
Telegram Channel @nettrain

VMware vSAN 7.0 U3 Deep Dive

Duncan Epping

Cormac Hogan

Telegram Channel @nettrain

Contents

About the authors
Preface
Dedication
Foreword

1. Introduction to VMware vSAN
Software-Defined Datacenter
Software-Defined Storage
Hyper-Converged/Server SAN Solutions
Introducing VMware vSAN
What is vSAN?
What does vSAN look like to an administrator?
VxRail – vSAN Inside
VMware Cloud on AWS, Azure, Google, and VMware vSAN
Summary

2. vSAN Prerequisites and Requirements
VMware vSphere
ESXi
Cache and capacity devices
ESXi boot considerations
VMware Hardware Compatibility Guide
vSAN ReadyNode
A note about NVMe
Storage controllers
Sharing the storage controller with vSAN and non-vSAN devices
Disk Controller RAID-0
Performance and RAID Caching
Mixing SAS and SATA
Disk Groups
Disk Group Availability
Disk Group Performance
Capacity Tier Devices
Cache Tier Devices
Network Requirements
Network Interface Cards
Supported Virtual Switch Types

Telegram Channel @nettrain

NSX-T Interoperability
Layer 2 or Layer 3
VMkernel Network
vSAN Network Traffic
Jumbo Frames
NIC Teaming
NIC Teaming - Performance vs. Availability
Network I/O Control
Firewall Ports
vSAN Stretched Cluster
vSAN 2-Node Remote Office/Branch Office (ROBO)
vSAN Requirements
Summary

3. vSAN Installation and Configuration
Cluster Quickstart
Cluster Quickstart Wizard
Networking
VMkernel Network for vSAN
VSS vSAN Network Configuration
VDS vSAN Network Configuration
Port Group Port allocations
TCP/IP Stack
IPv4 and IPv6
Network Configuration Issues
Network I/O Control Configuration Example
Network I/O Control
Design Considerations: Distributed Switch and Network I/O Control
Scenario 1: Redundant 10 GbE Switch Without “Link Aggregation” Capability
Explicit Failover Order
Scenario 2: Redundant 10 GbE Switch with Link Aggregation Capability
vSphere High Availability
vSphere HA Communication Network
vSphere HA Heartbeat Datastores
vSphere HA Admission Control
vSphere HA Isolation Response
Proactive HA support
vSphere HA Component Protection
Cache Device to Capacity Device Sizing Ratio
Cache in a Hybrid environment
Add Devices to vSAN Disk Groups
Disk Group Creation Example
vSAN Datastore Properties

Telegram Channel @nettrain

Summary

4. Architectural Details
Distributed RAID
Objects and Components
Component Limits
Virtual Machine Storage Objects
Namespace Object
Virtual Machine Swap Object
VMDKs and Delta Disk Objects
Witnesses and Replicas
Performance Stats DB Object
Object Layout
vSAN Software Components
Component Management
Data Paths for Objects
Object Ownership
Placement and Migration for Objects
Cluster Monitoring, Membership, and Directory Services
Host Roles
Reliable Datagram Transport
On-Disk Formats and Disk Format Changes (DFC)
Cache Devices
Capacity Devices
vSAN I/O Flow
Caching Algorithms
The Role of the Cache Layer
Purpose of Read Cache
Read cache for All-Flash vSAN configurations?
Purpose of Write Cache
Anatomy of a vSAN Read on Hybrid vSAN
Anatomy of a vSAN Read on All-Flash vSAN
Anatomy of a vSAN Write on Hybrid vSAN
Retiring Writes to Capacity tier on Hybrid vSAN
Anatomy of a vSAN Write on all-flash vSAN
Deduplication and Compression
Compression only
Data Integrity through Checksum
vSAN Encryption
vSAN Encryption vs vSphere VM Encryption
Data Locality
Content Based Read Cache
Data Locality in vSAN Stretched Clusters

Telegram Channel @nettrain

Data Locality in Shared Nothing applications
Recovery from Failure
Degraded Device Handling (DDH)
vSAN Storage Services
iSCSI Targets and LUNs
vSAN File Service
vSAN HCI Mesh
Summary

5. VM Storage Policies and VM Provisioning
Introducing Storage Policy-Based Management in a vSAN Environment
Storage rules
Failures to tolerate
Recommended Practice for Number of Failures to Tolerate
RAID-5 and RAID-6
Number of Disk Stripes Per Object
RAID-0 used when no Striping is specified in the Policy
Test 1 – vSAN 6.7U1
Test 2 – vSAN 6.7U1
Test 3 – vSAN 6.7U1
Increasing Components to Reduce Slack Space
Test 4 – vSAN 7.0U3
Test 5 – vSAN 7.0U3
Stripe Width Maximum
Stripe Width Configuration Error
Stripe Width Chunk Size
Stripe Width Best Practice
Changes to Stripe Width behavior for large RAID-1 objects
Changes to Stripe Width behavior for large RAID-5/6 objects
IOPS Limit for Object
Flash Read Cache Reservation
Object Space Reservation
Force Provisioning
Disable Object Checksum
VM Home Namespace Revisited
VM Swap Revisited
Delta Disk / Snapshot Caveat
Clone Caveat
Verifying How Much Space Is Consumed
VASA Vendor Provider
An Introduction to VASA
Storage Providers
vSAN Storage Providers: Highly Available

Telegram Channel @nettrain

Assigning a VM Storage Policy During VM Provisioning
Virtual Machine Provisioning
Policy Setting: Failures to Tolerate = 1, RAID-1
Policy Setting: Failures to Tolerate = 1, Stripe Width = 2
Policy Setting: Failures to Tolerate = 2, Stripe Width = 2
Policy Setting: RAID-5
Policy Setting: RAID-6
Policy Setting: RAID-5/6 and Stripe Width
Default Policy
Witnesses and Replicas: Failure Scenarios
Example 1: Failures to Tolerate = 1, Stripe Width = 1
Example 2: Failures to Tolerate = 1 and Stripe Width = 2
Example 3: Failures to Tolerate = 1 and RAID-5
Changing VM Storage Policy On-the-Fly
Summary

6. vSAN Operations
Skyline Health
Skyline Health Tests
Online Health
Health History
Proactive Health Checks
Performance Service
Performance Diagnostics
Network Diagnostics
vSAN IOInsight
I/O Trip Analyzer
Host Management
Adding Hosts to the Cluster
Removing Hosts from the Cluster
Maintenance Mode
Maintenance Mode and Host Locality
Default Maintenance /Decommission Mode
Maintenance Mode for Updates and Patching
Maintenance Mode and vSphere Lifecycle Manager
Multiple hosts in Maintenance Mode simultaneously
Maintenance Mode Pre-Check
Stretched Cluster Site Maintenance
Shutting down a complete cluster
Upgrade Considerations
Disk Management
Adding a Disk Group
Removing a Disk Group

Telegram Channel @nettrain

Adding Disks to the Disk Group
Removing Disks from the Disk Group
Removing Disks with dedupe enabled
Removing Disks with Compression Only enabled
Erasing a Disk
Turn on the LED on a Disk
vSAN Capacity Monitoring and Management
Capacity Overview
Operations reserve and Host rebuild reserve
What if analysis / Thin Provisioning Considerations
Usage breakdown
Disk Full Scenario
UNMAP Support
vCenter Management
Running vCenter Server on vSAN
vSAN Storage Services
vSAN iSCSI Target Service
Enable vSAN iSCSI Target Service
Create a vSAN iSCSI Target
Create a vSAN iSCSI LUN
Create a vSAN iSCSI Initiator Group
vSAN iSCSI Target Service and vSAN Stretched Cluster
vSAN File Service
Enable vSAN File Service
Create a vSAN File Service NFS File Share
Modifying vSAN File Service
Create a vSAN File Service SMB File Share
vSAN File Service and Maintenance Mode
Resetting vSAN File Service
vSAN File Service Requirements and Limitations
vSAN HCI Mesh / Remote vSAN Datastores
Mount a Remote vSAN Datastore
HCI Mesh and vCLS
HCI Mesh Requirements and Limitations
Failure Scenarios
Capacity Device Failure
Capacity Device Failure with Erasure Coding
Capacity Device Failure with Deduplication Enabled
Cache Device Failure
Host Failure
Network Partition
vCenter Server Failure Scenario
Summary

Telegram Channel @nettrain

7. Stretched Cluster Use Case
What is a Stretched Cluster?
Requirements and Constraints
Networking and Latency Requirements
Witness Traffic Separation and Mixed MTU
New Concepts in vSAN Stretched Cluster
Witness Failure Resilience
Configuration of a Stretched Cluster
Configure Step 1a: Create a vSAN Stretched Cluster
Configure Step 1b: Create Stretch Cluster
Configure Step 2: Assign Hosts to Sites
Configure Step 3: Select a Witness Host and Disk Group
Configure Step 4: Verify the Configuration
Configure Step 5: Skyline Health Stretched Cluster
Failures To Tolerate Policies
Site Disaster Tolerance Failure Scenarios
Single data host failure—Secondary site
Single data host failure—Preferred site
Full Site Failure – Data Site
Witness host failure—Witness site
Network failure—Data Site to Data Site
Impact of multiple failures
vSAN File Service
Operating a Stretched Cluster
Summary

8. Two Host vSAN Cluster Use Case
Configuration of a two-host cluster
vSAN Direct Connect
Support statements, requirements, and constraints
Summary

9. Cloud-Native Applications Use Case
What is a container?
Why Kubernetes?
Kubernetes Storage Constructs
Storage Class
Persistent Volumes
Persistent Volume Claim
Pod
vSphere CSI in action – block volume
Cloud-Native Storage (CNS) for vSphere Administrators – block volume
vSphere CSI in action – file volume
Cloud-Native Storage (CNS) for vSphere Administrators – file volume

Telegram Channel @nettrain

vSphere CNS CSI architecture
vsphere-csi-controller pod
csi-snapshotter
csi-attacher
csi-resizer
vsphere-csi-controller
liveness-probe
vsphere-syncer
csi-provisioner
vsphere-csi-node pod
node-driver-registrar
vsphere-csi-node
liveness-probe
vSphere with Tanzu Considerations
Data Persistence platform (DPp)
DPp Requirements
DPp deployment changes
vSAN Stretched Cluster support
Other CSI driver features
Summary

10. Command Line Tools
CLI vSAN Cluster Commands
esxcli vsan cluster
esxcli vsan datastore
esxcli vsan debug
esxcli vsan faultdomain
esxcli vsan health
esxcli vsan iscsi
esxcli vsan maintenancemode
esxcli vsan network
esxcli vsan policy
esxcli vsan resync
esxcli vsan storage
esxcli vsan trace
Ruby vSphere Console (RVC) Commands
The output of vsan.check_limits
The output of vsan.host_info
Output of vsan.disks_info
Summary

The End

Telegram Channel @nettrain

VMware vSAN 7.0 Update 3 Deep Dive

Copyright © 2022 by Cormac Hogan and Duncan Epping.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, or otherwise, without written permission
from the publisher. No patent liability is assumed on the use of the information contained
herein. Although every precaution has been taken in the preparation of this book, the
publisher and authors assume no responsibility for errors or omissions. Neither is any
liability assumed for damages resulting from the use of the information contained herein.
This book contains references to the word master. We recognize this as an exclusionary
word. The word is used in this book for consistency because it appears, at the time of
writing, in the output of CLI commands, and the log files.

International Standard Book Number: 9798426658486

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. The use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark. Cover design by Aaron Epping
(AaronEpping.nl).

Version: 1.0.1

Created with Vellum

Telegram Channel @nettrain

http://www.aaronepping.nl/
http://tryvellum.com/created

About the authors

Cormac Hogan is a Chief Technologist in the Office of the CTO in
the Cloud Infrastructure Business Group at VMware, focusing
predominantly on Kubernetes platforms running on vSphere. Cormac
has previously held roles in VMware’s Technical Marketing,
Integration Engineering and Support organizations. Cormac is the
owner of CormacHogan.com, a blog site dedicated to storage,
virtualization and container orchestration. He can be followed on
Twitter @CormacJHogan.

Duncan Epping is a Chief Technologist working for VMware in the
Office of CTO of the Cloud Infrastructure Business Group. Duncan is
responsible for ensuring VMware’s future innovations align with
essential customer needs, translating customer problems to
opportunities and functioning as the global lead evangelist for Cloud
Infrastructure. Duncan is the owner of VMware Virtualization blog
Yellow-Bricks.com and has various books on the topic of VMware
including the “vSphere Clustering Deep Dive” series. He can be
followed on Twitter @DuncanYB.

Telegram Channel @nettrain

http://www.cormachogan.com/
https://twitter.com/cormacjhogan
http://yellow-bricks.com/
https://twitter.com/duncanyb

Preface

When talking about virtualization and the underlying infrastructure
that it runs on, one component that always comes up in conversation
is storage. The reason for this is simple: In many environments,
storage is a pain point. Although the storage landscape has changed
with the introduction of flash technologies that mitigate many of the
traditional storage issues, the pain of managing storage platforms
has unfortunately not disappeared.

Storage challenges range from the operational effort, or complexity,
to performance problems, or even availability constraints. The
majority of these problems stem from the same fundamental
problem: legacy architecture. The reason is that most storage
platform architectures were developed long before virtualization
existed, and virtualization changed the way these shared storage
platforms are used.

In a way, you could say that virtualization forced the storage industry
to look for new ways of building storage systems. Instead of having a
single server connected to a single storage device (also known as a
logical unit or LUN for short), virtualization typically entails having
one (or many) physical server(s) running many virtual machines
connecting to one or multiple storage devices. This did not only
increase the load on these storage systems, but it also changed the
workload patterns, increased the total capacity required, and added
much complexity.

Telegram Channel @nettrain

As you can imagine, for most storage administrators, this required a
major shift in thinking. What should the size of my LUN be? What are
my performance requirements, and how many spindles will be
necessary? What kind of data services are required on these LUNs,
and where will virtual machines be stored? Not only did it require a
major shift in thinking, but it also required working in tandem with
other IT teams. In the past server admins and network and storage
admins could all live in their own isolated worlds, they now needed to
communicate and work together to ensure availability of the platform
they were building. Whereas in the past a mistake, such as a
misconfiguration or under-provisioning, would only impact a single
server, it could now impact many virtual machines.

There was a fundamental shift in how we collectively thought about
how to operate and architect IT infrastructures when virtualization
was introduced. Now another collective shift is happening all over
again. This time it is due to the introduction of software-defined
networking and software-defined storage. But let’s not let history
repeat itself, and let’s avoid the mistakes we all made when
virtualization first arrived. Let’s all have frank and open discussions
with our fellow datacenter administrators as we all aim to
revolutionize datacenter architecture and operations!

You, the reader

This book is targeted at IT professionals who are involved in the care
and feeding of a VMware vSphere environment. Ideally, you have
been working with VMware vSphere for some time and perhaps you
have attended an authorized course in vSphere, such as the “Install,
Configure, and Manage” class. This book is not a starters guide, it is
a deep dive, there should be enough in the book for administrators
and architects of all levels.

Telegram Channel @nettrain

We do want to point out, that for readability reasons we had to create
screenshots of most CLI commands, this may result in different font
sizes unfortunately as a result of how ebooks are structured. If we
find a way around this then we will upload a new version over time.

Telegram Channel @nettrain

Dedication

“Deafening silence reigns
As twilight fills the sky
Eventual supremacy
Daylight waits to die

Darkness always calls my name
A pawn in this recurring game

Humanity going insane”

“Skeletons of Society” by Slayer.

Telegram Channel @nettrain

Foreword

It has been eight years since we first released vSAN in 2014. At the
time, hyperconverged infrastructure (HCI) was a brand new concept
surrounded by some amount of uncertainty and even doubt. The
storage industry had always been dominated by purpose-built
hardware and specialized appliances, but trends in flash as a new
storage medium plus continued growth in computing and networking
performance were opening the opportunity for new architectures and
new business models to disrupt the industry.

Meanwhile, cloud was just taking off. Developers were eager for a
better experience with more self-service and automation. As IT
organizations looked to meet that demand and build their own cloud
operations, “software-defined” became the next big idea, promising
to replace traditional purpose-built appliances with software-based
services. The goal was a cloud operating model in the data center,
with lower costs thanks to scale out, x86 economics and reduced
operational overhead. This in turn provided an opening for HCI, to be
that architecture that delivered on the promise of software-defined
and that delivered better economics, greater simplicity, and superior
scalability.

Since that time, the category has seen explosive growth. vSAN has
become the most widely deployed HCI software in the market with
more than 30,000 customers. vSAN has become the building block
for many customers’ private clouds with deployments ranging from a

Telegram Channel @nettrain

couple of servers to thousands of nodes spread across multiple sites
and hosting petabytes of data. The workloads on vSAN themselves
have matured to include business critical, high-performance
databases and applications. In short, HCI has become mainstream.
Along the way, customer requirements and expectations have
expanded. HCI has evolved from “hyperconverged infrastructure” to
“hybrid cloud infrastructure” with requirements for full-stack
networking and management, multi-cloud deployments and support
for modern application architectures.

The vSAN team has embraced these opportunities by investing in
deep integration with the rest of the VMware technology stack to
deliver a complete cloud platform powered by vSphere, vSAN and
NSX. That cloud platform has become the common infrastructure
layer across multiple cloud environments, including partnerships with
Amazon, Google, Microsoft, and hundreds of cloud provider partners
to deliver a multi-cloud infrastructure-as-a-service. Meanwhile, vSAN
continues to deliver new innovations like HCI Mesh, vSAN File
Services, and the Data Persistence platform while embracing
containers and Kubernetes through the investment in the Cloud
Native Storage control plane and CSI driver.

Given all these changes, it is crucial that technology thought leaders
like Cormac and Duncan provide the deeper insight and guidance to
aid practitioners in leveraging these capabilities. These two are not
only great technologists but great communicators that can provide
the key information and insights required to get the most out of
vSAN.

Thank you for your interest in VMware vSAN, and I know that it can
be a fundamental building block for your own multi-cloud
infrastructure.

John Gilmartin

Senior Vice President and General Manager, Cloud Storage and Data

Telegram Channel @nettrain

Cloud Infrastructure Business Group, VMware

Telegram Channel @nettrain

Chapter 1

Introduction to VMware vSAN

This chapter introduces you to the world of the software-defined
datacenter, but with a focus on the storage aspect. The chapter
covers the premise of the software-defined datacenter and then
delves deeper to cover the concept of software-defined storage and
associated solutions such as hyperconverged infrastructure (HCI)
solutions.

Software-Defined Datacenter

VMworld, the VMware annual conferencing event, introduced
VMware’s vision for the software-defined datacenter (SDDC) in 2012.
The SDDC is VMware’s architecture for the public and private clouds
where all pillars of the datacenter—computing, storage, and
networking (and the associated services)—are virtualized. Virtualizing
datacenter components enables the IT team to be more flexible. If
you lower the operational complexity and cost while increasing
availability and agility, you will lower the time to market for new
services.

To achieve all of that, virtualization of components by itself is not
sufficient. The platform used must be capable of being installed and
configured in a fully automated fashion. More importantly, the
platform should enable you to manage and monitor your

Telegram Channel @nettrain

infrastructure in a smart and less operationally intense manner. That
is what the SDDC is all about! Raghu Raghuram (Chief Executive
Officer, VMware) captured it in a single sentence: The essence of the
software-defined datacenter is “abstract, pool, and automate.”

Abstraction, pooling, and automation are all achieved by introducing
an additional layer on top of the physical resources. This layer is
usually referred to as a virtualization layer. Everyone reading this
book should be familiar with the leading product for compute
virtualization, VMware vSphere. By now, most people are probably
also familiar with network virtualization, sometimes referred to as
software-defined network (SDN) solutions. VMware offers a solution
named NSX to virtualize networking and security functionality. NSX
does for networking what vSphere does for compute. These layers do
not just virtualize the physical resources but also allow you to
abstract resources, pool them, and provide you with an API that
enables you to automate all operational aspects.

Automation is not just about scripting, however. A significant part of
the automation of virtual machine (VM) provisioning is achieved
through policy-based management. Predefined policies allow you to
provision VMs in a quick, easy, consistent, and repeatable manner.
The resource characteristics specified on a resource pool or a vApp
container exemplify a compute policy. These characteristics enable
you to quantify resource policies for compute in terms of reservation,
limit, and priority. Network policies can range from security to quality
of service (QoS). Storage policies enable you to specify availability,
performance, and recoverability characteristics.

This book examines the storage component of VMware’s SDDC. More
specifically, the book covers how a product called VMware vSAN
(vSAN), fits into this vision. You will learn how it has been
implemented and integrated within the current platform and how you
can leverage its capabilities and the book expands on the lower-level
implementation details. Before going further, though, you want to

Telegram Channel @nettrain

have a generic understanding of where vSAN fits into the bigger
software-defined storage picture.

Software-Defined Storage

Software-defined storage (SDS) is a term that has been used, and
abused, by many vendors. Because software-defined storage is
currently defined in so many different ways, consider the following
quote from VMware:

“Software-Defined Storage is the automation and pooling of
storage through a software control plane, and the ability to
provide storage from industry-standard servers. This offers a
significant simplification to the way storage is provisioned and
managed, and also paves the way for storage on industry-
standard servers at a fraction of the cost.”

A software-defined storage product is a solution that abstracts the
hardware and allows you to easily pool all resources and provide
them to the consumer using a user-friendly user interface (UI) and
application programming interface (API). A software-defined storage
solution allows you to both scale up and scale out, without increasing
the operational effort.

Many industry experts feel that software-defined storage is about
moving functionality from the traditional storage devices to the host.
This trend was started by virtualized versions of storage solutions
such as HP’s StoreVirtual VSA and evolved into solutions that were
built to run on many different hardware platforms. One example of
such a solution is Nexenta. These solutions were the start of a new
era.

Telegram Channel @nettrain

Hyper-Converged/Server SAN Solutions

Over recent years there have been many debates around what
hyperconverged is versus a Server SAN solution. In our opinion, the
big difference between these two is the level of integration with the
platform it is running on and the delivery model. When it comes to
the delivery mode there are two distinct flavors:

Appliance based
Software only

An appliance-based solution is one where the hardware and the
software are sold and delivered as a single bundle. It will come
preinstalled with a hypervisor and usually requires little to no effort to
configure. There also is deep integration with the platform it sits on
(or in) typically. This can range from using the provided storage APIs
to providing extensive data services to being embedded in the
hypervisor.

In all of these cases local storage is aggregated into a large, shared
pool by leveraging a virtual storage appliance or a kernel-based
storage stack. The best example of an appliance-based solution
today would be Dell VxRail. Other companies which used this model
are Nutanix and HPE SimpliVity. When one would have asked the
general audience a couple of years ago what a typical
“hyperconverged appliance” looked like the answer would have been:
a 2U form factor with four hosts. However, hyper-convergence is not
about a form factor in our opinion, and most vendors have moved on
from this concept. Yes, some still offer this form factor, but they offer
it alongside various other form factors like 1U, 2U, 1U two hosts, 2U
two hosts, and even blade and composable infrastructure solutions.

It is not about the form factor; it is about combining different
components into a single solution. This solution needs to be easy to

Telegram Channel @nettrain

install, configure, manage, and monitor.

You might ask, “If these are generic x86 servers with hypervisors
installed and a virtual storage appliance or a kernel-based storage
stack, what are the benefits over a traditional storage system?” The
benefits of a hyperconverged platform are as follows:

Time to market is short, less than 1 hour to install, and
configure
Ease of management and level of integration
Ability to scale out and scale up, both capacity and
performance-wise
Lower total costs of acquisition compared to traditional
environments
Lower upfront investment required

As mentioned, many of these solutions are sold as a single stock
keeping unit (SKU), and typically a single point of contact for support
is provided. This can make support discussions much easier.
However, a hurdle for many companies is the fact that these
solutions are tied to hardware and specific configurations. The
hardware used by (appliance-based) hyperconverged vendors is often
not the same as the preferred hardware supplier you may already
have. This can lead to operational challenges when it comes to
updating/patching or even cabling and racking. In addition, a trust
issue exists. Some people swear by server vendor X and would never
want to touch any other brand, whereas others won’t come close to
server vendor X. Fortunately, most hyperconverged vendors these
days offer the ability to buy their solution through different server
hardware vendors. If that does not provide sufficient flexibility, then
this is where the software-based storage solutions come into play.

Software-only storage solutions come in two flavors. The most
common solution today amongst HCI vendors is the virtual storage
appliance (VSA). VSA solutions are deployed as a VM on top of a

Telegram Channel @nettrain

hypervisor installed on physical hardware. VSAs allow you to pool
underlying physical resources into a shared storage device. An
example of a VSA would for instance be Nutanix. The advantage of
software-only solutions is that you typically can leverage existing
hardware if it is on the hardware compatibility list (HCL). In most
cases, the HCL is comparable to what the underlying hypervisor
supports, except for key components like disk controllers and flash
devices.

vSAN is also a software-only solution, but vSAN differs significantly
from a VSAs. vSAN sits in a different layer and is not a VSA-based
solution. On top of that, vSAN is typically combined with hardware by
a vendor of your choice. Hence, VMware refers to vSAN as a
hyperconverged software solution as it is the enabler of many
hyperconverged offerings. An example of an HCI offering based on
vSAN would be Dell EMC’s product called VxRail.

Introducing VMware vSAN

VMware’s strategy for software-defined storage is to focus on a set of
VMware initiatives related to local storage, shared storage, and
storage/data services. In essence, VMware wants to make vSphere a
platform for storage services.

Historically, storage was configured and deployed at the start of a
project and was not changed during its life cycle. If there was a need
to change some characteristics or features of a LUN or volume that
were being leveraged by VMs, in many cases the original LUN or
volume was deleted and a new volume with the required features or
characteristics was created. This was a very intrusive, risky, and time-
consuming operation due to the requirement to migrate workloads
between LUNs or volumes, which may have taken weeks to
coordinate.

Telegram Channel @nettrain

With software-defined storage, VM storage requirements can be
dynamically instantiated. There is no need to repurpose LUNs or
volumes. VM workloads and requirements may change over time, and
the underlying storage can be adapted to the workload at any time.
vSAN aims to provide storage services and service-level agreement
automation through a software layer on the hosts that integrates with,
abstracts, and pools the underlying hardware.

A key factor for software-defined storage is, in our opinion, storage
policy-based management (SPBM). SPBM is a critical component of
how VMware is implementing software-defined storage.

Using SPBM and vSphere APIs, the underlying storage technology
surfaces an abstracted pool of storage capacity with various
capabilities that are presented to vSphere administrators for VM
provisioning. The capabilities can relate to performance, availability,
or storage services such as thin provisioning, compression,
replication, and more. A vSphere administrator can then create a VM
storage policy using a subset of the capabilities that are required by
the application running in the VM. At provisioning time, the vSphere
administrator selects a VM storage policy. SPBM then ensures that
the VM is always instantiated on the appropriate underlying storage,
based on the requirements placed in the VM storage policy, and that
the VM is provisioned with the right amount of resources, the
required services from the abstracted pool of storage resources.

Should the VM’s workload, availability requirement, or I/O pattern
change over time, it is simply a matter of applying a new VM storage
policy with requirements and characteristics that reflect the new
workload to that specific VM, or even virtual disk, after which the
policy will be seamlessly applied without any manual intervention
from the administrator (in contrast to many legacy storage systems,
where a manual migration of VMs or virtual disks to a different
datastore would be required). vSAN has been developed to

Telegram Channel @nettrain

seamlessly integrate with vSphere and the SPBM functionality it
offers.

What is vSAN?

vSAN is a storage solution from VMware, released as a beta in 2013,
made generally available to the public in March 2014, and reached
version 7.0 Update 3 in October of 2021. vSAN is fully integrated with
vSphere. It is an object-based storage system that aims to simplify
VM storage placement decisions for vSphere administrators by
leveraging storage policy-based management. It fully supports and is
integrated with core vSphere features such as vSphere High
Availability (HA), vSphere Distributed Resource Scheduler (DRS), and
vMotion. vSAN and vSphere go hand in hand as illustrated below.

Telegram Channel @nettrain

Figure 1: Simple overview of vSAN Cluster

vSAN’s goal is to provide both resilience and scale-out storage
functionality. It can also be thought of in the context of QoS in so far
as VM storage policies can be created that define the level of
performance and availability required on a per-VM, or even virtual
disk, basis.

vSAN is a software-based distributed storage solution that is built
directly into the hypervisor. Although not a virtual appliance like many
of the other solutions out there, vSAN can best be thought of as a
kernel-based solution that is included with the hypervisor.
Technically, however, this is not completely accurate because
components critical for performance and responsiveness such as the
data path and clustering are in the kernel, while other components
that collectively can be considered part of the “control plane” are

Telegram Channel @nettrain

implemented as native user-space agents. Nevertheless, with vSAN,
there is no need to install anything other than the software you are
already familiar with: VMware vSphere.

vSAN is about simplicity, and when we say simplicity, we do mean
simplicity. Want to try out vSAN? Within a few easy steps, you have
your environment up and running. Of course, there are certain
recommendations and requirements to optimize your experience, we
will discuss these in further detail in chapter 2.

Figure 2: Enabling vSAN

Now that you know it is easy to use and simple to configure, what are
the benefits of a solution like vSAN? What are the key selling points?

Software-defined: Use industry-standard hardware
Flexible: Scale as needed and when needed, both scale-up
and scale-out

Telegram Channel @nettrain

Simple: Easy to configure, manage and operate
Automated: Per-VM or per-disk policy-based management
Hyperconverged: Repeatable building-block

That sounds compelling, doesn’t it? Where does vSAN fit you may
ask, what are the use cases and are there situations where it doesn’t
fit today? Today the use cases are as follows:

Business critical apps: Stable storage platform with all data
services required to run business critical workloads, whether
that is Microsoft Exchange, SQL, Oracle etc.
Virtual desktops: Scale-out model using predictive and
repeatable infrastructure blocks lowers costs and simplifies
operations.
Test and dev: Avoid acquisition of expensive storage (lowers
total cost of ownership [TCO]), fast time to provision.
Cloud-Native Applications: Provides the storage
infrastructure needed for running your cloud-native apps and
persisting your associated data.
Management or DMZ infrastructure: Fully isolated resulting
in increased security and no dependencies on the resources
it is potentially managing.
Disaster recovery target: Inexpensive disaster recovery
solution, enabled through a feature like vSphere replication
that allows you to replicate to any storage platform.
Remote office/branch office (ROBO): With the ability to
start with as little as two hosts, centrally managed, vSAN is
the ideal fit for ROBO environments.
Stretched cluster: Providing very high availability across
remote sites for a wide range of potential workloads.

Now that you know what vSAN is and that it is ready for any type of
workload, let’s have a brief look at what was introduced in terms of
functionality with each release.

Telegram Channel @nettrain

vSAN 1.0: March 2014
Initial release
vSAN 6.0: March 2015
All-flash configurations
64 host cluster scalability
2x performance increase for hybrid configurations
New snapshot mechanism
Enhanced cloning mechanism
Fault domain/rack awareness
vSAN 6.1: September 2015
Stretched clustering across a max of 5 ms RTT (milliseconds)
2-node vSAN for remote office, branch office (ROBO)
solutions
vRealize Operations management pack
vSphere replication—5 minutes RPO
Health monitoring
vSAN 6.2: March 2016
RAID 5 and 6 over the network (erasure coding)
Space efficiency (deduplication and compression)
QoS–IOPS limits
Software checksums
IPv6 support
Performance monitoring
vSAN 6.5: November 2016
vSAN iSCSI Service
vSAN 2-node Direct Connect
512e device support
Cloud-Native Application support
vSAN 6.6: April 2017
Local Protection for Stretched Clusters
Removal of Multicast
ESXi Host Client (HTML-5) management and monitoring
functionality
Enhanced rebalancing, repairs, and resyncs

Telegram Channel @nettrain

Resync throttling
Maintenance Mode Pre-Check
Stretched Cluster Witness Replacement UI
vSAN Support Insight
vSAN Easy Install
vSAN Config Assist / Firmware Update
Enhanced Performance and Health Monitoring
vSAN 6.6.1: November 2017
Update Manager Integration
Performance Diagnostics added to Cloud Analytics
Storage Device Serviceability
New Licensing for ROBO and VDI
vSAN 6.7: April 2018
HTML-5 User Interface support
Native vRealize Operations dashboards in the HTML-5 client
Support for Microsoft WSFC using vSAN iSCSI
Fast Network Failovers
Optimization: Adaptive Resync
Optimization: Witness Traffic Separation for Stretched
Clusters
Optimization: Preferred Site Override for Stretched Clusters
Optimization: Efficient Resync for Stretched Clusters
Optimization: Enhanced Diagnostic Partition
Optimization: Efficient Decommissioning
Optimization: Efficient and consistent storage policies
4K Native Device Support
FIPS 140-2 Level 1 validation
vSAN 6.7 U1: October 2018
Trim/Unmap
Cluster Quickstart Wizard
Mixed MTU Support
Historical Capacity Reporting
Additional vR Ops Dashboards
Enhanced support experience

Telegram Channel @nettrain

Secondary FTT for Racks
vSAN 6.7 U3: August 2019
Cloud-Native Storage
Native SCSI-3 PGR for Windows Server Failover Cluster
(WSFC) support
Improved Capacity Usage views (including block container
volumes)
Improved Resync insights – ability to see queued but not yet
active resyncs
Maintenance Mode/Data Migration pre-checks
Online iSCSI LUN Resize
Improved destage performance with LSOM enhancements
Parallel resync operations
vsantop command line tool for performance monitoring
vSAN 7.0: April 2020
Integrated Native File Services (NFS File Shares)
Read-Write-Many Persistent Volumes via CSI-CNS
vSAN Memory performance metric now displayed
Shared disks with multi-writer flag no longer need to be Easy
Zero Thick on vSAN 7
Support for larger 1PB Logical capacity when deduplication
and compression enabled
Objects immediately repaired when Witness Appliance
replaced
NVMe hot-plug support
vSAN 7.0 U1: October 2020
vSAN File Services now supports the SMB protocol
vSAN File Services now supports Kerberos and Active
Directory
vSAN File Services Scale Increase from 8 to 32
HCI Mesh introduced for mounting remote vSAN datastore
A new Compression Only Data Service
vSAN “Shared” Witness Appliance

Telegram Channel @nettrain

vSAN Data Persistence platform for cloud-native applications
in vSphere with Tanzu
Increased usable capacity with new capacity management
features
vSAN 7.0 U2: March 2021
HCI Mesh now allows remote mounting of vSAN datastore
from non-vSAN clusters
HCI Mesh, vSAN datastores can support up to 128 remote
host mounts
vSAN Stretched Cluster now supports 20+20+1
configurations
vSAN Stretched Cluster has deeper integrations with DRS for
object sync and fail-back
vSAN File Services now works on vSAN Stretched Cluster and
2-node vSAN
vSAN File Services Scale Increase from 32 to 100 shares
vSAN now supports vSphere Proactive HA
vSAN supports the new vSphere Native Key Provider
vSAN over RDMA
Skyline Health Check History

vSAN 7.0 U3: October 2021
Stretched cluster site/witness failure resiliency
Nested fault domains for two-node deployments
vSAN File Services - Access Based Enumeration
vSAN cluster shutdown and restart
Enhanced network monitoring and anomaly detection
vSAN health check correlation
VM I/O trip analyzer
Stretched Cluster support for vanilla Kubernetes
vSAN Data Persistence Platform now supports asynchronous
installation and upgrades
CNS platform has improved performance, scale, and
resiliency

Telegram Channel @nettrain

Hopefully, that gives a quick overview of all the capabilities
introduced and available in each of the releases. Even though there
are many items listed this list is still not complete. This, however,
does not mean vSAN is complex to configure, manage, and monitor.
Let’s take a look from an administrator perspective; what does vSAN
look like?

What does vSAN look like to an administrator?

When vSAN is enabled, by default a single shared datastore is
presented to all hosts that are part of the vSAN-enabled cluster. Just
like any other storage solution out there, this datastore can be used
as a destination for VMs and all associated components, such as
virtual disks, swap files, and VM configuration files. When you deploy
a new VM, you will see the familiar interface and a list of available
datastores, including your vSAN-based datastore, as shown in the
following screenshot.

Telegram Channel @nettrain

Figure 3: Enabling vSAN

This vSAN datastore is formed out of host local storage resources.
Typically, all hosts within a vSAN-enabled cluster will contribute
performance (flash) and capacity (magnetic disks or flash) to this
shared datastore. This means that when your cluster grows, your
datastore will grow with it. vSAN is what is called a scale-out storage
system (adding hosts to a cluster), but also allows scaling up (adding
devices to a host).

Each host contributing storage capacity to the vSAN cluster will
require at least one flash device and one capacity device (magnetic
disk or flash). Note that the capacity tier is either all-flash or all

Telegram Channel @nettrain

magnetic disks; they cannot be mixed in the same vSAN cluster.
Thus, we have 2 flavors of vSAN. We have the all-flash version, where
the cache and capacity are comprised entirely of flash devices. And
we have the hybrid model, where flash devices are used for the cache
layer, and magnetic disks are used for the capacity tier. At a
minimum, vSAN requires three hosts in your cluster to contribute
storage (or two hosts if you decide to use a witness host, which is a
common configuration for ROBO, this is discussed in chapter 8);
other hosts in your cluster could leverage these storage resources
without contributing storage resources to the cluster itself, although
this is not common. The diagram below shows a cluster that has four
hosts, of which three (esxi-01, esxi-02, and esxi-03) contribute
storage and a fourth does not contribute but only consumes storage
resources. Although it is technically possible to have a non-uniform
cluster and have a host not contributing storage, VMware highly
recommends creating a uniform cluster and having all hosts
contribute storage for overall better utilization, performance, and
availability.

Figure 4: non-uniform vSAN cluster example

The typical boundary for vSAN in terms of both size and connectivity
is a vSphere cluster. Although vSAN is now also capable of sharing
storage to regular vSphere clusters, we are not going to discuss this

Telegram Channel @nettrain

functionality (HCI Mesh) at this stage. This means that vSAN
supports single clusters/datastores of up to 64 hosts, but of course a
single vCenter Server instance can manage many 64 host clusters. It
is a common practice for most customers however to limit their
clusters to around 24 hosts. This is for operational considerations
like the time it takes to update a full cluster. Each host can run a
supported maximum of 200 VMs, up to a total of 6,400 VMs within a
64-host vSAN cluster. As you can imagine with a storage system at
this scale, performance and responsiveness are of the utmost
importance. vSAN is designed to take advantage of flash to provide
the experience users expect in today’s world. Flash resources are
used for all writes and, depending on the type of hardware
configuration used (all-flash or hybrid), reads will typically also be
served from flash.

To ensure VMs can be deployed with certain characteristics, vSAN
enables you to set policies on a per-virtual disk or a per-VM basis.
These policies help you meet the defined service level objectives
(SLOs) for your workload. These can be performance-related
characteristics such as read caching or disk striping but can also be
availability-related characteristics that ensure strategic replica
placement of your VM’s disks (and other important files) across racks
or even locations.

If you have worked with VM storage policies in the past, you might
now wonder whether all VMs stored on the same vSAN datastore will
need to have the same VM storage policy assigned. The answer is no.
vSAN allows you to have different policies for VMs provisioned to the
same datastore and even different policies for disks from the same
VM.

As stated earlier, by leveraging policies, the level of resilience can be
configured on a per-virtual disk granular level. How many hosts and
disks a mirror copy will reside on depends on the selected policy.
Because vSAN can use mirror copies (RAID-1) or erasure coding

Telegram Channel @nettrain

(RAID-5/6) defined by policy to provide resiliency, it does not require
a host local RAID configuration. RAID stands for Redundant Array of
Inexpensive Disks. In other words, hosts contributing to vSAN
storage capacity should simply provide a set of disks to vSAN.

Whether you have defined a policy to tolerate a single host failure or
a policy that will tolerate up to three hosts failing, vSAN will ensure
that enough replicas of your objects are created. The following
example illustrates how this is an important aspect of vSAN and one
of the major differentiators between vSAN and most other virtual
storage solutions out there.

Example: We have configured a policy that can tolerate one failure
and created a new virtual disk. We have chosen to go with failures to
tolerate = 1, which in this case results in a RAID-1 configuration. This
means that vSAN will create two identical storage objects and a
witness. The witness is a component tied to the VM that allows vSAN
to determine who should win ownership in the case of a failure. If you
are familiar with clustering technologies, think of the witness
component as a quorum object that will arbitrate ownership in the
event of a failure. The diagram below may help clarify these
sometimes difficult-to-understand concepts. This figure illustrates
what it would look like on a high level for a VM with a virtual disk that
can tolerate one failure. This can be the failure of a host, NICs, disk
controller, disk, or flash device, for instance.

Telegram Channel @nettrain

Figure 5: vSAN Failures to tolerate

In the diagram above, the VM’s compute resides on the fourth host
and its virtual disks reside on the other hosts in the cluster. In this
scenario, the vSAN network is used for storage I/O, allowing for the
VM to freely move around the cluster without the need for storage
components to be migrated along with the compute. This does,
however, result in the first requirement when implementing vSAN.
vSAN requires at a minimum one dedicated 1 GbE NIC port for small
scale hybrid configurations, but VMware recommends 10 GbE for the
vSAN network. 10 GbE is a requirement for all-flash vSAN
configurations, which are the most common configurations deployed
by vSAN customers today.

Yes, this might still sound complex, but in all fairness, vSAN masks
away all the complexity, as you will learn as you progress through the
various chapters in this book.

Telegram Channel @nettrain

VxRail – vSAN Inside

We have mentioned the VxRail product from Dell EMC several times
already in this introduction. It is probably worth calling out that this
HCI appliance is based on VMware vSphere and VMware vSAN, and
that the contents of this book are also directly applicable to this
product. Of course, there may be some operational differences from
the deployment and configuration perspective which are some of the
benefits of the VxRail model. However, administrators and architects
of VxRail systems should also get benefit from the content found in
this book.

VMware Cloud on AWS, Azure, Google, and
VMware vSAN

VMware vSAN is not only the storage of choice in the VMware Cloud
on AWS offering but is also the storage platform of choice for the
Microsoft Azure VMware Solution and the Google Cloud VMware
Engine. Although we do not directly discuss these public cloud
offerings in this book, we would like to ensure that you, the reader,
know about this offering. These public cloud services by AWS, Azure,
and Google are the fastest and easiest way to deploy and consume a
VMware based SDDC, or to get familiar with products like VMware
vSAN and VMware NSX. Do note, the infrastructure provided as part
of these offerings is managed by the public cloud provider, as such
some functionality that we will discuss in the book may be restricted
from configurational changes.

Summary

Telegram Channel @nettrain

To conclude, VMware vSAN is a market-leading, hypervisor-based
distributed storage platform that enables convergence of compute
and storage resources, typically referred to as hyperconverged
infrastructure. It enables you to define VM-level granular service level
objectives through policy-based management. It allows you to control
availability and performance in a way never seen before, simple, and
efficient.

This chapter just scratched the surface. Now it’s time to take it to the
next level. Chapter 2 describes the requirements for installing and
configuring vSAN.

Telegram Channel @nettrain

Chapter 2

vSAN Prerequisites and
Requirements

Before delving into the installation and configuration of vSAN, it’s
necessary to discuss the requirements and the prerequisites. VMware
vSphere is the foundation of every vSAN-based virtual infrastructure.

VMware vSphere

vSAN was first released with VMware vSphere 5.5 U1 way back in
2014. Additional versions of vSAN have since been released, the
most recent release being vSphere 7.0U3 which was released
towards the latter part of 2021. Each of the releases included
additional vSAN features, which will be discussed at various stages of
this book, and were listed in Chapter 1, “Introduction to vSAN.”

VMware vSphere consists of two major components: the vCenter
Server management tool and the ESXi hypervisor. To install and
configure vSAN, both vCenter Server and ESXi are required.

VMware vCenter Server provides a centralized management platform
for VMware vSphere environments. It is the solution used to provision
new VMs, configure hosts, and perform many other operational tasks
associated with managing a virtualized infrastructure.

Telegram Channel @nettrain

To run a fully supported vSAN environment, VMware strongly
recommends using the latest version of vSphere where possible.
vSAN is configured and monitored via the vSphere client. Starting
with vSphere 6.7, the vSphere HTML-5 client introduced full support
for managing and monitoring vSAN. vSAN can also be fully
configured and managed through the command-line interface (CLI)
and the vSphere API for those wanting to automate some (or all) of
the aspects of vSAN configuration, monitoring, or management.
Although a single cluster can contain only one “local” vSAN
datastore, a vCenter server can manage multiple vSAN and compute
clusters.

ESXi

VMware vSphere ESXi is an enterprise-grade virtualization hypervisor
product that allows you to run multiple instances of an operating
system in a fully isolated fashion on a single server. It is a bare-metal
solution, meaning that it does not require a guest-OS and has an
extremely thin footprint. ESXi is the foundation for the large majority
of virtualized environments worldwide.

For standard datacenter deployments, vSAN requires a minimum of
three ESXi hosts (where each host has local storage and is
contributing this storage to the vSAN datastore) to form a supported
vSAN cluster. This is to allow the cluster to meet the minimum
availability requirements of tolerating at least one host failure. There
is of course the option of deploying a 2-node vSAN configuration
along with a witness appliance, but this is aimed primarily are remote
office/branch office type environments and not datacenters. There
are some additional considerations around the use of a 2-node vSAN
cluster which will be discussed in more detail in Chapter 8, “Two
Node Use Case.” The role of the witness appliance, and indeed the

Telegram Channel @nettrain

witness components will be discussed in detail throughout this book,
so don’t worry about those for the moment.

As of vSAN 6.0, a maximum of 64 ESXi hosts in a cluster is
supported. The ESXi hosts and vCenter server must be running
version 6.0 at a minimum to support 64 hosts, we however
recommend using vSphere 7.0 U3 at a minimum.

From a CPU usage perspective, the important factor to keep in mind
is that the ESXi CPU is now performing storage tasks, alongside
virtualization tasks, when vSAN is configured. As storage device
density increases, the more VMs we may be able to provision to a
vSAN cluster. This in turn means increased CPU consumption as we
are running more and more workloads. All this needs to be
considered when sizing a vSAN cluster. One helpful fact is that the
latest generations of CPUs are much more efficient when it comes to
offloading certain operations, for example Advanced Encryption
Standard – New Instructions (AES-NI) for encryption and Intel
CRC32/CRC32C for checksum calculations which makes the
processing extremely fast and efficient.

vSAN memory consumption depends on the number and
configuration of storage devices. Therefore, the amount of memory
needed per ESXi host is completely dependent on the number of
devices in each host and how they are configured. VMware
knowledgebase article 2113954 assists vSAN customers in
determining the correct memory configuration for your vSAN
deployments. (https://kb.vmware.com/s/article/2113954)vSAN does
not consume all this memory, but it is required to implement the
correct configuration. In all cases, we recommend that each host is
configured with at least 64 GB per host to ensure that your
workloads, vSAN and the hypervisor have sufficient resources to
ensure an optimal user experience. vSAN scales back on its memory
usage when hosts have less than 32 GB of memory which may
impact overall vSAN performance.

Telegram Channel @nettrain

https://kb.vmware.com/s/article/2113954

One last point on memory – vSAN allocates 0.4% of memory per
host, up to a maximum of 1GB, for its client cache. Client cache is a
low latency host local read cache. This is an in-memory cache which
caches the data of a VM on the same host where the VM is located.
This local client-side cache will be discussed in further detail in the
vSAN Architecture chapter.

Cache and capacity devices

There are two models of vSAN: the all-flash model and the hybrid
model. A hybrid configuration is where the cache tier is made up of
flash-based devices and the capacity tier is made up of magnetic
disks. (Magnetic disks may also be referred to as Hard Disk Drives, or
HDDs throughout this book). In the all-flash version, both the cache
tier and capacity tier are made up of flash devices. The flash devices
of the cache and capacity tier are typically different grades of flash
device in terms of performance and endurance. This allows you,
under certain circumstances, to create all-flash configurations at
close to the cost of SAS-based magnetic disk configurations.

ESXi boot considerations

When it comes to installing an ESXi host for vSAN-based
infrastructure, there are various options to consider regarding where
to place the ESXi image. ESXi can be installed on a local magnetic
disk, USB flash drive, SD card or SATADOM devices. At the time of
writing (vSAN 7.0U3), stateless booting of ESXi (auto-deploy) is not
supported.

Pre vSphere 7.0 the preferred method of deploying ESXi was to a
USB flash device or SD card. This provided the advantage of not
consuming a magnetic disk or flash device for the boot image.

Telegram Channel @nettrain

However, there are some drawbacks to this approach, such as a lack
of space for storing log files and vSAN trace files, as well as
endurance considerations. Hence starting with vSphere 7.0 VMware
changed this recommendation. Details can be found in KB 85685.
(https://kb.vmware.com/s/article/85685)

We highly recommend using local persistent devices for the
installation of ESXi. This will provide the ability to not only store log
files and trace files locally, but it will also provide the added benefit
that memory dumps, in the case of a host failure, can be stored
persistently.

There is a large variety of devices supported for the installation of
ESXi, and we have seen customers using solutions ranging from
HDDs in a RAID-1 configuration, to an M.2 flash device or a
SATADOM device. We recommend a reliable device that provides at
minimum 128GB of capacity. This should provide a future proof (ESXi
8.0 and beyond) solution.

VMware Hardware Compatibility Guide

Before installing and configuring ESXi, please validate that your
configuration is on the official VMware compatibility guide for vSAN,
which you can find at the following website for ready node
configurations http://vmwa.re/vsanhcl or the following website if you
want to validate individual components: http://vmwa.re/vsanhclc.
Please note, vSAN Skyline Health has a health check which will
validate your hardware configuration in combination with the
firmware and drivers regularly as combinations of support may
change over time because of discovered issues or introduced
enhancements.

vSAN has strict requirements around driver and firmware versions
when it comes to disks, flash devices, and disk controllers. With all

Telegram Channel @nettrain

https://kb.vmware.com/s/article/85685
http://vmwa.re/vsanhcl
http://vmwa.re/vsanhclc

the various options, configuring the perfect vSAN host using a Do-It-
Yourself (DIY) approach can be a complex exercise. Before reading
about all the different components that you need to manually validate
via the DIY approach, you will want to learn about an excellent
alternative: vSAN ReadyNode Configurations.

vSAN ReadyNode

vSAN ReadyNode configurations are a great alternative to manually
selecting components. ReadyNodes are also the preferred way of
building a vSAN configuration. Various vendors have gone through
the exercise for you and created configurations that are called vSAN
ReadyNodes. These nodes consist of tested and certified hardware
only and, in our opinion, provide an additional guarantee that the
hardware components, along with the driver and firmware versions,
have been validated for use with vSAN. It is important to note that
even with vSAN ReadyNodes, the configurations can be modified and
tweaked to use different hardware components, and your
configuration will still be fully supported. Further information is
available in the compatibility guide which provides a list of supported
ReadyNodes, as shown in the figure below.

Telegram Channel @nettrain

Figure 6: vSAN ReadyNode compatibility guide

For the more adventurous types, or those who prefer a particular
server model or vendor that is not currently listed in the vSAN
ReadyNode compatibility guide, some specifics for the various
components, such as storage controllers and disk drives, must be
called out. The sections that follow highlight these considerations in
more detail.

A note about NVMe

Although many current customers of vSAN still leverage SAS and
SATA, NVMe devices are becoming more prevalent every day and
have been supported by vSAN since 2015. NVMe devices are not only

Telegram Channel @nettrain

used by vSAN for the caching tier, but we also have many customers
already leveraging these for their capacity tier. NVMe provides
various benefits to vSAN, with performance and endurance being the
most important characteristics. Performance is driven by the fact that
many supported NVMe devices for vSAN included higher class flash,
but the bottleneck of the limited queue depth of the average disk
controller is also avoided by having a deep queue dedicated to not
only a single device. On top of that, endurance in many cases is also
much better for NVMe based flash devices, whereas with SAS and
SATA devices 10 drive writes per day (DWPD) or less was very
common, for NVMe based flash devices, like Intel Optane, 30 drive
writes per day (DWPD) is normal.

As a result, VMware typically recommends customers explore the
ability to adopt an all-NVMe based architecture.

Storage controllers

As mentioned, many customers still use storage controllers in their
vSAN environment today and may even consider it for future
deployments simply as there’s no performance or endurance
requirement that would require purchasing NVMe devices. In this
scenario, it is recommended that this disk controller run in what is
commonly referred to as pass-through mode, HBA mode, or JBOD
mode. (JBOD stands for Just a Bunch Of Disks.) In other words, the
disk controller should provide the capability to pass through to the
underlying magnetic disks and/or flash devices such as solid-state
disks (SSDs) as individual disk drives without a layer of RAID sitting
on top. The result of this is that ESXi can perform operations directly
on the disk without those operations being intercepted and
interpreted by the storage controller. As we will see in the vSAN
architecture chapter, vSAN will take care of any RAID configuration
in software when policy attributes such as availability and

Telegram Channel @nettrain

performance for virtual machines are defined. The vSAN
compatibility guide will call out the disk controllers that have
successfully passed testing.

Every server vendor has many different disk controllers that can be
selected when configuring a new server. It is also important to review
the footnotes with each controller, as this can reveal information
such as whether the controller is supported with internal only disk
devices, or whether it can be used with just a bunch of disks (JBODs)
external devices, as well as whether the controller supports SAS
Expanders, which seems to be a commonly asked question.

In some scenarios, hardware may have already been acquired or the
disk controllers that are available do not support pass-through mode.
In other words, the devices behind these controllers are not directly
visible to the ESXi host. In those scenarios, administrators must
place each individual drive in a RAID-0 volume configuration and
then the devices become visible to the ESXi host. The important
thing to note here is that each physical device is placed in its own
RAID-0 configuration – no other hardware RAID configurations that
may be created on the controller are supported by vSAN. You must
ensure that this is a valid configuration for the controller. Once again,
the compatibility guide will list whether a controller is supported in
pass-through mode, RAID-0 mode, or indeed whether the controller
supports both modes. Make sure to validate the compatibility guide
before configuring your disk controller in a specific way. Also, note
that the compatibility guide lists both the supported firmware and
the driver for each individual disk controller. Validate these versions
and upgrade if needed before deploying any virtual machines. After
initial deployment, it is strongly recommended that vSAN Skyline
Health be referenced to verify that the health checks for the storage
controller, driver, and firmware all pass.

Telegram Channel @nettrain

Sharing the storage controller with vSAN and
non-vSAN devices

Before vSAN 6.7, the recommendation was not to use the same
storage controller for vSAN devices and non-vSAN devices, for
example, the ESXi boot disk. The reason for this was errors in vSAN
could have a secondary effect on the non-vSAN devices and vice
versa. The symptoms vary, but extreme cases have been known to
lock up the storage controller, leading to a reboot of the ESXi host to
clear the issue. VMware KB 2129050 (https://kb.vmware.com/s/
article/2129050) has greater detail on what can be shared with what
when it comes to the storage controller. Starting with vSAN 6.7,
storage controllers are now checked to see if they can run vSAN and
non-vSAN workloads concurrently. If they can, this will be explicitly
listed against the controller on the compatibility guide. If it is not
listed, it would be best to dedicate the selected controller to vSAN
workload or non-vSAN workloads, and not mix them on the same
controller.

Disk Controller RAID-0

For disk controllers that do not support pass-through/HBA/JBOD
mode, vSAN supports disk drives presented via a RAID-0
configuration. The physical disk devices can be used by vSAN if they
are created as volumes using a RAID-0 configuration. These RAID-0
volumes must only contain a single drive. This needs to be done for
both the magnetic disks and/or the flash devices. This configuration
of RAID-0 can be done using the disk controller software/firmware.
Administrators need to understand, however, that when Solid State
Disks (SSDs) are exposed to a vSAN leveraging a RAID-0
configuration, in many cases the drive is not recognized as a flash

Telegram Channel @nettrain

https://kb.vmware.com/s/article/2129050

device because these characteristics are masked by the RAID-0
configuration. If this occurs, you will need to mark the drive as a flash
device. This can be done via the vSphere client. Simply select the
device in question and click on the appropriate disk services icon to
toggle a device between SSD and HDD.

There is also an example that shows how to address another
common device presentation issue: how to mark a device as local. In
some environments, devices can be recognized as shared volumes
even though they are local to the ESXi host. This is because some
SAS controllers allow devices to be accessed from more than one
host. In this case, the devices, although local, are shown as shared
(not local). When they are marked like this, vSAN will not consume
them. These devices will need to be marked as local in the vSphere
client.

If you wish to mark a device as a flash device or mark a device as
local, this is possible via the vSphere client as shown in the
screenshot below. Depending on the type of device and how it is
currently marked, the menu and the icons will change accordingly. In
the screenshot below, the device is marked as a flash device and is
already local. Therefore, the icons are displayed so that an
administrator can mark the device as an HDD and mark it as remote.

Figure 7: Marking Storage Devices

Telegram Channel @nettrain

When using RAID-0 instead of pass-through, administrators must
take into consideration certain operational impacts. When pass-
through is used, drives are (in most scenarios) instantly recognized,
and there is no need to configure the drives as a local device or as a
flash device/SSD within ESXi. As well as that, when a RAID-0 is used,
the physical drive is bound to that RAID-0 configuration. This means
that the RAID-0 configuration has a 1:1 relationship with a given
drive. If this drive fails and needs to be replaced with a new drive,
this relationship is broken and a new RAID-0 configuration with the
new replacement drive must be manually created by the
administrator. The effort involved will differ per RAID controller used,
whereas with a disk controller in pass-through mode, replacing the
drive is a matter of removing the old device and inserting the
replacement device. Of course, this is assuming the hot plug of the
device is supported, and this can be checked on the device
compatibility listings.

Depending on the RAID controller, vendor specific tools might be
required to make the device “active” once more after
replacement/repair has been completed. The original RAID-0
configuration may need to be removed completely and a brand-new
RAID-0 volume may have to be created to allow vSAN to consume
the replacement device. From a day 2 operation perspective, this is
not desirable. Ideally, on drive failure, you simply want to identify the
bad drive and eject it from the host. Then replace it with a new drive,
and let vSAN consume it as quickly as possible, all with minimal
human interaction. Therefore, we would strongly recommend
storage controllers that support JBOD/HBA/pass-through mode
over those storage controllers that require RAID-0 volumes to be
created. If you want to further simplify your configuration from a
hardware point of view, we recommend considering NVMe devices.
NVMe uses its own embedded storage controllers, which takes the
shared disk controller out of the equation, leading to fewer
components to manage.

Telegram Channel @nettrain

Performance and RAID Caching

VMware has carried out many performance tests using various types
of disk controllers and RAID controllers. In most cases, the
performance difference between pass-through and RAID-0
configurations was negligible.

However, one point to note when utilizing RAID-0 configurations is
that the storage controllers write cache should be disabled. The main
reason for this is because vSAN has its own caching mechanism and
we want to ensure that any IOs which are acknowledged back to the
guest operating system running in the VM has been stored on
persistent storage (write buffer) rather than stored on a disk
controller cache which is outside of what vSAN controls. When the
storage controller cache cannot be completely disabled in a RAID-0
configuration, you should configure the storage controller cache as a
100% read cache, effectively disabling the write cache.

Mixing SAS and SATA

VMware does not make any specific recommendations around mixing
SAS and SATA devices on vSAN. If the controller supports it, one
could even mix SAS and SATA devices in the same disk group behind
the same controller. However, customers need to be aware that the
overall performance of any VM workload may well be reduced to the
slowest hardware since VMs on vSAN can be distributed across
multiple hosts and thus multiple devices.

Disk Groups

Telegram Channel @nettrain

vSAN’s architecture includes a caching tier and a capacity tier. At
this point, you will be aware that vSAN comes in two flavors – all-flash
and hybrid. In a hybrid configuration, we use a flash device for the
cache tier and one or more HDDs for the capacity tier. In all-flash
vSAN, as the name implies, we once again have a flash device for the
cache tier and one or more flash devices for the capacity tier.

To build a relationship between the capacity tier and its cache
device, vSAN has the concept of disk groups. Disk groups contain at
most one cache device and up to seven capacity devices. Any I/O
destined to the capacity tier of that disk group will have its I/O
cached on the flash devices that are part of the same disk group. A
detailed description of the I/O path, including where data services
such as deduplication, encryption, and checksum are performed, will
be covered in the architecture chapter. For the moment, it is enough
to understand the concept of a disk group, and how it binds capacity
devices to a single cache device.

At most, a vSAN host can have five disk groups, each containing
seven capacity devices, resulting in a maximum of 35 capacity
devices. The configuration of this is extremely simple, we will go
through the exact steps in chapter 3, nevertheless, the below
screenshot shows the screen used to configure all disk groups in a
single step. One thing to point out, the screenshot also mentions
vSAN Direct, we will discuss this feature in chapter 9.

Telegram Channel @nettrain

Figure 8: Configuring Disk Groups

Disk Group Availability

When designing vSAN, you will typically want to know if there is a
recommendation on a minimum number of disk groups. What you will
notice from the vSAN ReadyNodes listings, most of the ReadyNodes
are configured with two disk groups. The reason for this is quite
simple – it enables a reduced failure domain. The following example
should help explain it.

Consider a configuration where there is a host with a single disk
group. In that disk group, there is one cache device and six capacity
devices. Now let’s envision a situation where the cache device suffers
a failure in that disk group. This means that the whole disk group
goes offline, and vSAN now must rebuild the failed content of those
VMs elsewhere in the cluster. As vSAN can no longer store any VM
data on this host, we may also end up in a situation where the
remaining hosts may begin to come under capacity pressure.

Telegram Channel @nettrain

Now let’s consider a configuration where instead of a single disk
group with six capacity devices, I have two disk groups with one
cache device and three capacity devices. Now if one of the cache
devices fails, I have a smaller failure domain. The failure this time
has only impacted three capacity devices. This likely means that I
have impacted fewer VMs, I have fewer data to build, and I can
continue to make use of the healthy disk group on that host.

Now of course, if both disk groups are sitting behind the same
storage controller and it is the controller that has a failure, then
multiple disk groups do not help you in this case. For additional
availability, you could consider adding an additional storage
controller, and place each disk group (cache and capacity devices)
behind its own controller. This will then mean that if there is a
controller failure, you continue to have the smaller failure domains,
which means that after the failure you still have a complete disk
group available. Another option to consider would be NVMe based
devices, this removes the potential single-point-of-failure (disk
controller) from the configuration.

In a nutshell, more disk groups of smaller capacity are more
desirable than fewer disk groups of larger capacity. Of course, the
cost of a second controller and a second flash device for the second
disk group need to be weighed up against the availability gains.

Disk Group Performance

Let’s take the previous example where we discussed a host with two
disk groups, each disk group sitting behind a different controller.
While this is very advantageous from an availability perspective, it is
also very advantageous from a performance perspective. Testing has
revealed that moving disk groups to their own controller can
significantly boost the performance of your vSAN environment. Of

Telegram Channel @nettrain

course, just like the availability discussion, the cost of a second
controller and a second flash device for the second disk group need
to be weighed up against the performance gains.

Capacity Tier Devices

VMware strongly recommends a uniform configuration for all hosts
participating in a vSAN cluster. This includes having a similar number
of capacity tier devices per host, where possible. Having said that,
VMware understands that over time, original devices used in the
cluster design may be no longer available and so in many cases,
newer devices may have to be used to not just scale up the vSAN
cluster, but also newer devices may have to be used to replace older,
original devices which have failed. VMware supports such
configurations, so don’t worry if you find your cluster getting into a
non-uniform state over time.

Each ESXi host that is participating in a vSAN cluster and
contributing storage to the vSAN datastore must have at least one
capacity device. Additional capacity devices will increase the
capacity of the vSAN datastore, and may also increase performance
as VM storage objects can be striped across multiple capacity
devices, and on many occasions, multiple disk groups. This means
that a single VM object could utilize multiple caching devices.

A higher number of capacity devices will also lead to a larger number
of capacity balancing options when the reactive or proactive
rebalancing threshold is reached. From a reactive perspective, when
a disk has reached 80% of its capacity vSAN will automatically try to
move components on that disk to other disks or disk groups in the
same host, or disks on other hosts, to prevent that disk from running
out of capacity. The same applies to proactive rebalancing, but in this
case, vSAN constantly monitors all devices and takes action when a

Telegram Channel @nettrain

device has reached a delta of 30% or greater capacity usage than
any other device and then triggers the rebalance to create a
balanced environment from a capacity point of view across all
devices.

vSAN supports various types of HDDs, ranging from SATA 7200 RPM
up to SAS 15K RPM, and these are listed in the compatibility guide. A
large portion of VM storage I/O performance will be met by flash
devices in the cache tier but note that any I/O that needs to be
serviced from the capacity tier (i.e., a read cache miss) will be bound
by the performance characteristics of those devices. A 7200 RPM
SATA magnetic disk will provide a different experience than a high-
performance flash device, but usually will also come at a different
price point, depending on the hardware vendor used. However, with
the inclusion of RAID-5, RAID-6, Deduplication & Compression, or
Compression Only, all-flash configurations are in many cases roughly
the same cost as hybrid configurations. Note, starting with vSAN 7.0
the supported logical capacity of each device has been extended to
1PB when deduplication and compression is enabled. Do note,
selecting devices of this capacity may have an impact on things like
rebuild times when a device has failed.

Cache Tier Devices

Each ESXi host, whether it is in a hybrid configuration or an all-flash
configuration, must have at least one flash device when that host is
contributing capacity to a vSAN cluster. This flash device, in hybrid
configurations, is utilized by vSAN as both a write buffer and a read
cache, split 70% read and 30% write. In an all-flash configuration,
the flash device is dedicating 100% as a write cache. This is simply
because the overhead involved in servicing a read from the capacity
tier on all-flash is minimal since the capacity tier in all-flash is also
comprised of flash devices. The main difference between the device

Telegram Channel @nettrain

used for the cache tier and the device(s) used for the capacity tier in
all-flash is that the cache tier device tends to have a much higher
endurance specification than the capacity tier flash devices.

The flash cache device in vSAN sits in front of a group of capacity
devices. Each disk group requires one flash device. Because vSAN
can have a maximum of five disk groups per host, the maximum
number of flash devices per host used for the cache tier is also five.
The larger the cache device in a host, the greater the performance
will be because more I/O can be cached/buffered. For devices larger
than 600 GB, capacity above 600 GB is used to extend the lifespan
of the device (endurance).

