543

R
RAM disk 104

recovery mode 430

redirect and add operator 75

redirect operator 75

redirect STDERR operator 76

redirect STDOUT operator 76

redirect to STDERR operator 76

redirect to STDOUT operator 76

Redistributable Base Container Images 456

Redistributable Development Container
Images 456

registries
using 460-464
working with 455-460

regular expressions 78-82

regular users 60

relative path 63

Remote Direct Memory Access (RDMA) 166

remote systems
accessing, with SSH 226, 227

remote terminals
with tmux 245-247

repositories 192, 199
clean-up options, for Zypper 216
managing, with Zypper 204-207
software installation issues,

resolving ways 199
uninstalling 214, 215

Repositories page, Cockpit 282

rescue target 432

reverse redirect operator 75

rm command 83

rmdir command 82, 83

role 440

roll back 266

root account 55, 56

root password
updating, to modify boot process 433-437

rpm command 216

RPM Package Manager 216, 217

rsync
files, transferring 239-242

runlevels 112
graphical 112
halt mode 112
multi-user mode 112
networked multi-user 112
reboot 112
single-user mode 112

S
Salt 439

SAP 474
URL 474

SAP© 474

SAP S/4HANA 474

Saptune 480
reference link 480

scp command 236

Secure Boot 420

Secure Shell Host (SSH) 222, 223, 302
key-based authentication 228-233
remote systems, accessing 226, 227

Index544

Security-Enhanced Linux (SELinux) 154, 313
reviewing, for files and processes 317, 318
troubleshooting 328-331
usage, in enforcing and permissive

modes 314-317

SELinux Boolean settings
used, for enabling services 326, 327

SELinux page, Cockpit 282, 283

Serial Advanced Technology Attachment
(SATA) 370

servers 167

service definitions
creating, for firewalld 310
using, for firewalld 310, 311

services 269
managing 110, 111

Services page, Cockpit 276-278

sftp
files, transferring 238, 239

sha256 checksums 10

shared data blocks 408

shared libraries 190

shell 67

shell script 91, 439

shim loader 423

signatures
managing, with Zypper 204-206

Simple Mail Transfer Protocol (SMTP) 243

SLE Base Container Images 456

SLES 16 Agama installer
authentication 35-39
hostname 22
language and keyboard shortcut access 21
localization 25
network 27-29

Overview page 21
registration 23, 24
software 33, 34
storage 30-33

SLES 16 installation 10
physical server installation 10-12
virtual server installation 13-17

SLES 16 ISO image 9

SLES Downloads page
URL 193

SLES for SAP Applications 474, 475, 480
long-term support 476
reference link 475
Workload Memory Protection 476

SLES installation
best practices 49, 50
booting, from USB thumb drive 12, 13
running 18, 19
type 19, 20

SLES software
obtaining 4-9

SLES system
converting, to SLES

for SAP Applications 480

Small Computer System Interface (SCSI) 358

Small Office-Home Office
(SOHO) network 174

smart devices 172

Snapper 402, 409
functions 415, 416
used, for showing file changes 411-413
using 409, 410
using, to roll back to previous configuration

status 414

Index 545

snapshots 378

SOCKS proxy 243

software
uninstalling 214, 215

Software updates page, Cockpit 283, 284

source repo 207

sparse file 360

special permissions
set-GID, applying 161, 162
set-UID, applying 160, 161
sticky bit, using 162, 163
using 160

SSH agent 233-235

SSH keys 249

SSH redirections 242-244

SSH tunnels 242-244

static linking 190

STDERR (standard error) 75

STDIN (standard input) 75

STDOUT (standard output) 75

sticky bit 66, 153
using 162, 163

Storage section, Cockpit 265, 266

Stream Control Transmission Protocol
(SCTP) 293

subscription 195

Subscriptions page, Cockpit 285

substitute user 57

subvolumes 266, 369

su command
users, changing 57, 58

sudo 147
configuring, for administrative tasks 147
custom configuration 149
default configuration 147-149
used, for running admin

