
W I N D O W S T R O U B L E S H O O T I N G S E R I E S

Troubleshooting
Windows Server
with PowerShell

—
Derek Schauland
Donald Jacobs

Windows
Troubleshooting

Series

Mike Halsey, MVP
Series Editor

HivaNetwork.Com

http://www.hivanetwork.com/

 Troubleshooting
Windows Ser ver
with PowerShell

 Derek Schauland

Donald Jacobs

Troubleshooting Windows Server with PowerShell

Derek Schauland Donald Jacobs
Greenville, Wisconsin, USA Appleton, Wisconsin, USA

ISBN-13 (pbk): 978-1-4842-1850-1 ISBN-13 (electronic): 978-1-4842-1851-8
DOI 10.1007/978-1-4842-1851-8

Copyright © 2016 by Derek Schauland and Donald Jacobs

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Gwenan Spearing
Development Editor: Douglas Pundick
Technical Reviewer: Adam Driscoll
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, Jim DeWolf, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, James Markham, Susan McDermott,
Matthew Moodie, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Melissa Maldonado
Copy Editor: Kim Burton-Weisman
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springer.com . Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com . For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/ .

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

 For Laura—thanks for the encouragement.

 For Nyla—keep learning.

vii

Contents at a Glance

About the Authors .. xv

About the Technical Reviewer ... xvii

Windows Troubleshooting Series ... xix

Acknowledgments .. xxi

Introduction .. xxiii

 ■Chapter 1: Getting Started .. 1

 ■Chapter 2: Managing the Windows Event Log 17

 ■ Chapter 3: Gathering and Reporting Detailed Information
from a Computer .. 35

 ■Chapter 4: Installed Applications ... 53

 ■Chapter 5: Windows Update ... 65

 ■Chapter 6: Manage Running Processes on a Target System 75

 ■Chapter 7: Review and Manage Services with PowerShell 89

 ■Chapter 8: Continuing to Learn As PowerShell Evolves 103

Index .. 117

ix

Contents

About the Authors .. xv

About the Technical Reviewer ... xvii

Windows Troubleshooting Series ... xix

Acknowledgments .. xxi

Introduction .. xxiii

 ■Chapter 1: Getting Started .. 1

Getting to Know PowerShell .. 2

GUI Tools vs. PowerShell ... 3

The Basics of PowerShell .. 4

Working with Variables ... 4

CMD Is Dead—Long Live PowerShell ... 5

Why All the Drives? ... 5

The Natural Progression of Tool Building .. 6

PowerShell Is Not Going Away .. 7

What Does this Do for PowerShell? .. 8

Chapters in this Book .. 8

Assumptions Used in this Book ... 9

How to Let PowerShell Help You Learn More .. 11

Summary ... 15

More Reading ... 16

 ■ CONTENTS

x

 ■Chapter 2: Managing the Windows Event Log 17

What Can Windows Capture? .. 17

Accessing the Event Log Information .. 18

Get-EventLog .. 19

Get-WinEvent .. 22

Why Choose One cmdlet over Another? .. 22

Getting Logs from Remote Computers .. 23

Shaping the Gathered Information .. 24

Comma-Separated Values .. 24

Creating an HTML Report.. 27

What Else Can Be Done with this Information? 27

Formatting HTML for Readability .. 27

HTML Formatting with a Function .. 28

Can PowerShell Use the Event Log to Store Information? 32

Summary ... 33

 ■ Chapter 3: Gathering and Reporting Detailed Information
from a Computer .. 35

Gathering Disk Space .. 35

Disks First ... 36

Logical Disks .. 37

Listing Shares.. 38

NTFS Permissions ... 41

Getting the ACLs ... 42

Setting the ACLs ... 43

Hardware ... 45

Computer System Information .. 48

 ■ CONTENTS

xi

Processor Information ... 49

Troubleshooting ... 51

The Difference Between WMI and CIM ... 51

Remote Queries .. 51

Next Steps ... 52

Summary ... 52

 ■Chapter 4: Installed Applications ... 53

Obtaining a List of Installed Applications .. 53

Using the CIM Object ... 54

Using the Registry Keys .. 58

Arrays ... 60

Next Steps ... 62

Summary ... 63

 ■Chapter 5: Windows Update ... 65

Get-HotFix ... 66

Scenario ... 66

Resolution ... 66

Using WMI or CIM .. 67

Details of Get-HotFix Results .. 67

Checking When a Computer Was Rebooted .. 68

Uninstalling a Hot Fix .. 71

Improvements to this Function ... 71

Pending Restarts ... 72

Summary ... 74

HivaNetwork.Com

http://www.hivanetwork.com/

 ■ CONTENTS

xii

 ■Chapter 6: Manage Running Processes on a Target System 75

Working with Processes .. 75

Filtering by Process ID or Name .. 78

Sorting and Selecting Information Needed ... 79

Working with Returned Data... 81

Delivering the Goods: A Quick Sidestep to Sending Email 82

Collecting Information from a Remote Computer or Computers 82

Other Ways to Improve the Script ... 83

Starting and Stopping Processes ... 84

When Start-Process and Stop-Process Are Useful ... 85

Select First, Then Again, and Then Stop ... 86

Using WMI or CIM to Work with Processes ... 86

Using the CIM cmdlets .. 87

Summary ... 88

 ■Chapter 7: Review and Manage Services with PowerShell 89

Access to Services with PowerShell ... 89

Gathering Service Information .. 90

Actions on Services .. 90

Enter WMI ... 95

Summary ... 101

 ■Chapter 8: Continuing to Learn As PowerShell Evolves 103

Building Modules ... 103

Desired State Confi guration .. 105

What Is Desired State Confi guration (DSC)? .. 106

Auditing Only ... 106

Applying Confi gurations: Make It So ... 106

What Does a DSC Confi guration Look Like? .. 107

 ■ CONTENTS

xiii

What Are Some Practical Applications of DSC? 107

Starting or Stopping Services ... 107

Installing Necessary Roles or Features ... 108

Fixing Confi guration Drift: Wrongly Installed Applications 108

Ensuring That Files or Folders Exist .. 108

Working with DSC to Ensure IIS Is Installed ... 108

PowerShell Remoting .. 109

How Do I Enable Remoting? .. 110

A Remote PowerShell Session .. 110

Using Scheduled Jobs in PowerShell .. 111

Scheduled Jobs Options .. 111

Scheduled Job Triggers ... 112

Creating the Scheduled Job .. 113

Job Verifi cation .. 113

Getting Scheduled Job Results ... 114

More Learning and Additional Resources .. 115

Summary ... 115

Index .. 117

xv

 About the Authors

 Derek Schauland is a Microsoft MVP with 18 years’
experience configuring everything from Windows
NT 4.0 environments to Windows Server 2016. He
has worked in help desk and systems administrator
roles helping companies and end users alike handle
the challenges that can accompany the Windows
experience. He has written for publications ranging
from white papers for internal publication, to
 Redmond Magazine and TechRepublic , and books
for Microsoft Press. When he isn’t helping configure
development or cloud environments, writing for the
next great publication, or working to put on local
technology events, he can be found tasting the latest
craft beer, watching movies, or spending time with
family and friends.

 Donald Jacobs began his IT career back when Windows
NT was the biggest and best new technology in the field.
Since that time, he has earned a multitude of Microsoft
certifications, including MCSE Server Infrastructure
2012, MCSA Office 365, MCITP Enterprise Administrator
2008, and MCTS for Windows 7. He has taught
Microsoft’s Certified PowerShell and Windows Server
courses as a Microsoft Certified Trainer. Currently,
Donald supports clients and customers with Microsoft
products, particularly PowerShell, Azure, Office 365,
Active Directory, Exchange, and Windows Server. In
his downtime, he enjoys spending time with his family,
watching hockey, and playing Dungeons & Dragons.

xvii

 About the Technical
Reviewer

 Adam Driscoll is a senior software developer for
Concurrency, Inc. and a PowerShell MVP based out of
Madison, WI. He has experience working with a range
of Microsoft technologies and programming languages.
Adam is the author of the open-source project
PowerShell Tools for Visual Studio. This extension is
used by thousands of developers around the world
and currently ships as part of the Visual Studio 2015
installation package. Adam is an avid blogger, a
published author, a poor golfer, and a triathlete.

xix

Windows Troubleshooting
Series

When something goes wrong with technology, it can seem impossible to diagnose and
repair the problem, and harder still to prevent a recurrence. In this series of books, we’ll
take you inside the workings of your devices and software, and teach you how to find and
fix the problems using a simple step-by-step approach that helps you understand the
cause, the solution, and the tools required.

Series Editor
Mike Halsey, MVP

As a Microsoft MVP (Most Valuable Professional) awardee since 2011, the author of
more than ten books on Microsoft Windows, and a teacher for many years, Mike Halsey
understands the need to convey complex subjects in clear and non-intimidating ways.

He believes that the Windows Troubleshooting Series is a great example of how quality
help, support, and tutorials can be delivered to individuals of all technical ability. He hopes
you enjoy reading this and many other books in this series, both now and for years to come.

xxi

 Acknowledgments

 Derek Schauland: I would like to thank the academy—just kidding. In all seriousness,
I would like to thank my friends, family, and colleagues, who have helped me learn
enough to be dangerous and encouraged me to take on evermore challenging tasks.
I would also like to thank Donn Jacobs for helping me to get this thing off the ground and
doing the real work, Mike Halsey and the team at Apress for seeing this as awesome right
off the bat, and the countless others who helped out along the way.

 Donald Jacobs: With the support of many, this book came to be. To my parents, for
helping me evolve into the person I am today. To Derek, for convincing me to do this
project and for bringing me outside of my comfort zone. To my customers and clients,
who helped me write PowerShell for everything and anything IT related. To Carrie,
U+1F48B, and then some. And lastly, to Starbucks, for keeping me caffeinated through the
writing process.

HivaNetwork.Com

http://www.hivanetwork.com/

xxiii

 Introduction

 Who this Book Is For
 This book is intended for the system administrators and IT staff who are in charge of
keeping the lights on. It may also assist grandma with an afternoon nap, but that is purely
coincidental. We intend for readers to take this book and use it to help solve everyday
problems in real environments. The fact remains that PowerShell is here to stay and
should be something that is easily accessible, learnable, and shareable, and that is the
overall goal of Troubleshooting Windows Server with PowerShell .

 From college graduates in their first job to seasoned enterprise administrators, the
content in this book is designed to help you learn how to use PowerShell. Maybe that is
something as simple as get-command or update-help , and if so, that’s ok. Each chapter is
built to dig into different components of Windows Server and to help you develop skills to
improve your Windows environment. Welcome to PowerShell. Let’s go learn something new.

 What You’ll Learn
 Each chapter is designed to take an aspect of Windows and delve into the components
that you need to know. This book is about finding information quickly and determining
what changed from the last time you documented your servers.

 In Chapter 2 , you learn how to read the event log and information that can be
gleaned from each log. You’ll learn how to create an HTML report to share what you
discover in the event logs.

 In Chapter 3 , you’ll start building documentation for computers, such as disk
space, shares, NTFS permissions, and the hardware that is in use. We’ll look at
gathering information from Windows Management Instrumentation using both WMI
and CIM queries.

 Now that you understand the basics for your computers, in Chapter 4 , we’ll show you
how to get a list of installed applications from your computers. Also in this chapter, we
talk about comparing an old report to a new report to find which programs were added,
deleted, or changed from the last report. This is very useful information for environments
using change management.

 In Chapter 5 , we look at gathering information about Windows patches that were
installed on your computers. You’ll gather information using WMI and CIM. Along those
lines, we look at learning if the computer is waiting for a reboot, or at the last reboot for
your computers.

http://dx.doi.org/10.1007/978-1-4842-1851-8_2
http://dx.doi.org/10.1007/978-1-4842-1851-8_3
http://dx.doi.org/10.1007/978-1-4842-1851-8_4
http://dx.doi.org/10.1007/978-1-4842-1851-8_5

 ■ INTRODUCTION

xxiv

 In Chapter 6 , we look at current processes, starting and stopping processes, and
emailing a report of processes to recipients. This information is great for determining
what is running and starting processes required for management.

 Like processes, in Chapter 7 , we look at services on a computer, both local and
remote. We start by listing the current status, then at starting and stopping services, and
services that have dependencies. Again, reports to others are important, so we show you
how to create a CSV file and share that information with email recipients.

 In Chapter 8 , we talk about how you can improve the examples shown in the
book. We cover building PowerShell modules, Desired State Configuration, PowerShell
remoting, and PowerShell scheduled jobs. This is the chapter in which you take what you
learned in the book, and make it better and make it your own.

http://dx.doi.org/10.1007/978-1-4842-1851-8_6
http://dx.doi.org/10.1007/978-1-4842-1851-8_7
http://dx.doi.org/10.1007/978-1-4842-1851-8_8

1© Derek Schauland, Donald Jacobs 2016
D. Schauland and D. Jacobs, Troubleshooting Windows Server with PowerShell,
DOI 10.1007/978-1-4842-1851-8_1

 CHAPTER 1

 Getting Started

 It’s early Friday morning, and you are still waking up from a cozy sleep when your phone
rings. It’s the company that you work for, informing you that a primary server is having
problems and not functioning as expected. So, time to wake up and figure out what
happened to the server.

 Did it get rebooted? Was a patch installed last night? And, ultimately, what changed?
That is always the big question: “What changed?”

 With tools like Windows PowerShell—and the release of PowerShell Web Access—
you can now start troubleshooting and, hopefully, start resolving Windows problems
from outside your network.

 This book is dedicated to essential first steps to help the IT administrator start
troubleshooting Windows Server and figure out what changed. The first tool used should
not be the built-in GUI tools; it should be PowerShell, especially as more things happen
with Windows that don’t involve the graphical user interface. PowerShell allows the IT
administrator the ability to remotely troubleshoot a server and figure out what happened.

 ■ Note All of the source code used in this text is separated by chapter and made available
online by visiting http://www.apress.com/971484218501 .

 This chapter kicks things off the book and gives you, the reader, a chance to see
the authors’ style and how we use PowerShell. Since PowerShell is a product that helps
manage other products that make life easier for Windows system administrators, it does
not have just one use. While working on this project, several alternate methods of doing
things with Active Directory came suddenly to mind. Some of them sped up things that
we were used to doing another way.

 This book is meant to be a reference tool; this chapter is just a warm up for the things
to come. Enjoy the ride.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-1851-8_1) contains supplementary material, which is available
to authorized users.

http://www.apress.com/971484218501
http://dx.doi.org/10.1007/978-1-4842-1851-8_1

CHAPTER 1 ■ GETTING STARTED

2

 Getting to Know PowerShell
 Having a set of PowerShell commands at the ready will help when you get that phone call.
So the first thing to look at is how long the computer has been running. So, you type the
following command:

 Get-WmiObject Win32_OperatingSystem -ComputerName Server1 | Select-Object @
{Name = 'LastStartTime' ; Expression = {[Management.ManagementDateTime
Converter]::ToDateTime($_.LastBootUpTime)}}

 But realistically, that command isn’t one that you can quickly remember and
understand at 3:00 AM. You were ready for this, though, and you created a function that
allows the same command with shorter syntax, something like this:

 Function Get-TSUptime {
 param ($ComputerName = $env:COMPUTERNAME)
 $WmiOS = Get-WmiObject Win32_OperatingSystem -ComputerName $ComputerName
 [Management.ManagementDateTimeConverter]::ToDateTime($WmiOS.LastBootUpTime)
 }

 It is much easier to type Get-TSUptime rather than the first example.
 In this book, we will talk about how to get the basic information and how to convert

some of the commands into functions. Once you have a lot of functions, you can build
modules of common functions.

 This book is designed to help you write your own PowerShell commands and use
them to troubleshoot your environment. Because each environment is unique, this book
helps you figure out what your organization needs.

 What works for one company, may not necessarily work elsewhere. This book lets
you know what to monitor and how to set up some of your troubleshooting tools.

 Much of PowerShell is backward compatible to allow scripts written on a Windows 10
computer to operate in previous versions of Windows. We have tested the examples in this
book with Windows 10 , Server 2016 , Server 2012 R2 , and Windows 8.1. It is possible that
many of these scripts will work in other versions of the operating system, but we have
not tested them there. In addition, the examples provided here are “as is” with no
warranty provided. Use them at your own risk—preferably in a lab to help you build tools
that you can then use in production. We have done testing, but your mileage may vary
depending on your environment. Some PowerShell cmdlets will only be available in later
versions and we will make sure to mention which cmdlets work with what versions of
operating systems.

 This book is not the definitive answer to troubleshoot all Windows problems, but
rather a guide to help you build your own tools.

CHAPTER 1 ■ GETTING STARTED

3

 GUI Tools vs. PowerShell
 Microsoft has shipped GUI tools to administer Windows and other applications for as long
as Windows has been around. Active Directory Users and Computers (ADUC) is a great
example of one of these tools. How does it stack up against PowerShell? Let’s find out.

 Let’s open ADUC and PowerShell to examine the differences. We need to make a
couple of assumptions to get started. To follow along completely, you should run Active
Directory Domain 2012 and your client computer should be Windows 8.

 ■ Note Windows Server 2012 and Windows 8 are no longer the current release. We
will try to stay with the currently released version of both the server and client OS where
possible. When we deviate from that, we will point it out, but in general, you should assume
our examples are Windows 10 and Windows Server 2012 R2.

 You should also have Remote Server Admin Tools installed because, let’s face it,
ADUC isn’t part of the default tools on a client operating system. You can find the tools at
 http://www.microsoft.com/en-us/download/details.aspx?id=39296 .

 So, quickly modify a user’s description … and … go!
 Using ADUC: (1) Right-click your Active Directory domain. (2) Click Find. (3) Enter

the user’s login name. (4) Right-click the user name. (5) Click Properties. (6) Click in the
Description field and enter a description. (7) Click OK. (8) Close the Find window.

 ■ Note By the way, using Active Directory Administrative Center (ADAC), introduced in
Windows Server 2008, is faster than ADUC. Most people running a 2008 domain do not use
this new and improved GUI. In some cases, the older tools work just as well; in other cases,
people have simply not heard of the new tools. Search for “ADAC” or “Active Directory
Administrative Center” to check it out.

 See how easy that was? Now let’s try the same thing in PowerShell.
 Using PowerShell, type Set-ADUser djacobs -Description 'Sales at

BigCompany' and hit Enter. Done!
 So, which way is faster?
 In many cases, PowerShell will be faster once you get the hang of it, but there is a bit

of a learning curve to the new method. We will do our best to help you get moving with the
command syntax for troubleshooting Windows. After reading this book, we hope that you
will be inclined to first try things with PowerShell and only use the GUI to check your work.

 For those of you who have touched PowerShell before and are curious why we didn’t
import any modules to run the previous code, PowerShell versions 3 and higher do not
require the modules to be imported first; you can load them on the fly when cmdlets are
used. For those of you who don’t know what a cmdlet or a module are, keep reading.

http://www.microsoft.com/en-us/download/details.aspx?id=39296

CHAPTER 1 ■ GETTING STARTED

4

 Another example is when someone in your organization’s HR department gives you
an Excel file and they want you to update several fields for all users: telephone numbers,
offices, descriptions, titles, and managers. Using ADUC, you can spend days updating
those fields for all of your users, depending on the size of the environment. And, for those
of you with many users, we hope that it doesn’t take you days to complete.

 Using PowerShell, data can be gathered directly from Excel or it can be saved as a
 CSV file within Excel into an array. You can loop through and modify the data for all users
on the list within seconds.

 OK, now the critics out there will be saying, yeah, but it took you 30 minutes to write
the code, add error checking, and create an HTML report of any errors and successes to
send back to HR in an email. Yes, it did, but next month when HR sends another Excel file
with more users to be updated, just rerun the script and go get a cup of coffee, or tea, or
your beverage of choice. The good news is that you can spend a minute deciding what to
drink and still be done before you start those clickety-click changes using ADUC.

 And for those of you thinking, “by the hour, not by the job,” that is a true statement.
However, those people are also still writing batch files to map drives for their users during
login (don’t get us started on that one). Those are the people who are telling their bosses
how long it takes to do this stuff and expecting sympathy because they are so overworked.

 Work smarter, not harder. Use PowerShell.

 The Basics of PowerShell
 There are many articles, classes, and videos on the basics of PowerShell. Hopefully, by
now, you have taken advantage of these resources because this book assumes that you are
familiar with the basics and want to expand your current knowledge.

 PowerShell has cmdlets that are in “verb-noun” form . This book discusses some of
the commands for finding information on computers—either workstations or servers.
We build on the verb-noun cmdlets and use simple functions to give more power to the
cmdlet.

 ■ Note The nouns in PowerShell are singular nouns— get-process , for example. You
can use plural nouns in functions, but you see a warning about unapproved verbs. They still
work, but you will be warned.

 Working with Variables
 PowerShell comes with some built-in variables and allows others to be specified as
needed like any other language. The biggest difference is that the variables do not need
to be declared before they are used. Using a variable in PowerShell simply requires
 $myvariable = "hello reader" to be called. This populates $myvariable with the string
value "hello reader" .

CHAPTER 1 ■ GETTING STARTED

5

 The built-in variables (of which there are many) and any variables created during use
are stored in a special drive called variable . Accessing this drive, which is only available to
PowerShell, called a PSDrive , can be done by running "cd variable" from the command
line. The context of the console changes. You can list all the variables currently stored in
the PSDrive using a cmdlet such as Get-ChildItem , or aliases such as dir or ls .

 CMD Is Dead—Long Live PowerShell
 PowerShell is very much a replacement for cmd.exe and as such has commands and
aliases for its commands that mirror those found in the command shell. In addition to
aliases for cmd.exe commands, PowerShell also supports aliases for commands found in
other shells. PowerShell can also run executables directly from the PowerShell console or
Integrated Scripting Environment (ISE), just like the regular command line.

 For example, the PowerShell way to list the contents of a folder is

 Get-ChildItem -Path 'c:\users\username'

 This displays all the folders and files stored inside the profile directory for the
specified user. Running Get-ChildItem without a path lists the items in the current folder.
In the Windows command shell, running dir lists the contents of the current folder. dir
was created as an alias for Get-ChildItem , which makes it a shortcut, or alias, for the full
function.

 Another alias for Get-ChildItem is ls , which is also used on the *nix operating
systems. PowerShell incorporates these things to maintain both backward compatibility
and platform commonality, allowing users of other platforms to work with PowerShell.
Aliases can be created for functions or cmdlets written by PowerShell users or third
parties. Like variables, aliases are stored in a PSDrive and can be listed as needed. Simply
use cd alias: to access the alias drive within PowerShell.

 Why All the Drives?
 We have seen two PowerShell drives (also known as PSDrives) so far in this section: alias
and variable. These built-in drives help PowerShell behave like a file system style explorer.
This way, these things can be accessed just like the C: drive and have contents listed,
written, modified, or deleted as such. There are a number of PSDrives in PowerShell;
some just might surprise you, like the PSDrives registry. A detailed discussion of these
items is beyond the scope of this book, but a brief introduction might prove very useful
for troubleshooting.

 Listing the PSDrives is as easy as executing Get-PSDrive . Figure 1-1 displays the
output of the command.

CHAPTER 1 ■ GETTING STARTED

6

 ■ Note Other items may be added to PSDrives just like variables, aliases, and other
objects. Providers that can be added are of type registry, alias, Environment, File System,
Function, and Variable.

 The Natural Progression of Tool Building
 Tool building starts with something simple: a problem that needs to be fixed and
resolved. Once you identify a problem, you need to find PowerShell cmdlets to solve that
problem. Use the built-in PowerShell help feature to find cmdlets that will help you solve
problems. Once you find these cmdlets, test them to determine the best way for them to
fix the problem.

 Bigger problems take several cmdlets used together to solve problems. They can be
saved in a script or function to repeatedly solve a problem. Adding parameters to your
scripts or functions allow these scripts to be used in other environments.

 As more scripts and functions are created, adding them into modules keeps them
organized. Typically, a module is a set of related Windows PowerShell tools that can be
loaded into memory for the current PowerShell session.