For the best vSAN performance, choose a high specification flash
device. VMware has published a list of supported PCIe flash devices,
SSDs, and NVMe devices in the VMware compatibility guide. Before
procuring new equipment, review the VMware compatibility guide to
ensure that your configuration is a supported configuration.

The designated flash device performance classes specified within
the VMware vSAN Hardware Quick Reference Guide are as follows:

Class B: 5,000–9999 writes per second
Class C: 10,000–19,999 writes per second
Class D: 20,000–29,999 writes per second
Class E: 30,000–99,999 writes per second
Class F: 100,000–349,999 writes per second
Class G: 350,000+ writes per second

This question often arises: “Can I use a consumer-grade SSD and
will vSAN work?” From a technical point of view, vSAN works perfectly
fine with a consumer-grade SSD; however, in most cases, consumer-
grade SSDs have much lower endurance guarantees, lack any type of
power loss protection capabilities, have different (lower) performance
characteristics, and may experience unpredictable latency spikes

Telegram Channel @nettrain

ranging from milliseconds to seconds. This is the main reason why
Class A devices have been removed from the compatibility guide.
Although it might be attractive from a price point to use a consumer-
grade SSD, when this drive fails, it will impact the disk group to which
this SSD is bound. When a cache device fails, the disk group to which
it is bound is marked as unhealthy. This brings us to the second
important column on the compatibility guide page, which is the flash
device endurance class, which is as follows:

Class A: >= 365 TBW
Class B: >= 1825 TBW
Class C: >= 3650 TBW
Class D: >= 7300 TBW

The higher the class, the more reliable and longer the lifetime of the
average device in this case. For those who are not aware, TBW stands
for “terabytes written” and is the guaranteed total amount of data
that can be written to the device measured in Terabytes.

After having looked at the various SSDs, PCIe flash devices, and
NVMe devices, we have concluded that it is almost impossible to
recommend a brand or type of flash to use. This decision should be
driven by the budgetary constraints, server platform vendor support
and more importantly the requirements of the applications that you
plan to deploy in your VMs running on vSAN.

Network Requirements

This section covers the requirements and prerequisites from a
networking perspective for vSAN. vSAN is a distributed storage
solution and therefore heavily depends on the network for intra-host
communication. Consistency and reliability are the keys. Therefore, it
is critical that the network interconnect between the hosts is of high

Telegram Channel @nettrain

quality and has no underlying issues. It is strongly recommended that
the network health is monitored just as closely as the vSAN health.

Network Interface Cards

Each ESXi host must have at least one 1GbE network interface card
(NIC) dedicated to vSAN hybrid configurations at a minimum. For all-
flash configurations, 10GbE NICs are required. However, as a best
practice, VMware and the authors of this book are recommending a
minimum of 10GbE NICs for all configurations! For redundancy, you
can configure a team of NICs on a per-host basis. We consider this a
best practice, but it is not necessary to build a fully functional vSAN
cluster.

We are also seeing faster devices appearing in customer
environments, 25 GbE is the new 10GbE. Also, 40 GbE and higher are
fully supported, and can even bring the benefit of lower latency for
I/O. Starting with vSAN 7.0 Update 2 support for RDMA (RoCE v2)
has also been introduced, which will help lower the latency even
more.

One recommendation, however – care should be taken to validate the
NIC, its driver, and firmware versions. At the time of writing, this was
not included in the vSAN health check, so customers are advised to
use the VMware Compatibility Guide – IO Devices section to verify
that their NIC is indeed supported and at the correct versions. (http://
vmwa.re/28h) There have been numerous support issues caused by
misbehaving networks cards, which are a critical component of
distributed systems like vSAN.

Supported Virtual Switch Types

Telegram Channel @nettrain

http://vmwa.re/28h

vSAN is supported on both VMware vSphere distributed switches
(VDS) and VMware vSphere standard switches (VSS). There are some
advantages to using a Distributed Switch that will be covered in
Chapter 3, “vSAN Installation and Configuration.” No other virtual
switch types have been explicitly tested with vSAN. A license for the
use of VDS is included with vSAN, irrespective of the vSphere edition
used.

NSX-T Interoperability

NSX is VMware's network virtualization platform. At the time of
writing, VMware does not support running vSAN traffic on NSX-T, or
as is stated more specifically in the VMware NSX documentation:
“NSX-T does not support the configuration of the vSAN data network
over an NSX-managed VXLAN or Geneve overlay.” Do note, vSAN File
Services can be configured on an NSX-T based environment, but
more details about that when we discuss vSAN File Services.

Layer 2 or Layer 3

vSAN is supported over layer 2 (L2/switched) or layer 3 (L3/routed)
networks. Do note that vSAN, prior to version 6.6, relies on the
availability of multicast traffic. This means that in versions of vSAN
prior to version 6.6, both cases (L2 and L3) must allow multicast
traffic and, in the case of L3, the multicast traffic must also be routed
between the networks. These typically involved technologies like
Internet Group Management Protocol (IGMP) and Protocol-
Independent Multicast (PIM). We have noticed during the many
conversations we have had with customers that multicast traffic is
usually not allowed on their network by default and required long
conversations with the networking team before vSAN could be

Telegram Channel @nettrain

successfully configured. This was a major contributing factor toward
the removal of the multicast requirement on vSAN traffic in version
6.6 and later.

VMkernel Network

On each ESXi host that wants to participate in a vSAN cluster, a
VMkernel port for vSAN communication must be created. The
VMkernel port is labeled vSAN traffic and is used for intra-cluster
node communication. It is also used for reads and writes when one
of the ESXi hosts in the cluster runs a particular VM but the actual
data blocks making up the VM files are located on a different ESXi
host in the cluster. In this case, I/O will need to traverse the network
configured between the hosts in the cluster, as depicted in the
diagram below, where VMkernel interface vmk2 is used for vSAN
traffic by all the hosts in the vSAN cluster. The VM residing on the
first host does all of its reads and writes leveraging the vSAN network
as all components of that VM are stored elsewhere.

Telegram Channel @nettrain

Figure 9: vSAN traffic

vSAN Network Traffic

For inter-cluster host communication, vSAN uses a proprietary
protocol called RDT, the Reliable Datagram Transport. VMware has
not published a specification of the protocol. This is similar to the
approach taken for other VMware products and features such as
vMotion, Fault Tolerance, and vSphere Replication. The vSAN network
may be used for three different traffic types. It is important to know
these because they introduce a requirement for your physical
network switch configuration:

Multicast heartbeats: In vSAN versions prior to v6.6, these
are used to discover all participating vSAN hosts in the
cluster, as well as to determine the state of a host. Compared
to other traffic types, multicast heartbeats generate very few
packets. With vSAN 6.6 and later, these are no longer used.

Telegram Channel @nettrain

Multicast and unicast packets from the clustering service
(CMMDS): This traffic does metadata updates like object
placement and statistics. These generate more network
traffic than the heartbeats, but it’s still a very small
percentage. As of vSAN version 6.6, all CMMDS updates are
sent unicast.
Storage traffic (e.g., reads, writes): This is most of the network
traffic. Any host within the cluster communicates to any other
host over unicast.

Jumbo Frames

Jumbo frames are supported on the vSAN network. We believe that
every vSAN deployment is different, both from a server hardware
perspective and from a network hardware perspective. Therefore, it is
difficult to recommend for or against the use of jumbo frames. In
addition, there is an operational impact in implementing jumbo
frames on non-greenfield sites. When jumbo frames are not
consistently configured end to end, network problems may occur.

Tests have been conducted to test the benefits of jumbo frames, and
the major improvement observed with jumbo frames is with CPU
usage. The data can fit in a smaller number of packets (sometimes
into a single frame when the packet is 8KB or less in size) when
jumbo frames are enabled, and thus no
fragmentation/defragmentation operations are needed to send and
receive these packets. However, no noticeable improvement in
performance (i.e. IOPS or throughput) has been observed with jumbo
frames.

In an operationally mature environment where a consistent
implementation can be guaranteed, the use of jumbo frames is left to
the administrator’s discretion.

Telegram Channel @nettrain

NIC Teaming

Another potential way of optimizing network performance is teaming
of NICs. NIC teaming in ESXi is transparent to vSAN. You can use
any of the NIC teaming options available in vSphere on the vSAN
network. For the most part, NIC teaming offers availability rather than
any performance gain. The only drawback with NIC teaming is that it
adds complexity to the networking configuration of vSAN. Chapter 3
covers the configuration options, details, and various parameters in
more detail.

NIC Teaming - Performance vs. Availability

As mentioned previously, there is no guarantee that NIC Teaming will
give you a performance improvement. This is because most of the
NIC teaming algorithms are not able to utilize the full bandwidth of
multiple physical NICs at the same time. Various factors play a part,
including the size of the cluster, the number of NICs, and the number
of different IP addresses used. In our testing, Link Aggregation
Control Protocol (LACP) offers the best chance of balancing vSAN
traffic across multiple vSAN networks using Link Aggregation Groups
(LAG). Thus, if performance is your key goal, then LACP is the best
option for network configuration, with the downside of added
complexity as you will also need to make configuration changes on
the physical network switch. If availability is your key goal, then any of
the other supported NIC teaming policies should suffice.

Network I/O Control

Telegram Channel @nettrain

Although it is recommended to use 10 GbE NICs minimum, there is
no requirement to solely dedicate these cards to the vSAN network.
NICs can be shared with other traffic types. However, you should
consider using Network I/O Control (NIOC) to ensure that the vSAN
traffic is guaranteed a certain amount of bandwidth over the network
in the case where contention for bandwidth of the network arises.
This is especially true if a 10 GbE NIC is shared with (for instance)
vMotion traffic, which is infamous for utilizing all available bandwidth
when possible. NIOC requires the creation of a distributed switch
because NIOC is not available with standard switches. Luckily, the
distributed switch is included with the vSAN license.

Chapter 3 provides various examples of how NIOC can be configured
for the various types of network configurations.

Firewall Ports

When you are enabling vSAN, several ESXi firewall ports are
automatically opened (both ingoing and outgoing) on each ESXi host
that participates in the vSAN cluster. The ports are used for inter-
cluster host communication and communication with the storage
provider on the ESXi hosts. The table below provides a list of the
most used vSAN-specific network ports. Most of the traffic in a vSAN
cluster (98% or more) will be RDT traffic on port 2233. More
extensive details can be found in KB 52959 (https://kb.vmware.com/
s/article/52959).

Telegram Channel @nettrain

https://kb.vmware.com/s/article/52959

vSAN Stretched Cluster

vSAN stretched cluster allows VMs to be deployed across sites in
different datacenters, and if one site or datacenter fails, VMs can be
restarted on the surviving site, utilizing vSphere HA. There are
several items to consider for vSAN Stretched Cluster configurations,
including latency and bandwidth, not only between the datacenter
sites but also to the witness site. These will be covered in greater
detail in the vSAN Stretched Cluster section, later in this book
(Chapter 7), but we will list some of the basic guidelines here for your
convenience:

Maximum of 5 ms RTT latency between data sites
(requirement)
Maximum of 200 ms RTT between data sites and the witness
site (requirement)
10 Gbps between data sites
100 Mbps from data sites to witness site

vSAN 2-Node Remote Office/Branch Office
(ROBO)

Telegram Channel @nettrain

In much the same way as there are specific network requirements for
vSAN stretched cluster, there are also network requirements around
latency and bandwidth for 2-node ROBO deployments. For 2-node
configurations the following general guidelines apply:

500ms RTT max between 2-node/ROBO location and central
witness (requirement)
1 Mbps from 2-node/ROBO location to central witness

VMware vSAN supports back-to-back cabling of the network between
the 2-nodes at a remote office/branch office. Where previously, there
was a requirement to have a 1 GbE network switch to provide
connectivity between the vSAN nodes at the ROBO location. This
provides the added benefit that at a relatively low cost, 10GbE can be
introduced in a 2-node configuration without the need for a 10GbE
physical switch infrastructure.

vSAN Requirements

Before enabling vSAN, it is highly recommended that the vSphere
administrator validate that the environment meets all the
prerequisites and requirements. To enhance resilience, this list also
includes recommendations from an infrastructure perspective:

Minimum of three ESXi hosts for standard datacenter
deployments. Minimum of two ESXi hosts and a witness host
for the smallest deployment, for example, remote
office/branch office.
VMware vCenter Server. Recommended is 7.0 U3 at the time
of writing, but the latest is preferred. vCenter version needs
to be equal to, or newer than, the ESXi version. Remember

Telegram Channel @nettrain

that vCenter contains a great deal of management and
monitoring functionality for vSAN.
At least one device for the capacity tier. One magnetic disk
for hosts contributing storage to the vSAN datastore in a
hybrid configuration; one flash device for hosts contributing
storage to vSAN datastore in an all-flash configuration.
At least one flash device for the cache tier for hosts
contributing storage to vSAN datastore, whether hybrid or all-
flash.
One boot device to install ESXi. Boot device should meet the
requirements outlined in VMware knowledgebase article
85685. (https://kb.vmware.com/s/article/85685)
At least one disk controller. Pass-through/JBOD mode
capable disk controller preferred.
Dedicated network port for vSAN–VMkernel interface. A dual
10GbE configuration is preferred, but 1GbE is supported for
smaller hybrid configurations. With 10GbE, the adapter does
not need to be dedicated to vSAN traffic, but can be shared
with other traffic types, such as management traffic, vMotion
traffic, etc. Adapter that supports larger bandwidths can lead
to reduced latency on the vSAN network.
Minimum memory per host to install ESXi, as per VMware
knowledgebase article 2113954. (https://kb.vmware.com/s/
article/2113954)

Summary

Although configuring vSAN takes a couple of clicks, it is important to
take the time to ensure that all requirements are met and to ensure
that all prerequisites are in place. A stable storage platform starts at
the foundation, the infrastructure on which it is enabled. Before
moving on to Chapter 3, you should run through the requirements
above.

Telegram Channel @nettrain

https://kb.vmware.com/s/article/85685
https://kb.vmware.com/s/article/2113954

We have also discussed additional recommendations, which are not
requirements for a fully functional vSAN, but which might be
desirable from a production standpoint such as networking
redundancy, jumbo frames, and network IO control.

Telegram Channel @nettrain

Chapter 3

vSAN Installation and
Configuration

This chapter describes in detail the installation and configuration
process, as well as all initial preparation steps that you might need to
consider before proceeding with a vSAN cluster deployment. You will
find information on how to correctly set up network and storage
devices, as well as some helpful tips and tricks on how to deploy the
most optimal vSAN configuration.

Cluster Quickstart

Prior to vSAN 6.7 Update 1, there were various steps and workflows
involved to get a vSAN cluster fully configured. The first step would
normally be adding hosts to a vCenter Server instance. After having
added the hosts, you would normally configure these, unless of
course, you had fully automated the installation and configuration.
Configuration, for the most part, means setting up all the required
VMkernel interfaces (vSAN, Management, and vMotion networks) and
vSwitch port groups (or distributed port groups for that matter). After
the configuration of the network, a cluster could be created, and the
hosts could be added to the cluster.

Although not overly complicated, it would require the administrator to
go from one UI workflow to the other, some of which were in a
completely different section of the vSphere Client. With the

Telegram Channel @nettrain

introduction of the vSphere HTML-5 Client, or vSphere Client for
short, a new UI was also developed for the creation of a vSAN cluster.
This workflow, named the Cluster Quickstart wizard, combines all the
different workflows and steps needed to form a vSAN cluster into a
single workflow.

Cluster Quickstart Wizard

When creating a vSAN cluster in a greenfield deployment the steps
that you need to go through are all part of the Cluster Quickstart
wizard. When vCenter Server has been deployed the first thing you
will need to do is create a cluster. When you create a cluster, you
have the option to enable vSphere HA, vSphere DRS, and vSAN.
When the cluster is created, the vSphere Client will automatically
continue with the Cluster Quickstart workflow, regardless of whether
vSAN is enabled or not.

Let’s look at this process a bit more in-depth. The first thing to do is
to create a cluster. You can do this by right-clicking in the vSphere
Client on the virtual datacenter object. Next you select “New Cluster”.
You provide the cluster with a name, and then select the cluster
services you would like to have enabled. In our case, this will be
vSphere HA, vSphere DRS, and VMware vSAN.

Telegram Channel @nettrain

Figure 10: Creation of a cluster

After you have clicked “Next” and “Finish” you are now taken to the
section in the UI called Cluster Quickstart. The next step will be to
click “ADD”, and add new, or existing hosts into your newly created
vSAN cluster.

Figure 11: Cluster Quickstart wizard

Telegram Channel @nettrain

In our case, we already had three stand-alone hosts added to vCenter
Server, which means that we will click on “Existing hosts” and add all
three at the same time by simply clicking the top tick box. Before the
hosts are added to the cluster, a host summary is provided with
relevant information. In this summary, for instance, it is called out
when the host(s) you are adding have any powered-on VMs.

Figure 12: Select the hosts to be added to the cluster.

When you click finish, the hosts will be added to the cluster and all
cluster services will be configured. What is useful to know is that the
hosts are added to the cluster in “maintenance mode”. This is to
prevent any workloads from using a host which may not be fully
configured yet. Another feature as part of this workflow is the fact
that after adding the host to the cluster the hosts are validated
against various Skyline Health checks. This is to ensure that the
hosts are healthy and compatible with our compatibility guide. If a
disk controller driver is not certified, for instance, then this will be
called out. This will then allow you to install the correct driver, or
firmware, before enabling vSAN and deploying workloads.

Telegram Channel @nettrain

Figure 13: Health validation during cluster creation

After verifying the health of the hosts, and potentially correcting
issues, the last step can be taken. In this step required networking
settings for vMotion and vSAN traffic will be configured, as well as
clustering services.

The Quickstart wizard assumes that a distributed switch is used. It
will configure the distributed switch as recommended by the VMware
Validated Designs (VVD). You can, when preferred, configure the
network settings after this workflow has been completed. We would,
however, recommend doing it as part of the workflow.

In our case, we are going to add the first physical adapters to the
distributed switch as shown in the next screenshot.

Telegram Channel @nettrain

Figure 14: Configuration of the Distributed Switch

After the configuration of the distributed switch, the VMkernel
interfaces for both vMotion and vSAN traffic will need to be
configured. The interface allows you to specify static IP addresses or
use DHCP. Note that in a single window you can provide all the
needed IP details for all hosts in the cluster.

Telegram Channel @nettrain

Figure 15: Configuration of the VMkernel interfaces

Next, it is possible to configure various advanced configuration
aspects of vSphere HA and vSphere DRS. Configuration options
continue with advanced vSAN functionality like Deduplication and
Compression, Compression Only, Fault Domains, Data-At-Rest and
In-Transit encryption, and even Stretched Clusters. We will discuss
each of these features and their functionality in later chapters.

Telegram Channel @nettrain

Figure 16: Configuration of cluster level services

In the next step, all the host local storage devices that need to be
part of the vSAN Datastore can be claimed. Note that vSAN will group
the devices based on their disk model. This allows you to quickly
claim all devices of a specific type for either cache or capacity as
shown in the screenshot below.

Telegram Channel @nettrain

Figure 17: Claim vSAN devices

Depending on which services have been selected, next you will have
the ability to configure either fault domains or configure your
stretched cluster. If you are configuring a stretched cluster then two
additional steps are presented, namely the selection of the Witness
Host and claiming the disks of the witness host. The function of the
witness components and witness host will be covered in greater
detail in the architecture chapter, for the moment it is enough to
understand that it plays a role in the configuration of stretched
clusters. In this example we have a single location with three racks,
so we will create three fault domains and add the hosts to each fault
domain accordingly to the physical placement of the host.

Telegram Channel @nettrain

Figure 18: Creation of Fault Domains

Fault domains and how they work is something we will discuss in-
depth in Chapter 4. For now, it is sufficient to know that these can be
configured from the same workflow end-to-end.

Telegram Channel @nettrain

Figure 19: Fault domains

This completes the configuration of the cluster with a summary of all
settings that have been configured. Note that if anything is
misconfigured, you can step back through the wizard and make the
required changes.

Telegram Channel @nettrain

Figure 20: Summary

Now when you click finish the cluster will be fully configured end-to-
end. This will, depending on which services are enabled, take several
minutes. In some cases, for instance, when vSAN Data-At-Rest
encryption is enabled, disk groups will need to be configured with a
new on-disk format, which can be time-consuming. Nevertheless,
regardless of functionality being enabled or disabled, we believe that
this workflow is a big step forward compared to previous vSphere
versions.

After the configuration of the hosts has been completed, each of
them will be taken out of maintenance mode and will be ready to
host workloads. Of course, there are a couple of other things to
consider when it comes to installing and configuring a vSAN
infrastructure end to end.

Telegram Channel @nettrain

Networking

Network connectivity is the heart of any vSAN cluster. vSAN cluster
hosts use the network for virtual machine (VM) I/O and communicate
their state with one another. Consistent and correct network
configuration is key to a successful vSAN deployment. Because the
majority of disk I/O will either come from a remote host or will need
to go to a remote host, VMware recommends leveraging a minimum
10 GbE network infrastructure. Note that although 1 GbE is fully
supported in hybrid configurations, it could become a bottleneck in
large-scale deployments.

As mentioned in the previous chapter, VMware vSphere provides two
different types of virtual switches, both of which are fully supported
with vSAN.

Although we recommend using the vSphere Distributed Switch, it is
fully supported to use the VMware standard Virtual Switch. Note that
when using the Cluster Quickstart wizard, by default the vSphere
Distributed Switch is used. This however is for a good reason, as the
VDS provides you with the ability to enable Network I/O Control. This
in turn allows you to prioritize traffic streams when the environment
is under contention. Before we dive into NIOC, let’s discuss some of
the basic aspects of vSAN networking, and some of the design
decisions around it.

VMkernel Network for vSAN

All ESXi hosts participating in a vSAN network need to communicate
with one another. As such, a vSAN cluster will not successfully form
until a vSAN VMkernel port is available on multiple ESXi hosts
participating in the vSAN cluster. The vSphere administrator can
create a vSAN VMkernel port manually on each ESXi host in the

Telegram Channel @nettrain

cluster before the vSAN cluster forms or can have the VMkernel port
created as part of the Cluster Quickstart wizard.

Figure 21: VMkernel interfaces used for intra-vSAN cluster traffic

Without a VMkernel network for vSAN, the cluster will not form
successfully. If communication is not possible between the ESXi
hosts in the vSAN cluster, only one ESXi host will join the vSAN
cluster. Other ESXi hosts will not be able to join. This will still result
in a single vSAN datastore, but each host can only see itself as part
of that datastore. A warning message will display when there are
communication difficulties between ESXi hosts in the cluster. If the
cluster is created before the VMkernel ports are created, a warning
message is also displayed regarding communication difficulties
between the ESXi hosts. Once the VMkernel ports are created and
communication is established, the cluster will form successfully.

Telegram Channel @nettrain

VSS vSAN Network Configuration

With a VSS, creating a port group for vSAN network traffic is
straightforward. By virtue of installing an ESXi host, a VSS is
automatically created to carry ESXi network management traffic and
VM traffic. You can use an already-existing standard switch and its
associated uplinks to external networks to create a new VMkernel
port for vSAN traffic. Alternatively, you may choose to create a new
standard switch for the vSAN network traffic VMkernel port by
selecting unused uplinks for the new standard switch. Of course, the
steps to create a VMkernel interface will have to be repeated for
every ESXi host in the vSAN cluster. Each time you scale out by
adding a new host to the cluster, you must ensure that the VSS
configuration is identical on the new host, this leads to unnecessary
operational overhead and complexity. This is the big advantage of
the vSphere Distributed Switch.

VDS vSAN Network Configuration

In the case of a VDS, a distributed port group needs to be configured
to carry the vSAN traffic. Once the distributed port group is created,
VMkernel interfaces on the individual ESXi hosts can then be created
to use that distributed port group.

Although the official VMware documentation makes no distinction
regarding which versions of Distributed Switch you should be using,
the authors recommend using the latest version of the Distributed
Switch with vSAN. Note that all ESXi hosts attaching to this
Distributed Switch must be running the same version of ESXi when a
given distributed switch version has been selected, preferably the
version of the selected Distributed Switch should be the same as the
ESXi/vSphere version. Earlier versions of ESXi will not be able to

Telegram Channel @nettrain

utilize newer versions of the Distributed Switch when added to the
cluster.

One of the steps when creating a Distributed Switch is to select
whether NIOC is enabled or disabled. We recommend leaving this at
the default option of enabled. Later on, we discuss the value of NIOC
in a vSAN environment.

Port Group Port allocations

One important consideration with the creation of port groups is the
port allocation settings and the number of ports associated with the
port group. Note that the default number of ports is eight and that
the allocation setting is elastic by default. This means that when all
ports are assigned, a new set of eight ports is created. A port group
with an allocation type of elastic can automatically increase the
number of ports as more devices are allocated. With the port binding
set to static, a port is assigned to the VMkernel port when it connects
to the distributed port group. If you plan to have a 16-host or larger
vSAN cluster, you could consider configuring a greater number of
ports for the port group instead of the default of eight. This means
that in times of maintenance and outages, the ports always stay
available for the host until it is ready to rejoin the cluster, and it
means that the switch doesn’t incur any overhead by having to delete
and re-add the ports.

When creating a distributed switch and distributed port groups, there
are a lot of additional options to choose from, such as port binding
type. These options are well documented in the official VMware
vSphere documentation, and although we discussed port allocation
in a little detail here, most of the settings are beyond the scope of
this book. Readers who are unfamiliar with these options can find
explanations in the official VMware vSphere documentation.

Telegram Channel @nettrain

However, you can simply leave these Distributed Switch and port
groups at the default settings and vSAN will deploy just fine with
those settings.

TCP/IP Stack

One thing we would like to discuss however is the TCP/IP stack. We
often get questions about this. The common question is whether
vSAN can use a custom TCP/IP stack, or does vSAN have its own
TCP/IP stack? Neither is the case, unfortunately. At the time of
writing, vSAN only supports the use of the default TCP/IP stack for
the vSAN network. The TCP/IP provisioning stack can only be used
for provisioning traffic and the vMotion TCP/IP stack can only be
used for vMotion. You will not be able to select these stacks for vSAN
traffic. Options for configuring different network stacks may be found
in official VMware documentation and are beyond the scope of this
book but suffice to say that different network stacks can be
configured on the ESXi host and have different properties such as
default gateways associated with each network stack.

In normal vSAN configurations, not having a custom TCP/IP stack is
not an issue. However, when a stretched cluster is implemented
additional network configuration steps may need to be taken into
account for each of the hosts in the cluster, but also in the case of an
L3 (routed network) implementation for the vSAN network. There is of
course the ability to override the default gateway when creating the
vSAN VMkernel interface, this is supported for vSAN starting vSAN
7.0 U1. An alternative to using the “override default gateway” option
would be to configure static routes using the CLI. We will talk about
these network considerations and configuration in more detail, and
how ESXi hosts in a stretched vSAN cluster can communicate over
L3 networks in Chapter 7.

Telegram Channel @nettrain

IPv4 and IPv6

Another decision that will need to be made when manually
configuring the vSAN network stack is the use of IPv4 versus that of
IPv6 and of course the use of DHCP versus static configured IP
addresses. VMware vSAN supports both the use of IPv4 and IPv6,
the choice is up to you as an administrator or the network
administrator. When it comes to the allocation of IP addresses we
prefer statically assigned. Although DHCP is fully supported it will
make troubleshooting more complex. One definite recommendation
around the use of DHCP-allocated IP addresses is to make sure that
the range of IP addresses is reserved for vSAN use, which will
prevent other devices from consuming them should a host be offline
for an extended period.

Network Configuration Issues

If the vSAN VMkernel is not properly configured, a warning will be
displayed in the vSAN > Skyline Health section on the monitor tab of
your vSAN cluster object. If you click the warning for the particular
tests that have failed, further details related to the network status of
all hosts in the cluster will display. In this scenario a single host in a
twelve-host cluster is part of a different IP subnet, causing
connectivity issues as expected. You can also see that the cluster has
a partition, with 11 hosts in partition number 1 and the misconfigured
host in its own partition, partition number 2

Telegram Channel @nettrain

Figure 22: Health Check warning

On top of that, in the Disk Management section it shows the network
partition groups. This is displayed in this section of the UI, as lack of
network connectivity will impact vSAN capacity.

Telegram Channel @nettrain

Figure 23: Network partition group in Disk Management section

Network I/O Control Configuration Example

As previously mentioned, NIOC can be used to guarantee bandwidth
for vSAN cluster communication and I/O. NIOC is available only on
VDS, not on VSS. Indeed, VDS is only available with some of the
higher vSphere editions; however, as mentioned earlier vSAN
includes VDS irrespective of the vSphere edition used.

If you are using an earlier version of a Distributed Switch prior to
your vSphere version, although not explicitly called out in the vSphere
documentation, we recommend upgrading to the most recent version
of the Distributed Switch if you plan to use it with vSAN. This is
simply a cautionary recommendation as we did all our vSAN testing
with the most recent version (7.0.3) of the Distributed Switch.

Telegram Channel @nettrain

Network I/O Control

NIOC has a traffic type called vSAN traffic, and thus provides QoS on
vSAN traffic. Although this QoS configuration might not be necessary
for most vSAN cluster environments, it is a good feature to have
available if vSAN traffic appears to be impacted by other traffic types
sharing the same 10 GbE (or higher) network interface card. An
example of a traffic type that could impact vSAN is vMotion. By its
very nature, vMotion traffic is “bursty” and might claim the full
available bandwidth on a NIC port, impacting other traffic types
sharing the NIC, including vSAN traffic. Leveraging NIOC in those
situations will avoid a self-imposed denial-of-service (DoS) attack
during for instance maintenance mode, where many VMs are
migrated concurrently.

Setting up NIOC is quite straightforward, and once configured it will
guarantee a certain bandwidth for the vSAN traffic between all hosts.
NIOC is enabled by default when a VDS is created. If the feature was
disabled during the initial creation of the Distributed Switch, it may
be enabled once again by editing the Distributed Switch properties
via the vSphere Client. To begin with, use the vSphere Client to select
the VDS in the network section. From there, select the VDS and
navigate to the configure tab and select the resource allocation view.
This displays the NIOC configuration options.

Telegram Channel @nettrain

Figure 24: NIOC resource allocation

To change the resource allocation for the vSAN traffic in NIOC,
simply edit the properties of the vSAN traffic type. The next
screenshot shows the modifiable configuration options for each
traffic stream.

Telegram Channel @nettrain

Figure 25: NIOC configuration

By default, the limit is set to unlimited, physical adapter shares are
set to 100, and there is no reservation. The unlimited value means
that vSAN network traffic is allowed to consume all the network
bandwidth when there is no congestion. We do not recommend
setting a limit on the vSAN traffic. The reason for this is because a
limit is a “hard” setting. In other words, if a 2 Gbps limit is
configured on vSAN traffic, the traffic will be limited even when
additional bandwidth is available. Therefore, you should not use limits
because of this behavior.

With a reservation, you can configure the minimum bandwidth that
needs to be available for a particular traffic stream. This must not

Telegram Channel @nettrain

exceed 75% of available bandwidth. The reason for not using
reservations is because unused reserved bandwidth cannot be
allocated to other traffic like for instance VM traffic. We recommend
leaving this untouched and instead using the shares mechanism.

With the share mechanism, if network contention arises, the physical
adapter shares will be used by NIOC for traffic management. These
shares are compared with the share values assigned to other traffic
types to determine which traffic type gets priority. You can use
shares to “artificially limit” your traffic types based on actual
resource usage and demand.

With vSAN deployments, VMware is recommending a 10 GbE network
infrastructure at a minimum. In these deployments, two 10 GbE
network ports are usually used and are connected to two physical 10
GbE capable switches to provide availability. The various types of
traffic will need to share this network capacity, and this is where
NIOC can prove invaluable.

Design Considerations: Distributed Switch and
Network I/O Control

To provide QoS and performance predictability, vSAN and NIOC
should go hand in hand. Before discussing the configuration options,
the following types of networks are being considered:

Management network
vMotion network
vSAN network
VM network

This design consideration assumes 10 GbE redundant networking
links and a redundant switch pair for availability. Two scenarios will

Telegram Channel @nettrain

be described. These scenarios are based on the type of network
switch used:

�. Redundant 10 GbE switch setup without “link aggregation”
capability

�. Redundant 10 GbE switch setup with “link aggregation”
capability

Note: Link aggregation (IEEE 802.3ad) allows users to use more
than one connection between network devices. It combines
multiple physical connections into one logical connection and
provides a level of redundancy and bandwidth improvement.

In both configurations, recommended practice dictates that you
create the following port groups and VMkernel interfaces:

1 × Management network VMkernel interface
1 × vMotion VMkernel interface (with all interfaces in the
same subnet)
1 × vSAN VMkernel interface
1 × VM port group

To simplify the configuration, you should have a single vSAN and
vMotion VMkernel interface per host.

To ensure traffic types are separated on different physical ports, we
will leverage standard Distributed Switch capabilities. We will also
show how to use shares to avoid noisy neighbor scenarios.

Scenario 1: Redundant 10 GbE Switch Without
“Link Aggregation” Capability

Telegram Channel @nettrain

In this configuration, two individual 10 GbE uplinks are available. It is
recommended to separate traffic and designate a single 10 GbE
uplink to vSAN for simplicity reasons. We often are asked how much
bandwidth each traffic type requires; we recommend monitoring
current bandwidth consumption and making design decisions based
on facts. However, for this exercise, we will make assumptions based
on our experience and commonly used configurations by our
customers. The recommended minimum amount of bandwidth to
dynamically keep available per traffic type is as follows:

Management network: 1 GbE
vMotion VMkernel interface: 5 GbE
VM network: 2 GbE
vSAN VMkernel interface: 10 GbE

Note that various traffic types will share the same uplink. The
management network, VM network, and vMotion network traffic are
configured to share uplink 1, and vSAN traffic is configured to use
uplink 2. With the network configuration done this way, sufficient
bandwidth exists for all the various types of traffic when the vSAN
cluster is in a normal operating state.

To make sure that no single traffic type can impact other traffic types
during times of contention, NIOC is configured, and the shares
mechanism is deployed. When defining traffic type network shares,
this scenario works under the assumption that there is only one
physical port available and that all traffic types share that same
physical port for this exercise.

This scenario also considers a worst-case scenario approach. This
will guarantee performance even when a failure has occurred. By
taking this approach, we can ensure that vSAN always has 50% of
the bandwidth at its disposal while leaving the remaining traffic types
with sufficient bandwidth to avoid a potential self-inflicted DoS.

Telegram Channel @nettrain

The following table outlines the recommendations for configuring
shares for the different traffic types. Note that in the table we have
only outlined the most used traffic types. In our scenario, we have
divided the total amount of shares across the different traffic types
based on the expected minimum bandwidth requirements per traffic
type.

Explicit Failover Order

When selecting the uplinks used for the various types of traffic, you
should separate traffic types to provide predictability and avoid noisy
neighbor scenarios. The following configuration is our
recommendation:

Management network VMkernel interface
Explicit failover order = Uplink 1 active/Uplink 2 standby
vMotion VMkernel interface
Explicit failover order = Uplink 1 active/Uplink 2 standby
VM port group
Explicit failover order = Uplink 1 active/Uplink 2 standby
vSAN VMkernel interface
Explicit failover order = Uplink 2 active/Uplink 1 standby

Setting an explicit failover order in the teaming and failover section
of the port groups is recommended for predictability. The explicit

Telegram Channel @nettrain

failover order always uses the highest-order uplink from the list of
active adapters that passes failover detection criteria.

Figure 26: Using Explicit Failover Order

Separating traffic types allows for optimal storage performance while
also providing sufficient bandwidth for the vMotion and VM traffic.
Although this could also be achieved by using the load-based
teaming (LBT) mechanism, note that the LBT load balancing period is
30 seconds, potentially causing a short period of contention when
“bursty” traffic share the same uplinks. Also note that when
troubleshooting network issues, it might be difficult to keep track of
the relationship between the physical NIC port and VMkernel
interface.

While this configuration provides a level of availability, it doesn’t offer
any sort of balancing for the vSAN traffic. It Is either using one link

Telegram Channel @nettrain

or the other link. Thus, one disadvantage of this approach is that the
vSAN traffic will never be able to use more than the bandwidth of a
single NIC port. In the next section, we will discuss a network
configuration that provides availability as well as load-balancing
across uplinks, allowing vSAN to consume available bandwidth on
multiple uplinks.

Figure 27: Using Explicit Failover Order

Scenario 2: Redundant 10 GbE Switch with Link
Aggregation Capability

In this next scenario, there are two 10 GbE uplinks set up in a
teamed configuration (often referred to as EtherChannel or link

Telegram Channel @nettrain

aggregation). Because of the physical switch capabilities, the
configuration of the virtual layer will be extremely simple. We will
consider the previous recommended minimum bandwidth
requirements for the design:

Management network: 1 GbE
vMotion VMkernel: 5 GbE
VM port group: 2 GbE
vSAN VMkernel interface: 10 GbE

When the physical uplinks are teamed (link aggregation), the
Distributed Switch load-balancing mechanism is required to be
configured with one of the following configuration options:

IP-Hash
Link aggregation control protocol (LACP)

IP-Hash is a load-balancing option available to VMkernel interfaces
that are connected to multiple uplinks on an ESXi host. An uplink is
chosen based on a hash of the source and destination IP addresses
of each packet. For non-IP packets, whatever is located at those IP
address offsets in the packet is used to compute the hash. Again,
this may not work well with vSAN since there may be only a single
vSAN IP address per host.

LACP allows you to connect ESXi hosts to physical switches by
employing dynamic link aggregation. LAGs (link aggregation groups)
are created on the Distributed Switch to aggregate the bandwidth of
the physical NICs on the ESXi hosts that are in turn connected to
LACP port channels.

The official vSphere networking guide has much more detail on IP-
hash and LACP support and should be referenced for additional

Telegram Channel @nettrain

details. Also, the vSAN Network Design documentation discusses
LACP extensively. (https://vmwa.re/vsannetwork)

Although IP-Hash and LACP aggregate physical NICs (and/or
ports), the algorithm used selects which physical NIC port to
use for a particular data stream. A data stream with the same
source and destination address will, as a result, only use a
single physical NIC port and thus not use the aggregate
bandwidth.

It is recommended to configure all port groups and VMkernel
interfaces to use either LACP or IP-Hash depending on the type of
physical switch being used:

Management network VMkernel interface = LACP/IP-Hash
vMotion VMkernel interface = LACP/IP-Hash
VM port group = LACP/IP-Hash
vSAN VMkernel interface = LACP/IP-Hash

Because various traffic types will share the same uplinks, you also
want to make sure that no traffic type can affect other types of traffic
during times of contention. For that, the NIOC shared mechanism is
used.

Working under the same assumptions as before that there is only one
physical port available and that all traffic types share the same
physical port, we once again take a worst-case scenario approach
into consideration. This approach will guarantee performance even in
a failure scenario. By taking this approach, we can ensure that vSAN
always has 50% of the bandwidth at its disposal while giving the
other traffic types sufficient bandwidth to avoid a potential self-
inflicted DoS situation arising.

When both uplinks are available, this will equate to 10 GbE for vSAN
traffic. When only one uplink is available (due to NIC failure or
maintenance reasons), the bandwidth is also cut in half, giving a 5

Telegram Channel @nettrain

https://vmwa.re/vsannetwork

GbE bandwidth. Table 2 in the previous example outlines the
recommendations for configuring shares for the traffic types.

The next diagram depicts this configuration scenario.

Figure 28: Distributed switch configuration for link aggregation

Either of the scenarios discussed here should provide an optimal
network configuration for your vSAN cluster. However, once again we
do want to highlight that whilst all these configurations provide
availability, the one that we have found to provide the best load-

Telegram Channel @nettrain

balancing across uplinks, and thus the best-aggregated performance
is the LACP configuration. This has to be weighed up against the
added complexity of configuring Link Aggregation on the physical
switch. Lastly, we do want to note that vSAN over RDMA is explicitly
not supported at the time of writing in combination with LACP.

vSphere High Availability

vSphere High Availability (HA) is fully supported on a vSAN cluster to
provide additional availability to VMs deployed in the cluster;
however, several significant changes have been made to vSphere HA
to ensure correct interoperability with vSAN. These changes are
important to understand as they will impact the way you configure
vSphere HA.

vSphere HA Communication Network

In non-vSAN deployments, communication of vSphere HA agents
takes place over the management network. In a vSAN environment,
vSphere HA agents communicate over the vSAN network. The
reasoning behind this is that in the event of a network failure we want
vSphere HA and vSAN to be part of the same network partition. This
avoids possible conflicts when vSphere HA and vSAN observe
different partitions when a failure occurs, with different partitions
holding subsets of the storage components and objects. As such
vSAN always needs to be configured before vSphere HA is enabled. If
vSAN is configured after vSphere HA is configured, then a warning
will inform you to temporarily disable HA first before continuing with
the configuration of vSAN.

vSAN always needs to be configured before vSphere HA is
enabled. If vSphere HA is already enabled, it needs to be

Telegram Channel @nettrain

disabled temporarily!

vSphere HA in vSAN environments, by default, continues to use the
management network’s default gateway for isolation detection. We
suspect that most vSAN environments will have the management
network and the vSAN network sharing the same physical
infrastructure (especially in 10 GbE environments), but logically
separate them using VLANs. If the vSAN and management networks
are on a different physical or logical network, it is required to change
the default vSphere HA isolation address from the management
network to the vSAN network. The reason for this is that in the event
of a vSAN network issue that leads to a host being isolated from a
vSAN perspective, vSphere HA won’t take any action since the
isolation response IP address is set on the management network, so
it is still able to ping the isolated host.

By default, the isolation address is the default gateway of the
management network as previously mentioned. VMware’s
recommendation when using vSphere HA with vSAN is to use an IP
address on the vSAN network as an isolation address. To prevent
vSphere HA from using the default gateway, and to use an IP address
on the vSAN network, the following settings must be changed at a
minimum in the advanced options for vSphere HA:

das.useDefaultIsolationAddress=false
das.isolationAddress0=<ip address on vSAN network>

In some cases, there may not be a suitable isolation address on the
vSAN network. However, most network switches can create a so-
called Switch Virtual Interface. Discuss this with your network
administrator as this may be a viable alternative. We have seen
customers who configured the isolation address to use one, or
multiple, IP addresses of their vSAN VMkernel interfaces, this
however is not recommended. In a scenario where the host is
isolated of which the IP address is used as the isolation address, it

Telegram Channel @nettrain

will be impossible to declare the host isolated as the host will always
be able to ping its own interface.

vSphere HA Heartbeat Datastores

Another noticeable difference with vSphere HA on vSAN is that the
vSAN datastore cannot be used for datastore heartbeats. These
heartbeats play a significant role in determining VM ownership in the
event of a vSphere HA cluster partition with traditional SAN or NAS
datastores. vSphere HA does not use the vSAN datastore for heart-
beating and won’t let a user designate it as a heartbeat datastore. If
no heartbeat datastores can be configured vSphere HA will display a
warning, this warning can be disabled by configuring the advanced
setting “das.ignoreInsufficientHbDatastore = true”.

Note: If ESXi hosts participating in a vSAN cluster also have
access to shared storage, either VMFS (Virtual Machine File
System) or NFS (Network File System), these traditional
datastores may be used for vSphere HA heartbeats.

vSphere HA Admission Control

There is another consideration to discuss regarding vSphere HA and
vSAN interoperability. When configuring vSphere HA, one of the
decisions that need to be made is about admission control.
Admission control ensures that vSphere HA has sufficient resources
at its disposal to restart VMs after a failure. It does this by setting
aside resources.

Starting with vSAN 7.0 U1, there now also is a mechanism to
automatically set aside storage capacity resources for vSAN to
ensure that objects which are impacted by a failure can be rebuilt.

Telegram Channel @nettrain

This functionality is called “Host rebuild reserve” and needs to be
enabled for vSAN separately. Although it provides similar
functionality as vSphere HA Admission Control does, it is not the
same. If a failure occurs, vSAN will try to use the reserved capacity on
the remaining nodes in the cluster to bring the VMs to a compliant
state by rebuilding any missing or failed components.

vSphere HA Isolation Response

When a host isolation event occurs in a vSAN cluster with vSphere
HA enabled, vSphere HA will apply the configured isolation response.
With vSphere HA, you can select four different types of responses to
an isolation event to specify what action to take on virtual machines
that are on the isolated host:

Disabled (Default)
Power off and restart VMs (vSAN Recommended)
Shut down and restart VMs

The recommendation is to have vSphere HA automatically power off
the VMs running on that host when a host isolation event occurs.
Therefore, the “isolation response” should be set to “power off and
restart VMs” and not the default setting that is “Disabled”.

Telegram Channel @nettrain

Figure 29: vSphere HA Host Isolation response

Note that “Power off and restart VMs” is like pulling the power cable
from a physical host. The VM process is killed. This is not a clean
shutdown! In the case of an isolation event, however, it is unlikely
that vSAN can write to the disks on the isolated host and as such
powering off is recommended. If the ESXi host is partitioned, it is
also unlikely that any VM on the isolated host will be able to access a
quorum of components of the storage object.

Telegram Channel @nettrain

Proactive HA support

A feature of vSphere HA which was not supported previously is
Proactive HA. Proactive HA enables vSphere to migrate VMs from a
degraded host to a healthy host. Starting with vSAN 7.0 U2 support
has been introduced for Proactive HA. You may wonder why Proactive
HA wasn’t supported pre-7.0 U2, and the answer is straightforward,
vSAN was not aware of the state of a host from a Proactive HA
perspective. Meaning that if Proactive HA would mark a host as
degraded and place it in quarantine, vSAN would still consider the
host for placing data and would not proactively migrate data from the
host. This indeed changed with 7.0 U2.

Figure 30: Configure Proactive HA

When Proactive HA is configured, and please note that you need
server vendor plugins to configure it (Providers), vSAN will consider
the state of a host when placing data and will also proactively move
data from a host when a host is degraded.

If your server vendor of choice supports Proactive HA, we would
recommend considering enabling it with the automation level set to
“Automated” and the remediation level set to “Mixed mode”. In the
case of “Mixed mode” Proactive HA will decide, based on the type of

Telegram Channel @nettrain

failure that has occurred, whether to place the host into maintenance
mode or to place it into quarantine mode.

vSphere HA Component Protection

In a traditional SAN and NAS environment it is possible to configure
a response to an all paths down (APD) scenario and permanent
device loss (PDL) scenario within HA. This capability is part of a
feature called VM Component Protection. At the time of writing this
is not supported for vSAN and as such a response to APD and/or PDL
does not have to be configured for vSphere HA in a vSAN only
cluster. However, it can be configured when traditional datastores are
available in your environment, or when you are leveraging vSAN HCI
Mesh to mount remote vSAN datastores.

The question then remains, would it be beneficial to configure
heartbeat datastores when available in a vSAN environment. The
following table describes the different failure scenarios we have
tested with a logically separated vSAN and Management network,
with and without the availability of heartbeat datastores and a
correctly and incorrectly configured isolation address.

Telegram Channel @nettrain

Key Takeaways

Always use an isolation address that is in the same network
as vSAN when the management network and the vSAN
network is logically or physically separated. By doing so,
during an isolation, the isolation is validated using the vSAN
VMkernel interface.
Always set the isolation response to power-off, this would
avoid the scenario of a duplicate MAC address or IP address
on the network when VMs are restarted when you have a
single network being isolated for a specific host.
Last but not least, if you have traditional storage, then you
can enable heartbeat datastores. It doesn’t add much in
terms of availability, but still, it will allow vSphere HA to
communicate state through the datastore.

Now that we know what has changed for vSphere HA, let’s take a look
at some core constructs of vSAN.

Telegram Channel @nettrain

Cache Device to Capacity Device Sizing Ratio

When designing your vSAN environment from a hardware
perspective, realize that vSAN heavily relies on your caching device
for performance. With previous releases of vSAN, it was
recommended to have a 10% cache capacity ratio. Meaning that
5000GB (or to write it another way, 5TB) of capacity would require
500GB of cache. In 2018 this recommendation was changed, and
VMware released a blog article (https://vmwa.re/flashcache) that
included a new recommendation. This new recommendation however
applies to all-flash environments only. For hybrid environments,
VMware still recommends the 10% rule of thumb and we will discuss
that in greater depth below. For all-flash environments, the new
caching guidelines focus on the read/write profile of the workloads
and the type of I/O. The next table describes it best.

Note that the above guidelines are implemented through the vSAN
ReadyNode program. If you decide to build your own configuration,
you will need to take the above recommendations into consideration
to ensure performance and endurance.

On the VMware Compatibility Guide for vSAN details can be found for
the recommended cache size of each of the vSAN ReadyNode
profiles and configurations: http://vmwa.re/vsanhcl.

Telegram Channel @nettrain

https://vmwa.re/flashcache
http://vmwa.re/vsanhcl

Cache in a Hybrid environment

As mentioned, as a of thumb, VMware recommends 10% cache
capacity of the expected consumed total virtual disk capacity before
“failures to tolerate” has been accounted for hybrid configurations.
VMware also supports lower ratios. Larger ratios may improve the
performance of VMs by more I/O can be cached. It should be noted
however that the maximum logical size of the write cache partition is
600GB. Since write cache on hybrid configurations is 30% of all
cache, with the remaining 70% dedicated to read cache, a 2 TB
cache device would be fully utilized. If larger SSDs are used, then the
additional capacity will be used for write endurance purposes.

Flash will function as read cache and write buffer capacity for VMs in
vSAN. For the moment, it is sufficient to understand that in a hybrid
vSAN cluster 70% of your caching device will be used as a read
cache and 30% as a write buffer.

The 10% value assumes that most working data sets are about 10%.
Using this rule of thumb (and it is just a rule of thumb) to cover most
workloads means that live data from the application running in your
VM should be in flash.

For example, assume that we have 100 VMs. Each VM has a 100 GB
virtual disk, of which anticipated usage is 50 GB on average. In this
scenario, this would result in the following:

10% of (100 × 50 GB) = 500 GB

This total amount of cache capacity should be divided by the number
of ESXi hosts in the vSAN cluster. If you have five hosts, in this
example that would lead to 100 GB of cache capacity recommended
per host.

A useful way to determine the working set size is to take a snapshot
of the VM and monitor the size of the snapshot over time. Another

Telegram Channel @nettrain

way would be to examine the incremental backup size of a particular
VM. These will give you a good idea of how much data is changing in
that VM.

Add Devices to vSAN Disk Groups

Automatic versus manual mode of adding disks to a disk group used
to be a topic of hot debate. This discussion however has been put to
rest by the vSAN team when the “automatic mode” was deprecated
in vSAN 6.6. This was the result of direct feedback from our
customers. They wanted to control where and when devices were
added to a disk group, and as such VMware decided to deprecate the
automated mode.

Disk Group Creation Example

Manual disk group creation is necessary only when additional disk
groups need to be added after the initial creation of the cluster. The
mechanism to create a disk group is quite straightforward. You need
to remember some restrictions, however, as mentioned previously:

At most, there can be one caching device per disk group.
At most, there can be seven capacity devices per disk group.

Multiple disk groups may be created if a host has more than seven
capacity devices and/or more than one caching device. Navigate to
the disk management section under vSAN in the configuration
section of the vSphere Client on your cluster object. From here, you
select a host in the cluster and click “View disks”, this will then show
you all current disk groups and currently unclaimed disks. Next, you

Telegram Channel @nettrain

can click “Create disk group” to create a new disk group. This will
then display all eligible devices (SSD and magnetic disks) in the host.

Figure 31: vSAN Disk Management

At this point, vSphere administrators have several options available.
They can decide to claim all disks from all hosts if they want, or they
can individually build disk groups one host at a time. The first option
is useful if disks show up as not local, such as disks that may be
behind a SAS controller, as discussed in chapter 2. For more granular
control, however, administrators may like to set up disk groups one
host at a time.

When you decide to configure disk groups manually, the vSphere
Client provides a very intuitive user interface (UI) to do this. From the
UI, you can select the capacity devices and flash devices that form
the disk group in a single step.

Telegram Channel @nettrain

Figure 32: Claiming disks for vSAN

After the disk groups have been created for each host, the vSAN
datastore is created. This vSAN datastore can now be used for the
deployment of VMs or other types of vSAN objects like iSCSI
volumes, vSAN File Services file shares, etc.

vSAN Datastore Properties

The raw size of a vSAN datastore is governed by the number of
capacity devices per ESXi host and the number of ESXi hosts in the
cluster. Cache devices do not contribute to the capacity of the vSAN
datastore. There is some metadata overhead to also consider. For
example, if a host has seven × 2 TB flash capacity devices in the

Telegram Channel @nettrain

cluster, and there are eight hosts in the cluster, the raw capacity is as
follows:

7 × 2 TB × 8 = 112 TB raw capacity

Now that we know how to calculate how much raw capacity, we will
have available. But how do we know much effective capacity we will
have? Well, this depends on various factors, but it all begins with the
hardware configuration, all-flash or hybrid. When creating your vSAN
cluster, if your vSAN cluster is an all-flash configuration, you have the
option to enable Deduplication and Compression or Compression
Only. These space efficiency features play a big factor in the
available capacity for an all-flash configuration. Note that these data
services are not available in a hybrid configuration. We will discuss
space efficiency features in more detail in Chapter 4.

But it is not just deduplication and compression (or compression
only) that can provide space-saving on the vSAN datastore or can
change the amount of available effective capacity. There is also the
number of replica copies configured if the VM is using a RAID-1
policy. This is enabled through the policy-based management
framework. Conversely, you may decide to use erasure coding
policies such as RAID-5 and RAID-6 (but note that this space
efficiency feature is only available on all-flash vSAN). On top of that,
there’s also the ability to reserve capacity for vSAN operations and
host failures. Enabling these reservation options will directly impact
how many VMs can be deployed on the datastore.

After creating the disk groups, your vSAN is configured. Once the
vSAN datastore is formed, a number of datastore capabilities are
surfaced up into vCenter Server. These capabilities will be used to
create the appropriate VM storage policies for VMs, and their
associated virtual machine disk (VMDK) storage objects deployed on
the vSAN datastore. These include stripe width, number of failures to
tolerate, force provisioning, and provisioned capacity. If the VM
availability mechanism needs to be optimized for performance, use

Telegram Channel @nettrain

RAID-1. If it needs to be optimized for capacity, use RAID-5 or RAID-
6. Before deploying VMs, however, you first need to understand how
to create appropriate VM storage policies that meet the
requirements of the application running in the VM.

VM storage policies and vSAN capabilities will be discussed in
greater detail later in Chapter 5, “VM Storage Policies on vSAN,” but
suffice it to know for now that these capabilities form the VM policy
requirements. These allow a vSphere administrator to specify
requirements based on performance, availability, and data services
when it comes to VM provisioning. Chapter 5 discusses VM storage
policies in the context of vSAN and how to correctly deploy a VM
using vSAN capabilities.

Summary

If everything is configured and working as designed, vSAN can be
configured in just a few clicks. However, it is vitally important that the
infrastructure is ready in advance. Identifying appropriate magnetic
disk drives or flash devices for capacity, sizing your flash resources
for caching performance, and verifying that your networking is
configured to provide the best availability and performance are all
tasks that must be configured and designed up front.

Now the vSAN cluster is up and running, let’s look at some of the
architectural components of vSAN in the next chapter.

Telegram Channel @nettrain

Chapter 4

Architectural Details

This chapter examines some of the underlying architectural details of
vSAN. We have already touched on a number of these aspects,
including the use of flash devices for caching I/O, witness disks, the
desire for pass-through storage controllers, and so on.

This chapter covers these features in detail, in addition to the new
architectural concepts and terminology that are introduced by vSAN.
Although most vSphere administrators will never see many of these
low-level constructs, it will be useful to have a generic understanding
of the services that make up vSAN when designing and sizing vSAN
deployments, as well troubleshooting or when analyzing log files.
Before examining some of the lower-level details, here is one
concept that we need to discuss first as it is the core of vSAN:
distributed RAID (Redundant Array of Inexpensive Disks).

Distributed RAID

vSAN can provide highly available and high-performing VMs using
distributed RAID, or put another way, RAID over the network. From an
availability perspective, distributed RAID simply implies that the
vSAN environment can withstand the failure of one or more ESXi
hosts (or components in that host, such as a disk drive or network
interface card) and continue to provide complete functionality for all

Telegram Channel @nettrain

your VMs. To ensure that VMs perform optimally, vSAN distributed
RAID provides the ability to divide the constituent parts of a virtual
machine, including virtual disks, across multiple physical disks and
hosts.

A point to note, however, is that VM availability and performance are
now defined on a per-VM basis using storage policies. To be more
accurate, it is defined on a per-object basis. When we talk about VMs
or virtual disks, it is good to realize that this applies to all types of
objects, including for instance vSAN File Service file shares or iSCSI
LUNs. We will however often use VM or virtual disk in our examples
as it makes it easier to comprehend.

Using a storage policy, administrators can define how many host or
disk failures an object can tolerate in a vSAN cluster and across how
many hosts and devices, an object is deployed. If you explicitly
choose not to set an availability requirement in the storage policy by
setting the number of failures to tolerate equal to zero, a host or disk
failure can certainly impact your object’s availability. More detailed
information on policy settings will be discussed in chapter 5.

In the earlier releases, vSAN used RAID-1 (synchronous mirroring)
exclusively across hosts to meet the availability and reliability
requirement of storage objects deployed on the system. The number
of mirror copies (replicas) of the VM storage objects depended on
the storage policy, in particular, the number of failures to tolerate
requirement. The ability to select more than one failure depended on
the available resources in the cluster, such as hosts and disks.
Depending on the VM storage policy, you could have up to three
replica objects of a VM’s disk (VMDK) object across a vSAN cluster
for availability, assuming there were enough hosts in the cluster to
accommodate this. By default, vSAN always deploys VMs with failures
to tolerate equal to 1; this means that there is always a replica copy
of the VM storage objects for every VM deployed on the vSAN
datastore. This is the default policy associated with vSAN datastores.

Telegram Channel @nettrain

This can be changed based on the policy selected during VM
provisioning, or by changing the default policy associated with the
vSAN datastore.

vSAN includes two other RAID types, RAID-5 and RAID-6. These are
commonly referred to as erasure coding. In earlier vSAN versions,
objects with these policies were created when the failure tolerance
method capability setting was set to capacity rather than
performance in the VM storage policy. The mechanism for selecting
RAID-5 and RAID-6 has changed in later versions of vSAN, where the
setting is embedded into the failures to tolerate setting. While this
has already been mentioned, it is important to repeat once more that
this erasure coding feature is only available on all-flash vSAN
configurations. It is not available on hybrid vSAN.

The purpose of introducing these additional distributed RAID types
is to save on capacity usage. Both RAID-5 and RAID-6 use a
distributed parity mechanism rather than mirrors to protect the data.
With RAID-5, the data is distributed across three capacity devices on
three ESXi hosts, and then the parity of this data is calculated and
stored on a fourth capacity device on a fourth ESXi host. Thus, a
minimum of 4 hosts are required in a vSAN cluster to implement a
RAID-5 object on vSAN. The parity is not always stored on the same
disk or the same host. It is distributed, as shown below.

Telegram Channel @nettrain

Figure 33: RAID-5 deployment with distributed parity

A RAID-5 configuration can tolerate only one host failure. RAID-6 is
designed to tolerate two host failures. In a RAID-6 configuration,
data is distributed across four capacity devices on four ESXi hosts,
and when the parity is calculated, it is stored on two additional
capacity devices on two additional ESXi hosts. Therefore, if you wish
to utilize a RAID-6 configuration, a total of six ESXi hosts are
required. Once again, the parity is distributed, as shown in the next
diagram.

Telegram Channel @nettrain

Figure 34: RAID-6 deployment with distributed parity

The space savings can be calculated as follows. If you deploy a
100GB VMDK object and wish to tolerate one failure using a RAID-1
configuration, a total of 200GB of capacity would be consumed on
the vSAN datastore. Similarly, if you deploy the same 100GB VMDK
object and wish to tolerate two failures using a RAID-1 configuration,
a total of 300 GB of capacity would be consumed on the vSAN
datastore. With RAID-5, a total of 133.33 GB would be consumed to
tolerate one failure (3 data + 1 parity). With RAID-6, a total of 150 GB
would be consumed to tolerate two failures (4 data + 2 parity).

Using VM Storage Policies on vSAN, administrators can now choose
between performance and capacity. If performance is the absolute
end goal for administrators, then RAID-1 (Mirroring), which is still the
default, is what should be used. If administrators do not need
maximum performance, and are more concerned with space-saving
on capacity, then RAID-5/6 (Erasure Coding) may be used.

Depending on the number of disk stripes per object policy setting
(configurable through Advanced Policy Rules), a VM disk object may
be “striped” across several capacity tier devices to achieve improved
performance. However, a stripe configuration does not always
necessitate a performance improvement. The section “Stripe Width
Policy Setting,” which can be found in chapter 5, explains the reasons

Telegram Channel @nettrain

for this as well as when it is useful to increase the stripe width in the
policy of a VMDK object.

Objects and Components

Now that we have explained how VMs are protected, it is important to
understand the concept that the vSAN datastore is an object storage
system and that VMs are now made up of a few different storage
objects. This is a new concept for vSphere administrators as
traditionally a VM has been made up of a set of files on a LUN or
volume.

We have not spoken in detail about objects and components so far,
so before we go into detail about the various types of objects, let’s
start with the definition and concepts of an object and component on
vSAN.

An object is an individual storage block device, compatible with SCSI
semantics that resides on the vSAN datastore. It may be created on-
demand and at any size, though some object sizes are limited. For
example, VMDKs follow the vSphere capacity limitation of 62TB.

Objects are the main unit of storage on vSAN. In vSAN, the objects
that make up a virtual machine are VMDKs, the VM home
namespace, and when the VM is powered on, a VM swap object is
also created. A namespace object can be thought of as a directory-
like object, where files can be stored.

If a snapshot is taken of the virtual machine during its lifespan, then
a delta disk object is created. If the snapshot includes the memory of
the virtual machine, this is also instantiated as an object, so a
snapshot could be made up of either one or two objects, depending
on the snapshot type.

Telegram Channel @nettrain

In case a failure has occurred, you may also see a special object
called a durability component. This component is used by vSAN to
temporarily store new writes and is very similar to a regular VMDK
component, but we will discuss this in more depth at a later stage.

Other object types include iSCSI targets and LUNs, file shares, and a
performance stats object used for storing vSAN performance metrics.
iSCSI targets are like VM home namespaces, and iSCSI LUNs and
file shares are like VMDKs. The performance stats database is also
akin to a namespace object. One other item to note is that if you plan
to store files on the vSAN datastore, for example, ISO images, then
this also creates a namespace type object to facilitate the storing of
the file or files.

Each “object” in vSAN has its own RAID tree that turns the
requirements placed in the policy into an actual layout on physical
devices. When a VM storage policy is selected during VM
deployment, the requirements around availability and performance in
the policy are applied to the VM’s objects, thus these have a direct
relationship to the layout of the object.

Figure 35: Sample RAID tree

Components are leaves of the object’s RAID tree—that is, a “piece”
of an object that is stored on a particular “cache device + capacity
device” combination in a disk group. A component gets transparent
caching/buffering from the cache device (which is always flash), with

Telegram Channel @nettrain

its data “at rest” on a capacity device (which could be flash in all-
flash vSAN configurations or magnetic disk in hybrid vSAN
configurations).

We stated previously that a VM can have five different types of
objects on a vSAN datastore as follows, keeping in mind that each
VM may have multiples of some of these objects associated with it:

The VM home or “namespace directory”
A swap object (if the VM is powered on)
Virtual disks/VMDKs
Delta disks (each is a unique object) created for snapshots
Snapshot memory (each is a unique object) optionally
created for snapshots

Of the five objects, the VM home namespace may need a little further
explanation. Every VM gets its own unique home namespace object.
All VM files, excluding VMDKs, deltas (snapshots), memory
(snapshots), durability component, and swap, reside in this VM home
namespace object on the vSAN datastore. The typical files found in
the VM home namespace are the “.vmx”, the “.log” files, “.vmdk”
descriptor files, snapshot deltas descriptors files, and everything else
one would expect to find in a VM home directory.

Each storage object is deployed on vSAN as a RAID tree, and each
leaf of the tree is said to be a component. For instance, if I choose to
deploy a VMDK with a stripe width of 2 but did not wish to tolerate
any failures (for whatever reason), a RAID-0 stripe would be
configured across a minimum of two disks for this VMDK. The VMDK
would be the object, and each of the stripes would be a component
of that object.

Similarly, if I specified that my VMDK should be able to tolerate at
least one failure in the cluster (host, disk, or network) by selecting a
RAID-1 policy, a mirror of the VMDK object would be created with

Telegram Channel @nettrain

one replica component on one host and another replica component
on another host in my vSAN cluster. We require one other component
in this object, referred to as a witness component, to give us quorum
in the event of failure or split-brain/cluster partition scenarios. The
witness component is very important and special but is not used for
storing any data belonging to a VM. It holds only metadata. We will
return to the witness component shortly, but for the moment let’s
concentrate on VM storage objects. Hopefully, you understand the
concept of the RAID tree at this point. The object layout and
placement decisions will be covered extensively in chapter 5.

Finally, if my policy included a requirement for both striping and
availability with RAID-1, my striped components would be mirrored
across hosts, giving me a RAID 0+1 configuration. This would result
in four components making up my single object, two striped
components in each replica.

Note also that delta disks are created when a snapshot is taken of a
VM. A delta disk inherits the same policy as the parent disk (RAID
settings, stripe width, replicas, and so on).

Component Limits

One major limit applies to components in vSAN. It is important to
understand this because it is a hard limit and limits the number of
VMs you can run on a single host and in your cluster.

Maximum number of components per host limit: 9,000

Components per host include components from powered-off VMs,
unregistered VMs, and templates. vSAN distributes components
across the various hosts in the cluster and will always try to achieve
an even distribution of components for balance. However, some hosts

Telegram Channel @nettrain

may have more components than others, which is why VMware
recommends, as a best practice, that hosts participating in a vSAN
cluster be similarly or identically configured. Components are a
significant sizing consideration when designing and deploying vSAN
clusters. If hosts participating in a vSAN cluster are uniformly
configured, vSAN will try to evenly distribute components across all
hosts and disk groups.