commands 149, 150

sudoers
configuring 151, 152

superuser 60

supplementary group 62

SUSE Certified Administrator (SCA)
certifications 222

SUSE Certified Administrator
(SCA) exam 99, 324

SUSE Certified Engineer (SCE) exam 324

SUSEConnect 196

SUSE Customer Center (SCC) 23, 189, 285
subscriptions 192-195
URL 192

SUSE Linux Enterprise Live Patching 477

SUSE Linux Enterprise Server
(SLES) 3, 53, 165, 223, 249, 365, 439

network configuration 166, 167
running, on cloud 40-48

SUSE Linux Micro 450

SUSE Multi-Linux Manager 128, 439, 475

SUSE Package Hub 24, 25

SUSE Shop
URL 192

SUSE subscription 4
obtaining 5-9

symbolic links 87, 441

sysstat package 126

system administrator (sysadmin) 91

Index546

systemd 71, 104-106, 419
boot sequence, managing 428-433
unit file structure 107-109
URL 104

system documentation 96

system documentation, resources
info pages 99, 100
man pages 96-99

systemd timers 114, 115

systemd units 277

system roles 439, 440
installing 440-442
using 442-447

system services 104

system users 60

T
tar command 89, 90

targeted policy 318-321

terminal 54

Terminal, Cockpit 286

text editor 91

text files
network interfaces,

configuring with 178, 179

timers 114

Timers section, Cockpit 279

time synchronization 116

tmux 245
remote terminals 245-247

token 337

transition 319

Transmission Control Protocol/Internet
Protocol (TCP/IP) 166

Transmission Control Protocol
(TCP) 269, 293

Trento 478
architecture 479
reference link 479

Trento Agent 478

Trento Server 478

truncate tool 359

U
UAPI Group 71

UNetbootin tool 12

Unified Extensible Firmware Interface
(UEFI) 378, 419, 420, 423

Uniform Resource Identifier (URI) 282

universally unique identifiers (UUIDs) 370

Universal Serial Bus (USB) 370

Universal Time Clock (UTC) 120

USB thumb drive
SLES installation, booting from 12, 13

user accounts 136
creating 136-138
deleting 139, 140
modifying 138

User Datagram Protocol (UDP) 116, 269, 293

user ID (UID) 60

users 60, 61
changing, with su command 57, 58
regular users 60
superuser 60
system users 60

Index 547

V
vgcreate command 399

vgdisplay command 399

vgextend command 399

vgreduce command 399

vgremove command 399

vgs command 399

Vi 91

Vim 91

virtual console 54

virtual hard drive (VHD) 359

Virtual Local Area Network (VLAN) 167

Virtual Private Network (VPN) 167

virtual server 13

volume groups (VGs) 376
new disks, adding to 387-393
physical volumes (PVs), combining into 384
removing 393-398

W
whoami command 57, 60

Wicked 168

working directory 63

Workload Memory Protection 476

Y
Yet Another Markup Language (YAML)

reference link 444

Yet another Setup Tool (YaST) 249

Z
zones 269

Zypper 189, 216, 409
repositories, managing 204-207
repository clean-up options 216
repository-related options 207
signatures, managing 204-206
software installation 199-202
software maintenance options 213
software, updating 203-212

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Foreword
	Contributors
	Table of Contents
	Preface
	Free Benefits with Your Book

	Part 1: System Administration: Software, User, Network, and Service Management
	Chapter 1: Getting SLES 16 Up and Running (Physical and Cloud)
	Technical requirements
	Obtaining the SLES software and a subscription

	Installing SLES 16
	Preparation for a physical server installation
	Booting an SLES installation from a USB thumb drive
	Preparation for a virtual server installation

	Running the SLES installation
	Installation type
	Installer introduction and overview
	Hostname
	Registration
	Localization
	Network
	Storage
	Software
	Authentication

	Running SLES on the cloud
	Installation best practices
	Summary
	Get This Book’s PDF Version and Exclusive Extras

	Chapter 2: Running Basic Commands and Simple Shell Scripts
	Logging in using a password
	The root account
	Understanding the command prompt