 Typically, each module contains common scripts that help solve your bigger goals;
in our example, we could have a module for troubleshooting Windows with PowerShell.
Earlier, we used a single PowerShell command to find the last start time of a computer.
Then, we decided we wanted to be able to run that against other computers, so we built
a function called Get-TSUptime . For a quick check, let’s create another simple function
called Get-TSFreeSpace (this example is explained later in the book).

 Figure 1-1. Get-PSDrive

CHAPTER 1 ■ GETTING STARTED

7

 Function Get-TSFreeSpace {
 [CmdletBinding()]
 param ($ComputerName = $env:COMPUTERNAME)
 $allDisks = Get-WmiObject -ComputerName $ComputerName -Class Win32_
LogicalDisk -Filter "DriveType='3'"

 foreach ($disk in $allDisks) {
 $results += [PSCustomObject]@{
 'ComputerName' = $disk.DeviceID
 'FreeSpace(GB)'= $([int]($disk.FreeSpace / 1GB))
 'Size(GB)'= $([int]($disk.size / 1GB))
 }
 }
 $results
 }

 Now that we have two common functions, we can save them into a module. In this
book, we are creating and testing modules inside the Documents folder of the current
user. The way that you create a module is to simply create a folder called TSTools at
C:\Users\<YourUserID>\Documents\WindowsPowerShell\Modules and then save both
functions inside another script called TSTools.PSM1 inside the TSTools folder that you
just created.

 Once you are done with that, if you are starting PowerShell v4 or later, the TSTools
module automatically loads inside your PowerShell current session. If you want to load
this module manually, you can simply call the command Import-Module TSTools and it
then loads all of the functions within the TSTools.PSM1 module into the current session.

 ■ Tip You can view the current module path within a PowerShell environment by running
 $env:psmodulepath . This environment variable displays the current paths where modules
can be stored. When stored here, the modules can be loaded by using import-module
ModuleName . Adding folders to the module path is also possible and it is discussed later in
this book.

 As you create and complete more functions, you can add them to existing modules
that share a common purpose.

 PowerShell Is Not Going Away
 Microsoft has made large commitments with PowerShell, which will keep it in the
forefront for quite some time. Previous scripting and command shell environments were
focused on accomplishing tasks and automating things, but they lacked security in many
areas. PowerShell takes security seriously, so seriously, in fact, that scripts will not run by
default.

HivaNetwork.Com

http://www.hivanetwork.com/

CHAPTER 1 ■ GETTING STARTED

8

 Microsoft has also added several extra security features, including module logging,
script block logging, and transcription. These features are available in PowerShell version 5
and they can be configured in PowerShell version 4, with some other upgrades.

 Microsoft has also done a lot of security using constrained endpoints for PowerShell
sessions. Constrained endpoints allow you to declare which cmdlets are available
for specific users and groups. As an example, you can set up a PowerShell endpoint
configuration that only allows cmdlets that start with Get to be executed for users of the
help desk group.

 Another new feature for securing PowerShell is a relatively new concept called
Just Enough Administration (JEA), which provides role-based access control (RBAC).
Microsoft has actually used features of JEA when managing Exchange for a while, but JEA
is a great way to start implementing fine-grained controls on your computers.

 What Does this Do for PowerShell?
 The ability to manage the growing majority of applications and services that run an
environment from PowerShell make working at scale much faster and easier. The built-in
scalability of this technology is amazing. The third-party adoption of the technology is
also a statement that PowerShell is a great technology. Although third-party solutions are
outside the scope of this book, many environments may benefit from some of them. Here
are a few resources that you can check out to see what types of third-party products are
out there:

• vSphere PowerCLI: http://www.vmware.com/support/
developer/PowerCLI/index.html

• Amazon AWS Tools for Windows PowerShell:
 https://aws.amazon.com/powershell/

• PowerShell for Veeam Backup & Replication: http://www.veeam.com/
blog/powershell-for-veeam-backup-replication.html

 As you can see, adoption of PowerShell is not just for administrators anymore;
third-party companies and other tools can leverage PowerShell to improve manageability.

 Chapters in this Book
 Throughout this book, we talk about several key areas of Windows computers. In the early
chapters, we discuss Windows event logs, gathering information about your servers, and
finding installed applications on your servers.

 While looking at the event logs, we’ll talk about listing all the event logs and
searching for a specific event id or keyword. We’ll also talk about how to export data from
event logs into reports for viewing as a web page and emailing the reports to others.

http://www.vmware.com/support/developer/PowerCLI/index.html
http://www.vmware.com/support/developer/PowerCLI/index.html
https://aws.amazon.com/powershell/
http://www.veeam.com/blog/powershell-for-veeam-backup-replication.html
http://www.veeam.com/blog/powershell-for-veeam-backup-replication.html

CHAPTER 1 ■ GETTING STARTED

9

 As we gather information about servers, we’ll examine the disks on the servers and
the free space on those disks. We’ll also get a list of file shares on the server. We’ll examine
NTFS permissions on folders and files, getting current values on setting new NTFS
permissions. We’ll show you how to find hardware information about your devices, both
locally and remotely. As a bonus section, we’ll talk about the difference between using
WMI and CIM to query remote servers.

 We’ll cover how to find information, and compare a report of installed applications
from today with a report saved a while ago to find out which applications have been
added, removed, or changed.

 Along with applications, we’ll talk about Windows updates, gather information about
hotfixes on your computer, and discuss whether you should use WMI or CIM to get the
information. You’ll also learn how to uninstall a hotfix should you ever find the need to do
so. We’ll also talk about pending restarts of your computer.

 Toward the end of the book, we’ll look at processes and services. We also talk about
creating modules, Desired State Configuration, PowerShell remoting, and PowerShell
scheduled jobs.

 Processes are programs running on your computer. We’ll look at finding information
about processes, again, on the local computer and remote devices. We’ll also show you
how to start and stop processes. After that, we’ll look at how PowerShell interacts with
services, including stopping, starting, and the aspects of working with them.

 Assumptions Used in this Book
 Benny Hill said it best about when people assume things. So, we are going to try to clarify
several aspects of this book that may be confusing to some. It’s best if we can simply
clarify some of our idiosyncrasies right away, instead of readers trying to guess what we
meant.

 All the functions have a TS prefix on the cmdlet noun.

 Many times, we see too many people creating a function called “ Get-FreeSpace ”,
which is not wrong. It follows the verb-noun standard that Microsoft has created for
function names. This works great and nothing is wrong with calling your function
Get-FreeSpace, except that it is a very small way to look at solutions.

 Scenario: Two users create a function called Get-FreeSpace and you have them both
on your computer. How do you know whose function you are using? They are similar
but not the same, and the name does not tell whose function it belongs to. One way to
distinguish which function is what is to add a prefix to the noun. We have seen things
like initials of the author (Get-DJFreeSpace), or a company abbreviation if used within
a company (Get-TSTools). Now, if you share your function with the world, you have just
distinguished your function from others’.

CHAPTER 1 ■ GETTING STARTED

10

 All PowerShell cmdlets that we use will be run “as Administrator”.

 In the real world, running an elevated session of PowerShell (or one “as
Administrator”) in normal day-to-day operations is not recommended, but for simplicity
and to ensure that you get the same results as shown in the book, please elevate your
PowerShell session by making sure that you run “as Administrator”. To do this, right-click
the PowerShell icon and select Run as Administrator.

 Once you have tested your script and you know that things are working as expected,
try running your script without elevated permissions to see if things still work. You will
find that most items work fine without elevated permissions, but for testing, we are going
to be running elevated commands.

 Write-Host is not a puppy killer.

 Sometimes, we want to display a simple message on the screen. We don’t need to do
anything more yet since we are just testing or just displaying output to the screen. In
day-to-day scripts, we do not use Write-Host unless testing, and we remove them during
the final revision of the script.

 It is nice to create a simple test like this:

 if ($test -eq $true) {
 Write-Host "Good test" -ForegroundColor Green
 } else {
 Write-Host "Failed test" -ForegroundColor Red
 }

 With this example, you can simply read the output or check the color of the text on
the screen. It is very easy to see a success (green) or a failure (red) simply by glancing and
seeing the output. Again, most of our day-to-day scripts do not use Write-Host , but for
testing, definitely use it, and if the script is only to display data to the screen, please use
this to help in testing.

 PowerShell version 5 has added a new cmdlet called Write-Information ,
which improves Write-Host . Along with Write-Information , PowerShell has added
 -InformationVariable to Write-Host , which allows you to save information from the
 Write-Host to a variable to recall later, or to save your output, instead of just sending the
information to the PowerShell session that called it (see Figure 1-2).

 Figure 1-2. Adding Write-Information to Write-Host

CHAPTER 1 ■ GETTING STARTED

11

 ■ Tip To write output to the screen in a production script, consider using write-verbose ,
which displays the items to the screen if the verbose switch is supplied. If the –verbose
switch is not specified, no screen output displays.

 How to Let PowerShell Help You Learn More
 PowerShell supports comment-based help that can be extremely useful in teaching users
more about how to work with PowerShell. This is good for the built-in cmdlets that ship
with the environment, because you can ask PowerShell for more information about how
things work and how to use certain cmdlets. As an example, Get-Help Get-Command
explains how the Get-Command cmdlet works, including the parameters required and
available, as well as examples for usage of the cmdlet. Figure 1-3 shows the help for
 Get-Command .

 Figure 1-3. Help for the Get-Command cmdlet

 ■ Note Your output may be a little different based on your operating system and if you
have updated your help files. Figure 1-3 has not updated the help files yet.

CHAPTER 1 ■ GETTING STARTED

12

 With PowerShell, Microsoft has made a point of improving usability and learnability .
In other Windows applications, the F1 button generally brings up something similar to a
manual containing a bunch of documentation. Get-Help does this for PowerShell, but it
goes further because the help is comment based. This allows anyone writing PowerShell
scripts, functions, or modules (all of which are covered in the coming pages) to include
help for their PowerShell code.

 For many help items, when PowerShell is first installed—on a new Windows 10
machine, for example—the help does not contain much, if any information. Microsoft
does not include the full help contents in current releases of the operating systems, but
allows you to use the Update-Help cmdlet to ensure that your cmdlets are always current.

 Update-Help must be run in an elevated shell, but goes out to the Internet and
collects the help for cmdlets and functions with the ability to accept updateable help.
Using a help system in this way allows updates to happen at any time, rather than just
when an update to PowerShell ships.

 If something needs to change, the author can modify the online help file to add an
example or change the wording of the content. The next time that Update-Help is run, the
new information is collected.

 ■ Tip It is a good idea to update help regularly, because things do change from time to
time. This can be done by simply running update-help in an elevated shell.

 In an environment in which computers cannot (or should not) reach the Internet,
the updateable help content can be downloaded and saved to a location within the
environment by using a cmdlet called Save-Help . Here the Update-Help cmdlet can
be pointed at the offline help location, allowing these computers to get help updates.
Once you have updated your local help files, you can run a command such as Get-Help
Get-Command , which displays the help contents for the Get-Command cmdlet, as seen in
Figure 1-4 .

CHAPTER 1 ■ GETTING STARTED

13

 Figure 1-4. Help for Get- Command after updating help commands

CHAPTER 1 ■ GETTING STARTED

14

 Using a specially defined set of comments at the top of a script, file or function, the
 Get-Help cmdlet can read the comments and display them on the screen. The following
is an example of the structure of comments for help:

 <#
 .SYNOPSIS
 Description of the function.
 .DESCRIPTION
 A detailed description of the function.
 .PARAMETER ParameterA
 The description of the ParameterA parameter.
 .PARAMETER ParameterB
 The description of the ParameterB parameter.
 .EXAMPLE
 Get-Something -ParameterA 'One value' -ParameterB 32
 .EXAMPLE
 Get-Something 'One value' 32
 .INPUTS
 System.String,System.Int32
 .OUTPUTS
 System.String
 .NOTES
 Additional information about the function go here.
 .LINK
 about_functions_advanced
 .LINK
 about_comment_based_help
 #>

 This comment structure works by filling in the sections for each item. The heading
for each area describes what is contained below it. The headers—including the period
at the beginning and the blank line between sections—are required for the comment-
based help to work. The help is built to make adding instructions easy so that more
PowerShell users will make use of the feature to learn more about the language (scripting
environment or application) and to improve the readability of their code. Remember,
automation and reusability are a focus of PowerShell; the comment-based help is one
way to ensure its adoption within an environment.

 The following completes the comment block to build help into your PowerShell code:

 <#
 .SYNOPSIS
 This function updates titles in Active Directory
 .DESCRIPTION
 Using this function will update the title of a user in Active Directory
 .PARAMETER UserName
 The username parameter identifies the record in Active Directory to

be updated

CHAPTER 1 ■ GETTING STARTED

15

 .PARAMETER Title
 The title parameter corresponds to the title attribute in Active Directory.
 .EXAMPLE
 Update-TSADUserTitle -UserName 'user' -Title "PowerShell Wizard"
 .EXAMPLE
 Update-TSADUserTitle 'user' "PowerShell User"
 .INPUTS
 System.String
 .OUTPUTS
 System.String
 .NOTES
 Use this function to update the title of an Active Directory user
 .LINK
 about_functions_advanced
 .LINK
 about_comment_based_help
 #>

 This shows the completed help for PowerShell code ; it updates the title for a
specified user within Active Directory. Some of the portions of help block have not been
modified; they are not necessarily required, but can be completed if your PowerShell
code requires it.

 As you work through the examples and build PowerShell scripts, be sure to consider
using help. It ensures that the script is extremely usable and allows others to pick up the
code and dive right in, extending the usability even further.

 PowerShell also provides help in line with the code that it assists. Although this
works, it does not make for readable code. Consider placing help at the top of the script or
function.

 Remember, PowerShell has an enormous amount of data and information
available to anyone willing to look for it. Using Get-Help in the PowerShell console gets
information about any cmdlet or properly formed function that the console is aware of.
Along with that, the about_Functions web page (https://technet.microsoft.com/
en-us/library/hh847829.aspx) is the online version of a PowerShell help file; you can
view about_Functions in the console by passing them to Get-Help. Get-Help about_
Functions returns information in the console, whereas the web page shows similar
information at TechNet. In some cases, using the –online switch opens help in a browser,
as long as the URI is filled in within comment-based help.

 Summary
 In the introductory chapter, we introduced Microsoft PowerShell and discussed how the
authors of this book use it. We looked at some of things that we consider important in
the use of PowerShell in day-to-day work. A few of these things fly in the face of the way
others might use or the guidance they provide. Having many different ways to accomplish
tasks with PowerShell is part of its strength and we hope you are ready to get into
PowerShell.

https://technet.microsoft.com/en-us/library/hh847829.aspx
https://technet.microsoft.com/en-us/library/hh847829.aspx

CHAPTER 1 ■ GETTING STARTED

16

 In Chapter 2 , we dive into events management using Windows PowerShell.
Throughout the book, examples will build upon previous chapters, where possible; this
way, a complete picture and module of what has been covered is created for those who
choose to follow along.

 More Reading
 PowerShell about_Functions:
 https://technet.microsoft.com/en-us/
library/hh847829.aspx

 Approved Verbs for Windows PowerShell Commands:
 https://technet.microsoft.com/en-us/library/
ms714428.aspx

 Windows PowerShell Scripting: https://technet.
microsoft.com/en-us/scriptcenter/dd742419.aspx

http://dx.doi.org/10.1007/978-1-4842-1851-8_2
https://technet.microsoft.com/en-us/library/hh847829.aspx
https://technet.microsoft.com/en-us/library/hh847829.aspx
https://technet.microsoft.com/en-us/library/ms714428.aspx
https://technet.microsoft.com/en-us/library/ms714428.aspx
https://technet.microsoft.com/en-us/scriptcenter/dd742419.aspx
https://technet.microsoft.com/en-us/scriptcenter/dd742419.aspx

17© Derek Schauland, Donald Jacobs 2016
D. Schauland and D. Jacobs, Troubleshooting Windows Server with PowerShell,
DOI 10.1007/978-1-4842-1851-8_2

 CHAPTER 2

 Managing the Windows
Event Log

 Windows is a complex application, to say the least. Things happen that the user is aware
of—for example, starting Microsoft Word—and things happen that the user may not be
aware of, such as a privilege audit of a security access to a file on the C drive. In the latter
case, the person sitting at the computer sees the folder open or an error about access
being denied. The event log contains a record of these events to keep administrators
informed about what actions are being taken on a computer.

 In many cases, the logs will not be used to review the starting or stopping of
Microsoft Word because this is fairly benign, but sometimes the timestamp captured
to the log might be useful in figuring out why Word does not start. In this chapter, we
examine how to get ahold of the events generated by Windows and other applications
using PowerShell.

 What Can Windows Capture?
 Microsoft Windows captures more information about what is going on within a system
than is likely to fit (nicely) within the pages of this book. Not only does it record things
that are in error, but also things that might be a problem (warnings) and even service
stops and starts (informational messages). There is a plethora of information captured to
the event log.

 As the Windows operating system evolves and new iterations are released, the items
captured and the number of logs used to store this information continues to grow. In
one of the later builds of Windows 10 (10240), there are five standard Windows logs, but
there are countless more under the Applications and Services Logs folder. Most of these
pertain to Windows internal applications and services and they are not used in general
troubleshooting for the operating system, but it’s nice to know they exist.

 In addition to these logs and the entries they contain, you can create logs and log
entries for specific things you need to keep track of. We will look into that at the end of
this chapter.

HivaNetwork.Com

http://www.hivanetwork.com/

CHAPTER 2 ■ MANAGING THE WINDOWS EVENT LOG

18

 Accessing the Event Log Information
 We know that PowerShell is the scope of this book—and there will be a fair amount of
it coming up, first though, you should know where to look to find an event using the
Event Viewer (eventvwr.msc) built-in tool. The reason for this is to show you what an
event contains so that you can tailor PowerShell to access it and return just what you
are expecting. This saves the hassle of combing through piles of output in the console to
chase down the things that you need.

 ■ Note PowerShell is a great tool, but it can be even greater when used to manipulate
data that you already understand. Starting in the Event Viewer helps with that.

 Figure 2-1 lists the details of an event, showing the time when the computer was
shutdown. As you can see, there is the text description about the shutdown, but there is
also the event id, log name, event source, and other useful information.

 Figure 2-1. A system shutdown event in the Event Viewer

CHAPTER 2 ■ MANAGING THE WINDOWS EVENT LOG

19

 Finding this information in the event log with PowerShell might look something like this:

 Get-EventLog –LogName System | Where-Object {$_.Eventid –eq 1074}

 You will notice that there are several events appearing and that they are all the
same event—a shutdown. But which is the event found in Figure 2-1 ? From the bit of
PowerShell used here, there is nothing that tells which is the precise event.

 To get to the specific event shown, we need to give PowerShell a bit more
information; but getting there is certainly possible.

 Get-EventLog
 When working in PowerShell, it is often times useful to start with broad results and work
your way toward the specific, unless you know exactly what you are after right up front.
For example, you might chase down information about an Active Directory computer
object by specific name because you know you want to work with Engineering-PC, but
in the case of an event log, working your way toward the specific result might be more
useful. In addition to getting more familiar with PowerShell and the event log, you might
come across additional information that serves your purpose and you can make a note to
collect for later use.

 We find PowerShell to be the land of opportunity when it comes to learning the tools
and syntax; getting in there and doing it or using the shell is very helpful.

 Now that you have seen the event log in the Event Viewer and in PowerShell, we
can consider the information that we are going to collect using PowerShell. To do this, a
scenario might work best because we have useful information to collect and for which to
produce a report.

 Scenario
 As a systems administrator, Geoff gets a fair amount of questions about applications
and servers within his environment. His boss generally asks him about the performance
statistics of the E-mail server every day. Geoff is used to the questions from his boss, but
he still finds himself chasing down the data.

 He is looking for a way to produce a summary list of information regarding the E-mail
server and wants to see information about this server from the event log. He has been
reading a lot about PowerShell online and wonders if it will get him the information that
his boss regularly requests.

 That is the goal of this chapter: to find an easier method of getting the information
requested of Geoff. The data can be reviewed as is, but it should also be placed in a report
that can be quickly reviewed when Geoff’s boss inquires. Creating a report file allows you
to email the information to anyone who might find it useful, such as Geoff’s boss and
fellow team members.

CHAPTER 2 ■ MANAGING THE WINDOWS EVENT LOG

20

 Finding Information with PowerShell
 Two cmdlets come to mind when considering ways to get things out of the Windows
event log:

• Get-EventLog

• Get-WinEvent

 The Get-EventLog cmdlet provides a list of information from the specified log that
meets the specified criteria. As shown in Figure 2-2 , the output is a list of the events
requested by the following command:

 Get-EventLog -LogName System -Newest 10

 Figure 2-2. Capturing the newest 10 system logs

 We chose -newest 10 here to keep the returned output as short as possible. If you
leave it out and run Get-EventLog -LogName System , you should see quite a bit of data
scroll past.

 Get-EventLog | Get-Member returns the properties for Get-EventLog as output:

• Category

• CategoryNumber

• Container

• Data

• Entrytype

• Index

• InstanceID

• MachineName

• Message

• ReplacementStrings

CHAPTER 2 ■ MANAGING THE WINDOWS EVENT LOG

21

• Site

• Source

• TimeGenerated

• Timewritten

• UserName

• EventID

 When the command is executed with no formatting parameters, PowerShell displays
the output as a table if there are fewer than five parameter values returned for an item. If
there are five or more values returned, the default output is a list. In this case, there are 11
items, so a table of results is shown.

 The items shown are what were deemed most useful by the creators of the cmdlet,
but you can pull out any information available, either in addition to or instead of what is
listed by default.

 By default, when running Get-EventLog -LogName System -Newest 10 , we got a
table showing Index, Time, EventType, Source, InstanceID, and Message. These are pretty
good to start with, but what if the event occurred but it was not written immediately, or if
you wanted to know the categoryNumber instead of the InstanceID?

 To do that, you pipe the results of your original cmdlet to the Select-Object cmdlet
and change the values returned.

 Get-EventLog -LogName System -Newest 10 | Select-Object -Property Index,
TimeGenerated, TimeWritten, EventType, Source, CategoryNumber, Message

 This builds a table showing the properties you asked for in the select portion of the
statement shown in Figure 2-3 .

 Figure 2-3. Selecting different properties for event log entries

CHAPTER 2 ■ MANAGING THE WINDOWS EVENT LOG

22

 Get-WinEvent
 Get-WinEvent is similar to Get-EventLog , but supports different properties (or names the
properties differently with the same information). In addition, Get-WinEvent does seem
to perform significantly faster when hitting remote systems.

 ■ Note The -FilterHashTable parameter filters the cmdlet results by value pairs in a
hash table. Supplying the names and their associated values speeds up the filtering process. In
addition to the filtering being improved, some of the typing needed is reduced (or at least moved).
This parameter only works on Windows 7 and Server 2008R2 and later versions of Windows
operating systems. You have to use the -FilterXml parameter on older Windows versions.

 In addition, Get-WinEvent manages the XML formatting of the event logs of
Windows Vista and newer releases of Windows. Get-EventLog is great for simple and
quick local queries, but Get-WinEvent seems much more responsive when used on
remote computers.

 The simple act of telling PowerShell that you would like specific properties returned
is just one of the ways that PowerShell can help you find and analyze information.

 Being able to get to the event log and pull back information helps you with creating
reports that can show at a glance what is going on in the machines’ event logs.

 Why Choose One cmdlet over Another?
 Sometimes the choice of which cmdlet to use depends on what properties you are going
to retrieve. Other times, the parameters accepted by the cmdlet might influence your
choice; for example, many cmdlets in PowerShell support the -ComputerName parameter,
which allows them to be executed against remote computers. Some cmdlets do not
support this parameter and so other methods need to be employed to use them on other
systems. Performance might be another reason to choose one cmdlet over another.
Another thing to consider is backward compatibility.

 Remember, there is often more than one way to accomplish a particular task in
PowerShell. The method that works best for you and is easiest to understand is the best
place to start. Building on what you learn is part of the fun of working with PowerShell.