The vSphere client enables administrators to interrogate objects and
components of a VM. The next screenshot provides an example of
one such layout. The VM has a single hard disk. From the list of
object components, you can see that the objects (Hard disk 1 and VM
Home) are mirrored across two different hosts with the witness
placed on a third host. This is visible in the “hosts” column, where it
shows the host location of the components.

Figure 36: Physical disk placement

Virtual Machine Storage Objects

Telegram Channel @nettrain

As stated earlier, the five storage objects are VM home namespace,
VM Swap, VMDK, delta disks, and snapshot memory as illustrated in
the diagram below.

Figure 37: VM storage objects

We will now look at how characteristics defined in the VM storage
policy impact these storage objects.

Namespace Object

Virtual machines use the namespace object as their VM home and
use it to store all of the virtual machine files that are not dedicated
objects in their own right. So, for example, this includes, but is not
limited to, the following:

The “.vmx”, ”.vmdk” (the descriptor portion), “.log” files that
the VMX uses.
Digest files for content-based read cache (CBRC) for VMware
Horizon View. This feature is referred to as the View Storage
Accelerator. Virtual desktop infrastructure (VDI) is a
significant use case for vSAN.
vSphere Replication and Site Recovery Manager files.
Guest customization files.

Telegram Channel @nettrain

Files created by other solutions.

These VM home namespace objects are not shared between VMs;
there is one per VM. vSAN leverages VMFS as the file system within
the namespace object to store all the files of the VM. This is a fully
fleshed VMFS that includes cluster capabilities to support all the
solutions that require locks on VMFS (e.g., vMotion, vSphere HA). This
appears as an auto-mounted subdirectory when you examine the
ESXi hosts’ file systems.

For the VM home namespace, a special VM storage policy is used.
For the most part, the VM home storage object does not inherit all
the same policy requirements as the VMDKs. If you think about it,
why would you want to give something like the VM home namespace
a percentage of flash read cache on vSAN hybrid systems or even a
stripe width? You wouldn’t, which is why the VM home namespace
does not have these settings applied even when they are in the policy
associated with the virtual machine. The VM home namespace does,
however, inherit the failures to tolerate setting. This allows the VM to
survive multiple hardware failures in the cluster. It also means that
the VM home namespace could be deployed as a RAID-5 or RAID-6
configuration, not just a RAID-1 configuration as was the case in
prior versions of vSAN.

Since high performance is not a major requirement for the VM home
namespace storage object, vSAN overwrites the inherited policy
settings so that stripe width is always set to 1 and read cache
reservation (on hybrid) is always set to 0%. It also has object space
reservation set to 0% so that it is always thinly provisioned, even if
the policy is set to ‘thick’. This avoids the VM home namespace
object consuming unnecessary capacity, i.e., 255GB of capacity,
mirrored, and makes this disk space available to other objects that
might need them, such as VMDKs. However, as files within the VM
home namespace grow over time, logs, etc., the VM home
namespace will grow accordingly.

Telegram Channel @nettrain

One other important note is that if the option force provisioning is
set in the policy, the VM home namespace object also inherits that,
meaning that a VM will be deployed even if the full complement of
resources is not available. You will learn more about this in the next
chapter when policies are covered in detail. However, suffice to say
that a VM Home Namespace could be deployed as a RAID-0 rather
than a RAID-1 if there are not enough resources in the cluster.

Note that the namespace object has other uses other than the VM’s
home namespace. The iSCSI on vSAN feature uses the namespace
object for the iSCSI target. This is used to track iSCSI LUNs
available through this target. The vSAN Performance stats database
is also held in the namespace object. And finally, any files that might
be uploaded to the vSAN datastore, such as ISO images, will be
stored in a namespace object as well.

Virtual Machine Swap Object

Several changes have taken place around the VM swap object over
the last number of releases. Since vSAN 6.7, the VM swap object now
inherits the failures to tolerate setting in the VM Storage Policy,
which means that swap can now be configured as RAID-1, RAID-5, or
RAID-6. This is a change from previous versions of vSAN where the
VM swap object was always provisioned with RAID-1, and failures to
tolerate set to 1. The thought process behind this earlier RAID-1
configuration is that swap does not need to persist when a virtual
machine is restarted. Therefore, if vSphere HA restarts the virtual
machine on another host elsewhere in the cluster, a new swap object
is created. Thus, there is no need to add additional protection above
tolerating one failure. However, it is possible that if all of the other
objects are deployed to tolerate additional failures with policies such
as 2 failures - RAID-1(mirroring), or indeed 2 failures - RAID-6

Telegram Channel @nettrain

(erasure coding) then it would make sense to have VM swap to also
tolerate 2 failures and avoid unnecessary VM outages.

Note that swap does not inherit the stripe width policy setting. It is
always provisioned with a number of disk stripes per object setting of
1.

By default, swap objects are provisioned ‘thin’ since vSAN 6.7. Prior
to this, swap objects were always provisioned ‘thick’ upfront, without
the need to set object space reservation to 100% in the policy. This
means, in terms of admission control, vSAN would not deploy the VM
unless there is enough disk space to accommodate the full size of
the VM swap object. Since vSAN 6.2, customers can use an advanced
host option called SwapThickProvisionDisabled to allow the VM swap
to be provisioned as a thin object. If this advanced setting is set to
true, the VM swap objects will be thinly provisioned in previous
versions of vSAN.

VMDKs and Delta Disk Objects

As you have just read, VM home namespace and VM swap have their
own default policies when a VM is deployed and do not adhere to all
of the capabilities set in the policy. Therefore, it is only the VMDKs
and snapshot files (delta disks) of these disk files that obey all the
capabilities that are set in the VM storage policies. Delta disks
created as the result of a VM snapshot use the vSANSparse format, a
special on-disk format that is only available to delta disks created on
the vSAN datastore.

Because vSAN objects may be made up of multiple components,
each VMDK and delta has its own RAID tree configuration when
deployed on vSAN.

Telegram Channel @nettrain

Note that full clones, linked clones, instant clones, and vSANSparse
delta disks all create VMDK objects on the vSAN datastore. To
determine what type of VMDK a disk object is, the VMDK descriptor
file in the VM Home Namespace object can be referenced.

Witnesses and Replicas

As part of the RAID-1 tree, each object has at least 2 replicas which
can be made up of one or more components. We mentioned that
when we create VM objects, one or more witness components may
also get created. Witnesses are components that may make up a leaf
of the RAID-1 tree, but they contain only metadata. They are there to
act as tiebreakers and are only used for quorum determination in the
event of failures in the vSAN cluster. They do not store any VM-
specific data.

A common question is whether the witness consumes any space on
the vSAN datastore. With the current on-disk format a witness
consumes about 16 MB of space for metadata on the vSAN datastore.
Although insignificant to most, it could be something to consider
when running through the design, sizing, and scaling exercises when
planning to deploy many VMs with many VMDKs and many delta
snapshots on vSAN. Witness do however contribute towards the
overall component count in a vSAN cluster.

Let’s take the easiest case to explain their purpose: Suppose, for
example, that we have deployed a VM that has number of disk stripes
per object setting of 1 and it also has number of failures to tolerate
setting of 1. We wish to use RAID-1 for the VM for performance. In
this case, two replica copies of the VM need to be created.
Effectively, this is a RAID-1 with two replicas; however, with two
replicas, there is no way to differentiate between a network partition

Telegram Channel @nettrain

and a host failure. Therefore, a third entity called the witness is
added to the configuration.

For an object on vSAN to be available, two conditions must be met:

For a RAID-1 configuration, at least one full replica needs to
be intact for the object to be available. For a RAID-0
configuration, all stripes need to be intact. For RAID-5
configurations, three out of four RAID-5 components must be
intact for the object to be available, and for RAID-6, four out
of the six RAID-6 components must be intact.
The second rule is that there must be more than 50% of all
votes associated with components available.

In the preceding example, only when there is access to one replica
copy and a witness, or indeed two replica copies (and no witness),
would you be able to access the object. That way, at most only one
part of the partitioned cluster can ever access an object in the event
of a network partition.

Performance Stats DB Object

vSAN provides a performance service for monitoring vSAN, both from
a VM (front-end) perspective, vSAN (back-end) perspective and iSCSI
perspective. This service aggregates performance information from
all the ESXi hosts in the cluster and stores the metrics in a stats
database on the vSAN datastore. As previously mentioned, the object
in which the “stats DB” is stored is also a namespace object.
Therefore, the use of namespace objects is not limited to VMs,
although this is the most common use. Administrators can choose
bespoke policies for the Performance Stats object when enabling the
Performance Service. In the screenshot below, the default storage
policy is chosen but it can be changed by clicking on the down arrow

Telegram Channel @nettrain

to the right of the storage policy listed and selecting a different
policy.

Figure 38: Policy setting for Performance Service

Object Layout

The next question people usually ask is how objects are laid out in a
vSAN environment. vSAN takes care of object placement to meet the
failure to tolerate requirements and while an administrator should not
worry about these placement decisions, we understand that with a
new solution you may have the desire to have a better understanding
of the physical placement of components and objects. VMware
expected that administrators would have this desire; therefore, the
vSphere user interface enables vSphere administrators to interrogate

Telegram Channel @nettrain

the layout of a VM object and see where each component (stripes,
replicas, witnesses) that make up a storage object resides.

vSAN will never let components of different replicas (mirrors)
share the same host for availability purposes.

The visibility into all objects has improved significantly in recent
versions of vSAN. Both the VM swap objects and snapshot deltas are
now visible via the vSphere Client. While the views might be slightly
different in each of the subsequent versions of vSAN, administrators
can navigate to the vSAN Cluster, then the Monitor tab, then vSAN
followed by Virtual Objects, and select either the VM or an individual
object and then click View Placement Details. The physical disk
placement of the objects will be listed there. One can also group
components belonging to a VM on a per host basis, as shown in the
screenshot.

Figure 39: Components grouped by host placement

Telegram Channel @nettrain

vSAN Software Components

This section briefly outlines some of the software components that
make up the distributed software layer.

Much of this information will not be of particular use to vSphere
administrators on a day-to-day basis. All this complexity is hidden
away in how VMware has implemented the installation, configuration,
and management of vSAN. However, we do want to highlight some of
the major components behind the scenes for you because you may
see messages from time to time related to these components
appearing in the vSphere UI and the VMkernel logs. We want to
provide you with some background on what the function is of these
components, which may help in troubleshooting scenarios.

The vSAN architecture consists of four major components, as
illustrated in the diagram below and described in more depth in the
sections that follow.

Figure 40: vSAN software components

Component Management

The vSAN local log structured object manager (LSOM) works at the
physical disk level. LSOM is responsible for providing persistence of

Telegram Channel @nettrain

storage for the vSAN cluster. By this, we mean that it stores the
components that makeup VM storage objects as well as any
configuration information. It will also determine if a block is in cache,
or if we need to go to the capacity tier to retrieve it.

LSOM is the layer at which checksum verification is performed on
vSAN. LSOM also reports events for devices. For example, if a device
has become unhealthy, it is LSOM that is responsible for retrying I/O
if transient device errors occur.

LSOM also aids in the recovery of objects. On every ESXi host boot,
LSOM performs an SSD log recovery by reading the entire log to
ensure that the in-memory state is up to date and correct. This
means that a reboot of an ESXi host that is participating in a vSAN
cluster can take longer than an ESXi host that is not participating in
a vSAN cluster. However, this was mitigated by the introduction of
the ESXi quick boot functionality introduced in vSphere 6.7, and
further improved in vSAN 7.0 U1 where we save the in-memory
metadata table to disk during host restarts.

Data Paths for Objects

The distributed object manager (DOM) provides distributed data
access paths to objects built from local (LSOM) components. The
DOM is responsible for the creation of reliable, fault-tolerant storage
objects from local components across multiple ESXi hosts in the
vSAN cluster. It does this by implementing distributed RAID types for
objects.

DOM is also responsible for handling different types of failures such
as I/O failing from a device and being unable to contact a host. In
the event of an unexpected host failure, during recovery DOM must
resynchronize all the components that make up every object.
Components publish a bytesToSync value periodically to show the

Telegram Channel @nettrain

progress of a synchronization operation. This can be monitored via
the vSphere web client UI when recovery operations are taking place.
DOM is also the vSAN software component that calculates
checksums, which are later checked on-disk by the LSOM software
component.

Object Ownership

For every storage object in the cluster, vSAN elects an owner for the
object, typically referred to as the DOM owner, short for distributed
object manager owner. The DOM owner can be considered the
storage head responsible for coordinating (internally within vSAN)
who can do I/O to the object. We briefly discussed owners when we
spoke about vSAN iSCSI earlier in this chapter. The owner is the
entity that ensures consistent data on the distributed object by
performing a transaction for every operation that modifies the
data/metadata of the object.

One thing we do want to point out is that with the introduction of HCI
Mesh in vSAN 7.0 U1 a change has also been introduced to DOM.
Starting with 7.0 U1 DOM has been split up into multiple
components, enabling vSAN to establish a “DOM client – DOM
owner” relationship to allow for remote mounting of vSAN datastores,
both from other vSAN clusters as well as from a vanilla vSphere
cluster. We will discuss HCI Mesh in detail in chapter 6 where we
discuss vSAN Operations.

As an analogy, in NFS configurations, consider the concept of NFS
server and NFS client. Only certain DOM clients can communicate
successfully with the server. In this case, the object owner can be
considered along the same lines as an NFS server, determining
which clients can do I/O and which clients cannot.

Telegram Channel @nettrain

The final part of object ownership is the concept of a component
manager. The component manager can be thought of as the network
front end of LSOM (in other words, how a storage object in vSAN can
be accessed).

An object owner communicates to the component manager to find
the leaves on the RAID tree that contain the components of the
storage object. Typically, only one client is accessing the object.
However, in the case of a vMotion operation, multiple clients may be
accessing the same object as the DOM object is being moved
between hosts.

In most cases, the DOM owner and the DOM client co-reside on the
same node in the vSAN cluster. In the case of RAID-1 replicas, reads
are balanced across replicas for cache efficiency reasons. The DOM
owner chooses which replica to read from, based on the Logical
Block Address (LBA). This request is then sent on to LSOM.

Placement and Migration for Objects

The cluster level object manager (CLOM) is responsible for ensuring
that an object has a configuration that matches its policy (i.e., the
requested stripe width is implemented or that there are enough
mirrors/replicas in place to meet the availability requirement of the
VM). Effectively, CLOM takes the policy assigned to an object and
applies a variety of heuristics to find a configuration in the current
cluster that will meet that policy. It does this while also load
balancing the resource utilization across all the nodes in the vSAN
cluster.

DOM then applies a configuration as dictated by CLOM. CLOM
distributes components across the various ESXi hosts in the cluster.
CLOM tries to create some sort of balance, but it is not unusual for

Telegram Channel @nettrain

some hosts to have more components, capacity used/reserved, or
flash read cache used/reserved than others.

Each node in a vSAN cluster runs an instance of CLOM, called clomd.
Each instance of CLOM is responsible for the configurations and
policy compliance of the objects owned by the DOM on the ESXi host
where it runs. Therefore, it needs to communicate with cluster
monitoring, membership, and directory service (CMMDS) to be aware
of ownership transitions.

CLOM only communicates with entities on the node where it
runs. It does not use the network.

Cluster Monitoring, Membership, and Directory
Services

The purpose of cluster monitoring, membership, and directory
services (CMMDS) is to discover, establish, and maintain a cluster of
networked node members. It manages the physical cluster resources
inventory of items such as hosts, devices, and networks and stores
object metadata information such as policies, distributed RAID
configuration, and so on in an in-memory database. The object
metadata is always also persisted on disk. It is also responsible for
the detection of failures in nodes and network paths.

Other software components browse the directory and subscribe to
updates to learn of changes in cluster topology and object
configuration. For instance, DOM can use the content of the directory
to determine which nodes are storing which components of an
object, and the paths by which those nodes are reachable.

CMMDS is used to elect “owners” for objects. The owner of an object
will manage which clients can do I/O to a particular object, as
discussed earlier.

Telegram Channel @nettrain

Note that prior to vSAN 6.6, CMMDS would only form a cluster and
elect a master if there was multicast network connectivity between all
the ESXi hosts in the vSAN cluster. This requirement has since been
relaxed, and CMMDS now uses unicast traffic. It no longer requires
multicast configured on the vSAN network.

Host Roles

When a vSAN cluster is formed, you may notice through esxcli
commands that each ESXi host in a vSAN cluster has a particular
role. These roles are for the vSAN clustering service only. The
clustering service (CMMDS) is responsible for maintaining an
updated directory of disks, disk groups, and objects that resides on
each ESXi host in the vSAN cluster. This has nothing to do with
managing objects in the cluster or doing I/O to an object by the way;
this is simply to allow nodes in the cluster to keep track of one
another. The clustering service is based on a master (with a
backup) and agents, where all nodes send updates to the master and
the master then redistributes them to the agents.

Roles are applied during a cluster discovery, at which time the ESXi
hosts participating in the vSAN cluster elect the master. A vSphere
administrator has no control over which role a cluster member takes.

A common question is why a backup role is needed. The reason for
this is that if the ESXi host that is currently in the master role suffers
a catastrophic failure and there is no backup, all ESXi hosts must
reconcile their entire view of the directory with the newly elected
master. This would mean that all the nodes in the cluster might be
sending all their directory contents from their respective view of the
cluster to the new master. Having a backup negates the requirement
to send all of this information over the network, and thus speeds up
the process of electing a new master node.

Telegram Channel @nettrain

In the case of vSAN stretched clusters, which allows nodes in a vSAN
cluster to be geographically dispersed across different sites, the
master node will reside on one site whilst the backup node will reside
on the other site.

An important point to make is that, to a user or even a vSphere
administrator, the ESXi node that is elected to the role of a master
has no special features or other visible differences. Because the
master is automatically elected, even on failures, and given that the
node has no user-visible difference in abilities, doing operations
(create VM, clone VM, delete VM, etc.) on a master node versus any
other node makes no difference.

Reliable Datagram Transport

The reliable datagram transport (RDT) is the communication
mechanism within vSAN. It uses Transmission Control Protocol (TCP)
at the transport layer. When an operation needs to be performed on a
vSAN object, DOM uses RDT to talk to the owner of the vSAN object.
Because the RDT promises reliable delivery, users of the RDT can rely
on it to retry requests after path or node failures, which may result in
a change of object ownership and hence a new path to the owner of
the object. RDT creates and tears down TCP connections (sockets) on
demand.

RDT is built on top of the vSAN clustering service. The CMMDS uses
heartbeats to determine link state. If a link failure is detected, RDT
will drop connections on the path and choose a different healthy path
where possible. Thus, CMMDS and RDT are responsible for handling
path failures and timeouts.

Note that RDT is also used by HCI Mesh for communications. We
want to point this out as this subsequently means that only ESXi
hosts can directly connect to a vSAN datastore. Even though vSAN

Telegram Channel @nettrain

iSCSI and vSAN File Service storage services exist, these do not
allow you to directly mount a datastore, they will provide access to an
object on vSAN through iSCSI, NFS, or SMB respectively.

On-Disk Formats and Disk Format Changes
(DFC)

Before looking at the various I/O-related flows, let’s briefly discuss
the on-disk formats used by vSAN.

Cache Devices

VMware uses its own proprietary on-disk format for the flash devices
used in the cache layer by vSAN. In hybrid configurations, which have
both a read cache and a write buffer, the read cache portion of the
flash device has its own on-disk format, and there is also a log-
structured format for the write buffer portion of the flash device. In
the case of all-flash configurations, there is only a write buffer; there
is no read cache. Both formats are specially designed to boost the
endurance of the flash device beyond the basic functionality provided
by the flash device firmware.

Capacity Devices

It may come as a surprise to some, but in the original vSAN 5.5
release, VMware used the Virtual Machine File System (VMFS) as the
on-disk format for vSAN. However, this was not the traditional VMFS.
Instead, it used a new format unique to vSAN called VMFS local
(VMFS-L). VMFS-L was the on-disk file system format of the local

Telegram Channel @nettrain

storage on each ESXi host in vSAN. The standard VMFS file system is
specifically designed to work in clustered environments where many
hosts are sharing a datastore. It was not designed with single
host/local disk environments in mind, and certainly not distributed
datastores. VMFS-L was introduced for use cases like distributed
storage. Primarily, the clustered on-disk locking and associated
heartbeats on VMFS were removed. These are necessary only when
many hosts share the file system. They are unnecessary when only a
single host is using them. Now instead of placing a SCSI reservation
on the volume to place a lock on the metadata, a new lock manager
is implemented that avoided using SCSI reservations completely.
VMFS-L did not require on-disk heart beating either. It simply
updated an in-memory copy of the heartbeat (because no other host
needs to know about the lock). Tests showed that VMFS-L
provisioned disks in about half the time of standard VMFS with these
changes incorporated.

All versions of vSAN since 6.0 use a new on-disk format called
vSANFS. This new format was based on the VirstoFS, a high-
performance, sparse filesystem from a company called Virsto that
VMware acquired many years ago. This new vSANFS on-disk format
improved the performance of snapshots (through a new vsanSparse
format) as well as cloning operations. Customers upgrading from
vSAN 5.5 to vSAN 6.x could upgrade from VMFS-L (v1) to vSANFS (v2)
through a seamless rolling upgrade process, where the content of
each host’s disk group was evacuated elsewhere in the cluster. The
disk group on the host was then removed and recreated with the new
v2 on-disk format, and this process was repeated until all disk groups
were upgraded. This continues to be the case today, where any
changes needed to the on-disk format are handled through a rolling
upgrade process.

Throughout the various releases, newer versions of the on-disk
format have been introduced to accommodate new features and

Telegram Channel @nettrain

functionality such as unmap, deduplication and compression,
compression, encryption, and checksumming.

Note that not all on-disk format changes require a rolling upgrade.
Some of the changes are simply metadata updates and do not
require the evacuation of disk groups to make the version change.
Also note that unless you leverage a particular data service, e.g.,
turning on encryption, a rolling upgrade will not be needed until you
turn on the feature. In the case of encryption, the disk format change
(DFC) is necessary to write the new disk encryption keys (DEK) from
the key management server (KMS) down to the disk. Once complete,
all subsequent writes to the disk are encrypted. Encryption will be
covered in more detail later.

vSAN I/O Flow

In this section, we will trace the I/O flow on both a read and a write
operation from an application within a guest OS when the VM is
deployed on a vSAN datastore. We will look at a read operation when
the stripe width value is set to 2, and we will look at a write operation
when the number of failures to tolerate is set to 1 using RAID-1. This
will give you an understanding of the underlying I/O flow, and this
can be leveraged to get an understanding of the I/O flows when
other capability values are specified. We will also discuss the
destaging to the capacity layer, as this is where deduplication,
compression, and checksum come into play. We will also include
encryption, as this takes place at both the caching tier and the
capacity tier.

Before we do, let’s first look at the role of flash in the I/O path.

Telegram Channel @nettrain

Caching Algorithms

There are different caching algorithms in place for the hybrid
configurations and the all-flash configurations. In a nutshell, the
caching algorithm on hybrid configurations is concerned with
optimally destaging blocks from the cache tier to the capacity tier,
whilst the caching algorithm on all-flash configurations is concerned
with ensuring that hot blocks (data that is live) are held in the
caching tier while cold blocks (data that is not being accessed) are
held in the capacity tier.

The Role of the Cache Layer

As mentioned in the previous section, flash devices have two cache-
related purposes in vSAN. When they are used in the caching layer on
hybrid configurations, they act as both a read cache and a write
buffer. This dramatically improves the performance of the I/O, at the
same time providing the ability to scale out capacity based on low-
cost SATA or SAS magnetic disk drives.

There is no read cache in all-flash vSAN configurations; the caching
tier acts as a write buffer only.

Purpose of Read Cache

The purpose of the read cache in hybrid configurations is to maintain
a list of commonly accessed disk blocks by VMs. This reduces the
I/O read latency in the event of a cache hit; that is, the disk block is
in cache and does not have to be retrieved from magnetic disk. The
actual block that is being read by the application running in the VM
may not be on the same ESXi host where the VM is running. In this

Telegram Channel @nettrain

case, DOM picks a mirror for a given read (based on offset) and
sends it to the correct component of the object. This is then sent to
LSOM to determine if the block is in the cache. If there is a cache
miss, the block is retrieved directly from magnetic disk in the
capacity tier, but of course, this will incur a latency penalty and could
also impact the number of input/output operations per second
(IOPS) achievable by vSAN. This is the purpose of having a read
cache on hybrid vSAN configurations, as it reduces the number of
IOPS that need to be sent to magnetic disks. The goal is to have a
minimum read cache hit rate of 90%. vSAN also has a read-ahead
cache optimization where 1 MB of data around the data block being
read is also brought into cache in the logical assumption that the
next read will be local to the last read, and thus it will now be cached.

vSAN balances read requests across multiple mirrors of the same
object. vSAN always tries to make sure that it sends a given read
request to the same mirror so that the block only gets cached once
in the cluster. In other words, the block is cached only on one cache
device in the cluster (on the ESXi host that contains the mirror where
the read requests are sent). Because cache space is relatively
expensive, this mechanism optimizes how much cache you require
for vSAN. Correctly sizing the vSAN cache has a very significant
impact on performance in a steady state.

Read cache for All-Flash vSAN configurations?

In all-flash vSAN configurations, since the capacity layer is also flash
if a read cache miss occurs, fetching the data block from the
capacity tier is not as expensive as fetching a data block from the
capacity tier in a hybrid solution. Instead, it is a very quick (typically
sub-millisecond) operation. Therefore, it is not necessary to have a
flash-based read cache in all-flash vSAN configurations since the
capacity tier can handle reads effectively. By not implementing a

Telegram Channel @nettrain

read cache, we also free up the cache tier for more writes, boosting
overall performance.

Purpose of Write Cache

The write cache behaves as a write-back buffer in both all-flash and
hybrid vSAN configurations. Writes are acknowledged when they
enter the flash device used in the cache tier. The fact that we can use
flash devices for writes in hybrid configurations significantly reduces
the latency for write operations since the writes do not have to be
destaged to the capacity tier before they are acknowledged.

Because the writes go to the cache tier flash devices, we must ensure
that there is a copy of the data block elsewhere in the vSAN cluster.
All VMs deployed to vSAN have an availability policy setting that
ensures at least one additional copy of virtual machine data is
available, (unless of course administrators explicitly override the
default policy and choose a failure to tolerate setting of 0). This
availability policy includes the write cache contents. Once a write is
initiated by the application running inside of the guest OS, the write
is sent to all replicas in parallel. Writes are buffered in the cache tier
flash devices associated with the disk groups where the components
of the VMDK storage object reside.

This means that in the event of a host failure, we also have a copy of
the in-cache data and so no corruption will happen to the data; the
virtual machine will simply reuse the replicated copy of the cache as
well as the replicated disk data.

Note that all-flash vSAN configurations continue to use the cache tier
as a write buffer, and all virtual machine writes land first on this
cache device, same as in hybrid configurations. The major algorithm
change here is how the write cache is used. The write cache is now
used to hold “hot” blocks of data (data that is in a state of change).

Telegram Channel @nettrain

Only when the blocks become “cold” (no longer updated/written) they
are moved to the capacity tier.

Anatomy of a vSAN Read on Hybrid vSAN

For an object placed on a vSAN datastore, when using a RAID-1
configuration, there may be multiple replicas when the failures to
tolerate value is set to a value greater than 0 in the VM storage
policy. Reads may now be spread across the replicas. Different reads
may be sent to different replicas according to their logical block
address (LBA) on disk. This is to ensure that vSAN does not
necessarily consume more read cache than necessary and avoids
caching the same data in multiple locations.

Taking the example of an application issuing a read request, the
cluster service (CMMDS) is first consulted to determine the DOM
owner of the data. The DOM owner, using the LBA, determines which
component will service the request. In the case of the object having
multiple replicas, a replica is chosen for the read request based on
the LBA, as mentioned above. The request is then sent to the correct
replica. The request next goes to LSOM to determine if the block is
in read cache. If the block is present in read cache, the read is
serviced from that read cache. If a read cache miss occurs, and the
block is not in cache, the next step is to read the data from the
capacity tier, and on hybrid vSAN configurations, the capacity tier will
be made up of magnetic disks.

In many cases, the data may have to be transferred over the network
if the data is on the capacity tier of a different ESXi host. Once the
data is retrieved, it is returned to the requesting ESXi host and the
read is served up to the VM.

The next diagram gives an idea of the steps involved in a read
operation on hybrid vSAN. In this particular example, the stripe width

Telegram Channel @nettrain

setting is 2, and the VM’s storage object is striped across disks that
reside on different hosts. (Each stripe is therefore a component, to
use the correct vSAN terminology.) Note that Stripe-1a and Stripe-1b
reside on the same host, while Stripe-2a and Stripe-2b reside on
different hosts. In this scenario, our read needs to come from Stripe-
2b. If the owner does not have the block that the application within
the VM wants to read, the read will go over the network to retrieve the
data block.

Figure 41: vSAN I/O flow: Failures to tolerate = 1 + stripe width = 2

Anatomy of a vSAN Read on All-Flash vSAN

Since there is no read cache in all-flash vSAN clusters, the I/O flow is
different when compared to a read operation on hybrid
configurations. On an all-flash vSAN, when a read is issued, the write
buffer is first checked to see if the block is present (i.e., is it a hot
block?). The same is done on hybrid. If the block being read is in the
write buffer, it will be fetched from there. If the requested block is not
in the write buffer, the block is fetched from the capacity tier. This

Telegram Channel @nettrain

may come as a surprise since we explicitly state that there is no
dedicated read cache for all-flash vSAN. But note that in all-flash
vSAN data can still be read from the cache tier as long as it isn’t
destaged (hot) yet. In essence, there is no separate read cache area
defined on a cache device but read operations from the cache tier
are still possible.

Remember that the capacity tier is also flash in an all-flash vSAN, so
the latency overhead in first checking the cache tier, and then having
to retrieve the block from the capacity tier is minimal. This is the
reason why we have not implemented a read cache for all-flash vSAN
configurations, and the cache tier is totally dedicated as a write
buffer. By not implementing a read cache, as mentioned earlier, we
free up the cache tier for more writes, boosting overall IOPS
performance.

Anatomy of a vSAN Write on Hybrid vSAN

Now that we know how a read works, let’s take a look at a write
operation. When a new VM is deployed, its components are stored on
multiple hosts. vSAN will not use data locality unless this is explicitly
stated in the policy, and as such it could be possible that your VM
runs on ESXi-01 from a CPU and memory perspective, while the
components of the VM are stored on both ESXi-02 and ESXi-03, as
shown in the diagram below

Telegram Channel @nettrain

Figure 42: vSAN I/O flow: Write acknowledgment

We are keeping this as a very simple write operation since hybrid
systems do not support many of the data services that are supported
on all-flash systems. For example, all-flash systems support erasure
coding (RAID-5/RAID-6) object configurations, as well as
deduplication and compression, and Compression Only. These data
services are not supported with hybrid vSAN. Shortly, we will look at
the impact of these data services on the I/O path when we look at
the anatomy of a vSAN write on all-flash. Both checksum and
encryption are supported on both hybrid and all-flash configurations,
we will also look at where checksum and encryption occur in the I/O
path when we look at the all-flash configuration.

In this example, when an application within a VM issues a write
operation, the owner of the object clones the write operation. The
write is sent to cache on ESXi-02 and to the cache on ESXi-03 in
parallel. The write is acknowledged when the write reaches the cache.
At this point, the data has arrived on the device, but may not have
been stored in its final location. However, there is no risk to the data

Telegram Channel @nettrain

because the device has indeed received the data. The owner waits
for an acknowledgment that the write has been successful from both
hosts and completes the I/O. Later, the write data will be destaged
as part of a batch commit to magnetic disk. Note that ESXi-02 may
destage writes at a different time than ESXi-03. This is not
coordinated because it depends on various things such as how fast
the write buffer is filling up, how much capacity is left, and where
data are stored on magnetic disks.

Retiring Writes to Capacity tier on Hybrid vSAN

Writes across virtual disks from applications and the guest OS
running inside a VM deployed on vSAN accumulates in the cache tier
over time. On hybrid vSAN configuration, vSAN has an elevator
algorithm implemented that periodically flushes the data in the write
buffer in cache to magnetic disk in address order. The write buffer of
the flash device is split into several “buckets.” Data blocks, as they
are written, are assigned to buckets in increasing LBA order. When
destaging occurs, perhaps due to resource constraints, or when the
write buffer cache reaches 30% capacity, the data in the oldest
bucket is destaged first. Therefore, it is important to run tests long
enough, and create sufficient IO flow, during a proof-of-concept to
cause destaging. This is what will happen when vSAN is in
production, so you certainly want to simulate this behavior during
POCs as well to capture steady-state performance statistics from
your vSAN deployment.

As mentioned earlier, when destaging writes, vSAN considers the
location of the I/O. The data accumulated on a per bucket basis
provides a sequential (proximal) workload for the magnetic disk. In
other words, the LBAs near one another on the magnetic disk should
be destaged together for improved performance. This proximal

Telegram Channel @nettrain

mechanism also provides improved throughput on the capacity tier
flash devices for all-flash vSAN configurations.

The proximal mechanism considers many parameters such as the
rate of incoming I/O, queues, disk utilization, and optimal batching.
This is a self-tuning algorithm that decides how often writes on the
cache tier destage to the capacity tier.

Anatomy of a vSAN Write on all-flash vSAN

A write operation on an all-flash vSAN is very similar to how writes
are done in hybrid vSAN configurations. In hybrid configurations, only
30% of the cache tier is dedicated to the write buffer, and the other
70% is assigned to the read cache. Since there is no read cache in
all-flash configurations, the full 100% of the cache tier is assigned to
the write buffer (up to a maximum of 600 GB in the current version
of vSAN). However, larger devices are supported and vSAN will use
the whole capacity, increasing the lifespan of the cache device. 600
GB is the maximum cache that can be used at any one time,
regardless of the physical capacity of the device. However, this 600
GB can use each block of the device to reduce wear of the cells.
Thus, the bigger the device, the fewer times the cache device uses
the same cells, increasing the lifespan of the device due to the
maximum number of writes.

The role of the cache tier is also different between hybrid and all-
flash. As we have seen, the write buffer in hybrid vSAN improves
performance since writes do not need to go directly to the capacity
tier made up of magnetic disks, thus improving latency. In all-flash
vSAN, the purpose of the write buffer is endurance. A design goal of
all-flash vSAN is to place high endurance flash devices in the cache
tier so that they can handle the most amounts of I/O. This allows the

Telegram Channel @nettrain

capacity tier to use a lower specification flash device, as they do not
need to handle the same number of writes as the cache tier.

Having said that, write operations for all-flash are still very similar to
hybrid. It is only when the block being written is in the write buffer of
all the replicas that the write is acknowledged.

In the previous section, we mentioned that there are additional data
services available to all-flash systems when compared with hybrid
systems. Notably, all-flash allows customers to use RAID-5/RAID-6
erasure coding policies for space saving initiatives, as well as
Deduplication and Compression or Compression Only. In this
anatomy of a write I/O on all-flash, let’s assume that vSAN has
checksums, deduplication and compression and encryption enabled,
and what impact that has on the I/O. Let’s first describe those data
services.

Deduplication and Compression

Alongside erasure coding, vSAN has two additional data reduction
features, deduplication, and compression. When enabled on a cluster
level, vSAN will aim to deduplicate each block (store unique blocks of
data only). If a new block arrives and it is already stored on the vSAN
datastore, rather than storing the same block again, a small hash
entry is created to the already existing block. If the same block of
data occurs many times, significant space savings are achieved.

Deduplication on vSAN uses the SHA-1 hashing algorithm, creating a
“fingerprint” for every data block. This hashing algorithm ensures
that no two 4KB blocks of data result in the same hash, so that all
blocks of data are uniquely hashed. When a new block arrives in, it is
hashed and then compared to the existing table of hashes. If it
already exists, then there is no need to store this new block. vSAN

Telegram Channel @nettrain

simply adds a new reference to it. If it does not already exist, a new
hash entry is created, and the block is persisted.

vSAN uses the LZ4 compression mechanism. If, after deduplication,
a new block is found to be unique, it also goes through compression.
If the LZ4 compression manages to reduce the size of a 4 KB block
to less than or equal to 2 KB, then the compressed version of the
block is persisted to the capacity tier. If compression cannot reduce
the size to less than 2 KB, then the full-sized block is persisted. It is
done this way (deduplication followed by compression) because if the
block already exists, then we don’t have to pay the compression
penalty for that block.

These features are only available for all-flash vSAN. Compression and
deduplication cannot be enabled separately when vSAN is deployed
on-premises; they are either disabled or enabled together.
Deduplication and compression work on a disk group level. In other
words, only objects deployed on the same disk group can contribute
toward space savings. If components from different but identical VMs
are deployed to different disk groups, there will not be any
deduplication of identical blocks of data.

However, deduplication and compression are a cluster wide feature—
they are either on or off. You cannot choose which virtual machines,
or which disk groups, to enable it on.

For components deployed on the same disk group that have
deduplication and compression enabled, deduplication will be done
on a 4 KB block level. A disk group will only use one copy of that 4
KB block and all duplicate blocks will be eliminated as shown below.

Telegram Channel @nettrain

Figure 43: vSAN I/O flow: Write acknowledgment

The process of deduplication is done when the block is being
destaged from the cache tier to the capacity tier. This is what we
commonly refer to as near-line deduplication. To track the
deduplicated blocks, hash tables are used. The deduplicated data
and hash table metadata are spread across the capacity devices that
make up the disk group.

Deduplication does not differentiate between the components in the
disk group. It may deduplicate blocks in the VM home namespace,
VM swap, VMDK object, or snapshot delta object.

If a disk group begins to fill up capacity-wise, vSAN examines the
footprint of the deduplicated components and balances the ones
which will make the most significant difference to the capacity used
in the disk group.

Please note however that if deduplication and compression are
enabled on a disk group, a single device failure will make the entire
disk group appear unhealthy.

The deduplication and compression process is shown below. In step
1 the VM writes data to vSAN that lands on the caching tier. When the

Telegram Channel @nettrain

data becomes cold and needs to be destaged, vSAN reads the block
into memory (step 2). It will compute the hashes, eliminate the
duplicates, and compress the remaining blocks before writing them
to the capacity tier (step 3). These operations occur “asynchronous”
to the I/O operations of the Guest OS. They do not create additional
latency for Guest OS I/O.

Figure 44: Deduplication and compression process

Telegram Channel @nettrain

Compression only

As stated above, vSAN uses the LZ4 compression mechanism. In the
case of Deduplication and Compression, after deduplication, a new
block is found to be unique, it also goes through compression.
However, in the case of Compression only no deduplication effort
occurs. This not only removes the overhead that the deduplication
process introduces, but also increases the availability of the cluster.
You may ask yourself why it would change the availability levels of the
cluster. The answer is simple. When Deduplication and Compression
is enabled all devices in a disk group hold metadata for the disk
group. If a flash device fails within a disk group, this impacts the full
disk group as a portion of the required metadata could be missing.
As a result, when a single device fails within a disk group that has
Deduplication and Compression enabled, the full disk group will be
marked as inaccessible. Fortunately, this is not the case for
Compression only. Compression only does not introduce changes to
the metadata structure of a disk group, and as a result a failure of a
capacity device would not automatically render the full disk group to
be inaccessible.

Now, let’s get back to the compression process. Again, if the LZ4
compression manages to reduce the size of a 4 KB block to less than
or equal to 2 KB, then the compressed version of the block is
persisted to the capacity tier. If compression cannot reduce the size
to less than 2 KB, then the full-sized block is persisted as the cost of
compression at this point would be higher than the savings.

You may ask yourself at this point, when should I use Compression
only and when should I use Deduplication and Compression? The
answer to that is “it depends”. Of course, there are guidelines
provided by VMware, and these guidelines are based on how
applications are expected to behave from an IO stance, results may
vary however depending on your workload. In general, though, the

Telegram Channel @nettrain

below list gives an indication of which setting to use for which kinds
of applications.

OLTP databases – Compression only
Mixed workloads – Compression only
Full clone based VDI – Deduplication and compression
Linked or instance clone based VDI – Compression only
General virtualized workloads with a common Guest OS –
Deduplication and compression

Data Integrity through Checksum

vSAN provides checksum functionality, which is enabled by default.
Checksum verifies that any written data is the same at the source
and destination of the data. Checksum functionality is available on
both hybrid configurations and all-flash configurations. The
checksum mechanism is implemented using the very common cyclic
redundancy check (CRC-32C) (Castagnoli) for best performance,
utilizing special CPU instructions on Intel processors (Intel c2c32c)
that makes the process extremely fast.

For each 4 KB block of data, a 5-byte checksum is created and is
stored separately from the data. This occurs before any data are
written to persistent storage. In other words, the checksum is
calculated before writing the block to the caching layer. The
checksum data goes all the way through the vSAN I/O stack. The
checksum is persisted with the data.

If a checksum error is discovered in the I/O path, the checksum error
is automatically repaired. A message stating that a checksum error
has been detected and corrected is logged in the VMkernel log.

The checksum functionality also includes a data scrubber
mechanism, which validates the data and checksums up to 36 times

Telegram Channel @nettrain

per year. This will protect your vSAN environment for instance against
data corruption because of bit rot. This number is defined through
the advanced setting called VSAN.ObjectScrubsPerYearBase.

Figure 45: Scrub advanced setting

Administrators can configure checksum to be enabled or disabled on
a per vSAN object basis if they so wish. This feature should only be
disabled if an application can provide its own checksumming
functionality, for example, in the case of Hadoop HDFS. We would
recommend leaving it at the default setting of enabled for the vast
majority of vSAN workloads. Such a policy setting is shown below.

Figure 46: Checksum policy setting

Telegram Channel @nettrain

vSAN Encryption

vSAN provides both data-at-rest and data-in-transit encryption.
These features are enabled cluster-wide, once enabled, apply to all
vSAN objects. The encryption feature is hardware agnostic and does
not require any special encryption devices such as self-encrypting
drives (SEDs). The encryption cipher used is the Advanced Encryption
Standard XTS-AES 256.

As stated, vSAN supports both data-at-rest, as well as data-in-transit
encryption. vSAN data-at-rest encryption encrypts the data in the
cache tier and the capacity tier. Therefore, vSAN encrypts the data
when it comes into cache, but when it is time to destage this data to
the capacity tier, vSAN decrypts (or un-encrypts) the data as it leaves
the cache tier, then runs the deduplication and compression
algorithms, and finally encrypts the data once more. This ensures
that even when the caching tier devices are decommissioned for
whatever reason, the data in the cache is still encrypted.

vSAN data-in-transit encryption can be enabled independently of, or
together with, vSAN data-at-rest encryption and was introduced in
vSAN 7.0 U1. Data-in-transit encryption increases security as it
ensures that all traffic is encrypted over the network. It uses the
same cryptographic module that vSAN data-at-rest encryption uses,
it does however not require need for a key management server as it
has its own automated key rotation mechanism.

vSAN Encryption vs vSphere VM Encryption

One common question is why we have vSAN Encryption mechanisms
as well as a per-VM encryption mechanism available in vSphere? The
reason for this is that VM encryption does not lend itself to
deduplication or compression because of where the encryption of

Telegram Channel @nettrain

data occurs in the IO path. With vSAN encryption, the actual
encryption of the data takes place after the deduplication and
compression algorithms when the data hits the capacity tier. This
means that vSAN encryption allows deduplication and compression
to do their data reduction before we encrypt the persisted data. This
gives us the ability to achieve decent data reduction compared to the
VM encrypt mechanism.

If you plan to use vSAN encryption, or even the VM encryption
mechanism for that matter, please be aware that VMware does not
provide a full key manager server (KMS), however, starting with vSAN
7.0 U2 there is the option to use the Native Key Provider which is
included with vCenter Server. You may wonder why anyone would
want to use a 3rd party vendor when a native key provider is included.
The Native Key Provider does not provide the same functionality as a
key management server. For instance, the Native Key Provider can
only be used for vSphere and vSAN at the time of writing. Also, the
Native Key Provider does not have support for the Key Management
Interop Protocol (KMIP) and it also doesn’t come with the resiliency
or availability features a full KMS typically comes with. If those before
mentioned features are required, we recommend selecting a KMS
from one of our supported partners. Details of supported KMS
partners can be found on the official VMware vSAN compatibility
website.

Telegram Channel @nettrain

Figure 47: Native Key Provider

The KMS solution provides the key encryption key (KEK) and data
encryption keys (DEK). The KEK is used to encrypt the DEKs. The DEK
does the on-disk encryption. The DEKs created by the KMS are
transferred to vSAN hosts using the key management interoperability
protocol (KMIP). You might think that if the keys are stored on the
host, isn’t this somewhat insecure? This is the reason why the KEK is
used to encrypt the DEKs, i.e., the keys are themselves encrypted.
Unless you have access to the KEK, you cannot decrypt the DEK, and
thus you cannot decrypt the data on disk.

The vSAN encryption feature relies heavily on Advanced Encryption
Standard Native Instruction (AESNI). This is available on all modern
CPUs. There are also health checks which ensure that the KMS is still
accessible and that all the hosts in the vSAN cluster support AESNI.

Telegram Channel @nettrain

vSAN encryption is supported on both hybrid and all-flash models of
vSAN. Note that although implementation is using a third-party KMS,
encryption is performed natively within vSphere/vSAN, using modules
that are native to the VMkernel.

Data Locality

A question that usually comes now is this: What about data locality?
Is cache (for instance) kept local to the VM? Do the VM cache and
the VMDK storage object need to travel with the VM each time
vSphere distributed resource scheduler (DRS) migrates a VM due to
a compute imbalance?

In general, the answer is no – vSAN is designed to deploy VMs and
their respective objects with no data locality. There are some
exceptions which we will come to shortly. However, vSAN has been
designed with core vSphere features in mind. In other words, one
should be able to do vMotion and/or enable DRS without worrying
about a decrease in performance when a VM is migrated to a new
host. Similarly, we did not want to have every vMotion operation turn
into a Storage vMotion operation and move all of its data every time
that you move a VM’s compute. This is especially true when you
consider the fact that by default vSphere DRS runs once every 5
minutes at a minimum which can result in VMs being migrated to a
different host every 5 minutes. For these reasons, vSAN may deploy a
VM’s compute and a VM’s storage on completely different hosts in
the cluster.

However, note that there is a layer of small in-memory read cache
dedicated to client-side caching. Small in this case means 0.4% of a
host’s memory capacity, up to a max of 1 GB per host. This in-
memory cache means that blocks of a VM are cached in memory on
the host where the VM is located. When the VM migrates, the cache

Telegram Channel @nettrain

is invalidated and will need to be warmed up again on the destination
host. Note that in most cases hot data already resides in the flash
read cache or the write cache layer and as such the performance
impact of a migration on a VM is low.

Content Based Read Cache

If there is a specific requirement to provide an additional form of
data locality, however, it is good to know that vSAN integrates with
content based read cache (CBRC), mostly seen when used as an in-
memory read cache for VMware Horizon View. This can be enabled
without the need to make any changes to your vSAN configuration.
Note that CBRC does not need a specific object or component
created on the vSAN datastore; the CBRC digests are stored in the
VM home namespace object.

Data Locality in vSAN Stretched Clusters

We mentioned that there are some caveats to this treatment of data
locality. One such caveat arises when considering a vSAN stretched
cluster deployment. vSAN stretched clusters allow hosts in a vSAN
cluster to be deployed at different, geographically dispersed sites. In
a vSAN stretched cluster, one mirror of the data is located at site 1
and the other mirror is located at site 2. vSAN stretched cluster
supports RAID-1 protection across sites. Should it be a requirement,
administrators can implement a secondary failure to tolerate setting
at each site if they wish.

Previously we mentioned that vSAN implements a sort of round-robin
policy when it comes to reading from mirrors, based on the LBA
offset. This would not be suitable for vSAN stretched clusters as 50%
of the reads would need to traverse the link to the remote site. Since

Telegram Channel @nettrain

VMware supports latency of up to 5ms between the sites, this would
have an adverse effect on the performance of the VM.

Rather than continuing to read in a round-robin, block offset fashion,
vSAN now has the smarts to figure out in which site a VM is running
in a stretched cluster configuration and change its read algorithm to
do 100% of the reads from the mirror/replica at the local site. This
means that there are no reads done across the link during steady-
state operations. It also means that all the caching is done on the
local site, or even on the local host using the in-memory cache. This
avoids incurring any additional latency, as reads do not have to
traverse the inter-site link.

Note that this is not read locality on a per-host basis. It is read
locality on a per VM and per-site basis. On the same site, the
VM’s compute could be on any of the ESXi hosts while its local data
object could be on any other ESXi host within the site.

Data Locality in Shared Nothing applications

vSAN continues to expand on the use-cases and applications that it
can support. One of the applications that is gaining momentum on
vSAN are what might be termed next-gen applications, and a
common next-gen application is Hadoop/Big-Data. We have worked
closely with some of the leading Hadoop partners on creating
reference architecture for running Hadoop on vSAN. One of the initial
requirements was to have data locality – in other words, a VM’s
compute and storage should run on the same host. We should caveat
that this is an optional requirement. However, if the application has
built-in replication and its service is provided by multiple VMs,
administrators need to ensure the data of the VMs are placed on
different hosts. If 2 replica copies ended up on the same host, and if

Telegram Channel @nettrain

that host suffered a failure, then this would render the application
inaccessible.

For example, with an application like Hadoop distributed file system
(HDFS) which has a built-in replication factor, we can provision HDFS
with several VMs, and with vSAN data locality and DRS anti-affinity
rules, we can ensure that each VMs compute and storage are placed
on the same vSAN nodes. Thus, a failure of a single node would not
impact the availability of the application's data, since it is being
replicated to other VMs which also have host affinity and data
locality.

In this case, we would not even need vSAN to protect the VMs as the
application has built-in protection, so the VMs could be deployed
with FTT=0.

Note that this feature was only available under special request in
vSAN 6.7 and higher at the time of writing. At the time of writing,
today this policy is primarily used by the agent VMs in vSAN File
Service. This topic will be discussed in greater detail later in the
book.

Recovery from Failure

When a failure has been detected, vSAN will determine which objects
had components on the failed device. These failing components will
then get marked as either degraded or absent, but the point is that
I/O flow is renewed instantaneously to the remaining components in
the object.

Depending on the type of failure, vSAN will take immediate action or
wait for some period of time before it starts the resync process. This
is called the CLOM repair delay timer and it is 60 minutes by default.
The distinction here is if vSAN knows what has happened to a device.

Telegram Channel @nettrain

For instance, when a host fails, vSAN typically does not know why this
happened, or even what has happened exactly. Is it a host failure, a
network failure, or is it transient or permanent? It may be something
as simple as a reboot of the host in question. Should this occur, the
affected components are said to be in an “absent” state and the
repair delay timer starts counting. If a device such as a disk or SSD
reports a permanent error, it is marked as “degraded” and it is re-
protected immediately by vSAN (replacement components are built
and synchronized).

vSAN leverages durability components to increase the availability of
impacted objects starting with vSAN 7.0 U2 when a component is
marked Absent. This could be in the case a host has failed. Durability
components will be created to ensure we still maintain the specified
availability level specified within the policy. The benefit of this
approach is that if a second host fails in an FTT=1 scenario you can
recover the first failed host, as we can still merge the data with the
first failed host with the durability component. The reason for this is
that the durability component holds all writes since the failure of the
first host. Not only are these durability components great for
improving the resync times, but they also provide a higher level of
availability to vSAN.

Telegram Channel @nettrain

Figure 48: Durability component

Let’s take an example where we have suffered a permanent host
failure.

As soon as vSAN realizes the component is absent, a timer of 60
minutes will start. As in this scenario, the component is marked
absent, and a durability component is created. If the absent
component comes back within those 60 minutes, vSAN will
synchronize the replicas, or rebuild data/parity segments in the case
of RAID-5/RAID-6. If the component doesn’t come back, vSAN will
create a new replica, and resync the existing and the durability
component to this new replica.

Note that, prior to vSAN release 6.7U1, administrators were able to
decrease this time-out value by changing the advanced setting called
vSAN.ClomRepairDelay on each of your ESXi hosts in the Advanced
Settings section. Caution should be exercised, however, because if it
is set to a value that is too low, and you do a simple maintenance
task such as rebooting a host, you may find that vSAN starts
rebuilding new components before the host has completed its reboot
cycle. This adds unnecessary overhead to vSAN and could have an

Telegram Channel @nettrain

impact on the overall performance of the cluster. If you want to
change this advanced setting, we highly recommend ensuring
consistency across all ESXi hosts in the cluster.

In the latest version of vSAN, the advanced parameter is now
available in the vSphere client. As shown below, this can be found
under Cluster > Configure > vSAN > Services > Advanced options.

Figure 49: vSAN Advanced Options

As mentioned, in some scenarios vSAN responds to a failure
immediately. This depends on the type of failure and a good example
is a magnetic disk or flash device failure. In many cases, the
controller or device itself will be able to indicate what has happened
and will essentially inform vSAN that it is unlikely that the device will

Telegram Channel @nettrain

return within a reasonable amount of time. vSAN will then respond by
marking all impacted components as “degraded,” and vSAN
immediately creates a new replica and starts the resynchronization of
that new replica. It should be noted that in this scenario vSAN does
not create a durability component.

Figure 50: Disk failure: Instant mirror copy

Of course, before it will create this mirror vSAN will validate whether
sufficient resources exist to store this new copy.

If recovery occurs before the 60 minutes have elapsed or before the
creation of the replica has been completed, vSAN will decide which
method will be faster to complete (continue to create a new replica
or update replica that just came back up online), and then pursues
only that method to regain compliance. Once it regains compliance
obsolete components are discarded.

vSAN never "discards" absent components. However, if we rebuild an
absent component somewhere else then when the absent component

Telegram Channel @nettrain

comes back, vSAN will conclude it is no longer relevant and will
discard the component.

Reconfiguration can take place on vSAN for a few reasons. First, a
user might choose to change an object’s policy and the current
configuration might not conform to the new policy, so a new
configuration must be computed and applied to the object. Second, a
disk or node in the cluster might fail. If an object loses one of the
components in its configuration, it may no longer comply with its
policy.

Reconfiguration is probably the most resource-intensive task
because a lot of data will need to be transferred in most scenarios.
To ensure that regular VM I/O is not impacted by reconfiguration
tasks, vSAN can throttle the reconfiguration task to the extent that it
does not impact the performance of VMs. Much effort has gone into
ensuring that resync traffic does not negatively impact the VM I/O. In
times of network contention, vSAN may automatically throttle any
resync IO to 20% of available bandwidth, giving VM I/O most of the
available network bandwidth. When there is no contention for network
bandwidth, then resync traffic can consume all the available
bandwidth.

Degraded Device Handling (DDH)

vSAN has a feature called degraded device handling (DDH). The
driving factor behind such a feature is to deal with situations where
either an SSD or a magnetic disk drive is misbehaving. vSAN needed
a way to handle a drive that is constantly reporting transient errors,
but not failing. Of course, in situations like this, the drive may
introduce poor performance to the cluster overall. The objective of
this new feature is to have a mechanism that monitors these

Telegram Channel @nettrain

misbehaving storage devices and isolates them so that they do not
impact the overall cluster.

The feature is monitoring vSAN, looking for patterns of significant
latency on the capacity drives. If a sustained period of high latency is
observed, then vSAN will unmount the disk. As a result, the
components in the disk group, of which the disk has been
unmounted, will be marked as a permanent error and the
components will be rebuilt elsewhere in the cluster. What this means
is that the performance of the virtual machines can be consistent
and will not be impacted by this one misbehaving drive.

Enhancements continue to be made to this feature. For example,
there are regular attempts to remount disks marked under
permanent error. This will only succeed if the condition that caused
the initial failure is no longer present. If successful, the physical disk
does not need to be replaced, although the components must be
resynced. If unsuccessful, the disk continues to be marked as a
permanent error. This will be visible in the vSphere UI under Disk
Management.

The feature also checks to see whether there are any available
replicas available before unmounting. If this is the last available
replica, DDH will not unmount it but will continue to make it available
since it is the last available replica. Unmounting it in this case would
result in complete object unavailability.

vSAN Storage Services

vSAN is mostly known as a platform that provides block storage
capacity for VMs running on top of vSphere. However, starting with
vSAN 6.5 the first storage service was introduced that did not target
the vSphere platform but was intended to be used by (guest)
Operating Systems and Applications directly. This feature was the

Telegram Channel @nettrain

vSAN iSCSI Target Service. In vSAN 7.0 support for vSAN File
Services was introduced, which was primarily intended for cloud-
native applications. Starting with vSAN 7.0 U1 support for remote
mounting of vSAN datastores was also included. Let us look at these
features individually.

iSCSI Targets and LUNs

vSAN has the ability to create iSCSI targets and LUNs using vSAN
objects and present the LUNs to external iSCSI initiators. This
involves the enabling of the vSAN iSCSI Target Service, which at the
same time creates an iSCSI Target namespace object. As per the
vSphere client when enabling the vSAN iSCSI Target Service, vSAN
creates a namespace object that stores metadata for an iSCSI target
service, like the VM Home namespace object of a virtual machine.
The storage policy for the iSCSI Target namespace object should
have a failure to tolerate of 1. Once again, administrators can choose
their own specific policy for the iSCSI Target namespace when
enabling the iSCSI Target Service. In the next screenshot, we can
see where the storage policy for the iSCSI Target home object can be
selected.

Telegram Channel @nettrain

Figure 51: Policy setting for iSCSI Target

As you proceed to create iSCSI Targets and iSCSI LUNs on vSAN,
these can be assigned their own different policy as well.

One item to note is that support for transparent failover is supported
starting vSAN 6.7. Support for Windows Server Failover Cluster
(WSFC) using node majority or file share quorum was always
available on vSAN. Now that vSAN iSCSI supports transparent failure,
it enables support for features like WSFC using shared-disk mode.

Let's add a little more detail around how iSCSI on vSAN is
architected. With the iSCSI implementation on vSAN, there is the
concept of a Target I/O owner for vSAN iSCSI. The Target I/O owner
(or just I/O owner) is responsible for coordinating who can do I/O to
an object and is basically what an iSCSI initiator connects to, i.e.,
whoever wants to consume the storage, most likely a virtual machine
elsewhere in the datacenter. However, the I/O owner may be on a
completely different vSAN node/host to the actual iSCSI LUN backed
by a vSAN VMDK object. This is not a problem for vSAN deployments,
as this can be considered akin to a VM's compute residing on one
vSAN host and the VM's storage residing on a completely different

Telegram Channel @nettrain

vSAN host. This 'non-locality' feature of vSAN allows us to do
operations like maintenance mode, vMotion, capacity balancing, and
so on without impacting the performance of the VM. The same is true
for the vSAN iSCSI implementation - the I/O owner should be able to
move to a different host, and even the iSCSI LUNs should be able to
migrate to different hosts while not impacting our iSCSI availability
or performance. This enables the vSAN iSCSI implementation to be
unaffected by operations such as maintenance mode, balancing
tasks, and of course any failures in the cluster.

With iSCSI LUNs on a vSAN stretched cluster, a scenario could arise
where the I/O owner is residing on one site in the stretched cluster,
whilst the actual vSAN object backing the iSCSI LUN could be on the
other site. In that case, all the traffic between the iSCSI initiator and
the iSCSI target would have to traverse the inter-site link. But
remember that this is already true for writes since write data is
written to both sites anyway in a vSAN stretched cluster (RAID-1).
When it comes to read workloads, we do have the ability to read data
from the local site for both iSCSI and VM workloads, and not traverse
the inter-site link. This means that it doesn't matter which site has
the I/O owner resides.

But there is one caveat when it comes to supporting iSCSI on vSAN
stretched clusters. The key issue is the location of the iSCSI initiator.
If the initiator is somewhere on site A, and the target I/O owner is on
site B, then, in this case, the iSCSI traffic (as well as any vSAN traffic)
would need to traverse the inter-site link. In a nutshell, such a
configuration could end up adding an additional inter-site trip for
iSCSI traffic. For this reason, starting with vSAN 7.0 U1, the ability to
specify site affinity was introduced in the UI when creating an iSCSI
Target as shown in the screenshot below.

Telegram Channel @nettrain

Figure 52: iSCSI Target in a stretched cluster

vSAN File Service

One of the most requested features since the initial release of vSAN
has been native file services. Starting with vSAN 7.0 support for the
creation of file shares natively was added. Initially, vSAN File Service
with 7.0 only introduced support for NFS, but with 7.0 U1 support for
SMB was also introduced, alongside support for authentication using
Kerberos (NFS) or Active Directory (SMB). From an architectural point
of view, vSAN File Service was implemented in a different way than
you may expect and that is why we want to discuss it in this chapter.

When you enable File Service, vSAN will deploy “agent VMs” and
these VMs/appliances are fully managed by vSAN and ESX Agent
Manager (EAM). These agent VMs also referred to as “FS VMs”, run
Photon OS and have the file service capabilities enabled through

Telegram Channel @nettrain

docker/container technology. After these File Service Agent VMs
have been deployed, and the docker container instances have been
instantiated and configured, vSAN File Service will be up and running
and available for use.

We realize that without having a vSAN environment in front of you
with vSAN File Service enabled it may be difficult to understand what
the implementation exactly looks like. Let’s look at the next diagram
and then step by step walkthrough of the communication path of
vSAN File Service and the different components involved.

Telegram Channel @nettrain

Figure 53: vSAN File Service Architecture

Let’s look at the communication, top to bottom:

An NFS client connects to the vSAN File Services NFS Server
The NFS Server runs within the protocol stack container, the
IP addresses and DNS names provided during the
configuration are assigned to the protocol stack container
The FS VM has no IP address assigned
The FS VM has a VMCI device (vSocket interface), which is
used to communicate with the ESXi host securely

Telegram Channel @nettrain

The ESXi host has VDFS kernel modules
VDFS communicates with the vSAN layer and SPBM
vSAN is responsible for the lifecycle management of the
storage objects (file shares)
A file share has a 1:1 relationship with a VDFS volume and is
formed out of vSAN objects
Each file share / VDFS volume has a policy assigned, and the
layout of the vSAN objects is determined by this policy by
vSAN
Objects are formatted with the VDFS file system and
presented as a single VDFS volume using the selected
protocol (NFS or SMB)

FS VMs allow for communication to the kernel using the vSocket
library through the VMCI device. The VDFS layer leverages vSAN and
SPBM for the lifecycle management of the objects that form a file
share. What is this VDFS layer then? Well, VDFS is the layer that
exposes a (distributed) file system that resides within the vSAN
object(s) and allows the protocol stack container to share it as NFS
v3, NFS v4.1, or SMB. As mentioned, the objects are presented as a
single volume.

Even though vSAN File Services uses a VM to ultimately allow a client
to connect to a share, the important part here is that the VM is only
used to host the protocol stack container. All the distributed file
system logic lives within the vSphere layer.

One thing which is key to understand about the implementation is
the fact that the containers are assigned the IP addresses and the
DNS name, which are provided during the configuration. The
container instances have a unique MAC Address assigned. During the
configuration also a port group, or NSX-T segment, needs to be
selected for network access. This port group, or segment, is
connected to each VM and each container will connect to that
network. As the MAC Address used to communicate is not the same

Telegram Channel @nettrain

as the MAC Address of the interface of the VM, it is necessary to
enable MAC Learning on the NSX-T segment or Forged Transmits
and Promiscuous Mode on the port group.

At this point, you may wonder how many agent VMs and containers
will be provisioned in your cluster. This will depend on the version of
vSAN you are running and how many hosts you have within a cluster.
With vSAN 7.0 U2 and higher, a maximum of 64 active VMs and
containers will be provisioned, simply said one VM and one container
per host in the cluster on which you enable vSAN File Service.

This brings up the next question, what happens with the agent VMs
and the container when you place a host into maintenance mode, or
power off a host for that matter. Let’s take maintenance mode as an
example. When you go into maintenance mode the protocol stack
container is restarted on a different agent VM, so you end up in a
situation where you will have 2 (or more even) protocol stack
containers running within VM. Of course, vSAN File Service will
rebalance the protocol stack containers when the host exits
maintenance mode, and the cluster returns to normal.

The last thing we want to discuss is support for vSAN Stretched
Cluster. Like vSAN iSCSI, vSAN File Service provides support for
stretched vSAN configurations (and 2-node). In 7.0 U2, you can
specify during the configuration of vSAN File Services to which site
certain IP addresses belong. In other words, you can specify “site
affinity” of your File Service protocol stack containers, and the IP
addresses associated with them. On top of that, when creating file
shares, you can specify per file share affinity to a site. We do want to
point out that in this case affinity can be considered a soft affinity
rule. Meaning that if hosts, or VMs, fail on which these file service
containers are running it could be that the protocol stack container,
with its IP address, is restarted in the opposite location. We will
discuss how you can configure vSAN File Services in a stretched
cluster configuration in chapter 7.

Telegram Channel @nettrain

vSAN HCI Mesh

What is HCI Mesh? HCI Mesh provides the ability to cross-mount
vSAN datastores. In other words, you can go to a vSAN based cluster
and mount a vSAN datastore from another vSAN Cluster. Or you
could go to a vSphere cluster and mount a vSAN datastore, both are
supported starting with vSAN 7.0 U2.

You may ask yourself, why would you want to do this? It could be that
you are running out of disk space on your local vSAN datastore, or
maybe you do not have any local storage or SAN-attached even. HCI
Mesh enables you to run VMs “locally” (from a compute perspective)
while having the storage objects be stored remotely. Of course, it
means that an administrator will need to mount the remote datastore,
and the decision will need to be made to use that remote datastore
from a storage point of view. But when this has been done you can
even move the VM between clusters by simply doing a compute-only
vMotion. One thing to note is that we leverage the native vSAN
protocol, and the datastore is not exposed through standard NFS or
iSCSI, etc.

As mentioned earlier in this chapter, the way we have implemented
this is by separating certain processes that normally would run on a
single host. In this case, we are referring to the DOM components,
specifically the DOM Client and the DOM Owner. On top of that, a
CMMDS Client has been developed, which connects to CMMDS
directly. The relationship between the various processes is shown in
the diagram below.