	Changing users with the su command
	Understanding users, groups, and basic permissions
	Users
	Groups

	Navigating the filesystem
	File permissions

	Using the command line, environment variables, and navigating through the filesystem
	Command line and environment variables
	Bash autocomplete
	Recovering previous commands

	Filesystem hierarchy

	Understanding I/O redirection in the command line
	Filtering output with grep and sed
	Listing, creating, copying, and moving files and directories, links, and hard links
	Directories
	Copying and moving
	Symbolic and hard links

	Using tar and gzip
	Creating basic shell scripts
	Loops with for
	Conditionals with if
	Exit codes

	Using system documentation resources
	Man pages
	Info pages

	Summary
	Get This Book’s PDF Version and Exclusive Extras

	Chapter 3: Managing Regular Operations with Tools
	Technical requirements
	Managing system services with systemd
	The systemd unit file structure
	Managing services to be started and stopped at boot
	Managing boot targets

	Scheduling tasks with systemd timers
	Systemd timers

	Learning about time synchronization with chrony
	The chrony NTP client
	The chrony NTP server

	Checking system resources: memory and disk (free, df, and ps)
	Memory
	Disk space
	CPU
	Load average
	Other monitoring tools

	Finding logs, using journald, and reading log files, including log preservation and rotation
	Log rotation
	Get This Book’s PDF Version and Exclusive Extras

	Summary

	Chapter 4: Securing the System with Users, Groups, and Permissions
	Creating, modifying, and deleting local user accounts and groups
	Managing groups and reviewing assignments
	Adjusting password policies
	Configuring and using sudo access for administrative tasks
	Understanding sudo configuration
	Using sudo to run admin commands
	Configuring sudoers

	Checking, reviewing, and modifying file permissions
	Using special permissions
	Understanding and applying set-UID
	Understanding and applying set-GID
	Using the sticky bit
	Get This Book’s PDF Version and Exclusive Extras

	Summary

	Chapter 5: Enabling Network Connectivity
	Technical requirements
	Exploring network configuration in SLES
	Getting to know the configuration files and NetworkManager
	Configuring network interfaces with IPv4 and IPv6
	IPv4 and IPv6... What does that mean?
	Configuring interfaces with nmtui
	Configuring interfaces with nmcli
	Configuring interfaces with text files

	Configuring the hostname and hostname resolutions (DNS)
	Overview of firewall configuration
	Configuring the firewall

	Testing network connectivity
	Summary
	Get This Book’s PDF Version and Exclusive Extras

	Chapter 6: Adding, Patching, and Managing Software
	Technical requirements
	Some useful concepts about package management
	SCC and subscriptions
	Registering an installed system
	Installing and updating software using Zypper
	Managing repositories and signatures with Zypper
	Installing patterns
	Updating software
	Uninstalling software and repositories
	Understanding RPM internals
	Get This Book’s PDF Version and Exclusive Extras

	Summary

	Part 2: Security with SSH, SELinux, Firewall, and System Permissions
	Chapter 7: Administering Systems Remotely
	Technical requirements
	SSH and OpenSSH overview and base configuration
	OpenSSH server
	OpenSSH client

	Accessing remote systems with SSH
	Key-based authentication with SSH
	SSH agent

	SCP/rsync – Remote file management
	Transferring files with an OpenSSH secure file copy (scp)
	Transferring files with sftp
	Transferring files with rsync

	Advanced remote management – SSH tunnels and SSH redirections
	Remote terminals with tmux
	Get This Book’s PDF Version and Exclusive Extras

	Summary

	Chapter 8: Enabling and Using Cockpit
	Technical requirements
	Installing and enabling Cockpit on your system
	Basic Cockpit usage
	Accessing Cockpit
	Logging in and enabling administrative tasks
	Metrics and history
	Hardware information and logs

	Storage, network configuration, and firewall
	Storage
	General networking
	Firewall management
	Network interface management

	Accounts and services
	Accounts
	Services

	Other tools
	Applications
	Repositories
	SELinux
	Software updates
	Subscriptions
	Terminal