 You can see which parameters a cmdlet supports by reviewing the cmdlet’s help.
Entering Get-Help Get-EventLog returns one of two things:

• The stub help for the cmdlet, which is very sparse and may appear
to be missing information. This means that your help needs to
be updated. Running Update-Help cmdlet in an elevated shell
downloads the latest help from Microsoft.

• The basic help for the cmdlet; it contains an overview of what
the cmdlet can do and the syntax that might be used. Adding the
 -Detailed , -Full , or -Example parameters to the Get-Help line
shows more information about the cmdlet.

CHAPTER 2 ■ MANAGING THE WINDOWS EVENT LOG

23

 Getting Logs from Remote Computers
 As mentioned earlier, sometimes you need to gather log information from remote
computers. Since it is unlikely that you are using a server to do your job (and you
shouldn’t be), you want to connect to one or more servers to retrieve information and
produce some kind of output that others in the organization can understand. If people
have trouble gleaning anything from the report, they will not use it and will continue to
ask for assistance. Until now, the focus has been generally about the event log and how
a systems administrator accesses a log for information, which is great if all the managed
systems are local and there is no need to work with computers in far-flung locations. This
section gets you started on access to event information on remote computers.

 To execute a cmdlet against a remote computer, you do not need to remote desktop
into the system or physically connect to it; typically, you can use the -ComputerName
parameter of the cmdlet you want to run. This passes the cmdlet to the specified
computer and retrieves the information from that system, rather than your local
computer. For example, if we needed to get the system log information from a system
named Server01, the following PowerShell command gets us what we need:

 Get-EventLog –ComputerName Server01 –LogName System

 When executed, that command connects to Server01 and retrieves the system event
log, similarly to the previous command run against the local system.

 You could also use Get-WinEvent -ComputerName Server01 -LogName System to
access the remote computer’s log information. Comparing the performance of each using
 Measure-Command shows quite a performance improvement by Get-WinEvent on remote
computers, but your mileage may vary with regard to performance testing.

 The following uses Get-WinEvent and Get-EventLog while measuring performance:

 Measure-Command {Get-WinEvent -LogName Application}:
1 second 510 milliseconds
 Measure-Command {Get-EventLog -LogName Application}:
0 seconds 310 milliseconds

 Both of these results were taken from the local event log. On a remote machine, the
results were as follows:

 Measure-Command {Get-WinEvent -ComputerName remote -LogName Application}:
22 seconds 118 milliseconds
 Measure-Command {Get-EventLog -ComputerName remote -LogName Application}:
44 seconds 718 milliseconds

 Now that the information has been collected, let’s do something useful with the data.

CHAPTER 2 ■ MANAGING THE WINDOWS EVENT LOG

24

 Shaping the Gathered Information
 Raw event log data pulled back to PowerShell is not terribly useful, since it just scrolls past
as fast as it is returned. With modifications, like selecting certain events or a set number
of items, this may change somewhat because only the information specifically asked
for is returned. Looking at five records in the PowerShell console is not so bad, but five
thousand might be more work than its worth.

 Now that we know how to get the information out of the event log, we can sculpt the
results to display them in a friendlier format. PowerShell has cmdlets for formatting that
can help with this, aside from just Format-List or Format-Table .

 Returning to our previous example, we can build a formatted file that Geoff can
use to review information found in the event logs of various machines within his
organization. Because there was no formatting guideline specified, the data can (and
should) be as flexible as possible. Providing output options for the data allows the
individuals using it to work with it in a variety of ways.

 Comma-Separated Values
 Many applications can pull information from comma-separated values (CSV) files to
improve processing and allow further data analysis to happen. If a database application
needs to have information quickly imported for new products, a CSV file can list all of
these products and then get imported to avoid lengthy inserts or updates to the system.

 PowerShell is good at CSV. It can both generate and accept input from a CSV file,
making this a great place to start.

 In the case of event log reporting, a CSV can provide an input file for a database or
other applications that can work with event log data. It is also fairly simple to create.

 You start out by gathering the information that you need from the event log:

 $systemlog = Get-EventLog –LogName System –Oldest 10

 Notice that the values were put into the systemlog variable. This was done only to
park the data for the time being; it is not required for a CSV file to be created.

 With the data in a variable, it can be piped to the select-object cmdlet to choose
the properties desired; from there, it can be turned into a CSV by piping the results to
another cmdlet: Export-csv .

 To step through the process, take the contents of the systemlog variable and pipe it
to Select-Object .

 $systemlog | Select-Object -Property InstanceId, Message, Source,
TimeGenerated

 Figure 2-4 shows the output of this command.

CHAPTER 2 ■ MANAGING THE WINDOWS EVENT LOG

25

 From here, the CSV can be generated using this selection, as you can see in Figure 2-5 .

 $systemlog | Select-Object -Property InstanceId, Message, Source,
TimeGenerated | Export-Csv -Path "c:\reports\systemlog.csv"

 Figure 2-4. Specifically selected properties from the event log

 Figure 2-5. A CSV file created from event log data

CHAPTER 2 ■ MANAGING THE WINDOWS EVENT LOG

26

 You may notice something odd at the top of the CSV file: a message about TYPE
shown in the first line of the file. This is object information about the CSV; it really
doesn’t affect the data in the CSV at all. It is not something that has to be placed to help
others determine the type of data that was exported. If you import the CSV file back into
PowerShell, that tells PowerShell how to interpret that data. To remove that line of extra
information, you can use the -NoTypeInformation switch on the Export-Csv cmdlet:

 $systemlog | Select-Object -Property InstanceId, Message, Source,
TimeGenerated | Export-Csv -Path "c:\reports\systemlog.csv"
-NoTypeInformation

 This suppresses that line from being added. If you re-execute the command with the
new switch added, you may see an error in the PowerShell console. If the file is open, it
cannot be rewritten by Export-Csv ; closing the existing file and executing the command
solves the problem.

 The new, cleaner CSV file is shown in Figure 2-6 .

 Figure 2-6. A CSV file without type information

 Now we have generated a CSV file with the newest 10 entries in the system log. It
can be opened in Notepad or in Microsoft Excel for viewing, or it can be imported into
something else for processing.

CHAPTER 2 ■ MANAGING THE WINDOWS EVENT LOG

27

 Creating an HTML Report
 Comma Separated Values files are nice and certainly have their usefulness, but when
providing a report to management, they aren’t very appealing. With HTML output and
formatting for things like SQL Reporting Services gaining popularity, people are well used
to seeing data in a web-based format. They generally also find navigating this type of
information simple and straightforward.

 PowerShell can do this too, almost as easily as creating a CSV file.

 ■ Note Creating HTML output is as simple as creating CSV files; however, with a bit of
tweaking, the style and presentation of HTML data generated by PowerShell can be quite
improved.

 Remember, the systemlog variable still has the raw objects returned from the system
log in the event log. This simplifies the process, or at least takes the redundancy out. This
variable is stored in memory until the current PowerShell console closes. Once you close
the current PowerShell console, all the variables used in that session are removed from
memory. In addition, a variable can be overwritten with a new value, or simply removed
by using Remove-Variable <variablename> to clear the contents.

 ■ Note You can store variables, functions, and other frequently used things in your
PowerShell profile, but configuring profiles is beyond the scope of this book.

 What Else Can Be Done with this Information?
 Once the output formatting is done (in our case as a CSV file or an HTML file), the next
step is to either use the data in another application or script in PowerShell (in the case
of the CSV) or dress up the data and push it out to HTML to be shared with others. This
section goes through other types of formatting for information gathered from the event
log, keeping in mind that much of the information gathered will need to be shared with
colleagues.

 Formatting HTML for Readability
 Sending objects to an HTML file puts a basic formatting together that is very usable, but
adding some formatting to alternate the row colors or put a more appropriate header and
title on the document can bring some level of professional appearance to the document.

HivaNetwork.Com

http://www.hivanetwork.com/

CHAPTER 2 ■ MANAGING THE WINDOWS EVENT LOG

28

 To put some formatting together for the file, we can define the header data as a Here-
String variable. Then fill it full of all kinds of HTML header information, as shown here:

 $htmlformat = @"
 <style>
 Table {border-width: 1px; border-style: solid; border-color: black;}
 TH {border-width: 1px; padding: 3px; border-style: solid;}
 TR:nth-child(even) {background: #CCC}
 TR:nth-child(odd) {background: #FFF}
 </style>
 "@

 ■ Note The Here-String in PowerShell is a way to include multiple lines of text “as is”
within a single variable, without the need for line breaks, carriage returns, or other weird
formatting. Using Here Strings allows you to pass this block of text as a variable to other
code—plain and simple. Just include @ " " @ as a wrapper around the text to include.

 This way, the HTML file can be formatted using the stylesheet elements specified by
PowerShell; the resulting output just includeS the styles.

 Next up, since the event log data is already contained in a variable called systemlog ,
we can work on passing this data around a bit and converting it to HTML.

 $HTMLformatted = $systemlog | ConvertTo-Html –fragment | Out-String

 This set of code passes the event log information captured to the ConvertTo-Html cmdlet
and produces a fragment of HTML, which is then converted to a formatted string and passed
to a function (coming next) that prepares the formatting and other things to be displayed.
Essentially, it applies CSS styling to the table and alternates the row color for display.

 HTML Formatting with a Function
 The function below can be used (and reused) to process the information collected across
systems and output the data in a very useful HTML format for use at a later time or
inclusion in an email.

 Function Get-TSHtmlReport
 {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $true)]
 [ValidateSet("System", "Application", "Security")]
 [string]$LogName,
 [Parameter(Mandatory = $true)]
 [string]$SaveFile
)

CHAPTER 2 ■ MANAGING THE WINDOWS EVENT LOG

29

 Begin
 {
 $htmlformat = @"
 <style>
 Table {border-width: 1px; border-style: solid; border-color: black;}
 TH {border-width: 1px; padding: 3px; border-style: solid;}
 TR:nth-child(even) {background: #CCC}
 TR:nth-child(odd) {background: #FFF}
 </style>
 "@
 $HTMLhead += "<H1>Event log information from

$($env:COMPUTERNAME)</H1>"
 $HTMLhead += "<H2>Log name: $($LogName)</H2>"
 }
 Process
 {
 $events = Get-EventLog -LogName $LogName -Newest 50 |

 Select-Object -Property Index, EventID, Message
 }
 End
 {
 $events | ConvertTo-Html -head $HTMLhead -body $htmlformat |

 Out-File -FilePath $SaveFile
 }
 }

 }

 The information passed to the formatting function is manipulated as a string, HTML,
or XML data that is presented in a well-formatted HTML table.

 We are not quite done yet; the body of the document, the titles, and other things still
need some preparation. Remember, the preceding function just handles the table rows.

 With the formatting completed, the data is ready to be pushed out to an actual file.
Simply passing the entire bit of information out to the file will do nicely.

 Please note that this is a bit more than is minimally needed to get things out to an
HTML file; you can simply run the data out to a file:

 $systemlog | Select-Object Eventid, Message | Convertto-Html | Out-File "c:\
reports\unformatted-system-log.html"

 Both of these open in a browser and display the contents of the system log; however,
the function includes formatting to draw the attention of the reader to the table.

 Figures 2-7 and 2-8 show the unformatted and formatted HTML files, respectively.

CHAPTER 2 ■ MANAGING THE WINDOWS EVENT LOG

30

 ■ Note A quick note about formatting and other general PowerShell tricks. This book
focuses on troubleshooting with PowerShell, and although some other functions that help
with formatting are shown, these are not the focus of the book. The authors may use these
in examples and code samples to help call attention to certain information. These things
may also help when using these reports to present information to others.

 With the HTML file (formatted or unformatted) created, we can do all kinds of
interesting things with it. If Geoff’s boss wants to see the report first thing every morning,
that can be arranged as well. By using another cmdlet and an internal email server (or
even a Gmail account, if needed), a report can be attached to an email and delivered to
the boss every morning.

 ■ Note You could use scheduled tasks to automate some of the things that we are doing
here. We touch on scheduling tasks later in this book.

 Figure 2-7. An unformatted HTML file

 Figure 2-8. A formatted HTML file

CHAPTER 2 ■ MANAGING THE WINDOWS EVENT LOG

31

 Recall that we were going to get the newest 10 items from the system log on the
specified computer and return it for analysis. Once returned to a variable in PowerShell,
we formatted it as a CSV and a formatted HTML file. Then we emailed the file to the
boss at 5:15 every morning (working overnight may or may not make Geoff appear
industrious).

 If we put the whole thing together in a script, it might look like the following sample:

 Function Get-TSHtmlReport
 {
 [CmdletBinding()]
 param (
 [Parameter(Mandatory = $true)]
 [ValidateSet("System", "Application", "Security")]
 [string]$LogName,
 [Parameter(Mandatory = $true)]
 [string]$SaveFile
)
 Begin
 {
 $htmlformat = @"
 <style>
 Table {border-width: 1px; border-style: solid; border-color: black;}
 TH {border-width: 1px; padding: 3px; border-style: solid;}
 TR:nth-child(even) {background: #CCC}
 TR:nth-child(odd) {background: #FFF}
 </style>
 "@
 $HTMLhead += "<H1>Event log information from

$($env:COMPUTERNAME)</H1>"
 $HTMLhead += "<H2>Log name: $($LogName)</H2>"
 }
 Process
 {
 $events = Get-EventLog -LogName $LogName -Newest 50 |

 Select-Object -Property Index, EventID, Message
 }
 End
 {
 $events | ConvertTo-Html -head $HTMLhead -body $htmlformat |

 Out-File -FilePath $SaveFile
 }
 }
 Get-TSHtmlReport -LogName System -SaveFile C:\Reports\test2.html

 Send-mailmessage –to geoff@company.com, boss@company.com –from reports
@company.com –smtpserver smtp.company.com –subject "Events Report" –body
"Attached is the most recent events report" –attachment "c:\reports\test2.html"

CHAPTER 2 ■ MANAGING THE WINDOWS EVENT LOG

32

 The function outputs a file on the desktop following that the Send-MailMessage
cmdlet sends the generated file to Geoff and his boss. This is fairly straightforward and
extremely useful.

 Can PowerShell Use the Event Log to Store
Information?
 So far, this chapter has mainly covered getting information for analysis out of the event
log on Windows systems, but we should also look at putting data into the event log.
PowerShell can certainly do that, and in some cases, this might be the best place to park
information related to an application or process until you need it for later analysis.

 To put information into an event log, you can use the following cmdlet:

 Write-EventLog -LogName Application -Source "My Application" –EventID 1000
–Message "This is the message being logged"

 As you will notice, there is an error when running this cmdlet. This happens because
 "My Application" is not a valid source that exists in the Application event log. This is
fairly easy to fix: simply adding it as a valid source in the chosen log solves the problem.

 New-EventLog -LogName Application -Source "My Application"

 Adding the "My Application" source to the Application log allows events to be
added to the log.

 Putting data into the event log carries as much difficulty as getting it out. Sure, you
need to pay attention to tags, sources, and log names, but that is true on the way out as
well. It helps to ensure that you can find the data later when it is needed again.

 Another advantage to logging information to the event log is that other
administrators may use that as a starting point for their troubleshooting. If information
from your PowerShell adventures is tracked there as well (with details and contact
information), then the issues that may arise with scripts will be easy to locate and correct.

 Even though PowerShell is capable of writing to the event log, like everything else,
there is a place for doing so. If we write log information about a Windows process or
application, we put it in the log; many times, this is a separate sublog of the application
or item that we’re dealing with. If logging the action(s) of a PowerShell script, however, a
simple folder of text files works. This does a few things:

• Keeps the PowerShell script logs out of the way

• Allows them to be cleaned up more frequently than flushing an
event log

• Keeps things simple

 Could you put it in the event log? Sure, but if scripting against a dozen computers,
there should be a central location for the logs that is easily remembered and shared with
other staff members. It also ensures a central location for things related to scripting.

CHAPTER 2 ■ MANAGING THE WINDOWS EVENT LOG

33

 ■ Note Centralized event log storage is possible and it can be configured fairly quickly.
See http://blogs.technet.com/b/wincat/archive/2008/08/11/quick-and-dirty-
large-scale-eventing-for-windows.aspx for more information on this topic.

 Keeping script logs out of the event logs feels cleaner, especially since script logs are
only occasionally used for troubleshooting, and scripts are generally not always logged.

 If your organization has a good grasp on centrally managed event logs (or they
require such tracking), by all means, use the event log for script data storage.

 With the use of Get-WinEvent , Get-EventLog , and Write-EventLog , the
administrator has a decent arsenal of tools to help troubleshoot Windows Server or
workstation issues that may come up. PowerShell’s strengths include its remoting
capabilities and its willingness to manipulate information for use by other PowerShell
scripts, functions, or modules, and by other applications or employees within the
organization.

 Summary
 In this chapter, our focus was the event log. We looked at some of the ways that
PowerShell helps access information in the logs. In addition, we touched on certain
constructs like filter hash tables, which provide another way of using PowerShell’s
features.

 In the next chapter, we will look at gathering and reporting system information from
a Windows system.

http://blogs.technet.com/b/wincat/archive/2008/08/11/quick-and-dirty-large-scale-eventing-for-windows.aspx
http://blogs.technet.com/b/wincat/archive/2008/08/11/quick-and-dirty-large-scale-eventing-for-windows.aspx

35© Derek Schauland, Donald Jacobs 2016
D. Schauland and D. Jacobs, Troubleshooting Windows Server with PowerShell,
DOI 10.1007/978-1-4842-1851-8_3

 CHAPTER 3

 Gathering and Reporting
Detailed Information
from a Computer

 Another day, another chapter. Wait, strike that. Another day, another server. Sometimes
it is nice to know how a server is doing today so that later, when the same server is having
problems, you can compare data to historical data.

 Consider this scenario: You get a phone call saying that Server01 is having problems.
You jump on the server and document the basics of the computer, disk space, shares,
NTFS permissions, and computer settings. Great! But now the question is: What changed?

 Without anything to compare to, you have no idea what changed since the last time
that you documented. Clearly, it’s important to have good documentation of what a
server is doing today, so that when a problem arises in the future, you have something to
compare your results to.

 Gathering Disk Space
 There are a few ways to gather disk space, such as using Windows Management
Instrumentation (WMI) and native cmdlets on later versions of PowerShell. The native
cmdlets, Get-Disk and Get-PhysicalDisk , return information about the whole disk, but
do not return information about logical disks.

 In this next part, we will check disks visible to the operating system and we will only
return basic information about the disks.

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

36

 Disks First
 Let’s look at the disk commands Get-Disk and Get-PhysicalDisk , shown in Figure 3-1 .

 Both commands show simple output and the disks that the server can currently see
and access. This data should be stagnant. Export this to CSV or HTML and record this
data. Save it and use it when needed. We can add this data into a module to gather other
information about the server, but for the moment, let’s save it to CSV and HTML just to
record the data.

 Get-PhysicalDisk |
 ConvertTo-Html -Title 'Get-PhysicalDisk Information' |
 Set-Content C:\Reports\GetPhysicalDisk.htm

 Get-PhysicalDisk |
 Export-Csv -NoTypeInformation -Path C:\Reports\GetPhysicalDisk.csv

 Get-Disk |
 ConvertTo-Html -Title 'Get-Disk Information' |
 Set-Content C:\Reports\GetDisk.htm

 Get-Disk |
 Export-Csv -NoTypeInformation -Path C:\Reports\GetDisk.csv

 This saves the data to both CSV and HTML files.

 Figure 3-1. Get-Disk and Get-Physical Disk

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

37

 Logical Disks
 PowerShell does not yet have a cmdlet to capture logical disk information , so we will use
WMI calls to find the logical disk information. Windows Management Instrumentation
is a core Windows management technology that can be used to manage both local and
remote computers. WMI provides a consistent approach to carrying out day-to-day
management tasks. (We’re using WMI rather than CIM (Common Information Model in
this example, but the difference is explained later in this chapter.)

 The commands we need to know about are Get-WmiObject and Get-CimInstance .
Once we have looked at those commands, we need to examine a WMI object.

 The WMI objects that we will use are located within the Root\CIMV2 namespace.
There are many classes under this namespace. To list all the classes, use the following
command:

 Get-WmiObject -List -Namespace ROOT\CIMV2 | Sort-Object Name

 To find classes related to disk, filter down your choices by using the WHERE command,
filtering for any WMI name that matches disk , like this:

 Get-WmiObject -List -Namespace ROOT\CIMV2 | Where-Object Name -Match 'disk'
| Sort-Object Name.

 There are a few classes that contain the name disk, and we’re sure that you have
tested a few of the returned values to figure out which class we want to work with, but
we’ll give you the answer to hurry this up: Win32_LogicalDisk .

 Running the following command lists all types of disks that the computer knows
about, as shown in Figure 3-2 :

 Get-WmiObject -Class Win32_LogicalDisk

 Microsoft has limited built-in PowerShell documentation around the WMI classes,
so the best place to find information about WMI is by using the MSDN website. The
MSDN page for Win32_LogicalDisk is at https://msdn.microsoft.com/en-us/library/
aa394173.aspx .

 Figure 3-2. Get-WMIObject -Class Win32_LogicalDisk

https://msdn.microsoft.com/en-us/library/aa394173.aspx
https://msdn.microsoft.com/en-us/library/aa394173.aspx

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

38

 But wow, who really wants to convert bytes to gigabytes in their head? Well, with
PowerShell, you don’t have to. As seen in Figure 3-3 , PowerShell can convert bytes to
gigabytes with minimal work.

 Figure 3-4. Function Get-TSDiskSizes

 Figure 3-3. Get-WMIObject -Class Win32_LogicalDisk with advanced formatting

 We’ll get a nice little table with related information. But again, who can remember
this command each time? If you create a function around it, as shown in Figure 3-4 , it’ll
be even easier to remember when you need it.

 Now, checking our server that is having problems, we can quickly determine if the
server is out of disk space.

 Listing Shares
 We don’t have a good reason why shares disappear, but too often, it’s human error. Most
of the support calls around missing shares all start the same way: “I don’t know what
happened, but today, the share that all my users connect to is missing.” Usually, it’s
caused by human error when an admin accidently deletes a share. So, let’s just document
the shares and save the data to a file.

HivaNetwork.Com

http://www.hivanetwork.com/

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

39

 Again, we need to use our new friends, WMI and CIM , to find the information. To
find classes related to shares, filter down your choices by using the Where-Object cmdlet,
filtering for any WMI name that matches share :

 Get-WmiObject -List -Namespace ROOT\CIMV2 | Where-Object Name -Match 'share'
| Sort-Object Name

 However, after looking at all the answers, you are going to want to use Win32_Share
to get all of your information.

 Let’s look at the documentation on Win32_Share at MSDN (https://msdn.
microsoft.com/en-us/library/aa394435.aspx). The important thing to notice is
the TYPE of share. From the documentation, you can see the different types of shares
returned, as shown in Table 3-1 .

 Table 3-1. WMI Share Drive Types

 Disk Drive 0

 Print Queue 1

 Device 2

 IPC 3

 Disk Drive Admin 2147483648

 Print Queue Admin 2147483649

 Device Admin 2147483650

 IPC Admin 2147483651

 So, by listing all drives of the Disk Drive type, you can run this command:

 Get-WmiObject -Class win32_share | Select-Object Name, Path, Description, Type

 Save that information as part of a report, and if needed, you can come back later to
verify that things are the same. Part of the reason we document servers is because you
never know what information you will need later.

 But wait, there’s more! For people running newer versions of Windows operating
systems, Microsoft has created some new cmdlets to simplify the management of servers.
These new cmdlets are part of a module called SMBSHARE. As seen in Figure 3-5 ,
running a cmdlet like Get-Command -Module SmbShare lists all the cmdlets within the
module.

https://msdn.microsoft.com/en-us/library/aa394435.aspx
https://msdn.microsoft.com/en-us/library/aa394435.aspx

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

40

 So, for those of you running newer versions of Windows Servers, we’ll explain how
we would start getting information about servers. The preferred method is to use the
newest cmdlets; but not all servers understand what these cmdlets are, so learning the
new and the old ways of gathering information is critical in mastering troubleshooting
Windows with PowerShell. A quick way to work with SMB share access is also included in
this module. The noun for these access cmdlets is (drum roll) SmbShareAccess .