Telegram Channel @nettrain

Figure 54: vSAN HCI Mesh components

When HCI Mesh, or Datastore Sharing as it is called in the vSphere
Client, is enabled on a cluster which does not have vSAN enabled,
the DOM Client and the CMMDS client are loaded on each host of the
cluster. The DOM Client and the CMMDS Client then connect with the
DOM Owner and CMMDS to provide the ability to provision workloads
on the remote datastore. Note that a remote datastore can only be
mounted when the “Server Cluster” is managed by the same vCenter
Server instance as the “Client Cluster”. There are various operational
considerations, but we will discuss these in chapter 6 where we are
discussing various operational aspects of vSAN.

One thing we do want to bring up is vSphere HA. From an
architectural perspective, the implementation of vSAN with HCI Mesh
is different, it also means that there’s an additional consideration
when it comes to availability. To ensure VMs are protected by

Telegram Channel @nettrain

vSphere HA in the situation anything happens between a “client” host
and the “server” cluster, it is recommended to enable the APD
response. This is very straightforward. You simply go to the HA
cluster settings and set the “Datastore with APD” setting to either
“Power off and restart VMs – Conservative” or “Power off and restart
VMs – Aggressive”. The difference between conservative and
aggressive is that with conservative HA will only kill the VMs when it
knows for sure the VMs can be restarted. With aggressive, it will also
kill the VMs on a host impacted by an APD while it isn’t sure it can
restart the VMs. VMware recommends using the “Conservative
Restart Policy”.

Summary

vSAN has a unique architecture that is future-proof but at the same
time extensible. It is designed to handle extreme I/O load and cope
with different failure scenarios. However, to consume some of these
key features, a VM needs to have an appropriate policy associated
with it. Your decision-making during the creation of policies will
determine how flexible, performant, and resilient your workloads will
be.

In the next chapter, we will look at VM Storage Policies, and how to
use them to make your VMs resilient to failures on vSAN.

Telegram Channel @nettrain

Chapter 5

VM Storage Policies and VM
Provisioning

VM storage policies and storage policy-based management (SPBM)
build on earlier vSphere functionality which tried to match the
storage requirements of a VM to a particular vSphere datastore. This
was known as profile driven storage, and all VMs residing on the
same datastore inherited the capabilities of the datastore. With
vSAN, the storage quality of service no longer resides with the
datastore; instead, it resides with the VM and is enforced by a VM
storage policy associated with the VM and its VMDKs. Once the
policy is pushed down to the storage layer, in this case vSAN, the
underlying storage is then responsible for creating and placing
components for the VM to meet the requirements configured in the
policy.

Introducing Storage Policy-Based Management
in a vSAN Environment

vSAN leverages a policy-based approach for VM deployment, using a
method called storage policy-based management (SPBM). All VMs
deployed to a vSAN datastore must use a VM storage policy, and if
one is not specified at deployment time, a default one that is
associated with the datastore is assigned to the VM. The VM storage
policy may contain one or more vSAN capabilities. This chapter will

Telegram Channel @nettrain

describe the vSAN capabilities and how the components for each
object that makes up a VM are distributed according to the
capabilities configured in the VM’s policy.

After the vSAN cluster has been configured and the vSAN datastore
has been created, vSAN presents a set of capabilities to vCenter
Server. These capabilities are surfaced by the vSphere APIs for
Storage Awareness (VASA) storage provider (more on this shortly)
when the vSAN cluster is successfully configured. These capabilities
are used to set the availability, capacity, and performance policies on
a per-VM (and per-VMDK) basis when that VM is deployed on the
vSAN datastore.

Through SPBM, administrators create a policy defining the storage
requirements for the VM, and this policy is pushed out to the storage,
which in turn instantiates per-VM (and per-VMDK) storage for virtual
machines. In vSphere 6.0, VMware introduced Virtual Volumes
(VVols). SPBM for VMs using VVols is very similar to SPBM for VMs
deployed on vSAN. In other words, administrators no longer need to
carve up LUNs or volumes for virtual machine storage. Instead, the
underlying storage infrastructure instantiates virtual machine storage
based on the contents of the policy. Similarly, with the arrival of the
Kubernetes platform, and the ability to run Kubernetes cluster on top
of vSphere infrastructure, persistent volumes created in Kubernetes
and backed by VMDKs can also leverage SPBM. Each persistent
volume can, using Kubernetes Storage Classes which map to a
vSphere storage policy, be instantiated with its own set of storage
capabilities. The ability to use vSAN as a platform for modern,
containerized applications will be discussed in detail in a later
chapter.

Suffice to say that what we have now with SPBM is a mechanism
whereby we can specify the requirements of the VM, and the VMDKs.
These requirements are then used to create a policy. This policy is
then sent to the storage layer (in the case of VVols, this is a SAN or

Telegram Channel @nettrain

network-attached storage (NAS) storage array) asking it to build a
storage object for this VM that meets these policy requirements. In
fact, a VM can have multiple policies associated with it, and different
policies for different VMDKs.

By way of explaining capabilities and policies, capabilities are what
the underlying storage can provide by way of availability,
performance, and reliability. These capabilities are visible in vCenter
Server. The capabilities are then used to create a VM storage policy
(or just policy for short). A policy may contain one or more
capabilities, and these capabilities reflect the requirements of your
VM or application running in a VM.

Deploying VMs on a vSAN datastore is very different from previous
approaches in vSphere. With traditional storage, an administrator
presents a shared LUN or volume to a group of ESXi hosts. In the
case of block storage, an administrator would then be required to
partition, format, and build a VMFS datastore for storing VM files.
Care had to be taken to ensure that any shared LUN was uniformly
presented from the array to all ESXi hosts. Similarly, administrators
had to ensure that the path policies were set identically for that LUN
on all ESXi hosts. This resulted in operational complexity and
overhead. In the case of network-attached storage (NAS), a network
file system (NFS) volume is mounted to the ESXi hosts, and once
again a VM is created on the datastore. There is no way from the
ESXi host to specify, for example, a RAID-0 stripe width for these
VMDKs, nor is there any way to specify a RAID-1 replica for the
VMDK. VMs and VMDKs simply inherited the capabilities of the
underlying LUN or share that was presented to the ESXi hosts as a
datastore.

In the case of vSAN (and vVols), the approach to deploying VMs is
quite different. Consideration must be given to the availability,
performance, and reliability factors of the application running in the
VM. Based on these requirements, an appropriate VM storage policy

Telegram Channel @nettrain

must be created and associated with the VM during deployment.
However, it is possible to change the policy after the VM has been
deployed, on-the-fly, which will be discussed later in this chapter.

Figure 55: Standard vSAN capabilities

vSAN features include the ability to implement various storage
configurations, for example, administrators can create RAID-5 and
RAID-6 configurations for virtual machine objects deployed on an all-
flash vSAN configuration. There are also RAID-0 and RAID-1
configurations available on all vSAN models. However, with RAID-5
and RAID-6, administrators can deploy VMs that are able to tolerate
one or two failures, but the amount of space consumed on the vSAN
datastore is much less than a RAID-1 configuration. There is also an

Telegram Channel @nettrain

additional policy for software checksum. Checksum is enabled by
default, but it can be disabled through policies on a per VM or per
VMDK basis if an administrator wishes to disable it. Another
capability relates to quality of service and provides the ability to limit
the number of input/output operations per second (IOPS) for a
particular object. We can also specify how VMs, which are part of a
stretched cluster, should be protected within a site. For this RAID-1,
RAID-5, or RAID-6 can be used. This is an additional level of
protection within a site that works alongside the cross-site
protection. A similar configuration is also available for 2-node vSAN
configurations. Do note that the secondary level of resilience
capability does require a minimum of 3 disk groups per host in a 2-
node configuration. Each host will have a full RAID tree locally.
Depending on the number of disk groups, this could be a RAID-1 or
RAID-5 configuration.

Figure 56: Advanced vSAN capabilities

You can select the capabilities when a VM storage policy is created.
Note that certain capabilities apply to hybrid vSAN configurations
(e.g., flash read cache reservation), while other capabilities apply to
all-flash vSAN configurations only (e.g., RAID-5 and/or RAID-6).

VM storage policies are essential in vSAN deployments because they
define how a VM is deployed on a vSAN datastore. Using VM storage

Telegram Channel @nettrain

policies, you can define the capabilities that can provide the number
of VMDK RAID-0 stripe components or the number of RAID-1 mirror
copies of a VMDK. Let’s now revisit erasure coding before learning
how to configure them via policies. We have already learned that if an
administrator desires a VM to tolerate one failure but does not want
to consume as much capacity as a RAID-1 mirror, a RAID-5
configuration can be used. If this configuration was implemented
with RAID-1, the amount of capacity consumed would be 200% the
size of the VMDK due to having two copies of the data. If this is
implemented with RAID-5, the amount of capacity consumed would
be 133% the size of the VMDK, the extra 33% accounting for the
single parity segment since RAID-5 is implemented on vSAN as 3
data segments and 1 parity segment. RAID-5 requires a minimum of
four hosts in an all-flash vSAN cluster and will implement a
distributed parity mechanism across the storage of all four hosts.

Similarly, if an administrator desires a VM to tolerate two failures
using a RAID-1 mirroring configuration, there will need to be three
copies of the VMDK, meaning the amount of capacity consumed
would be 300% the size of the VMDK. When using a RAID-6
implementation instead of RAID-1, a double parity is implemented,
which is also distributed across all the hosts. By this, we mean 4 data
segments and 2 parity segments. For RAID-6, there must be a
minimum of six hosts in an all-flash vSAN cluster. RAID-6 also allows
a VM to tolerate two failures, but only consumes capacity equivalent
to 150% the size of the VMDK, the overhead of the two parity
segments.

The sections that follow will highlight where you should use these
capabilities when creating a VM storage policy and when to tune
these values to something other than the default. Remember that a
VM storage policy will contain one or more capabilities.

Note: Some significant changes were made to how the layout of
vSAN objects was implemented in vSAN 7.0U1. A concerted effort

Telegram Channel @nettrain

was made to address the requirement of keeping 25-30% of what
was termed slack space on the vSAN datastore. This was a
considerable overhead but was necessary due to the way vSAN
implemented its recovery and resyncing mechanism. Data that was
being rebuilt or resynchronized used this slack space as a staging
area. The slack space needed to be this large since vSAN would
attempt to rebuild as many missing or failed components as
possible, so if a complete host failed, vSAN needed space to stage
the rebuild of all components on this host. In vSAN 7.0U1, a new
approach was envisioned. This revolved around negating the need to
build whole replicas or mirrors. The decision was made to implement
large objects greater than 255GB in size in a different way than
objects smaller than 255GB. Now, instead of implementing a top of
tree RAID-1 (mirror) with 2 x RAID-0 branches, vSAN implemented
on top of tree RAID-0 (concatenation) with each of the underlying
components mirrored in a RAID-1 configuration. Now when rebuild
operations are required, for example when a policy change is
requested, vSAN can work on each component on the concatenation
as a distinct item, working on a much smaller chunk of data.
Previously vSAN had to set aside slack space for the whole of the
mirror. This is all preamble to some of the examples shown later,
when vSAN objects with the same policy will get a different layout
depending on their size.

As an administrator, you can decide which of these capabilities can
be added to the policy, but this is of course dependent on the
requirements of your VM. For example, what performance and
availability requirements does the VM have?

The capabilities for “vSAN” storage datastore specific rules are as
follows:

Availability

Site disaster tolerance

Telegram Channel @nettrain

None – standard cluster (default)
None – standard cluster with fault domains
Host mirroring – 2 node cluster
Site mirroring - stretched cluster
None – keep data on preferred (stretched cluster)
None – keep data on non-preferred (stretched cluster)
None – stretched cluster
Failures to tolerate
No data redundancy
No data redundancy with host affinity
1 failure – RAID-1 (Mirroring) (default)
1 failure – RAID-5 (Erasure Coding)
2 failures – RAID-1 (Mirroring)
2 failures – RAID-6 (Erasure Coding)
3 failures – RAID-1 (Mirroring)

Storage rules

Encryption Services
Data-At-Rest encryption
No encryption
No preference (default)
Space Efficiency
Deduplication and compression
Compression only
No space efficiency
No preference (default)
Storage tier
All flash
Hybrid
No preference (default)

Advanced Policy Rules

Telegram Channel @nettrain

Number of disk stripes per object (default value of 1)
IOPS limit for an object (default value of 0 meaning
unlimited)
Object space reservation
Thin provisioning (default)
25% reservation
50% reservation
75% reservation
Thick provisioning
Flash read cache reservation (hybrid vSAN only) (default
value of 0, meaning no reservation)
Disable object checksum (default off)
Force provisioning (default off)

Storage rules

Whilst we have already seen what the Availability and Advanced
Policy rules looked like in the vSphere UI, we have not yet seen the
Storage rules. The next screenshot displays what the Storage rules
look like.

Telegram Channel @nettrain

Figure 57: Storage rules

These configuration settings are primarily related to HCI-Mesh,
where a vSphere cluster can consume storage from both a local vSAN
datastore as well as multiple remote vSAN datastores. HCI-Mesh is
discussed in greater detail in the Operations chapter later in the
book. The reason for having Storage rules relate to the fact that there
could be a local datastore that is encrypted, or perhaps some of the
remote datastore are encrypted. It could be that the local datastore
has deduplication or compression enabled, or that the local
datastore is from a hybrid vSAN but the remote datastores are on
vSAN All-Flash clusters. By using some of the settings in this
configuration screen, an administrator can create policies that will
place VMs with the same availability policy on either the local vSAN

Telegram Channel @nettrain

datastore or one of the remote datastores, depending on these
settings. By default, these are left at “No preference” meaning that
none of these capabilities are considered when provisioning a VM in
an HCI-Mesh environment.

The sections that follow describe the vSAN capabilities in detail.

Failures to tolerate

In this section, we are going to discuss Failures to tolerate,
specifically RAID-1 which is the default setting. In the next section,
we will describe RAID-5 and RAID-6. Failures to tolerate is often
short-handed to FTT and this shorthand is used quite extensively in
this book. The maximum value for FTT is 3. This is available if RAID-1
is used. The maximum for FTT is 2 when using erasure coding
assuming RAID-6 is used. We will examine these limits in more detail
shortly.

The Failures to tolerate capability sets a requirement on the vSAN
storage object (e.g., VMDK) to tolerate at least n number of failures in
the cluster. This is the number of concurrent hosts, networks, disk
controllers, or storage device failures that may occur in the cluster
and still ensure the availability of the object. When failures to tolerate
is set to RAID-1 the VM’s storage objects are mirrored; however, the
mirroring is done across different ESXi hosts, as shown below.

Telegram Channel @nettrain

Figure 58: RAID-1 - Failures to tolerate

When this capability is set to a value of n, it specifies that the vSAN
configuration must contain at least n+1 replica copies of the data;
this also implies that there are 2n+1 hosts in the cluster.

Note that this requirement will create a configuration for the VM
objects that may also contain an additional number of witness
components being instantiated. The witness components are used to
ensure that the VM remains available even when there are as many
as failures to tolerate concurrent failures in the vSAN cluster.
Witnesses provide a quorum when failures occur in the cluster, or if a
selection decision must be made on which component(s) to keep
online when a cluster partition or split-brain situation arises.

One aspect worth noting is that any disk failure on a single host is
treated as a “failure” for this metric (although multiple disk failures
on the same host are also treated as a single host failure). Therefore,
the VM may not persist (remain accessible) if there is a disk failure

Telegram Channel @nettrain

on host A and a complete host failure of host B when the number of
failures to tolerate is set to one.

As mentioned earlier, this is the layout when the object that is
created on the vSAN datastore is less than 255GB in size. We will
look at the larger size layout shortly.

The table is true if the capability called number of disk objects to
stripe is set to 1 and RAID-1 is used as the Failures to tolerate
setting, which is the default. The behavior is subtly different if there
is a stripe width greater than 1. Number of disk stripes per object will
be discussed in more detail shortly.

If no policy is chosen when a VM is deployed, the default policy
associated with the vSAN datastore is chosen which in turn, by
default, sets the number of failures to tolerate to 1. When a new policy
is created, the default value of number of failures to tolerate is also 1.
This means that even if this capability is not explicitly specified in
the policy, it is implied.

Recommended Practice for Number of Failures
to Tolerate

The recommended practice (with RAID-1 configurations) for number
of failures to tolerate is 1, unless you have a pressing concern to
provide additional availability to allow VMs to tolerate more than one

Telegram Channel @nettrain

failure. Note that increasing the number of failures to tolerate would
require additional hosts in the cluster, as well as additional disk
capacity to be available for the creation of the extra mirror/replicas.

vSAN has multiple management workflows to warn/protect against
accidental decommissioning of hosts that could result in vSAN being
unable to meet the number of failures to tolerate policy of given VMs.
This includes a noncompliant state being shown in the VM summary
tab for the VM Storage Policy.

Then the question arises: What is the minimal number of hosts for a
vSAN cluster? If we omit the 2-node configuration (more typically
seen in remote office-branch office type deployments) for the
moment, customers would for the most part require three ESXi hosts
to deploy vSAN. However, what about scenarios where you need to do
maintenance or upgrades and want to maintain the same level of
availability during maintenance hours?

To comply with a policy of failures to tolerate = 1 using RAID-1, you
need three hosts at a minimum. Even if one host fails, you can still
access your data, because with three hosts and two mirror copies
and a witness, you will still have more than 50% of your components
(votes) available. But what happens when you place one of those
hosts in maintenance mode?

Telegram Channel @nettrain

Figure 59: vSAN: Minimum number of hosts

Placing a host into maintenance mode will place all components on
this host in an absent state. This host can no longer contribute
capacity to the vSAN datastore when in maintenance mode. Similarly,
it will not be possible to provision new VMs with an FTT=1 when one
node is in maintenance mode (unless you force provision the VM, or
deploy a VM with an FTT=0). If both remaining hosts keep
functioning as expected, all VMs will continue to run. However, if
another host fails or needs to be placed into maintenance mode, you
have a challenge. At this point, the remaining host will have less than

Telegram Channel @nettrain

50% of the components of your VM. As a result, VMs cannot be
restarted (nor do any I/O).

RAID-5 and RAID-6

In this section, we are going to discuss Failures to tolerate
implemented through RAID-5 and RAID-6.

These options allow administrators to choose between performance
and capacity. If performance is the absolute end goal, then RAID-1
could be used. If administrators did not need maximum performance
and were more concerned with capacity usage, then RAID-5/6 could
be used.

The easiest way to explain the behavior is to display the various
policy settings and the resulting object configuration as shown in the
following table. Using the Site disaster tolerance set to “None –
standard cluster”, the table below explains the type of configuration
that will be provisioned and the minimum number of ESXi hosts
required.

As can be seen from the table, when RAID-5/6 is selected, the
maximum number of failures that can be tolerated is 2. RAID-1 allows

Telegram Channel @nettrain

up to 3 failures to be tolerated in the cluster, using 4 copies of the
data.

One might ask why RAID-5/6 is less performing than RAID-1. The
reason lies in I/O amplification. I/O amplification is the phenomenon
where the actual amount of I/O is a multiple of the logical amount
intended to be read or written. In steady-state, where there are no
failures in the cluster, there is no read amplification when using
RAID-5/6 versus RAID-1. However, there is write amplification. This
is because the parity component needs to be updated every time
there is a write to the associated data components. In the case of
RAID-5, we need to read the component that is going to be updated
with additional write data, read the current parity, merge the new
write data with the current data, write this back, calculate the new
parity value, and write this back also. In essence, a single write
operation can amplify into two reads and two writes. With RAID-6,
which has double parity, a single write can amplify into three reads
and three writes.

And indeed, when there is a failure of some component in the RAID-
5 and RAID-6 objects, and data need to be determined using parity,
then the I/O amplification is even higher. These are the
considerations an administrator needs to evaluate when deciding on
RAID-1 vs RAID-5/6.

One item to keep in mind is that even though RAID-5/6 consumes
less capacity, it does require more hosts than the traditional RAID-1
approach, and it is only supported on an all-flash vSAN configuration.
When using RAID-1, the rule is that to tolerate n failures, there must
be a minimum of 2n+1 hosts for the mirrors/replicas and witness
components. Therefore, to tolerate one failure, there must be at least
three hosts. To tolerate two failures, there must be at least five hosts.
For those wondering why we need five hosts, we need to ensure that
in the case of a network partition scenario we need to determine who
owns the data, which will be the partition that has the most votes. To

Telegram Channel @nettrain

do so we need an odd number of components, and because of this
requirement, we need an odd number of hosts. To tolerate three
failures, there must be seven hosts in the cluster. All of the hosts
must be contributing storage to the vSAN datastore.

With RAID-5, four hosts are needed to tolerate one failure and with
RAID-6 six hosts are needed to tolerate two failures, even though
less space is consumed on each host. The following diagram shows
an example of a RAID-5 configuration for an object, deployed across
four hosts with a distributed parity.

Figure 60: RAID-5 configuration

The RAID-5 or RAID-6 configurations also work with number of disk
stripes per object. If stripe width is also specified as part of the
policy along with RAID-5/6 each of the components on each host is
striped in a RAID-0 configuration, and these are in turn placed in
either a RAID-5 or a RAID-6 configuration. However new behaviour
when using disk stripes with erasure coding was introduced in 7.0U1
which will be discussed shortly.

Telegram Channel @nettrain

Number of Disk Stripes Per Object

This capability defines the number of physical disks across which
each replica of a storage object (e.g., VMDK) is striped. Number of
disk stripes per object is often short-handed to stripe width or even
SW and this shorthand is used quite extensively in this book.

When RAID-1 is used, this policy setting can be considered in the
context of a RAID-0 configuration on each RAID-1 mirror/replica
where I/O traverses several physical disks. When RAID-5/6 is used,
each segment of the RAID-5 or RAID-6 stripe may also be
configured as a RAID-0 stripe. The next diagram shows a vSAN
object if both RAID-0 and RAID-1 capabilities are used.

Figure 61: RAID-1 configuration with stripes

Telegram Channel @nettrain

To understand the impact of stripe width, let’s examine it first in the
context of write operations and then in the context of read
operations.

Because all writes go to the cache device write buffer, the value of an
increased stripe width may or may not improve performance. This is
because there is no guarantee that the new stripe will use a different
cache device; the new stripe may be placed on a capacity device in
the same disk group and thus the new stripe will use the same cache
device. If the new stripe is placed in a different disk group, either on
the same host or on a different host, and thus leverages a different
cache device, performance might improve. However, you as the
vSphere administrator have no control over this behavior. The only
occasion where an increased stripe width could add value is when
there is a large amount of data to destage from the cache tier to the
capacity tier. In this case, having a stripe could improve destage
performance as multiple capacity devices would be available to
destage data to.

How can you tell whether your cache tier has lots of blocks to be
destaged? This information is readily available in the vSphere Client.
The next screenshot taken from the disk group on a host level view
under Monitor > vSAN > Performance > Disks shows the write buffer
free percentage.

Telegram Channel @nettrain

Figure 62: Write buffer free percentage

Let’s summarize the above in a couple simple bullet points so that it
is easier to grasp.

There are three different scenarios for stripes:

Striping across hosts: Improved performance with different
cache tier flash devices
Striping across disk groups: Improved performance with
different cache tier flash devices
Striping in the same disk group: No significant
performance improvement (using same cache tier flash
device)

From a read operation perspective, an increased stripe width will
help when you are experiencing many read cache misses but note
that this is a consideration in hybrid configurations only. All-flash
vSAN configurations do not have a read cache, and in all-flash, all
read requests are serviced by flash. Consider the example of a VM
deployed on a hybrid vSAN consuming 2,000 read operations per

Telegram Channel @nettrain

second and experiencing a hit rate of 90%. In this case, there are
still 200 read operations that need to be serviced from magnetic
disk in the capacity tier. If we assume that a single magnetic disk
can provide 80 IOPS, then it is obvious that this single device is not
able to service all of those read operations in a timely fashion. An
increase in stripe width would help on this occasion to meet the VM
read I/O requirements. In an all-flash vSAN that runs extremely read-
intensive workloads, striping across multiple capacity flash devices
can also improve performance.

How can you tell whether you have read cache misses? The vSAN
Performance Services provides you with all the information needed
to identify this scenario. The next screenshot shows that there is a
0% read cache hit rate. Either this is a very idle system, or it is an
all-flash vSAN that does not use read cache. In fact, it is all-flash.
This graph can be found on a host level view under Monitor > vSAN >
Performance > Disks, note that you will need to go to a particular
host first and selected the disk group you would like to have this level
of detail for.

Figure 63: Read Cache Hit Rate

Telegram Channel @nettrain

In general, the default stripe width of 1 should meet most, if not all
VM workloads. Stripe width is a capability that should be changed
only when write destaging or read cache misses are identified as a
performance constraint.

RAID-0 used when no Striping is specified in
the Policy

Those who have been looking at the vSphere Client regularly, where
you can see the placement of components, may have noticed that
vSAN appears to create a multi-component RAID-0 for your VMDK
even when you did not explicitly ask it to. Or perhaps you have
requested a stripe width of two in your policy and then observed what
appears to be a stripe width of three (or more) being created. vSAN
will split objects as it sees fit when there are space constraints. This
is not striping per se, since components can end up on the same
physical capacity device, which in many ways can be thought of as a
concatenation. We can refer to it as chunking.

vSAN will use this chunking method on certain occasions. The first of
these is when a VMDK is larger than any single chunk of free space.
Essentially, vSAN hides the fact that even when there are small
capacity devices on the hosts, administrators can still create very
large VMDKs. Therefore, it is not uncommon to see large VMDKs split
into multiple components, even when no stripe width is specified in
the VM storage policy. vSAN will use this chunking method when a
VMDK is larger than any capacity device.

There is another occasion where this chunking may occur. By default,
an object will also be split if its size is greater than 255 GB (the
maximum component size). An object might appear to be made up of
multiple 255 GB RAID-0 chunks even though striping may not have
been a policy requirement. It can be split even before it reaches 255

Telegram Channel @nettrain

GB when free disk space makes vSAN think that there is a benefit in
doing so. Note that just because there is a standard split at 255 GB,
it doesn’t mean all new chunks will go onto different capacity
devices. In fact, since this is not striping per se, multiple chunks may
be placed on the same physical capacity device. It may, or may not,
depending on overall balance and free capacity.

If you use physical disks that are smaller than 255GB, then you might
see errors similar to the following when you try to deploy a virtual
machine:

There is no more space for virtual disk XX. You might be able to
continue this session by freeing disk space on the relevant volume
and clicking retry.

As VMDKs are thin provisioned on the vSAN datastore, each
component grows automatically throughout its life. Because the
default component size is 255GB, the object will not be able to grow
to its full size of 255GB if the physical disk is smaller than 255GB.
For example, if a VMDK of 255GB is provisioned (with FTT=1 and
SW=1) on a 200GB physical disk, it can’t grow greater than 200GB
(because of the physical disk size limit). You will get the out of space
error shown above if you write more than 200GB data to the VMDK.
In situations like this, one option is to modify
VSAN.ClomMaxComponentSizeGB to a size that is approximately
80% of the physical disk size. KB article 2080503 has instructions
on how to change this setting.

Keep in mind that the secondary effect of this is that you are
introducing more components into the system and may reach
component limits If too many are created because of changing
this advanced setting.

Let’s look at what some of our tests have shown. That may help
clarify what will happen in certain scenarios and how the components
will be distributed across the cluster. Note that the initial set of tests

Telegram Channel @nettrain

here are implemented on a vSAN 6.7U1 cluster. We will repeat the
same set of tests in a vSAN 7.0U3 cluster to show how object layout
has changed for larger sizes next.

Test 1 – vSAN 6.7U1

On an all-flash configuration, we created a 150 GB VM on a vSAN
datastore that had 100 GB SSDs as its capacity devices. We also set
a policy of failures to tolerate (FTT) = 1. We got a simple RAID-1 for
our VMDK with two components, each replica having just one
component (so no RAID-0). Now, this is because the VM is deployed
on the vSAN datastore as thin by default (Object Space Reservation =
0%), so even though we created a 150 GB VM, each component can
sit on a single 100 GB SSD because it is thinly provisioned, as
demonstrated below.

Figure 64: Physical disk placement, no striping

Telegram Channel @nettrain

Test 2 – vSAN 6.7U1

On the same cluster, we created a 150 GB VM, with a policy of FTT =
1 (RAID-1) and thick provisioning enabled. Thick provisioning is the
equivalent of setting Object Space Reservation = 100% in the policy.
Now we get another RAID-1 of the VMDK, but each replica is made
up of a RAID-0 with two components. Thick provisioning guarantees
space reservation, and as such the VM needs to span at least two
devices, and therefore a RAID-0 configuration is being used as
shown in the screenshot below.

Figure 65: Physical disk placement, striping due to thick provisioning

Test 3 – vSAN 6.7U1

Telegram Channel @nettrain

We created a 300 GB VM, with a policy of failures to tolerate = 1,
object space reservation = thick or 100%, and number of disk stripes
per object (SW) = 2. We got another RAID-1 of our VMDK as before,
but now each replica is made up of a RAID-0 with four components.
Here, even with a SW = 2 setting, my VMDK requirement is still too
large to span two devices. A third and fourth capacity device is
required in this case, as shown below.

We can conclude that multiple components in a RAID-0
configuration are used for VMDKs that are larger than a single
capacity device, even if a stripe width is not specified in the policy.

Figure 66: Complex deployment

Increasing Components to Reduce Slack Space

Telegram Channel @nettrain

While the above tests held true for vSAN 6.7, major changes
appeared in 7.0U1 and later around the need to reduce the
recommended 25-30% slack space. This led to some significant
changes in how objects were built in vSAN 7.0U1 and later. Rather
than having to deal with component sizes of 255GB, a decision was
taken to create many smaller components to back a VSAN object,
rather than a few large components. Today, in the event of rebuilds,
repairs, reconfigurations, and rebalancing, it means that smaller
amounts of slack space would be consumed for these operational
tasks. Thus, creating a virtual machine with a RAID-1 policy that
required a disk larger than 255GB could now result in more than 1
RAID-0 component, concatenated together, on either side of the
RAID-1 tree. The advantage here is that vSAN can concurrently work
on multiple concatenated components simultaneously, speeding up
recovery times and requiring far less slack space for internal
operations.

Let’s repeat the above tests and check the results, but this time we
are not limited by small devices. This time we want to see the layout
when objects smaller and larger than 255GB are created.

Test 4 – vSAN 7.0U3

On the same cluster, a 255 GB VM, with a policy of FTT = 1 (RAID-1)
and thick provisioning enabled is created. For thick disks, Object
Space Reservation is set to Thick in the Advanced Policy Rules. After
deploying a VM with this policy, the object layout was examined
under Cluster > Monitor > vSAN > Virtual Objects, and once the
VMDK was selected, we click on the “View Placement Details” to get
a detailed view of the layout. Here is the 255GB Thick provisioned
VMDK layout.

Telegram Channel @nettrain

Figure 67: 255GB Thick object layout in vSAN 7.0U1 and later

As you can see, this is very much the same as what we saw in the
vSAN 6.7U1 deployment. A simple RAID-1 object with an additional
witness component. All components are on separate hosts.

Test 5 – vSAN 7.0U3

Let’s now repeat the previous test but increase the size to 256GB.
This should be enough to go beyond the threshold for large objects,
and vSAN should now implement the new layout format. Object
Space Reservation is once again set to Thick in the Advanced Policy
Rules. After deployment, this is what the object looks like.

Telegram Channel @nettrain

Figure 68: 256GB Thick object layout in vSAN 7.0U1 and later

Note now that the top of the object tree is a concatenation, and that
the components are in their own distinct RAID-1 mirror
configurations under the top-level concatenation. Perhaps an easier
way to visualize this layout is as follows:

Telegram Channel @nettrain

Figure 69: 256GB Thick object layout in vSAN 7.0U1 and later

This may come as a surprise to some of you who upgrade from vSAN
6 to vSAN 7. However, the purpose behind this change is to reduce
the requirement for slack space, which was always an approximation
anyway. With this enhancement, more of the vSAN datastore should
be available for workloads rather than set aside for some internal
vSAN operations, which is good news.

Telegram Channel @nettrain

Stripe Width Maximum

In vSAN, the maximum stripe width that can be defined in a policy is
12. This can be striping across capacity devices in the same host, or
across capacity devices, in different hosts, as mentioned earlier. I’m
going to add a caveat here that, since vSAN 7.0U1, certain limits have
been placed on striping for both large objects as well as RAID-5 and
RAID-6 objects. The description that follows applied to vSAN
versions prior to 7.0U1, as well as to objects that are 255GB or less in
size. Discussions around the change in behavior for large objects in
7.0U1 and later will be covered shortly.

Remember that when you specify a stripe width there has to be
at least a stripe width (SW) × (FTT+1) number of capacity
devices before vSAN can satisfy the policy requirement.

Ignoring for the moment that additional devices may be needed to
host the witness component(s), this means that the larger the number
of FTT and SW, the more complex the placement of object and
associated components will become. The number of disk stripes per
object setting in the VM storage policy means stripe across “at least”
this number of capacity devices per mirror.” vSAN may, when it sees
fit, use additional stripes.

Telegram Channel @nettrain

Figure 70: Number of disk stripes per object

Stripe Width Configuration Error

You may ask yourself what happens if a vSphere administrator
requests the vSAN cluster to meet a stripe width policy setting that is
not available or achievable, typically due to a lack of resources.
During the creation of the policy, vSAN will verify if there is a
datastore that is compatible with the capabilities specified in the
policy. As shown in the screenshot below, where we have requested
FTT=3 and SW=12, no datastore is shown as compatible with the
defined policy.

Figure 71: No compatible datastore

Telegram Channel @nettrain

If you would forcefully try to deploy a VM using this policy then the
creation of the VM will fail. This is demonstrated in the screenshot
below.

Figure 72: VM creation tasks fails

What this error message is telling us is that vSAN needs 48 disks (4
copies of the data by a stripe width of 12) to implement this policy.
There are currently only 27 disks available in the cluster, so 21 more
are needed to create such a policy.

Stripe Width Chunk Size

A question that then often arises after the stripe width discussion is
whether there is a specific segment size. In other words, when the
stripe width is defined using the VM storage policies, which
increment do the components use to grow? vSAN uses a stripe
segment size of 1 MB in a round-robin fashion for RAID-1 and RAID-
5/6 if you striped each component. This is not configurable.

Stripe Width Best Practice

Telegram Channel @nettrain

After reading this section, you should more clearly understand that
increasing the stripe width could potentially complicate placement.
vSAN has a lot of logic built in to handle smart placement of objects.
We recommend not increasing the stripe width unless you have
identified a pressing performance issue such as read cache misses
or during destaging.

Remember that all I/O should go to the flash layer first. All writes
certainly go to flash first, and in the case of hybrid configurations, are
later destaged to magnetic disks. For reads, the operation is first
attempted on the flash layer. If a read cache miss occurs, the block is
read from magnetic disk in hybrid configurations and from flash
capacity devices in all-flash configurations. Therefore, if all of your
reads are being satisfied by the cache tier, there is no point in
increasing the stripe width as it does not give any benefits. Doing the
math correctly beforehand is much more effective, leading to proper
sizing of the flash-based cache tier, rather than trying to increase the
stripe width after the VM has been deployed!

Changes to Stripe Width behavior for large
RAID-1 objects

Due to the previously documented concerns about the 20-30% slack
space, and the decision to create multiple smaller components rather
than a few larger components for vSAN objects, steps were taken to
reduce the number of components on the vSAN datastore. One of
these steps involved limiting the stripe width settings for objects
larger than 2TB in size. These objects now have the first 2TB
configured as per the stripe width policy setting, whilst the rest of the
object will be limited to using a stripe width of 3. Note that this will
not be visible in the UI. The only change that you will see for the
larger objects in vSAN 7.0U1 and later are the top of tree

Telegram Channel @nettrain

concatenation as seen previously, and therefore more components in
each branch of the RAID tree.

By way of example, here is a 255GB VMDK object created with a
policy that has an FTT=1, a stripe width of 8, and an object space
reservation of Thick. In the lower right-hand corner, you can see that
there are 16 vSAN components in total, 8 on each side of the mirror
representing the striped components.

Figure 73: RAID-1, Stripe Width = 8, Object size < 255GB

The next figure shows a similar deployment, but the size has been
bumped up to 256GB.

Telegram Channel @nettrain

Figure 74: RAID-1, Stripe Width = 8, Object size = 256GB

Note that the top of the tree is now a concatenation, with 2 x RAID-1
configurations underneath, although the second is not visible in the
screenshot. In the lower right-hand corner, the component count has
now risen to 32. The components, 8 replicated to 8 in one RAID-1
configuration, and 8 more replicated to another 8 in another RAID-1
configuration, both of which are concatenated will be much smaller
in size than previously, but there are more of them. This is the sort of
layout change you will observe with the newer layout mechanism in
vSAN 7.0U1 and later.

Changes to Stripe Width behavior for large
RAID-5/6 objects

Similar considerations apply to RAID-5/RAID-6 objects created on
the vSAN datastore from vSAN 7.0U1 and later. vSAN now treats the

Telegram Channel @nettrain

component count of an erasure coding stripe toward the stripe width.
For example, a RAID-5 object will already have an effective stripe
width of 4, while a RAID-6 object is considered to have an effective
stripe width of 6. Therefore, the value of Stripe Width must be
increased in multiples of 4 or 6 respectively to achieve an additional
stripe for that given component.

Let’s look at some example layouts to make things a little clearer. I’m
going to use a new vSAN cluster to run this test. The new cluster has
a total of 13 ESXi hosts, with a single disk group containing 4 disks –
1 cache and 3 capacity devices. This gives me a total of 39 capacity
devices for this testing.

Let’s begin with RAID-5. A policy is created that select FTT=1 (RAID-
5) along with a Stripe Width of 4. When this object is deployed, there
is no noticeable difference between it and an object that is deployed
with a Stripe Width of 1. It has 4 components in total. You can think
of it as a 3+1 configuration, with 3 data segments and 1 parity
segment, even though the parity is striped across all components. As
mentioned, a Stripe Width of 4 is already in place for RAID-5 objects.
Note that the object created in this case was 255GB or smaller in
size.

Figure 75: RAID-5, Stripe Width = 4, Object size < 255GB

Telegram Channel @nettrain

You can increase the Stripe Width up to 7, and no change will be
noticed in the object layout. It is only when the Stripe Width is
increased to 8 that we notice a change in the object.

Figure 76: RAID-5, Stripe Width = 8, Object size < 255GB

Now we see that each segment of the RAID-5 object has become a
RAID-0 with 2 components. These components are now striped to
meet the policy requirements. To continue striping the RAID-5
configuration, you would need to grow the stripe width value by a
factor of 4. With the maximum stripe width limit set to 12, this
implies that each RAID-5 component could have an effective stripe
width of 3. Let’s do another test and repeat the above test with a
RAID-5 object that is larger than 255GB.

Telegram Channel @nettrain

Figure 77: RAID-5, Stripe Width = 4, Object size > 255GB

This policy request requires vSAN to build the object with a
concatenation at the top of the tree, as seen previously, but
underneath the concatenation are two RAID-5 configurations, each
with 4 components. As we’ve mentioned before, we now have much
smaller components that can be worked on individually, in parallel, or
serially, meaning that operations on vSAN segments due to failures,
or policy changes, are now much more granular, and require less
slack space than previously. Note that the component count has risen
to 8 in the above example.

One final test, with a large RAID-5 object and a stripe width set to 8,
just to observe how the components in the object get distributed. As
before, if the stripe width is set to anywhere between 1 and 7, no
change to the layout is observed. But when we set the stripe width to
8 (all RAID-5 segments get a second stripe), this is the observed
layout.

Telegram Channel @nettrain

Figure 78: RAID-5, Stripe Width = 8, Object size > 255GB

Now each segment of the RAID-5 has a RAID-0 with two striped
components. The component count, as observed in the lower right-
hand corner has risen to 16.

Telegram Channel @nettrain

Figure 79: RAID-5, Stripe Width = 8, Object size > 255GB

You can be assured that RAID-6 behaves similarly, so there is no
point in reproducing another set of screenshots for those objects.
The only difference, as mentioned, is that RAID-6 has an effective
stripe width of 6, a stripe width of 12 would have to be specified to
increase it. As a result of the maximum stripe width of 12, RAID-6
segments can only have at most 1 additional stripe added to their
segments.

IOPS Limit for Object

IOPS limit for object is a Quality of Service (QoS) capability
introduced with vSAN 6.2. This allows administrators to ensure that
an object, such as a VMDK, does not generate more than a
predefined number of I/O operations per second. This is a great way
of ensuring that a “noisy neighbor” virtual machine does not impact

Telegram Channel @nettrain

other virtual machine components in the same disk group by
consuming more than its fair share of resources.

By default, vSAN uses a normalized I/O size of 32 KB as a base. This
means that a 64 KB I/O will therefore represent two I/O
operations in the QoS calculation. I/Os that are less than or equal
to 32 KB will be considered single I/O operations. For example, 2 × 4
KB I/Os are considered two distinct I/Os. It should also be noted
that both read and write IOPS are regarded as equivalent. Neither
cache hit rate nor sequential I/O is considered. If the IOPS limit
threshold is passed, the I/O is throttled back to bring the IOPS value
back under the threshold. The default value for this capability is 0,
meaning that there is no IOPS limit threshold and VMs can consume
as many IOPS as they want, subject to available resources.

We do not see this capability used too often by vSAN customers. Only
a small number of Service Providers use this to limit their customer's
workloads.

Figure 80: IOPS Limit of 1000

Telegram Channel @nettrain

Flash Read Cache Reservation

This capability applies to hybrid vSAN configurations only. It is the
amount of flash capacity reserved on the cache tier device as read
cache for the storage object. It is specified as a percentage of the
logical size of the storage object (i.e., VMDK). This is specified as a
percentage value (%), with up to four decimal places. This fine
granular unit size is needed so that administrators can express sub
1% units. Take the example of a 1 TB VMDK. If you limited the read
cache reservation to 1% increments, this would mean cache
reservations in increments of 10 GB, which in most cases is far too
much for a single VM.

Note that you do not have to set a reservation to allow a storage
object to use cache. All VMs equally share the read cache of cache
devices. The reservation should be left unset (default) unless you are
trying to solve a real performance problem and you believe
dedicating read cache to a particular workload is the solution. If you
add this capability to the VM storage policy and set it to a value 0
(zero), you will not have any read cache reserved for the VM that uses
this policy. In the current version of vSAN, there is no proportional
share mechanism for this resource when multiple VMs are
consuming read cache, so every VM consuming read cache will share
it equally.

Object Space Reservation

We have come across Object Space Reservation (OSR) when we
looked at the chunking behavior earlier in the context of RAID-0. By
default, all objects deployed on vSAN are thin provisioned. This
means that no space is reserved at VM deployment time but rather
space is consumed as the VM uses storage. The object space

Telegram Channel @nettrain

reservation is the amount of space to reserve specified as a
percentage of the total object address space.

This is a property used for specifying a thick provisioned storage
object. If object space reservation is set to Thick provisioning (or
100% in the vSphere Client), all of the storage capacity requirements
of the VM are reserved upfront. This will be lazy zeroed thick (LZT)
format and not eager zeroed thick (EZT). The difference between LZT
and EZT is that EZT virtual disks are zeroed out at creation time; LZT
virtual disks are zeroed out at first write time.

One thing to bring to the reader’s attention is the special case of
using object space reservation when deduplication and compression
are enabled on the vSAN cluster. When deduplication and
compression space-saving features are enabled, any objects that
wish to use object space reservation in a policy must have it set to
either Thin provisioning (0% in the vSphere Web Client) or Thick
provisioning (100% in the vSphere Web Client). Values between 1%
and 99% are not allowed, objects must be either fully thin or fully
thick for deduplication and compression to work. Any existing objects
that have Object Space Reservation between 1% and 99% will need
to be reconfigured with thick or thin provisioning prior to enabling
deduplication and compression on the cluster.

Telegram Channel @nettrain

Figure 81: Object space reservation

Force Provisioning

If the force provisioning parameter is enabled, any object that has
this setting in its policy will be provisioned even if the requirements
specified in the VM storage policy cannot be satisfied by the vSAN
datastore. The VM will be shown as noncompliant in the VM summary
tab and relevant VM storage policy views in the vSphere client. If
there is not enough space in the cluster to satisfy the reservation
requirements of at least one replica, however, the provisioning will
fail even if force provisioning is turned on. When additional resources
become available in the cluster, vSAN will bring this object to a
compliant state.

Telegram Channel @nettrain

Figure 82: Force provisioning enabled

One thing that might not be well understood regarding force
provisioning is that if a policy cannot be met, it attempts a much
simpler placement with requirements that reduce failures to tolerate
to 0, number of disk stripes per object to 1 and flash read cache
reservation to 0 (on hybrid configurations). This means vSAN will
attempt to create an object with just a single copy of data. Any OSR
policy setting is still honored. Therefore, there is no gradual reduction
in capabilities as vSAN tries to find a placement for an object. For
example, if the policy contains failures to tolerate = 2, vSAN won’t
attempt an object placement using failures to tolerate = 1. Instead, it
immediately looks to implement failures to tolerate = 0.

Similarly, if the requirement was failures to tolerate = 1, number of
disk stripes per object = 4, but vSAN doesn’t have enough capacity
devices to accommodate number of disk stripes per object = 4, then
it will fall back to failures to tolerate = 0, number of disk stripes per
object = 1, even though a policy of failures to tolerate = 1, number of
disk stripes per object = 2 or failures to tolerate = 1, number of disk
stripes per object = 3 may have succeeded.

Telegram Channel @nettrain

Caution should be exercised if this policy setting is implemented.
Since this allows VMs to be provisioned with no protection, it can
lead to scenarios where VMs and data are at risk.

Administrators who use this option to force provision virtual
machines need to be aware that although virtual machine objects
may be provisioned with only one replica copy (perhaps due to lack
of space), once additional resources become available in the cluster,
vSAN may immediately consume these resources to try to satisfy the
policy settings of virtual machines. Thus, administrators may see the
additional space from newly added capacity devices very quickly
consumed if there are objects that are force provisioned on the
cluster.

In the past, the use case for setting force provision was when a vSAN
management cluster needed to be bootstrapped. In this scenario,
you would start with a single vSAN node that would host the vCenter
Server, which was then used to configure a larger vSAN cluster.
vCenter would be deployed initially with failures to tolerate = 0 but
once additional nodes were added to the cluster, it would get
reconfigured with failures to tolerate = 1.

Another use case is the situation where a cluster is under
maintenance or a failure has occurred, but there is still a need to
provision new virtual machines.

Remember that this parameter should be used only when
needed and as an exception. When used by default, this could
easily lead to scenarios where VMs, and all data associated
with them, are at risk due to provisioning with no FTT. Use with
caution!

Disable Object Checksum

Telegram Channel @nettrain

This feature, which is enabled by default, is looking for data
corruption (bit rot), and if found, automatically corrects it. Checksum
is validated on the complete I/O path, which means that when writing
data, the checksum is calculated and automatically stored. Upon a
read, the checksum of the data is validated, and if there is a
mismatch the data is repaired.

vSAN also includes a checksum scrubber mechanism. This
mechanism is configured to check all data on the vSAN datastore.
The frequency is controlled by advanced host settings
VSAN.ObjectScrubsPerYear and VSAN.ObjectScrubsPerYearBase. The
recommendation is to leave these settings configured to the default
values. Note that the scrubber runs in the background and only when
there is limited IO, to avoid a performance impact on the workload.

In some rare cases, you may desire to disable checksums
completely. The reason for this could be performance, although the
overhead is negligible, and most customers prefer data integrity over
a minimal performance increase. In certain cases, the application,
especially if it is a newer next-gen or cloud-native application, may
already provide a checksum mechanism, or the workload does not
require a checksum. If that is the case, then checksums can be
disabled through the “disable object checksum” capability.

Telegram Channel @nettrain

Figure 83: Object checksum disabled

We do not recommend disabling Object Checksum. This feature
was introduced as a direct request by customers and partners
who have workloads that have their own checksum mechanism.
Even if that is the case, we would still not recommend disabling
Object Checksum. Use at your own risk!

That completes the vSAN policy capabilities overview. All above-
mentioned capabilities can be specified within a policy and a policy
is associated with virtual machines or virtual disks. There is however
more to a virtual machine as explained in earlier chapters. Let’s now
look at those special objects and let’s examine which policy
capabilities are inherited and which are not.

VM Home Namespace Revisited

The VM namespace on vSAN is a 255 GB thin object. A namespace
is a per-VM object. As you could imagine, if policy settings were
allocated to the VM home namespace, such as proportional capacity
and flash read cache reservation, much of the magnetic disk and

Telegram Channel @nettrain

flash resources could be wasted. To that end, the VM home
namespace has its own special policy, as follows:

Number of disk stripes per object: 1
Failures to tolerate: <as-per-policy>
This includes RAID-1, RAID-5, and RAID-6 configurations
Flash read cache reservation: 0%
Force provisioning: Off
Object space reservation: thin
Checksum disabled: <as-per-policy>
IOPS limit for object: <as-per-policy>

To validate our learnings, we deployed a VM, and for this virtual
machine, both disk stripes, as well as failures to tolerate, were
configured to 2. As can be seen in the screenshot below, the VM
Home object only has the failures to tolerate applied; stripe width is
ignored. Remember RAID-1 with FTT=2 requires 5 vSAN hosts due to
the additional witness components.

Figure 84: VM Home components and FTT=2

Telegram Channel @nettrain

VM Swap Revisited

The VM Swap object is only created when the VM is powered on and
is deleted when the VM is powered off. The VM swap follows much
the same conventions as the VM home namespace. It has the same
default policy as the VM home namespace, which is 1 disk stripe, and
0% read cache reservation. Pre-vSAN 6.7, VM swap had a 100%
object space reservation. Starting vSAN 6.7, VM swap is thin
provisioned by default. This was done to avoid relatively high
amounts of capacity needless being reserved for swap space.

This new behavior, if desired, can be disabled using the advanced
system setting called SwapThickProvisionDisabled. This setting is set
to 1 by default on vSAN 6.7 and higher. To disable this behavior, it
needs to be configured to 0. Note that this is the same advanced
system setting that was used pre-vSphere 6.7, which was set to 0 by
default.

Figure 85: Changing Swap behavior

In later versions of vSAN, this configuration parameter was moved
directly into the vSphere client UI, under Cluster > Configure > vSAN
> Services > Advanced Options. It is enabled by default, as can be
seen in the figure below. You can revert to a thick swap by toggling
the button.

Telegram Channel @nettrain

Figure 86: Thin swap

We recommend validating if memory is overcommitted or not
and how much spare capacity is available on vSAN. Free
capacity needs to be available for swap when a VM wants to
consume it. If new blocks can’t be allocated, the VM will fail!

Pre-vSAN 6.7 VM swap did not inherit the FTT from the VM storage
policy either. It only used an FTT=1, and a RAID-1 configuration.
However, with vSAN 6.7 this behavior has also changed, and now VM
swap, like VM Home Namespace, follows the FTT specified by the
administrator in the VMs policy. This is to ensure that the swap file
has the same availability characteristics as the VM itself.

Number of disk stripes per object: 1

Telegram Channel @nettrain

Number of failures to tolerate: <as-per-policy>
Flash read cache reservation: 0%
Force provisioning: On
Object space reservation: 0% (thin)
Failure tolerance method: <as-per-policy>
Checksum disabled: <as-per-policy>
IOPS limit for object: <as-per-policy>

There is one additional point concerning swap, and that is that it has
force provisioning set to on. This means that if some of the policy
requirements cannot be met, such as failures to tolerate, the VM
swap is still created.

To validate our learnings, we deployed a VM, and for this virtual
machine both disk stripes as well as failures to tolerate were
configured to 2. As can be seen in the screenshot below, the VM
Swap object only has the failures to tolerate applied and the stripe
width is ignored. As before, RAID-1 with FTT=2 requires 5 vSAN
hosts due to the additional witness components.

Figure 87: VM Swap components and FTT=2

VM swap is not limited in size, in the way the VM home namespace is
limited. It can grow larger than a single 255 GB thin object.

Telegram Channel @nettrain

Delta Disk / Snapshot Caveat

For the most part, a delta VMDK (or snapshot, as it’s often referred
to) will always inherit the policy associated with the base disk. In
vSAN, a vSphere administrator can also specify a VM storage policy
for a linked clone. In the case of linked clones, the policy is applied
just to the linked clone (top-level delta disk), not the base disk. This
is not visible through the UI, however. Both VMware Horizon View
and VMware vCloud Director use this capability through the vSphere
API.

Clone Caveat

A clone operation always starts with a snapshot, even though you
might be cloning to a new policy. Take an example that you plan to
clone from a RAID-5 VM to a RAID-1 VM, but there is a failure in the
cluster (perhaps 1 node out of 4 is down). Whilst the RAID-5 VMs will
continue to run, you will not be able to clone it to a RAID-1, as there
are not enough resources available to create the initial snapshot
(which must be a RAID-5 since the policy is inherited from the base
VMDK) to start the cloning process.

At this point, you should be aware that you can reserve space for
objects deployed on the vSAN datastore. However, by default, virtual
machine disks on the vSAN datastore are thin provisioned. Now you
are probably wondering where you can find out how much space a
VM consumes and how much is reserved. Let’s look at how you can
do that.

Verifying How Much Space Is Consumed

Telegram Channel @nettrain

When you select the vSAN datastore in the UI, then the Monitor tab,
and then select vSAN > Capacity, you can get a nice overview of
how much space is being consumed by the different types of objects.

Figure 88: Space consumption

This view provides information on all objects that you might find on a
vSAN datastore, such as VM home namespaces, VMDKs, swap
objects, container volumes, iSCSI , and LUNS, and so on. It also
provides a global view of how much space has been consumed, and
what space savings you are getting from deduplication and
compression, once enabled on the cluster. A detailed analysis for
sure. We delve deeper into these metrics in the operations chapter.

Telegram Channel @nettrain

Now we have discussed all policy capabilities and the impact they
have on a VM (and associated objects), let’s have a look at the
component which surfaces up the capabilities to vCenter Server.

VASA Vendor Provider

As part of the vSAN cluster creation step, each ESXi host has a vSAN
storage provider registered with vCenter. This uses the vSphere APIs
for Storage Awareness (VASA) to surface the vSAN capabilities to
vCenter Server. The capabilities can then be used to create VM
storage policies for the VMs deployed on the vSAN datastore. If you
are familiar with VASA and have used it with traditional storage
environments, you’ll find this functionality familiar; however, with
traditional storage environments that leverage VASA, some
configuration work needs to be done to add the storage provider for
that storage. In the context of vSAN, a vSphere administrator does
not need to worry about registering these; these are automatically
registered when a vSAN cluster is created.

An Introduction to VASA

VASA enables storage vendors to publish the capabilities of their
storage to vCenter Server, which in turn can display these
capabilities in the vSphere Client. VASA may also provide information
about storage health status, configuration info, capacity, thin
provisioning info, and so on. VASA enables VMware to have an end-
to-end story regarding storage. Traditionally, this enabled storage
arrays to inform the VASA storage provider of capabilities. Then the
storage provider informed vCenter Server to allow users to see
storage array capabilities from the vSphere Client. Through VM
storage policies, these storage capabilities are used in the vSphere

Telegram Channel @nettrain

Client to assist administrators in choosing the right storage in terms
of space, performance, and service level agreement (SLA)
requirements. This is true for both traditional storage arrays and
vSAN.

With vSAN and vVols, the administrator defines the capabilities that
they want to have for VM storage through a VM storage policy. This
policy information is then pushed down to the storage layer,
informing it of the requirements you have for storage. VASA will then
inform the administrator whether the underlying storage (e.g., vSAN)
can meet these requirements, effectively communicating compliance
information on a per-storage object basis. VASA functionality is
working in a bidirectional mode. Early versions of VASA for traditional
storage arrays would only surface up capabilities. It not only surfaces
up capabilities, but also verifies whether a VM’s storage requirements
are being met based on the contents of the policy.

Storage Providers

The next screenshot illustrates an example of what the storage
provider section looks like. When a vSAN cluster is created, the VASA
storage provider from every ESXi host in the cluster is registered to
the vCenter server. In an environment where the vCenter server is
managing multiple vSAN clusters (12 hosts in total), the VASA vSAN
storage provider configuration would look like this. Note that there’s
a long list of IOFILTER Providers. These providers are needed for
features like Storage IO Control and VM Encryption, or any of the 3rd

party IO Filters you may have installed. IO Filters are essentially
storage services that are decoupled from your storage system. They
may provide storage agnostic replication services, or host local flash
caching for instance.

Telegram Channel @nettrain

Figure 89: vSAN Storage Provider

You can always check the status of the storage providers by
navigating in the vSphere Client to the vCenter Server inventory item,
selecting the Configure tab, and then the Storage Providers view. The
vSAN provider should always be online. Note that the vSAN storage
provider is listed as “internally managed” and you will only see one
listed. Internally managed means that all operational aspects are
automatically handled by vSAN. In early versions of vSphere, you
were able to view all hosts registered with the vSAN storage provider,
but this is no longer the case.

vSAN Storage Providers: Highly Available

The vSAN storage provider is high availability. Should one ESXi host
fail, another ESXi host in the cluster can take over the presentation of

Telegram Channel @nettrain

these vSAN capabilities. In other words, should the storage provider
that is currently online go offline or fail for whatever reason (most
likely because of a host failure), one of the standby providers on
another ESXi host will be promoted to online.

There is very little work that a vSphere administrator needs to do with
storage providers to create a vSAN cluster. This is simply for your
own reference. However, if you do run into a situation where the vSAN
capabilities are not surfacing up in the VM storage policies section, it
is worth visiting this part of the configuration and verifying that the
storage provider is online. If the storage provider is not online, you
will not discover any vSAN capabilities when trying to build a VM
storage policy. At this point, as a troubleshooting step, you could
consider doing a resync of the storage providers by clicking on the
Synchronize Storage Providers in the Storage Provider screen.

Figure 90: Synchronize storage provider

Telegram Channel @nettrain

The VASA storage providers do not play any role in the data path for
vSAN. If storage providers fail, this has no impact on VMs running on
the vSAN datastore. The impact of not having a storage provider is a
lack of visibility into the underlying capabilities, so you will not be
able to create new storage policies. However, already running VMs
and policies are unaffected.

Now that we have discussed both VASA and all vSAN policy
capabilities, let’s have a look at various examples of VMs provisioned
with a specific capability enabled.

Assigning a VM Storage Policy During VM
Provisioning

The assignment of a VM storage policy is done during the VM
provisioning. At the point where the vSphere administrator must
select a destination datastore, the appropriate policy is selected
from the drop-down menu of available VM storage policies. The
datastores are then separated into compatible and incompatible
datastores, allowing the vSphere administrator to make the
appropriate and correct choice for VM placement as shown in the
screenshot below.

Telegram Channel @nettrain

Figure 91: Incompatible datastore

In early versions of vSphere and vSAN, this matching of datastores
did not necessarily mean that the datastore would meet the
requirements in the VM storage policy. It was a little confusing
because what it meant was that the datastore understood the set of
requirements placed in the policy because they were vSAN
requirements. But it did not mean that it could successfully provision
the storage object on the vSAN datastore. Thus, it was difficult to
know if a VM with a specific policy could be provisioned until you
tried to provision it with the policy. Then it would either fail or
succeed.

In the more recent versions of vSAN, the VM is now validated to
check if it can be provisioned with the specified capabilities in the
policy. In the screenshot above we have a policy with failures to
tolerate set to 3 in a 3 node vSAN cluster. This is not possible, since

Telegram Channel @nettrain

we have already learned that such a configuration would require 2n +
1 hosts in the cluster, where n is the number of failures to tolerate.
Thus, we would need 7 hosts in the vSAN cluster to achieve
compliance with this policy. As shown, the vSAN cluster is not
capable of matching those requirements, and as such, the datastore
is listed as incompatible.

Virtual Machine Provisioning

You have previously learned about the various vSAN capabilities that
you can add to a VM storage policy/ This policy can then be used by
VMs deployed on a vSAN datastore. This section covers how to
create the appropriate VM storage policy using these capabilities. It
also discusses the layout of these VM storage objects as they are
deployed on the vSAN datastore. Hopefully, this will give you a better
understanding of the inner workings of vSAN.

Policy Setting: Failures to Tolerate = 1, RAID-1

Let’s begin by creating a very simple VM storage policy. Then we can
examine what will happen if a VM is deployed to a vSAN datastore
using this policy. Let’s create the first policy to have a single
capability setting of number of failures to tolerate set to 1. We are
going to use RAID-1 mirroring to implement failures to tolerate
initially. Later, we shall look at RAID-5 and RAID-6 configurations for
the VM objects which offer different protection mechanisms. But
before we get to that, it is important to understand that this default
policy of failures to tolerate = 1 means that any VMs deployed on the
vSAN datastore with this policy will be configured with an additional
mirror copy (replica) of the data. This means that if there is a single
failure in the vSAN cluster, a full complement of the vSAN storage

Telegram Channel @nettrain

objects is still available. Let’s see this in action, but before we do,
let’s visualize the expected results as shown in the next figure.

Figure 92: Failures to tolerate = 1

In this vSAN environment, there are several ESXi hosts. This is an all-
flash configuration, where each ESXi host has a single disk group
and a flash device for caching and multiple devices per disk group
for capacity. The vSAN cluster has been enabled, vSAN networking
has been configured and the ESXi hosts have formed a vSAN
datastore. To this datastore, we will deploy a new VM.

We will keep this first VM storage policy simple, with just a single
capability, failures to tolerate set to 1.

To begin, go to the Policies and Profiles section in the navigation bar
on the left-hand side of the vSphere Client, and click the VM storage
policies icon. Next click on CREATE. This will open the Create VM

Telegram Channel @nettrain

Storage Policy screen, as shown below. Make sure to provide the new
policy with a proper name. In this scenario, we will name the policy
FTT=1 – RAID 1.

Figure 93: Create a new VM storage policy

The next screen displays information about the policy structure. This
includes host-based services, vSAN rule sets vSANDirect rule sets,
and tag-based placement. The host-based services are I/O filters, in
most environments limited to vSphere features called Storage I/O
Control and VM Encryption. Note however that there are also 3rd

party I/O filters, these can also be included in a policy. vSANDirect
rules are like tag rules and are used to identify devices that are
consumed by vSANDirect for the vSAN Data Persistence platform,

Telegram Channel @nettrain

which will be discussed in further detail when we discuss vSAN as a
platform for modern applications. Tag-based placement rules are
typically used in scenarios where VMs need to be deployed on
datastores that are not represented by a storage provider or to
differentiate between multiple datastores that offer the same
capabilities, e.g., an HCI-Mesh environment, or when placement of
VMs should be determined by specific categories that those VMs, or
VM owners, belong to.

This was described on VMware’s VirtualBlocks blog by Jason Massae
as follows:

“Many are familiar with SPBM policies when used with vSAN or
VVols as they have some incredible features and
functionalities. But another valuable SPBM use is with Tags
and Categories. By using tags, we can create high-level
generic policies or very custom and detailed policies. With tag
based SPBM, you can create your own specific categories and
tags based on almost anything you can envision. Performance
levels or tiers, disk configurations, locations, OS type,
departments, and disk types such as SAS, SATA or SSD are
just a few examples. The categories and tags you can create
are almost limitless!”

Figure 94: Enable rules for vSAN storage

Telegram Channel @nettrain

On the next screen, we can begin to add requirements for vSAN. For
our first policy, the capability that we want to configure is Failures to
tolerate, and we will set this to 1 failure – RAID-1 (Mirroring), as
shown below.

Figure 95: Failures to tolerate = 1 failure

Note that below the Failures to tolerate setting it now displays what
the impact is on consumed storage space. It uses a 100 GB VM disk
as an example, and as shown in the screenshot above, this policy
setting results in 200 GB consumed. This of course is assuming that
100% of the capacity of the virtual disk is used, as vSAN disks are
provision thin by default. This gives administrators a good idea of
how much space will be consumed depending on the requirements
placed in the policy.

Clicking Next moves the wizard onto the storage compatibility view,
and at this point, all vSAN datastores managed by the vCenter server
should be displayed as compatible, as below. This means that the
contents of the VM storage policy (i.e., the capabilities) are
understood and the requirements can be met by the vSAN datastore.

Telegram Channel @nettrain

Figure 96: Storage compatibility

Similarly, if the INCOMPATIBLE view is selected, we should see
datastores that are not compatible with the policy. In this example,
NFS datastores and VMFS datastores are shown.

Figure 97: Storage incompatibility

Click Next and review your policy and click Finish to create it.
Congratulations! You have created your first VM storage policy. We
will now go ahead and deploy a new VM using this policy. The
process for deploying a new VM is the same as before. The only
difference is at the storage-selection step, here the created policy
will need to be selected, as shown below. Any datastores available to
the VM will be displayed, and their associated storage compatibility
is also shown. In the example here, the vSAN datastore is shown as

Telegram Channel @nettrain

Compatible but the NFS v3 datastore is shown as Incompatible since
it cannot implement the required VM storage policy. Selecting the
vSAN datastore will populate the Compatibility check window with
details about whether the checks were successful or not.

Figure 98: Select vSAN Storage Policy

Note that if no policy is selected the vSAN default storage policy will
be applied. This policy is selected for all new VMs deployed on vSAN
by default. The capabilities for the default policy are failures to
tolerate set to 1 – RAID-1 and number of disk stripes per object set
to 1.

Once the VM has been deployed, we can check the layout of the VM’s
objects. Navigate to the VM and then click Monitor > vSAN > Physical
disk placement, as shown below. From here, we can see the layout of
the VM’s storage objects such as the VM home, VM Swap (if the
virtual machine is powered on), and VM disk files (VMDKs).

Telegram Channel @nettrain

Figure 99: Physical disk placement

As you can see, there is a RAID-1 (mirror) configuration around all
components.

There are two components making up the RAID-1 mirrored storage
object for Hard disk 1, one on the host esxi-dell-e and the other on
the host esxi-dell-f. These are the mirror replicas of the data that
make failure tolerance possible. There is also a witness component
on the host esxi-dell-g. Remember that 50% of the components
(votes) must be present for the VM object to remain available. In this
example, if there was no witness and a host failed or became
partitioned from the rest of the cluster, you could lose one
component (50%). Even though you still had a valid replica available,
more than 50% of the components (votes) would not be available.
This is the reason for the witness disk; it determines who owns the
object during a failure and provides a greater than 50% majority.

Telegram Channel @nettrain

The witness itself is essentially a piece of metadata; it is about 16 MB
in size, and so it doesn’t consume a lot of space. As you create
storage objects with more and more components, additional
witnesses may get created. This is entirely dependent on the object
configuration and how vSAN decides to place components.