	Summary
	Get This Book’s PDF Version and Exclusive Extras

	Chapter 9: Securing Network Connectivity with firewalld
	Technical requirements
	Introduction to firewalld
	Installing firewalld
	Configuring firewalld
	Zones
	Ports
	Services

	Enabling firewalld in the system and reviewing the default zones
	Reviewing the different configuration items under firewalld

	Enabling and managing services and ports
	Creating and using service definitions for firewalld
	Summary

	Chapter 10: Keeping the System Hardened with SELinux
	Technical requirements
	SELinux usage in enforcing and permissive modes
	Reviewing SELinux context for files and processes
	The targeted policy
	Tweaking the policy with semanage
	Restoring changed file contexts to the default policy
	Using SELinux Boolean settings to enable services
	SELinux troubleshooting and common fixes
	Get This Book’s PDF Version and Exclusive Extras

	Summary

	Part 3: Implementing Agentic AI with mcphost
	Chapter 11: Agentic AI with mcphost
	Understanding agentic AI and MCP
	Installing and configuring mcphost
	Using mcphost
	Summary
	Get This Book’s PDF Version and Exclusive Extras

	Part 4: Resource Administration: Storage, Boot Process, Tuning, and Containers
	Chapter 12: Managing Local Storage and Filesystems
	Technical requirements
	A bit of history on disks and partitions
	Partitioning disks (MBR and GPT disks)
	Formatting and mounting filesystems
	Setting default mounts and options in fstab
	Using network filesystems with NFS
	Get This Book’s PDF Version and Exclusive Extras

	Summary

	Chapter 13: Flexible Storage Management with LVM
	Technical requirements
	Understanding LVM
	Creating, moving, and removing physical volumes
	Combining physical volumes into volume groups
	Creating and extending logical volumes
	Adding new disks to a volume group and extending a logical volume
	Removing logical volumes, volume groups, and physical volumes
	Reviewing LVM commands
	Summary
	Get This Book’s PDF Version and Exclusive Extras

	Chapter 14: Configuring and Using System Snapshots with BTRFS and Snapper
	Technical requirements
	BTRFS’ and Snapper’s origins
	Reviewing BTRFS basics, creating filesystems, reviewing status, and mounting
	BTRFS snapshots, how they work, and how to use them
	Snapper, the snapshot management tool
	Using Snapper to show changes made to files between snapshots
	Using Snapper to roll back to a previous configuration status
	Other Snapper functions

	Summary
	Get This Book’s PDF Version and Exclusive Extras

	Chapter 15: Understanding the Boot Process
	Understanding the boot process – UEFI booting and legacy BIOS
	Working with GRUB, the bootloader, and initrd system images
	Managing the boot sequence with systemd
	Updating the root password by modifying the boot process
	Get This Book’s PDF Version and Exclusive Extras

	Summary

	Chapter 16: Automating with System Roles
	Technical requirements
	What are system roles?
	Installing system roles
	Using system roles
	Get This Book’s PDF Version and Exclusive Extras

	Summary

	Chapter 17: Managing Containers with Podman
	Technical requirements
	What to expect from containers
	Installing Podman
	Working with registries
	Using registries
	Connecting to a running container
	Deleting containers and images

	Summary
	Get This Book’s PDF Version and Exclusive Extras

	Chapter 18: Introduction to SLES for SAP Applications
	Technical requirements
	SLES for SAP Applications
	Long-term support
	Workload Memory Protection
	SUSE Linux Enterprise Live Patching

	Trento
	Tuning SLES for SAP
	Converting a SLES system to SLES for SAP Applications
	Summary
	Get This Book’s PDF Version and Exclusive Extras

	Part 5: Practice Exercises
	Chapter 19: Practice Exercises – 1
	Technical requirements
	Tips for the exercise
	Practice exercise 1
	Exercise 1 solution

	Chapter 20: Practice Exercises – 2
	Technical requirements
	Tips for the exercise
	Practice exercise 2
	Exercise 2 solution

	Chapter 21: Unlock Your Exclusive Benefits
	Other Books You May Enjoy
	Index