 Figure 3-5. Get-Command -Module SmbShare

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

41

 Figure 3-6 shows an example of listing local SMB share access permissions on the
 print $ share; it is simple enough to run and view the permissions.

 Figure 3-6. Get-SmbShareAccess output

 Figure 3-7. Win32_LogicalShareAccess output

 Trying to get share permissions on older servers is not easy, but it can be
done using WMI and security descriptors. An example of this involves the Win32_
LogicalShareAccess WMI class (https://msdn.microsoft.com/en-us/library/
aa394186.aspx). So, running a quick query, as shown in Figure 3-7 , against the local
computer like this:

 Get-WmiObject -Class Win32_LogicalShareAccess | Select-Object
SecuritySetting, Trustee, AccessMask

 It returns results that are very similar.

 OK, that is not as clean as the output from Get-SmbShareAccess . You have to
massage the data to convert the SID to a friendly name. You need to convert the
AccessMask to a friendly name of the rights using a BITWISE operation, which we are
not going to cover in this book. So basically, this is a good reason to make sure all of your
operating systems are updated to the most current version; then you can just use the
current cmdlets.

 NTFS Permissions
 The good news is that there are good cmdlets that let us examine and modify the Access
Control Lists for files or folders: the Get-Acl and the Set-Acl cmdlets.

https://msdn.microsoft.com/en-us/library/aa394186.aspx
https://msdn.microsoft.com/en-us/library/aa394186.aspx

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

42

 Getting the ACLs
 Getting the actual data for a file or folder is pretty straightforward; by now, you can
probably guess the pattern: Get-Acl -Path C:\Reports , as seen in Figure 3-8 . Well, it’s
not so simple because we need to “autosize” the table and then wrap the columns to fit
the data nicely to the screen.

 Figure 3-8. Get-Acl

 Figure 3-9. Get-Acl Access expanded

 But then to really look at the data, we need to parse out the Access property, and
then this is as simple as grabbing the Access data and putting it into a table. The output of
returning the Access property is shown in Figure 3-9 .

 Another way to do that is to run the following command:

 Get-Acl -Path C:\Reports |
 Select-Object -ExpandProperty Access |
 Format-Table -AutoSize

 We can save that data in different formats, but it is nice to have this data on file and
ready to see what changed.

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

43

 Now that you have learned the built-in method for listing the permissions of a file or
folder, here is a secret: you can do an Internet search for something like, “Microsoft script
center PowerShell file system security” and maximize your time by using the tools that
someone else has already put together.

 Setting the ACLs
 This is where you want to start strapping on the thinking cap, because setting an ACL on a
file is not as easy as reading it.

 Let’s start by discussing the FileSystemAccessRule class, which “Represents
an abstraction of an access control entry (ACE) that defines an access rule for a file
or directory.” (https://msdn.microsoft.com/en-us/library/system.security.
accesscontrol.filesystemaccessrule.aspx).

 Within the FileSystemAccessRule , we find the constructor that consists of
IdentityReference, FileSystemRights, InheritanceFlags, PropagationFlags, and
AccessControlType. A constructor is an access control rule that defines the user account
rights that determine which actions are allowed or disallowed on computers running
Microsoft Windows.

 Hang on, this will make sense in a moment. We’ll show you the commands that
we use to create an ACE and apply it to a file using PowerShell. Then once you see the
example, each section is explained to tell you what each line is doing.

 $IdentityReference = New-Object System.Security.Principal.
NTAccount("MyDomain\Bob")
 $FileSystemRights = [System.Security.AccessControl.FileSystemRights]::Read
 $InheritanceFlags = [System.Security.AccessControl.InheritanceFlags]::None
 $PropagationFlags = [System.Security.AccessControl.PropagationFlags]::None
 $AccessControlType =[System.Security.AccessControl.AccessControlType]::Allow

 $ACE = New-Object System.Security.AccessControl.FileSystemAccessRule (
 $IdentityReference,
 $FileSystemRights,
 $InheritanceFlags,
 $PropagationFlags,
 $AccessControlType
)

 $CurrentACL = Get-ACL "C:\Reports\Test.ps1"
 $CurrentACL.AddAccessRule($ACE)

 Set-ACL -Path "C:\Scripts\Test.ps1" -AclObject $CurrentACL

 ■ Note The order in which you create the first five variables is not important, but we’re
showing you the order as referenced by the FileSystemAccessRule constructor.

https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.filesystemaccessrule.aspx
https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.filesystemaccessrule.aspx

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

44

 We start by creating the IdentityReference. In the example, we use the NetBIOS
domain name and a SamAccountName for a user or group. This can also use SID, which
is helpful when working in domain environments where the file server may be in a
different Active Directory (AD) site than the Domain Controller (DC) that created user
or group. In order for this to assign permissions, the SamAccountName needs to be
converted to a SID by the file server. However, if you pass the SID to the file server, the
ACL can be updated with the SID.

 Then, we work on the FileSystemRights. This can be a comma-separated value
such as “read, write”. Information on enumerating the FileSystemRights is found at
 https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.
filesystemrights.aspx). The list is shown here.

 • AppendData
 • ChangePermissions
 • CreateDirectories
 • CreateFiles
 • Delete
 • DeleteSubdirectoriesAndFiles
 • ExecuteFile
 • FullControl
 • ListDirectory
 • Modify
 • Read
 • ReadAndExecute

 • ReadAttributes
 • ReadData
 • ReadExtendedAttributes
 • ReadPermissions
 • Synchronize
 • TakeOwnership
 • Traverse
 • Write
 • WriteAttributes
 • WriteData
 • WriteExtendedAttributes

 The InheritanceFlags determines the semantics of inheritance for access
control entries (https://msdn.microsoft.com/en-us/library/system.security.
accesscontrol.inheritanceflags.aspx). The following are possible values for it:

• ContainerInherit: The ACE is inherited by child containers, such
as subfolders

• ObjectInherit: The ACE is inherited by child objects, such as files

• None

 The PropagationFlags specifies how Access Control Entries are propagated to
child objects. (https://msdn.microsoft.com/en-us/library/system.security.
accesscontrol.propagationflags.aspx) The possible values for this are:

• InheritOnly: Specifies that the ACE is propagated only to child
objects. This includes both container and leaf child objects.

• None: Specifies that no inheritance flags are set.

• NoPropagateInherit: Specifies that the ACE is not propagated to
child objects.

https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.filesystemrights.aspx
https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.filesystemrights.aspx
https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.inheritanceflags.aspx
https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.inheritanceflags.aspx
https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.propagationflags.aspx
https://msdn.microsoft.com/en-us/library/system.security.accesscontrol.propagationflags.aspx

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

45

 The last option is to set the AccessControlType, which specifies whether an
 AccessRule object is used to allow or deny access (https://msdn.microsoft.com/en-us/
library/w4ds5h86.aspx). There are only two options for this:

• Allow: The AccessRule object is used to allow access to a secured
object.

• Deny: The AccessRule object is used to deny access to a secured
object.

 See how easy that is? Too easy. We still haven’t created the ACE from the
FileSystemAccessRule but building things one piece at a time helps keep things straight.
Putting it all together to build the rule comes next.

 Once you do that, we need to get the current security descriptor for the file or folder
and that is done with the Get-Acl cmdlet. Then we add the new ACE rule we created
to the security descriptor and finally, just reapply the ACL to the file using the Set-Acl
cmdlet.

 Now, this was not that bad, but only when working with a single file and each time
you want to modify an attribute or value, you need to modify the script and then run the
whole thing again. What you can do to make this usable against more than one file or
folder is to build a function around the script.

 And what kinds of things can you use as a parameter within your function? How
about the Identity, rights, inheritance, propagation, control type, and file name? Yep, you
guessed correctly. You can even get fancier within your function by using ValidateSet for
some of your parameters.

 ■ Note You can learn more about parameters within functions by using the help file
 Get-Help about_functions_advanced_parameters

 [Déjà vu moment] Now that you have learned the built-in way to set permissions
of a file or folder, understand that many might do an Internet search for something like,
“Microsoft script center PowerShell file system security” and maximize their time by
using the tools that someone else has already put together. The PowerShell community is
a great source for information.

 Hardware
 This section is pretty straightforward (with a twist). So all of the hardware information can
be pulled using WMI or CIM information . The version of the operating system that you
are querying and the communication method to other computers determine if you use
WMI or CIM. For the examples in this next session, we’ll use CIM.

 Now, here is the twist. Let’s start by looking at Win32_BIOS.

 Get-CimInstance -ClassName Win32_BIOS | Export-Csv -NoTypeInformation -Path
C:\Reports\Win32_Bios.csv.

https://msdn.microsoft.com/en-us/library/w4ds5h86.aspx
https://msdn.microsoft.com/en-us/library/w4ds5h86.aspx

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

46

 Here is a sample of the CSV fields that were in the CSV output :

 BiosCharacteristics : System.UInt16[]
 BIOSVersion : System.String[]
 ListOfLanguages : System.String[]

 So… why is that statement producing those values in the CSV file instead of what is
shown to the screen using the Get-CimInstance -ClassName Win32_BIOS cmdlet?

 Let’s look at the members of Win32_BIOS by piping the request to Get-Member :
 Get-CimInstance -ClassName Win32_BIOS | Get-Member

 As you can see in Figure 3-10 , when looking at the Get-Member output , we see those
same values listed in the definition of the property members. This means that those
values are made up of other multiple parts, or an array of data.

 Figure 3-10. Sample output of Get-CimInstance -ClassName Win32_BIOS | Get- Member

 Figure 3-11. Win32_BIOS BIOSVersion expanded

 Looking at the properties returned from Win32_BIOS, you can see how some of
those can have more than one value returned within a single property. However, when
outputting that to a flat CSV file, the output does not know how to go from a multi-valued
array into a single field. So it is our job to try and massage the data to fitting into a single
string value.

 Let’s just focus on the value of BIOSVersion from the Win32_BIOS class, as shown in
Figure 3-11 .

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

47

 In the example, we returned four values that make up the BIOSVersion property ,
as seen in Figure 3-12 , so we will use advanced formatting to make our data from a
multivalued array into a single string.

 Figure 3-12. Win32_BIOS using advanced formatting

 Let’s look at the command used to do this. First, we get the CIM instance Win32_
BIOS and pipe that output to the Select-Object cmdlet. Then we use advanced formatting
to create a new property called FormattedBIOSVersion and we use an expression to create
that value. The expression used first gets the BIOS Version that was piped to it (that’s what
the $_ tells us) and then we take that value and join the parts of it into a single string with
a delimiter of ;. The delimiter could be just about any string or value that makes sense
to you.

 So if we take the same expression, but export the value to a CSV file, things now work
when exporting to a CSV file.

 Now, let’s reexamine the Win32_BIOS value and make sure that we are collecting
only the values that we want to keep.

 Get-CimInstance -ClassName Win32_BIOS |
 Select-Object -Property Manufacturer,
 SerialNumber,
 ReleaseDate,
 SMBIOSBIOSVersion,
 SMBIOSMajorVersion,
 SMBIOSMinorVersion,
 @{
 Name = 'FormattedBIOSVersion';
 Expression = {$_.BIOSVersion -join ";"}
 }

 Now we can pipe that information out to a CSV file and the CSV data looks like we
expected it to be. This allows us to keep a multivalued property into a flat file, like CSV.

 You can also see that we used advanced formatting—a hash table that contains keys
such as Name (or Label) and Expression. The value of the expression should be in a script
block that returns a result for the current object. Advanced formatting (also known as
 calculated property) allows you to do calculations on objects to produce a new outputs.
Advanced formatting can be done within Select-Object or within Format-Table or
 Format-List .

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

48

 Computer System Information
 Well this section should be shorter because we don’t need to explain multivalued arrays
being piped to a CSV file. Except, we’ll take you to a secret of how we find multivalued
property values for most PowerShell cmdlets. The answer is in the Get-Member cmdlet .

 For those of you who may not know the Get-Member cmdlet, you should. It is a great
PowerShell resource that makes your foo better. We say that the Get-Member cmdlet is the
second-most important cmdlet, right behind Get-Help .

 So, let’s look at the output from the CIM instance for finding computer information.
We will use a new cmdlet called Get-CIMClass . As seen in Figure 3-13 , this allows us to
search for classes that are close to the information that we are looking for.

 Figure 3-13. Listing classed from CIM

 Wow. Look at all that good stuff that was returned. But because we are only
interested in finding computer system information here, let’s check the Win32_
ComputerSystem , which has information that might be useful.

 Again, by using Get-Member we can find values that are returning multiple values for
a single property. But this is where a little script might help to determine which properties
are single fields and which ones have multiple values returned. Here is the script:

 # Used to Easily Gather information for a command
 # Get the CIM instance for Win32_ComputerSystem
 Get-CimInstance -ClassName Win32_ComputerSystem |
 # Now list each property and method of the object
 Get-Member |
 # Just get the properties
 Where-Object MemberType -eq Property |
 # Now loop through each object
 ForEach-Object {
 # Check if the defnintion matches specific strings
 if (($_.Definition -match '\[\]') -or ($_.Definition -match 'collec')) {
 # True - split each part of the property with a ';'
 "@{Name = '$($_.Name)'; Expression = {`$_.$($_.Name) -join ';'} },"
 } else {
 # False - just return the property name
 "$($_.Name),"
 }
 }

HivaNetwork.Com

http://www.hivanetwork.com/

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

49

 The short version of this script runs a normal PowerShell command, pipes it into
 Get-Member , and then for each object returned, checks to see if it has a pair of square
brackets [] or part of the word “collec” used in the definition. If either one of those
statements is true, then a long string is displayed; if both of those statements are false,
however, then only the Name field for that object is displayed. Now all of this information
gets displayed to the current PowerShell session. You need to copy it back into a
command to pull the information you want.

 And how do you find the specific fields that are important to you? Run the command to
list all objects returned from the original command and pipe it to a formatted list, as follows:

 Get-CimInstance -ClassName Win32_ComputerSystem | Format-List -Property *

 Did you notice that the output of the previous command has curly brackets {} in
it? And, did you notice how the preceding script shows which fields you need to use
advanced formatting on to get the data easily saved to a CSV file ?

 So, examine the fields and choose the values that are good for your environment.
In this example, we chose fields important to this example:

 Get-CimInstance -ClassName Win32_ComputerSystem |
 Select-Object -Property Manufacturer,
 Model,
 DomainRole,
 Domain,
 WorkGroup,
 @{
 Name = 'FormattedRoles';
 Expression = {$_.Roles -join ";"} },
 TotalPhysicalMemory,
 SystemType,
 NumberOfProcessors,
 NumberOfLogicalProcessors,
 DnsHostName,
 CurrentTimeZone

 Again, running the same command and piping to a CSV file preserves the
information for you to check later for changes.

 Processor Information
 Now things will start sounding familiar. The following explains how you can find
information about processors on a computer.

 1. Start by listing all classes that match processor .

 2. Run the command. Include the Format-List -Property * to
show an example of the output.

 3. Determine which fields you want to record and examine.

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

50

 4. Determine if any of those fields have properties that need
advanced formatting.

 5. Test your command

 6. Pipe that information to a CSV file.

 Here is a list of the commands:

 1. Get-CimClass -Namespace Root\CimV2 -ClassName win32*processor*

 2. Get-CimInstance -ClassName Win32_Processor | Format-List
-Property *

 3. A personal choice, but we like the fields, DeviceID, Status,
AddressWidth, MaxClockSpeed, Caption, Description, Name,
CurrentClockSpeed

 4. None of these fields requires advanced formatting.

 5. Get-CimInstance -ClassName Win32_Processor |
 Select-Object -Property DeviceID,
 Status,
 AddressWidth,
 MaxClockSpeed,
 Caption,
 Description,
 Name,
 CurrentClockSpeed

 6. Get-CimInstance -ClassName Win32_Processor |
 Select-Object -Property DeviceID,
 Status,
 AddressWidth,
 MaxClockSpeed,
 Caption,
 Description,
 Name,
 CurrentClockSpeed |
 Export-Csv -NoTypeInformation -Path C:\Reports\Win32_Processor.csv

 Now you have learned the commands and the steps to start recording information
about a computer. There are several WMI classes that are helpful to record the current
state of a server. You have to save all this information. The following is other important
information about servers that you may want to check:

• Physical memory

• Operating system

• Storage/Disks

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

51

 There is a lot of information stored within a computer’s Windows Management
Instrumentation (WMI). Once you have learned how to glean this information from WMI,
you can spend days looking at all of it.

 Troubleshooting
 In this section, we will explain when you should use WMI versus CIM queries and why
they are different. We will also discuss different options required with remote queries
while using WMI and CIM cmdlets.

 The Difference Between WMI and CIM
 What is the difference between WMI and CIM as it pertains to PowerShell?

• WMI: Windows Management Instrumentation uses DCOM, or
Distributed COM, which is based on RPC (remote procedure calls).

• CIM: Common Information Model uses WS-MAN, or web
services for management, an HTTP-based protocol.

 Some older computers do not know how to work with CIM, so you still should know
how to use WMI calls.

 Firewalls also play a part in which protocol you can or should use. Most larger companies
have well-defined protocols that are acceptable for use on the network. You should check with
your company if there is a method that may not work in your environment.

 Testing in your environment is necessary to determine whether you use WMI or CIM
to retrieve information about your computers.

 Remote Queries
 WMI and CIM sessions can be called against remote computers (they do not need to be
run locally on each server, as the examples in this chapter show). This allows you to run
a script on a single device to connect to other computers in your environment to glean
information from each system.

 But wait—what about credentials? You may or may not have different credentials for
different systems. You need to pass credentials to remote computers in order to query.
A simple Get-WMIObject allows you to specify credentials.

 Well, let’s be glad that is solved … and yet it isn’t. There is no credential option used
for Get-CIMInstance .

 What?
 So what was Microsoft thinking?
 The answer is really great. On the newer operating systems that support CIM,

Microsoft wants you to create a CIMSession before you connect to a remote computer.
 Why would you want to do that?
 You probably have to do multiple calls to a remote computer. You don’t normally just

ask a single question and you’re done; you ask more than one question.
 In WMI, you have to open a connection to the remote server, pass it credentials, ask

your single question, and then tear down the connection to the remote server. The same
things are needed for each remote query being used by WMI.

CHAPTER 3 ■ GATHERING AND REPORTING DETAILED INFORMATION FROM A COMPUTER

52

 Using CIM, you first create a New-CIMSession and assign that session to the variable.
You can pass credentials in that cmdlet; pass-thru credentials are also OK. Once you have
created the session, ask as many questions as you need to the remote computer using
the session variable. Each query is faster than its WMI counterpart because it has already
established a remote session. Once you are done with the remote computer, you can use
 Remove-CIMSession to tear down the connection to it.

 Here is a short example of a CIM session:

 $computerName = 'Server01'
 $cred = Get-Credential
 $remoteSession = New-CimSession -ComputerName $computerName -Credential
$cred
 Get-CimInstance -CimSession $remoteSession -ClassName Win32_LogicalDisk
 Get-CimInstance -CimSession $remoteSession -ClassName Win32_BIOS
 Get-CimInstance -CimSession $remoteSession -ClassName Win32_ComputerSystem
 Get-CimInstance -CimSession $remoteSession -ClassName Win32_Processor
 Get-CimInstance -CimSession $remoteSession -ClassName Win32_Memory
 Get-CimInstance -CimSession $remoteSession -ClassName Win32_OperatingSystem
 Remove-CimSession -CimSession $remoteSession

 That is a lot faster than having to re-establish a connection to the remote server for
each call using WMI.

 Next Steps
 In this chapter, we discussed how to get information but there is a lot we can do to improve
on the examples shown. Start by building a function around one of the cmdlets. The function
should include parameters like optional credentials, computer names, and output types.

 The function should assume pass-thru credentials, unless you specify to connect to
remote computers as another user. The default computer name should be itself, but the
option should be to allow it to connect to a remote computer, or lots of remote computers.
At times, you won’t necessarily want to save all this data as a CSV file each time you run the
command; sometimes you may want to display to the console window and not save the data.

 Each function should do one thing and do it well. Once you build a few of these
functions, you can combine them into a module where common functions are grouped
into the same module.

 Summary
 Documenting your servers is an important step in troubleshooting. It may seem like a lot
of work to document your servers, but it really is helpful when you are trying to figure out
what changed when a server is not performing as expected. Making sure that you know
what changed and how to check for those changes should be an exercise that you practice
often and efficiently. There is a lot of information to be gleaned from your servers, but
when a server is already broken, that is not the time to start figuring out what changed if
you have nothing to base it on.

53© Derek Schauland, Donald Jacobs 2016
D. Schauland and D. Jacobs, Troubleshooting Windows Server with PowerShell,
DOI 10.1007/978-1-4842-1851-8_4

 CHAPTER 4

 Installed Applications

 This chapter covers applications installed on a system. Getting this information is helpful
for documentation and record keeping. It isn’t something that you would probably check
in the heat of battle during an immediate problem, but knowing how to document what
your server is doing is a skill you should learn.

 The question is always, “What changed?” It’s nice to be able to list the applications
on a server, and then compare that list to applications that were installed on the server
six months ago. Depending on the change management process in your environment,
this should be well documented; however, we have found that most companies need to
document what is currently installed on a server. This chapter covers how to discover
what is installed on your servers.

 ■ Note There are several ways to gather information about what programs are currently
installed. And there is also a very big caveat associated with this: the record of applications
installed on your computer depends on the information published by the software
manufacturer. That means, for example, if you created a program called TheSilentProgram,
you have to register the program in the “normal” locations within the Microsoft operating
system. If you don’t register your program with the operating system, others may not know
that your program was installed. Think about it: viruses do not register themselves on your
computer, so it’s up to the manufacturer to register the program with the operating system.

 Obtaining a List of Installed Applications
 There are several places to get a list of applications that are installed on the computer.
We will cover two major methods to get a list of installed applications: using CIM and
checking the registry.

CHAPTER 4 ■ INSTALLED APPLICATIONS

54

 Using the CIM Object
 So let’s talk about the option that isn’t recommended on production systems. A simple
query can look at three random applications may look like what’s shown in Figure 4-1 .

 ■ Note There is a CIM object that queries products, but there is an issue with that query.
Paraphrasing from https://support.microsoft.com/en-us/kb/974524 , “Win32_product
Class is not query optimized. Queries require WMI to use the MSI provider to enumerate all
of the installed products and then parse the full list sequentially. This process also initiates a
consistency check of packages installed, verifying and repairing the install. With an account
with only user privileges, as the user account may not have access to quite a few locations,
may cause delay in application launch and an event 11708 stating an installation failure.”

 What does that mean to production systems? Be careful, because it may cause some
applications to reinstall. Hopefully not, but it may reinstall some applications. For this reason,
only run this when you have a window of opportunity for downtime.

 There are lots or properties associated with the results, but by default, only five are
returned, as seen in Figure 4-1 . To see a list of all the properties and methods for the
 Get-CimInstance cmdlet, pipe the cmdlet to the Get-Member cmdlet, as shown in
Figure 4-2 .

 Figure 4-1. Getting CIM instances

https://support.microsoft.com/en-us/kb/974524

CHAPTER 4 ■ INSTALLED APPLICATIONS

55

 Lots of good information to glean here; however, too much to look at, so let’s save
everything to a CSV file (see Figure 4-3).

 Now that is fine, but the real question is what is installed today compared to what
was installed the last time you looked at the applications.

 For that, we can use the Compare-Object cmdlet. We still need to create a current
list of installed applications from today and compare that to an earlier export. So for this
example, let’s use two files: AppsFromWMI_20150109.CSV and AppsFromWMI_20150409.CSV .