Policy Setting: Failures to Tolerate = 1, Stripe
Width = 2

Let’s try another VM storage policy setting that adds another
capability. In this case, we will use a cluster with more resources than
the first example to facilitate the additional requirements. This time
we will explicitly request failures to tolerate set to 1 and number of
disk stripes per object set to 2. Let’s build out that VM storage policy
and deploy a VM with that policy and see how it affects the layout of
the various VM storage objects. In this scenario, we expect a RAID-1
configuration mirrored by a RAID-0 stripe configuration, resulting in
four disk components. There are two components in each RAID-0
stripe, which is in turn mirrored in a RAID-1 configuration. The below
diagrams show what this may look like from a logical perspective.

Telegram Channel @nettrain

Figure 100: Striping objects

Now, let’s create the VM storage policy and then provision a VM to
see if the actual result matches the theory.

When creating the new policy, the steps are very similar to the first
exercise, so we are not going to fully repeat this. To meet the
necessary VM requirements, we select number of disk stripes per
object and set this to 2. The number of disk stripes defined is a
minimum number, so depending on the size of the virtual disk and
the size of the capacity tier devices, a virtual disk might end up being
striped across multiple disks or hosts.

Telegram Channel @nettrain

Figure 101: Number of disk stripes per object = 2

Now that we have created a new VM storage policy, let’s provision a
VM. During the VM provisioning process, we will select the
appropriate VM Storage Policy. Again, the vSAN Datastore is
displayed as being compatible with the policy as shown next.

Figure 102: VM Storage Policy = 2

Telegram Channel @nettrain

After we have deployed the VM, we will examine the physical disk
layout again, as shown on the next page.

Figure 103: Physical disk placement for SW = 2

As you can see in the screenshot above, a RAID-1 configuration has
been created for Hard disk 1, adhering to the number of failures to
tolerate requirement specified in the VM storage policy. However,
now you see that additionally each replica is made up of a RAID-0
stripe configuration, and each stripe contains two components,
adhering to the number of disk stripes per object requirement of 2.

In this example, we also have a witness component for the virtual
disk object. It is important to point out that the number of witness
components, if any, is directly related to how the components are
distributed across the hosts and disks in the cluster. Depending on

Telegram Channel @nettrain

the size of the vSAN cluster, several witness components might have
been necessary to ensure that greater than 50% of the components
of this VM’s objects remained available in the event of a failure,
especially a host failure. In this case, the vote count would determine
the winner in the case of a partition. The vote count is not visible in
the UI unfortunately, but it can be examined using the command-line
tool RVC, and the Ruby vSphere Console (RVC) command
vsan.vm_object_info. Below you can see a condensed version of this
output, which will give you an idea of how votes work. We will learn
more about RVC in chapter 10.

As shown above, this RAID-1 configuration has two RAID-0
configurations underneath. Each component of the RAID-0
configuration has 1 vote, except for one component, which has 2
votes. This is to ensure that when a host is isolated it can’t achieve
majority by itself.

Telegram Channel @nettrain

An interesting point to note is that the VM home namespace and the
swap, as shown in the screenshot above, do not implement the
number of disk stripes per object requirement. The VM home
namespace and the VM swap only implement the failures to tolerate
requirement, as highlighted earlier in the book.

Policy Setting: Failures to Tolerate = 2, Stripe
Width = 2

In this next example, we create another VM storage policy that has
the number of disk stripes per object set to 2 but this time we also
set failures to tolerate to 2. This implies that any VM deployed with
this policy on the vSAN cluster should be able to tolerate up to two
different failures, be it host, network, or disk failures. Considering the
“two-host failure” capability specified and the number of disk stripes
of 2, the expected disk layout is as shown in the diagram below.

Figure 104: Logical placement FTT = 2 and SW = 2

Telegram Channel @nettrain

There are a few considerations with regard to this configuration.
Because we are continuing with a RAID-1 mirroring configuration to
tolerate failures, there need to be n+1 copies of the data and 2n+1
hosts in the cluster to tolerate n failures. Therefore, to tolerate two
failures, there will be three copies of the data, and there must be a
minimum of five hosts in the cluster to also store the witness
components.

A new cluster is used to test this scenario. After we have provisioned
a VM, the physical disk placement can be examined to see how the
VM storage objects have been laid out across hosts and disks.

Telegram Channel @nettrain

Figure 105: Physical placement FTT = 2 and SW = 2

Looking at the physical placement of the VM provisioned with the
FTT = 2 and SW = 2 we can conclude that the placement of
components becomes rather complex when both the SW and FTT
values are increased to 2.

We see that for the virtual disk of this VM, vSAN has implemented
three RAID-0 stripe configurations. For RAID-0 stripe configurations,

Telegram Channel @nettrain

all components in at least one of the RAID-0 stripe configurations
must remain intact. That is why a third RAID-0 stripe configuration
has been created. You might assume that if the first component in
the first RAID-0 stripe configuration was lost, and the second
component of the second RAID-0 stripe configuration was lost, vSAN
might be able to use the remaining components, one from each
stripe, to keep the storage object intact. This is not the case.
Therefore, to tolerate two failures in the cluster, a third RAID-0 stripe
configuration is necessary because two failures might take out the
other two RAID-0 stripe configurations. This is also why all these
RAID-0 configurations are mirrored in a RAID-1 configuration. The
bottom line with this policy setting is that any two hosts are allowed
to fail in the cluster, and vSAN will guarantee that the VM’s data
remains accessible due to the way the object has been distributed
around the cluster. Also, note that the components are stored on five
different ESXi hosts in this nine-node vSAN cluster.

Next, let’s examine the VM home namespace and VM swap. As we
have mentioned before, these objects do not implement the number
of disk stripes per object policy setting but do implement the failures
to tolerate. As demonstrated. there is no RAID-0 configuration on
these objects, but we can see that there are now three replicas in the
RAID-1 mirror configuration to meet the failures to tolerate set to 2
in the VM storage policy. What can also be observed here is an
increase in the number of witness disks. Not to labor the point, but
once again keep in mind that greater than 50% of the components
of the VM home namespace object (or 50% of the votes depending
on the quorum mechanism used) must be available for this object to
remain online. Therefore, if two replicas were lost, there would still be
one replica (i.e., a copy of the VM home namespace data) available
and two witness components; therefore, greater than 50% of the
components would still be available if two failures took out two
replicas of the VM home namespace object or swap object.

Telegram Channel @nettrain

Policy Setting: RAID-5

Let us now look at a policy where we leverage erasure coding, more
commonly referred to as RAID-5 or RAID-6. The big advantage of
leveraging erasure coding over mirroring is that it requires less disk
capacity to protect against a single failure (FTT=1). For a 100 GB
VMDK, this only consumes 133.33 GB, which is 33% above the actual
size of the VMDK. The additional 33.33 GB is used for parity.
Previously when we created a policy to protect against a single failure
using RAID-1, because of the mirror copies, an additional 100% of
capacity was consumed. In the event of a data component failure in a
RAID-5 configuration, a single component’s data can be
reconstructed using the remaining 2 data components along with the
parity component.

When an Erasure Coding policy is created, administrators need to be
aware that these are only available on All flash vSAN configurations.
When failures to tolerate is set to wither RAID-5 or RAID-6 Erasure
Coding, a warning is displayed to highlight this requirement.

Figure 106: Erasure Coding warning in Availability

Note that a warning has also been added to Storage rules. If we
examine the Storage rules, we can see why.

Telegram Channel @nettrain

Figure 107: Erasure Coding warning in Storage rules

The warning is against the storage tier. This, if you recall, is a section
primarily used for HCI-Mesh. Since we can remotely mount vSAN
datastores to this vSphere cluster, which are both hybrid and All
flash, this setting will prevent a RAID-5 policy from showing remote
vSAN datastore as compatible, if they are not an All flash vSAN
configuration. Thus, even if you do not plan to use HCI-Mesh, set the
Storage tier to All flash for Erasure Coding policies. This will toggle
the warning message.

After creating the RAID-5 FTT=1 policy, deploy a VM with it. The
physical disk placement can be examined as before, and we should
now observe a RAID-5 layout across four disks and four hosts. The
below screenshot shows the physical disk placement view, and as
described, we see a RAID-5 configuration for the objects, each
having 4 components. This is a so-called 3+1 configuration, meaning
3 data and 1 parity segment.

Telegram Channel @nettrain

Figure 108: Physical placement RAID-5

Note that the VM home namespace and VM Swap objects also inherit
the RAID-5 configuration.

Policy Setting: RAID-6

Besides RAID-5, the option to tolerate two failures in a capacity-
efficient manner is also available via erasure coding and is called
RAID-6. To configure a RAID-6 object, select 2 failures – RAID-6 for
the Failures to tolerate policy setting. Note the storage consumption
model. For a 100 GB VMDK, this only consumes 150 GB, which is
50% above the actual size of the VMDK. The additional 50 GB is
used by the two parity blocks of the RAID-6 object, 25GB each in the
100 GB VMDK example. Previously when we created a policy for
RAID-1 objects with failures to tolerate set to 2, because of the mirror
copies, an additional 200% of capacity was consumed. This means
that a 100 GB VMDK required 300 GB of disk capacity at the
backend. RAID-6 consumes half that amount of capacity to provide
the same level of availability.

Telegram Channel @nettrain

Figure 109: Physical placement RAID-6

When a VM is deployed with this policy, the physical disk placement
can be examined as before, and as demonstrated in the screenshot
above, a RAID-6 layout is observed across six disks and six hosts.
Note that again the VM Swap and VM home namespace objects also
inherit the RAID-6 configuration.

Telegram Channel @nettrain

Policy Setting: RAID-5/6 and Stripe Width

Prior to vSAN 7.0U1, it was possible to use RAID-5/6 with the use of
a stripe width in the policy. Each part of a RAID-5/6 object was
striped with the number of stripe width components in a RAID-0
configuration. In this example, a VM was deployed on a vSAN 6.7U1
vSAN with a RAID-6 configuration as per the previous example, but
the policy included 2 disk stripes per object. This led to the following
object configuration in the physical disk placement view.

Figure 110: Physical placement RAID-6 – SW = 2

Telegram Channel @nettrain

The VM home namespace and the VM Swap objects do not
implement the stripe width, so they continue to have a RAID-6
configuration without any striping as per the previous example. Note
that this configuration requires a minimum of 6 hosts in the vSAN
cluster.

Figure 111: Physical placement RAID-6 – SW = 2 for VM Swap and Home

Although in the above example we showed how this works with a
RAID-6 configuration, the same principles apply to a RAID-5
configuration prior to the release of vSAN 7.0U1. However, the

Telegram Channel @nettrain

configuration of erasure coding policies with stripe width changed
considerably in vSAN 7.0U1. This has already been mentioned earlier
in this chapter, but it is worth repeating here again. To handle large
objects whilst reducing the number of components, vSAN will now
treat the component count of an erasure coding segment toward the
stripe width. For example, a RAID-5 object will have an effective
stripe width of 4, while a RAID-6 object is considered to have an
effective stripe width of 6. Therefore, the value of Stripe Width must
be increased in multiples of 4 or 6 respectively to achieve an
additional stripe for that given component.

Default Policy

As mentioned earlier, vSAN has a default policy. This means that if no
policy is chosen for a VM deployed on the vSAN datastore, a default
policy that is automatically associated with the vSAN datastore is
used.

The default policy contains the following capabilities:

Number of failures to tolerate = 1
Number of disk stripes per object = 1
Flash read cache reservation = 0%
Object space reservation = Thin Provisioning
Force provisioning = disabled
Checksum = enabled
IOPS Limit = 0 (unlimited)

Note that this default policy for the vSAN datastore, called the vSAN
default storage policy, can be edited. If you wish to change the
default policy, you can simply edit the capability values of the policy
from the vSphere Client by selecting the policy and clicking Edit
Settings.

Telegram Channel @nettrain

Figure 112: Default vSAN policy

An alternative to editing the default policy is to create a new policy
with the desired capabilities and associate this new policy with the
vSAN datastore. This would be the preferred way of changing the
default policy inherited by VMs that are deployed on the vSAN
datastore.

If you are managing multiple vSAN deployments with a single
vCenter server, different default policies can be associated with

Telegram Channel @nettrain

different vSAN datastores. Therefore, if you have a “test-and-dev”
cluster and a “production” cluster, there can be different default
policies associated with the different vSAN datastores. To change the
default policy of the vSAN datastore you need to go to the Storage
view in the vSphere Client and select the vSAN datastore then click
Configure > General followed by clicking Edit on Default Storage
Policy. Now you can simply associate a different policy with the
datastore you selected as demonstrated in the screenshot below.

Figure 113: Change default vSAN policy

Witnesses and Replicas: Failure Scenarios

Failure scenarios are often a hot topic of discussion when it comes
to vSAN. What should one configure, and how do we expect vSAN to
respond? This section runs through some simple scenarios to
demonstrate what you can expect of vSAN in certain situations.

Telegram Channel @nettrain

The following examples use a four-host vSAN cluster and use a
RAID-1 mirroring configuration. We will examine various failures to
tolerate and stripe width settings and discuss the behavior in the
event of a host failure. You should understand that the examples
shown here are for illustrative purposes only. These are simply to
explain some of the decisions that vSAN might make when it comes
to object placement. vSAN may choose any configuration if it
satisfies the customer requirements (i.e., failures to tolerate and
stripe width). For example, with higher numbers of failures to tolerate
and stripe width, vSAN could make placement decisions that may use
more, less, or even no witnesses or more, or less, hosts than shown in
the examples that follow.

Example 1: Failures to Tolerate = 1, Stripe Width
= 1

In this first example, the stripe width is set to 1. Therefore, there is
no striping per se, simply a single instance of the object. However,
the requirements are that we must tolerate a single disk or host
failure, so we must instantiate a replica (a RAID-1 mirror of the
component). However, a witness is also required in this configuration
to avoid a split-brain situation. A split-brain could be when ESXi-02
and ESXi-04 continue to operate, but no longer communicate with
each another. Whichever of the hosts can communicate with the
witness is the host that has a valid copy of the data in that scenario.
Data placement in these configurations may look like the one
displayed in the diagram below.

Telegram Channel @nettrain

Figure 114: FTT = 1 – RAID-1

The data remains accessible in the event of a host or disk failure. If
ESXi-02 has a failure, ESXi-03 and ESXi-04 continue to provide
access to the data as a quorum continues to exist. However, if ESXi-
02 and ESXi-03 both suffer failures, there is no longer a quorum, so
data becomes inaccessible. Note that in this scenario the VM is
running (from a compute perspective) on ESXi-01, while the
components of the objects are stored on ESXi-02, 03, and 04. The
VM can run on any host in the cluster, and vSphere DRS is free to
migrate it anywhere when deemed necessary.

Example 2: Failures to Tolerate = 1 and Stripe
Width = 2

Turning to another example, this time the stripe width is increased to
2. This means that each component must be striped across two
devices at a minimum. However, vSAN may decide to stripe across

Telegram Channel @nettrain

capacity devices on the same host or across capacity devices on
different hosts. The diagram below shows one possible distribution of
storage objects.

Figure 115: FTT = 1 – SW = 2

As you can see, vSAN in this example has chosen to keep the
components for the first stripe (RAID-0) on ESXi-01 but has placed
the components for the second stripe across ESXi-03 and ESXi-04.
Once again, with failures to tolerate set to 1, we mirror using RAID-1.
In this configuration, a witness is also used. Why might a witness be
required in this example? Consider the case where ESXi-01 has a
failure. This has an impact on both components on ESXi-01. Now we
have two components that failed and two components still working
on ESXi-02 and ESXi-03. In this case, we still require a witness to
attain quorum. Note that this may not always be the case. In some
situations, assigning votes to components may negate the need for a
witness as discussed previously.

Telegram Channel @nettrain

Note that if one component in each of the RAID-0 configurations
fails, the data would be inaccessible because both sides of the RAID-
1 are impacted. Therefore, a disk failure in ESXi-01 used by one of
the stripes and a disk failure in ESXi-02 used by another of the
stripes will make the VM inaccessible until the disk faults are
rectified. Because a witness contains no data, it cannot help in these
situations. Note that this is more than one failure, however, and our
policy is set to tolerate only one failure.

Example 3: Failures to Tolerate = 1 and RAID-5

In this last example, the failures to tolerate is set to 1, and RAID-5 is
used instead of mirroring. In this example the minimum number of
hosts needed is 4, compared to 3 with mirroring.

Figure 116: FTT = 1 – RAID-5

One thing to point out is that when it is desired to have the ability to
resync data after a failure, an additional host will need to be part of
the cluster. For a RAID-5 configured object, this means that the
number of hosts required is 5 if you want to be able to repair data

Telegram Channel @nettrain

after a host failure has occurred. When a single host fails in the
example above, the VM will be able to access its disk. And by
leveraging parity blocks, vSAN will be able to reconstruct the missing
data.

Changing VM Storage Policy On-the-Fly

Being able to change a VM storage policy on-the-fly is a useful
aspect of vSAN. This example explains the concept of how a VM
storage policy can be changed on-the-fly, and how it changes the
layout of a VM without impacting the application or the guest
operating system running in the VM.

Consider the following scenario, briefly mentioned earlier in the
context of stripe width. A vSphere administrator has deployed a VM
on a hybrid vSAN cluster with the default VM storage policy, which is
that the VM storage objects should have no disk striping and should
tolerate one failure. The layout of the VM disk file would look as
follows.

Telegram Channel @nettrain

Figure 117: vSAN Default policy data layout

The VM and its associated applications initially appeared to perform
satisfactorily with a 100% cache hit rate; however, over time, an
increasing number of VMs were added to the hybrid vSAN cluster.
The vSphere administrator starts to notice that the VM deployed on
vSAN is getting a 90% read cache hit rate. This implies that 10% of
reads need to be serviced from magnetic disk/capacity tier. At peak
time, this VM is doing 2,000 read operations per second. Therefore,
there are 200 reads that need to be serviced from magnetic disk
(the 10% of reads that are cache misses). The specifications on the
magnetic disks imply that each disk can do 150 IOPS, meaning that
a single disk cannot service these additional 200 IOPS. To meet the
I/O requirements of the VM, the vSphere administrator correctly
decides to create a RAID-0 stripe across two disks.

On vSAN, the vSphere administrator has two options to address this.
The first option is to simply modify the VM storage policy currently

Telegram Channel @nettrain

associated with the VM and add a stripe width requirement to the
policy; however, this would change the storage layout of all the other
VMs using this same policy. Not just for a single cluster, but
potentially for all clusters being managed by the same vCenter server
and running VMs using the same policy. This is because policies are
defined on a vCenter Server level. This change could lead to a huge
amount of rebuild traffic and is not our recommended approach.

We recommend creating a brand-new policy that is identical to the
previous policy but has an additional capability for stripe width. This
new policy can then be attached to only the VM (and of course its
VMDKs) suffering from cache misses. Once the new policy is
associated with the VM, vSAN takes care of changing the underlying
VM storage layout required to meet the new policy, while the VM is
still running without the loss of any failure protection. It does this by
mirroring the new storage objects with the additional components (in
this case additional RAID-0 stripe width) to the original storage
objects.

When the new policy is created, it can be associated with the VM and
the storage objects in a number of places in the vSphere Client. In
fact, policies can be changed at the granularity of individual VM disk
objects (e.g., VMDK) if necessary.

After making the change the new components reflecting the new
configuration (e.g., a RAID-0 stripe) will enter a state of
reconfiguring. This will temporarily build out additional replicas or
components, in addition to keeping the original
replicas/components, so additional space will be needed on the
vSAN datastore to accommodate this on-the-fly change. When the
new replicas or components are ready and the configuration is
completed, the original replicas/components are discarded.

One should keep in mind that making a change like this could
lead to rebuilds and generate resync traffic on the vSAN
network. For that reason, policy changes should be considered a

Telegram Channel @nettrain

maintenance task and kept to a minimum during production
hours.

Note that not all policy changes require the creation of new replicas
or components. For example, adding an IOPS limit, or reducing the
number of failures to tolerate, or reducing space reservation does not
require this. However, in many cases, policy changes will trigger the
creation of new replicas or components or potentially even trigger a
full rebuild of the object. (Table 7 describes which policy setting
triggers a rebuild.) Therefore, caution should be used when changing
storage policies on the fly, especially if the change may impact many
virtual machines. Significant improvements have been made over the
years to ensure that rebuild network traffic does not negatively
impact VM network traffic, but our advice is to treat large policy
changes as a maintenance task, and to implement those changes out
of normal production hours.

Your VM storage objects may now reflect the changes in the vSphere
Client, for example, a RAID-0 stripe as well as a RAID-1 replica
configuration, as shown below.

Telegram Channel @nettrain

Figure 118: vSAN data layout after change of policy

Compare this to the tasks you may have to perform on many
traditional storage arrays to achieve this. It would involve, at the very
least, the following:

The migration of VMs from the original datastore.
The decommissioning of said LUN/volume.
The creation of a new LUN with the new storage
requirements (different RAID level).
Possibly the reformatting of the LUN with VMFS in the case
of block storage.
Finally, you must migrate your VMs back to the new
datastore.

In the case of vSAN, after the new storage replicas or components
have been created and synchronized, the older storage replicas

Telegram Channel @nettrain

and/or components will be automatically removed. Note that vSAN is
capable of striping across disks, disk groups, and hosts when
required, as mentioned before. It should also be noted that vSAN can
create the new replicas or components without the need to move any
data between hosts; in many cases, the new components can be
instantiated on the same storage on the same host.

We have not shown that there are, of course, additional witness
components that could be created with such a change to the
configuration. For a VM to continue to access all its components, a
full replica copy of the data must be available and more than 50% of
the components (votes) of that object must also be available in the
cluster. Therefore, changes to the VM storage policy could result in
additional witness components being created, or indeed, in the case
of introducing a policy with fewer requirements, there could be fewer
witnesses.

You can see the configuration changes taking place in the vSphere
UI during this process. Select the vSAN cluster object in the vCenter
inventory, then select monitor, vSAN, and finally “resyncing
components” in the menu. This will display all components that are
currently resyncing/rebuilding. The screenshot below shows the
resyncing dashboard view with a resync in progress for a VM where
we manually changed the policy from RAID-6 to RAID-1 with SW = 2.

Telegram Channel @nettrain

Figure 119: Resync/rebuild activity

The big question which then remains is when exactly is a full rebuild
needed when changing a policy and when will vSAN simply create
extra components? As you can imagine, a full rebuild of many virtual
machines can have an impact on required storage capacity, and
potentially also on performance. The following table outlines when a
full rebuild is required and when it is not required.

Telegram Channel @nettrain

Summary

This completes the coverage of VM storage policy creation and VM
deployments on the vSAN datastore. What you will have noticed is
that there are a few behaviors with VM storage policies that might
not be intuitive, such as the default policy settings, the fact that
failures to tolerate set to 1 is implicitly included in a policy, and that
some virtual storage objects implement only some of the policy
settings. We are hoping though that this chapter provided you with
sufficient confidence to create, apply and edit VM storage policies.

Telegram Channel @nettrain

Chapter 6

vSAN Operations

This chapter covers the common procedures and tasks when
monitoring and maintaining a vSAN deployment. It also provides
some generic workflows and examples related to day-to-day
management often referred to as day-2 management. Management,
monitoring, and maintenance of vSAN have changed considerably
since the initial version. This chapter will look at how operations have
changed with the evolution of vSAN.

Skyline Health

We will begin this chapter with a look at what has become the most
valuable tool in an administrator’s arsenal when it comes to
monitoring vSAN. This is of course Skyline Health, formerly known as
vSAN health check. Skyline health is embedded into both vCenter
Server and ESXi and is automatically available without any
administrative actions required. The vSAN health check immediately
provides a complete overview of the current health of a vSAN cluster.

Skyline Health Tests

Telegram Channel @nettrain

Possibly the most useful aspect of the health check is the sheer
number of tests that it performs on all aspects of the vSAN cluster.
Among the range of tests are checks to ensure that all the hardware
devices are on the VMware Compatibility Guide (VCG) as well as
supportability and version checks on the storage controller’s driver
and firmware versions. It verifies that the network is functioning
correctly between all the ESXi hosts that are participating in the
vSAN cluster, that the cluster is formed properly, and that the storage
devices do not have any errors. This is invaluable when it comes to
troubleshooting vSAN issues and can quickly lead administrators to
the root cause of an issue. Administrators should always refer to the
Skyline health tests to ensure that vSAN is completely healthy before
embarking on any management, lifecycle, or maintenance tasks. The
next figure, shows a sample of some of the health checks taken from
a 7.0U3 vSAN cluster. Enhancements are being added to the health
check with each release, so expect a different list of health checks
depending on the vSAN version. There are also additional health
checks for different use cases and features, such as vSAN stretched
cluster, HCI Mesh, etc.

Telegram Channel @nettrain

Figure 120: Skyline Health check tests listing

Skyline health for vSAN also includes an alerting/alarm mechanism.
This means that if a test fails in the health check, an alarm in
vSphere is raised to bring it to the administrator’s attention. The
other nice feature of the health check tests is that, through the
AskVMware mechanism, all tests are linked to a VMware
knowledgebase article which provides details about the nature of the
test, what it means when it fails, what may have caused the error and
how you can remediate the situation. To run the health check tests,
first, select the vSAN cluster object in the vCenter inventory, then
select Monitoring, and then select vSAN followed by Skyline Health.
The tests can be re-run at any time by clicking the “Retest” button at
the top of the overview section. However, all the checks are run
automatically every 60 minutes.

Telegram Channel @nettrain

Online Health

Online Health are health checks that can be dynamically updated by
VMware. This is extremely useful when new potential issues are
identified by VMware and new knowledgebase articles are released.
Customers can be proactively informed about these new issues and
resolutions before potentially encountering them on their own vSAN
clusters. The benefit of this approach is that it can automatically
identify if a new knowledgebase article or new update or patch
applies to your environment. This saves on time and effort that might
otherwise be spent trawling the VMware knowledgebase or vSAN
Release Notes. However, the authors would always recommend
reviewing the Release Notes before attempting any vSAN or vSphere
upgrade to that particular release.

To benefit from the Online health checks, the CEIP (Customer
Experience Improvement Program) function must be enabled.
VMware's Customer Experience Improvement Program ("CEIP")
provides information that helps VMware to improve its products and
services, fix problems, and advise customers on how best to deploy
and use our products. To learn more about CEIP, check out the
following online resource: https://vmwa.re/ceip. Enabling CEIP has
other benefits which will be covered later.

Customers often ask what kind of data is sent back to VMware when
CEIP is enabled. This is described in great detail in the link provided
above, but the data collected is primarily to do with configuration
information, such as which vSAN features are enabled, as well as
some performance data and logs. No actual customer data is being
captured, only metadata, or to put another way, only information
about data is captured (if that makes sense). The data that is
captured is also obfuscated so that even when the configuration is
reviewed, no information such as hostnames and VM names are
available. There is a way for VMware support engineers to de-

Telegram Channel @nettrain

https://vmwa.re/ceip

obfuscate the names, but this can only be done via customer consent
as the customer needs to provide support for a so-called obfuscation
map. This map can be found in the vSphere Client under Monitor >
vSAN > Support on the vSAN cluster object as demonstrated in the
screenshot below.

Figure 121: Obfuscation map

We have seen great success for customers, both from a proactive
and reactive perspective, when CEIP is enabled in an environment.
Please consider taking the step of enabling this very useful feature.

Health History

The health history feature keeps all vSAN Skyline Health data for up
to 30 days depending on the vCenter Server database available

Telegram Channel @nettrain

capacity. This is extremely useful for trying to identify if an issue
occurred when the system was not being actively monitored, perhaps
overnight or over a weekend. It is also very useful for trying to
identify patterns in behavior. For example, an administrator might
use the historical health data to see if the same issue happens at the
same time every day, or every week, in an attempt to try and root
cause a problem.

To view the health history, there is a slider button located on the
Skyline Health Overview window called “View Health History”. Once
enabled, the overview can be examined to see if there have been any
issues with any of the other tests over a specific period. By default, it
displays the last 24 hours of health data. Administrators can roll back
as far as 30 days to view health status history if necessary.

Figure 122: Health History – No issues

Telegram Channel @nettrain

In the above example, there has been no issue in the last 24 hours,
but if the timeline is expanded to a longer period, some historical
issues may be viewed, as shown in the next example.

Figure 123: Health History – Issues found

In this example, various warnings and errors have been observed in
the past 30 days. Periods with repeated, identical errors are
collapsed together for visibility. Click on any of the periods to expand.

Telegram Channel @nettrain

Figure 124: Health History – Disk capacity/Storage space issue

Administrators may now drill into the time of the event to see exactly
when it occurred, and the type of warnings or errors that were
encountered at that time. In this example, after drilling down to the
actual time of the error, we see that there were some capacity issues
on the cluster.

The health check history is informing the administrator that there
were some disk capacity issues. It is also highlighting that if there
was a host failure during the disk capacity issue, there may not have
been enough capacity left in the cluster to address the storage needs
of all workloads deployed on the cluster. This is accurate since this
cluster was used to build out some large, thick-provisioned, 100%
Object Space Reservation virtual machines for demonstrating policy
behavior in chapter 5. After building the VMs, and capturing the
necessary information for this book, they were deleted. Therefore, the
space issue only occurred temporarily, and the capacity usage
returned to a healthy state in the health history view.

Telegram Channel @nettrain

Proactive Health Checks

Along with the set of health check tests introduced previously, vSAN
health check also provides a set of proactive tests. Typically, one
would not run these proactive tests during production. However,
these tests can be very useful if you wish to implement a proof-of-
concept (PoC) with vSAN, or even as part of the initial vSAN ‘burn-in’
tests to test the functionality of your newly deployed hardware
(servers, NICs, storage devices).

These proactive tests can give you peace of mind that everything is
working correctly before putting vSAN into production. The proactive
tests have changed over the various versions of vSAN. vSAN 6.7 only
included the VM Creation Test, while vSAN 6.7U1 includes the VM
Creation Test and Network Performance Test. The current vSAN
version (7.0U3) includes 3 tests:

VM Creation Test
Network Performance Test
Storage Performance Test

Simply select the test that you wish to run and click the “Run Test”
button to begin the test. A popup window is displayed giving you
additional information about the test. The next screenshot shows the
tests as they appear in the vSphere client. The Last Run Result field
displays the time of the last test and whether the test was successful
or not.

The actual tests that are run are well described in the vSphere Client.
The “VM Creation Test” quickly verifies that virtual machines can be
deployed on the vSAN datastore, and once that verification is
complete, the sample VMs are removed. The VMs are created with
whatever policy is the default policy for the vSAN datastore, and the

Telegram Channel @nettrain

test reports if the test was successful or not, along with any relevant
error messages.

Figure 125: Health check proactive tests

The “Network Performance Test” simply verifies that the network
infrastructure can handle a particular throughput of network traffic,
and highlights if the network is unable to carry a particular load that
is desirable for vSAN. This is especially important when there is a
complex network configuration that may involve several hops or
routes when vSAN is deployed over L3.

Telegram Channel @nettrain

Figure 126: Enable network diagnostic mode

The “Network Performance Test” offers an additional option of
including network diagnostics. These diagnostics can be useful in
determining whether there is sufficient bandwidth between all the
ESXi hosts to support vSAN. The test checks to make sure there is at
least 850Mbps between the hosts.

Telegram Channel @nettrain

Figure 127: Health check Network Performance Test

Before we leave proactive tests, a short note about a test that no
longer exists but which appeared in earlier versions of vSAN – the
storage performance test. It was decided that, due to the
problematic nature of some of the tests run as part of the storage
performance test, VMware would deprecate this test. Now VMware
advises customers who wish to run storage performance benchmarks
on vSAN to use the HCIbench tool. This HCI benchmarking tool was
written specifically with hyperconverged infrastructures in mind and
is much more powerful than the built-in proactive storage
performance tests. HCIbench is designed to be run as part of a PoC
acceptance test and is tightly integrated with other management and
operational aspects of vSAN, as we shall see shortly. HCIbench is
available from the VMware Fling site; http://flings.vmware.com. This
location also includes documentation on how to quickly get started
with the tool. Anyone involved in running storage benchmarks on
vSAN is recommended to familiarize themselves with this tool going
forward.

Telegram Channel @nettrain

http://flings.vmware.com/

In vSAN 7.0U3, administrators are redirected to HCIbench from the
vSphere Client Storage Performance Test as shown in the next
screenshot.

Figure 128: Health check Storage Performance Test

Performance Service

The Performance Service can be considered part of the health check.
Since the initial release of vSAN, an area that was identified as
needing much improvement was the area of monitoring vSAN
performance from the vSphere Client. While some information was
available in the vSphere Client, such as per-VM performance metrics,
there was little information regarding the performance of the vSAN
cluster from an overall cluster basis, a per-host basis, and a per disk
group basis, or even a per device basis. This information was only
attainable via the vSAN observer tool which was not integrated with
vSphere in any way. Nor could the vSAN observer provide any historic
data; it only ran in real-time mode. With the performance service,
metrics such as IOPS, latency, and throughput (and many others) are
now immediately available in the vSphere Client.

The performance service is automatically enabled in the recent
versions of vSAN. In previous versions, it was disabled, and
administrators needed to enable it via the Web Client. The status of

Telegram Channel @nettrain

this service, and other vSAN services, are visible on the Cluster >
Configure > vSAN > Services view in the vSphere client.

Figure 129: vSAN Performance Service status

A nice feature of the performance service is that it does not put any
additional load on the vCenter Server for maintaining metrics.
Instead, all metrics are saved on a special VM home object on the
vSAN datastore (called the statistics database). This database is
created when the performance service is enabled.

Historical performance data views (up to 90 days) as well as the
current system status, are now available. The metrics displayed in the

Telegram Channel @nettrain

UI are calculated as an average performance over a 5-minute
interval (roll-up). Since the statistics are stored in a VM home
namespace object, commonly referred to as the statsDB, it may use
up to a maximum of 255 GB of capacity. This is the reason why
performance metrics expire after 90 days. Figure 130 shows the
policy for the statistics database using the vSAN default policy once
the performance service is enabled. This can be accessed by clicking
on the Edit button associated with the Performance Service as shown
in Figure 129.

Figure 130: Performance service enabled

Note that the health check also includes several tests to ensure that
the performance service is functioning normally. A verbose mode is
also available. This gathers additional CPU, storage IO, and storage
capacity information and should only be used if VMware Technical

Telegram Channel @nettrain

Support directs you to do so – this is stated in the UI. Finally, there is
a new Network diagnostics mode option, which is disabled by default.
If enabled, this allows the vSAN Performance Service to create a
RAM disk stats object which can subsequently be used for the
collection and storing of network metrics. Typically, this is also only
done when a customer is directed to do so by VMware support. The
advantage is that it provides more detailed performance data but be
aware that it generates a lot more data.

vSAN performance service is convenient and powerful. However, due
to the sampling rate of 5-minute intervals, short spikes in I/O may
not be observed. Shortly vSAN IOInsight will be discussed where
metrics are captured with a high level of granularity (1 second
intervals).

Performance Diagnostics

The Performance Diagnostics, found in Cluster > Monitor > vSAN >
Performance Diagnostics, is a feature aimed at helping those running
benchmarks to optimize their benchmarks, or optimize their vSAN
configuration to reach their expected goals. To use this feature, you
must participate in the Customer Experience Improvement Program
once again. Obfuscated data from previously executed benchmarks
are sent to VMware anonymously, analyzed, and the results are sent
back to the Web Client. Performance diagnostics suggest
remediation steps on how to achieve a benchmark goal, such as
Maximum IOPS, Maximum Throughput, or Minimum Latency, and
provides performance graphs so that further investigation can take
place.

After selecting the desired benchmark goal, administrators next
select a time range that the benchmark ran. When a benchmark such
as HCIbench vSAN is run on the vSAN cluster, the time ranges for

Telegram Channel @nettrain

recent test runs automatically appear in the drop-down for Time
Range. So instead of choosing for instance “Last 1 hour”, one could
have clicked on the drop-down for Time Range and chosen the
benchmark that one wished to analyze.

Similarly, if Proactive Tests have been run, administrators can also
select this time range for analysis by the vSAN Performance
Diagnostics feature. In Figure 131, the objective was to discover the
‘Max Throughput’ as part of a proof-of-concept. After selecting the
appropriate Time Range (which was the duration of the network
performance test) from the dropdown menu, and setting the
benchmark goal of Max Throughput, the Performance Diagnostic tool
reports that the size of the IOs is too small to achieve the desired
goal. This test is not a suitable benchmark for creating a Max
Throughput test. The tool highlights that there are several disks in
the cluster that were not used during this time, which is not useful for
a performance test. Performance benchmarks should be configured
to use all disks. Notice the Ask VMware link to a VMware
knowledgebase article which provides additional information about
the performance goal and how to achieve it.

Telegram Channel @nettrain

Figure 131: Performance diagnostics

As mentioned in the introduction to the Performance diagnostics,
this feature is not expected to be used on a production vSAN cluster.
Instead, it is intended to be used during a proof-of-concept phase of
a vSAN deployment. Now that we have provided an overview of the
health check and associated services, let’s now turn our attention to
some of the more common management tasks an administrator
might be faced with when managing vSAN.

Network Diagnostics

Network diagnostics, introduced in vSAN 7.0U2, is another nice
feature from a management and monitoring perspective. It allows a

Telegram Channel @nettrain

vSAN administrator to get access to network diagnostic information.
By navigating to an ESXi host in a vSAN cluster, then selecting
Monitor > vSAN > Performance > Physical Adapters, there are several
new metrics and counters to look at such as Port Drop Rate, RX CRC
Error, TX Carrier Errors, and so on. Since vSAN is a distributed
system, the network plays a critical role, and having some metrics
that are continuously capturing the state of the network will be
extremely beneficial for troubleshooting and diagnosis.

Figure 132: Networking Diagnostics

vSAN IOInsight

Telegram Channel @nettrain

In vSAN 7.0U1, a new feature called vSAN IOInsight was introduced.
The object of this feature was to provide even more insight into the
storage I/O characteristics of workloads running on a vSAN cluster.
vSAN IO Insight captures and displays I/O sizes, sequential and
random I/O as well as 4K alignment. vSAN IOInsight may be run
against individual VMs or hosts, or the entire vSAN cluster. It is run
for a defined period to capture workload characteristics. The data
collection operation can be resource-intensive, but it does gather
detailed metrics during this period. The time duration ranges from 1
minute, to 24 hours. The data collection operation may be
interrupted by the administrator if necessary.

The performance service needs to be enabled for vSAN IOInsight
functionality. The collected data by vSAN IOInsight is stored in the
performance service statsDB object. As previously mentioned, the
statsDB object is limited in size. Thus, care should be taken if storing
multiple data collections from different runs of vSAN IOInsight,
running the performance service in verbose mode, or using network
diagnostics mode. This may lead to a truncation of available
performance metrics.

vSAN IOInsight is ideally suited for scenarios where a problematic
host or VM has been identified, and additional data is required to
add clarity to findings that have already been observed via
performance metrics. Note that it is vSAN IOInsight is not intended
for continual use. As mentioned earlier, vSAN IOInsight aggregates
performance data at 1 second intervals, providing greater insight into
spikes in I/O activity, something that the Performance Service
sampling rate of 5 minutes is not able to provide.

To gather an instance of vSAN IOInsight metrics, navigate to Cluster
> Monitor > vSAN > Performance, and then select IOInsight from the
list of options. Unless an instance of IOInsight has been previously
created, there will be none found initially. Click on the NEW
INSTANCE option to create an IOInsight run. A prompt to select the

Telegram Channel @nettrain

monitoring target appears; by default, all hosts in the cluster are
selected. Alternatively, you can select individual hosts or VMs.

Figure 133: vSAN IOInsight targets

The next step is to provide a name and duration for the instance.
Note the warning about monitoring overhead. This should be
considered when running I/O Insight on a production system. By
default, the duration is 10 minutes, but this can be reduced to 1
minute minimum or left to run for 24 hours maximum. I changed it to
5 minutes for the purpose of this demonstration.

Telegram Channel @nettrain

Figure 134: vSAN IOInsight name and duration

After initiating the instance, the new instance now appears in the
IOINSIGHT view. It provides a status field that details how much
time is remaining until the operation is complete. An administrator
can view the metrics from the running instance or can choose to stop
the run at any time as well. If an administrator chooses to view the
metrics from a running instance, these are updated at 10-seconds
intervals. Figure 135 shows some of the storage metrics from a VM’s
hard disk (VMDK) which resides on a vSAN datastore, as gathered by
vSAN IOInsight.

Telegram Channel @nettrain

Figure 135: vSAN IOInsight results

Finally, vSAN IOInsight provides administrators with the ability to
export the metrics from an instance run. By clicking on the EXPORT
RESULT link as shown in the top left-hand corner of Figure 135, a zip
file that includes both graph images and raw data in CSV file format
is created.

Telegram Channel @nettrain

I/O Trip Analyzer

vSAN 7.0U3 builds on the work done with the vSAN IOInsight and
introduced a new feature called the I/O Trip Analyzer. This examines
the path of a vSAN I/O and provides information about the latency
incurred at different stages in the I/O path. This tool complements
vSAN IOInsight to provide administrators with additional information
when performance troubleshooting, or even getting a better
understanding of the I/O path.

I/O Trip Analyzer is a VM centric tool. Thus, to enable I/O Trip
Analyzer, navigate to any VM that you wish to query, select the
Monitor tab, then vSAN, and then select I/O Trip Analyzer. This will
drop you to the I/O Trip Analyzer page, which prompts administrators
to click on the “RUN NEW TEST” button. Simply click on this button
to launch it. A prompt for the duration of the I/O Trip Analyzer test
appears, which defaults to 5 minutes. This can be changed to a
maximum of 60 minutes if so desired. Finally, click on the "RUN"
button after the time has been chosen. Note that only a single I/O
Trip Analyzer test can be run on the cluster at a time. Like vSAN
IOInsight, the UI is updated with the amount of time left before the
test is complete. Once the test completes, the “VIEW RESULT”
button is highlighted, and the latency can be examined.

Telegram Channel @nettrain

Figure 136: I/O Trip Analyzer results

To see the latency at any point in the I/O path, simply click on one of
the dots. This displays the kind of latency introduced at that layer.
I/O Trip Analyzer also provides a potential cause for the latency as
well as some insights in terms of how you can potentially resolve a
latency issue. If a significant amount of latency is introduced, the
diagram will highlight it using colors for the respective layer where
the latency is introduced.

Figure 137: I/O Trip Analyzer latency

Telegram Channel @nettrain

Note that there are some limitations to using both vSAN I/O Insight,
as well as I/O Trip Analyzer. At the time of writing, it is not possible
to vMotion a VM that currently has metrics being gathered by vSAN
I/O Insight. The vMotion will succeed but data collection will stop
and cannot be viewed. The advice from the authors is therefore to
override any DRS automation for any VMs that are being traced so
that DRS does not interfere with the data collection. The reason for
this is that the tracing is happening at the ESXi host level. A user
world is created on the host where the VM is running to trace the IO.
If the VM is moved to another ESXi host, the user world doesn’t know
what has happened to the VM and obviously cannot continue to
monitor it.

There are also a few limitations regarding I/O Trip Analyzer. At the
time of writing, it could not be used with vSAN Stretched Cluster,
iSCSI, or Kubernetes Persistent Volumes created via CSI-CNS. These
restrictions will most likely be lifted over time.

Now that we have provided an overview of the health check and
associated services, let’s now turn our attention to some of the more
common management tasks an administrator might be faced with
when managing vSAN.

Host Management

VMware vSAN has a scale-up and scale-out storage architecture. This
means that it is possible to seamlessly scale the cluster by adding
extra storage resources to your vSAN cluster. These storage
resources can be magnetic disks or flash devices for additional
capacity which can be added to existing disk groups in a scale-up
approach. It could entail the addition of complete disk groups,
including both cache and capacity devices for an alternative scale-up
approach. And of course, it could also be a scale-out approach by

Telegram Channel @nettrain

adding additional hosts to the vSAN cluster. These not only
contribute additional compute to the cluster but also additional
storage capacity.

Those who have been managing vSphere environments for a while
will not be surprised that host management with vSAN is extremely
simple; adding more resources (either a combination of compute and
storage capacity or just capacity) can truly be as simple as adding a
new disk device to a host or adding a new host to a cluster. Let’s look
at some of these tasks in more detail.

Adding Hosts to the Cluster

Adding hosts to the vSAN cluster is quite straightforward. Of course,
you must ensure that the host meets vSAN requirements or
recommendations such as a NIC port (10 GbE being required for all-
flash vSAN and highly recommended for hybrid vSAN) and at least
one cache tier device and one, or multiple, capacity tier devices if the
host is to provide additional storage capacity. A recommendation
would be to ensure that the host that is being added to the cluster is
as similar as possible to the existing hosts, and uniformly configured,
although this may not always be possible. VMware does support non-
uniformly configured hosts participating in the same cluster by the
way, though uniformly configured hosts are preferred.

Also, pre-configuration steps such as a VMkernel port for vSAN
communication should be considered, although these can be done
after the host is added to the cluster. After the host has successfully
joined the cluster, you should observe the size of the vSAN datastore
grow according to the size of the additional capacity devices in the
new host. Remember that the flash cache tier device does not add to
the capacity of the vSAN datastore. Just for completeness’ sake,

Telegram Channel @nettrain

these are the steps required to add a host to a vSAN cluster using
the vSphere Web Client:

�. Right-click the cluster object and click Add Hosts.
�. Fill in the IP address or host name of the server, as shown

below.
�. Fill in the user account (root typically) and the password.
�. Accept the SHA1 thumbprint option.
�. Click Next on the host summary screen.
�. Select the license to be used.
�. Enable lockdown mode if needed and click Next.
�. Click Next in the resource pool section.
�. Click Finish to add the host to the cluster.

Figure 138: Adding a host to the cluster

And that is all that is needed. A vSAN cluster should automatically
claim any local storage on the host that was just added and create a
disk group. You will learn more about managing disk groups and
disks later in this chapter in the disk management section.

Removing Hosts from the Cluster

Should you want to remove a host from a cluster, you must first
ensure that the host is placed into maintenance mode. The various
options will be discussed in further detail in the next section. After
the host has been successfully placed into maintenance mode, you

Telegram Channel @nettrain

may safely remove it from the vSAN cluster. To remove a host from a
cluster using the vSphere client, follow these steps:

Right-click the host and click Enter Maintenance Mode and
select the appropriate vSAN migration option from the
screen below and then click OK. If the plan is to truly remove
this host from the cluster, then a full data migration is the
recommended maintenance mode option. If it is a temporary
maintenance operation that should last less than 60 minutes,
and therefore no rebuild of vSAN objects will be initiated,
“Ensure accessibility” (default option) may be chosen.

Figure 139: Enter maintenance mode

Now all the virtual machines will be migrated (vMotion) to
other hosts. If DRS is enabled on the cluster, this will happen
automatically. If DRS is not enabled on the cluster, the
administrator will have to manually migrate VMs from the
host entering maintenance mode for the operation to
complete successfully.

Telegram Channel @nettrain

When migrations are completed, depending on the selected
vSAN migration option, vSAN components may also be
rebuilt on other hosts in the cluster.
When maintenance mode has completed, right-click the host
again and select move to option to move the host out of the
cluster.
If you wish to remove the host from vCenter Server
completely, right-click on the host once again, and
select remove from inventory. This might be located
under all vCenter actions in earlier versions of vCenter
Server.
Read the text presented twice and click Yes when you
understand the potential impact.

Maintenance Mode

The previous section briefly touched on maintenance mode when
removing an ESXi host from a vSAN cluster. With vSAN, maintenance
mode includes new functionality that we will elaborate on here. When
an ESXi host is placed in maintenance mode, the primary focus is on
migrating VM compute resources from that ESXi host to other hosts
in the cluster; however, with vSAN, maintenance mode provides you
with the option to migrate storage resources as well as compute
resources. The vSAN maintenance mode options related to data
migration are as follows:

Ensure Accessibility: This option evacuates enough data
from the host entering maintenance mode to ensure that all
VM storage objects are accessible after the host is taken
offline. This is not full data evacuation. Instead, vSAN
examines the storage objects that could end up without
quorum or data availability when the host is placed into

Telegram Channel @nettrain

maintenance mode. It then ensures that there are enough
components belonging to the object available to achieve
quorum and remain accessible. vSAN (or to be more precise
the cluster level object manager) will have to successfully
reconfigure all objects that would become inaccessible due
to a host entering maintenance mode and no longer
providing its storage to the vSAN datastore. One example
where this could happen is when VMs are configured with
“failures to tolerate” set to 0. Another example is when there
is already a host with a failure in the cluster, or indeed
another host is in maintenance mode. Ensure Accessibility is
the default option of the maintenance mode workflow and the
recommended option by VMware if the host is going to be in
maintenance for a short period of time. If the maintenance
time is expected to be reasonably long, administrators
should decide if they want to fully evacuate the data from
that host to avoid risk to their VMs and data availability.
There is one subtle behavior difference to note between the
original release of vSAN and later releases. In the first
release, when a host was placed in maintenance mode, it
continued to contribute storage to the vSAN datastore and
components were still accessible. In later releases, this
behavior was changed. Now when a host is placed into
maintenance mode, it no longer contributes storage to the
vSAN datastore, and any components on the datastore are
marked as ABSENT.
Full Data Migration: This option is a full data evacuation
and essentially creates replacement copies for every piece of
data residing on disks on the host being placed into
maintenance mode. vSAN does not necessarily copy the data
from the host entering maintenance mode; however, it can
and will also leverage the hosts holding the replica copy of
the object to avoid creating a bottleneck on the host entering
maintenance mode. In other words, in an eight-host cluster,

Telegram Channel @nettrain

when a host is placed in maintenance mode using full data
migration, then potentially all eight hosts will contribute to
the re-creation of the impacted components. The host does
not successfully enter maintenance mode until all affected
objects are reconfigured and compliance is ensured when all
the component(s) have been placed on different hosts in the
cluster. This is the option that VMware recommends when
hosts are being removed from the cluster, or there is a
longer-term maintenance operation planned.
No Data Migration: This option does nothing with the
storage objects. As the name implies, there is no data
migration. It is important to understand that if you have
objects that have number of failures to tolerate set to 0, you
could impact the availability of those objects by choosing
this option. There are some other risks associated with this
option. For example, if there is some other “unknown” issue
or failure in the cluster, or there is another maintenance
mode operation in progress that the administrator is not
aware of, this maintenance mode option can lead to VM or
data unavailability. For this reason, VMware only recommends
this option when there is a full cluster shutdown planned (or
on the advice of VMware support staff).

Again, just to reiterate an important point made earlier, when a host
is placed into maintenance mode, it no longer contributes storage to
the vSAN datastore. Any components that reside on the physical
storage of the host that is placed into maintenance mode are marked
as ABSENT.

Maintenance Mode and Host Locality

Telegram Channel @nettrain

vSAN 6.7 introduced support for shared-nothing architectures. This is
essentially the deployment of virtual machines which use failures to
tolerate value of 0 (thus, no protection) in its policy, as well as the
ability to specify a feature known as host locality. This ensures that
the compute and storage for a particular VM are confined to the
same host. This was only useful for some next-gen type applications
which had their own built-in data protection mechanism, as well as a
requirement to keep compute and storage on the same host.
Hadoop’s HDFS is one such example. When the VMware vSAN team
first started to test Hadoop on vSAN, one of the stipulations was that
it could only be validated when the compute and storage were co-
located on the same host. It since transpired that this was not a hard
requirement and was later relaxed. However, as mentioned, there are
still some use cases for host locality, especially when the application
has its own built-in protection. Many modern applications provide
this built-in replication capability, such as NoSQL databases like
Cassandra from vendors such as Datastax and S3 Objects Stores
from vendors such as Minio and Cloudera.

Note that support for this host locality policy setting is only available
on special request (RPQ) – it is not generally available. Customers
wishing to use such a policy would need to raise a request via their
local VMware contacts.

Telegram Channel @nettrain

Figure 140: Host locality

There are a number of caveats around host locality which have yet to
be ironed out before the feature can be generally available. One such
restriction is the use of maintenance mode. Since the VM’s compute
and storage must reside on the same host, one cannot vMotion the
VM or evacuate the data from this host during a maintenance mode
operation. Users will have to rely on the built-in application
protection mechanism if a host is required to be taken offline for
maintenance, etc.

Default Maintenance /Decommission Mode

One other important point is the default maintenance mode setting
when a product like vSphere Lifecycle Manager is being used.

Telegram Channel @nettrain

Lifecycle management refers to the process of installing software,
maintaining it through updates and upgrades, and decommissioning
it. Certain lifecycle operations require placing hosts into
maintenance mode, and even rebooting them depending on the
update.

The default maintenance mode (decommission mode) option is set
to ensureAccessibility but this can be controlled through an
advanced setting. The advanced setting is called
vSAN.DefaultHostDecommissionMode which is set on a per
host basis. It allows administrators to set the default maintenance
mode to an option other than Ensure Accessibility, as listed in the
next table.

Maintenance Mode for Updates and Patching

It is best to draw a comparison to a regular storage environment first
when discussing options for updates and patches. When working on a
traditional storage array, updates are typically done in a rolling
fashion. If you have two controllers, one will be taken offline and
upgraded while the other remains active and handles all the I/O. In
this dual controller scenario, you are at risk while performing the
upgrade because if the active controller hits a problem during the

Telegram Channel @nettrain

upgrade of the offline controller, no further I/O can flow and the
whole array is offline.

The big difference when working on vSAN as a virtualization
administrator is that you have a bit more flexibility. Each node in the
cluster can be thought of as a storage controller, and even with one
node out of the cluster, a second node failure may not impact all VM
workloads (depending on the size of the vSAN cluster and the failures
to tolerate setting of course). Coupled with other vSphere features,
such as HA, for instance, you can reduce your level of risk during
maintenance operations. The question that a vSphere/vSAN
administrator needs to ask themselves is what level of risk they are
willing to take, and what level of risk they can take.

From a vSAN perspective, when it comes to placing a host into
maintenance mode, you will need to ask yourself the following
questions:

Why am I placing my host in maintenance mode? Am I
going to upgrade my hosts and expect them to be
unavailable for just a brief period? Am I removing a host
from the cluster altogether? This will play a big role in which
maintenance mode data migration option you should use.
How many hosts do I have? When using three hosts, the
only option you have is Ensure Accessibility or No Data
Evacuation because, by default, vSAN always needs three
hosts to store objects (two replica components and one
witness component) to implement RAID-1 protection.
Therefore, with a three-node cluster, you will have to accept
some risk by using maintenance mode and run with one copy
of the data. There is no way to do a Full Data Evacuation with
just 3 nodes. Therefore, VMware makes the recommendation
for 4 node vSAN clusters. This allows vSAN to self-heal on
failures and continue to provide full protection of VMs during
maintenance.

Telegram Channel @nettrain

How long will the move take?
Is this an all-flash cluster or a hybrid cluster?
What types of capacity disks have I used (SAS versus SATA)?
How much space has been consumed?
How big is my network interconnect? Do I have 25GbE,
10GbE, or 1GbE?
How big is my cluster?
Do I want to move data from one host to another to
maintain availability levels? Only stored components need
to be moved, not the “raw capacity” of the host! That is, if 6
TB of capacity is used out of 8 TB, 6 TB will be moved.
Do I just want to ensure data accessibility and take the
risk of potential downtime during maintenance? Only
components of those objects at risk will be moved. For
example, if only 500 GB out of the 6 TB used capacity is at
risk, that 500 GB will be moved.

There is something to say for all maintenance mode data migration
options. When you select full data migration, to maintain availability
levels, your “maintenance window” will be elongated, as you could be
copying terabytes of data over the network from host to host. It could
potentially take hours to complete. If your ESXi upgrade (including a
host reboot) takes about 20 minutes, is it acceptable to wait hours
for the data to be migrated? Or do you take the risk, inform your
users about the potential downtime, and do the maintenance
operation with a higher level of risk. The benefit is that the
maintenance may be completed in a matter of minutes rather than
hours. Is it worth the risk? If the maintenance mode takes longer
than 1 hour, then you may have components begin to rebuild and
resync on other nodes on the cluster, which will consume additional
resources. Remember that 60 minutes is when the clomd repair
delay timeout expires, and absent components are automatically
rebuilt. This timer is tunable, so if you know maintenance is going to

Telegram Channel @nettrain

take longer than 60 minutes, you could change it to a higher value to
avoid the rebuilds taking place.

However, the main risk is if another failure occurs in the cluster
during the maintenance window. Then you risk availability to your
VMs and your data. One other way to overcome this is to use failures
to tolerate setting equal to 2, which means that you can do
maintenance on one node, and still tolerate another host failing in
the cluster at the same time. With erasure coding, customers can
implement a RAID-6 configuration that can tolerate two failures. But
as seen previously, this does not consume as much capacity as a
RAID-1 configuration with FTT=2. RAID-6 requires a minimum of 6
hosts in the cluster.

To be honest, the authors can’t give you advice on what the best
approach is for your organization. We do strongly feel that for normal
software or hardware maintenance tasks that only take a short period
of time (of less than 1 hour), it will be acceptable to use the Ensure
Accessibility maintenance mode data migration option. You should
still, however, discuss all approaches with your storage team and look
at their procedures. What is the agreed SLA with your business
partners and what fits from an operational perspective?

One final point to note on maintenance modes; as was mentioned
earlier, it is possible to change the clomd repair delay timeout to be
something much larger if you are involved in a maintenance task that
is going to take some hours, but you do not want to have any data
rebuilding during this maintenance. Approach this with caution,
however, since your VMs will be at risk for an extended period. And it
is important to remember to put this setting back to the default after
maintenance has finished. This is because certain failure scenarios
will also use this timeout before rebuilding failed components, so you
want this to kick off as soon as possible, and not be delayed. After all,
you modified the timer value.

Telegram Channel @nettrain

Starting in 6.7U1, a new global “object repair timer delay” setting is
now available in the vSphere client should an administrator needs to
adjust the timeout before vSAN begins to rebuild components.
Previously it had to be set on a host-by-host basis, which was a pain
point operationally and could lead to a mix of timeout values across
hosts (although vSAN does have a health test to check for that issue
occurring). This has already been highlighted in the book; see
Advanced Settings in chapter 4, Figure 49.

Maintenance Mode and vSphere Lifecycle
Manager

VMware Lifecycle Manager (vLCM) uses maintenance mode
operations to automatically place hosts in maintenance in a rolling
fashion during upgrades. vLCM, by default, uses Ensure Accessibility
as the data migration option. This is deemed acceptable as any
required components to keep a VM available will still be evacuated
from the host entering maintenance mode. Upgrade operations,
along with reboot operations, are not expected to exceed the 60-
minute timeout associated with the commencement of rebuild
activity.

Multiple hosts in Maintenance Mode
simultaneously

There are several concerns with placing multiple vSAN nodes into
maintenance mode. The first of these is related to available capacity
on the vSAN datastore after multiple hosts have been removed. Now,
there is indeed a Skyline health check which reports whether the
vSAN cluster can fully re-protect all VMs even after a host has left the

Telegram Channel @nettrain

cluster, either gracefully (maintenance) or non-gracefully (failure). It
checks that there is going to be enough capacity on the vSAN
datastore should it lose the contributing devices from a single host.
Several vSAN administrators have been caught by surprise when
placing multiple hosts into maintenance mode because the hosts
would happily enter maintenance mode, even when it meant that the
vSAN datastore would fill up because of fewer resources being
available. vSAN would simply try to re-protect and rebuild as many
VMs as possible until there was no space left. This has been
improved in 6.7U1 where vSAN will now simulate the data migration
required to place a host into maintenance mode. A calculation is now
made to determine if the data migration succeeds or fails before it
even starts. If it finds that there is not going to be enough space, it
will fail the maintenance mode operation immediately, rather than
continuing with a ‘best-effort’ approach. Additional checks now look
for other hosts already in maintenance mode, or if there is any resync
activity underway.

Maintenance Mode Pre-Check

In the section “Removing Hosts from the Cluster” earlier in this
chapter, we saw an example of the popup window (Figure 139) which
appears when you request a host to be placed into maintenance
mode. In the lower left-hand corner of that popup window, the was a
“Go to Pre-Check” button. This is the data migration precheck and it
will determine if there are any issues, such as object availability, or
capacity issues, if the administrator proceeds with the maintenance
mode operation.

When the “Go to Pre-Check” button is clicked, the administrator is
automatically brought to the Cluster > Monitor > vSAN > Data
Migration Pre-Check section in the vSphere UI. From here the
administrator can choose which host the pre-check for data

Telegram Channel @nettrain

migration should be run on (it should be set to the host that was
selected for maintenance mode). The other configurable option is the
vSAN data migration setting, which is one of “Full data migration”,
“Ensure accessibility” or “No data migration”, all of which have been
described earlier in this chapter. This should also be set to whatever
was chosen as the data migration option in the maintenance mode
window.

Figure 141: Data Migration Pre-check

Once the “Pre-Check” button is clicked, several tests to check the
impact of placing this host into maintenance mode are run.
Remember that placing a host into maintenance node, it effectively
removes this host from providing any storage capacity to the vSAN
cluster. Thus, in a 3-node cluster, every single RAID-1 object will be
unprotected and thus displayed as non-compliant. The test result will
inform the administrator if the host can be placed in maintenance
mode or not and then report on the Objects state, as shown next.

Telegram Channel @nettrain

Figure 142: Data Migration Pre-check – Objects state

The precheck also reports on cluster capacity, both before and after
the maintenance mode operation. This is useful as on an overloaded
cluster, it may not be possible to move all components from the
storage on the host that is entering maintenance mode to the
remaining hosts in the cluster. This check will highlight such a
predicament.

Figure 143: Data Migration Pre-check – Cluster Capacity

Telegram Channel @nettrain

Finally, the Data Migration pre-check reports on the impact that the
maintenance mode operations will have on the health of the vSAN
cluster. Since this is a 3-node vSAN cluster, all RAID-1 objects will be
impacted; there is no place to move the components that are
currently on the host that is entering into maintenance mode, so all
objects will be unprotected and thus non-compliant with their policy.

Figure 144: Data Migration Pre-check – Predicted Health

The Data Migration pre-check is an extremely useful feature to
examine the impact of maintenance mode operations and should be
used regularly by vSAN administrators to understand what impact
taking a host out of the vSAN cluster has on the overall system from
an availability, capacity, and health perspective.

Stretched Cluster Site Maintenance

In vSAN Stretched Cluster, there is no way to place a complete site
or even a specific fault domain into maintenance mode.
Administrators must work at the host granularity, placing each host in
a site into maintenance mode individually. Additional manual steps
may be required, such as modifying the DRS affinity to ensure that all
workloads are failed over to the site that is to remain online and
available. Once the workloads have been migrated, administrators
can begin placing hosts into maintenance mode with the ‘ensure
accessibility’ option. This option should be used if there is a

Telegram Channel @nettrain

possibility of VMs using the failures to tolerate set to 0. If all VMs
protected by the stretched cluster are using failures to tolerate > 0,
then the ‘no data evacuation’ option may be used when placing hosts
into maintenance mode.

Shutting down a complete cluster

Prior to vSAN 7.0U3, there was no button that would shut down the
whole of a vSAN cluster. Administrators had to shut down the cluster
on a host-by-host basis. In this case, the advice was to shut down all
VMs, and then place each host into maintenance mode using the ‘no
data evacuation’ option. Once each host is in maintenance mode, the
individual ESXi hosts can be shut down.

In vSAN 7.0U3, a new cluster shutdown feature was added. This
feature enables an administrator to power off all the hosts in a
cluster in one step. To trigger a cluster shutdown, right click the
cluster object, select vSAN in the drop-down menu, and then select
“shutdown cluster”. This will launch a window that initiates a
shutdown pre-check as shown below. Note that there is a
requirement for all VMs to be powered off before the cluster can be
shutdown. Some VMs, such as Agent VMs and the vCenter Server VM
(if it exists) can be automatically managed. The remaining customer
VMs are checked by the shutdown pre-check to make sure they are
powered off. As per VMware knowledgebase article 85594 (https://kb.
vmware.com/s/article/85594), any VMs that are not powered off will
be identified during the shutdown pre-check and will need to be
powered off manually by the administrator. The figure below displays
the set of shutdown pre-checks that are run before a cluster can be
shut down and highlights the fact that some VMs are still powered on,
preventing the shutdown from proceeding.

Telegram Channel @nettrain

https://kb.vmware.com/s/article/85594

Figure 145: Cluster Shutdown pre-check

Upgrade Considerations

vSAN is integrated with vSphere Lifecycle Manager (vLCM). vLCM
understands that it is upgrading a vSAN cluster. Therefore, it will
automatically take care of selecting a host in the cluster to upgrade,
and place it into maintenance mode using the default setting of
‘ensure accessibility’. It then does the upgrading, reboots the host if
needed, and once the host has reconnected to vCenter Server and
re-joins the cluster, vLCM takes the host out of maintenance mode
and lets the ‘out of date’ components resync. It then selects the next

Telegram Channel @nettrain

host and repeats the upgrade task in a rolling fashion until all nodes
in the cluster are upgraded.

vLCM not only does hypervisor lifecycle management, but also
supports firmware lifecycle management as well. In the past, this was
a manual process, with administrators needing to download third-
party tools along with the appropriate firmware versions to carry out
this task on a per host basis. Today, this can be automated through
vLCM. There are some prerequisites before administrators can use
vLCM to apply firmware updates, such as ensuring that the vSAN
cluster is lifecycle managed with a single image. Firmware updates
require a special firmware and drivers add-on which is vendor-
provided. The add-on contains the firmware packages. Note that
VMware does not host these firmware packages in its own online
depots. Instead, each vendor hosts their add-ons in their own
proprietary depot. Access to the depot is provided through a vCenter
plugin, called a “hardware support manager”. The appropriate
“hardware support manager” must be selected when converting from
baseline to image-based lifecycle management, and selecting the
appropriate Firmware and Drivers Addon, as shown below.

Telegram Channel @nettrain

Figure 146: Firmware and Drivers Addon

At the time of writing, there are hardware support managers available
for DELL, HPE, Lenovo & Hitachi.

vLCM is also aware of vSAN stretched clusters, 2-node clusters, and
fault domain configurations, and can orchestrate the upgrades of
those different vSAN configurations.

An important consideration relates to the vSAN on-disk format.
VMware knowledgebase article 2145267 (https://kb.vmware.com/s/
article/2145267) provides an excellent overview of the various on-
disk formats that vSAN has had with its various releases. Some of the
on-disk format changes were minor and did not require a rolling
upgrade (for example, the ability to support encryption with vSAN
6.6). However, others required a completely new on-disk format (for
example vSAN 6.2 which introduced support for checksum,
deduplication, and compression).

Telegram Channel @nettrain

https://kb.vmware.com/s/article/2145267

The main consideration with the on-disk format change, referred to
as DFC, is the evacuation of all the data from a host before doing the
on-disk changes. The on-disk format is done one disk group at a
time. First, the disk group is evacuated to available capacity
elsewhere in the cluster. It is then basically removed, recreated with
the new disk format, and finally added back into the cluster. This is
then repeated throughout the cluster.

You may well ask what happens when there are not enough resources
in the cluster to accommodate a full disk group evacuation,
especially on two-node or three-node vSAN clusters? In this case,
there is an option to do the DFC with ‘Allow Reduced Redundancy’
where only one copy of the data is available during the DFC. There is
a risk with this approach, and it is another reason why VMware
recommends an additional host be available in the cluster. Having an
additional host in the cluster will mean VMs will be fully protected
against a failure occurring in the cluster during this task. As
mentioned, not every on-disk format change requires an evacuation
to format the disks. The most recent on-disk formats that were made
to vSAN did not require one.

Another item that should be highlighted is the change from multicast
to unicast for network communication, and how this is handled
during the upgrade process. Unicast was introduced with vSAN 6.6.
During the upgrade of vSAN from pre-6.6 to 6.6 or later, all nodes
continue to communicate using multicast. Therefore, you continue to
see multicast settings in place when you examine vSAN networking.
However, once the final node in the cluster is upgraded, and joined to
the cluster, all nodes automatically flip from multicast
communication to unicast communication.

As an example, let’s take a vSAN cluster running vSAN 6.2 and is
upgraded to vSAN 6.6U1. All nodes switched from multicast to
unicast. Assume that a DFC was not initiated, so the hosts continue
to have on-disk format version 3. Now assume that another vSAN 6.2

Telegram Channel @nettrain

host is added to the cluster. At this point, all hosts will revert to
multicast so that they can communicate with this newly added host.
So, what role does DFC play here?

Assume now that at the point that all hosts in the original cluster are
upgraded from vSAN 6.2 to 6.6U1, a DFC is also initiated which
changes the on-disk format from version 3 to version 5. In effect, by
upgrading the on-disk format, we prevent the cluster from ever
reverting to multicast – it is now permanently unicast. Now repeat the
action of adding a vSAN 6.2 host to the cluster. At this point, the 6.2
host cannot join the 6.6U1 cluster. By upgrading the DFC, the cluster
is forevermore prevented from reverting to multicast.

One final consideration around upgrading the cluster and changing
the cluster communication to unicast is that cluster membership now
must be tracked by a completely different mechanism. You will read
more about that when you read about vCenter Server later in this
chapter.

Disk Management

One of the design goals for vSAN, as already mentioned, is the ability
to scale up the storage capacity. This requires the ability to add new
disks, replace capacity disks with larger capacity disks, or simply
replace failed drives. This next section discusses the procedures
involved in doing these tasks in a vSAN environment.

Adding a Disk Group

Chapter 2, “vSAN Prerequisites and Requirements,” demonstrated
how to add a disk group; however, for completeness, here are the
steps again. This example shows how to create a disk group on a

Telegram Channel @nettrain

host-by-host basis. However, administrators can also create disk
groups on all hosts simultaneously.

Click your vSAN cluster in the left pane.
Click the Configure tab on the right side.
Click vSAN > Disk Management.
As shown below, one gets a cluster overview of hosts, disk
groups, and capacity disks. The hosts and their disk in use
are shown, along with health, capacity, and network partition
information, which is very useful in determining whether
there is a network partition, and which host or hosts are in a
different network partition group.

Figure 147: vSAN disk management

On selecting a host, an administrator can choose “View
Disks”, “View Host Objects”, or “Go to Pre-Check”. This “View
Disks” option narrows the focus to the disk group(s) and
disks. It informs us about the configuration (in this case All-
flash rather than Hybrid) as well as the disk format version,
which may change with different vSAN versions. On
expanding the table, administrators can see the devices,
their health and state, their capacity, their type, and which

Telegram Channel @nettrain

disk tier (vSAN Cache or vSAN capacity) that they are being
used for in the disk group.

Figure 148: vSAN Disk Group details

Note that there is now an option to create a new disk group
on this host, assuming there are local devices available. By
clicking on this text in the UI, a new window is launched
which allows administrators to view available local storage
devices on the host. Administrators can then select whether
to claim a device for the cache tier or the capacity tier. Select
“Capacity tier” for all capacity devices and select “Cache
tier” for all the cache devices, then click OK.

Now a new disk group is created; this takes seconds. We will talk
about the other storage management options throughout the rest of
this section.

Telegram Channel @nettrain

Removing a Disk Group

Administrators can remove a disk group from vSAN once they have
selected the “View Disks”. This is one of many tasks available in the
drop-down menu that is displayed when the 3 dots in the Disk Group
header bar are clicked, as shown below.

Figure 149: vSAN Disk Group actions

Before the Remove task starts, the administrator is prompted to
evacuate the components that are currently in that disk group, as
shown in the next figure. vSAN allows administrators to evacuate disk
groups without placing the host where the disk group resides into
maintenance mode. Another useful feature like what was seen in the
Host Maintenance Mode section is that Disk Group Removal also
includes a “Pre-Check” option. As before, you can choose “Full data
evacuation”, Ensure accessibility” and “No data evacuation”. An

Telegram Channel @nettrain

administrator can also go directly to the pre-check option from the
drop-down menu list above.

Figure 150: vSAN Disk Group Removal

As you can imagine, this operation of removing a disk group would
return the same Object state, Cluster Capacity, and Predicted Health
results that were seen earlier with the maintenance mode operation.
Since this is a 3 node vSAN cluster, and each node only has a single
disk group, removing one of the disk groups is akin to removing a
host from the cluster, which is why the results are identical.

Evacuating the VM components from a disk group is not a required
step for deleting a disk group, but the authors believe that most
administrators would like to move the VM components currently in
this disk group to other disk groups in the cluster before deleting it.
If you don’t do this step, and evacuate the data, you may be left with
degraded components that are no longer highly available. vSAN will
then need to reconfigure these components when the disk group is
deleted. As highlighted many times now, if there is another failure
while the objects are degraded, it may lead to data loss.

However, there may be valid reasons for wanting to delete a disk
group without first evacuating all the data, and those options are also
provided. Just like with ESXi hosts, administrators can choose simply
to ensure accessibility, or indeed not to evacuate the data at all.

Telegram Channel @nettrain

If you are planning on doing a full data evacuation of a disk group,
vSAN will validate first whether sufficient disk space is available
within the cluster to do so. When you complete this step, you should
be able to remove the disk group.

However, as shown in the pre-check below, an attempt to do a full
data migration on a 3-node cluster is simply not possible, as there is
nowhere to move the replicated data to.

Figure 151: Remove vSAN disk groups

Historically vSAN could be configured in two modes “automatic”
mode, or “manual” mode. In a nutshell, this decided how disks were
claimed by vSAN. By default, vSAN used to be configured to
automatic mode, which meant that if a disk group was removed,
vSAN immediately claimed the disks again. Thus, the option to
remove a disk group was not presented to the user in automatic
mode but was only available in manual mode.

When an administrator needed to remove a disk group, vSAN had to
be placed in manual mode for the remove the disk group option to
appear. This was done through the vSAN cluster settings.

When the vSAN was placed in manual mode, the remove the disk
group option became visible when you select the disk group in the

Telegram Channel @nettrain

disk management view. Administrators could now proceed with
removing the disk group.

Fortunately, this jumping through hoops to remove a disk group from
vSAN is no longer necessary since the ability to configure vSAN in
automatic and manual mode was deprecated. vSAN no longer
automatically claims any disks as of vSAN version 6.7, and
administrators have full control over disk group creation and removal.

Adding Disks to the Disk Group

Administrators need to add new disks to disk groups to scale up and
increase the capacity of the vSAN datastore. This can easily be done
via the vSphere Client. Navigate to the vSAN cluster, select the
Configure tab, and then the vSAN > Disk Management section.
Expand the host to which you want to add the disk to. Click on the
Disk Group actions (3 dots) and select “Add Disks” from the drop-
down menu. Remember that vSAN can only consume local, empty
disks. Remote disks, such as SAN LUNs, and local disks with
partitions, cannot be used and won’t be visible.

Telegram Channel @nettrain

Figure 152: Add Capacity Disks to Disk Group

In this example, we are adding a disk to an already existing disk
group. This means that any devices that are added can only be added
as capacity devices up to a maximum of 7 per disk group. Similarly, if
the device is not a flash device, then it can only be added to a
capacity tier on hybrid systems. After clicking ADD, the device is
added to the vSAN datastore, and the datastore size is automatically
increased.

Removing Disks from the Disk Group

Just like removing disk groups discussed previously, disks can be
removed from a disk group in the vSphere Client. Navigate to the
Disk Management section of the vSAN cluster, select the host, then
click “View Disks” to see the disk group. Expand the disk group to
see the individual disks, then click on the disk that you wish to
remove. The “Remove Disk” option will become enabled above the

Telegram Channel @nettrain

list of disks, as shown below. Simply click this “Remove Disk” option
to begin the process of removing the disk from the disk group.

Figure 153: Remove a disk from a disk group

In the same way that the administrator is prompted to run a pre-
check when the delete disk group option is chosen, administrators
are also prompted to pre-check individual disks when a disk is being
removed from a disk group. In this 3-node cluster, with only 1 disk
group per host and assuming there is sufficient space, vSAN will
migrate all the components on the said disk to other disks in the disk
group.

Telegram Channel @nettrain

Figure 154: Pre-Check: Remove a disk from a disk group

In the example above, the disk has several components residing on
it, so much so that there are 277.21GB of data to move. However, it
does appear that the remaining disk or disks in the disk group can
handle this request. Clicking on the “Remove” button pops up one
last warning about evacuating the data.

Figure 155: Remove a disk from a disk group – evacuate warning

Once the “Remove” button is clicked, a percentage of removing
progress is displayed so administrators can monitor the activity.
Similarly, removal tasks can also be observed in the vSphere UI
Recent Tasks view.

Telegram Channel @nettrain

Removing Disks with dedupe enabled

There is one important note on the removal of an individual disk from
a disk group. If deduplication and compression is enabled on the
cluster, it is not possible to remove the disk from a disk group.
The reason for this is that the deduplicated and compressed data,
along with the associated hash tables and metadata associated with
deduplication and compression, are striped across all the capacity
tier disks in the disk group. Therefore, it is not possible to remove a
single disk. To remove a single disk from a disk group where
deduplication and compression are enabled on the cluster, the entire
disk group should be evacuated and then the disk may be replaced.
Afterward, the disk group should be recreated.

Removing Disks with Compression Only enabled

As we have already learned from earlier chapters in this book,
support for a Compression Only space-efficiency feature was
introduced in vSAN 7.0U1. Device failures when using the
“compression only” option do not have the same impact when
compared to clusters that have both deduplication and compression
enabled. This is because a failed capacity device in a cluster using
the “compression only” option will only impact that device and not
the entire disk group. Similarly, individual disks may be removed
from a disk group with Compression Only enabled on the cluster.

Erasing a Disk

In some cases, other features or operating systems may have used
magnetic disks and flash devices before vSAN is enabled. In those

Telegram Channel @nettrain

cases, vSAN will not be able to reuse the devices when the devices
still contain partitions or even a file system. Note that this has been
done intentionally to prevent the user from selecting the wrong disks.
If you want to use a disk that has been previously used, you can wipe
the disks manually, either via the command line or from the vSphere
Client.

The Erase Partitions option in the vSphere Client is found by
selecting an ESXi host, the selecting Configure > Storage Devices, as
shown below.

Figure 156: Erase partition

It is possible to remove a magnetic disk or a flash device from a disk
group through the Command Line Interface (CLI). However, this
should be done with absolute care and the authors strongly
recommend going through the UI for such operations, as shown on
the previous pages.

Similarly, if a disk was previously used for another function and the
wish is to now use it for vSAN, its partitions can be erased using the
UI as already seen. Alternatively, another method is to use the CLI to
wipe a disk. The disk can be erased from the commands line using
the esxcli vsan storage utility

The above options assume that you have an existing vSAN cluster.
Some other less conventional ways are included here in case you do
not have a vSAN cluster (i.e. vSAN has been disabled), and thus you

Telegram Channel @nettrain

do not have the above options available. In those cases, disks can be
erased:

Using the command partedUtil, a disk partition
management utility that is included with ESXi.
Booting the host with the gparted bootable ISO image.

The gparted procedure is straightforward. You can download the ISO
image from http://gparted.org/, and create a boot CD from it. Then,
boot the ESXi host from it. After that, it is simply a matter of deleting
all partitions on the appropriate disk and clicking Apply.

Warning: The tasks involved with wiping a disk are destructive,
and it will be nearly impossible to retrieve any data after
wiping the disk.

The partedUtil method is slightly more complex because it is a
command-line utility. Administrators will need to SSH to the ESXi
host that contains the disks that need its partitions erased. The
partedUtil binary is available and preinstalled on the ESXi host. The
following steps are required to wipe a disk using partedUtil. If you
are not certain which device to wipe, make sure to double-check the
device ID using esxcli storage core device list:

Telegram Channel @nettrain

http://gparted.org/

If you are looking for more guidance about the use of partedUtil,
read the following VMware Knowledge Base (KB) article: http://kb.
vmware.com/kb/1036609

Turn on the LED on a Disk

Starting with vSphere 6.0, administrators can blink the LEDs on the
front disk drives when using certain storage controllers. Having the
ability to identify a drive for replacement becomes very important for
vSAN, as clusters can contain tens or even hundreds of disk drives.

You’ll find the buttons for turning on and off LEDs when you select a
disk drive in the UI, under Host > Configure > Storage Devices, as
seen earlier in Figure 156 when we looked at the “Erase Partitions”

Telegram Channel @nettrain

http://kb.vmware.com/kb/1036609

option. As you can probably guess, clicking on the “Turn On Led”
turns the LED on; clicking on the “Turn Off Led” icon turns the LED
off again.

Please note that this may not work for all storage controllers, and for
the ones that do work, certain third-party tools may need to be
installed. For example, when you are using HPE servers, you should
verify that the HP SSA CLI is installed.

vSAN Capacity Monitoring and Management

One major operational aspect of managing storage is being able to
view how much space is being consumed on the cluster. vSAN
provides a capacity view to give detailed information about space
consumption. Navigate to Cluster > Monitor > vSAN > Capacity to see
this information.

There are two views available, Capacity Usage and Capacity History.
The default view is Capacity Usage, which has several distinct
sections, such as Capacity Overview, What If Analysis, and Usage
breakdown, as shown next.

Telegram Channel @nettrain

Figure 157: vSAN Capacity Overview

Capacity Overview

The Capacity Overview provides a quick glance of the vSAN
datastore capacity. Not shown here, but something commonly
observed in this view is space that has been reserved for objects,
which is shown in a lighter green color. Also of interest in this view is
the Operations threshold bar. As has been mentioned several times
at this point in the book, vSAN requires some capacity to be able to
carry out some of its internal operations. The Operations threshold

Telegram Channel @nettrain

highlights the amount of space needed by vSAN to handle these
sorts of operations. If the used space exceeds the operations
threshold, vSAN might not be able to function properly. One other
item that might be observed in this view is a bar that represents the
Host rebuild threshold. In the event of a host failure, vSAN requires
free space to re-protect the data on the failed host. The Host rebuild
threshold highlights how much space vSAN requires to tolerate one
host failure. If the used space exceeds the host rebuild threshold,
vSAN might not successfully re-protect all data from a failed host
elsewhere in the cluster.

Operations reserve and Host rebuild reserve

This is probably a good point to introduce two new reservations,
operations reserve, and host rebuild reserve. These are configurable
from the Cluster > Configure > vSAN > Service page under the
Reservations and Alerts section, as shown below.

Figure 158: Reservations and Alerts

Telegram Channel @nettrain

As per the description in the UI, which is displayed when the Edit
button is clicked and the Reservation and Alerts wizard is launched,
enabling operations reserve helps ensure that there will be enough
space in the vSAN cluster for internal operations to complete
successfully. Enabling host rebuild reserve allows vSAN to tolerate
one host failure. Another interesting point to note is that when the
reservation is enabled and capacity usage reaches the limit, new
workloads will not deploy on the vSAN cluster. This gives a vSAN
administrator the ability to avoid situations where the vSAN datastore
completely fills up. This has been problematic in the past and can be
a difficult situation to recover from since vSAN is not able to carry
out its own internal housekeeping operations, never mind handle
virtual machine workloads.

Figure 159: Configure Reservations

Once the Operations reserve and Host rebuild reserve are enabled,
the Capacity Overview is now updated to reflect these new
reservation settings. Note that Operation reserve can be enabled

Telegram Channel @nettrain

without needing to enable Host rebuild reserve. However, to enable
Host rebuild Reserve, Operational reserve must first be enabled.

Figure 160: Reservations Enabled in Capacity Overview

Note that the reserved capacity feature is not supported on a vSAN
stretched cluster, vSAN clusters with fault domains, or vSAN clusters
with less than four nodes. You will see a message in the Reservations
and Alerts wizard highlighting this limitation.

What if analysis / Thin Provisioning
Considerations

There are two very useful features in the What if analysis section of
Capacity Usage. The first allows you to see how much effective free
space is available if all workloads were provisioned with a particular
policy. For example, RAID-1 deployments would require capacity set
aside for another replica if the failures to tolerate was set to 1.
Capacity would need to be set aside for 2 full replicas if failures to
tolerate was set to 2, and similarly, 3 replicas would be needed for
failures to tolerate set to 3. By selecting the appropriate policy to
match these requirements, the What If analysis can inform the
administrator how many workloads can be provisioned with such
policies on the vSAN datastore.

Below are two examples of using the What if analysis. The first uses
the vSAN Default Storage Policy which uses RAID-1 with failures to

Telegram Channel @nettrain

tolerate set to 1. The second uses a RAID-5 policy. Note the effective
free space for workloads that use those different policies.

Figure 161: What If Analysis – FTT=1, RAID-1 Policy

Figure 162: What If Analysis – FTT=1, RAID-5 Policy

One final item to highlight in the What If analysis is the
oversubscription option. As you will be aware by now, vSAN
provisions all objects as thin provisioned, unless explicitly told to do
otherwise via the Object Space Reservation parameter. The
advantage to using thin-provisioned objects is that workloads are not
consuming any more disk capacity than is completely necessary. It is
not uncommon in datacenter environments to see 40% to 60% of
unused capacity within the VM. You can imagine that if a VM were
thick provisioned, it would drive up the cost, but it would also make
vSAN less flexible in terms of placement of components.

Of course, there is an operational aspect to thin provisioning. There
is always a chance of filling up a vSAN datastore when you are
severely overcommitted and many VMs are claiming new disk
capacity. This is not different in an environment where NFS is used,
or VMFS with thin provisioned VMs. This oversubscription view

Telegram Channel @nettrain

informs the administrator about the amount of capacity that would be
consumed should the thin provisioned objects grow to the maximum
size. This is a useful parameter for administrators to keep an eye on,
simply to ensure that workloads don’t become capacity constrained
at some point in the future.

When certain capacity usage thresholds are reached, vCenter Server
will raise an alarm to ensure that the administrator is aware of the
potential problem that may arise when not acted upon. By default,
this alarm is triggered when the 75% full threshold is exceeded with
an exclamation mark (severity warning), and another alarm is raised
when 85% is reached (severity critical). (Note that this issue will also
raise an alarm in the health check).

Usage breakdown

In the lower part of the Capacity overview section, one can see a
breakdown of which objects are consuming space. These are
separated into VMs, User objects, and System usage. If the “expand
all” text is selected, a breakdown of the different objects and services
is displayed, as shown below.

Telegram Channel @nettrain

Figure 163: Usage breakdown – Expand All

Under the VM usage breakdown, objects include:

VM Home namespaces
VM Swaps
Virtual Machine Disk Files (includes VMDKs, snapshot delta,
linked clones, etc.)
The usage is shown as different types such as Primary data
and its replica usage
Snapshot memory
Container block volumes (typically consumed via the vSphere
CSI driver, which will be discussed in more detail shortly)
The usage is shown as different types such as Primary data
and its replica usage

Also included as part of the breakdown are user objects. These
include File Shares created by vSAN File Service. Note that this may

Telegram Channel @nettrain

also include Container file volumes, which are backed by vSAN File
Service.

Finally, the System usage section highlights various vSAN overheads.
The thing to note about vSAN overheads is that they may start
relatively small but will grow as the datastore is consumed. Therefore,
they are displayed here for administrators to monitor. Overheads
include:

Filesystem overhead
Checksum overhead
Performance management objects

Finally, there is also a Capacity History which enables administrators
to go back in time and review capacity usage charts for a given
period (default is 1 day, maximum is 30 days). This feature was
introduced in vSAN 6.7U1. From here, you can observe the total
capacity, free capacity, and used capacity of the vSAN datastore from
the last X number of days (where 30 >= X >=1) or indeed, add their
own custom data range. This is a great tool for forecasting the future
capacity requirements of the vSAN cluster.

Figure 164: vSAN Capacity History

Telegram Channel @nettrain

Disk Full Scenario

You might ask, “What happens when the vSAN datastore gets full?”
To answer that question, you should first ask the question, “What
happens when an individual magnetic disk fills up?” because this will
occur before the vSAN datastore fills up.

Before explaining how vSAN reacts to a scenario where a disk is full,
it is worth knowing that vSAN will try to prevent this scenario from
happening. vSAN balances capacity across the cluster and can and
will move components around, or even break up components, when
this can prevent a disk full scenario. Of course, the success of this
action is entirely based on the rate at which the VM claims and fills
new blocks and at which vSAN can relocate existing components.

It should also be noted that the new reservation options (operations
reserve, host rebuild reserve) discussed earlier can be used to
mitigate the impact of this situation should it arise, by ensuring that
there is enough space set aside to prevent the disk from filling up.
However, these reservations are not available to all vSAN
configurations as mentioned. It is only available on vSAN clusters
that are greater than 3 nodes in size, and cannot be used with vSAN
stretched clusters, or with vSAN clusters that use fault domains. So, it
is still a possibility in some configurations.

In the event of a disk’s reaching full capacity, vSAN pauses
(technically called stun) the VMs that are trying to write data and
require additional new disk space for these writes; those that do not
need additional disk space continue to run as normal. Note that
vSAN-based VMs are deployed thin by default and that this only
applies when new blocks need to be allocated to this thin-
provisioned disk.

This is identical to the behavior observed on VMFS when the
datastore reaches capacity. When additional disk capacity is made

Telegram Channel @nettrain

available on the vSAN datastore, the stunned VMs may be resumed
via the vSphere Web Client. Administrators should be able to see how
much capacity is consumed on a per-disk basis via the Configure >
vSAN > Disk Management view and viewing the disks on a per host
basis as shown in the next figure.

Figure 165: Monitoring physical disks

UNMAP Support

We should start by explaining what UNMAP does. In a nutshell,
UNMAP is a way of reclaiming dead or stranded space on a volume
or datastore. For the longest time, UNMAP was associated with
reclaiming once used, but no longer used space on a VMFS
datastore. When a file was deleted on or migrated from a VMFS,
there was no way to inform the storage array that these blocks on the
volume are now free. Enter UNMAP. Using this standard SCSI
command, hosts could now tell the array to reuse this space,
essentially reclaiming space for reuse.

Telegram Channel @nettrain

The second variant of this process came about when guest OSes
running in VMs could send UNMAP commands to declare that space
that they were consuming on their local filesystem (and thus VMDK)
was no longer being used, enabling VMDKs to be shrunk in size.

Now when we look at these scenarios in the context of vSAN, the first
method isn’t relevant. vSAN has full knowledge of who is using space
from an object perspective. Thus, if a VM is moved from, or deleted
on, the vSAN datastore, vSAN can automatically reclaim and use that
space. However, it was not until vSAN 6.7U1 that UNMAP support for
guest OS appeared. This is completely automated, so there is not
very much to consider from an operational perspective. One caveat
to be aware of is that this is not supported by all guest OSes.
Typically, it is supported in the later versions of Microsoft Windows
and various Linux distributions. Also, note that there could be some
performance impact while the UNMAP operation is running.

UNMAP is not enabled by default. It can be configured via the Ruby
vSphere Console (RVC). The command to enable or disable unmap is
as follows, as must be run against a cluster object.

There are several caveats and considerations when running UNMAP
on vSAN. This includes a reliance on the version of VM Hardware
used by the virtual machine. We would urge you to read the official
VMware documentation to obtain the full list of requirements when
using this feature.

Telegram Channel @nettrain

vCenter Management

vCenter server is an important part of most vSphere deployments
because it is the main tool used for managing and monitoring the
virtual infrastructure. In the past, new features introduced to vSphere
often had a dependency on vCenter Server to be available, like
vSphere DRS for instance. If vCenter Server was unavailable, that
service would also be temporarily unavailable; in the case of vSphere
DRS, this meant that no load balancing would occur during this time.

Fortunately, vSAN does not rely on vCenter Server in any shape or
form, not even to make configuration changes or to create a new
vSAN cluster. Even if vCenter Server goes down, vSAN continues to
function, and VMs are not impacted whatsoever when it comes to
vSAN functionality. If needed, all management tasks can be done
through ESXCLI or RVC, the Ruby vSphere Console that ships with
vCenter Server. While there are plans to eventually deprecate RVC in
favor of the ESXCLI, at the time of writing, it is still available.

You might wonder at this point why VMware decided to align the
vSAN cluster construct with the vSphere HA and DRS construct,
especially when there is no direct dependency on vCenter Server and
no direct relationship. There are several reasons for this, so let’s
briefly explain those before looking at a vCenter Server failure
scenario.

The main reason for aligning the vSAN cluster construct with the
vSphere HA and DRS cluster construct is user experience. Today,
when vSAN is configured/enabled, it takes just a handful of clicks in
the cluster properties section of the vSphere Client. This is primarily
achieved because a compute cluster already is a logical grouping of
ESXi hosts.

This not only allows for ease of deployment but also simplifies
upgrade workflows and other maintenance tasks that are typically

Telegram Channel @nettrain

done within the boundaries of a cluster. On top of that, capacity
planning and sizing for compute is done at cluster granularity; by
aligning these constructs, storage can be sized accordingly.

A final reason is of course availability. vSphere HA is performed at
cluster level, and it is only natural to deal with the new per-VM
accessibility consideration within the cluster because vSphere HA at
the time of writing does not allow you to fail-over VMs between
clusters; it can only failover a VM to another host within the same
cluster. In other words, life is much easier when vSphere HA, DRS,
and vSAN all share the same logical boundary and grouping.

Running vCenter Server on vSAN

A common support question relates to whether VMware supports the
vCenter Server that is managing vSAN to run in the vSAN cluster. The
concern would be a failure scenario where the access to the vSAN
datastore is lost and thus VMs, including vCenter Server, can no
longer run. The major concern here is that no vCenter Server (and
thus no tools such as RVC) is available to troubleshoot any issues
experienced in the vSAN environment. Fortunately, vSAN can be fully
managed via ESXCLI commands on the ESXi hosts. So, to answer the
initial question, yes, VMware will support customers hosting their
vCenter Server on vSAN (as in it is supported), but in the rare event
where the vCenter Server is not online and you need to manage or
troubleshoot issues with vSAN, the user experience will not be as
good. This is a decision that should be given some careful
consideration.

vSAN Storage Services

Telegram Channel @nettrain

As we have seen many times throughout this book, the vSAN
datastore is typically consumed by VMs deployed on the same cluster
where vSAN is enabled. However, the vSAN datastore can also be
consumed remotely through several different vSAN Storage Services,
namely the iSCSI Target Service, vSAN File Service, and HCI Mesh.
These services allow vSAN datastores to be consumed from remote
clients. In this section, we will look at these storage services in
further detail and highlight operations considerations where
applicable.

vSAN iSCSI Target Service

This service enables an iSCSI Target on the vSAN Cluster, which then
allows remote/external iSCSI initiators to consume storage on the
vSAN datastore.

Enable vSAN iSCSI Target Service

Configurable options for the iSCSI Target Service include the default
network (VMkernel) for the iSCSI traffic. A storage policy must also
be associated with the target, which is then used to create a VM
Home Namespace object to store iSCSI metadata. Authentication
protocols include CHAP (Challenge Handshake Authentication
Protocol), where the target authenticates the initiator, as well as
mutual (bi-directional) CHAP, where both the initiator and the target
authenticate one another. The final consideration is the TCP port on
which the initiator and target communicate. By default, this is port
3260.

Telegram Channel @nettrain

Figure 166: vSAN iSCSI Target Service Setup

Information about the service is now displayed on the Cluster >
Configure > vSAN > Services page.

Figure 167: vSAN iSCSI Target Service Enabled

Telegram Channel @nettrain

Create a vSAN iSCSI Target

Once the iSCSI Target Service is enabled, a new iSCSI Target
Service menu entry appears in Cluster > Configure > vSAN.

iSCSI Targets and Initiator Groups can now be created.
Administrators will need to create the target IQN (iSCSI Qualified
Name), along with a target alias and a storage policy. If the IQN is
left blank, the system will automatically generate one for you.
However, a target alias must be supplied, Once again, you may add
the TCP port on which the initiator and target communicate. By
default, this is port 3260. Other settings include Authentication
(CHAP/Mutual CHAP) and the network to use for iSCSI. A network
selection is presented since the iSCSI Targets can be configured to
use different networks than that defined for the service.

Figure 168: vSAN iSCSI Target Create

Telegram Channel @nettrain

Create a vSAN iSCSI LUN

The vSAN iSCSI Target should now be visible in the vSphere client.
From here, vSAN iSCSI LUNs can now be created. The main
consideration here is to assign a LUN ID.

Figure 169: vSAN iSCSI LUN Create

Create a vSAN iSCSI Initiator Group

The final step is to grant access to the target (and any LUNs on the
target) to the remote initiators. To do this, the initiators first need to
be added to an initiator group. This can be done at various points in
the UI. One way is via the iSCSI Target Service. From there, select
the Initiator Groups view. Next, under the vSAN iSCSI Initiator
Groups, click on Add. This opens a wizard which requests you to
provide an initiator group name and add the initiator(s) IQN. The
IQN is a specifically formatted identifier, which looks something like

Telegram Channel @nettrain

iqn.YYYY.MM.domain:name. Note that this IQN comes from the
remote initiator; it is not the local vSAN target initiator.

Figure 170: vSAN iSCSI Initiator Create

The initiator group must now be given access to the target. In the
Initiator Groups view, under Accessible Targets, click on Add, and
add the vSAN iSCSI target created previously. This now completes
the step of granting members of the initiator group “vsan-book-iscsi-
initiators” access to target “vsan-book-iscsi-test”, and thus access to
LUN ID 0 which was created on that target.

Note that there are several considerations and limitations around the
vSAN iSCSI Target Service. The number one item to highlight is that
the vSAN iSCSI target service does not support other vSphere or
ESXi clients or initiators. Thus, it is not supported to present these
vSAN iSCSI targets and LUNs to other ESXi hosts. In fact, VMware
does not support presenting these vSAN iSCSI targets and LUNs to
third-party hypervisors either. Neither does VMware support
presenting iSCSI targets and LUNs to VMs as a regular data volume.
Other operational considerations include the following:

Telegram Channel @nettrain

L3 Routing between initiators and targets (on the vSAN
iSCSI network) is supported
Jumbo Frames (on the vSAN iSCSI network) is supported
IPv4 and IPv6 are both supported
IPsec / IP Security supported (available on ESXi hosts using
IPv6 only)
NIC Teaming configurations (on the vSAN iSCSI network)
supported
iSCSI feature Multiple Connections per Session (MCS) not
supported

vSAN iSCSI Target Service and vSAN Stretched
Cluster

One final consideration is related to vSAN Stretched Clusters and
iSCSI. Let’s first describe a little about the iSCSI on vSAN
architecture. With the iSCSI implementation on vSAN, there is the
concept of a target I/O owner for vSAN iSCSI. The I/O owner is what
the iSCSI initiator connects to. However, the I/O owner may be on a
completely different vSAN node/host to the actual iSCSI LUN backed
by a vSAN VMDK object. This is not a problem for vSAN deployments,
as this can be considered akin to a VM’s compute residing on one
vSAN host and the VM’s storage residing on a completely different
vSAN host. This ‘non-locality’ feature of vSAN allows us to do
operations like maintenance mode, vMotion, capacity balancing and
so on without impacting the performance of the VM. The same is true
for the vSAN iSCSI Target Service implementation; an administrator
should be able to move the I/O owner to a different host, and even
migrate the iSCSI LUNs to different hosts while not impacting iSCSI
performance. This enables the vSAN iSCSI implementation to be
unaffected by operations such as maintenance mode, balancing
tasks, and of course any failures in the cluster.

Telegram Channel @nettrain

The key issue however is if the initiator is somewhere on-site A, and
the target I/O owner is on site B. In this case, the iSCSI traffic (as
well as any vSAN traffic) will need to traverse the inter-site link. In a
nutshell, there could be an additional inter-site trip for iSCSI traffic,
and this is VMware did not support iSCSI on vSAN Stretched
Clusters for some time. A mechanism to offer some sort of locality
between the iSCSI initiator and the target I/O owner was needed.
Fortunately, this is now available as described in chapter 4 when the
architecture of the vSAN iSCSI Target service was discussed.
Administrators can now select which site that the I/O owner should
have affinity to, starting with vSAN 7.0U1.

Once the I/O owner has been placed correctly, and the iSCSI
initiator does not have to traverse the interconnect to communicate,
we can consider the behavior of iSCSI LUNs in a vSAN stretched
cluster. A scenario could arise where the I/O owner is residing on
one site in the stretched cluster, whilst the actual vSAN object
backing the iSCSI LUN (VMDK) could be on the other site. This is not
an issue. For write workloads, no matter if it is VM or iSCSI, all the
traffic between the iSCSI initiator (which has established
connectivity through the I/O owner) and the iSCSI target has to
traverse the inter-site link since write data is written to both sites
anyway (RAID-1). Thus, writes are not a concern. When it comes to
read workloads, the ability to read data from the local site for both
iSCSI and VM workloads is available, avoiding the need to traverse
the inter-site link. This means that it doesn’t matter which site has
the I/O owner resides. The real concern is to be able to place the
initiator and the I/O owner on the same site, and this functionality is
now available.

vSAN File Service

Telegram Channel @nettrain

With vSAN 7.0, VMware released a fully integrated File Service
feature. Initially, it provided support for NFS v3 and NFS v4.1
protocols but soon followed this up with support for SMB (Server
Message Block) protocols v2 & v3 in vSAN 7.0U1. The architectural
details of how vSAN File Service is implemented have been covered
in detail in chapter 4. In this section, we will look at how to enable
vSAN File Service, how to create a file share, and look at any
operations considerations associated with these actions.

Enable vSAN File Service

File Service is implemented as a set of File Server “Agent” VMs
which are managed by vSphere ESX Agent Manager (EAM). The
image that is used to create the file service VMs is an OVF which is
downloaded and deployed during the configuration step. This OVF is
stored in vCenter along with the File Service configuration. If File
Service is disabled and re-enabled, the configuration persists and
does not need to be re-added.

File Service is available for configuration on the Cluster > Configure
> vSAN > Services page.

Figure 171: vSAN File Service

Telegram Channel @nettrain

Simply click on the “Enable” text to start the configuration process.
The introduction screen provides some information about the sorts
of information that will be needed during the enabling process. You
will need to provide DNS names for each of the file servers. The
number of file servers required is dependent on the size of the vSAN
cluster, one per node. If the file shares that are created from vSAN
File Service need to be integrated with Kerberos Security, additional
parameters such as the AD domain and a user account with
appropriate privileges are also needed. One final note on this screen
– you may notice that the diagram also shows Pods consuming file
shares. This is a reference to Kubernetes Read-Write-Many volumes
which can be dynamically created through the vSphere CSI driver.
This is covered in detail in the Cloud-Native Applications chapter
later in this book.

Figure 172: vSAN File Service Introduction

Telegram Channel @nettrain

The very first time that File Services is enabled, you are prompted to
let the system download the agent OVF from the VMware download
site. Since this is a vSAN 7.0U3 system, the OVF is also v7.0.3. You
will need to trust the certificate to proceed.

Figure 173: vSAN File Service agent download

On the domain page, a file service domain must be provided. This is
used to maintain security and network information about the shares.
The DNS server and suffixes are self-explanatory, and the last option
relates to Kerberos Security, and when or not you want to enable
Active Directory. If the administrator chooses not to enable Active
Directory, then SMB file shares cannot be created, only NFS file
shares.

Figure 174: vSAN File Service Domain

After completing the domain configuration (in this example, I did not
add Active Directory), the wizard moves to the Networking section.
This is looking for a Network port group (selectable from the
dropdown list), a Subnet mask, and a gateway.

Telegram Channel @nettrain

Figure 175: vSAN File Service Networking

Note the information window above, in blue. It is informing the
administrator that the port group needs to have Promiscuous Mode
and Forged Transmits enabled. This enables the containers within
the agent VMs to communicate successfully over the network.

The next step is to add the IP addresses and DNS names for the
agents. There are two very useful tools built into the IP Pool section.
The first is “Autofill” which, once the first IP address is added, will
consecutively populate the remaining IP addresses. Similarly, there
is the “Lookup DNS” tool which will resolve all the IP addresses to
the fully qualified domain names (FQDNs). These tools are very
useful when configuring File Service on very large vSAN clusters. In
the example below, File Service is being enabled on a 4 node vSAN
cluster, thus there are 4 agents to populate.

To begin adding the IP pool for the agents, add the first IP address
and click on “Autofill”. Note, as per the blue information window, the
Primary IP address or primary DNS name is used to access the file
shares.

Telegram Channel @nettrain

Figure 176: vSAN File Service IP Pool – First IP Address

Once the IP addresses have been populated, click on the “Lookup
DNS” to populate all the DNS names.

Figure 177: vSAN File Service IP Pool – Autofill

When the IP addresses and DNS names have been successfully
populated, as shown below, proceed to the Review screen and
validate the configuration.

Telegram Channel @nettrain

Figure 178: vSAN File Service IP Pool – Lookup DNS

The Review screen should show the status of the OVF download, and
report that it is ready for use.

Figure 179: vSAN File Service IP Pool – Review

Assuming the configuration is correct, the “Finish” button will
commence the setup. The file service domain is created and the
vSAN file service is enabled. The agent VMs are deployed and are
visible in the vCenter inventory under the folder ESX Agents. They are

Telegram Channel @nettrain

names vSAN File Service Node (X) where X is a numeric value, and
the NFS servers in each container (one per VM) are started with the
IP addresses that were assigned during the vSAN File Service
configuration process. If there are no issues encountered, File
Service should now appear enabled in the Cluster > Configure >
vSAN > Services view, as shown below.

Figure 180: vSAN File Service Enabled

Note that there is no AD information displayed since Active Directory
was not selected. The File Service can now be used to create file
shares.

Telegram Channel @nettrain

Create a vSAN File Service NFS File Share

To create a vSAN file share, navigate to Cluster > Configure > vSAN >
File Shares. From here, administrators can create file shares that can
be remotely mounted by clients. In the following example, an NFS file
share is created. To create a file share, click on the “Add” button.
This launches a wizard that prompts for information such as the
name of the share, which protocol to use, security mode, storage
policy to use for the share (since the file share is backed by a vSAN
object), and what quotas, if any, to put in place. A share warning
threshold quote and a hard quote can both be configured. Finally,
there is the option to add labels to the file share using a key-value
format. In the example below, a file share called “vsan-book-file-
share” using NFS (supporting both NFS 4.1 and NFS 3 protocols) is
being created. There is no option to change the security mode since
Active Directory was not enabled, so Kerberos authentication is not
available. Lastly, I set the space quotas to 90 GB and 100GB
respectively, and added a label of “owner:cormac”.

Telegram Channel @nettrain

Figure 181: vSAN File Share Creation - NFS

The next window defines the network access controls. There are 3
options available, either no access to the share, allow access from
anywhere, or control the clients who can access the share by allowing
only certain IP addresses or a range of IP addresses to access the
share. The only other options that require administrator
consideration is the permission on the volume as well as the root
squash option. Permission can be set to No access, read-only or
read-write. Root squash means that anyone who attempts to mount
the NFS share as user root will have their permissions squashed. In
this example, I am specifying that anyone accessing from a
particular network range has full access, but anyone from any other
network only has read access.

Telegram Channel @nettrain

Figure 182: vSAN File Share Network Access Control

The final step is to review the file share configuration, and to click
“Finish” to create the share. The file share should now be visible in
the File Shares view.

Figure 183: vSAN File Share Created

The NFS share can now be mounted. The showmount command
shows the exported shares from an NFS server.

Telegram Channel @nettrain

Note the mount path used above. The mount paths for NFS v3 and
NFS v4.1 can be obtained by selecting the file share in the vSphere
UI and using the “Copy Path” option. It offers path information for
both protocols.

Figure 184: vSAN File Share Copy Path

There is a lot of good information on file shares available to an
administrator, as you might expect. By clicking on the “details” icon
(2nd field of the file share), administrators can glean basic
information as shown below. Since the file share is backed by a vSAN
block device, physical placement details relating to this object are
also available to review. There is also a Performance view so that
administrators can see per file share metrics such as IOPS,
Throughput and Latency. There also is a snapshot view that provides
the ability to take snapshots of the file share. Note that the snapshot
feature is probably not of much use to an administrator via the UI,
but it can be leveraged by backup partners to take backups of vSAN
File Service file shares. Before the snapshot feature was available,
the recommendation was to back up the file share from the client
which has the share mounted. This ability to take file share snapshots
provides an alternate solution.

Modifying vSAN File Service

It is possible to modify the vSAN File Service configuration after it
has been enabled. In the example previously, Active Directory was

Telegram Channel @nettrain

not configured. This means that only NFS file shares could be
created, and not SMB. Suppose that there is a need to now use vSAN
File Service for both NFS and SMB. Administrators can edit the vSAN
File Service configuration, and Enable Active Directory, as shown
here. No changes are required to the networking, or the IP pool
sections when enabling AD.

Figure 185: Modifying vSAN File Service

If the operation was successful, the File Service overview in the vSAN
Services page should now show AD domain and AD username
information.

Telegram Channel @nettrain

Figure 186: Active Directory Enabled

Create a vSAN File Service SMB File Share

Now that Active Directory is enabled, I have the option to create SMB
file shares as well as NFS file shares. SMB shares have some
additional options not available to NFS. It allows Protocol Encryption,
which encrypts data-in-transit traffic to a share. It also includes an
option to do access-based enumeration (ABE). This feature, if
enabled, only displays files and folders that a user has permissions to
access. If a user does not have the correct permissions, files or
folders are hidden from that user when they mount the share. Note
that when ABE is enabled, it could impact performance for
directories that have lots of files, since all the Access Control Lists

Telegram Channel @nettrain

(ACLs) will need to be checked to see if the user has permission to
view them or not. This consideration is highlighted when ABE is
enabled, as shown below. Otherwise, the configuration of an SMB
share is very similar to that of an NFS share.

Figure 187: vSAN File Share Creation - SMB

Once the SMB file share has been successfully created, it will appear
in the File Share view alongside the NFS file share created
previously. Note that as well as having a “Copy Path” option, this also
has a “Copy MMC Command” option available. This is a reference to
the Microsoft Management Console and allows administrators to
view permissions, connections, etc., of shared folders.

Telegram Channel @nettrain

Figure 188: SMB File Share

Using the “Copy Path”, it is a simple matter of going to the Windows
host where you want to mount the share and mapping the network
drive. Here is an example of mounting the share to a Windows 10
desktop.

Figure 189: SMB File Share – Map Network Drive using “Copy Path”

Telegram Channel @nettrain

Once the drive is mounted, the MMC command can be used to see
information about the share. Simply open a Command Prompt on the
Windows desktop and run the copied MMC command, as shown here:

Figure 190: MMC Command

This command will launch the Shared Folders view, and from there
you will be able to see who has the share mounted, open files, how
long they have been connected, etc.

Figure 191: Shared Folders View

vSAN File Service and Maintenance Mode

Telegram Channel @nettrain

In chapter 4, the architecture chapter, the behavior of vSAN File
Service and Maintenance Mode was discussed. There, it was
discussed that when a host is placed into maintenance mode the
protocol stack container is restarted on a different agent VM. This
means that some agent VMs could end up running 2 (or more even)
protocol stack containers. This is all managed by vSAN, and vSAN
File Service will rebalance the protocol stack containers when the
host exits maintenance mode, placing a single protocol stack
container on each agent VM, and the cluster returns to normal.
However, there are one or two oddities in relation to the agent VM
that might be observed when a node that has been configured with
vSAN File Service is placed into maintenance mode. The vSAN File
Service agent VM node is powered off but is not migrated. An error is
thrown for the “Install agent” task, as shown below. Interestingly, the
initiator of the task is EAM, the ESX Agent Manager.

Figure 192: File Service Maintenance Mode Install Agent task error

If the associated event log is examined, we see the reason for the
error.

Figure 193: File Service Maintenance Mode Events

Telegram Channel @nettrain

EAM is responsible for maintaining an agent VM on each host in the
vSAN cluster, but since one of the hosts has been placed into
maintenance mode, it can no longer do this. Thus, the above agent
install task error and associated events are expected when placing a
vSAN host into maintenance mode that has vSAN File Service is
enabled.

You might ask why this behavior is happening. The reason is related
to the storage policy that is used by agent VMs. The policy is called
“FSVM_Profile_DO_NOT_MODIFY” and has some unique settings. It
uses a failure to tolerate setting of “No data redundancy with host
affinity”. This means that there is only one copy of the data, and that
data always stays on the same host. Thus, when a host is placed into
maintenance mode, the data is not migrated to another host in the
cluster. This is also why the agent VM is powered off, and not
migrated.

Resetting vSAN File Service

As observed, vSAN File Service downloads, and configures an OVF
image. This image is stored on vCenter, and if an administrator
needs to disable vSAN File Service, the configuration is retained.
This means that if vSAN File Service is re-enabled, the configuration
is already in place and most of the fields required for setup are
already populated. However, there may be occasions where a new
vSAN File Service configuration is required. In that case, the existing
OVA images on vCenter will need to be removed. VMware
Knowledgebase article 80028 provides detailed instructions on how
to do this task.

vSAN File Service Requirements and Limitations

Telegram Channel @nettrain

This chapter has already discussed some of the limitations around
vSAN File Service, such as the requirement to enable promiscuous
mode and forged transmits on the portgroup used by File service for
networking. The fact that NFS file shares from vSAN File Service
cannot be mounted to ESXi hosts or any other hypervisor was also
mentioned. This section attempts to highlight the main requirements
and limitations of vSAN File Service that administrators need to
consider. Note that these are accurate at the time of writing but will
most likely change over time. Check vSAN Release Notes for future
releases to see if any of these requirements/limitations have
changed.

Support for 2-node is available since vSAN 7.0 U2
Enabling vSAN File Service on a cluster with “compute only”
nodes is not supported
NFS v3 and NFS v4.1 protocols are supported since the initial
vSAN 7.0 release
SMB v2.1 and v3 protocols are supported since 7.0 U1
Active Directory authentication is supported with SMB for 7.0
U1 but note that there can be no spaces in OU names at
present
Kerberos authentication supported with NFS since 7.0 U1
vSAN File Service on a vSAN stretched cluster is supported
since vSAN 7.0 U2
Data-in-transit encryption is supported starting vSAN 7.0 U2
UNMAP is supported starting vSAN 7.0 U2
Mounting NFS file share to hypervisors, including ESXi hosts,
is not supported
The maximum number of shares per cluster is 100 starting
vSAN 7.0 U2
The maximum size of the file share is equal to the maximum
available capacity of the vSAN cluster
The IP addresses assigned to vSAN File Service must be on
the same L2 segment

Telegram Channel @nettrain

On standard and distributed (v)Switches, the following
settings are enabled on the port group automatically: Forged
Transmits, Promiscuous Mode
For NSX-T, MAC Learning should be enabled on the Segment
Profile

vSAN HCI Mesh / Remote vSAN Datastores

vSAN HCI Mesh allows administrators to mount a remote vSAN
datastore. The benefit of this feature is that if there is “stranded
space” on some vSAN datastores in your datacenter, this can now be
consumed by a remote cluster, and that remote cluster can use the
datastore for the provisioning of virtual machine workloads.

While the initial release of this feature in vSAN version 7.0U1
required vSAN clusters both locally and remotely, vSAN version 7.0U2
introduced compute-only support. This means that the cluster that is
mounting the remote vSAN datastore does not require to be in a
vSAN cluster configuration, nor does it require a vSAN license, to
mount the vSAN datastore. A vSAN datastore may also be mounted
to a single ESXi host. However, that ESXi host does need to be
placed in its own cluster in the vCenter inventory before mounting
can take place. It also needs to be in the same datacenter as the
vSAN cluster in the vCenter inventory.

Mount a Remote vSAN Datastore

The ability to mount a remote datastore is dependent on the fact that
the datastore resides in the same datacenter in the vCenter
inventory. To mount the remote datastore, navigate to one of the
clusters in the datacenter and select Configure > vSAN > Remote

Telegram Channel @nettrain

Datastores. This should automatically provide a view of the local
vSAN datastore, as shown below, if one exists.

Figure 194: HCI Mesh Remote Datastores (Local)

By clicking on the “Mount Remote Datastore” option, a list of vSAN
datastores belonging to vSAN clusters within the same datacenter is
displayed.

Figure 195: HCI-Mesh Mount Remote Datastore

When the remote datastore is selected as a mount candidate, several
compatibility checks are run to ensure that the requirements are met,
and none of the limitations around HCI Mesh are exceeded. Figure
196 shows the list of compatibility checks.

Telegram Channel @nettrain

Figure 196: HCI-Mesh Remote Datastore Compatibility Check

There are a significant number of compatibility checks. These ensure
that neither the source nor the destinations cluster is a 2-node or
vSAN stretched cluster, both of which are currently unsupported with
HCI Mesh. It also checks licensing and ensures that none of the
mounting limits are exceeded. Also important is ensuring there are
low latency, and high bandwidth connections between the local and
remote clusters.

Once the mount operation completes the Remote Datastores view
should now show both the local and remote datastore details.

Figure 197: HCI-Mesh Local and Remote datastore

Telegram Channel @nettrain

Note the VM Count column. The VM Count is only referring to virtual
machines owned by the local cluster on the remote vSAN datastore.
There could be virtual machines deployed to this datastore by the
vSAN cluster that “owns” the vSAN datastore, i.e., its local vSAN
cluster, or indeed other remote clusters that are also mounting the
datastore. They do not show up in the VM Count. Only VMs created by
this cluster appear in this column.

VMs are provisioned on remote datastores in the same way as VMs
are provisioned on local datastores. Customers select a storage
policy when provisioning a VM, and both local and remote datastores
which are compliant with the policy are shown as suitable datastores
for the deployment. In the polices chapter earlier in this book, we saw
how storage rules could be used to differentiate between multiple
vSAN datastores, including those that are encrypted, have
deduplication and compression capabilities as well as choosing
between hybrid and all-flash vSAN datastores. See the Storage rules
section in chapter 5 for further details.

HCI Mesh and vCLS

Some additional operational considerations need to be considered
when with working with HCI-Mesh. The first of these relates to the
VMware vSphere Cluster Services (vCLS) virtual machines. vCLS is a
mechanism that decouples both vSphere DRS and vSphere HA from
vCenter Server. vCLS ensures the availability of critical services even
when vCenter Server is impacted by a failure.

vCLS is a consideration if the remote vSAN datastore is the only
datastore available to a compute cluster. In such a case, vCenter /
ESX Agent Manager (EAM) will try to provision the vCLS VMs onto the
remote vSAN datastore. The remote vSAN datastore may not be the
most optimal datastore – perhaps it is only mounted to the cluster

Telegram Channel @nettrain

temporarily. In the past administrators had no control over the
placement of the vCLS VMs, but starting with vSphere 7.0U3,
administrators can now choose which datastore to use for vCLS and
prevent it from using the remote vSAN datastore. Navigate to Cluster
> Configure > vSphere Cluster Services > Datastore and click on the
‘Add’ button to choose which datastores to use for vCLS, as shown
below.

Figure 198: Selecting a vCLS datastore

Similarly, if you are using an HCI Mesh with a single ESXi node in the
vSphere cluster, then neither DRS nor HA is relevant. Thus, vCLS can
be disabled. This is achieved by enabling a feature called ‘Retreat
Mode’ for vCLS. Refer to VMware knowledgebase article 80472 for

Telegram Channel @nettrain

details on how to turn on ‘Retreat Mode’. (https://kb.vmware.com/s/
article/80472)

One final consideration for administrators relates to maintenance
mode. Administrators should now be cognizant of the fact that a
vSAN datastore may be used by both the local cluster as well as
remote clusters. Any maintenance mode operation could adversely
impact the remote workloads on the shared vSAN datastore, not just
the local ones. Actions that impact availability or performance, such
as rebuilding and resynching of objects, will also affect objects
belonging to remote workloads. It is something administrators, who
so far have only needed to worry about local workloads, will need to
consider when doing maintenance on clusters participating in HCI
Mesh. This is especially true when doing operations such as taking a
complete cluster offline for maintenance.

HCI Mesh Requirements and Limitations

This section attempts to highlight the main requirements and
limitations of HCI Mesh. Note that these are accurate at the time of
writing, but many may change over time, as updated releases of
vSAN appear. Once again, the authors recommend checking the
vSAN Release Notes for future releases to see if any of these
requirements/limitations have changed or been relaxed.

HCI Mesh requires vSAN 7.0 Update 1 or later
HCI Mesh supports “compute only” as of vSAN 7.0U2 (vSAN
not required on mounting cluster)
The vSAN cluster must have the vSAN Enterprise license
Stretched Clusters and 2-node configurations are not
supported
A vSAN Datastore can be mounted by a maximum of 5 vSAN
Client Clusters

Telegram Channel @nettrain

https://kb.vmware.com/s/article/80472

A vSAN cluster can mount a maximum of 5 remote vSAN
datastores
A vSAN Datastore can be mounted by up to 64 vSAN hosts
for 7.0 U1, and 128 host for 7.0 U2. This includes the “local
hosts” for that vSAN Datastore
Both the mounting host/cluster and remote cluster need to
be managed by the same vCenter Server, and appear in the
same Datacenter
10Gbps NICs are the minimum required for hosts, but
25Gbps NICs are recommended
L2 and L3 connectivity are both supported
RDMA is not supported
IPv6 needs to be enabled on the hosts
Network Load Balancing: LACP, Load-based teaming, and
active/standby are all supported.
Network Load Balancing: Dual VMkernel configuration / air-
gapped configurations are explicitly not supported
Data-in-transit encryption is not supported, data-at-rest
encryption is supported
VMs cannot span datastores, in other words, you cannot store
the first VMDK on the local vSAN datastore and the second
VMDK of the same VM on a remote vSAN datastore
Remote provisioning (on a mounted remote vSAN datastore)
of vSAN File Shares, iSCSI volumes, and/or CNS persistent
volumes is not supported
It is supported to mount an All-Flash Datastore from a Hybrid
cluster and the other way around. VM Provisioning can be
controlled via SPBM policies to ensure VMs are placed on the
correct datastore

Failure Scenarios

Telegram Channel @nettrain

We have already discussed some of the failure scenarios in Chapter
4, “Architectural Details,” and in Chapter 5, “VM Storage Policy and
VM Provisioning”. In those chapters, we explained the difference
between absent components and degraded components. From an
operational perspective, though, it is good to understand how a
capacity device failure, flash device failure, network problem, or host
failure impacts your vSAN cluster. Before we discuss them, let’s first
shortly recap the two different failure states, because they are
fundamental to these operational considerations:

Absent: vSAN does not know what has happened to the
component that is missing. A typical example of this is when
a host has failed; vSAN cannot tell if it is a real failure or
simply a reboot. When this happens, vSAN waits for 60
minutes by default before new replica components are
created. This is called the CLOM daemon timeout, CLOM
being shorthand for Cluster Level Object Manager.
Degraded: vSAN knows what has happened to the
component that is missing. A typical example of when this
can occur is when an SSD or a magnetic disk has failed, and
it is generating SCSI sense codes that allow vSAN to
understand that this device has failed and is never
recovering. When this happens, vSAN instantly spawns new
components to make all impacted objects compliant again
with their selected policy.

One other feature that should be mentioned here is the concept of
durability components or delta components, first introduced in vSAN
7.0U1. Durability components provide a mechanism to maintain the
required availability for vSAN objects (e.g., virtual machines) when
components go absent. For example, if a host is placed into
maintenance mode, the new “durability components” get created on
behalf of the components stored on that host. This then allows all the
new VM I/O to be committed to the remaining component, as well as

Telegram Channel @nettrain

the durability component. Another benefit of durability components is
reduced recovery times. Once an absent component comes back
online, the contents of the durability component can be merged with
the out-of-sync recovered component, reducing resync times
considerably.

An additional enhancement was made to durability components in
vSAN 7.0U2. In this release, durability components can also be used
in situations where a host failure has occurred. If a host has failed in
the vSAN cluster, durability components may be created to ensure
the specified availability level within the policy is maintained.

Now that you know what the different states are, and understand the
concept of durability components, let’s look again at the different
types of failures, or at least the “most” common and what the impact
is. Note that in all the scenarios below, durability components are
used to improve both the resync times and provide a higher level of
availability to vSAN

Capacity Device Failure

A disk failure is probably the most common failure that can happen
in any storage environment, and vSAN is no different. The question,
of course, is this: How does vSAN handle disk failure? What if it is
doing a write or read to or from that disk after it has failed?

If a read error is returned from a storage component in a RAID-1
configuration, be it a magnetic disk in the case of hybrid
configurations or a flash device in the case of all-flash
configurations, vSAN checks to see whether a replica component
exists and reads from that instead. Every RAID-1 object is created, by
default, with failures to tolerate set to 1, which means that there are
always two identical copies of your object available.

Telegram Channel @nettrain

There are two separate scenarios when it comes to read data. The
first one is where the problem is recoverable, and the second one is
an irrecoverable situation. When the issue is recoverable, the I/O
error is reported to the Distributed Object Manager (DOM) object
owner. A component re-creation takes place to replace the failed one.
This new component is synchronized with the help of the
functioning/working component or components, and when that is
completed, the errored component is deleted. However, if for
whatever reason, no replica component exists, vSAN will report an
I/O error to the VM. This is an unlikely scenario and something an
administrator would have had to create a policy with failures to
tolerate of 0 specifically set, or there have been multiple failures or
maintenance mode operations on the cluster.

Like read errors, write failures are also propagated up to the DOM
object owner. The components are marked as degraded, and a
component re-creation is initiated. When the component re-creation
is completed, the cluster directory (cluster monitoring, membership,
and directory service [CMMDS]) is updated. Note that the cache
device (which has no error) continues to service reads for the
components on all the other capacity devices in the disk group while
this remediation operation is taking place.

As mentioned previously, the vSphere Client provides the ability to
monitor how much data is being resynced in the event of a failure.
Selecting the vSAN cluster object in the vCenter Server inventory,
then selecting Monitor, vSAN, and then “Resyncing Objects” will show
this information. It will report on the number of resyncing objects, the
bytes left to resync and the estimated time for the resyncing to
complete, as shown below.

Telegram Channel @nettrain

Figure 199: Resyncing Objects

Capacity Device Failure with Erasure Coding

As you have read in chapter 5, “VM Storage Policy and VM
Provisioning”, vSAN supports different protection mechanisms. As
well as the default RAID-1, vSAN supports both RAID-5 and RAID-6.
RAID-5 requires a minimum of 4 hosts in the vSAN cluster since it is
implemented as a 3+1, 3 data disks and 1 parity disk. VMs which are
configured with a RAID-5 policy can tolerate 1 failure in the cluster.
RAID-6 requires a minimum of 6 hosts in the cluster. It is
implemented as a 4+2, 4 data disks and 2 parity disks. VMs which
are configured with a RAID-5 policy can tolerate2 failures in the
cluster. Note that neither RAID-5 nor RAID-6 employ dedicated
parity disks. The parity is striped across all 4 and 6 disks in the

Telegram Channel @nettrain

configuration respectively. How failures impact VMs with erasure
coding is now discussed.

To understand how failures are handled with erasure coding, it is
important to understand that it uses Exclusive OR (XOR) operations
on the data to calculate the parity. With RAID-5, let’s take the
example of a single disk failure. If it is simply the parity component
of a VM that is impacted, then obviously reads and writes can
continue to flow, but there is no protection for the VM until parity is
rebuilt elsewhere in the cluster. If it is one of the data components
that is impacted, then the missing data blocks are calculated for
reads by using the two remaining data components and the XOR
parity results. With these pieces of information, the missing data
blocks can be re-calculated.

With RAID-6, there is a double parity calculation to allow any VM with
this policy setting to tolerate a double failure. If the double failure
impacts both parity segments, then that is ok since we still have a full
copy of the data. If it impacts 2 data segments, then that is ok since
the data can be rebuilt using the remaining data and the parity. If the
double failure impacts both a data segment and a parity segment,
then this is ok as well as we simply rebuild the missing data blocks
using the remaining data blocks and the remaining parity segment.

The advantage of erasure coding versus RAID-1 mirroring is of
course space savings. However, performance is a consideration, not
just during normal operations which often requires a read-modify-
write operation on the data and then a parity calculation + write-
parity operation. This performance penalty may become even more
pronounced when there is a failure in the cluster. All this should be
considered when debating whether RAID-5 or RAID-6 should be
chosen over RAID-1.

Telegram Channel @nettrain

Capacity Device Failure with Deduplication
Enabled

Note that the following discussion does not apply to vSAN clusters
that use the Compression Only feature. This discussion relates to
having both Deduplication and Compression enabled on the vSAN
cluster, since Deduplication can only be enabled with Compression
at the time of writing.

Earlier in the book, the act of removing an individual disk from a disk
group was discussed. If deduplication and compression are enabled
on the cluster, it was highlighted that it is not possible because the
deduplicated and compressed data, along with the associated hash
tables and metadata associated with deduplication and compression,
are striped across all the capacity tier disks in the disk group.

There is a similar caveat when it comes to a capacity device failure
when deduplication and compression are enabled. If a single
capacity disk in a disk group where deduplication and compression
are enabled fails, the entire disk group becomes inaccessible.
Rebuild of the disk group contents will start immediately if the failure
allows appropriate sense codes to be sent to the system. Once again,
the whole of the disk group would need to be deleted, and when the
failing disk has been replaced, the disk group should be recreated.
vSAN will automatically take care of rebalancing all components
across the vSAN cluster and will overtime utilize the newly created
disk group. The resync dashboard will show this balancing of
components and will have the rebalance task flagged as a rebalance
operation rather than a resync/rebuild operation.

Cache Device Failure

Telegram Channel @nettrain

What about when the cache device becomes inaccessible? When a
cache device becomes inaccessible due to some failure scenario, all
the capacity devices backed by that cache device in the same disk
group also become inaccessible. A cache device failure is the same
as a failure of all the capacity devices bound to the cache device. In
essence, when a cache device fails, the whole disk group is
degraded. vSAN immediately tries to find another host or disk to
start re-protecting the objects impacted by the failure. This scenario
is the same no matter if deduplication and compression are enabled
on the cluster or not.

Therefore, from an operational and architectural decision, depending
on the type of hosts used, it could be beneficial to create multiple
smaller disk groups versus a single large disk group because a disk
group is considered a failure domain, as shown in the next diagram.

Telegram Channel @nettrain

Figure 200: vSAN disk groups

Host Failure

Assuming vSAN VM storage policies have been created with failures
to tolerate set to at least 1, a host failure in a vSAN cluster is like a
host failure in a cluster that has a regular storage device attached.
The main difference, of course, is that the vSAN host that has failed
contains storage components of objects that will be out of sync when
the host returns. However, as we have discussed already, vSAN has a
durable components mechanism that replaces missing components

Telegram Channel @nettrain

for availability purpose, and then speeds up the resync operation
against the active components as soon as they re-appear. The active
components could reappear for many reasons e.g., a host reboot
completing or a host exiting maintenance mode. The durability
component concept is shown in the next diagram.

Figure 201: Durability component

In the case of a host failure, after 60 minutes vSAN will start re-
creating components because the likelihood of the host returning
online is now slim. Most likely this is not a transient failure. When the
reconstruction of the storage objects is completed, the cluster
directory (CMMDS) is once again updated with the new information
about the object. In fact, it is updated at each step of the process,
from failure detection, the start of resync, resync progress, and
rebuild complete.

Historically, in early releases of vSAN, if the host that originally failed
recovers and rejoins the cluster, the object reconstruction status is
checked. If object reconstruction has been completed on another
node or nodes, no action is taken and the component that was

Telegram Channel @nettrain

originally ABSENT can now be discarded from the recovered host. If
object resynchronization is still in progress, the components of the
failed host that have now recovered are also resynched just in case
there is an issue with the new object synchronization. When the
synchronization of all objects is complete, the components of the
original host are discarded, and the more recent copies are utilized.
Otherwise, if the new components failed to resync for any reason, the
original components on the original host are used.

With the release of vSAN version 6.6, this behavior changed. If a
failing component recovers after the CLOMD repair timeout and a
new component has already been instantiated and is currently
resyncing, vSAN will look at the amount of data remaining for that
new component to complete rebuilding and compare it to how long it
would take to repair or resync the component that just recovered.
vSAN will then choose the component that will complete the quickest
and cancel the other rebuild operation. vSAN maintains a bitmap of
changed blocks in the event of components of an object being
unable to synchronize due to a failure on a host, network, or disk.
This allows updates to vSAN objects composed of two or more
components to be reconciled after a failure. Let’s use a RAID-1
example to explain this. If a host with replica A of object X has been
partitioned from the rest of the cluster, the surviving components of
X have quorum and data availability, so they continue functioning and
serving writes and reads. These surviving components of X are the
other replica/mirror and the witness. While A is “absent,” all writes
performed to X are persistently tracked in a bitmap by vSAN, that is,
the bitmap is tracking the regions that are still out of sync. If the
partitioned host with replica A comes back and vSAN decides to
reintegrate it with the remaining components of object X, the bitmap
is used to resynchronize component A.