 Figure 4-2. CimInstance Members

 Figure 4-3. Exporting CimInstance to CSV

CHAPTER 4 ■ INSTALLED APPLICATIONS

56

 ■ Note The naming standards that we use are as follows: the file name, an underscore,
the date the file was created—YYYYMMDD, and finally, the extension.

 So now, before we talk about the script, we need to discuss a few options that could
happen while comparing applications from different dates.

• A new application could be installed.

• An application could have been removed.

• An application could have a different version.

 So, let’s plan what we want the script to do…

 1. Get the old file and put it into a variable.

 2. Get the new file and put it into a variable.

 3. Compare the old file data with the new file data.

 4. Check for apps that are new.

 5. Check for apps that are old.

 6. Check for changes in the file version.

 Now, let’s look at the code.
 This gets the old file and brings it into memory:

 $OldFile = 'C:\Reports\AppsFromWMI_20150109.CSV'
 $OldFileData = Import-Csv -Path $OldFile
 $OldIdNumber = $OldFileData | Sort-Object -Property 'IdentifyingNumber' |
 Select-Object -ExpandProperty 'IdentifyingNumber'

 One of the things that we are also doing here is getting a list of the
IdentifyingNumber for each application to compare against the new list of apps. We’re
sorting the values to put into the Compare-Object cmdlet.

 This gets the new file and brings it into memory:

 $NewFile = 'C:\reports\AppsFromWMI_20150409.CSV'
 $NewFileData = Import-Csv -Path $NewFile
 $NewIdNumber = $NewFileData | Sort-Object -Property 'IdentifyingNumber' |
 Select-Object -ExpandProperty 'IdentifyingNumber'

 Again, we extract the IdentifyingNumber for a quick comparison. We only want to
compare (for the moment) what is different.

 $NewOrRemovedAppIds = Compare-Object -ReferenceObject $OldIdNumber `
 -DifferenceObject $NewIdNumber -IncludeEqual
 $NewAppIds = $NewOrRemovedAppIds | Where-Object SideIndicator -EQ '=>'
 $RemovedAppIds = $NewOrRemovedAppIds | Where-Object SideIndicator -EQ '<='

CHAPTER 4 ■ INSTALLED APPLICATIONS

57

 Notice how we are comparing the IdentifyingNumber of the old and new files. We
save those to a variable so that we can use the data for later checks. We extract things
that are in the new list by checking for the SideIndicator and then extract the removed
applications by doing a similar check.

 Let’s look for new apps that were added since last we checked.

 $AllNewApps = @()
 foreach ($newApp in $NewAppIds) {
 $AllNewApps += $NewFileData |
 Where-Object 'IdentifyingNumber' -EQ $newApp.InputObject
 }
 Write-Host "`nRecently Installed Applications" -ForegroundColor Yellow
 $AllNewApps |
 Select-Object -Property Name, Version, Caption | Format-Table -AutoSize

 We create an empty array to save data to, and then add all the information from
the NewFileData variable from all the NewAppIds. We then only choose certain fields to
display to make a nice clean table.

 Let’s check for apps that have been uninstalled.

 $AllRemovedApps = @()
 foreach ($oldApp in $RemovedAppIds) {
 $AllRemovedApps += $OldFileData |
 Where-Object 'IdentifyingNumber' -EQ $OldApp.InputObject
 }
 Write-Host "`nRemoved Applications" -ForegroundColor Yellow
 $AllRemovedApps |
 Select-Object -Property Name, Version, Caption | Format-Table -AutoSize

 Using the same logic, let’s now check for removed apps.
 Check for changed file versions.

 Write-Host "`nChecking for Changed File Versions" -ForegroundColor Yellow
 foreach ($line in $OldFileData) {
 $SameApp = $NewFileData |
 Where-Object 'IdentifyingNumber' -EQ $line.IdentifyingNumber

 # Let's check if the versions match
 if (($SameApp.Version -notmatch $line.Version) -and

($SameApp -ne $null)) {
 Write-Host "This software, '$($line.Name)', was updated from version

'$($line.Version)' to '$($SameApp.Version)'."
 }
 }

CHAPTER 4 ■ INSTALLED APPLICATIONS

58

 The first thing that we do is get a list of applications that exist in both the old and the
new files. However, a side effect of this check is that we might end up with some apps that
were removed; so we added a section that can be used for other purposes in your own
scripts. We like to do that for testing purposes, so we left it in the script. The other thing
we put in there is the check against file versions; if the versions do not match, we simply
write a message to the console.

 Again, this script is just a sample and starting point for you to improve upon as you
discover things in your environment.

 Using the Registry Keys
 If only things were standard. It would be nice if all vendors followed a standard on “how
to install software” and “how to register software.” But not all software vendors follow the
same standards and not all software vendors even register their software.

 Let’s start with the major registry keys for installed programs .

• HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall

• HKLM\Software\Wow6432Node\Microsoft\Windows\
CurrentVersion\Uninstall

• HKU\<User SID>\Software\Microsoft\Windows\CurrentVersion\
Uninstall

• HKU\<User SID>\Software\Microsoft\Installer\Products

• HKLM\Software\Classes\Installer\Products

 Software can be installed in any of these keys, but there isn’t any standard for what is
included in these keys. Your best options are to get all information and examine the fields
that relate to you and your unique case. But let’s look at each part of the script before
putting all the parts together.

 ■ Note Because we are looking into different areas of the registry, it is recommended that
you back up the keys that you are examining, just in case changes are made and you run
these commands with elevated permissions.

 The first thing needed is to map a drive to the HKEY_USERS within the registry. By
setting the value of Null equal to our command, we avoid getting output to the screen.
If the mapped drive fails, you will still see those messages on the screen; we are only
avoiding a success message on the screen.

 New-PSDrive -Name HKU -PSProvider Registry -Root Registry::HKEY_USERS

HivaNetwork.Com

http://www.hivanetwork.com/

CHAPTER 4 ■ INSTALLED APPLICATIONS

59

 Next, we go back and review the registry locations of where the programs are
registered. Simply create an array to store the values populating the array with additional
information as we go along.

 $softwareKeys = @('HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\
Uninstall\',
 'HKLM:\SOFTWARE\Wow6432Node\Microsoft\Windows\CurrentVersion\

Uninstall\',
 'HKLM:\SOFTWARE\Classes\Installer\Products\'
)

 Then we need to look at programs registered for individual users on the computers.
This is going to require validating the data returned to grab user SIDs. Let’s use RegEx to
return the SIDs, and then filter out other information.

 $allLocalUsers = Get-ChildItem -Path HKU: |
 where {$_.Name -match 'S-\d-\d+-(\d+-){1,14}\d+$' } |
 Select-Object -ExpandProperty PSChildName

 Next, we loop through the array, adding the keys that are unique for each user.

 foreach ($LU in $allLocalUsers) {
 $softwareKeys += "HKU:\$LU\SOFTWARE\Microsoft\Windows\CurrentVersion\

Uninstall\"
 $softwareKeys += "HKU:\$LU\SOFTWARE\Microsoft\Installer\Products\"
 }

 Now this is a list of the most common locations to find programs in the registry.
Let’s find the programs listed in each of the software keys. We will store it in an array
called allPrograms . The first thing to do is create an empty array and then add each
program to the array.

 $allPrograms = @()
 foreach ($regKey in $softwareKeys) {
 $allPrograms += Get-ChildItem -Path $regKey
 }

 Next, we examine each program and get the details that are returned with each
key. For each key, the complete list of properties needs to be examined. This is due to a
limitation of PowerShell , which we’ll discuss after you examine the code.

 In the first part of this loop, we need change the relative path of each program to use
a path that in the list of mapped drives. We do that by replacing HKEY_LOCAL_MACHINE with
 HKLM and HKEY_USERS with HKU . By default, PowerShell has a mapped drive to the HKLM
already, which is why we didn’t need to map that drive at the beginning of the script.

CHAPTER 4 ■ INSTALLED APPLICATIONS

60

 $allDetails = @()
 $itemHeaders = @()
 foreach ($regItem in $allPrograms) {
 # replace Full Path with Relative Path
 $relPath = ($regItem.Name -replace 'HKEY_LOCAL_MACHINE','HKLM:')

-replace 'HKEY_USERS','HKU:'
 $allDetails += Get-ItemProperty -Path $relPath
 $itemHeaders += Get-ItemProperty -Path $relPath |
 Get-Member -MemberType Properties -ErrorAction SilentlyContinue |
 Select-Object -ExpandProperty Name
 }

 The $itemHeaders variable contains duplicates without any order; the following
code returns only those items in the array that are unique.

 $FullListOfHeaders = $itemHeaders | Select-Object -Unique | Sort-Object

 Now, we can save that data to CSV file using all the information that we have
gathered so far.

 $allDetails |
 Select-Object -Property $FullListOfHeaders -ErrorAction SilentlyContinue |
 Export-Csv -NoTypeInformation -Path C:\Reports\InstalledAppsRegistry.csv

 This takes the allDetails variable, uses all possible headers for all objects in the
array, and then pipes that to a CSV file. If you open that file, you can see there are a lot of
empty fields, but that’s because the uniqueness of each key.

 Arrays
 According to the help file associated with about_Arrays, Microsoft defines an array as “…a
data structure that is designed to store a collection of items. The items can be the same
type or different types.”

 Piping an array to Format-List shows each item in the array with the value for each
object. When formatting a list, each object is processed as an individual item, so it shows
the properties for each object. When you pipe an array to other formatting choices or output
objects, it is assumed that each object has the same properties as the first object sent.

 Let’s take a look at a simple script to test this.

 $A = @()
 $A += Get-Process | Get-Random -Count 1 | Select-Object Name, Id,
VirtualMemorySize
 $A += Get-Service | Get-Random -Count 1

CHAPTER 4 ■ INSTALLED APPLICATIONS

61

 So, we created an empty array and added a random process to it only selecting
three properties: Name, Id, and VirtualMemorySize. We then grab a random service and
add that to the array. Again, not the best choice for an array, but it serves the purpose of
this example.

 Let’s do some testing with this variable.

 $A | Select-Object -Property * | Format-List

 Perfect. Each object is exactly what we want to see. Even examining each object for
its members produces the data for each object individually. As seen in Figure 4-4 , the
members of each object in the array are completely different.

 However, when we try piping the variable A to a table, only the three properties are
shown; it does not display the other fields that were included in the second object.

 Piping that to a CSV file produces the same results as the table. Both assume that
each object will have the same properties as the first object, so just produce the results
using the properties of the first object.

 $A | Select-Object -Property * | Format-Table
 $A | Select-Object -Property * | Export-Csv -Path C:\Reports\Test.csv

 Figure 4-4. Comparing disparate object members in an array

CHAPTER 4 ■ INSTALLED APPLICATIONS

62

 In order to get around the limitations, we have to tell the next object in the pipeline
which headers it will use for the output. Using the simple example again, we’ll add some
fields to get a complete list of properties, like this:

 $A = @()
 $headers = @()
 $A += Get-Process | Get-Random -Count 1 | Select-Object Name, Id,
VirtualMemorySize
 $headers += "Name", "ID", "VirtualMemorySize"
 $A += Get-Service | Get-Random -Count 1
 $headers += Get-Service | Get-Random -Count 1 |
 Get-Member -MemberType Properties -ErrorAction SilentlyContinue |
 Select-Object -ExpandProperty Name

 $FullListOfHeaders = $headers | Select-Object -Unique | Sort-Object

 This time, we added the headers to a new variable and we’ll use that later. If you
examine the headers variable, you can see that one of the values, Name, exists twice. So
we clean that up by getting unique items and sorting them.

 Now we can save that to a CSV file by selecting all headers and saving that.

 $A |
 Select-Object -Property $FullListOfHeaders -ErrorAction SilentlyContinue |
 Export-Csv -NoTypeInformation -Path C:\Reports\ArrayTest.csv

 We like the speed of how PowerShell handles arrays, but sometimes we want to see
all the headers for all the objects piped throughout the commands.

 Next Steps
 Putting it all together, create a script (or scripts) on creating lists of installed applications.
Using both WMI and the registry to get a list of programs is your best chance to document
applications. Improve on the examples with verbose messaging, progress meters, and
using Try-Catch blocks.

 The array portion of getting headers can be done more efficiently by examining all
the data once it has been collected; for example, something like this:

 $headers = @()
 foreach ($item in $A) {
 $headers += $item |
 Get-Member -MemberType Properties -ErrorAction SilentlyContinue |
 Select-Object -ExpandProperty Name
 }
 $FullListOfHeaders = $headers | Select-Object -Unique | Sort-Object

CHAPTER 4 ■ INSTALLED APPLICATIONS

63

 Summary
 Installed applications are as unique as fingerprints. Where the data gets recorded can
differ and which values are added to property fields can vary by manufacturer. We can get
applications through a WMI or a CIM call, and we can extract installed applications from
the registry. Trying to save an array with different types of data for each object can be
tricky, but as you can see, easily done.

65© Derek Schauland, Donald Jacobs 2016
D. Schauland and D. Jacobs, Troubleshooting Windows Server with PowerShell,
DOI 10.1007/978-1-4842-1851-8_5

 CHAPTER 5

 Windows Update

 Windows Update allows operating system files to fix known issues from Microsoft.
Originally, it focused only on the operating system, but it now supports all Microsoft
products. Windows Update can be installed automatically from the Internet, from onsite
Windows Server Update Services, or manually from an offline source.

 Windows Update needs to be applied to keep systems up to date. In short, Windows
Update prevents problems. We have seen a lot of companies that have stopped applying
Windows Update because “reboots and patches break more than they fix.” While it is
true that occasionally patches do cause trouble, you should still apply patches to prevent
future problems.

 There are several categories in Windows Update, including the following:

• Critical updates

• Definition updates

• Drivers

• Feature packs

• Security updates

• Service packs

• Tools

• Update rollups

• Updates

 This chapter focuses on collecting information from on a computer with a currently
installed Windows Update. We will find installed updates and information about those
updates. We briefly discuss options for creating scripts that find and install Windows
Update from the command line, but only do this to demonstrate that it can be done.
Lastly, we briefly discuss removing patches from a computer if a problem should arise.

CHAPTER 5 ■ WINDOWS UPDATE

66

 Get-HotFix
 Get-HotFix is a great command because you can run it locally or remotely. As long as you
have administrative permissions on a remote computer, you can poll remote computers
to find their history of installed hotfixes. Looking at the help for Get-HotFix , shown in
Figure 5-1 , you can see that there is not much to it, but it returns powerful information.

 As you can see, updates can be listed on the local computer (default) or on other
computers, and it accepts the use of alternate credentials.

 Scenario
 You get a call that an application server has stopped processing requests. According to
everyone who has looked at the server before you, nothing has changed.

 Resolution
 One of the first things that we consider is what was installed recently. We usually start
with Windows Update to determine this by running a quick command, like this:

 Get-HotFix -ComputerName server01 | Sort-Object InstalledOn

 Figure 5-1. Get-Help Get-HotFix

CHAPTER 5 ■ WINDOWS UPDATE

67

 And voilà! You see that a set of hotfixes were just installed on the computer. Then it is
a matter of the following other quick checks:

• Was the server recently rebooted?

• Is the computer pending a reboot?

• Are all the required services running?

 Using WMI or CIM
 If you prefer to use WMI or CIM to query, you can also look for hotfixes with the
Win32_QuickFixEngineering class. WMI and CIM return the same information as the
cmdlet, Get-HotFix , which uses the Win32_QuickFixEngineering WMI class . There are
situations where you may need to use one or the other, so be sure that you are aware of
this option. We won’t be covering it much more in this chapter.

 Details of Get-HotFix Results
 Let’s look at the detailed list of items returned from a random hotfix. As you can see, there
is a lot of information returned. The following are the key fields:

• InstalledOn: Shows when the hotfix was installed.

• InstalledBy: Shows who did the patching; sometimes it is NT
Authority\System, which means that the computer itself installed
the update.

• HotFixID: The hotfix id number. It shows which updates
were applied.

• Caption: Usually the URL that is associated with the hotfix.

• Description: Describes what kind of update was installed.

CHAPTER 5 ■ WINDOWS UPDATE

68

 Customizing this Code
 We can save this as a script and then add lots of bells and whistles. We can also add a
parameter section so that we can change the computer name as needed, or even change
the parameter to accept multiple computer names. Instead of just saying to the screen
that the computer is pending a reboot, you can perform actions on the remote computer,
such as rebooting, if it is required.

 Checking When a Computer Was Rebooted
 Each time that the computer starts, it is recorded into the computer; it is just a matter of
reading that value and putting it into human-readable form. Let’s look at the command to
pull the start time of the computer and put into human-readable form.

 [Management.ManagementDateTimeConverter]::ToDateTime((Get-WmiObject
Win32_OperatingSystem -ComputerName $env:ComputerName -ErrorAction Stop).
LastBootUpTime)

 Figure 5-2. Details of a Hotfix

 The help output for Get-HotFix is displayed in Figure 5-2 .

CHAPTER 5 ■ WINDOWS UPDATE

69

 Now, something like that makes it hard to remember and hard for other computers
to change, so let’s make it easier to read.

 $ComputerName = "$env:ComputerName"
 $operatingSystem = Get-WmiObject Win32_OperatingSystem -ComputerName
$ComputerName

 As you can see, we connected to another computer using WMI and returned the
 Win32_OperatingSystem class. Once we have that, we can look at all the note properties
of that variable.

 $operatingSystem | Get-Member

 Examining the list of properties, you can see that there is one called LastBootUpTime.
That’s simple enough. The output of these commands is shown in Figure 5-3 .

 Figure 5-3. LastBootUpTime’s not so friendly output

 But wait, why does the result look like that? That’s because WMI has a few date-time
formats. Finding the correct conversion is usually trial and error. Since we have tried
and failed, the conversion will use another class, called ManagementDateTimeConverter .
Moving in and out of these formats often involves messy parsing code. Luckily, the WMI
team was nice enough to make sure that the .NET classes you use to work with WMI can
convert dates, times, and timespans.

 So, we can use this class to convert that to a readable format:

 [Management.ManagementDateTimeConverter]::ToDateTime($operatingSystem.
LastBootUpTime)

 Examining the data reveals when the server was last booted, and based on the
information, it is very easy to determine the uptime of the server.

 Improvements to this Code
 You can turn this into a function that can be dot sourced or used in your own modules for
quick use.

 Function Get-TsSystemUptime {
 [CmdletBinding(SupportsShouldProcess=$true,
 ConfirmImpact='Medium')]

HivaNetwork.Com

http://www.hivanetwork.com/

CHAPTER 5 ■ WINDOWS UPDATE

70

 Param (
 # A name of a computer, or computers.
 [string[]]$ComputerName = $env:COMPUTERNAME
)
 Begin { }
 Process {
 # Sets an empty array for this variable
 $results = @()
 Foreach ($comp in $computerName) {
 # Creates a new PowerShell Object
 $intResults = New-Object PSObject
 Write-Verbose -Message "Checking '$comp'"
 if (Test-Connection -ComputerName $comp -Quiet -Count 2) {
 Try {
 $operatingSystem = Get-WmiObject Win32_OperatingSystem -
ComputerName $comp -ErrorAction Stop
 $lastStartTime = [Management.ManagementDateTimeConverter]::
ToDateTime($operatingSystem.LastBootUpTime)
 [double]$TotalHours = "{0:N2}" -f ((New-TimeSpan -Start
(Get-Date "$lastStartTime") -End (Get-Date)).TotalHours)
 $intResults = [PSCustomObject]@{
 'ComputerName' = $comp
 'LastStartTime' = $lastStartTime
 'TotalHours' = $TotalHours
 }
 $results += $intResults
 }
 Catch {
 Write-Warning -Message "The computer '$comp' was not
reachable because $_."
 }
 } else {
 Write-Warning -Message "The computer '$comp' was not
pingable."
 }
 }
 }
 End { $results }
 }

 Most of the examples given in this book can be used to create functions and, in turn,
create modules.

CHAPTER 5 ■ WINDOWS UPDATE

71

 Uninstalling a Hot Fix
 Sometimes you find that you need to uninstall a hotfix. This can be done using a built-in tool
called wusa.exe. Information about it is at https://support.microsoft.com/en-us/kb/934307 .

 PowerShell does not have native tools to uninstall updates, so we can use the wusa.exe
inside PowerShell to remove updates.

 This simple function runs against a local machine and removes the hotfix.

 Function Uninstall-TSHotFix {
 [CmdletBinding()]
 Param (
 # This is the HotFix ID, can be either KB plus number or just number.
 [Parameter(Mandatory=$true)]
 $HotFixID
)
 $HotFixID = $HotFixID -replace 'kb',''
 $FoundHotFix = Get-HotFix | where HotfixID -match $HotFixID
 if ($FoundHotFix) {
 wusa /uninstall /kb:$HotFixID /quiet /norestart
 } else {
 Write-Warning -Message "Cannot find HotFixID '$HotFixID'"
 }
 }

 This script simply checks if the HotFixID parameter is on the local computer and
then removes the hotfix.

 Improvements to this Function
 The wsua.exe tool does not work on remote computers. So, we can use PowerShell to
start a remote process on another computer. We also need to verify that the hot fix is
on a remote computer. It’s a good thing that the Get-HotFix cmdlet and the Win32_
QuickFixEngineering WMI class query remote computers.

 We can also use PowerShell to start a remote process on another computer.
 The following example shows how you can start a remote process.

 $ComputerName = 'Server01'
 $HotFixID = '123456789'
 $RemoteProcess = "wusa.exe /uninstall /KB:$HotFixID /quiet /norestart"
 ([WMICLASS]"\\$ComputerName\ROOT\CIMV2:win32_process").
Create($RemoteProcess)

 By calling the WMICLASS and using the create method, we can start processes
remotely. The string that we are using is in the RemoteProcess variable. You can use just
about any string you need, just modify it to suit your individual needs.

 We can also monitor the remote processes using the Get-Process cmdlet.

https://support.microsoft.com/en-us/kb/934307

CHAPTER 5 ■ WINDOWS UPDATE

72

 Pending Restarts
 The easiest way to check for an application that was installed was to look for a pending
restart key in the registry. On the local computer, you can do a quick check for a path like this:

 Test-Path "HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Component Based
Servicing\RebootPending"

 If this key exists, the computer is waiting for a reboot. If this key doesn’t exist, well,
you know. (Psst. If you don’t know, the answer is without the registry key, no reboot is
required.) So how do we verify that the key exists on a remote computer? Let’s examine
some code to check for a restart.

 Looking at a remote computer requires some .NET calls to connect to the remote registry.

 $ComputerName = "$env:ComputerName"
 $connectToRegistry = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey("Local
Machine", $ComputerName.computername)

 In this example, we are connecting to the local computer again, but the name
can be changed to a remote computer. Once we have done this, we can view the
 connectToRegistry variable and view its members, as shown in Figure 5-4 .

 $connectToRegistry | Get- Member

 Figure 5-4. Members of the Remote Registry

CHAPTER 5 ■ WINDOWS UPDATE

73

 This shows you some of the methods that are available. You can also look up the
RegistryKey Class page on MSDN (https://msdn.microsoft.com/en-us/library/
microsoft.win32.registrykey.aspx) to see some the methods. The method that we are
interested in is the OpenSubKey method. Now connect to the registry that we care about.

 $fullRegPath = $connectToRegistry.OpenSubKey("Software\Microsoft\Windows\
CurrentVersion\Component Based Servicing")

 Again, we can look at the member of this variable by piping the variable to the
Get-Member cmdlet.

 $fullRegPath | Get-Member

 Because we are still looking at the remote registry, the methods are the same as
before. However, we are going to focus on finding sub key names.

 Once we are connected and have the registry path that we care about, we list the
subkeys that are under the key.

 $subKeyNames = $fullRegPath.GetSubKeyNames()

 Perfect. We now have a list of registry key names that we can examine if there is a
pending reboot.

 if ($subKeyNames -contains 'RebootPending') {Write-Host "$ComputerName Needs
reboot"}

 There are other things that we can do with networking protocols. Let’s close our
connection to the remote computer.

 $fullRegPath.Close()
 $connectToRegistry.Close()

 There are several locations in the registry that need to be checked to find pending
restarts. You can use the preceding logic to query and find information in the registry for
different types of restarts the computer may be waiting on.

https://msdn.microsoft.com/en-us/library/microsoft.win32.registrykey.aspx
https://msdn.microsoft.com/en-us/library/microsoft.win32.registrykey.aspx

CHAPTER 5 ■ WINDOWS UPDATE

74

 Summary
 Hotfixes can be found by using the Get-HotFix cmdlet or by using WMI/CIM calls to a
computer. You can see when updates were applied to a computer. The determination of
pending reboots may show if something was installed, but the computer wasn’t restarted
after the install. And the system uptime shows when a computer was last rebooted.

 Table 5-1. Checking for Computer Restarts

 Component-based services HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\ Component Based Servicing\

 Windows Update HKLM\SOFTWARE\Microsoft\Windows\
CurrentVersion\ WindowsUpdate\Auto Update\

 Computer renames HKLM\SYSTEM\CurrentControlSet\Control\
ComputerName\ ComputerName\ComputerName

 Pending file rename HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\ PendingFileRenameOperations

 Table 5-1 shows three other locations in the registry that hold information about
computer pending restarts.

75© Derek Schauland, Donald Jacobs 2016
D. Schauland and D. Jacobs, Troubleshooting Windows Server with PowerShell,
DOI 10.1007/978-1-4842-1851-8_6

 CHAPTER 6

 Manage Running Processes
on a Target System

 So far in our journey to troubleshoot systems using PowerShell, we have gathered
information from

• The Windows event log

• Server information

• Installed application listings

• Windows Update information

 The information that can be pulled from these sources is large and can quickly be
scaled to allow collection from any number of systems. In this chapter, we are going to
collect information about processes running on a specified target computer.

 What can be captured about processes? Aren’t they just objects representing the
applications running on a computer?

 Processes represent the applications and services actively running on a Windows
computer. Some processes can be paused and restarted, all processes can be terminated,
and new processes can be started. When this might be useful depends on the situation
and what needs to be done.

 Working with Processes
 Scenario: Suppose there is a server running your company’s largest business application
and that application is having issues being accessed by the QA administrator for feature
testing. The application uses a web browser to access its features, but when the browser is
opened, it just disappears. No errors are shown, but nothing is working.

 There are a number of ways to look at processes on a computer to see just what they
are doing and how many resources they are consuming. Resource overconsumption can
also cause things to behave strangely on a Windows system; examining the application’s
processes can lead you down the right path during the troubleshooting process.

 Because we are focusing on PowerShell for troubleshooting , we assume that you
have seen the processes tab of the Windows Task Manager before, but it is shown in
Figure 6-1 .

CHAPTER 6 ■ MANAGE RUNNING PROCESSES ON A TARGET SYSTEM

76

 The same information shown there can be returned in the PowerShell console as
well. The command to return these results is Get-Process .

 Running this cmdlet returns current processes on the local system. On the current
system, for example, the process output is shown in Figure 6-2 .

 Figure 6-1. Windows Server 2012R2 Task Manager

CHAPTER 6 ■ MANAGE RUNNING PROCESSES ON A TARGET SYSTEM

77

 There is a good amount of information shown by default. The properties shown for
each process by default are:

• Handles: The number of handles open by the process

• NPM(K): The amount of non-pageable memory (in KB) used by
the process

• PM(K): The amount of pageable memory (in KB) used by the process

• WS(K): The size (in KB) of the working set consumed by the process

• VM(M): The amount of virtual memory (in MB) consumed by
the process

• CPU(s): The amount of CPU time (in seconds) consumed by
the process

 Figure 6-2. Windows Server 2012R2 Process from Get-Process cmdlet

CHAPTER 6 ■ MANAGE RUNNING PROCESSES ON A TARGET SYSTEM

78

• Id: The numeric identifier of a Windows process

• ProcessName: The name of the running executable

 While the Get-Process cmdlet shows this information by default for all processes
running on a system, you can manipulate the results in a few ways to drill down to the
process in which you are interested.

 Filtering by Process ID or Name
 Suppose you are working to find out information about a specific process—PowerShell,
for example. You can get to PowerShell by running the following one-liner:

 Get-Process | where Name -eq powershell

 This shows only the processes with the name “powershell”.

 ■ Note For older versions of PowerShell (prior to version 3), you have to use the legacy
version of the Where-Object cmdlet, as shown here:

 Get-Process | Where-Object {$_.name –eq "powershell"}

 The $_ is a generic variable used in PowerShell before the release of version 3. In the
example, it is used to represent the object that was used before the pipe symbol. For
versions 3 and greater, this variable works without any problems.

 That same command can also look like this:

 Get-Process | Where-Object {$PSItem.name –eq "powershell"}

 The $PSItem was introduced in PowerShell version 3 to make your code easier to read.
In both examples, the $_ is the same things as $PSItem , as long as you are running
PowerShell version 3 or later.

 Most of the time, you will know the name of the application that you are looking for
rather than the process ID, and that is perfectly fine. If you need to work with a specific
instance of a process because more than one instance is running, you can dig into the
details of the processes. You can compare items, for example, when each process started
(if you know one started after the other), or maybe the same executable run from different
locations on the computer.

 Figure 6-3 shows an example of many apps running from different locations, and
how you need to choose the correct ID for the process that you want to work with.

CHAPTER 6 ■ MANAGE RUNNING PROCESSES ON A TARGET SYSTEM

79

 Here you begin with name-based filtering to narrow down the processes to a certain set
of items, and then use the process id (PID) to dig in further to get down to a specific instance.

 You can then get the process ID from the previous query with PowerShell. In this
case, the ids are 532, 1476, 1760, and 4076. When you run this again for the following
process id

 Get-Process | where ID -eq 4076

 or in an even shorter syntax, such as

 – get-process –id 4076

 you see some of the information tied to that specific process id.

 Sorting and Selecting Information Needed
 Once information has been returned to the console, you can manipulate it to show the
details that are relevant to you. Sometimes information displayed by default is not quite
what you need. PowerShell is not holding out on you; there is more to the story and it can
be accessed in a few ways.

 Listing all of a process’s available properties involves using the Select-Object cmdlet.
 Pulling in the information about a specific process and piping it to Select-Object

does this:

 Get-Process –ID 4076 | Select-Object –Property *

 Because we used a process id (4076), the details of that process are pulled out
and sent to Select-Object . Once there, the wildcard (*) is used to tell select to return
everything. Because there are now more than five properties listed, the results are
returned as a list rather than a table. This is shown in Figure 6-4 .

 Figure 6-3. Getting processes and showing specific properties

HivaNetwork.Com

http://www.hivanetwork.com/

CHAPTER 6 ■ MANAGE RUNNING PROCESSES ON A TARGET SYSTEM

80

 Notice that the output runs off the screen; this is because there are more properties
displayed than fit in the confines of the console. This can be modified by filtering the
records returned to show only the items specifically needed. As a rule of thumb, working
from a large dataset to a smaller dataset works best because this shows you what is
available and allows you to filter the result set.

 Recall the earlier scenario where the business application was unable to be used
when testing but no errors appeared. Now that the Get-Process cmdlet has been used,
we can use it to see if there are any issues with the browser used to run the testing.

 Get-Process -name iexplore

 This returns all instances of the iexplore.exe process, which runs Internet Explorer.
As shown in Figure 6-5 , there are five Internet Explorer processes running. Some
applications do not behave as expected when an excessive number of processes are
running; this may or may not be enough to cause errors on your server, but as an
example, it works quite well.

 Figure 6-5. Internet Explorer processes running on the local machine

 Figure 6-4. The process details for Process ID 4076

CHAPTER 6 ■ MANAGE RUNNING PROCESSES ON A TARGET SYSTEM

81

 Working with Returned Data
 Returning data about processes is useful at the command line if you know what you
are looking for (e.g., information about the PowerShell.exe process) or you are trying to
determine how to get to the property or properties that you seek. It may be more useful to
create regularly executed reports containing process information to provide a snapshot of
what is happening on a system or group of systems.

 The process to create a report is similar to that of previous items; the details change
based on the information available.

 As an example, we can get the processes running at the time the PowerShell script or
commands are executed, and then create a report for that data. Since processes change
frequently, a timed execution of a PowerShell script to gather the point in time data is
recommended.

 Get-Process | Select-Object -Property Id, Name, WS, CPU

 This returns the id, name, WorkingSet (WS), and CPU for all the processes currently
running on the local computer. From here, we can format the data and output an HTML
report to make things a bit easier to read.

 Get-Process |
 Select-Object -Property Id, Name, WS, CPU |
 ConvertTo-Html -Title "Proccess on $($env:COMPUTERNAME)" |
 Out-File C:\Reports\Processes.html

 In this code, we are converting our process data to HTML with a page title called
“Processes on Computername” (computername as called out in the code snippet would be
the name of your computer). This is functional but not very attractive; using more advanced
formatting cleans up the output even further. The following code accomplishes this.

 $header = @"
 <style>
 BODY{background-color:white;}
 TABLE{border-width: 1px;border-style: solid;border-color: black;border-
collapse: collapse;}
 TH{border-width: 1px;padding: 0px;border-style: solid;border-color: black;}
 TD{border-width: 1px;padding-left: 0px;padding-right: 15px;border-style:
solid;border-color: black;}
 </style>
 "@

 $serv = Get-Service |
 Select-Object -Property ServiceName, DisplayName, Status |
 Get-Random -Count 7 |
 ConvertTo-Html -Fragment

CHAPTER 6 ■ MANAGE RUNNING PROCESSES ON A TARGET SYSTEM

82

 ConvertTo-Html -Head $header -body "<H2>Seven Random Services</H2>$serv" |
 Out-File -FilePath "c:\reports\myfile.html"

 & C:\Reports\SevenRandomServices. html

 Delivering the Goods: A Quick Sidestep to Sending Email
 Reporting is a handy way to review information generated by PowerShell, but if you had
to chase the files down every day, it would be quite tedious. Fortunately, PowerShell
provides cmdlets for sending email . This way, anyone who needs to see the reports can
get the details on the same schedule.

 You need access to an SMTP server to send mail, whereas most servers (including
Gmail) require logging in to send mail. An SMTP relay can be used to handle relaying
from your internal network to the email server (or service) that your organization uses.

 The following is a simple way to send email:

 Send-MailMessage -To "User@your.company.suffix" `
 -From "reports@your.company.suffix" `
 -Subject 'Report of Processes' `
 -Body "$(Get-Content C:\Reports\SevenRandomServices.html)" `
 -BodyAsHtml `
 -SmtpServer smtp.your.company.suffix

 You have to modify the values in this example to match your local environments.

 ■ Note In the preceding example, there is a backtick character at the end of each line,
which tells PowerShell that the script line is not over, just starting on the next line. This
makes it cleaner to show long lines of code in a more readable format.

 So far in this chapter, we have shown you how to gather information from your local
computer, and how to produce an HTML report based on that data and send it in an
email to anyone interested. This is great if you plan to collect data about this machine, but
the real power in getting information comes from remote computers and servers in your
environment.

 Collecting Information from a Remote Computer or
Computers
 The Get-Process cmdlet supports the -ComputerName parameter, which allows you to
execute the cmdlet and gather information from a specified computer. To work with data
for multiple computers, you can provide a comma-separated list or a list of system names
in a text file.

CHAPTER 6 ■ MANAGE RUNNING PROCESSES ON A TARGET SYSTEM

83

 For input files, the text file should contain one item per line with no header
information. You could also pull in a CSV or XML file if needed, but a plain text file keeps
this simple. That is what we used in this example:

 $inputFile = Get-Content -Path "C:\JustComputerNames.txt"
 $reportData = @{}
 Foreach ($computer in $inputFile) {
 $reportData += Get-Process -ComputerName $computer
 }
 $reportData |
 Select-Object -Property MachineName, Id, Name, WS, CPU |
 ConvertTo-Html -Title "Proccesses on Computer List" |
 Out-File C:\Reports\Processes.html

 Send-MailMessage -To "User@your.company.suffix" `
 -From "reports@your.company.suffix" `
 -Subject 'Report of Processes' `
 -Body "List of Processes on the computer list." `
 -BodyAsHtml `
 -Attachments 'C:\Reports\Processes.html' `
 -SmtpServer smtp.your.company.suffix

 Now we have a script that gets process information from specified computers and
emails it to the administrator as an HTML file attachment. This is great to get started.
It helps you understand execution and how things in PowerShell are run. But it can be
further amplified using the scheduled task application in Windows. This way, the script
is executed on a schedule; for example, every day at 3:00AM, the email and report file are
waiting for the recipient when they arrive to work.

 Other Ways to Improve the Script
 The following are ways to improve the script.

• Verify that the list of computers in the text file actually exists.
Too many times, the source files get moved or modified and so
the script stops working. A simple Try-Catch to verify the file
was found works, as long as the Catch block does more than
just output data to the screen, which isn’t helpful when run as a
scheduled task.

• You should never assume that the list of computers in the text file
are accurate. Wrapping the Get-Process cmdlet inside a Try-
Catch block assures that the computer is available. If it isn’t, the
 Catch block should be notifying you about the failure.

CHAPTER 6 ■ MANAGE RUNNING PROCESSES ON A TARGET SYSTEM

84

• Adding formatting to the HTML code would be nice. This version
of the HTML code is dry and not easy to read. Perhaps adding a
section for each computer in the report or formatting every other
line with color would make it easier to read.

• Saving the file each day with the same name destroys historical
data. You may want to incorporate the date the file was saved into
the name of the file.

 Starting and Stopping Processes
 Looking at process information for a system (or group of systems) is great, but it doesn’t
really get you much, other than a point-in-time look at what things are running on a
system when the command is executed. If you run Get-Process on your computer and
see that Word.exe is running, then run the same command again after closing Word; it
will show that Word.exe is no longer running.

 If, however, you find that there is a process causing a computer to perform poorly or
is using up all available memory, PowerShell can help.

 Suppose that Word.exe is causing a computer to perform at less than optimal levels,
or at first glance, it seems that when using Word, things get slow and the computer
becomes almost unusable.

 The Get-Process cmdlet in PowerShell shows the processes that are running and
how much of the available resources each process is consuming. Generally, the problem
process isn’t going to be Word.exe, but any process will work for this example.

 If Word is running away with all of the memory in the system and it needs to be
stopped, PowerShell has a way to allow you (as the administrator) to stop most processes
that you can see.

 Heading back to the example with Word.exe, you can run something like this:

 Get-Process | where name –EQ word

 Notice that the command did not return any values. This is because the name of the
process isn’t Word, but Winword.exe. Appending the preceding statement to account for
this will get the process that we were looking for, as follows:

 Get-Process | where name –match word

 Using the match operator, the cmdlet found the Winword.exe process. For this
session, it produced the following information:

 Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
 ------- ------ ----- ----- ----- ------ -- -----------
 1099 52 77424 87332 33473 2.98 3032 WINWORD
 1403 73 141196 188288 33596 18.69 7744 WINWORD

 We can see that the first process is currently using 77424K of private memory and the
second process is using 141196K of private memory.

CHAPTER 6 ■ MANAGE RUNNING PROCESSES ON A TARGET SYSTEM

85

 If we wanted to end this process because it was causing unnecessary performance
problems, we could simply return to the previous line of code and pipe that to another
cmdlet called Stop-Process .

 Let’s pipe to the Stop-Process cmdlet to the end of the line.

 Get-Process | where name –match word | Stop-Process

 This stops both Winword.exe processes from running and forcibly closes both Word
applications. However, be careful when closing applications this way; it may cause data
loss within that application.

 In addition to ending processes, you can also start them within PowerShell. In the last
example, we ended the Winword.exe process. Here we start an instance of Microsoft Word.

 Going back one more time to our earlier scenario with the non-working line of
business application, we were at the point where we found five instances of Internet
Explorer running. Using a command similar to the one just discussed, we can end all of
the potentially problematic instances of IE by executing the following:

 Get-Process | where Name -EQ iexplore | Stop-Process

 Once these processes are stopped, starting a completely new instance without any
overhead may help with troubleshooting.

 Use the Start-Process cmdlet and then the name of the executable to run, as
follows:

 Start-Process winword

 This launches an instance of Word. It works as long as the name of the executable
you want to start lives in the App Paths registry key. If the registry subkey for Winword
does not exist there, then the Winword executable must be in the environmental variable
for “path”. If you want to start a process that is not listed in the App Paths registry keys or
in the path environmental variable, you have to give the full path to the executable.

 When Start-Process and Stop-Process Are Useful
 Most times, opening and closing the application using the native GUI (graphical user
interface) tools is just fine. After all, app programmers ask if you want to save your
progress or they do other checks when you close an application. However, there are
some instances on your local machine when you may want to start or end processes from
PowerShell. For example, when an application becomes unresponsive or the GUI freezes
up, you may find that closing an application through PowerShell is the only way to end
some processes.

 Remember to pay close attention to the processes you are stopping from PowerShell
because stopping the wrong one may produce unintended consequences.

CHAPTER 6 ■ MANAGE RUNNING PROCESSES ON A TARGET SYSTEM

86

 Select First, Then Again, and Then Stop
 This is much like the adage “measure twice, cut once” to ensure that you are going
to get exactly what you expect. If you run a command and immediately pipe it to
another cmdlet that takes action, the results may not be what you expect. In this case,
and in almost any case where the last cmdlet does something to the input, getting the
information a few times to ensure that the results are what you need never hurt anyone.

 Using the Invoke-Command cmdlet with -ComputerName and -ScriptBlock parameters
is a way to run these cmdlets on a remote computer. This connects to the remote computer
and then executes the scriptblock provided. This method is useful when the cmdlets you
need to execute do not directly support the –ComputerName parameter.

 The following is an example of this:

 Invoke-Command -ComputerName server01 -ScriptBlock { Get-Process | where
name -match word }

 This may produce errors if the remote system is not configured to allow remote
PowerShell connections. If the remote computer has been enabled to allow PowerShell
remoting, you should receive a similar set of results of running Get-Process on the local
machine.

 Similar to the Windows Task Manager, looking at processes using PowerShell
helps review what is using resources on a system. When working with remote systems,
PowerShell is very fast to return information.

 (Get-WmiObject -Class Win32_Process -ComputerName server01 |
 where Name -match PowerShell.exe).GetOwner() |
 Select-Object Domain, User | Format-List

 ■ Note Use the Force. Sometimes you need to use the “force” switch to ensure a process
stops when requested. According to the help for Stop-Process , using “force” stops the
specified processes without prompting for confirmation. By default, Stop-Process prompts
for confirmation before stopping any process that is not owned by the current user. To find
the owner of a process, use the Get-WmiObject cmdlet to get the Win32_Process class
object that represents the process, and then use the GetOwner method of the object.

 Using WMI or CIM to Work with Processes
 Windows Management Instrumentation (WMI) and its more recent counterpart, Common
Information Model (CIM) , are tools that help systems administrators interact with local and
remote computers in more detail. Where processes are concerned, they can produce more
properties about items and provide a better picture of what is going on with a particular
system. This is not true in all cases, but it does prove helpful much of the time, so it makes
sense to discuss them here. Because CIM is the more recent of the two, it is covered in this
section; however, the same classes used by WMI are available when using CIM.

CHAPTER 6 ■ MANAGE RUNNING PROCESSES ON A TARGET SYSTEM

87

 ■ Note Remember that WMI cmdlets are required for PowerShell v2 and earlier, and CIM
cmdlets are available in newer versions of PowerShell.

 Because WMI is the senior statesman, it gets first billing. Using WMI to access
information about system processes provides information not shown by the process
cmdlets. For example, WMI can use DCOM to tell you which files are open. The following
code points out a file open in Notepad.exe:

 Get-WmiObject -Class Win32_Process -Filter "Name='Notepad.exe'" |
 Select-Object -ExpandProperty CommandLine

 There are other properties related to processes, including (but not limited to)
the following:

• WorkingSet

• ProcessId

• ProcessName

• Installdate

 Some of the properties, such as InstallDate, may not have a value if the application is
included with the Windows operating system. To see the complete list of properties and
methods, you can pipe the Get-Member command.

 Using the CIM cmdlets
 The properties available with WMI and DCOM are also available when using the
Common Information Model. Using the CIM cmdlets, PowerShell uses the WS-
Management service to provide information.

 As in the preceding example, CIM can return process information about Notepad.

 Get-CimInstance -ClassName Win32_Process -Filter "Name='Notepad.exe'"

 The difference between these methods is how they access a system. In PowerShell 3.0
and higher, the CIM cmdlets allow the use of WSMan; in previous versions of PowerShell,
however, DCOM and WMI are required. This allows backward compatibility between
versions of PowerShell so that computers that are not upgraded are still accessible.

 Without specifying which process you wish to review, running Get-CimInstance
-ClassName Win32_Process generates the list of currently running processes. Because it
can be executed to pull information from remote computers, it can help research what is
running on remote servers or workstations if problems arise.

 If the computers you need to work with are running Windows prior to Windows 10,
they are running PowerShell 4.0 or earlier. If the PowerShell version is 2.0 or older, WMI
cmdlets are required. Newer versions of PowerShell can work with the older cmdlets to
ensure that you can write scripts that support older versions of PowerShell.

CHAPTER 6 ■ MANAGE RUNNING PROCESSES ON A TARGET SYSTEM

88

 Using PowerShell instead of GUI-based tools to investigate processes can help
extract the information provided to other formats. For example, reports can be created
and files can be generated with existing process information. This allows you to compare
the processes running on a machine several times per day, or you can even compare the
processes that are running on several different computers.

 Examining the differences between two systems with similar configurations using
process usage data can provide insight into how the system is being used. Although it
isn’t a perfect solution (because two users might use applications differently), it is a good
starting point to examine the running processes on a computer.

 Summary
 In this chapter, processes were the focus of discussion. We covered how PowerShell can
interact with processes to verify what computers are running, starting, and stopping.
While there are GUI-based tools for these tasks, sometimes it is useful to get a handle on
them quickly from the command line.

 In the next chapter, we dive into Windows services, which work in a similar way
to processes when using PowerShell, but have different issues and actions associated
with them.

89© Derek Schauland, Donald Jacobs 2016
D. Schauland and D. Jacobs, Troubleshooting Windows Server with PowerShell,
DOI 10.1007/978-1-4842-1851-8_7

 CHAPTER 7

 Review and Manage Services
with PowerShell

 Services in Microsoft Windows accomplish a great many things behind the scenes.
In this chapter, we are going to look at how services can be managed with Microsoft
PowerShell. The following is from Microsoft’s “Introduction to Window Service
Applications” page: “Microsoft Windows services, formerly known as NT services, enable
you to create long-running executable applications that run in their own Windows sessions.
These services can be automatically started when the computer boots, can be paused and
restarted, and do not show any user interface. These features make services ideal for use on
a server or whenever you need long-running functionality that does not interfere with other
users who are working on the same computer. You can also run services in the security
context of a specific user account that is different from the logged-on user or the default
computer account.” (https://msdn.microsoft.com/en-us/library/d56de412.aspx) .

 Tools like PowerShell that are included in the Windows platform help IT
departments reduce costs in managing their environments. Maintaining skills in these
areas can help an organization leverage technology without incurring extra costs in
keeping an IT environment working efficiently.

 Working with services across your environment using the familiar PowerShell
interface improves your response time and helps keep your users and systems
functioning efficiently.

 Access to Services with PowerShell
 Like many other resources that we have looked at so far, accessing services can be done
locally or remotely from a single PowerShell window. Services need to run under an
account, which can be a local user, a domain user, or the local computer account.

HivaNetwork.Com

https://msdn.microsoft.com/en-us/library/d56de412.aspx
http://www.hivanetwork.com/

CHAPTER 7 ■ REVIEW AND MANAGE SERVICES WITH POWERSHELL

90

 ■ Note In versions of Windows Server prior to 2008 R2, a user account with a non-expiring
password was the most practical choice for service logon. Since then though, Microsoft
introduced Managed Service Accounts (MSAs), which configures an Active Directory service
account and links it to a single computer. The password is complex and automatically
managed by Active Directory, which means that services on this computer do not need to be
managed by the administrator. Information about MSAs is at http://blogs.technet.com/
b/askds/archive/2009/09/10/managed-service-accounts-understanding-

implementing-best-practices-and-troubleshooting.aspx .