This behavior changed once again in vSAN versions 7.0U1 and 7.0U2
with the introduction of durability components, as already discussed.
New writes are committed to existing components and the newly

Telegram Channel @nettrain

created durability components. When then the previously failed or
missing component recovers and is once again available, the
durability component(s) are merged and are subsequently deleted
when object resync is complete.

When a host has failed, all VMs that were running on the host at the
time of the failure will be restarted by vSphere HA. vSphere HA can
restart the VM on any available host in the cluster whether (or not) it
is hosting vSAN components as demonstrated in the next diagram.

Figure 202: vSAN 1 host failed, HA restart

In the event of an isolation of a host, vSphere HA can and will also
restart the impacted VMs. As this is a slightly more complex
scenario, let’s look at it in more depth.

Network Partition

Telegram Channel @nettrain

A vSAN network partition could occur when there is a vSAN network
failure. In other words, some hosts can end up on one side of the
vSAN cluster, and the remaining hosts on another side. vSAN health
checks will surface warnings related to network issues in the event of
a partition. There has also been a significant enhancement to
Network Diagnostics in the recent version to assist with
troubleshooting network issues.

After explaining the host and disk failure scenarios in the previous
sections, it is now time to describe how isolations and partitions are
handled in a vSAN cluster. Let’s look at a typical scenario first and
explain what happens during a network partition based on
this scenario.

In the scenario depicted in the next diagram, vSAN is running a
single VM on ESXi-01. This VM has been provisioned using a VM
storage policy that has number of failures to tolerate set to 1 using
RAID-1.

Figure 203: vSAN I/O flow: Failures to tolerate = 1

Telegram Channel @nettrain

Because vSAN has the capability to run VMs on hosts that are not
holding any active storage components of that VM, this question
arises: What happens in the case where the network is isolated? As
you can imagine, the vSAN network plays a big role here, made even
bigger when you realize that it is also used by vSphere HA for
network heart beating. For that reason, as mentioned before, vSAN
must be configured before vSphere HA is enabled, so that the vSAN
network is used. The following steps describe how vSphere HA and
vSAN will react to an isolation event:

HA will detect there are no network heartbeats received from
esxi-01 on the vSAN network.
HA primary will try to ping the secondary esxi-01.
HA will declare the secondary esxi-01 is unavailable.
VMs on esxi-01 will be restarted on one of the other hosts, as
shown in the next diagram.
The vSphere administrator, through the vSphere HA isolation
response setting, decides what happens to the original VM
on the isolated host. Options are to power off, leave powered
on, or disable. We recommend using power off.

Telegram Channel @nettrain

Figure 204: vSAN partition with one host isolated: HA restart

What if something has gone horribly wrong in my network and esxi-01
and esxi-04 end up as part of the same partition? What happens to
the VMs then? Well, that is where the witness component comes into
play, and how quorum is used to make decisions on what actions to
take. The next diagram should make it a bit easier to understand the
behavior.

Telegram Channel @nettrain

Figure 205: vSAN partition with multiple hosts in a partition

Now this scenario is indeed slightly more complex. There are two
partitions, one of which is running the VM with its virtual machine
disk (VMDK), and the other partition has a VMDK replica and a
witness. Guess what happens? For RAID-1, vSAN uses the witness to
see which partition has quorum, and based on that result, one of the
two partitions will win. In this case, partition B has more than 50% of
the components/votes of this object and therefore is the winner. This
means that the VM will be restarted on either esxi-02 or esxi-03 by
vSphere HA. Note, however that as this is a partition scenario and not
an isolation the isolation response will not be triggered, and as such
the VM running on esxi-01 will not be powered off! The VM running
on esxi-01 will not be able to access the vSAN datastore however, as
it has lost quorum!

Telegram Channel @nettrain

We would like to stress that it is highly recommended to set the
isolation response to power off, even though it does not help in
the above scenario.

But what if esxi-01 and esxi-04 were isolated, what would happen
then? The next diagram will show this, but as expected the result
would be very similar to the partition above.

Figure 206: vSAN 2 hosts isolated: HA restart

Remember the rule we discussed earlier?

“The winner is declared based on the percentage of components
available or percentage of votes available within that partition.”

If the partition has access to more than 50% of the components or
votes (of an object), it has won. For each object, there can be at most

Telegram Channel @nettrain

one winning partition. This means that when esxi-01 and esxi-04 are
isolated, either esxi-02 or esxi-03 can restart the VM because 66%
of the components of the RAID-1 object reside within this part of the
cluster.

To prevent these scenarios from occurring, it is most definitely
recommended to ensure the vSAN network is made highly available
through NIC teaming and redundant network switches, as discussed
in Chapter 3, “vSAN Installation and Configuration.” Note that in the
above situation, as these hosts are isolated from the rest of the
network, the isolation response will be triggered and the VM running
on esxi-01 will be powered off by vSphere HA.

vCenter Server Failure Scenario

What if you would lose the vCenter Server? What will happen to vSAN,
and how do you rebuild this environment? Even though vSAN is not
dependent on vCenter Server, other components are. If, for instance,
vCenter Server fails and a new instance needs to be created from
scratch, what is the impact on your vSAN environment?

After you rebuild a new vCenter, you simply recreate a new vSAN-
enabled cluster and add the hosts back to the cluster.

Now, vCenter is used by vSAN to keep track of cluster membership
since the removal of multicast network traffic back in vSAN 6.6.
Because VMware received a considerable amount of feedback from
customers to remove the dependency on multicast traffic for
membership, a new method was decided upon. This new method
uses vCenter to track cluster membership. This introduced the
concept of a Configuration Generation number. What this means is
that all the ESXi hosts and the vCenter server use this number to
track changes in the cluster. If vCenter is unavailable for a certain
length of time, once it can communicate to the vSAN cluster once

Telegram Channel @nettrain

more, it compares its Configuration Generation number with the ESXi
hosts. If it is not the same, vCenter Server realizes that changes have
taken place since it was last online, so requests an update from all
the hosts in the cluster to make sure it is synchronized from a
configuration perspective. There is no need for any administrative
action here; this is all taken care of automatically. The latest
configuration Generation number can be viewed on the ESXi hosts
via the command esxcli vsan cluster get.

One additional consideration, however, is that the loss of the vCenter
Server will also mean the loss of the VM storage policies that the
administrator has created. SPBM will not know about the previous VM
storage policies and the VMs to which they were attached. vSAN,
however, will still know exactly what the administrator had asked for,
policy wise, and keep enforcing it. Today, there is no way in the UI to
export existing policies, but there is an application programming
interface (API) for VM storage policies has been exposed. In fact,
using PowerCLI, administrators can export, import, and restore

Telegram Channel @nettrain

policies very quickly and easily. Refer to the official PowerCLI
documentation for more detail on SPBM cmdlets.

Summary

As demonstrated throughout the chapter, vSAN is easy to scale out
and up. The vSAN team spent a lot of time making day 2 operations
easy for vSphere administrators, especially for those who must also
take on the role of the storage administrator. Maintenance modes,
disk groups and disk operations are all available through the UI. For
those who prefer the command line, ESXCLI is a great alternative to
the vSphere Client. For those who prefer PowerShell, VMware has a
wide variety of PowerCLI cmdlets also available.

Telegram Channel @nettrain

Chapter 7

Stretched Cluster Use Case

This chapter was developed to provide insights and additional
information on a very specific type of vSAN configuration, namely
stretched clusters. In this chapter, we will describe some of the
design considerations, operational procedures, and failure scenarios
that relate to a stretched cluster configuration specifically. But first,
why would anyone want a stretched cluster?

Stretched cluster configurations offer the ability to balance VMs
between datacenters. The reason for doing so could be anything, be
it disaster avoidance or, for instance, site maintenance. All of this can
be achieved with no downtime from a VM perspective since compute,
storage, and network are available across both sites. On top of that, a
stretched cluster also provides the ability to actively load balance
resources between locations without any constraints when desired.

What is a Stretched Cluster?

Before we get into it, let’s first discuss what defines a vSAN stretched
cluster. When we talk about a vSAN stretched cluster, we refer to the
configuration that is deployed when the stretched cluster workflow is
completed in the vSphere Client. This workflow explicitly leverages a
witness host, which can be physical or virtual, and needs to be
deployed in a third site. During the workflow, the vSAN cluster is set

Telegram Channel @nettrain

up across two active/active sites, with (preferably) an identical
number of ESXi hosts distributed evenly between the two sites and
as stated, a witness host residing at a third site. The data sites are
connected via a high bandwidth/low latency network link. The third
site hosting the vSAN witness host is connected over a network to
both active/active “data” sites. The connectivity between the data
sites and the witness site can be via lower bandwidth/higher latency
network links. The diagram below shows what this looks like from a
logical point of view.

Figure 207: Stretched cluster scenario

Each site is configured as a vSAN fault domain. A maximum of three
sites (two data, one witness) is supported in a stretched cluster
configuration.

Telegram Channel @nettrain

The nomenclature used to describe a vSAN Stretched Cluster
configuration is X+Y+Z, where X is the number of ESXi hosts at data
site A, Y is the number of ESXi hosts at data site B, and Z is the
number of witness hosts at site C. Data sites are where VMs are
deployed. The minimum supported configuration is 1+1+1 (3 nodes).
Starting with vSAN 7.0 U2 the maximum configuration at the time of
writing is 20+20+1 (41 nodes), pre-vSAN 7.0 U2 the maximum
configuration was 15+15+1.

In vSAN stretched clusters, there is only one witness host in any
configuration. For deployments that manage multiple stretched
clusters, each cluster must have its own unique witness host, the
shared witness deployment described in chapter 8 is not supported
for a stretched cluster configuration at the time of writing. As
mentioned before however, this witness host can be a virtual
appliance, which does not even require a vSphere or vSAN license
and is our preferred method of deployment for the witness.

By default, when a VM is deployed on a vSAN stretched cluster, it is
deployed with a RAID-1 configuration. In previous versions of vSAN
this was referred to as primary failures to tolerate. Thus, it will have
one copy of its data on site A, the second copy of its data on site B,
and a witness component placed on the witness host in site C. This
configuration is achieved through fault domains. In the event of a
complete site failure, there will be a full copy of the VM data as well
as greater than 50% of the components available. This will allow the
VM to remain available on the vSAN datastore. If the site which fails
is the site where the VM is running, then the VM needs to be
restarted on the other data site, vSphere HA will handle this task.

Note, however, that vSAN also provides the ability to specify what the
level of protection within a site location should be. In previous
versions of vSAN, this was referred to as secondary failures to
tolerate. But before we dive further into all policy options, let’s look at
the configuration process first.

Telegram Channel @nettrain

Requirements and Constraints

vSAN stretched cluster configurations requires vSphere 6.0.0
Update1 (U1) at a minimum. This implies both vCenter Server 6.0 U1
and ESXi 6.0 U1. This version of vSphere includes vSAN version 6.1.
This is the minimum version required for vSAN stretched cluster
support. However, we strongly recommend implementing the latest
available version of vSAN, which at the time of writing was vSAN 7
Update 3. Especially as vSAN 7.0 Update 3 includes a feature called
Stretched Cluster Sites/Witness resilience, which improves the
overall availability of the cluster during failures. We will discuss the
details of this feature later in this chapter.

From a licensing point of view, vSAN Enterprise is required to create
stretched cluster configurations larger than 1+1+1. Yes, that is right,
you could theoretically create a 1+1+1 stretched cluster configuration
with the vSAN Standard or vSAN Advanced license and not breach
the license agreement. Yes, we have customers using this feature in a
1+1+1 configuration!

There are no limitations placed on the edition of vSphere used for
vSAN. However, for vSAN Stretched Cluster functionality, vSphere
DRS is very desirable. DRS will provide initial placement assistance
and can also help with migrating VMs to their correct site when a site
recovers after a failure. Otherwise, the administrator will have to
manually carry out these tasks. Note that DRS is only available in the
Enterprise Plus edition of vSphere.

When it comes to vSAN functionality, VMware supports stretched
clusters in both hybrid and all-flash configurations. In terms of on-
disk formats, the minimum level of on-disk format required is v2,
which comes by default with vSAN 6.0. (vSAN 6.2 comes with v3.)
However, to be able to specify what the protection should be within a

Telegram Channel @nettrain

site (primary and secondary FTT) vSAN 6.6 is required at a minimum,
and again vSAN 7.0 U3 is highly recommended.

Both physical ESXi hosts and virtual appliances (nested ESXi host in
a VM) are supported for the witness host. VMware is providing a pre-
configured witness appliance for those customers who wish to use it.
A witness host/VM cannot be shared between multiple vSAN
stretched clusters. Also, note that VMware does not support cross
hosting of Witness Appliances in a scenario where there are multiple
stretched cluster configurations across two locations. That means
that you can’t run the witness of Stretched Cluster A on Stretched
Cluster B when these two clusters are stretched across the same two
geographical locations. At all times 3 locations (or more) are required
to avoid any circular dependency during failure scenarios.

One thing we would like to point out is that SMP-FT, the new Fault
Tolerant VM mechanism introduced in vSphere 6.0, is supported on
standard vSAN deployments, but at the time of writing is not
supported on stretched cluster deployment at this time, be it vSAN or
vSphere Metro Storage Cluster (vMSC) based, unless you contain and
pin all the SMP-FT VMs to a single location. How to do this is
explained later in this chapter. The reason for this is the bandwidth
and latency requirements associated with SMP-FT. Pre-vSAN 7.0
Update 1 the use of vSAN iSCSI in a stretched cluster was also not
supported, starting with 7.0 U1 however it is fully supported as it is
now possible to specify site affinity when creating iSCSI targets. The
same applies to vSAN File Service, starting with vSAN 7.0 U2 it is
now also supported to configure vSAN File Service on a vSAN
stretched cluster.

Lastly, at the time of writing VMware does not support remote
mounting (HCI-Mesh) of a vSAN datastore which is stretched across
locations.

Now that we have discussed some of the constraints, let’s look at the
vSAN stretched cluster bandwidth and latency requirements.

Telegram Channel @nettrain

Networking and Latency Requirements

When vSAN is deployed in a stretched cluster across multiple sites,
certain networking requirements must be adhered to.

Between data sites both Layer 2 and Layer 3 are supported
Layer-2 is recommended for simplicity
Between the data sites and the witness site Layer 3 is
required
This is to prevent I/O from being routed through a potentially
low bandwidth witness site
Maximum round trip latency between data sites is 5ms
Maximum round trip latency between data sites and the
witness site is 200ms
A bandwidth of 10 Gbps between data sites is recommended
A bandwidth of 100 Mbps between data sites and the witness
site is recommended

Networking in any stretched vSphere deployment is always a hot
topic. We expect this to be the same for vSAN stretched
deployments. VMware has published two documents that hold a lot of
detail about network bandwidth calculations and network topology
considerations. The above bandwidth recommendations are exactly
that, recommendations. Requirements for your environment can be
determined by calculating the exact needs as explained in the
following two documents.

vSAN stretched cluster bandwidth sizing guidance - https://
vmwa.re/bandwidth
vSAN stretched cluster guide - https://vmwa.re/stretched

Telegram Channel @nettrain

https://vmwa.re/bandwidth
https://vmwa.re/stretched

Witness Traffic Separation and Mixed MTU

By default, when using vSAN Stretched Clusters, the Witness
VMkernel interface tagged for vSAN traffic must have connectivity
with each vSAN data node's VMkernel interface tagged with vSAN
traffic. It is also supported to have a dedicated VMkernel interface
for stretched cluster configurations, like what is supported for 2-node
configurations. This allows for more flexible configurations, but also
lowers the risk of having data traffic traverse the witness network.
Configuration of the Witness VMkernel interface at the time of writing
can be achieved through the command line interface utility esxcli.
Below is an example of the command used in our lab to designate
the VMkernel interface vmk1 to witness traffic.

esxcli vsan network ip add -i vmk1 -T=witness

Note that the vSAN Witness Host will only have a VMkernel
interface tagged for “vSAN Traffic”. It will not have traffic
tagged as “Witness”.

One thing to note is that even in the case of witness traffic
separation it is still required to have different networks for vSAN
traffic as well as witness traffic. Not doing so may lead to multi-
homing issues and various warnings in vSAN Skyline Health.

New Concepts in vSAN Stretched Cluster

A common question is how stretched cluster differs from regular fault
domains. Fault domains enable what might be termed “rack
awareness” where the components of VMs could be distributed
amongst multiple hosts in multiple racks. Should a rack failure event
occur, the VM would continue to be available. These racks would
typically be hosted in the same datacenter, and if there were a

Telegram Channel @nettrain

datacenter-wide event, fault domains would not be able to assist with
VM availability.

A stretched cluster essentially builds on the foundation of fault
domains, and now provides what might be termed “datacenter
awareness.” A vSAN stretched cluster can now provide availability for
VMs even if a datacenter, or site, suffers a catastrophic outage. This
is achieved primarily through intelligent component placement of VM
objects across sites, alongside features such as site preference, read
locality, and the witness host.

The witness host must have a connection to both the master vSAN
node and the backup vSAN node to join the cluster (the master and
backup were discussed previously in Chapter 4, “Architectural
Details”). In steady-state operations, the master node resides in the
“preferred site”; the backup node resides in the “secondary site.”

Note that the witness appliance ships with its own license, so it does
not consume any of your vSphere or vSAN licenses. Hence it is our
recommendation to always use the appliance over a physical witness
host. The Witness Appliance also has a different icon in the vSphere
Client than a regular ESXi host, allowing you to easily identify the
witness appliance as shown below. This is only the case for the
witness appliance, however. A physical appliance will show up in the
client as a regular host and also requires a vSphere license!

Figure 208: Witness appliance icon

Another added benefit of the witness appliance is the operational
aspect of the witness. If for whatever reason maintenance is needed
on the physical host, the witness appliance will enable you to do

Telegram Channel @nettrain

maintenance without disruption when the appliance runs on a
vSphere cluster as vSphere provides the ability to migrate the
appliance while running. On top of that, in case the witness appliance
fails, you also can simply replace the current witness by deploying a
new one and initiating the “Change Witness Host” wizard in the Fault
Domains section of the UI as shown in the next screenshot. Now, of
course, this is also possible when you have a spare physical host, but
in our experience, customers do not have unused hardware available
for a quick replacement.

Figure 209: Change witness host

Another new term that will show up during the configuration of a
stretched cluster, and was just mentioned, is “preferred site” and
“secondary site.” The “preferred” site is the site that vSAN wishes to
remain running when there is a network partition between the sites
and the sites can no longer communicate. One might say that the
“preferred site” is the site expected to have the most reliability.

Since VMs can run on any of the two sites, if network connectivity is
lost between site 1 and site 2, but both still have connectivity to the
witness, the “preferred site” binds itself to the witness and gains
ownership over all components. The vSAN components on the
preferred site remain active, while the vSAN components on the

Telegram Channel @nettrain

secondary site are marked instantly as absent as quorum is lost. This
also means that, in this situation, any VMs running in the secondary
site will need to be restarted in the primary site to be usable and
useful again. vSphere HA, when enabled on the stretched cluster, will
take care of this automatically for you.

In non-stretched vSAN clusters, a VM’s read operations are
distributed across all replica copies of the data in the cluster. In the
case of a policy setting of Failures to tolerate =1, which results in two
copies of the data, 50% of the reads will come from replica 1, and
50% will come from replica 2. Similarly, in the case of a policy
setting of Failures to tolerate = 2 in non-stretched vSAN clusters,
which results in three copies of the data, 33% of the reads will come
from replica 1, 33% of the reads will come from replica 2, and 33%
will come from replica 3.

However, we wish to avoid this situation with a vSAN stretched
cluster, as we do not wish to read data over the inter-site link, which
could add unnecessary latency to the I/O and waste precious inter-
site link bandwidth. Since vSAN stretched cluster supports a
maximum of Failures to tolerate = 1, there will be two copies of the
data (replica 1 and replica 2). Rather than doing 50% reads from site
1 and 50% reads from site 2 across the site link, the goal is to do
100% of the read IO for any given VM from the local site, wherever
possible. In previous versions of vSAN, this was a per host setting.
Starting with vSAN 6.7U1, this setting, called Site Read Locality, has
been placed into the Advanced options under vSAN > Configure >
Services. This makes it extremely simple to set cluster wide, as
shown below:

Telegram Channel @nettrain

Figure 210: Site Read Locality

The distributed object manager (DOM) in vSAN, is responsible for
dealing with read locality. DOM is not only responsible for the
creation of storage objects in the vSAN cluster, but it is also
responsible for providing distributed data access paths to these
objects. There is a single DOM owner per object. There are three
roles within DOM: client, owner, and component manager. The DOM
owner coordinates access to the object, including reads, locking, and
object configuration and reconfiguration. All object changes and
writes also go through the owner. In vSAN stretched cluster, an
enhancement to the DOM owner of an object means that it will now
consider the “fault domain” where the owner runs and will read 100%
from the replica that is in the same “fault domain.”

Telegram Channel @nettrain

There is now another consideration with read locality for hybrid vSAN
configurations. Administrators should avoid unnecessary vMotion of
virtual machines between data sites. Since the read cache blocks are
stored on one (local) site, if the VM moves around freely and ends up
on the remote site, the cache will be cold on that site after the
migration. Now there will be sub-optimal performance until the cache
is warmed again. To avoid this situation, soft (should) affinity rules
(VM/Host rules) should be used to keep the virtual machine local to
the same site/fault domain where possible. Note that this only
applies to hybrid configurations, as all-flash configurations do not
have a read cache. However, even in the case of an all-flash
configuration VM/Host rules could be used to provide more visibility
of where a virtual machine is, or was, running at the time of a site
failure. When the location where a VM is running is configured is
tightly controlled, the impact of a full site failure is much easier to
understand. Better said, it provides predictability. We see most
customers applying VM/Host rules on all VMs, even when vSAN
stretched clustering is enabled on an all-flash configuration.

Witness Failure Resilience

Every installation of a vSAN stretched cluster has a witness host of
some sort. As mentioned, this can be a virtual appliance or a physical
host. The question that always arises is what about the availability of
the witness host, as it plays a crucial role during failure scenarios?

Over the years we have had customers asking if it was supported to
enable vSphere Fault Tolerance (FT) on a witness appliance. If they
could clone the witness appliance, leave it on standby, and power it
on when the “active” witness appliance had failed. If they should
back up the witness appliance. The answer to all these questions is
no. It is not supported to enable FT on the appliance, it is not

Telegram Channel @nettrain

supported to backup and recover the appliance, and it is not
recommended to clone the appliance either.

Starting with vSAN 7.0 U3 a new feature was introduced around
Witness failure resilience. What is this feature exactly? Let’s look at
the diagram of the stretched cluster again.

Figure 211: Stretched cluster scenario

In the diagram, we have 3 locations. In the case Site A fails, all VMs
will be restarted in Site B. If, however at a later stage the witness is
impacted by a failure all VMs running would be inaccessible. Why?
Well, it is simple, 2 out of 3 sites have failed and as a result, we have
lost quorum. This is where the new witness failure resilience feature
comes into play. Starting with vSAN 7.0 U3 when a site has failed,
vSAN will recalculate the votes for all objects assuming that the

Telegram Channel @nettrain

witness will also be impacted by a failure over time. This
recalculation of votes can take up to five minutes. If the witness now
fails, after the recalculation has been completed, the VMs (running in
Site B) will remain running. As votes have been recalculated quorum
will not be lost.

In the “full site failure” scenario we will demonstrate what that looks
like from a votes perspective by inspecting the objects through RVC.

Configuration of a Stretched Cluster

The installation of a vSAN stretched cluster is almost identical to how
fault domains are implemented, with a couple of additional steps.
This part of the chapter will walk the reader through a stretched
cluster configuration.

Before we get started with the actual configuration of a stretched
cluster, we will need to ensure the witness host is installed,
configured, and accessible from both data sites. This will most likely
involve the addition of static routes to the ESXi hosts and witness
appliance, which will be covered shortly. When configuring your vSAN
stretched cluster, only data hosts must be in the (vSAN) cluster
object in vCenter Server. The witness host must remain outside of
the cluster and must not be added to the vSAN cluster.

Note that the witness OVA must be deployed through a vCenter
Server. To complete the deployment and configuration of the witness
VM, it must be powered on the very first time through vCenter Server
as well. The witness OVA is also only supported with standard vSwitch
(VSS) deployments.

The deployment of the witness host is pretty much straightforward
and like the deployment of most virtual appliances as shown below.

Telegram Channel @nettrain

Figure 212: Witness appliance deployment

The only real decision that needs to be made is regarding the
expected size of the stretched cluster configuration. There are four
options offered. If you expect the number of VMs deployed on the
vSAN stretched cluster to be 10 or fewer, select the Tiny
configuration. If you expect to deploy more than 10 VMs, but less
than 500 VMs, then the Medium (default option) should be chosen.
For more than 500 VMs, choose the Large option. Note, there also is
an Extra Large option, this is should be used when you deploy
multiple two-host configurations and connect them all to the shared
witness, it is intended to host the witness components of up to 64
clusters, in other words, this option is not intended for a stretched
cluster configuration!

Telegram Channel @nettrain

Figure 213: Configuration size

Next, the datastore where the witness appliance will need to be
stored and the network that will be used for the witness appliance will
need to be selected. Note that you will need to specify the
destination network for both witness traffic (secondary network) and
management traffic.

Telegram Channel @nettrain

Figure 214: Change of networks

Next, you will have the option to customize the OVF Template by
providing networking information, such as IP address and DNS, for
the management network. On top of that, the root password for the
virtual ESXi host will need to be entered on this screen as shown in
the screenshot below.

Telegram Channel @nettrain

Figure 215: Change of networks

After this has been done and the witness has been deployed it can
be added to the vCenter Server inventory where the stretched cluster
configuration is deployed as a regular host. But remember not to add
it to any type of vSphere or vSAN cluster; it must remain outside the
cluster as a stand-alone host. One thing to stress, when you add it to
the cluster, make sure the “Virtual SAN Witness” license is selected
as demonstrated in the next screenshot.

Telegram Channel @nettrain

Figure 216: Witness License

Once the witness appliance/nested ESXi host has been added to
vCenter, the next step is to configure the vSAN network correctly on
the witness. When the witness is selected in the vCenter inventory,
navigate to Manage > Networking > Virtual Switches. The witness has
two port groups predefined called Management Network and
secondaryPG. Do not remove these port groups, as it has a special
modification to make the MAC addresses on the network adapters
match the nested ESXi MAC addresses.

Telegram Channel @nettrain

Figure 217: Nested ESXi and networking

Finally, before we can configure the vSAN stretched cluster, we need
to ensure that the vSAN network on the hosts residing in the data
sites can reach the witness host’s vSAN network, and vice-versa. To
address this, there are two options:

�. Define a static route
�. Override the default gateway for the vSAN VMkernel adapter

Static routes tell the TCP/IP stack to use a different route to reach a
particular network rather than using the default gateway. We can
instruct the TCP/IP stack on the data hosts to use a different network
route to reach the vSAN network on the witness host rather than via
the default gateway, and similarly, we can tell the witness host to use
an alternate route to reach the vSAN network on the data hosts rather
than via the default gateway.

Note once again that in most situations, the vSAN network is most
likely a stretched L2 broadcast domain between the data sites, but
L3 is required to reach the vSAN network of the witness appliance.
Therefore, static routes are needed between the data hosts and the

Telegram Channel @nettrain

witness host for the vSAN network but may not be required for the
data hosts on different sites to communicate with each other over
the vSAN network.

The esxcli commands used to add a static route is:

esxcli network ip route ipv4 add –n <remote

network> -g <gateway>

As mentioned, the second option is to override the default gateway
and specify a specific gateway for your vSAN environment. This
gateway will need to have a route to your witness network. Using this
method avoids the need to manually enter routes using the CLI and
is preferred for most customers. The screenshot below shows how to
override the default gateway.

Figure 218: Override default gateway

Telegram Channel @nettrain

Lastly, before we create the cluster, we will need to test the network
configuration. To do so, we use the vmkping –I <vmk>
<ipaddress> command to check that the witness and physical
hosts can communicate over the vSAN network. Now that the witness
is up and accessible, forming a vSAN stretched cluster takes less
than a couple of minutes. The following are the steps that should be
followed to install vSAN stretched cluster.

Configure Step 1a: Create a vSAN Stretched
Cluster

In this example, there are eight hosts available. Four hosts reside in
each site of this stretched cluster. The ninth host is the witness host,
it is in its own datacenter and is not added to the cluster, but it has
been added as an ESXi host to this vCenter Server. This example is a
4+4+1 deployment, meaning four ESXi hosts at the preferred site,
four ESXi hosts at the secondary site and one witness host in a third
location.

Depending on how you are configuring your cluster you can decide to
either create the stretched cluster during the creation of the vSAN
cluster itself or do this after the fact in the fault domain view. Both
workflows are similar and so is the result. Functionality like
deduplication and compression can also be enabled in a stretched
cluster. However, do note that RAID-5/6 can only be configured as
protection within a site location (previously referred to as secondary
failures to tolerate). We are going to demonstrate how to create a
vSAN stretched cluster out of an existing vSAN cluster, simply
because we have already shown the configuration of a normal cluster
using the Quickstart workflow in chapter 3.

Telegram Channel @nettrain

Configure Step 1b: Create Stretch Cluster

If your vSAN cluster has already been formed, it is easy to create a
stretched cluster configuration separately. To configure stretched
cluster and fault domains when a vSAN cluster already exists,
navigate to the cluster object followed by Configure > vSAN > Fault
Domains view as shown below, and click on the button “configure” in
the stretched cluster section, that begins the stretch cluster
configuration.

Figure 219: Start of stretched cluster creating

Depending on whether you create the vSAN cluster as part of the
workflow you may need to claim disks as well when the vSAN cluster
is set up.

Configure Step 2: Assign Hosts to Sites

At this point, hosts can now be assigned to stretch cluster sites as
shown in the figure below. Note that the names have been
preassigned. As described earlier, the preferred site is the one that
will run VMs if there is a split-brain type scenario in the cluster. In
this example, hosts .201, .202, .206, .207, .220, and .221 will remain in
the preferred site, and hosts .222, .225, .226, ,228, .238, and .239 will
be assigned to the secondary site.

Telegram Channel @nettrain

Figure 220: Host selection and site placement

Configure Step 3: Select a Witness Host and
Disk Group

The next step is to select the witness host. At this point, host .231 is
chosen. Note once again that this host does not reside in the cluster.
It is outside of the cluster.

Telegram Channel @nettrain

Figure 221: Witness host selection

When the witness is selected, a flash device and a magnetic disk
need to be chosen to create a disk group. These are already available
in the witness appliance (both are in fact VMDKs under the covers
since the appliance is a VM).

Telegram Channel @nettrain

Figure 222: Witness disk claim

Configure Step 4: Verify the Configuration

Verify that the preferred fault domain and the secondary fault
domains have the desired hosts, and that the witness host is the
desired witness host as shown below, and click Finish to complete
the configuration.

Telegram Channel @nettrain

Figure 223: Summary of a stretched cluster configuration

When the stretched cluster has completed configuration, which can
take several seconds, verify that the fault domain view is as expected.

Configure Step 5: Skyline Health Stretched
Cluster

Before doing anything else, use vSAN Skyline Health to ensure that
all the stretched cluster health checks have passed. These checks are
only visible when the stretched cluster has been configured, and if
there are any issues with the configuration, these checks should be
of great assistance in locating them.

Telegram Channel @nettrain

Figure 224: Stretched cluster health

That may seem very easy from a vSAN perspective, but there are
some considerations from a vSphere perspective to consider. These
are not required, but in most cases recommended to optimize for
performance and availability. The vSAN stretched cluster guide
outlines all vSphere recommendations in-depth. Since our focus in
this book is vSAN, we will not go into that level of detail. Instead, you
should refer to the stretched cluster guide mentioned previously in
this chapter.

We will however list some of the key recommendations for each of
the specific areas:

Telegram Channel @nettrain

vSphere DRS:

Create a Host group per data site, containing each of the
hosts of a particular site.
Create VM groups per site, containing the VMs that should
reside in a particular site.
Create a VM/Host rule to create affinity between the VM and
host groups.
Create a “should” rule for these affinity groups to ensure that
during “normal” operations, VMs reside in the correct site,
but do have the ability to failover when needed.

This will ensure that VMs will not freely roam around the stretched
cluster, maintaining read locality, and performance is not impacted
due to rewarming of the cache. It will also help from an operational
perspective to provide insights around the impact of a full site
failure, and it will allow you to distribute VMs running scale-out
services such as Active Directory and DNS across both sites.

Lastly, we want to point out that starting with vSAN 7.0 U2 DRS is
tightly integrated with vSAN. In previous versions when a failure
occurred it could happen that when hosts recovered from the failure
that DRS would automatically migrate VMs back to their original
location. If a VM is moved, by DRS, to its original location before the
resync of its object had completed, vSAN would be unable to read
from the local site. Both the vMotion process, as well as the
traversing of read I/O could lead to a degradation of performance
and a prolonged resynchronization process. Starting with vSAN 7.0
U2, DRS will not migrate VMs of which objects are to be resynced.

Pre-vSAN 7.0 U2 customers would configure DRS to “manual” or
“partially automated” during these failure scenarios to avoid the
above situation. As a result of the integration between DRS and
vSAN, this is no longer needed as DRS knows which objects belong
to which VMs and which objects are being replicated!

Telegram Channel @nettrain

vSphere HA:

Enable vSphere HA admission control and set it to use the
percentage-based admission control policy and to 50% for
both CPU and memory. This means that if there is a full site
failure, the remaining site has enough unreserved capacity to
power-on all of the VMs.
Make sure to specify additional isolation addresses, one
in each site using the advanced setting
das.isolationAddress0 and
das.isolationAddress1. The IP address needs to be on
the vSAN network. This means that in the event of a site
failure, a host in the remaining site can still ping an isolation
response IP address when needed on the vSAN network and
isolation can be validated, and when needed action can be
taken.
Configure the Isolation Response to “Power off and restart
VMs”
Disable the default isolation address if it can’t be used to
validate the state of the environment during a partition.
Setting the advanced setting
das.usedefaultisolationaddress to false does this.
Disable the insufficient heartbeat datastore warnings, as
without traditional external storage you will not have any
datastores to use as vSAN datastores cannot be used for
datastore heartbeating. Setting the advanced setting
das.ignoreInsufficientHbDatastore to true does
this.

These settings will ensure that when a failure occurs, sufficient
unreserved resources are available to coordinate the failover and
power-on the VMs (admission control). These VMs will be restarted
within their respective sites as defined in the VM/host rules. In the
case of an isolation event, all necessary precautions have been taken

Telegram Channel @nettrain

to ensure all the hosts can reach their respective host isolation
response IP address(es).

That is not of course where it stops, there is one important aspect of
availability in a stretched cluster that we will need to discuss first,
and this is policy settings.

Failures To Tolerate Policies

Starting vSAN 6.6 the notion of Primary and Secondary Failures To
Tolerate was introduced. This feature allowed you to specify how
objects should be protected within a stretched cluster and also within
a site. The current vSphere Client however uses “Site disaster
tolerance” and “Failures to tolerate” as shown in the screenshot
below.

Figure 225: vSphere Client VM storage policy for a stretched cluster

Let’s list all the different options which are available within the
vSphere Client for a stretched cluster configuration when defining a
policy:

Site Disaster Tolerance – None – standard cluster
Site Disaster Tolerance – Host mirroring – 2 node cluster
Site Disaster Tolerance – Site mirroring – stretched cluster

Telegram Channel @nettrain

Site Disaster Tolerance – None – keep data on preferred
(stretched cluster)
Site Disaster Tolerance – None – keep data on secondary
(stretched cluster)
Site Disaster Tolerance – None – stretched cluster
Failures to tolerate – No data redundancy
Failures to tolerate – No data redundancy with host affinity
Failures to tolerate – 1 Failure – RAID-1
Failures to tolerate – 1 Failure – RAID-5
Failures to tolerate – 2 Failure – RAID-1
Failures to tolerate – 2 Failure – RAID-6
Failures to tolerate – 3 Failure – RAID-1

The first decision that needs to be made is the Site Disaster
Tolerance. This is the “Primary Level of Failures To Tolerate” and
specifies whether objects should be mirrored across locations. Note
that this is essentially a RAID-1 mirror. Starting with vSAN 6.6,
administrators also have the ability to specify that an object should
not be replicated and should only be made available in a specific
location i.e., site. You can imagine that this is useful in a scenario
where the application is already replicating its data to the other
location natively. A good example would be Oracle RAC or Microsoft
SQL Always On, or even Microsoft Active Directory for that matter.

Failures to tolerate then specifies how the object within each location
then needs to be protected. You could specify that you would like to
mirror objects across locations via Site Disaster Tolerance (RAID-1)
and have a RAID-5 or RAID-6 configuration within each location.
This RAID-5 or RAID-6 configuration would then allow you to survive
one (or multiple) host failures in the remaining site after a full site
failure has occurred, without losing access to the object. The diagram
below shows what this looks like logically.

Telegram Channel @nettrain

Figure 226: vSphere Web Client VM storage policy for a stretched
cluster

The added benefit of local protection within each location is that
when a capacity or caching device, disk , or host has failed, data can
now be resynced or rebuilt locally. In earlier versions of vSAN
stretched cluster, only the top-level RAID-1 configuration existed, and
as such only 1 replica existed within each site. Components impacted
by a failure would need to be resynced across the network between
the two locations in such a configuration. This lengthened the time it
would take to protect the component, and as such during that time
your data was at risk. In vSAN stretched cluster today, such a
situation is mitigated with “in-site protection”.

One thing we do want to point out however is that a failure of the
witness host is considered a full site failure, meaning that it could
take out a full one-third of the available votes for all objects. Any

Telegram Channel @nettrain

further failures that occur after the witness site has failed could place
data at risk if quorum is lost, depending on the number of hosts in
the cluster and the selected policy for the object of course. We
realize that this can be difficult to grasp, so let’s look at the various
failure scenarios.

Site Disaster Tolerance Failure Scenarios

There are many different failures that can occur in a datacenter. It is
not our goal to describe every single one of them, as that would be a
book by itself. In this section, we want to describe some of the
failures, and recovery of these failures, which are particular to the
stretched cluster configuration. Hopefully, these will give you a better
insight into how a stretched cluster works.

In this example, there is a 6+6+1 stretched vSAN deployment. This
means that there are six data hosts at site 1, six data hosts at site 2,
and a witness host at a third site.

A single VM has been deployed, we selected a policy that dictates
that the data needs to be stretched across locations and be
protected within each location with RAID-1. When the physical disk
placement is examined, we can see that the replicas are placed on
the preferred and secondary data site respectively as shown in the
Fault Domain column, and the witness component is placed on the
witness host and is placed in both the preferred and secondary fault
domain as shown below. This ensures that we have a quorum
mechanism used for full site failures, as well as host failures within a
location.

Telegram Channel @nettrain

Figure 227: VM Component placement

The next step is to introduce some failures and examine how vSAN
handles such events. Before beginning these tests, please ensure
that vSAN Skyline Health is working correctly, and that all vSAN
health checks have passed, this will make troubleshooting much
easier.

Skyline Health should be referred to regularly during failure scenario
testing. Note that alarms are now raised for any health check that
fails. Alarms may also be referenced at the cluster level throughout
this testing, of course depending on the type of failure being
triggered.

Finally, when the term site is used in the failure scenarios, it implies
a full fault domain.

Telegram Channel @nettrain

Single data host failure—Secondary site

The first test is to introduce a failure of a host in one of the data
sites, either the “preferred” or the “secondary” site. The sample
virtual machine deployed for test purposes currently resides on the
preferred site and the failure occurs on the secondary site and
impacts a “data” component as shown in the next diagram.

Figure 228: Failure scenario – host failed secondary site

In the first part of this test, the host which holds a component in the
secondary site has been rebooted, simulating a temporary outage
and loss of a component.

There will be several power and HA events related to the secondary
host visible in the vSphere Client. Change to the physical disk place
view of the virtual machine. After a few moments, the components
that were on the secondary host will go “absent,” as shown in the
next screenshot. The other thing we should point out is that the VM

Telegram Channel @nettrain

remains accessible and that vSAN immediately creates a durability
component that will be used for write I/O.

Figure 229: VM Component absent

As mentioned, the virtual machine continues to be accessible. This is
because there is a full copy of the data available on the hosts on the
preferred site, and there are more than 50% of the votes available.
Opening a console to the virtual machine verifies that it is still very
much active and functioning. Since the ESXi host which holds the
compute of the virtual machine is unaffected by this failure, there is
no reason for vSphere HA to act, meaning that the VM is not
restarted.

At this point, vSAN Skyline Health can be examined. There will be
several failures, as shown in the next figure, since a host in the
secondary site is no longer available, as one might expect.

Telegram Channel @nettrain

Figure 230: Health check tests failed

When examining these tests in your environment, please note that
before starting a new test, it is strongly recommended to wait until
the failed host has successfully rejoined the cluster and the resync
has been completed. All “failed” health check tests should show OK
before another test is started. Also, confirm that there are no
“absent” components on the VMs objects and that all components
are once again active. Failure to do this could introduce more than
one failure in the cluster, and result in the VM being unavailable.

Single data host failure—Preferred site

This next test will not only check vSAN, but will also verify vSphere
HA functionality. If each site has multiple hosts and host affinity rules
are defined, then a host failure on the primary site will allow vSphere
HA to restart the virtual machine on another host on the same site.
In this test, the configuration is 6+6+1, but we have not defined any

Telegram Channel @nettrain

rules, so the virtual machine will be restarted on a random host in the
cluster.

Figure 231: Failure scenario – host failed preferred site

After the failure has occurred in the preferred site there will be a few
vSphere HA related events. Like the previous scenario, if there were
any components on the host, these will show up as “absent.”

Note that these components will be rebuilt fully after 60 minutes
automatically by vSAN leveraging the existing durability component
and the full remaining full component within the location. However,
when desired you can manually trigger the rebuild of these
components by clicking “Repair objects immediately” in the vSAN
Skyline Health under vSAN Object Health.

Telegram Channel @nettrain

Figure 232: Repair objects immediately

Since the host on which the virtual machine’s compute resides is no
longer available, vSphere HA will restart the virtual machine on
another host in the same site. It is important to validate this has
happened as it shows that the VM/host affinity rules are correctly
configured. It should also be noted that they are configured as
“should” rules and not as “must” rules. If “must” rules are configured,
then vSphere HA will only be able to restart the virtual machine on
hosts that are in the same host group on the same site/fault domain
and will not be able to restart the virtual machine on hosts that
reside on the other site. “Should” rules will allow vSphere HA to
restart the virtual machine on hosts that are not in the same VM/host
affinity group, i.e., in the event of a complete site failure.

Information about the restart of the virtual machine can be found in
the vSphere Client and in the log file /var/log/fdm.log on the
ESXi host which is the HA primary. Note that it usually takes between
30-60 seconds before a failover has occurred. If trying to monitor
these HA events via the vSphere Client, ensure that you regularly
refresh the vSphere client, or you may not see it.

Telegram Channel @nettrain

Figure 233: Failure scenario – HA events in vSphere Client

Full Site Failure – Data Site

This next test in essence is very similar to a single host failure, the
big difference of course being that in a full site scenario, typically
50% of your cluster resources are now missing. When a full site
failure occurs it also will not be possible to rebuild your components,
simply because the second fault domain is missing completely as
demonstrated in the diagram below.

Telegram Channel @nettrain

Figure 234: Failure scenario – Full Site Failure

After the failure has occurred in the secondary site, all VMs will
automatically be restarted in the preferred location. Do however note
that this will only be the case when VM-Host rules were configured as
“should rules”. When “must rules” have been configured vSphere HA
will not violate these. For more details on vSphere HA and VM/Host
rules please refer to the vSphere 6.7 Clustering Deep Dive book by
Frank Denneman, Duncan Epping, and Niels Hagoort.

Previously when a full site failure had occurred and was resolved,
vSAN would automatically and instantly start resyncing components.
However, vSAN never waited for all of the hosts to recover before
starting this process. This in some cases led to a situation where
rebuilds and resyncs would occur to only a limited number of hosts.
When the additional hosts would return, they would not be leveraged
for these rebuilds or resyncs since the components had been rebuilt
on the hosts that recovered first. As such, VMware has modified
some of the vSAN behavior when a site failure occurs and

Telegram Channel @nettrain

subsequently recovers. In the event of a site failure, vSAN will now
wait for some additional time for “all” hosts to become ready on the
failed site before it starts to sync components.

A more pressing issue with recoveries is when virtual machines
would fall back to their appropriate site based on VM/Host affinity
rules. Now we may have a situation where the VMs are running on
their “correct” site but the data on that site has not yet been rebuilt.
Essentially, we would be in a situation where all VM I/O must traverse
the inter-site link, which may in turn lead to performance issues.
Starting with vSAN 7.0 Update 2, DRS understands the state of
objects on vSAN. DRS will verify with vSAN the state of the
environment, and it will not migrate the VMs back as long the VMs
(objects) are healthy again. When the VMs are healthy and the resync
has fully completed, DRS will automatically migrate the VMs back to
comply with the specified VM/Host rules (when DRS is configured to
Fully Automated that is).

vSAN and DRS are tightly integrated starting with vSAN 7.0 U2.
As a result, it is no longer needed to change the automation
mode of DRS after a failure has occurred.

The last thing we would like to discuss as part of this failure scenario
is the witness failure resilience. We have already briefly discussed it
in a previous section, but we now want to show what the immediate
impact is of this feature using RVC. As stated, the secondary site has
failed completely. We will examine the impact of this failure through
RVC, the Ruby vSphere Console on the vCenter Server. This should
provide us with a better understanding of the situation and how the
witness failure resilience mechanism works. Note that the below
output has been truncated for readability reasons. Let’s look at the
output of RVC for our VM directly after the failure.

Telegram Channel @nettrain

As can be seen, the witness component holds 3 votes, the
components on the failed site (secondary) hold 3 votes, and the
components on the surviving data site (preferred) hold 3 votes. After
the full site failure has been detected, the votes are recalculated to
ensure that a witness host failure does not impact the availability of
the VMs. Below shows the output of RVC once again.

Telegram Channel @nettrain

As can be seen, the votes for the various components have changed,
the data site now has 3 votes per component instead of 1, the
witness on the witness host went from 3 votes to 1, and on top of
that, the witness that is stored in the surviving fault domain now also
has 3 votes. Resulting in a situation where quorum would not be lost
even if the witness component on the witness host is impacted by a
failure. Do note, that the redistribution process of the votes can take
up to 5 minutes to complete, depending on the size of the cluster.
Nevertheless, a very useful enhancement to vSAN 7.0 Update 3 for
stretched cluster configurations.

Witness host failure—Witness site

A common question that is asked is what happens when the witness
host has failed. This should have no impact on the run state of the
virtual machine since there is still a full copy of the data available
and greater than 50% of the votes are also available, but the witness
components residing on the witness host should show up as
“absent.”

Telegram Channel @nettrain

Figure 235: Failure scenario – Witness host failed

In our environment, we’ve simply powered off the witness host to
demonstrate the impact of a failure. After a short period of time, the
witness component of the virtual machine appears as “absent” as
shown below.

Telegram Channel @nettrain

Figure 236: Failure scenario – Witness component absent

However, the virtual machine is unaffected and continues to be
available and accessible. The rule for vSAN virtual machine object
accessibility is, as we have discussed multiple times now, at least
one full copy of the data must be available, and more than 50% of
the components that go to make up the object are available. In this
scenario both RAID configurations of the data are available, leaving
access to the VM intact.

Network failure—Data Site to Data Site

The next failure scenario we want to describe is a site partition. If
you are planning on testing this scenario, then we highly recommend
ensuring that the host isolation response and host isolation
addresses are configured correctly before conducting the tests. At
least one of the isolation addresses should be pingable over the
vSAN network by each host in the cluster. The environment shown
below depicts our configuration and the failure scenario.

Telegram Channel @nettrain

Figure 237: Failure scenario – Network failure

This scenario is special because when the inter-site link has failed,
the “preferred” site forms a cluster with the witness, and most
components (data components and witness) will be available to this
part of the cluster. The secondary site will also form its own cluster,
but it will only have a single copy of the data and will not have access
to the witness. This results in two components of the virtual machine
object getting marked as absent on the secondary site since the host
can no longer communicate to the other data site where the other
copy of the data resides, nor can it communicate to the witness. This
means that the VMs can only run on the preferred site, where most of
the components are accessible.

From a vSphere HA perspective, since the host isolation response IP
address is on the vSAN network, both data sites should be able to
reach the isolation response IP address on their respective sites.
Therefore, vSphere HA does not trigger a host isolation response!

Telegram Channel @nettrain

This means that the VMs that are running in the secondary site,
which has lost access to the vSAN datastore, cannot write to disk but
are still running from a compute perspective. It should be noted that
during the recovery, the host that has lost access to the disk
components will instantly kill the impacted VM instances. This does
however mean that until the host has recovered, potentially two
instances of the same VM can be accessed over the network, of
which only one is capable of writing to disk and the other is not.

vSAN 6.2 introduced a mechanism to avoid this situation. This
feature will automatically kill the VMs on the secondary site has have
lost access to the components on the secondary site. This is to
ensure they can be safely restarted on the primary site, and when the
link recovers there will not be two instances of the same VM running,
not even for a brief second. If you want to disable this behavior, you
can set the advanced host setting called
vSAN.AutoTerminateGhostVm to 0. We, however, recommend
leaving this setting configured to the default.

On the preferred site, the impacted VMs that were running on the
secondary site, will be almost instantly restarted. On average this
restart takes around 30 seconds. After the virtual machine has been
restarted on the hosts on the preferred site, use the vSphere client to
navigate to Cluster > Monitor > vSAN > Virtual Objects, select the VM
you are interested in, and click on View placement details. This
should show you that two out of the three components are available,
and since there is a full copy of the data and more than 50% of the
components are available, the VM is accessible. This is demonstrated
in the screenshot below. Note that it is the secondary fault domain
that is listed as absent in this case.

Telegram Channel @nettrain

Figure 238: Two out of three components available

Impact of multiple failures

As discussed in the policy section, vSAN had two layers of protection
in a stretched cluster. The first layer is across sites, the second layer
is within sites. One thing however that not many people realize is that
to not lose access to an object in a vSAN stretched cluster, more
than 50% of the total combined votes for that object across all
locations need to be available. What does this mean?

Let’s look at a scenario where we have a stretched cluster and a
virtual machine that is protected with RAID-1 across sites, and RAID-
1 within the site.

Telegram Channel @nettrain

Figure 239: Scenario with dual-layer protection

In the above scenario, we have VM which is running in Site A. This
VM is protected across locations and within the locations with both
RAID-1. What is important in this case is to understand how the
voting mechanism works. Although it is not explicitly shown, both
data sites will have a number of votes, so will the witness component
for this particular object. Let’s examine this through RVC, the Ruby
vSphere Console on the vCenter server, so we have a better
understanding of the situation. Note that the below output has been
truncated for readability reasons.

Telegram Channel @nettrain

In the above situation you see the votes for each of the components,
let’s list them so that it is easier to digest:

VM Virtual Disk
Witness Site – 3 Votes
Witness component – 3 votes
Data Site 1 – 3 Votes in total
Replica A – 1 Vote
Replica B – 1 Vote
Witness component – 1 Vote
Data Site 2 – 3 Votes in total
Replica A – 1 Vote
Replica B – 1 Vote
Witness component – 1 Vote

This results in a total combined number of votes of 9. For the
Witness site that is 3 votes, for Site 1 that is 3 and for Site 2 that is 3.
Now if you have the Witness location fail you lose 3 votes. If now Site
1 – Replica A fails and the Witness component, you will end up losing
access to the object as 5 out of 9 votes would be missing. Even

Telegram Channel @nettrain

though the full RAID-1 configuration of Site 2 is still available, the full
object becomes unavailable.

You may wonder what this looks like when RAID-5 is used within the
location instead of RAID-1. The RVC output, truncated once again,
looks as follows.

The big difference compared to the previous RAID-1 example is the
fact that there are now 4 components for each replica (RAID-5 with
vSAN is a 3+1 configuration as explained earlier) and there is only a
single witness component. The votes are distributed across the
components, and are as follows:

Witness – 4 Votes
Site A – 5 Votes
Site B – 4 Votes

Telegram Channel @nettrain

In this case, Site A has a component with an extra vote, this is to
ensure we have an odd number of votes, allowing us to determine
who has quorum when a failure occurs and allows us to handle a full
site failure and a host failure within a location while maintaining
object availability.

In a previous example failure scenario, we already discussed the
witness failure resilience mechanism. This ensures that in the case of
a double failure, where first a full site fails and then the witness host
fails, the VM and its components are still available. Again, we would
like to point out that this mechanism at the time of writing only works
for scenarios where all components in a single location are impacted
by a failure and after the recalculation of the votes the witness fails.
If the witness fails first then, unfortunately, there’s no recalculation
happening.

Hopefully, the above explanation makes it clear how the voting
mechanism works in vSAN stretched clusters and why in certain
failure scenarios a restart of the virtual machine may or may not
occur.

vSAN File Service

Earlier in this chapter, we mentioned that vSAN File Service is
supported on a stretched cluster. Hopefully, everyone remembers the
architectural details we shared in chapter 4. We can imagine however
that some of those details have slipped, let us provide a brief
refresher of what vSAN File Service looks like. Let’s look at the
diagram we initially shared.

Telegram Channel @nettrain

Figure 240: vSAN File Service Architecture

The diagram show the FS VMs and the Protocol Stack Container. As
mentioned, when configuring vSAN File Service a range of IP
addresses and DNS names needs to be provided. These DNS names
and IP addresses are associated with the Protocol Stack Container,
as this enabled vSAN File Service to restart the Protocol Stack
Container in a different FS VM if a VM is impacted by a failure. Why
is all this important?

Telegram Channel @nettrain

Well, with a stretched cluster you have two primary locations and a
witness location typically. To optimize I/O, it is recommended to try
to avoid traversing the network as much as possible. With vSAN File
Service however you access a share via a DNS name or an IP
address. Depending on where that IP address is located
geographically compared to the workload, it could be that access is
traversing the ISL. Let’s look at a diagram that visualizes this
concept.

Figure 241: vSAN File Service Stretched

In the diagram above we have a workload running on the first
physical host in Site A. It is accessing a file share through a file
server that is running on the fourth host, which is in Site B. We can
simply get around this by properly configuring vSAN File Service to
take the configured fault domains into account. Do note, that this is a
manual process, and we highly recommend documenting the DNS
names and IP addresses associated with each location.

Let’s look at the stretched cluster specific configuration aspects of
vSAN File Service and the creation of a file share. First, when
deploying vSAN File Service you need to have IP addresses and DNS

Telegram Channel @nettrain

names equal to the number of protocol stack containers deployed.
Recommended is to keep the number of protocol stack containers
equal to the number of hosts in a cluster. In other words, if you have
an 8+8+1 configuration, you will need a total of 16 IP addresses and
16 DNS names for vSAN File Service, 8 for each location.

In our next screenshot, we show the configuration screen of vSAN
File Service where the IP addresses, DNS name, and site affinity can
be configured.

Figure 242: Configuring vSAN File Service Stretched

Site affinity determines in which location a protocol stack container
(and its associated IP address and DNS name) should reside. Please
take notice, we used the word “should”, this is a soft affinity rule.
Meaning that if all hosts, or VMs, fail on which these file service
protocol stack containers are running, it could be that the container
is restarted in the opposite location. Again, a soft rule, not a hard

Telegram Channel @nettrain

rule. However, during normal operations, each of these protocol stack
containers will run in the specified location, preferred or secondary.

Of course, that is not the end of the story. You also need to be able to
specify for each share with which location it has affinity with. Again,
you do this during the creation of the share (or edit it afterward if
desired), and this then sets the affinity for the file share to a location.
What does this mean? It will ensure that when you connect to file
share, one of the file servers in the specified site will be used. Again,
this is a soft rule, meaning that if none of the file server protocol
stack containers are available on that site, you will still be able to use
vSAN File Service, just not with the optimized data path you defined.
The next screenshot displays how this is represented in the vSphere
Client during the creation of the file share. Note, in our example, we
demonstrate this capability for NFS 4.1 and 3, but the same concept
applies to SMB.

Figure 243: File share creating on a stretched cluster

Telegram Channel @nettrain

Last, but not least what about my storage policy? Well, the same
applies here as it does to your VM workloads. If you need your file
share to be replicated between locations, then you will need to select
the policy which specifies the “Site Disaster Tolerance” is “Site
Mirroring – stretched cluster”. Of course, you can also decide not to
replicate the data, but that will result in downtime when the
respective site fails.

Operating a Stretched Cluster

We have discussed how to configure a stretched cluster, and how a
stretched cluster acts during certain failure scenarios. We have,
however, not discussed yet if there are any specific things to
consider when it comes to the operational aspects of a stretched
cluster. Operating vSAN is discussed in chapter 6, there are however
a few exceptions and things to know when it comes to a stretched
cluster configuration.

The first concept we want to discuss is Maintenance Mode and
Upgrades or Updates. Hopefully, everyone uses vSphere Lifecycle
Manager (vLCM) for lifecycle management of their vSphere (and
vSAN) hosts. One common question we have received over the years
is what customers should do with the witness appliance. Do you
upgrade it, or do you simply deploy a new version of the appliance
and click on “Change Witness Host” under Fault Domains, displayed
in the next screenshot?

Telegram Channel @nettrain

Figure 244: Changing witness for a stretched cluster

Before you decide on a strategy, it is good to know that starting with
vSAN 7.0 U3 it is now also supported to upgrade the Witness
Appliance using vLCM. This greatly simplifies the update, or upgrade
process. We do not have a preference when it comes to lifecycle
management of the appliance, we have seen customers successfully
using either the update as well as the replacement approach. It boils
down to what you feel most comfortable with.

When it comes to updating the entire cluster, we recommend using
vLCM for all hosts, and preferably integrated with your OEM’s
firmware management solution. This way both vSphere, as well as the
firmware of all components, are at the correct version. Especially for
a vSAN cluster, this is extremely important, hence vSAN Skyline
Health validates your environment against the most current VMware
Compatibility Guide whenever it runs.

Telegram Channel @nettrain

The last thing we want to mention is that, at the time of writing, there
is no option to place a full site into maintenance at once.
Maintenance happens on the host level. If you end up in a situation
where a single site needs to be powered off, then all hosts will need
to be placed into maintenance mode one by one.

Another thing that is important to realize is that monitoring for disk
capacity is slightly different. Although all regular screens still provide
useful information, there is one additional section in the UI we would
recommend to regular monitor. The screenshot above shows vSAN
capacity per fault domain, as well as per host within each fault
domain. In an environment where all VMs are replicated between
locations, the capacity consumption is typically equal between both
locations. However, we have many customers that have workloads
that do not need to be replicated between locations, and they
leverage VM Storage Policies to specify where the VM needs to be
located. In other words, using policies they specify in which fault
domain all components of the VM (or file share, etc.) need to be
stored. This can then lead to a situation where one fault domain has
less free capacity than the other, which is of course useful to know
when provisioning decisions are made.

Another aspect of managing a stretched cluster that we want to
stress is that the use of standardized VM Storage Policy names is
key. We also recommend customers to regularly validate if VMs are
associated with the correct policy. Unfortunately, we have witnessed
situations where VMs were supposed to be mirrored across locations,
but because of an incorrectly assigned policy were not mirrored. In
normal situations this is not a problem, however, it is during that
unexpected site failure that you typically find out that your business-
critical VM was not replicated. You can, for instance, use PowerCLI to
create a report of all VMs and their associated policies.

Lastly, VM/Host rules. This is a hot topic in every stretched cluster
architectural or operational discussion. Should you create rules and

Telegram Channel @nettrain

specify in which location a VM should run. We believe that this is
desired. It provides you the ability to control where a particular VM
runs, and as a result, it will give you a better understanding of what
the impact is on IT services and Applications when a (site) failure
has occurred.

Summary

A vSAN stretched cluster architecture will allow you to deploy and
migrate workloads across two locations without the need for complex
storage configurations and operational processes. On top of that, it
comes at a relatively low cost that enables most VMware users to
deploy this configuration when there are dual datacenter
requirements. As with any explicit architecture, there are various
design and operational considerations. We would like to refer you to
the official VMware documentation and https://core.vmware.com/ as
the source of the most updated and accurate information.

Telegram Channel @nettrain

https://core.vmware.com/

Chapter 8

Two Host vSAN Cluster Use
Case

Two host configurations were introduced in vSAN 6.1 and are often
used by customers looking to deploy workloads into remote office or
branch office locations. Unfortunately, this configuration is often
confused with the VMware Remote Office / Branch Office license,
which is nothing more than a license key that allows you to run 25
virtual machines across several locations on as many ESXi hosts as
needed. In no shape or form is this license key associated with the
two-host configuration. It is important to make that distinction
before we begin, as it is a question that comes up time and again.

When configuring a two host vSAN cluster it quickly becomes
obvious that it is very similar to a stretched cluster configuration. The
main difference is that normally a two-host cluster would have both
hosts located in the same location, whereas in a stretched cluster
configuration, hosts would be located in different locations. Another
difference is that it is not uncommon to see a single vCenter Server
instance managing numerous two host vSAN clusters. It is not
uncommon to see hundreds of two host vSAN clusters registered in
the same vCenter Server. The below diagram displays what this could
look like from a logical point of view.

Telegram Channel @nettrain

Figure 245: Multiple two host clusters

As mentioned earlier, a two-host configuration closely resembles a
stretched cluster configuration when it comes to the setup and
implementation. There are however some differences in functionality,
and there are some design considerations as well. Before we
investigate those, let us first look at how to configure a two host
vSAN cluster.

Configuration of a two-host cluster

Configuring a two-host cluster can simply be done through the
interface we have seen many times by now at this point in the book.
Go to your cluster object and configure vSAN. When you configure
vSAN select Two node vSAN cluster as depicted below.

Telegram Channel @nettrain

Figure 246: Configuration of a two-host cluster

Next, select all the services which you require. Note that all services
are available but note that in a two host vSAN cluster, it can be
configured as either hybrid or all-flash. From a product or feature
standpoint, there is no limitation. However, with only two hosts, you
will not be able to set failures to tolerate value greater than 1, nor will
you be able to select RAID-5 or RAID-6 for availability, since these
erasure coding features require 4 and 6 hosts respectively. What will
however limit you is, of course, the vSAN and vSphere license you
have procured. In our case, we have an all-flash cluster, but we will
not use any of the additional services as we have a vSAN Standard
license.

Telegram Channel @nettrain

Figure 247: Data services

Next, we will need to claim the devices that will form the vSAN shared
datastore. In our case, this is an all-flash configuration so we will
select the flash devices for the cache tier and the flash devices for
the capacity tier.

In the next step, we are going to select the host that will act as the
witness host. In our case, this is the virtual witness appliance, and
after that, we will need to claim the disks for this witness host as this
witness host will store the witness components for the virtual
machines running on the two-host cluster. This again is very similar
to the configuration of a stretched cluster. The step missing however
is the creation of fault domains (preferred and secondary) and the
selection of the host that belongs to these locations. This is because
the fault domains are automatically implied; each physical host and
the witness are in their own respective fault domain, as we shall see
next.

Telegram Channel @nettrain

Figure 248: Selecting the witness host

Now we can review the two-node configuration and complete the
creation by clicking finish. After we have clicked finish, we can simply
examine the configuration in the vSphere Client. One thing that
immediately stands out is that even though we did not create fault
domains and specified which hosts belong to which fault domain,
faults domains have been configured and each of the two hosts is
assigned to a fault domain.

Figure 249: Fault domains in a two-host configuration

That completes the configuration of a two-host cluster. In this case,
we have shown a regular two host configuration. There are however a
couple of different ways of configuring vSAN 2-host configurations.
One way is to use the Quickstart wizard, which is shown in the next
screenshot.

Telegram Channel @nettrain

Figure 250: Two-host configuration via QuickStart

What is interesting to know is that when another 2-host cluster is
created, the same vSAN Witness Appliance can be selected. This
capability, shared witness host, was introduced in vSAN 7.0 U1 and
designed for customers with multiple 2-host clusters who want to
limit the number of Witness Appliances deployed. There are some
limitations and considerations for a shared witness deployment.

First and foremost, the size of the vSAN Witness Appliance
determines how many 2-host clusters the witness can be shared. The
largest vSAN Witness Appliance can support up to 64 2-host clusters
and a maximum of 64.000 components. Typically, the component
limit should not be a concern, as this means you can store 1000
witness components per cluster. This means you can run easily over a
hundred VMs per 2-host cluster before you hit this limit. We have not
seen any customers reaching those numbers in a 2-host cluster yet.
Having said that, you could be that one customer that does deploy a
large number of VMs, make sure you select the correct witness

Telegram Channel @nettrain

appliance size and monitor the number of components when you
potentially could reach the specific limits. It is possible to monitor
the currently assigned number of configurations to your shared
witness host. Simply right click the host, click on “vSAN” and click
“assign as shared witness host”. You will now be presented with a
window that shows the currently assigned two-host clusters. You can
look at the same information by clicking on the witness appliance
and then go to “Monitor”, Two Node Clusters”. As demonstrated in
the next screenshot, you will be presented with a list of clusters, the
witness component count, and information like the limits.

Figure 251: Two-host Clusters information

In the above screenshot, you can also see the option “Assign to this
witness”. This option allows you to assign this shared witness to an
existing 2-host configuration. This 2-host configuration will already
have a witness assigned, but this witness is typically a non-shared
witness. Using the “Assign To This Witness” option you can migrate
from non-shared to shared, but you can also use this option to
replace a currently shared witness appliance with a new shared
witness appliance.

Telegram Channel @nettrain

Figure 252: Assign shared witness to an existing cluster

There is another rather unique configuration possible as well. This is
a configuration that has started to become more and more popular
amongst customers as it lowers the cost of the deployment
significantly.

Telegram Channel @nettrain

vSAN Direct Connect

When VMware first introduced the two-host cluster option, the
immediate request that we heard from customers was to cross-
connect the hosts. This is something that customers have done for
vMotion for the longest time and doing the same for vSAN with 10
GbE NICs (or higher) without the need for a 10 GbE switch (or higher)
would provide the ability to deliver great performance at a relatively
low cost. Starting with vSAN 6.5, cross-connecting two-host
configurations became fully supported. Please note that this only
works with, and only is supported for, two-host clusters.