 In Windows Server 2012 R2, the MSA concept was further improved to allow service
accounts to be managed across multiple computers using Group Managed Service
Accounts. More information is at http://blogs.technet.com/b/askpfeplat/
archive/2012/12/17/windows-server-2012-group-managed-service-accounts.aspx .

 Managed Service Accounts are important because they save repetitive administrative
work when dealing with services because Windows is able to update service passwords
automatically. The credentials that the services use are independent of the credentials
that you use to access the server and manage services.

 Gathering Service Information
 Because services on a Windows server can perform so many helpful (and at
times frustrating) actions, being able to get information about services during the
troubleshooting process can keep the troubleshooting process moving and provide good
data about what might be wrong. Let’s look at what PowerShell can do with services.

 Actions on Services
 Similar to the actions available from the services snap-in on a Windows machine, you can
use PowerShell to take the following actions on Windows services:

• Start (bring a service online)

• Stop (take a service off line)

• Restart (stop and start a service)

• Change the startup type of a service

 Working with services is a required skill set for Windows Server administration.
You should be able to manage services without using GUI-based tools and to work
on multiple servers at once. PowerShell reduces the overhead for managing services,
saves time across an environment, and simplifies the automation of management for
environments of all shapes and sizes.

http://blogs.technet.com/b/askds/archive/2009/09/10/managed-service-accounts-understanding-implementing-best-practices-and-troubleshooting.aspx
http://blogs.technet.com/b/askds/archive/2009/09/10/managed-service-accounts-understanding-implementing-best-practices-and-troubleshooting.aspx
http://blogs.technet.com/b/askds/archive/2009/09/10/managed-service-accounts-understanding-implementing-best-practices-and-troubleshooting.aspx
http://blogs.technet.com/b/askpfeplat/archive/2012/12/17/windows-server-2012-group-managed-service-accounts.aspx
http://blogs.technet.com/b/askpfeplat/archive/2012/12/17/windows-server-2012-group-managed-service-accounts.aspx

CHAPTER 7 ■ REVIEW AND MANAGE SERVICES WITH POWERSHELL

91

 PowerShell is fairly straightforward when it comes to services; there are cmdlets
available for manipulating them. As we noted in the previous section, getting information
about services also has a cmdlet to use.

 Bringing the information to other actions using the pipeline allows discovery and
actions in one step.

 Let’s start by looking at the help for the Get-Service cmdlet shown in Figure 7-1 .

 As you can see, you can run against the local computer and remote computers, and
get dependent services for each service. For example, to determine if the spooler service
is running on a print server and to restart the service to ensure smooth sailing of all
printed documents, you could use this:

 Get-Service | where Name -Match 'spooler' | Restart-Service

 If the service you have chosen to restart requires dependent services to restart as
well, if you use the -Force switch, PowerShell will wait for the dependent items to restart
as well and then perform the action on the selected service. If the service is in use and
needs elevation the shell will error and alert you that more access is required. In the case
of the print spooler, the service restarts without any fanfare and no additional output.

 When examining the memberships of the Get-Service cmdlet, you can see there are
a few important items as seen in Figure 7-2 .

 Figure 7-1. Get-Help Get-Service

CHAPTER 7 ■ REVIEW AND MANAGE SERVICES WITH POWERSHELL

92

 Some of the important properties from Get-Service include CanShutdown, CanStop,
DependentServices, and Status. Two of the important methods are Start and Stop.

 This means that you can check for dependent services and stop and start services
simply by using the Get-Service cmdlet, as shown in Figure 7-3 .

 When run on a local computer, the service restarted and there was no other output.
 Some services do not need to be restarted. Suppose that you want to stop the

Microsoft SQL Server service to ensure that there is no access to the databases while you
perform maintenance on a server. In this instance, the service should stay stopped until
restarted deliberately or until the next system restart. PowerShell can do this easily.

 Figure 7-2. Get-Service | Get-Member

 Figure 7-3. Stopping services using Get- Service

CHAPTER 7 ■ REVIEW AND MANAGE SERVICES WITH POWERSHELL

93

 Figure 7-4 shows the Get-Service cmdlet where the service name matches SQL.

 ■ Note In Figure 7-4 , we use the default SQL Server instance on the server.

 Once we know the name and the status of the service, we can interact with it:

 Get-Service -Name MSSQLSERVER | Stop- Service

 SQL Server has several services that perform work in a SQL environment. For
example, the SQL Server Agent service makes backups of databases (among other things).
These services depend on SQL Server. If you restart SQL Server and the agent service is
running, you may receive a warning that there are dependent services running. If you
include the -Force parameter, PowerShell stops any dependent services along with the
parent service.

 Stopping a service when other services depend on it causes PowerShell to pause.
You see an error if you stop a service that has dependency, unless you use the -Force switch.

 Once you know that the service has stopped, you can perform the needed
maintenance on the server and then use similar commands to get SQL Server up and
running again:

 Get-Service -Name MSSQLSERVER | Start-Service

 Any dependent services required by SQL Server are also started. It is a good idea to
check on them to ensure that they are in the necessary state for your needs.

 Start, stop, and restart are the most useful actions when working with services, but
there are a few other cmdlets for managing services:

• New-Service

• Set-Service

• Resume-Service

• Suspend-Service

 Figure 7-4. Find SQL services

CHAPTER 7 ■ REVIEW AND MANAGE SERVICES WITH POWERSHELL

94

 New-Service registers a new service in the registry and the service database on a
Windows system. When used, there must be an executable file to run while the service
is running. If you have an executable that is best run as a service, this is the way to add it
to the registry and the service database. When you are done using the service, it can be
deleted from the registry so that it does not consume resources. Unfortunately, there is no
native PowerShell cmdlet to remove a service, so you need to use an alternative, like this:

 Sc.exe delete ServiceName

 Or this:

 (Get-WmiObject -Class Win32_Service -Filter "Name = 'ServiceName'").Delete()

 ■ Note SC is a command-line program used for communicating with the Service Control
Manager and services. It is part of the installed applications, so it is probably already on your
computers.

 The Set-Service cmdlet allows some properties of a service to be modified.
 As you can see in Figure 7-5 , you can change the description, display name, start up

type, and status.

 Figure 7-5. Get-Help Set-Service

 As seen in Figure 7-6 , we set the service using the Set-Service cmdlet, but the
 Get-Service cmdlet was unable to query the description; we had to use WMI to find the
description.

CHAPTER 7 ■ REVIEW AND MANAGE SERVICES WITH POWERSHELL

95

 The Suspend-Service cmdlet pauses a running service, which typically continues
to service existing connections but does not accept new connections. Resume-Service
removes the pause status of a service to allow new connections from clients. This is
different from the Restart-Service cmdlet because Suspend-Service does not stop and
start the service.

 Suspend-Service -Name spooler | Start-Sleep -Seconds 30 | Resume-Service

 The previous example pauses the spooler service, waits for 30 seconds, and resumes
the service.

 Enter WMI
 Services have a number of cmdlets to return information and manage their state, but
WMI and CIM can extend this functionality even further. When a service needs to interact
with other systems on a network, for example, things dealing with mail or other widely
used items, the account used by the service should be able to interact with the domain,
either by being a user account in the domain or by being a Managed Service Account
(the preferred option). Since there is not a great way to modify the account or its password
with the service cmdlets, many administrators dig into the services management console
to change the account, but there is no need. Windows Management Instrumentation
(WMI) can help with this for sure.

 Let’s change the user account information for the famed spooler service .

 $spoolerService = Get-WmiObject -Class Win32_Service -ComputerName Server01 `
 -Filter "Name = 'spooler'"

 This sets the spoolerService variable with the spooler service object. Doing this
simplifies manipulation because the object is stored in memory and we don’t have
to continually query the computer for the same information. Now that the variable is
created, we can view all the available methods on the object that are associated with the
 Win32_Service WMI object . This returns all the properties and methods available for the

 Figure 7-6. Example Set-Service

CHAPTER 7 ■ REVIEW AND MANAGE SERVICES WITH POWERSHELL

96

object stored in the spoolerService variable, as noted in Figure 7-7 . There are quite a
few options available so we won’t list them all, but the method we are interested in for the
logon account is the Change method.

 Figure 7-7. WMI object Win32_Service members

 ■ Note If you list all of the methods for this WMI object, you see other items that can stop,
start, and otherwise act on service objects, much like other cmdlets discussed in this chapter.

 Now that we know the method needed to reset the logon information , we can jump
right in. These properties are handled in order, which means that we need to pass a null
value to the properties that we do not want to change. To find out which parameters are
available for modification, run this command:

 $spoolerService | Get-Member -Name Change | Format-List

CHAPTER 7 ■ REVIEW AND MANAGE SERVICES WITH POWERSHELL

97

 As you can see, there are a number of parameters ahead of the StartName and
StartPassword fields. Regarding the Change method of the Win32_Service class, according
to MSDN at https://msdn.microsoft.com/en-us/library/windows/desktop/
aa384901.aspx , the StartName is defined as the “account name the service runs under”
and the StartPassword is the “password to the account name specified by the StartName
parameter”. Since the Change method is expecting that it may need to act on all of these
parameters, we have to pass a $null value for each field that we don’t want to change.
In Figure 7-9 , the command only updates the StartName and StartPassword for the
service, leaving all other parameters unchanged.

 Figure 7-8. Change method of Win32_ Service

 Figure 7-9. Changing username and password for a service

 As seen in Figure 7-8 , the following are the other fields you can change using the
 Change method:

• System.String DisplayName

• System.String PathName

• System.Byte ServiceType

• System.Byte ErrorControl

• System.String StartMode

• System.Boolean DesktopInteract

• System.String StartName

 This highlights the Change method and shows its properties in a list. Doing this
makes the entirety of parameters somewhat easier to read, as shown in Figure 7-8 .

https://msdn.microsoft.com/en-us/library/windows/desktop/aa384901.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa384901.aspx

CHAPTER 7 ■ REVIEW AND MANAGE SERVICES WITH POWERSHELL

98

• System.String StartPassword

• System.String LoadOrderGroup

• System.String[] LoadOrderGroupDependencies

• System.String[] ServiceDependencies

 Once the parameters have been changed, the service needs to be restarted to update
them. Even when you make changes using the GUI, the same restart is required when
modifying the account for a service.

 What Else Can Be Done to Services?
 Earlier, when we were looking at SQL Server, we noted that it has dependencies.
Dependencies are other services that the primary service requires to be running for its
own operation. Dependent services are restarted (or stopped) as needed when the service
that depends on them is restarted (or stopped). Because they are required by a parent
service, this happens automatically for the most part. If for some reason these do not act
as expected, they need to be managed independently to ensure the proper operation of
the parent service.

 Why Services Have Dependencies
 Some services rely on other services to perform functions used in their operation. The
SQL Server Agent service performs backup tasks and other management services within
SQL software. Think of this situation much the same way as functions that exist inside a
PowerShell module. SQL Server Agent is dependent on SQL Server.

 PowerShell functions are typically at their best when they do one thing. Not only
does this produce code that is less prone to errors, but it also helps with readability.
Grouping related functions into a module allows them to be loaded into memory,
working together. Services behave in a similar way: the SQL Server Agent handles a
subset of functions within SQL Server, allowing the busier SQL Server service to focus on
database engine tasks. This helps isolate tasks in memory and it improves performance
and functionality.

 Reporting on Services or Providing More Presentable
Information
 Like other things PowerShell provides, reporting is more about formatting and output
files than it is about PowerShell specifically. Because PowerShell can send data to a
number of file formats and output files, it is very versatile in reporting the information
collected. On top of that, the ability to send the results via email to a manager or
colleagues is extremely helpful.

 Since we worked with an HTML file in Chapter 6 , this time, we will push the output
to a comma-separated values (CSV) file. Although there is less flash with this file type,
its ease of import and use in other applications makes it quite useful.

http://dx.doi.org/10.1007/978-1-4842-1851-8_6

CHAPTER 7 ■ REVIEW AND MANAGE SERVICES WITH POWERSHELL

99

 Scenario: Your manager has asked for a list of services running on a handful of
servers because performance problems across applications are being reported. Your
manager wants to ensure that no extraneous services running on the servers and that the
required services are running. Because this data collection is ongoing and the data will be
compared over a number of weeks, your manager asks that the data is presented in a way
that can be imported into a database for easy comparison and number crunching.

 Because PowerShell can act against multiple remote servers, the Get-Service
cmdlet allows you to query more than one computer using a single line of code.

 Get-Service -ComputerName server01, server02, server03

 This line of code provides a list of the services on each of the servers. When the data
is returned, the service grouping from server01 is shown first, with server02 and server03
following respectively. Since you were asked only for running services, there is some
additional work to do. Let’s use Invoke-Command .

 Get-service –computername server01. Server02, server03 | where status –eq running

 The data is returned in the order the remote systems are specified; but this time, only
running services are returned.

 That’s great. You have the running services for the three servers listed. Now you can
get them out to a file.

 Get-Service -ComputerName server01. Server02, server03 |
 where Status -EQ Running |
 Export-Csv -Path "c:\reports\services-list.csv" -NoTypeInformation

 However, this data does not pipe into a flat CSV file easily. You need to do advanced
formatting on some of the fields to put the output to a CSV file. By examining which fields
have multiple values returned using the Get-Member cmdlet, you see that three fields
are returning more than one value for a single property. You can select all the properties
and use advanced formatting to make the data look better in the CSV file by running this
command:

 Get-Service -ComputerName server01. Server02, server03 |
 where Status -EQ Running |
 Select-Object -Property Name,
 @{Name = 'RequiredServices' ; Expression = { $_.RequiredServices -join ';'}},
 CanPauseAndContinue,
 CanShutdown,
 CanStop,
 DisplayName,
 @{Name='DependentServices';Expression = { $_.DependentServices -join ';'}},
 MachineName,
 ServiceName,
 @{Name='ServicesDependedOn';Expression = { $_.ServicesDependedOn -join ';'}},
 ServiceHandle,
 Status,

HivaNetwork.Com

http://www.hivanetwork.com/

CHAPTER 7 ■ REVIEW AND MANAGE SERVICES WITH POWERSHELL

100

 ServiceType,
 Site,
 Container |
 Export-Csv -Path "c:\reports\services-list.csv" -NoTypeInformation

 Simply piping the collected data to an Export-Csv and providing a path to park the
file will get the data out. The addition of the -NoTypeInformation switch omits the type
information from the CSV file.

 So we have pulled information about running services from three servers and
created a CSV file of it. The last thing to do is build a way to email the file to those who
have requested it.

 ■ Note PowerShell could push this information into a SQL database directly, but that is
beyond the scope of this book. For more information on working with SQL Server, please visit
 https://msdn.microsoft.com/en-us/library/hh245198.aspx

 The Send-MailMessage cmdlet will be used to email the results of this data collection
to those who need it. Grouping everything in this scenario into a script looks something
like this:

 $services = Get-Service -ComputerName server01, server02, server03 |
 where Status -EQ Running
 $services |
 Select-Object -Property Name,
 @{Name = 'RequiredServices' ; Expression = { $_.RequiredServices -join ';'}},
 CanPauseAndContinue,
 CanShutdown,
 CanStop,
 DisplayName,
 @{Name = 'DependentServices';Expression = { $_.DependentServices -join ';'}},
 MachineName,
 ServiceName,
 @{Name = 'ServicesDependedOn';Expression = { $_.ServicesDependedOn -join ';'}},
 ServiceHandle,
 Status,
 ServiceType,
 Site,
 Container |
 Export-Csv -Path "c:\reports\services-list.csv" -NoTypeInformation
 Send-MailMessage -To boss@your.company.suffix `
 -Cc you@your.company.suffix `
 -SmtpServer smtp.company.com `
 -From reports@your.company.suffix `
 -Subject 'Services Listing from Servers' `
 -Body 'List of services running on Server01, Server02, and Server03' `
 -Attachments "c:\reports\services-list.csv"

https://msdn.microsoft.com/en-us/library/hh245198.aspx

CHAPTER 7 ■ REVIEW AND MANAGE SERVICES WITH POWERSHELL

101

 Summary
 This chapter worked with Windows services by using PowerShell to determine the
information available and the actions needed to improve the manageability of Microsoft
Windows. While the behavior of services is similar to that of processes, PowerShell can
speed up the time needed to perform actions and reduce management overhead. Coming
up in the next chapter, we wrap up the book and provide some additional resources to
help you learn more and enhance your use of PowerShell.

103© Derek Schauland, Donald Jacobs 2016
D. Schauland and D. Jacobs, Troubleshooting Windows Server with PowerShell,
DOI 10.1007/978-1-4842-1851-8_8

 CHAPTER 8

 Continuing to Learn
As PowerShell Evolves

 So far in this book, we have shown you how to

• Work with event logs

• Gather detailed information from a server

• Discover installed applications

• Get Windows updates

• Manage running processes

• Work with services

 There’s a lot of good information here to glean information from a computer both
locally and remotely. In this chapter, we’ll talk about putting them together and ways to
build this knowledge into more robust scripting.

 Building Modules
 PowerShell coding starts simple, usually with only a few lines of PowerShell. That
evolves into a script when you start adding more features to ultimately achieve the goal
for the script. As you write more scripts, and continue learning and using PowerShell,
you will inevitably want to reuse parts of your scripts in other scripts, and therefore you
create functions. A function is just a block of code that does one thing, such as running a
formula, gathering information, or performing a repetitive task.

 As you gain more and more functions that all work together with a common purpose,
you put those into a module . Microsoft describes a module as “a set of related Windows
PowerShell functionalities that can be dynamic or persist on disk. Modules that persist on
disk are referenced, loaded, and persisted as script modules, binary modules, or manifest
modules. Unlike snap-ins, the members of these modules can include cmdlets, providers,
functions, variables, aliases, and much more.” (https://technet.microsoft.com/en-us/
library/dd878324.aspx).

https://technet.microsoft.com/en-us/library/dd878324.aspx
https://technet.microsoft.com/en-us/library/dd878324.aspx

CHAPTER 8 ■ CONTINUING TO LEARN AS POWERSHELL EVOLVES

104

 A quick example of a module is preparing food. How is food an example?
Easy, let’s say that you’re hungry. The following are some example names of functions
that you could use in your food module:

• Set-Stove, where you can pass it variables such as temperature,
burners, oven, and so forth

• Set-Ingredient, where you pass it variables that include the
ingredients that you need for a specific recipe

• Get-Dish, where you pass variables about the items that you need
to make the food in

• ConvertTo-Baking, where you determine how to bake food

• Get-CookingDirection, where you describe how to cook the food

 All of these functions have a common theme: cooking. Likewise, you could have a
module for driving a car, and those functions would all be associated with … (drumroll
please) driving a car. There may be some overlap in the background functions, such as
report writing and diagnostics, but for the most part, each module has a specific purpose
and the parts that make up the module are all devoted to making the best module they can.

 So, we are going to build a quick simple module called HelloWorld. It’s going to be a
very simple module that consists of only two functions.

 Function Write-Hello {
 param ($Name)
 Write-Output "Hello '$Name'"
 }

 Function Write-Goodbye {
 param ($Name)
 Write-Output "Goodbye '$Name'"
 }

 Notice how simple this is? It’s nothing to get excited about—just an example of two
functions. Now we are going to save this inside a PSM1 file (PowerShell Module file). But
the next question is: Where to save the PSM1 file?

 We need to find a location for PowerShell modules, which are listed as an
environmental variable for our PowerShell session. Simply type $env:PSModulePath and
it lists all the locations where you can have PowerShell modules. However, we can do a
little better than that and split that long string into shorter lines by typing this:

 $env:PSModulePath -split ';'

 We can also add a location to our PowerShell module path by typing this:

 $env:PSModulePath = $env:PSModulePath + ";\\Server\Share\Modules"

CHAPTER 8 ■ CONTINUING TO LEARN AS POWERSHELL EVOLVES

105

 So, why don’t we create a new folder and save our module there.

 New-Item -Path c:\MyModules -ItemType Directory
 $env:PSModulePath = $env:PSModulePath + ";c:\MyModules"

 Because we created a new folder that is not already in our PSModulePath, the known
path that PowerShell uses for storing modules, we recommend adding this to your
PowerShell profile so that the path is always added to your PowerShell session. Another
method is to add these items to a system-level environment variable to allow persistence
across sessions.

 Now we can save our two functions inside a PSM1 file inside the new folder.
However, we need to save our PSM1 file inside a folder with the same name as our PSM1,
at the root of the C:\MyModules folder. For our example, you need to create a folder at
 C:\MyModules\HelloWorld and then save the PSM1 file as C:\MyModules\HelloWorld\
HelloWorld.psm1 .

 Now that we have updated our PowerShell profile file to add that folder to our
PSModulePath environmental variable and saved our PSM1 file, let’s close and open the
PowerShell session. Now, if you are running PowerShell version 3 or later, the module will
automatically load when you start your PowerShell session.

 As seen in Figure 8-1 , we can simply run those without having to load the module
each time.

 Figure 8-1. Example of running commands in new module

 There are a lot of other parts and pieces to a module that we haven’t discussed, but
this is the start to a world of building modules. We can simply add features to the module.

 Desired State Configuration
 Have you ever had a server that was configured just the way you always wanted it, only to
deploy it into production and have its nice configuration marred by actual usage? Maybe
that is a bit extreme, but sometimes machines wander away from their original setup.
Or maybe another administrator decides to alter the current configuration. Desired State
Configuration to the rescue!

 ■ Note This discussion of PowerShell Desired State Configuration is an overview
containing just enough to rile your interest in the topic.

CHAPTER 8 ■ CONTINUING TO LEARN AS POWERSHELL EVOLVES

106

 What Is Desired State Configuration (DSC)?
 Desired State Configuration is a declarative file that instructs PowerShell to ensure that
a system is configured with the roles and features or configuration options set forth in
the file. The file does not tell PowerShell how to get there; it simply says, “This is the
configuration that I want. Go.” And PowerShell does the rest.

 A configuration file is compiled into a MOF (Management Object Format) when it is
run. The MOF can then be deployed to target nodes for use in one of two ways: push or pull.

 Push happens when a DSC configuration uses the push method; targets are
configured to take the settings pushed down to them at scheduled intervals. Think of
this much like patches being pushed out by a corporate administrator because they will
correct a problem as soon as they are deployed. Sure, the push can be scheduled, but it
can also have interesting consequences regarding the usability of the systems. It should
be used and tested carefully.

 Pull happens when a DSC configuration uses the pull method ; targets get an agent
installed that periodically checks in with a central location (pull server) for configurations
to apply. Because the files are usually left there, the clients can pull the files and be
configured according to all of the MOF files that they are aware of.

 Configurations are applied each time the targets check in (or each time the MOFs
are pushed out). There is no need to instruct file 12 to be applied. If the configuration
provided by file 12 does not need to be corrected, the action logs back to the central
server that nothing was needed at this time. When changes are made by DSC, these are
logged as well.

 Auditing Only
 In addition to push/pull, DSC has two modes of action for working on target systems.
 Audit mode checks a configuration against the target and reports changes that it made.
This is similar (in a simple way) to the -whatif switch used when executing some
PowerShell commands.

 Applying Configurations: Make It So
 When not using Audit mode, DSC applies items in the MOF files to all the targets assigned
to take them. If you have an IIS server enrolled with a pull server, any MOFs containing IIS
configuration items are applied to this target. There are ways to ensure that only certain
configurations apply to certain targets, but that is beyond the scope of this chapter.

CHAPTER 8 ■ CONTINUING TO LEARN AS POWERSHELL EVOLVES

107

 What Does a DSC Configuration Look Like?
 The syntax for creating a DSC configuration looks much like the syntax for a function
in PowerShell:

 configuration troubleshootingiis {
 param($ComputerName)
 node $ComputerName {
 windowsfeature iis {
 ensure = "Present"
 name = "web-server"
 }
 }
 }

 Essentially, you are able to pass the $computer value to the configuration. This will
then enact the settings within the configuration on that node. In this case, it ensures that
IIS is present on this node.