Figure 253: vSAN Direct Connect

Telegram Channel @nettrain

As demonstrated in the diagram above, this will require Witness
Traffic Separation to be configured for vSAN. We have already
described how to do this in the stretched cluster chapter as the same
functionality can be leveraged to separate witness traffic from vSAN
data traffic for that configuration. If you are considering deploying a
two-host configuration with direct connect, please make sure you are
familiar with the required esxcli command.

Now that we have seen the configuration, and the two-host direct
connection option, let’s look at requirements, constraints, and two
host cluster specific support statements.

Support statements, requirements, and
constraints

In a vSAN two host configuration support, requirements and
constraints are slightly different than in a stretched cluster
configuration. Let’s start by listing all requirements and constraints,
followed by support statements that are different for two host
configurations versus a stretched cluster configuration.

500ms maximum latency is tolerated between the two-host
cluster and the witness host
Between data sites both Layer 2 and Layer 3 are supported
Layer-2 is recommended for simplicity
Between the data sites and the witness site Layer 3 is
required
Prevents I/O from being routed through a potentially low
bandwidth witness site
In the case of multiple locations, multiple witness VMs
running in a central location may share the same VLAN
When only a single VLAN is available per 2-host location, it is
supported to tag the Management Network for Witness traffic

Telegram Channel @nettrain

VM Storage Policies can only be configured with Number of
Failures To Tolerate = 1 and RAID-1 (Mirroring) due to the fact
that there are only 2 hosts in the cluster
Bandwidth between vSAN Hosts hosting VM objects and the
Witness Host is dependent on the number of objects residing
on vSAN. A standard rule of thumb is 2Mbps for every 1000
components on vSAN. Because vSAN hosts have a maximum
number of 9000 components per host, the maximum
bandwidth requirement from a 2 Host cluster to the Witness
Host supporting it, is 18Mbps
SMP-FT is supported when using 2 Host configurations in the
same physical location. SMP-FT requires appropriate
vSphere licensing. The vSAN Witness Appliance managing a
2 Host cluster may not reside on the cluster it is providing
quorum for. SMP-FT is not a feature that removes this
restriction
By default, in a two-host configuration and a stretched
configuration vSAN only reads from the fault domain in which
the VM resides. This is very valuable as it lowers bandwidth
requirements. For a two-host cluster, which is located in the
same datacenter, this reading from a single host adds no
value. The vSAN “DOMOwnerForceWarmCache” setting can
be configured to force reads across hosts in a 2-host
configuration. In vSAN 6.7 U1 this can now be configured in
the vSphere Client as shown in Figure 210

One major difference when comparing two host clusters with a
stretched cluster however is that, with a two-host configuration, it is
supported to cross host the witness appliance when you only have 2
locations via a special support request (RPQ). What does this exactly
mean, and what would be the use case for this? Well, the use case for
this would be when there are two locations within 500ms RTT latency
and both need some form of compute and storage for local services.
As shown in the diagram below, each remote location hosts the

Telegram Channel @nettrain

witness for the other location. This way only two locations are
required, instead of 3 normally.

Figure 254: Cross host witness

Although briefly mentioned in the requirements above, we do want to
explicitly show two common network architectures for connecting
remote locations to a centralized datacenter. In our experience, in
almost all cases L3 networking is configured between the central
datacenter and the remote location. In some of the cases we have
seen multiple networks being available per remote location, and in
most cases, we see a single network available. The following
diagrams depict these two scenarios.

Telegram Channel @nettrain

Figure 255: Multiple VLANs per remote location

In the above scenario, per location also two static routes will be
required to be defined. One for Management VLAN 10 to the remote
location Management VLAN, and one for the witness VLAN to the
Witness VLAN. Note that in the case where you have many remote
locations, the above scenario does not scale extremely well, and will
add a layer of complexity as a result.

Of course, as mentioned, this can be simplified by having a single
network to each location that shares both Management as well as
Witness traffic. The following diagram depicts this scenario.

Telegram Channel @nettrain

Figure 256: Single VLANs per remote location

Please note that in the case of the above scenario a static route from
the management network to the remote location is still required, and
the witness appliance will need to be modified so that the
management VMkernel interface is also tagged for Witness traffic.
Although in the above examples we have shown multiple witness
appliances, of course, these architectures are also supported with a
shared witness configuration!

Summary

A vSAN two host configuration will allow you to a limited number of
VMs in remote locations without the need for complex storage
configurations and operational processes. On top of that, these
locations can be managed through a centralized vCenter Server
instance, lowering operational cost and overhead.

Telegram Channel @nettrain

Chapter 9

Cloud-Native Applications Use
Case

When we published edition 3 of the vSAN Book back in 2018,
Kubernetes was beginning to gain adoption as an enterprise
platform. It was around this time that we also began to see the
general availability of Kubernetes service offerings from cloud
vendors such as Amazon EKS and Azure Kubernetes Services (AKS).
It was at the 2018 KubeCon (Kubernetes Conference) that we also
began to hear about plans for the Container Storage Interface (CSI)
which eventually was promoted to General Availability in Kubernetes
release v1.13 in early 2019. In this chapter, we will explore how vSAN
can provide a platform not just for virtual machine workloads, but
also for the newer container-based, cloud-native applications. We will
show vSAN integration with upstream Kubernetes distributions, as
well as vSAN integrations with VMware’s own Tanzu branded
Kubernetes distributions (which are also upstream but are selective
about what is supported – more on this later). This will not be a deep
dive into all elements of Kubernetes. Instead, we will focus on those
objects in Kubernetes that are relevant to storage, particularly vSAN.

What is a container?

It is not possible to talk about Kubernetes without first describing
what a container is. In its simplest form, a container can be

Telegram Channel @nettrain

considered a very special sort of process, representing an
application, that runs in an operating system. I say they are special
only because they leverage features such as cgroups and
namespaces for limiting and isolating system resources. In the early
days of containers, they were often compared to virtual machines,
and some very simplistic viewpoints compared them to virtual
machines “without the need for an operating system”. In some
respects, this is correct, but since a container is a process running in
an operating system, it does still require an OS. Admittedly, many
containers run in the same OS, since again the container is just a
process. But the neat thing about containers is portability.
Developers could create their container-based app on their laptop,
and then deploy it to an on-premises based Kubernetes distribution
such as Tanzu Kubernetes, or to a cloud-based Kubernetes
distribution, such as Google Kubernetes Engine. While container
technology had existed for many years, it was not until Docker (the
company) came along and made it very easy for developers to
package their containers using Docker (the product) and make them
portable, that containers began to gain popularity.

Why Kubernetes?

Now you might be wondering why we need Kubernetes if containers
are so great. In a nutshell, Kubernetes allows us to manage
containers at scale, or indeed the applications running in containers.
The term container “orchestration” is used a lot, but in essence,
Kubernetes is a platform that allows us to provision, scale in and out,
update and upgrade, and generally, life cycle manage container-
based applications. Of course, there is much more to Kubernetes
than just containers. Microservices, which is the splitting up of an
application into its constituent parts, is another major aspect of
Kubernetes. This separation of monolithic application functionality
into microservices brings in the concept of Service Mesh, which

Telegram Channel @nettrain

deals with the partitioning or segmentation of applications at a
network and security level. However, Microservices and Service Mesh
are beyond the scope of what we wish to discuss in this chapter.
Instead, our focus will be on how applications that run in Kubernetes
that require persistent storage can leverage vSAN to meet those
requirements.

Kubernetes Storage Constructs

Since this book is all about storage, the focus in this section is to
highlight just those Kubernetes objects that have some relationship
to the underlying storage. We will expand this somewhat to bring in
some other Kubernetes objects that are involved in consuming
storage, e.g., pods, but suffice to say the scope will not cover every
Kubernetes object.

Before delving into the different objects, it is interesting to note that
in the early days of containerization, not much thought was given to
persistent storage. The feeling was that you would spin up your
container, get it to do some units of work, capture the result and then
discard the container. The terminology to describe this scenario is
“stateless” and for some time, containers were positioned for
stateless workloads. Any writes to disk that were needed during this
work was done to ephemeral storage. Once the container was
discarded, so was the data. However, while there is certainly value in
being able to run stateless workloads, people soon realized the value
of being able to run “stateful” containerized workloads as well. One
pressing concern was the need to persist data in case the container
crashed. Thus, a mechanism to provide persistent storage for
containers was desired.

Let’s now look at the Kubernetes storage objects in some more
detail.

Telegram Channel @nettrain

Storage Class

As the name implies, this is a way for a Kubernetes cluster
administrator to define different “classes” of storage to a developer.
Shortly we will see how we can dynamically provision volumes of a
particular Storage Class in Kubernetes. Before we do that, let’s look
at some of the other attributes of a Storage Class.

One of the entries that is placed in a Storage Class manifest is
“provisioner”. This is probably a good place to introduce the CSI
driver, which is essentially what enables Kubernetes to provision
persistent volumes on top of different underlying infrastructures,
such as vSphere, AWS, Google Cloud, etc. For Kubernetes clusters
that are running as a set of virtual machines on vSphere, consuming
vSphere datastores for persistent volumes, the provisioner is the
vSphere CSI driver, “csi.vsphere.vmware.com”. This driver is also
referred to as the vSphere Container Storage Plug-in, and its purpose
is to provision Kubernetes persistent volumes on vSphere storage.

When the provisioner in the Storage Class is set to vSphere CSI
driver, a parameter called “storagepolicyname” may also be defined.
This parameter is used to map a Kubernetes Storage Class to a
vSphere Storage Policy. Since vSAN is very much integrated with the
Storage Policy-Based Management (SPBM) feature of vSphere,
different Kubernetes Storage Classes can be created to reflect
different aspects of vSAN storage. This means that any persistent
volumes that are created using a particular storage class will be
instantiated on the vSAN datastore with the storage policy referenced
by “storagepolicyname”.

Another configurable option is “allowVolumeExpansion”, which
enables the online growth of Persistent Volumes. Note that this
feature is only available in CSI driver version 2.2 and later.

Telegram Channel @nettrain

One can also specify a “reclaimPolicy”. This tells Kubernetes what to
do with a Persistent Volume after the Persistent Volume Claim has
been deleted. By default, the PV is also “Deleted”, but the reclaim
policy can be set to be “Retained” or “Recycled”.

Finally, another option parameter that one might find in the Storage
Class manifest is the filesystem type
“parameters.csi.storage.k8s.io/fstype”. This defines how a persistent
volume is formatted. Options for block volumes are “ext4”, and “xfs”.
Note that “xfs” only became available as a format in vSphere CSI
driver version 2.3. The only format option available for file volumes is
“nfs4”.

Here is an example of a simple Storage Class containing a vSAN
policy for block volumes.

Compare this to the next example of a simple Storage Class
containing a vSAN policy for file volumes. Note the only difference is
the setting to “nfs4” for “parameters.csi.storage.k8s.io/fstype”
instead of “ext4” used above. Note also that the
“allowVolumeExpansion” parameter has been omitted from this
StorageClass since this is a feature that is only available on block
volumes at the time of writing. The feature allows administrators to
grow the size of a persistent volume.

Telegram Channel @nettrain

Persistent Volumes

A Persistent Volume, or PV for short, is an allocation of storage
resources that can be used by a containerized application to store
data. In the case of Kubernetes running on vSphere and using vSAN
as a storage platform, persistent volumes map to VMDKs on the
vSAN datastore. The VMDK that are instantiated on the vSAN
datastore to back a PV are a special virtual disk known as a First
Class Disk (FCD) or Improved Virtual Disks (IVD), and enable disk-
centric operations outside of the lifecycle of the virtual machine, e.g.,
snapshot, restore, clone, etc.

Persistent Volumes are not tied to the lifecycle of a pod. They can
exist independent of any pod that uses them. Indeed, a pod can be
deleted and can be recreated to use the PV without any loss of data
from the PV.

Persistent Volumes can be provisioned statically, i.e., created
manually outside of Kubernetes and then mapped to a Persistent
Volume construct, or they can be provisioned dynamically through a
Persistent Volume Claim (PVC).

Persistent Volume Claim

Telegram Channel @nettrain

As we have just learned, the way to dynamically create a Persistent
Volume (PV) in Kubernetes is through a Persistent Volume Claim
(PVC). Let’s take a look at some of the attributes that one might find
in a PVC manifest when dynamically creating PVCs on vSphere
storage, notably vSAN.

One of the first attributes is the “spec.accessMode”. vSAN supports a
number of different access modes for volumes, but the two most
common access modes for Kubernetes PVs are read write once
(RWO) for block storage and read-write-many (RWX) for file storage.
RWO access mode implies that a persistent volume can only be
accessed from a single pod. RWX access mode implies that a
persistent volume can be accessed from multiple pods. RWX is
supported on vSAN through vSAN File Service, available since the 7.0
release. The vSphere CSI driver does not support multi-attach RWX
block volumes at the time of writing.

Another attribute of a Persistent Volume Claim manifest is
“spec.resources.requests.storage” where the size of the Persistent
Volume is specified. Other than that, the only important entry is a
reference to the Storage Class, which has been described earlier.
This maps a request for a volume to a particular storage policy on
vSphere, and this in turn guides vSphere to create the volume on the
appropriate vSphere datastore.

Here is an example of a simple PVC for a RWO block volume.

Telegram Channel @nettrain

Here is an example of a simple PVC for a RWX file volume. Notice
that the only difference between the block and file PVC is the
different “spec.storageClassName” setting for mounting the volume
with a different format, and of course the “spec.accessmode” setting.

Pod

Now that we have successfully learned how to build Kubernetes
Persistent Volumes on vSphere datastores such as vSAN, let’s look at
how an application can consume those volumes. In its simplest form,

Telegram Channel @nettrain

a pod is a Kubernetes construct comprising of one or more
containers. All containers within the pod share storage and network
resources. For the purposes of this book, the only aspect of a pod
that we are interested in is how it can consume external storage.
Thus, the parts of a pod manifest that should be configured are
“spec.volumes” which references a Persistent Volume Claim (PVC),
and “spec.containers.volumeMounts” which mounts the volume into
the pods. The “spec.containers.volumeMounts.name” mounts the
volume which matches “spec.volumes.name” from the same pod
manifest.

Here is an example of a pod with a single busybox container that is
claiming a Persistent Volume from the PVC “vsan-claim”. This
container provides a number of Unix utilities in a single executable.
Referencing the PVC via “claimName” (which was created previously),
this creates a request for a 2GB read write once (RWO) block volume
matching the Storage Class “vsan-sc”. Within Kubernetes, this
request is sent to the vSphere CSI driver components, which in turn
talks to another component in vCenter Server. After applying the
various manifest, this should result in a 2GB volume being
instantiated on a vSAN datastore. It is created with a configuration
that matches the default vSAN storage policy as this is what was
placed in the Storage Class. If successful, the volume will be
formatted as an “ext4” filesystem and mounted onto the folder
“/demo” in the busybox pod.

Telegram Channel @nettrain

The following manifest is another example of a pod deployment.
However, in this case, we are deploying 2 pods. Both of which will
attempt to mount the same read write many (RWX) file volume. The
PVC is as described in the
“volume.persistentVolumeClaim.claimName” attribute. This should
request the vSphere CSI driver to instantiate the volume on the vSAN
datastore, as well as export it as a vSAN File Share via vSAN File
Service. If this is successful, the volume should be mounted onto
both pods and accessible in the busybox container on the “/nfsvol”
folder. Referencing the PVC manifest above, this should be a 2GB file
share. Note that the next manifest creates 2 pods. Multiple manifests
can reside in the same YAML file if they are separated with “---” to
indicate a different manifest.

Telegram Channel @nettrain

Telegram Channel @nettrain

vSphere CSI in action – block volume

To demonstrate the creation of a block PV through a PVC, and then
accessing the resulting volume from a pod, I will use a small
Kubernetes cluster made up of 1 control plane node and 2 worker
nodes. Suffice to say that this Kubernetes cluster is deployed on
vSphere infrastructure, and already has the vSphere CSI driver
installed.

Let’s check the nodes in the cluster. One of the nodes is the control-
plane, master, as per the role. The others are the workers. The
Kubernetes version that has been deployed to this cluster is v1.23.3.

Next, we will show the CSI driver components. There is a CSI
controller pod, and a CSI node pod for all 3 nodes. We will go into
further detail regarding the different CSI components that make up
the controller pod shortly. In this version of Kubernetes, which is an
upstream, vanilla, Kubernetes, the CSI driver components are placed
in the vmware-system-csi namespace. Therefore, we need to specify
the namespace when querying for pods. Note that vSphere CSI driver
version 2.5.x, shown here, has a total of 7 containers in the controller
pod. Other, older versions of the vSphere CSI driver may show fewer
containers in the controller pod.

Telegram Channel @nettrain

To create a sample application, we are going to work in the default
namespace. Thus, it is not necessary to specify this namespace when
we create, query, or delete the objects. Some objects, such as
Storage Class and PV, are not namespace scoped, but PVCs and
pods are. At present, there are no Storage Classes, PVCs, PVs, or
pods on this cluster.

Next, apply a manifest that contains a Storage Class, a PVC, and a
pod. As mentioned, these can all be added to the same file so long
as they are separate with “---” on their own line in the file. Thus, a
single file can create multiple Kubernetes objects.

Check if the objects were created successfully. Let’s check the
Storage Class, the PVC, the PV that should have been created with
the PVC, and finally the pod.

Telegram Channel @nettrain

It would appear that all objects have been created successfully. One
final check is to open a shell to the pod and check to see if a 2GB
volume has been formatted and mounted to the busybox container
within the Pod. Since the pod only contains a single container, we do
not need to explicitly specify the container, but if the pod held more
than one container, the container name would need to be also
specified on the command line.

Telegram Channel @nettrain

A 2GB volume has now been successfully attached (/dev/sdb) as
requested by the PVC manifest, formatted as ext4 as requested in
the Storage Class manifest, formatted as ext4, and then mounted to
/demo as requested in the Pod manifest.

Cloud-Native Storage (CNS) for vSphere
Administrators – block volume

One of the primarily goals of VMware when running Kubernetes on
vSphere is to provide as much information as possible to the
vSphere Administrator. This is to help with monitoring, capacity
planning, troubleshooting, etc. To that end, VMware added a Cloud-
Native Storage (CNS) section to the vSphere UI to provide this
visibility. Please note that the examples below are taken from a
vSphere 7.0U3 environment. If you are using a different environment,

Telegram Channel @nettrain

some of the views and some of the functionality may not be present
or may be superseded.

Since a persistent volume has now been created in a Kubernetes
cluster running on vSphere and consuming vSAN storage, CNS now
displays information about the PV in the vSphere UI. Below is what is
visible in the UI for the volume created in the previous steps. The
information displayed includes the name of the PV, whether it is a
block or file type, any labels associated with the volume, which
datastore it is provisioned on, the storage policy used for the volume,
whether the storage policy is compliant or not, a volume ID, volume
health, which Kubernetes cluster the PV is on (since there can be
many Kubernetes clusters running on the same vSphere
infrastructure), and then the Capacity Quota of the volume.

Figure 257: Cloud-Native Storage

The second column in the output above contains a “Details” icon.
Clicking this icon reveals even more information about the persistent
volume, with several different views. The first view is the Basics view,
which provides a lot of vSphere specific information about the
volume, but of particular interest is the VM which has the volume
attached. This VM is, of course, one of the Kubernetes worker nodes.
This view also provides the full path to the VMDK object on the vSAN
datastore which is backing this persistent volume.

Telegram Channel @nettrain

Figure 258: Cloud-Native Storage Basic View

The next view gives additional information about the Kubernetes
objects, including the name of the persistent volume claim, the
namespace where the PVC was created, and any pods that are
currently using the volume. Since we did not specify any labels in the
manifests of the PVC, these are not populated. This view is a great
way to determine which applications are using which volumes in
Kubernetes without having to do manual mappings of Kubernetes
objects to vSphere datastore objects.

Figure 259: Cloud-Native Storage Kubernetes Objects View

Telegram Channel @nettrain

The next view is of particular interest to vSphere administrators who
are also responsible for vSAN storage. It displays the physical
placement of the volume. If you recall, we placed a storage policy as
a parameter in the Storage Class. The policy chosen at the time was
the default storage policy for vSAN, which is a RAID-1 configuration,
mirroring the data and using a witness component for quorum. We
can now see that the volume has been built using this policy. The
three vSAN components are visible below; 2 data components
(replicas) and 1 witness component.

Figure 260: Cloud-Native Storage Physical Placement View

The very last view is a performance view, which means you can get
visibility into the performance of individual persistent volumes. This
is invaluable for a vSphere administrator when developers begin to
complain about poorly performing applications and allows vSphere
administrators to quickly assess if the poor performance is storage-
related.

Telegram Channel @nettrain

Figure 261: Cloud-Native Storage Performance View

vSphere CSI in action – file volume

In this section, we turn our attention to a read-write-many file
volume. As mentioned the vSphere CSI driver has been developed to
include the ability to dynamically provision NFS file volumes on vSAN.
There is a requirement to have vSAN File Service enabled, however,
and the details on how to do this are covered elsewhere in this book.
Using standard Kubernetes manifests, requests to create a RWX
persistent volume are sent to the vSphere CSI provider. This results
in a dynamically provisioned file share that can be mounted into
multiple pods simultaneously.

When creating this file volume, the previously created block volume
is left in place. Thus, when we query Kubernetes objects for this new
file volume, the block volume objects will also be displayed.

Telegram Channel @nettrain

Once more, we begin by deploying a manifest that contains the
Storage Class, the PVC and the pods that will share the volume, as
defined earlier in this chapter. Again, all objects can be defined in a
single manifest and separated using the “---” divider. The difference
this time is that two pods are created that share access to the same
volume.

The Storage Class, PVC, PV and pods can be queried as before, but
now the outputs report Kubernetes objects for both block and file.
Note that the access mode for the new PVC and PV is RWX, read
write many.

Telegram Channel @nettrain

On this occasion, the same volume is mounted to both pods. The
following steps will verify that the same volume is mounted on both
pods, and that both pods can read and write to the volume. First,
exec into pod-a, and create a directory and file on the file volume
that is mounted on “/demonfs”. Then repeat the operation via pod-b.

Telegram Channel @nettrain

Telegram Channel @nettrain

As viewed above, the files created via pod-a are visible on the same
volume from pod-b, and both pods are able to write to the volume. It
seems that the read-write-many file share volume is working as
expected.

Cloud-Native Storage (CNS) for vSphere
Administrators – file volume

File volumes are also visible in the vSphere UI, providing some
detailed information about how a vSAN file share is being used by
Kubernetes. Much the same information is displayed as seen
previously, with the Basics and Physical Placement views providing
very similar information. One interesting view is the Kubernetes
Objects view. Two pods are now shown sharing the same volume.

Figure 262: Cloud-Native Storage Kubernetes Object View (RWX)

There is also a Performance view as seen with RWO block volumes.
The focus of the file volume performance charts is IOPS, Latency,
and Throughput.

Telegram Channel @nettrain

Before leaving RWX volumes, the Cluster > Configure > vSAN > File
Shares view can be visited in the vSphere client UI to check that a
vSAN File Share was indeed dynamically created to provide the
backing for this Kubernetes volume.

Figure 263: vSAN File Shares – Container File Volume

If the “Details” view is opened by clicking on the icon in the second
column, much of the same information observed in the Container
Volumes view is also available in this vSAN File Shares view. One
thing to note is that there are two types of file shares; one is vSAN
File Shares and the other is Container File Volumes. If the view is left
at vSAN File Shares, dynamically created file shares which back
Kubernetes RWX persistent volumes will not be visible. That is why
the type is set to ALL in the previous screenshot, as this will show
both vSAN File Shares and Container File Volumes.

vSphere CNS CSI architecture

Telegram Channel @nettrain

In this section, the major components of how Kubernetes volumes
can be backed by vSphere storage are examined. The vSphere CSI
driver has been mentioned a few times, and the CNS component that
resides on the vCenter server has also been discussed. We also
briefly mentioned first class disks (FCDs) also known as independent
virtual disks (IVDs), which are special vSphere storage volumes used
to back Kubernetes PVs. We can think of the CNS component in
vCenter server as the storage control plane, handling the lifecycle
operations of container volumes, e.g., create, delete, etc., as well as
other functions around metadata retrieval. It is this volume metadata
that enables the vSphere client UI to display such detailed
information regarding Kubernetes volumes. With the release of
vSphere CSI v2.5, CSI snapshots are also supported. This added an
additional sidecar container to the pod to watch for snapshot
requests, bringing the total number of containers in the CSI
controller to 7 at the time of writing.

To put it simply, in the Kubernetes cluster, the CSI driver is the
component that communicates to vSphere and handles the volume
create and delete requests, as well as the attach and detach of a
volume to a Kubernetes node which is a virtual machine. It
communicates with the kubelet (Kubernetes agent) for the formatting
of the volume, as well as the mounting and unmounting of the volume
to a pod running in the Kubernetes node. Another major component
of the CSI driver is the CSI syncer. This component is what pushes
the Kubernetes metadata regarding the volume to CNS on vCenter
server so that it can be displayed in the vSphere client UI.

First, let’s look at the pods that are deployed in a vanilla, upstream
Kubernetes cluster by the CSI driver. This is using a cluster that has
vSphere CSI driver v2.5, released in March 2022. This driver uses the
namespace vmware-system-csi to deploy its components. The two
pods that we see deployed are the vsphere-csi-controller pod and
several vsphere-csi-node pods.

Telegram Channel @nettrain

vsphere-csi-controller pod

The vSphere CSI controller pod handles multiple activities when it
comes to volume lifecycle management within Kubernetes. First and
foremost, it provides the communication from the Kubernetes Cluster
API server to the CNS component on vCenter server for volume
lifecycle operations and metadata syncing. It listens for Kubernetes
events related to volume lifecycle, such as create, delete, attach,
detach. This functionality is implemented by several distinct
containers within the pod. Let’s take a closer look at the containers
which make up the vSphere CSI driver in Kubernetes. This is using a
cluster that has vSphere CSI driver v2.5, released in March 2022.

As you can see, there are 7 containers (sometimes referred to as
sidecars) in the pod. The aim of separating distinct features of the
CSI driver into separate sidecar containers means that it simplifies
the development and deployment of CSI drivers in general. What
follows is a brief description of each container within the vSphere
CSI controller pod.

Telegram Channel @nettrain

csi-snapshotter

This is a new sidecar container introduced with the vSphere CSI
driver v2.5 in March 2022. The purpose of this container is to watch
the Kubernetes API server for VolumeSnapshot objects. It works with
the snapshot controller which watches for Kubernetes
VolumeSnapshotContent objects.

csi-attacher

This container monitors the Kubernetes API server for
VolumeAttachment objects. If any are observed, it informs the
vsphere-csi-controller that a new volume should be attached to a
specified node. Similarly, if it observes that the object is removed,
then informs the vsphere-csi-controller that a volume should be
detached from a specified node.

csi-resizer

This container was added to the vSphere CSI driver v2.2, which was
released around April 2021. This is the component that watches for
online volume extend operations.

vsphere-csi-controller

This provides the communication from the Kubernetes Cluster API
server to the CNS component on vCenter Server for persistent
volume lifecycle operations.

Telegram Channel @nettrain

liveness-probe

Monitors the overall health of the vSphere CSI controller pod. The
kubelet (agent) that runs on the Kubernetes nodes uses this liveness-
probe to determine if a container needs to be restarted. This helps to
improve the availability of the vSphere CSI controller pod.

vsphere-syncer

Send metadata information back to the CNS component on vCenter
Server so that it can be displayed in the vSphere client UI in the
Container Volumes view.

csi-provisioner

Watches the Kubernetes API server for PersistentVolumeClaim
objects. If any are observed, it informs the vsphere-csi-controller that
a new volume should be created. Similarly, if it observes that the PVC
is removed, then it informs the vsphere-csi-controller that the volume
should be deleted.

vsphere-csi-node pod

Each node gets its own vsphere-csi-node pod. Within each pod are 3
containers. This output is once again using a cluster that has
vSphere CSI driver v2.5, released in March 2022

Telegram Channel @nettrain

node-driver-registrar

This container establishes communication with the node’s kubelet
(which can be thought of as the Kubernetes agent that runs on the
node). Once established, the kubelet can make volume operation
requests, such as mount, unmount, format, etc.

vsphere-csi-node

This container performs volume operations associated with pod
access, e.g., operations such as format, mount, unmount.

liveness-probe

Monitors the overall health of the vSphere CSI node pod. The kubelet
(agent) that runs on the Kubernetes nodes used this liveness-probe
to determine if a container needs to be restarted. This helps to
improve the availability of the vSphere CSI node pod.

vSphere with Tanzu Considerations

So far in this chapter, we have been discussing the upstream
vSphere CSI driver. This is the vSphere Container storage plug-in
that runs in a native Kubernetes cluster, deployed on vSphere

Telegram Channel @nettrain

infrastructure. For the most part, we can also think of Tanzu
Kubernetes Grid (TKG) as an upstream Kubernetes cluster. When
referring to TKG here, I am referring to the standalone / multi-cloud
version of Kubernetes from VMware which is deployed via the tanzu
command line or UI. This distribution is often referred to TKGm, and
while not an official name, we can use it here to differentiate it from
other Tanzu offerings. The difference between TKGm and upstream
Kubernetes is that our Tanzu team selects components from the
plethora of open-source products that are available for Kubernetes.
The team tests this Kubernetes stack, validates it, then offers VMware
support for customers who purchase it. In other words, the team
chooses the CSI drivers for storage, the CNI drivers for networking,
various Load Balancers, IAM components for identity management,
and so on. Once deployed into production, VMware can now support
this Kubernetes platform and your vSphere platform. Thus, what we
have read so far about the vSphere Container Storage Plug-
in/upstream vSphere CSI driver applies to TKGm, once the Tanzu
team has completed their tests, and released it with a TKGm
build/version.

But VMware offers more than just TKGm. VMware also offers a
product called vSphere with Tanzu. This is important as it does not
use the upstream CSI driver at the time of writing. This is because
vSphere with Tanzu has the concept of a Supervisor cluster which is
deployed when vSphere with Tanzu is enabled on a vSphere cluster.
And while workloads can be deployed directly onto the Supervisor
cluster using PodVMs, the Supervisor cluster is not considered a
general-purpose Kubernetes cluster. General purpose Kubernetes
clusters are provisioned using a TKG Service, one of many services
available in vSphere with Tanzu. The TKG Service, or TKGS for short,
can provision fully formed Kubernetes “guest” or “workload” clusters
on vSphere through some simple YAML manifest files which describe
the cluster configuration. Using Supervisor Namespaces, a vSphere
administrator can allocate a certain amount of vSphere resources to
a particular development team. Within these namespaces,

Telegram Channel @nettrain

development teams can provision their own TKG clusters, but never
use more resources than the vSphere administrator has allocated.
Teams can then develop and test their own applications, and indeed
bring applications to production. The idea is that multiple different
development teams can operate in an isolated manner on the same
vSphere infrastructure using Supervisor Namespaces via vSphere
with Tanzu.

This brings us to the reason why the TKG clusters cannot use the
upstream vSphere CSI driver. TKG clusters created by the TKG
Service are placed on their own virtual workload networks which are
not designed to have access to the management network where
vCenter server resides. This means that if the upstream vSphere CSI
driver is deployed on a TKGS workload cluster in vSphere with Tanzu,
it would be unable to reach the vCenter server, nor would it be able
to communicate to its associated CNS component for persistent
volume lifecycle management. So how are persistent volumes created
in TKGS provisioned clusters you might ask?

The creation of persistent volumes is achieved through a paravirtual
CSI (pvCSI) running in the workload clusters that have been
provisioned by the TKG Service. This is a modified version of the
upstream CSI driver. The reason it is called pvCSI is that it “proxies”
requests from the TKG guest cluster to the Supervisor cluster which
in turn communicates to vCenter and CNS to create persistent
volumes on the appropriate vSphere storage. The Supervisor cluster
control plane nodes are multi-homed with one network interface on
the vSphere management network and the other network interface on
the workload network (the one used by the TKGS workload clusters).
In this way, PV operations from TKGS workload clusters are sent to
the Supervisor cluster, which in turn sends it onto CNS in vCenter.

Note that the CNS views of the persistent volumes in vSphere with
Tanzu reveal this proxying of volumes. For a PV created in a TKGS
guest cluster, a vSphere administrator will be able to see the

Telegram Channel @nettrain

relationship between it and the volume that is created on the
Supervisor cluster on its behalf, as well as information about which
TKGS guest cluster it was created for.

Figure 264: Paravirtual CSI Driver in vSphere with Tanzu

The reason why the pvCSI driver is called out as a consideration is
that new CSI features typically get developed for the upstream CSI
driver for vanilla Kubernetes distributions before filtering down to
vSphere with Tanzu. Examples of this would be the support for read-
write-many volumes (RWX) using vSAN File Service, which has been
in upstream Kubernetes for some time, but is still not available in

Telegram Channel @nettrain

vSphere with Tanzu TKGS clusters at the time of writing (April 2022).
Similarly, CSI snapshot support was announced in the upstream CSI
driver version 2.5 in March 2022, but there will be a lag before the
feature appears in TKGS clusters in vSphere with Tanzu.

Thus, it is extremely important to check whether a particular CSI
driver capability is specifically available in vSphere with Tanzu, and
not to rely on seeing feature support in upstream Kubernetes, then
assuming that it is also available in vSphere with Tanzu.

Data Persistence platform (DPp)

VMware continuously enhances vSAN. A primary goal is to build a
platform for both container workloads and virtual machine workloads.
Data Persistence platform (DPp) is another step on the journey
towards enabling “cloud-native” applications to be deployed
successfully on vSAN.

Many cloud-native applications implement what is known as a
“shared nothing” architecture. These applications do not require
shared storage as they are designed with built-in
replication/protection features. Thus, we need vSAN to be able to
cater for this. At the same time, these applications need to be vSAN
and vSphere aware. Applications deployed to DPp have the built-in
smarts to understand what action needs to be taken when there is an
event on the underlying vSphere infrastructure, e.g., maintenance
mode, upgrade, patching, etc.

Since these applications have built-in protection, it implies that vSAN
does not need to provide protection at the underlying layer.
Therefore, the storage objects for the cloud-native application may
be provisioned with no protection. vSAN can hand off storage
services to the application if the application already has those
capabilities built-in (replication, encryption, erasure-coding, etc.).

Telegram Channel @nettrain

This means that vSAN does not duplicate these features at the
infrastructure layer and avoids consuming more storage capacity
than necessary. However, if these features are not available in the
application, vSAN may still be leveraged to provide these capabilities.

There is also another deployment option from a storage perspective.
To facilitate a high-performance data path for these cloud-native
applications, the Data Persistence platform also introduces a new
construct for storage called vSAN-Direct. vSAN-Direct allows
applications to consume the local storage devices on a vSAN host
directly. However, these local storage devices are still under the
control of HCI management, so that health, usage, and other
pertinent information about the device is bubbled up to the vSphere
client. The primary goal here is to allow cloud-native applications to
be seamlessly deployed onto vSAN whilst leveraging the native
device speed with minimum overhead, but at the same time have
those applications understand infrastructure operations such as
maintenance mode, upgrades, and indeed host failures. Note that at
the time of writing (April 2022), if a decision is reached to use vSAN-
Direct for DPp, then the whole of the vSAN cluster must be dedicated
to vSAN-Direct. It is not supported to run traditional vSAN workloads
and vSAN-Direct workloads side-by-side. As per the official
documentation from VMware, “Use vSAN Direct if you are creating a
dedicated hardware cluster for the shared nothing cloud-native
services“.

This is another option if considering the vSAN Data Protection
platform for cloud-native applications. You may opt to use DPp
without vSAN-Direct and implement vSAN objects with failures to
tolerate set to 0 since the application is handling the replication.
This option is also fully supported but may not deliver on the
performance and speed that can be achieved with vSAN-Direct.

Telegram Channel @nettrain

Figure 265: Data Persistence Platform

As mentioned, we have partnered with several cloud-native
application vendors who will create bespoke Kubernetes operators
that will work with the Data Persistence platform. Partners can then
define how their application should behave (e.g., re-shard, evacuate,
delete and reschedule Pods, etc.) when a vSphere operation is
detected. Partners can also create their own vCenter UI plugins so
that operations (e.g., resize, scale in and out) that are specific to their
application can be added to vCenter.

DPp Requirements

vSAN Data Persistence platform was first introduced in VMware
Cloud Foundation (VCF) 4.2 in early 2021. The reason for requiring
VCF was that there are a number of requirements to enable DPp.

Telegram Channel @nettrain

Obviously, vSAN is a requirement, with or without the vSAN Direct
configuration. vSphere with Tanzu is also needed. And since the
services are deployed as a set of PodVMs on vSphere with Tanzu,
NSX-T is also necessary. This is because one cannot deploy PodVMs
without NSX-T providing the necessary network overlays. Thus, while
VCF is not a hard and fast requirement for DPp, it does have all the
necessary components to enable it. Readers should be cognizant of
these requirements before planning to use any partners services
provided by Data Persistence platform.

DPp deployment changes

When DPp first released, several services were embedded directly in
vSphere. With the release of vSphere 7.0U3, the way in which
vSphere administrators install, upgrade, and manage DPp services
has changed. Now vSphere administrators need to retrieve the YAML
manifests for the partner product to first register the service with
vCenter server. After this step is complete, the service can be
installed into vCenter, making them available to developers who wish
to use the service in Kubernetes workloads.

The partner manifests are available in the following JFROG repository
at the time of writing (March 2022): https://vmwaresaas.jfrog.io/.
Simply navigate to the appropriate partner folder under Artifactory >
Artifacts > vDPP-Partner-YAML and select a YAML file to download.
The path to the Velero Service is shown below:

Telegram Channel @nettrain

https://vmwaresaas.jfrog.io/

Figure 266: Data Persistence Platform Service Manifests

vSAN Stretched Cluster support

A frequently requested topology on which to deploy a Kubernetes
cluster is a vSAN Stretched Cluster. This requires some careful
consideration since a vSAN Stretched Cluster has only two
availability zones/data sites and Kubernetes always has an odd
number of control plane nodes, either 1, 3, 5, or 7. Thus you will
always have a situation where one of the vSAN Stretched Cluster
sites has more control plane nodes than the other. If the site with the

Telegram Channel @nettrain

most control plane nodes fails, then the control plane will not be
available until vSphere HA has had time to restart the failed nodes on
the remaining site and the control plane components such as the
Kubernetes key-value store (etcd) has recovered. These are some of
the factors that should be considered if you plan to deploy a
Kubernetes cluster on vSAN Stretched Cluster. Support for vSAN
Stretched Cluster appeared in the official vSAN 7.0U3 release notes
in January 2022. However, there was a significant issue uncovered
whereby if the data sites partitioned, persistent volume information
could be lost from the CNS. When volume metadata is not present in
the CNS, you cannot create, delete, or re-schedule pods with CNS
volumes since the vSphere CSI Driver must access volume
information from CNS to perform these operations. It seems that this
issue was addressed in the 7.0U3d release which became available
in April 2022. This is vCenter build number 19480866 so ensure you
are using this release at a minimum if planning to use vSAN
Stretched Cluster topologies for Kubernetes clusters.

The official VMware documentation provides additional guidance
such as enabling vSphere HA, DRS, Host and VM Affinity Groups, etc.
However, when it comes to PV provisioning, the advice given in the
official documentation is that the same storage policy should be
used for all node VMs, including the control plane and worker, as well
as all Persistent Volumes (PVs). This single, standardized storage
policy in vSphere equates to the Kubernetes administrator creating a
single, standard Storage Class for all storage objects in the
Kubernetes cluster.

The other major limitation at the time of writing (April 2022) is that
currently only block based read-write-once (RWO) volumes are
supported. There is no support for read-write-many (RWX) vSAN File
Service based file volumes in a vSAN Stretched Cluster.

Telegram Channel @nettrain

Other CSI driver features

Throughout this chapter, several different features of the vSphere
CSI driver have been mentioned. Listing every CSI feature is beyond
the scope of this book, but a feature that is supported at the time of
writing in the vSphere CSI driver is the ability to hot extend block
volumes while the pods remain online. CSI snapshots are also
supported, which should allow partner backup vendors to be able to
take backups of applications that use persistent volumes on
Kubernetes running on the vSphere platform. There are also several
different topologies that are being investigated for support, such as a
single Kubernetes cluster deployed across multiple vSphere clusters,
often referred to as a multi-AZ deployment.

This GitHub page, maintained by the vSphere CSI engineering team,
is a good starting point for details about vSphere CSI driver versions
and supported features: https://github.com/kubernetes-sigs/vsphere-
csi-driver

Summary

vSAN lends itself very nicely as a platform for both traditional virtual
machine workloads and newer cloud-native workloads. Through the
upstream vSphere CSI driver and the pvCSI driver for vSphere with
Tanzu, vSAN can be used for block based read-write-once volumes.
With upstream Kubernetes, vSAN can also be used for file based
read-write-many volumes, but this functionality should also appear in
TKGS clusters in vSphere with Tanzu very soon. This does highlight a
consideration that many vSphere CSI driver features are first
developed for upstream and later implemented in pvCSI. One other
significant development in this space is the Data Persistence
platform. It allows our partners to create services for the vSphere

Telegram Channel @nettrain

https://github.com/kubernetes-sigs/vsphere-csi-driver

with Tanzu platform, enabling activities from the underlying vSphere
infrastructure to be bubbled up to the application and allowing it to
take relevant actions to mitigate any impact. However, as mentioned,
there are a considerable number of requirements around using DPp
which should be considered.

Telegram Channel @nettrain

Chapter 10

Command Line Tools

This chapter will look at some of the command line interface (CLI)
tools that are available outside the vSphere client for examining
various parts of the vSAN cluster. Some tools are available on the
ESXi host, others are available via the vCenter Server command line.
The vCenter Server command line tool is called the Ruby vSphere
Console, or RVC for short. It should be noted that there is a
concerted effort amongst the vSAN engineering teams to move
everything to the ESXCLI and deprecate the RVC tool that is
available in vCenter Server going forward. However, administrators
should familiarize themselves with the ESXCLI toolset, as this may
become the de-facto vSAN command line going forward.

CLI vSAN Cluster Commands

There is a namespace in ESXCLI for vSAN. Here, administrators will
find several commands for managing and displaying the status of a
vSAN cluster. An effort will be made to describe each of the sub-
namespaces, but for the most part what the command does is self-
explanatory. In places, where it makes sense to do so, sample
command outputs will be provided.

Telegram Channel @nettrain

esxcli vsan cluster

Using the esxcli vsan cluster commands, you can enable the host on
which the command is run to join or leave a cluster, as well as display
the current cluster status and members. This can be very helpful in a
scenario where vCenter Server is unavailable and a particular host
needs to be removed from the vSAN cluster. The restore functionality
is not intended for customer invocation and is used by ESXi during
the boot process to restore the active cluster configuration from
configuration file.

In the below example, we can tell that this node has an AGENT role
(as discussed in chapter 4, architectural details). It is also a NORMAL
node (not a witness host) and it is HEALTHY. The vSAN cluster is a 4-
node cluster, as we can see from the member count field, and if you
count up the number of members’ UUIDs. Finally, it is not in
maintenance mode.

Telegram Channel @nettrain

esxcli vsan datastore

This command allows administrators to do certain operations on the
vSAN datastore. Note the guidance that many of these commands
are not expected to be run at the host level, but rather at the cluster
level. By default, the vSAN datastore name is vsanDatastore. If you do
plan on changing the vsanDatastore name, do this at the cluster level
via the vSphere client. It is highly recommended that if you are
managing multiple vSAN clusters from the same vCenter Server that
the vSAN datastores are given unique, easily identifiable names.

Telegram Channel @nettrain

esxcli vsan debug

This command provides a lot of the functionality that administrators
would historically have found in RVC, especially the ability to query
the status of objects. However, the command also has options to look
at physical disks, and controllers, as well as displaying resync status,
disk, disk group evacuations, and individual virtual machine disk
status.

Telegram Channel @nettrain

Most of these namespaces only provided a single command, either
list or get. The only namespace that differs is mob, which allows
administrators to start and stop the vSAN Managed Object Browser
Service.

Again, the output is quite self-explanatory, but what is good to see
from this output is the congestion values, and where they might
occur. All other aspects as green as well, including operational and
space, so quite a useful troubleshooting command to have available
for physical disks.

Telegram Channel @nettrain

We shall provide one additional example from the debug namespace,
and that is looking specifically at an object. In this case, the last field
is the object ID. This might be gleaned from the vSphere UI, either in
the task view or in an event or log message. You can use the CLI to
get further detail on a particular object, as shown here. You can see
the health of the object, which policy it is using, the state of its
components, and which object on the vSAN datastore the UUID
corresponds to. Quite a useful command.

Telegram Channel @nettrain

esxcli vsan faultdomain

Fault domains were introduced to allow vSAN to be rack, room, or
site aware. What this means is that components belonging to objects
that are part of the same virtual machine can be placed not just in
different hosts, but in different racks. This means that should an

Telegram Channel @nettrain

entire rack fail (e.g., power failure), there is still a full set of virtual
machine components available, so the VM remains accessible.

Probably not a useful command for generic vSAN deployments but
could be useful when Rack Awareness or Stretched Cluster has been
implemented since both of those require the use of Fault Domains to
group multiple hosts into a single fault domain. If you are using any
of those features, then you could use this command to determine
which hosts are in which fault domain.

For standard vSAN deployments, each host is in its own fault domain,
so the command will return a unique fault domain for every host.

esxcli vsan health

This is a very useful command to see the overall health of the system.

As you can see, there is only a single available namespace, cluster.

Telegram Channel @nettrain

However, it is also useful as administrators can use it to run
individual health checks. For example, if an administrator ran the
following command: esxcli vsan health cluster list -w

As well as displaying the status of the vSAN health, this command
would return the short name of all of the health checks. This short
name could now be used to get a specific health check and its
details.

In this example, we will look at the status of a single test called vSAN
Disk Balance, or in shorthand, diskbalance.

Telegram Channel @nettrain

esxcli vsan iscsi

This command allows us to query the configuration and status of
iSCSI home namespaces, iSCSI targets and LUNs on vSAN.

Telegram Channel @nettrain

In the commands that follow, we will first query whether or not the
iSCSI service is enabled,

Next, we list the initiator groups. This will display the name of the
initiator group, what the IQN of the initiator is, and then the IQNs of
any targets that have been added to the initiator groups.

Now that we have seen things from the initiator side, let us turn our
attention to the target side. Here we can list the target information,

Telegram Channel @nettrain

and correlate these to any that have been added to the initiator
group shown above. Unfortunately, due to the length of the command
output, it is not easy to display, but hopefully, you can see the
relevant detail.

The last example we have for iSCSI is to display which LUNs have
been mapped to which target. From the output above, we have seen
several targets listed. Here we can list the LUN information and
correlate any LUNs that have been mapped to a particular target
shown above. Again, the way the command is displayed doesn’t
easily lend it to being reproduced in an easily readable format for the
book, but hopefully, you can see that this target has 2 LUNs mapped.

Telegram Channel @nettrain

esxcli vsan maintenancemode

maintenancemode is an interesting command option. You might
think this would allow you to enter and exit maintenance, but it
doesn’t. All this option allows you to do is to cancel an in-progress
vSAN maintenance mode operation. This could still prove very useful,
though, especially when you have decided to place a host in
maintenance mode and selected the Full Data Migration option and
want to stop this data migration process (which can take a very long
time) and instead use the Ensure Access option.

This command does not allow you to enter or exit maintenance
mode. Note that you can place a node in maintenance mode
leveraging esxcli system maintenanceMode set -e true -m noAction

Telegram Channel @nettrain

where “-m” specifies the data evacuation option, and if components
need to be moved from the host entering maintenance mode or not.

esxcli vsan network

This command will display details about the VMkernel interface used
for the vSAN network by this host.

In this example, it can clearly be seen that vSAN is using vmk2. Note
also that there is a considerable amount of multicast information
included here. This is historic information, and if you are using a
version of vSAN that is later than 6.6, most likely this information is
unused. However, there is a corner case scenario where a cluster may
revert from multicast to unicast, and therefore the information is still
displayed.

Telegram Channel @nettrain

Should you still be using multicast, then the Agent Group Multicast
Port corresponds to the CMMDS port that is opened on the ESXi
firewall when vSAN is enabled. The first IP address, 224.2.3.4 is used
for the master/backup communication, whereas the second address,
224.1.2.3, is used for the agents. esxcli vsan network list is a useful
command to view the network configuration and status should a
network partition occur.

esxcli vsan policy

This command allows you to query, clear and set the default policy of
the vSAN datastore. However, as has been mentioned a few times
already in this book, we would strongly recommend not changing the
default policy, but instead creating a new policy, and setting that as
the default on the vSAN datastore.

Telegram Channel @nettrain

Here is the output querying the default policy which has not been
modified in any way.

Here we can see the different VM storage objects that make up a VM
deployed on a vSAN datastore, and we can also see the default policy
values. Although the policy value is called host failures to tolerate, it
actually is the equivalent to the failures to tolerate in the vSphere
client. All the objects will tolerate at least one failure in the cluster
and remain persistent. The class vdisk refers to VM disk objects
(VMDKs). It also covers snapshot deltas. The class vmnamespace is
the VM home namespace where the configuration files, metadata
files, and log files belonging to the VM are stored. The vmswap policy
class is, of course, the VM swap. One final note for vmswap is that it
also has a forceProvisioning value. This means that even if there are
not enough resources in the vSAN cluster to meet the requirement to
provision both VM swap replicas to meet the failures to tolerate
requirement, vSAN will still provision the VM with a single VM swap
instance. The final entry is vmem. This is the snapshot memory

Telegram Channel @nettrain

object when a snapshot is taken of a VM, and there is a request to
also snapshot memory.

These policy settings, and the reasons for using them, are explained
in detail in chapter 5, Storage Policy Based Management.

If you do want to change the default policy to something other than
these settings, there is a considerable amount of information in the
help file about each of the policies. The command to set a default
policy is as follows:

esxcli vsan policy setdefault <-p|--policy> <-c|--policy-class>

However, as stated earlier, VMware recommends avoiding
configuring policies from the ESXi host. This is because you would
have to repeat all of the steps on each of the hosts in the cluster.
This is time-consuming, tedious, and prone to user error. The
preferred method to modify policies is via the vSphere web client, or
if that is not possible, via RVC, the Ruby vSphere Console.

Of course, we did not cover all of the possible policy settings in the
default, but you can certainly include any of the supported policy
settings in the default policy if you wish. Take care with changing the
default policy. Setting unrealistic default values for failures to tolerate
or flash read cache reservation in the case of hybrid vSAN, for
example, may lead to the inability to provision any VMs. Using the
help output from the esxcli vsan policy setdefault command, further
details are provided about the policy settings that are displayed here
for your information:

cacheReservation: Flash capacity reserved as read cache for
the storage object. This setting is only applicable on hybrid
configurations; it is not used on all-flash configurations since
these configurations do not have a read cache. It is specified
as a percentage of the logical size of the object. To be used
only for addressing read performance issues. Other objects

Telegram Channel @nettrain

cannot use reserved flash capacity. Unreserved flash is
shared fairly among all objects. It is specified in parts per
million. Default value: 0, Maximum value: 1000000.
forceProvisioning: If this option is yes, the object will be
provisioned even if the requirements specified in the storage
policy cannot be satisfied by the resources currently available
in the cluster. vSAN will try to bring the object into
compliance if and when resources become available. Default
value: No.
hostFailuresToTolerate: Defines the number of hosts, disk, or
network failures a storage object can tolerate. For n failures
tolerated, n+1 copies of the object are created, and 2n + 1
hosts contributing storage are required. Default value: 1,
Maximum value: 3.
stripeWidth: The number of capacity drives across which
each replica of storage object is striped. A value higher than
1 may result in better performance (e.g., on hybrid systems
when flash read cache misses need to get serviced from
magnetic disk), but there is no guarantee that performance
will improve with an increased stripeWidth. Default value: 1,
Maximum value: 12.
proportionalCapacity: Percentage of the logical size of the
storage object that will be reserved (similar in some respects
to thick provisioning) upon VM provisioning. The rest of the
storage object is thin provisioned. Default value: 0%,
Maximum value: 100%.
iopsLimit: This setting defines the upper normalized IOPS
limit for a disk. The IO rate on a disk is measured and if the
rate exceeds the IOPS limit, IO will be delayed to keep it
under the limit. If the value is set to 0, there is no limit.
Default value: 0.
replicaPreference: This setting is used to select RAID-5 or
RAID-6 over the default RAID-1/mirror configurations for
objects. If a replication method of capacity is chosen over

Telegram Channel @nettrain

performance (which is the default), and the number of
failures to tolerate is set to 1, then RAID-5 is implemented. If
a replication method of capacity is chosen and the number of
failures to tolerate is set to 2, then RAID-6 is implemented.
Note that capacity is only effective when the number of
failures to tolerate is set to 1 or 2. Default value: Performance.

The other argument that needs to be included with the setdefault
command is the -c|--policy-class option. This is the vSAN policy class
whose default value is being set. The options are cluster, vdisk,
vmnamespace, vmswap—one of which must be specified in the
command.

Lastly, a word about cluster, which is one of the policy class options,
but is not a VM storage object like vmnamespace, vdisk, or vmswap.
This option is used as a catchall for any objects deployed on a vSAN
datastore that are not part of a VM’s storage objects.

esxcli vsan resync

The bandwidth and throttle commands can be used to get to first
examine whether the resync bandwidth is too large for the cluster,
and is possibly impacting workloads, and if it is, to throttle the
bandwidth.

Outputs are displayed in Megabits per second (Mbps). However,
considering the number of changes that have been made to the

Telegram Channel @nettrain

Quality of Service around VM traffic and resync traffic, modifying
these parameters should hopefully be a last resort in the later
versions of vSAN.

esxcli vsan storage

This command looks at all aspects of vSAN storage, from disk group
configurations, to adding and removing storage devices to/from disk
groups.

The first thing to mention is that the automode option has been
deprecated since vSAN 6.7. Even though it still appears in this list of
namespaces, it doesn’t do anything in later releases of vSAN.

To display the capacity tier and cache tier devices that have been
claimed and are in use by vSAN from a particular ESXi host, you may
use the list option. In this configuration, which is an all-flash
configuration, SSDs are used for the capacity tier devices and the
cache tier. All devices have a true flag against the field Used by this
host, indicating that they have been claimed by vSAN and the Is SSD
field indicates the type of device (true for flash devices), as shown in
the next example.

Telegram Channel @nettrain

Telegram Channel @nettrain

To use ESXCLI to add new disks to a disk group on vSAN, you can
use the add option. There is a different option to choose depending
on whether the disk is a magnetic disk or an SSD (-d|--disks or -s|--
ssd, respectively). Note that only disks that are empty and have no
partition information can be added to vSAN.

There is also a remove option that allows you to remove magnetic
disks and SSDs from disk groups on vSAN. It should go without
saying that you need to be very careful with this command and
removing disks from a disk group on vSAN should be considered a
maintenance task. The remove option removes all the partition
information (and thus all vSAN information) from the disk supplied as
an argument to the command. Note that when a cache tier device is
removed from a disk group, the whole disk group becomes
unavailable. With the remove option administrators do have the
option to specify which evacuation mode to use, for example,
administrators can choose to evacuate all of the data from a disk
before it is removed. Use the -m|--evacuation-mode=<str> to specify
the desired option. Values can be ensureObjectAccessibility,
evacuateAllData or noAction. The default is noAction.

If you have disks that were once used by vSAN and you now want to
repurpose these disks for some other use (Virtual Machine File
System [VMFS], Raw Device Mappings [RDM], or in the case of SSDs,
vFRC [vSphere Flash Read Cache]), you can use the remove option to
clean up any vSAN partition information left behind on the disk.

Additional useful commands for looking at disks and controllers
include the following:

esxcli storage core adapter list: Displays the driver and
adapter description, which can be useful to check that your
adapter is on the hardware compatibility list (HCL)

Telegram Channel @nettrain

esxcfg-info -s | grep “==+SCSI Interface” -A 18: Displays lots
of information, but most importantly shows the queue depth
of the device, which is very important for performance
esxcli storage core device smart get -d XXX: Displays SMART
statistics about your drive (where XXX would be the device
ID), especially SSDs. Very useful command to display Wear-
Leveling information, and overall health of your SSD
esxcli storage core device stats get: Displays overall disk
statistics

The diskgroup namespace options allows for the mounting and
unmounting of disk groups. It really isn’t a configuration option with
this limited set of commands.

It is probably not immediately clear what the tag namespace does.
This command has a single tag supported, and tags devices as
CapacityFlash devices so that they can be used for capacity devices
in an all-flash vSAN configuration.

esxcli vsan trace

This command allows you to configure where vSAN trace files are
stored, how much trace log to retain, when to rotate them and if they
should also be redirected to syslog.

Telegram Channel @nettrain

To see what the current trace settings are, you can use the get
option.

Additional Non-ESXCLI Commands for vSAN

In addition to the esxcli vsan namespace commands, there are a few
additional CLI commands found on an ESXi host that may prove
useful for monitoring and troubleshooting.

vsantop

vsantop is a relative new command. Most of you are probably familiar
with esxtop, and as expected vsantop provides performance details
of vSAN on a host level. The tool works very similar to esxtop. You
can use the the “?” character for help, add and remove fields using

Telegram Channel @nettrain

“fF”, change the order using “oO” and select entities via “E”. When
you run vsantop you get presented with the following.

As mentioned, “E” can be used to look at various entities, and there
is a significant amount of detail provided by vsantop, below you find
the list of entities that can be inspected.

The question arises, what should you be monitoring with vsantop, and
the answer is simple, nothing. This tool is not intended for day-to-day
operations. It should only be used during performance
troubleshooting, and only in the situation where the required data
can’t be found via the vSphere Client.

osfs-ls

osfs-ls is more of a troubleshooting command than anything else. It
is useful for displaying the contents of the vSAN datastore. The
command is not in your search path but can be found in the location
shown in the example output below. In this command, we are listing

Telegram Channel @nettrain

the contents of a VM folder on the vSAN datastore. This can prove
useful if the datastore file view is not working correctly from the
vSphere client, or it is reporting inaccurate information for some
reason or other:

cmmds-tool

cmmds-tool is another useful troubleshooting command from the
ESXi host and can be used to display lots of vSAN information. It can
be used to display information such as configuration, metadata, and
state about the cluster, hosts in the cluster, and VM storage objects.
Many other high-level diagnostic tools leverage information obtained
via cmmds-tool. As you can imagine, it has a number of options,
which you can see by just running the command.

The find option may be the most useful, especially when you want to
discover information about the actual storage objects backing a VM.

Telegram Channel @nettrain

You can, for instance, see what the health is of a specific object. In
the below example, we want to find additional information about a
DOM object represented by UUID 6cd65e5b-1701-509f-8455-
246e962f4910. As you can see, the output below is not the most
human-friendly, as is possibly only useful when you need to work on
vSAN from an ESXi host. Otherwise, ESXCLI or RVC is the
recommended CLI tool of choice as the command outputs are far
more readable.

There are, of course, many other options available to this command
that can run. For example, a -o <owner> will display information
about all objects of which <owner> is the owner. This can be a
considerable amount of output.

Telegram Channel @nettrain

Type is another option and can be specified with a -t option. From
the preceding output, types such as DISK, HEALTH_STATUS,
DISK_USAGE, and DISK_STATUS can be displayed. Other types
include DOM_OBJECT, DOM_NAME, POLICY, CONFIG_STATUS,
HA_METADATA, HOSTNAME, and so on.

Below example shows a list of hostnames taken from a 4-node
cluster:

As you can see, this very powerful command enables you to do a lot
of investigation and troubleshooting from an ESXi host. Again,
exercise caution when using this command. Alternatively, use only
under the guidance of VMware support staff if you have concerns.

vdq

The vdq command serves two purposes and is really a great
troubleshooting tool to have on the ESXi host. The first option to this
command tells you whether disks on your ESXi host are eligible for
vSAN, and if not, what the reason is for the disk being ineligible.

Telegram Channel @nettrain

The second option to this command is that once vSAN has been
enabled, you can use the command to display disk mapping
information, which is essentially which SSD or flash devices and
magnetic disks are grouped together in a disk group.

Let’s first run the option to query all disks for eligibility for vSAN use.
This example is from a host that already has vSAN enabled:

Telegram Channel @nettrain

The second useful option to the command is to dump out the vSAN
disk mappings; in other words, which flash devices and/or which
magnetic disks are in a disk group. The next example shows a
sample output (which includes the -H option to make it more human
readable):

This command shows the SSD relationship to capacity devices,
whether they are flash devices in the case of all-flash configurations
or magnetic disks in the case of hybrid configurations. Note that
even if these are flash devices, they are shown as MD (magnetic
disks) in this output, the IsCapacityFlash field would need to be
examined to see if these are flash devices (e.g., SSD) or not. This is
very useful if you want to find out the disk group layout on a
particular host from the command line. This command will quickly tell
you which magnetic disks are fronted by which SSDs, especially when
you have multiple disk groups defined on an ESXi host.

Although some of the commands shown in this section may prove
useful to examine and monitor vSAN on an ESXi host basis,
administrators ideally need something whereby they can examine the
whole cluster. VMware recognized this very early on in the
development of vSAN, and so introduced extensions to the RVC to
allow a cluster-wide view of vSAN. The next topic delves into RVC.

Ruby vSphere Console (RVC) Commands

Telegram Channel @nettrain

The previous section looked at ESXi host-centric commands for
vSAN. These might be of some use when troubleshooting vSAN, but
with large clusters, administrators may find themselves having to run
the same set of commands repeatedly on the different hosts in the
cluster. In this next section, we cover a tool that enables you to take
a cluster-centric view of vSAN called the Ruby vSphere Console
(RVC). RVC is also included in the VMware vCenter Server Appliance
(VCSA). As mentioned in the introduction, RVC is a programmable
interface that allows administrators to query the status of vCenter
Server, clusters, hosts, storage, and networking. For vSAN, there are
quite a number of programmable extensions to display a
considerable amount of information that you need to know about a
vSAN cluster. This section covers those vSAN extensions in RVC.

RVC provides a significant set of very useful commands that enable
the monitoring, management, and troubleshooting of vSAN from the
CLI.

You can connect RVC to any vCenter Server. On the vCenter Server,
you log in via Secure Shell (SSH) and run rvc <user>@<vc-ip>. In our
lab we leverage root to login to SSH and then use administrator@
vsphere.local to login to RVC. This looks as follows:

After you log in, you will see a virtual file system, with the vCenter
Server instance at the root. You can now begin to use navigation
commands such as cd and ls, as well as tab-completion to navigate
the file system. The structure of the file system mimics the inventory

Telegram Channel @nettrain

mailto:administrator@vsphere.local

items tree views that you find in the vSphere client. Therefore, you
can run cd <vCenter Server>, followed by cd <datacenter>. You can
use ~ to refer to your current datacenter, and all clusters are in the
“computers” folder under your datacenter. Note that when you
navigate to a folder/directory, the contents are listed with numeric
values. These numeric values may also be used as shortcuts. For
example, in the vCenter Server shown in the output below there is
only one datacenter, and it has a numeric value of 0 associated with
it. We can then cd to 0, instead of typing out the full name of the
datacenter. RVC also provides tab completion of commands.

The full list of commands, at the time of writing, is shown here.
However, as mentioned in the introduction, RVC may be deprecated
in favor of ESXCLI, so this list of commands, as well as their
functionality, is subject to change in future releases.

The names of the commands describe pretty well what the command
is used for. However, a few examples from some of the more popular
commands are shown later for your information.

Telegram Channel @nettrain

Telegram Channel @nettrain

To make this output easier to display, for certain commands we have
separated out each of the columns and displayed them individually.

The output of vsan.check_limits

This command takes a cluster as an argument. It displays the limits
on the cluster, on a per host as-is. These limits include network limits
as well as disk limits, not just from a capacity perspective but also
from a component perspective.

Telegram Channel @nettrain

The output of vsan.host_info

This command can be used to display specific host information. It
provides information about what the role of the host is (master,
backup, agent), what its UUID is, and what the other member UUIDs

Telegram Channel @nettrain

are (so you can see how many hosts are in the cluster) and of course
information about networking and storage. It displays the adapter
and IP address that the host is using to join the vSAN network, and
which devices have been claimed for both the cache tier and
capacity tier.

Output of vsan.disks_info

This is a useful RVC command to display whether or not is free or in
use, and if it is in use, who is using it. It takes a hostname as an
argument.

Telegram Channel @nettrain

Those are just a few sample commands, but as you can tell there are
a lot of additional commands that you can run with RVC. Use the -h
option on any commands to get more information on how to use it.

Summary

As you can see, an extensive suite of tools is available for managing
and monitoring a vSAN deployment. With this extensive suite of CLI
tools, administrators can drill down into the lowest levels of vSAN
behavior.

Telegram Channel @nettrain

The End

You have made it to the end of the book. Hopefully, you now have a
good idea of how vSAN works and what vSAN can provide for your
workloads in a VMware-based infrastructure.

We have tried to simplify some of the concepts to make them easier
to understand. However, we acknowledge that some concepts can
still be difficult to grasp. We hope that after reading this book
everyone is confident enough to design, install, configure, manage,
monitor, and even troubleshoot vSAN based hyperconverged
infrastructures.

If there are any questions, please do not hesitate to reach out to
either of the authors via Twitter or LinkedIn. We will do our best to
answer your questions. Another option we would like to recommend
for vSAN related questions is the VMware VMTN Community Forum.
It is monitored by dozens of vSAN experts, and answers to questions
are typically provided within hours. (https://vmwa.re/vsanvmtn)

Thanks for reading,

Cormac and Duncan

Telegram Channel @nettrain

https://vmwa.re/vsanvmtn

Telegram Channel @nettrain

	Title Page
	Contents
	Copyright
	About the authors
	Preface
	Dedication
	Foreword
	1. Introduction to VMware vSAN
	2. vSAN Prerequisites and Requirements
	3. vSAN Installation and Configuration
	4. Architectural Details
	5. VM Storage Policies and VM Provisioning
	6. vSAN Operations
	7. Stretched Cluster Use Case
	8. Two Host vSAN Cluster Use Case
	9. Cloud-Native Applications Use Case
	10. Command Line Tools
	The End