 Calling the configuration (just as you might call a function) creates the consumable
MOF file for use with DSC:

 Troubleshootingiis –ComputerName MyServer01

 The last piece of the puzzle is running the configuration and applying the MOF file.
To do that, you call the Start-DscConfiguration and pass the MOF file created. Specifying
the -wait and -verbose switches show you what is happening during the process.

 What Are Some Practical Applications of DSC?
 Because DSC is declarative and does not supply any details of how something is to be
accomplished, the configurations simply state that a feature needs to be configured. In
the preceding example, DSC simply knows IIS should be present. Why is this important?
Because it allows PowerShell to figure out the method to complete a task, saving
administrators from extra work.

 Starting or Stopping Services
 If there is a server in your environment that runs a particular service that does not always
start as expected, DSC ensures that the service is started (or stopped) every time the
agent checks in. This keeps the service in a consistent state—either started or stopped as
declared by DSC.

CHAPTER 8 ■ CONTINUING TO LEARN AS POWERSHELL EVOLVES

108

 Installing Necessary Roles or Features
 When spinning up a new server to be used for a particular workload, the desired
roles/features can be configured by DSC without additional configuration by the
administrator. This way, the configuration for all of your web servers is the same.
Once the machine is built and able to check in with the DSC server, the web server
configuration can be configured automatically. This takes some additional front-end
work to set up the DSC MOF files, but it can save time if there are many servers being
deployed with the same workload.

 Fixing Configuration Drift: Wrongly
Installed Applications
 Many times, a server ends up with its configuration different from the way it started
life—as a valued worker in an environment. This could be due to application changes,
updates, or countless other things. DSC can correct these things as well. Suppose one
of the administrators on a given team always installs Chrome on every machine that
he manages. Yet, it might not be a supported application or it may be unnecessary on a
server system. PowerShell and DSC can ensure that Chrome is not present on a particular
server. As long as the machine can get to the DSC server and it gets a MOF that specifies
that Chrome not be present, the application will be removed from the server.

 Ensuring That Files or Folders Exist
 Sometimes it makes sense for a particular tool to be installed on a system. This may be
simply to ensure that the tools are there if needed or to get an administrator’s system up
and running with the latest tools. The Sysinternals tools are a great example. Because
the tools do not need to install to function, they can be downloaded to a central file
server. DSC can ensure that the downloaded files exist on all administrative workstations.
Just apply a MOF that ensures the presence of the Sysinternals folder. Since any items
removed from the folder are replaced when the workstation checks in, the worry of
ensuring that the tools exist is eliminated.

 All of these relate to troubleshooting, but how are they applied? DSC can help
with all of the things mentioned earlier. Now let’s pick an example relating to IIS being
installed on a server destined to host the next great web application.

 Working with DSC to Ensure IIS Is Installed
 Suppose that your environment has a few IIS web sites running on a server and you need
to add a bit more horsepower. You allow the workload to be divided up between the
existing server and a new server that will be deployed. A co-worker has been tasked with
getting IIS installed and he claims that the box is ready to tackle any workload.

CHAPTER 8 ■ CONTINUING TO LEARN AS POWERSHELL EVOLVES

109

 Just to be on the good side of the fence, you want to ensure that IIS is indeed installed
and running. Fortunately, DSC cannot only help perform the check, but it can correct the
issue and configure IIS if it needs a bit of work.

 First is testing the existing configuration on the new server to see if IIS is ready. For
the purposes of example, let’s call it Server02 .

 Earlier we created a MOF called troubleshootingiis, which creates a file that will
become a configuration to check for here. The following command

 Test-dscconfiguration –cimsession Server02

 checks Server02 to see if it meets the desired configuration; in this case, a configured
IIS instance. If the feature is in fact ready to go, the command returns $true . If not, the
command returns $false .

 If the previous command returns $false and IIS has not been installed, or you want
to check the state and correct it all at once, you can get PowerShell and DSC to rectify this
by using something similar to the following:

 If (-not (Test-DscConfiguration -CimSession Server02)) {
 Start-DscConfiguration -CimSession Server02
 }

 This applies the current configuration, troubleshootingiis, to the specified server.

 ■ Note Leaving - cimsession off of either of these commands will run the
 dscconfiguration cmdlets on the local computer.

 What happens if you decide that the new configuration is not what you really
intended? Fortunately, PowerShell has a way to recover from over-eager configurations.
Simply using Restore-DscConfiguration -CimSession Server02 rolls the configuration
back to the previous state.

 Desired State Configuration can do a lot of things beyond enabling IIS, and the
overall usage is not a huge undertaking, but getting much beyond that is a topic for
another day.

 PowerShell Remoting
 Using PowerShell to troubleshoot and remediate issues on Windows computers would
be less than optimal if there were no good way to access systems outside of the local
computer. Enter PowerShell Remoting—a built-in feature to help PowerShell interact with
remote systems and execute commands, scripts, and the like to reduce the effort needed
to manage and maintain remote systems.

 This section introduces the concept of remoting and provides a high-level overview
of what the feature brings to the toolkit. Because it is built into PowerShell version 2 and
later, it generally works once it has been enabled.

CHAPTER 8 ■ CONTINUING TO LEARN AS POWERSHELL EVOLVES

110

 How Do I Enable Remoting?
 Enabling remoting was already briefly mentioned in the book, but for completeness,
we’ll cover it here as well. The first thing needed is the WinRM service. You want to set
the startup type of this service to Automatic. On the remote system, you can run winrm
quickconfig to ensure that the WinRM service is listening.

 Then you need to run the simple and quite instructive Enable-PSRemoting
to complete the configuration of Windows PowerShell for remoting. In a domain
environment, you can also enable PowerShell remoting using Group Policy.

 In untrusted domains, there may be other configuration steps needed to get
remoting up and running. You will want to add the remote computer to the trusted hosts
list on your management workstation. To do this use the following command:

 Set-Item WSMan:\localhost\Client\TrustedHosts -value Server01

 This adds Server01 to the trusted hosts list on the local computer. Once this is done,
remoting is all set and ready to go. Happy remoting.

 Now that PowerShell remoting is enabled, what can you do with it?
 Remoting brings you all kinds of possibilities for managing systems. While the

 -ComputerName parameter lets you do things like gather services (or other items) and
display them in your console for reviewing, using a remote PowerShell session lands you
right on that system at the command line, as if you were logged into the computer.

 Let’s get into a remote session by using the command Enter-PSSession , as shown
in Figure 8-2 .

 Figure 8-2. Enter- PSSession

 A Remote PowerShell Session
 As you can see, the PowerShell prompt shows the folder that you are currently in, but this
time, it also has the computer name at the left of the prompt: [Server01]. This tells you
that you are on a remote computer. Commands entered while in this session are run on
that remote system and do not affect the local system.

 This is a benefit because you can work directly on the remote computer to solve
problems. In addition, you can leave a session running in the background and long-running
PowerShell scripts or commands will continue to run inside the disconnected session.
You can revisit the disconnected session to see how things there are progressing.

 The ability to get in and out of remote sessions while tasks are progressing is very
important because it allows other work to get done without requiring you to wait for the

HivaNetwork.Com

http://www.hivanetwork.com/

CHAPTER 8 ■ CONTINUING TO LEARN AS POWERSHELL EVOLVES

111

task in the console window to complete. Once remoting for a while, you can advance to
entering and running commands in multiple sessions sequentially, or in some cases,
simultaneously.

 Remoting is a simple way to work with any Windows machine in your environment.
Environments outside of your direct control are also on the table. Machines in public
cloud environments, such as Microsoft Azure or Amazon Web Services (AWS), can be
managed with PowerShell remoting.

 While there are other PowerShell remoting features, these are the basics, and should
head you down the right path.

 Using Scheduled Jobs in PowerShell
 PowerShell background jobs were introduced in PowerShell version 2. PowerShell
scheduled jobs rely on the background jobs, but in PowerShell version 3, the ability to
schedule a background job was added. PowerShell scheduled jobs are a combination of
background jobs and tasks in the Task Scheduler . The jobs are created and managed in
PowerShell and are seen within the Task Scheduler.

 Scheduled jobs ensure that certain things start or happen at a specific time.
PowerShell is helpful with troubleshooting, but there may be times when restarting
services or entire servers cannot occur. A scheduled job could be just the thing to restart a
service or end a process as a delayed part of your troubleshooting process/workflow.

 Scheduled jobs consist of three components :

• Job options that define the options and execution criteria.

• Job triggers that define when the job will run.

• The job itself defines the command that will run.

 You have to define the job options, create a job trigger, and then when creating the
job, add the options and trigger to it.

 Scheduled Jobs Options
 The, New-ScheduledJobOption cmdlet is used to create the job options. As seen in
Figure 8-3 , there are several switches and parameters that you can use to customize your
scheduled job.

CHAPTER 8 ■ CONTINUING TO LEARN AS POWERSHELL EVOLVES

112

 You create an option and add it to a variable.

 $jobOption = New-ScheduledJobOption -RequireNetwork -WakeToRun -RunElevated

 Scheduled Job Triggers
 The job trigger defines when the job will run. As seen in Figure 8-4 , there are five
parameter sets used for the job triggers.

 Figure 8-4. Syntax for New-JobTrigger

 Figure 8-3. Syntax for New-ScheduledJobOption

 Adding the job triggers to a variable is the next step in creating a scheduled job.

 $jobTrigger = New-JobTrigger -Weekly -DaysOfWeek Monday, Tuesday, Wednesday,
Thursday, Friday -At '1:00AM'

CHAPTER 8 ■ CONTINUING TO LEARN AS POWERSHELL EVOLVES

113

 Creating the Scheduled Job
 The Register-ScheduledJob cmdlet takes the job options and the job trigger, and adds
them with a script block to create a scheduled job.

 Register-ScheduledJob -Trigger $jobTrigger `
 -ScheduledJobOption $jobOption `
 -ScriptBlock { Get-Service } `
 -MaxResultCount 5 `
 -Name "ListServices"

 This code creates a job called ListServices that runs Monday through Friday that
keeps only the last five results.

 Now there is a scheduled job. The next step verifies that the job exists and gets
the results.

 Job Verification
 To verify that the job exists, you can get a list of scheduled jobs through PowerShell or
through the Task Scheduler. Figure 8-5 shows all the jobs that are scheduled and Figure 8-6
shows the same results.

 Figure 8-5. List jobs with PowerShell

 In Figure 8-6 , the picture was altered to fit the size of the pages and to find the jobs.
You have to drill into the scheduled tasks in this path, Microsoft\Windows\PowerShell\
ScheduledJobs to find all the scheduled jobs that were created with PowerShell.

CHAPTER 8 ■ CONTINUING TO LEARN AS POWERSHELL EVOLVES

114

 Now that we know the job exists, we can start the schedule job using either the Task
Scheduler or PowerShell, and of course, the job will run according to the schedule.

 Start-Job -DefinitionName ListServices

 Getting Scheduled Job Results
 Once a PowerShell scheduled job has been created and run, the results of the job are
saved in the regular PowerShell jobs. As seen in Figure 8-7 , it will only save the last five
jobs. Even if the job runs again, there will still be only five jobs listed for the job.

 Figure 8-7. Job results for a scheduled job

 Figure 8-6. List jobs in Task Scheduler

CHAPTER 8 ■ CONTINUING TO LEARN AS POWERSHELL EVOLVES

115

 Also, notice in Figure 8-7 that the HasMoreData values of True. We can retrieve the
results of each job by using the Receive-Job cmdlet to get the data from each job. This
next line will retrieve the results from the most recent version of the job:

 Receive-Job -Id 15 -Keep

 Scheduled jobs are a great tool to do routine and repeatable tasks.

 More Learning and Additional Resources
 We encourage you to dig into the following resources to enhance and continue to grow
your PowerShell skills:

• http://www.powershell.org : A community of PowerShell,
for PowerShell, and by Powershell-ers

• http://www.scriptingguys.com : the official blog of the Microsoft
Scripting Guys

• http://www.powershellmagazine.com : an online publication
covering all things PowerShell

• http://www.apress.com/catalogsearch/result/?q=powershell
&submit=Go : Apress books covering PowerShell

• https://channel9.msdn.com/Search?term=powershell#ch9Sear
ch&lang-en=en : PowerShell videos on Microsoft’s Channel 9

• https://technet.microsoft.com/en-us/library/
dd878350(v=vs.85).aspx : Technet resources covering
PowerShell Module Installation

 There are also any number of user groups and meetups popping up surrounding
PowerShell. These should provide a hands-on experience and opportunity to dive into
Microsoft’s new blue window.

 There are many new and exciting avenues for exploration as your adventures in
PowerShell continue, we hope that this text has piqued your interest and that you find
many exciting things to learn in PowerShell.

 Summary
 Microsoft is moving forward with PowerShell and expects it to reduce the overhead
needed to manage and interact with Windows and other products across their portfolio,
including Microsoft Azure. Being able to manage workstations and servers in your
environment and in the public cloud with the same toolset is huge. This reduces the
overall learning curve for managing resources in use today and new Microsoft resources
as they arrive in the future.

 As PowerShell continues to grow, more resources will be available for management
from Microsoft and other vendors. Happy PowerShelling!

http://www.powershell.org/
http://www.scriptingguys.com/
http://www.powershellmagazine.com/
http://www.apress.com/catalogsearch/result/?q=powershell&submit=Go
http://www.apress.com/catalogsearch/result/?q=powershell&submit=Go
https://channel9.msdn.com/Search?term=powershell#ch9Search&lang-en=en
https://channel9.msdn.com/Search?term=powershell#ch9Search&lang-en=en
https://technet.microsoft.com/en-us/library/dd878350(v=vs.85).aspx
https://technet.microsoft.com/en-us/library/dd878350(v=vs.85).aspx

117© Derek Schauland, Donald Jacobs 2016
D. Schauland and D. Jacobs, Troubleshooting Windows Server with PowerShell,
DOI 10.1007/978-1-4842-1851-8

 A, B
 Access control entry (ACE) , 43–45
 Active directory users and computers

(ADUC) , 3–4
 ADUC . See Active directory users and

computers (ADUC)

 C
 CIM . See Common information

model (CIM)
 Comma-separated values (CSV) , 24–26,

31, 36, 55, 98–100
 Common information model (CIM) , 37,

39, 48, 51–52, 54–58, 67, 86–88
 Computer system information

 CSV fi le , 49
 Get-CIMClass , 48
 Get-CimInstance-ClassName

Win32_ComputerSystem , 49
 Get-Member cmdlet , 48
 Get-Member , 48–49
 Win32_ComputerSystem , 48

 D
 Desired state confi guration (DSC)

 defi nition , 106
 downloaded fi les , 108
 IIS installation , 108–109
 modes of action , 106
 MOF , 106
 practical applications , 107
 pull method , 106
 push method , 106

 roles/features installation , 108
 starting/stopping services , 107
 syntax , 107
 wrongly installed applications , 108

 Disk space gathering
 function Get-TSDiskSizes , 38
 Get-Disk and Get-Physical

Disk , 35–36
 Get-WmiObject and

Get-CimInstance , 37
 Get-WMIObject-Class

Win32_LogicalDisk , 37
 logical disk information , 37

 DSC . See Desired state
confi guration (DSC)

 E
 Event Log information

 cmdlet , 22
 comma-separated values , 24
 CSV fi le , 24–26
 formatted HTML fi le , 30
 formatting HTML, readability , 27–28
 Get-EventLog , 19
 Get-WinEvent , 22
 HTML formatting, function , 28–31
 HTML report, creation , 27
 information fi nding, PowerShell , 20–22
 PowerShell , 18
 properties , 21
 scenario , 19
 store information, PowerShell , 32–33
 system shutdown event,

Event Viewer , 18
 unformatted HTML fi le , 30

 Index

■ INDEX

118

 F
 FormattedBIOSVersion , 47

 G
 Get-EventLog cmdlet , 20
 Get-FreeSpace , 9
 Get-HotFix

 Get-Help , 66, 68
 resolution , 66–67
 scenario , 66
 Win32_QuickFixEngineering

WMI class , 67
 Get-TSUptime , 2, 6
 Get-WinEvent , 22

 GUI tools vs. PowerShell , 3–4
 ADUC , 3
 command syntax, troubleshooting , 3
 CSV fi le , 4
 remote server admin tools , 3

 H
 Hardware information

 BIOSVersion property , 47
 CSV output , 46
 FormattedBIOSVersion , 47
 Get-Member output , 46
 Win32_BIOS BIOSVersion

expanded , 46
 Win32_BIOS value , 47
 WMI/CIM information , 45

 I
 Installed applications

 CimInstance members , 55
 CIM Object , 54–58
 getting CIM instances , 54
 list , 53
 registry keys

 arrays , 60–62
 HKEY_LOCAL_MACHINE , 59
 HKEY_USERS , 58
 installed programs , 58
 PowerShell limitation , 59
 $itemHeaders variable , 60

 J, K, L
 JEA . See Just Enough

Administration (JEA)
 Just Enough Administration (JEA) , 8

 M
 Management object format (MOF) , 106–109
 MOF . See Management object

format (MOF)

 N, O
 NTFS permissions

 Get-Acl , 42
 Get-Acl Access expanded , 42
 Set-Acl , 43–45

 P, Q
 PowerShell . See also Scheduled jobs,

PowerShell
 cmd.exe commands , 5
 code , 14–15
 commands , 2
 elevated session , 10
 Get-PSDrive , 5–6
 help, Get-Command cmdlet , 11, 13
 modules , 103–105
 remoting enable , 110
 resources , 115
 Server 2012 R2 , 2
 Server 2016 , 2
 storing information , 32–33
 tool building

 applications and services , 8
 cmdlets , 6
 constrained endpoints , 8
 Get-TSUptime , 6
 JEA , 8
 third-party solutions , 8

 Update-Help cmdlet , 12
 usability and learnability , 12
 variables , 4–5
 “verb-noun” form, cmdlets , 4
 Windows 2 , 10
 write-information to Write-Host , 10

■ INDEX

119

 PowerShell remoting , 9, 86, 109–111
 Processes

 defi nition , 9
 Get-Process cmdlet , 77
 PowerShell for troubleshooting , 75
 properties , 77–78
 Windows server 2012R2 task

manager , 76–77
 Process ID/Name, fi ltering

 CIM cmdlets , 87
 -ComputerName and-ScriptBlock

parameters , 86
 getting processes and specifi c

properties , 79
 GUI tools , 85
 information collecting, remote

computer , 82
 invoke-command cmdlet , 86
 PowerShell , 78
 returned data , 81–82
 script improving , 83–84
 send email , 82
 sorting and selecting

information , 79–80
 starting and stopping

processes , 84–85
 using WMI/CIM , 86–87

 Process id (PID) , 79
 Processor information , 49–51
 PSDrives , 5–6

 R
 Remote PowerShell session , 110–111

 S
 Scheduled jobs, PowerShell

 components , 111
 creation , 113
 job results , 114–115
 job verifi cation , 113–114
 New-ScheduledJobOption , 112
 options , 111–112
 restarting services , 111
 Task Scheduler , 111
 triggers , 112

 Service information, gathering
 actions on services , 90–95
 dependencies , 98

 Get-Help Get-Service , 91
 Get-Help Set-Service , 94
 Get-Service | Get-Member , 92
 reporting, PowerShell , 98–100
 Set-Service , 95
 SQL services , 93
 start, stop and restart , 93
 stopping services, Get-Service , 92
 WMI

 change method, Win32_Service , 97
 logon information reset , 96
 spooler service , 95
 username and password,

changing , 97–98
 Win32_Service WMI object , 95–96

 Services access, PowerShell , 89–90
 Shares list

 Get-Command-Module SmbShare , 39
 Get-SmbShareAccess output , 41
 Win32_LogicalShareAccess output , 41
 Win32_Share , 39
 WMI and CIM , 39
 WMI share drive types , 39

 T, U, V
 Troubleshooting

 remote queries , 51
 WMI and CIM , 51

 TSTools , 7

 W, X, Y, Z
 Windows event log

 CSV fi le , 25
 properties , 25
 remote computers , 23
 windows captures , 17

 Windows Management Instrumentation
(WMI) , 35, 86 . See also Service
information, gathering

 Windows Update
 categories , 65
 computer rebooted, checking , 68–69
 Hot Fix, uninstalling , 71
 pending restart , 72–73
 remote registry , 72
 using WMI/CIM , 67–70

 WMI . See Windows Management
Instrumentation (WMI)

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Windows Troubleshooting Series
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	Getting to Know PowerShell
	GUI Tools vs. PowerShell
	The Basics of PowerShell
	Working with Variables
	CMD Is Dead—Long Live PowerShell
	Why All the Drives?

	The Natural Progression of Tool Building
	PowerShell Is Not Going Away
	What Does this Do for PowerShell?

	Chapters in this Book
	Assumptions Used in this Book
	How to Let PowerShell Help You Learn More
	Summary
	More Reading

	Chapter 2: Managing the Windows Event Log
	What Can Windows Capture?
	Accessing the Event Log Information
	Get-EventLog
	Scenario
	Finding Information with PowerShell

	Get-WinEvent
	Why Choose One cmdlet over Another?

	Getting Logs from Remote Computers
	Shaping the Gathered Information
	Comma-Separated Values
	Creating an HTML Report

	What Else Can Be Done with this Information?
	Formatting HTML for Readability
	HTML Formatting with a Function

	Can PowerShell Use the Event Log to Store Information?
	Summary

	Chapter 3: Gathering and Reporting Detailed Information from a Computer
	Gathering Disk Space
	Disks First
	Logical Disks

	Listing Shares
	NTFS Permissions
	Getting the ACLs
	Setting the ACLs

	Hardware
	Computer System Information
	Processor Information
	Troubleshooting
	The Difference Between WMI and CIM
	Remote Queries

	Next Steps
	Summary

	Chapter 4: Installed Applications
	Obtaining a List of Installed Applications
	Using the CIM Object
	Using the Registry Keys
	Arrays

	Next Steps
	Summary

	Chapter 5: Windows Update
	Get-HotFix
	Scenario
	Resolution

	Using WMI or CIM
	Details of Get-HotFix Results
	Customizing this Code

	Checking When a Computer Was Rebooted
	Improvements to this Code

	Uninstalling a Hot Fix
	Improvements to this Function

	Pending Restarts
	Summary

	Chapter 6: Manage Running Processes on a Target System
	Working with Processes
	Filtering by Process ID or Name
	Sorting and Selecting Information Needed
	Working with Returned Data
	Delivering the Goods: A Quick Sidestep to Sending Email
	Collecting Information from a Remote Computer or Computers
	Other Ways to Improve the Script
	Starting and Stopping Processes
	When Start-Process and Stop-Process Are Useful
	Select First, Then Again, and Then Stop
	Using WMI or CIM to Work with Processes
	Using the CIM cmdlets

	Summary

	Chapter 7: Review and Manage Services with PowerShell
	Access to Services with PowerShell
	Gathering Service Information
	Actions on Services
	Enter WMI
	What Else Can Be Done to Services?
	Why Services Have Dependencies
	Reporting on Services or Providing More Presentable Information

	Summary

	Chapter 8: Continuing to Learn As PowerShell Evolves
	Building Modules
	Desired State Configuration
	What Is Desired State Configuration (DSC)?
	Auditing Only
	Applying Configurations: Make It So
	What Does a DSC Configuration Look Like?
	What Are Some Practical Applications of DSC?
	Starting or Stopping Services
	Installing Necessary Roles or Features
	Fixing Configuration Drift: Wrongly Installed Applications
	Ensuring That Files or Folders Exist
	Working with DSC to Ensure IIS Is Installed

	PowerShell Remoting
	How Do I Enable Remoting?
	A Remote PowerShell Session
	Using Scheduled Jobs in PowerShell
	Scheduled Jobs Options
	Scheduled Job Triggers
	Creating the Scheduled Job
	Job Verification
	Getting Scheduled Job Results
	More Learning and Additional Resources
	Summary

	Index

